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We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts.
For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the
most important information from unstructured texts, which represent the state in the decision process. By designing the reward
function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in
order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which
realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences
that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation
mentions to generate the transition state in the decision process. Finally, we employ 𝑄-Learning algorithm to get control policy𝜋 in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the
state-of-the-art method and gets a 2.4% increase in recall-score.

1. Introduction

Information extraction [1] is the task of automatically extract-
ing entities, relations, and events from unstructured texts.
Researchers usually do research on entity extraction, relation
extraction, and event extraction as separated tasks, but in fact
there are important dependencies among tasks. For instance,
entity information can further help relation extraction, so
relation extraction takes the results of entity extraction as
input. If just using a pipelined approach to tackle the above
problem, information from each task cannot interact and
get any feedback. Therefore, we make a detailed study of
joint extraction of entities and relations from unstructured
texts, which can pass the information of entity extraction to
relation extraction and obtain feedback in order to improve
the performance of entity extraction and relation extraction
simultaneously.

In recent years, more and more researchers have applied
deep learning to entity extraction and relation extraction.
Huang et al. [2] proposed a bidirectional LSTM with a CRF
layer (BILSTM-CRF) for sequence tagging, which included
part-of-speech tagging (POS), chunking, and named entity

recognition (NER). Nguyen and Grishman [3] proposed
to combine the traditional feature-based method and the
convolutional and recurrent neural networks for relation
extraction. Deep learning can automatically extract features
of entities and relations between entities to replace the
method of designing features manually. It reduces the depen-
dence of external resources and achieves good performance.

But how to pass entity information to relation extraction
and obtain feedback is the research focus to the task of joint
extraction of entities and relations, whichmeans that we need
an effective combination of different deep learning methods.
To tackle the problem, we use reinforcement learning to
model the task as a two-step decision process. Because it
is difficult to find some measures to directly represent the
state from unstructured texts, we use some deep learning
methods to extract the state in the process. Firstly, we
regard entity extraction as a sequence tagging task and
use bidirectional LSTM to capture the context information,
which preliminarily realizes the tagging of entity state. On the
basis of preliminary results, we use attention based method
to represent the sentences that include target entity pair and
generate the initial state 𝑠1 in the decision process, where the
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Table 1: A sentence in ACE2005 dataset.

Sentence While either divesting or inviting third parties to take a minority stake in the
remaining Entertainment assets.

Entity ID =
“AFP ENG 20030319.0879-E24”

Type = “ORG”
Subtype = “Commercial” third parties

Entity ID =
“AFP ENG 20030319.0879-E25”

Type = “ORG”
Subtype = “Entertainment” Entertainment

Relation ID =
“AFP ENG 20030319.0879-R2”

Type = “ORG-AFF”
Subtype = “Investor-Shareholder”

RefID = “AFP ENG 20030319.0879-E24”
Role = “Arg-1”

RefID = “AFP ENG 20030319.0879-E25”
Role = “Arg-2”

first decision is made. Then we use Tree-LSTM to capture
the most important information of relation mentions and
generate the transition state 𝑠2, where the second decision
is made. The meaning of the two-step decision is as follows:
the first decision is to judge if a sentence that includes target
entity pair is a relation mention according to the preliminary
results of entity extraction; the second decision is to classify
the relationmention into a certain targeted type. By designing
the reward function per step, entity information and relation
information can interact. Finally, we use 𝑄-Learning to get
control policy 𝜋 by maximizing cumulative rewards through
a sequence of actions, which is essentially the mapping from
state to action. In the training process of 𝑄-Learning, all
the parameters are jointly updated, which helps to realize
the joint extraction of entities and relations. We conduct
experiments on ACE2005 dataset and achieve better recall-
score of both entity mentions and relation mentions than
the state-of-the-art method. In the following, we define the
task in Section 2 and present our method in Section 3. Then
we detail an extensive evaluation in Section 4 and finally
conclude in Section 5.

2. Task Definition

Our task is to extract all the entities and relations from
unstructured texts simultaneously. In the section we ran-
domly pick a sentence from ACE2005 dataset to analyze.
The entity mentions and relation mention in the sentence are
shown in Table 1, where Entity ID, Relation ID, and RefID are
the identifications of mentions.

Entity Extraction. It can be taken as a sequence tagging task,
which assigns a tag to each word 𝑠𝑡 in the input sequence𝑆 = [𝑠1, 𝑠2, . . . , 𝑠𝑛]. The tag of a word means a combination
of the entity type it belongs to and the boundary type it
locates within.The boundary types are the Beginning, Inside,
Last, Outside, and Unit of an entity (BILOU scheme). Table 1
shows two entity mentions in the sentence. The first entity
mention is “third parties,” and its entity type is “ORG.” The
second entity mention is “Entertainment,” and its entity type
is “ORG.” ACE2005 dataset defines 7 coarse-grained entity
types, which are “PER” (Person), “ORG” (Organization),
“LOC” (Location), “GPE” (Geo-Political Entities), “FAC”
(Facility), “VEH” (Vehicle), and “WEA” (Weapon).The types
all have their own different subtypes.

Relation Extraction. It is to extract semantic relations of
the targeted types between a pair of entities. Table 1 shows
one relation mention in the sentence, of which the relation
type is “ORG-AFF.” The first entity argument is “third
parties,” and the second entity argument is “Entertain-
ment.” The order of the arguments cannot be changed,
which means the relation type is with direction. ACE2005
dataset defines 7 coarse-grained relation types between enti-
ties, which are “PHYS” (Physical), “PART-WHOLE” (Part-
Whole), “PER-SOC” (Person-Social), “ORG-AFF” (Org-
Affiliation), “ART” (Artifact), “GEN-AFF” (Gen-Affiliation),
and “METONYMY” (Metonymy). Similarly, the types all
have their own different subtypes.

Joint Extraction. It is to extract entities and relations in
a sentence simultaneously. In the process of extraction,
entity information and relation information can interact and
get feedback information. Therefore, the joint extraction is
more practical and different than separated entity extraction
and separated relation extraction. We define and conduct
research on the joint extraction task and present to use both
reinforcement learning and deep learning for the task in the
following section.

3. Our Method

The section combines three deep learning methods in the
decision process of reinforcement learning for the joint
extraction task. Firstly, we describe the two-step decision pro-
cess; then we expound three deep learning methods used in
this paper, that are bidirectional LSTM, attentionmechanism,
and Tree-LSTM; finally, we introduce 𝑄-Learning algorithm
that can get control policy 𝜋.
3.1. Reinforcement Learning. In general, entity extraction is
performed before relation extraction, and its results can
also be taken as the input of relation extraction. Relation
extraction is fundamentally divided into two stages: judge if a
sentence that includes target entity pair is a relation mention;
classify the relation mention into a targeted type. According
to the thoughts, we model the joint extraction task as a two-
step decision process by reinforcement learning. The two
steps correspond to entity extraction and relation extraction
roughly, and the specific flow is shown in Figure 1.
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Figure 1: Two-step decision process.

Reinforcement Learning (RL). It [4] is a commonly used
framework for learning control policies by the agent, through
interacting with its environment.

State. The internal state 𝑆 in the environment consists of the
initial state 𝑠1, the transition state 𝑠2, and the end state 𝑠𝑒.
Because it is difficult to find some appropriate measures to
directly represent the state from unstructured texts, we use
some deep learningmethods to automatically extract features
of texts, which can represent the state in the decision process.
To be specific, we use bidirectional LSTM (Section 3.2)
to realize preliminary entity extraction and use attention
based method (Section 3.3) to generate the initial state 𝑠1 =
Att(𝑋; 𝜃1). In addition, we use Tree-LSTM (Section 3.4) to
generate the transition state 𝑠2 = Tree(𝑋; 𝜃2). The action
taken at 𝑠2 realizes preliminary relation extraction. 𝑋 is the
features of the input sentence; 𝜃1 and 𝜃2 are parameters in
the above models.

Action. There are a set of predefined actions 𝐴 in the
environment: Action 1 𝑎1, Action 2 𝑎2, Action 3 𝑎3, Action
4 𝑎4, and so forth. The first decision judges to take 𝑎1 or 𝑎2.𝑎1 is to judge that a sentence that includes target entity pair is
not a relation mention, and 𝑎2 is to judge that a sentence that
includes target entity pair is a relation mention. The second
decision judges to take 𝑎3 or 𝑎4 . . .. 𝑎3 is to classify the relation
mention into a targeted type, and 𝑎4 is to classify the relation
mention into another targeted type. 𝑅 = 𝑟1, 𝑟2, 𝑟3, 𝑟4, . . .
denotes the reward obtained for each action. The agent takes
an action 𝑎 in state 𝑠 and receives a reward 𝑟 from the
environment. (𝑠1, 𝑎1, 𝑟1, 𝑠𝑒), (𝑠1, 𝑎2, 𝑟2, 𝑠2), (𝑠2, 𝑎3, 𝑟3, 𝑠𝑒), and(𝑠2, 𝑎4, 𝑟4, 𝑠𝑒) denote the transitions of the decision process.

Transition and Reward Function. A state transition tuple(𝑠1, 𝑎1, 𝑟1, 𝑠𝑒) means that the agent takes 𝑎1 at 𝑠1 and then
transits to 𝑠𝑒. If the judgement of 𝑎1 is right, then the agent
receives a reward 𝑟1 = 10; if the judgement of 𝑎1 is wrong,
then set 𝑟1 = −20 to punish the wrong judgement of the first
decision. A state transition tuple (𝑠1, 𝑎2, 𝑟2, 𝑠2)means that the
agent takes 𝑎2 at 𝑠1, then transits to 𝑠2, and receives a reward𝑟2 = 5. A state transition tuple (𝑠2, 𝑎3, 𝑟3, 𝑠𝑒) means that the
agent takes 𝑎3 at 𝑠2 and then transits to 𝑠𝑒. If the judgement of𝑎3 is right, then the agent receives a reward 𝑟3 = 10; if the
judgement on type is wrong, then set 𝑟3 = −10 to punish
the wrong judgement of the second decision; if it is not a
relation mention, then set 𝑟3 = −20. The meaning of other
state transition tuple (𝑠2, 𝑎4, 𝑟4, 𝑠𝑒) and the definition of its
reward function are similar to those of (𝑠2, 𝑎3, 𝑟3, 𝑠𝑒).
3.2. BILSTM. Long Short-Term Memory (LSTM) [5] is a
variant of recurrent neural networks (RNN) designed to cope
with the gradient vanishing problem, and LSTM is very useful
to find and exploit long range dependencies in the data. Now
lots of LSTM variants have been proposed and applied to
natural language processing tasks, such as sentiment analysis,
relation classification, and question answering system. We
use bidirectional LSTM (BILSTM) to model word sequence,
which can efficiently make use of past features and future
features. BILSTM finds the right representation of each word
and assigns a tag of entity state to each word in the input
sequence to realize preliminary entity extraction. BILSTM
mainly consists of three representation layers: embedding
layer, BILSTM layer, and output layer. Figure 2 gives the basic
structure of the BILSTM.
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Figure 2: Basic structure of BILSTM.

3.2.1. Embedding Layer. The embedding layer converts dis-
crete features of each word into continuous features as input
of the BILSTM layer. We do forward and backward for input
sentence, so we need a special treatment at the beginning and
the end of the sequence.

Part-of-speech feature can further help entity extraction,
so we only use word embedding 𝑒𝑡 and part-of-speech
embedding 𝑑𝑡 to represent each word 𝑤𝑡 in the input
sentence, which replace the method of designing features
manually. After passing through the lookup table, the lower-
cased word is mapped to its corresponding embedding. For
word feature, the lookup table is initialized by the publicly
available word embeddings. For part-of-speech feature, the
lookup table is randomly initialized with values drawn from
a uniform distribution. The word embeddings and the part-
of-speech embeddings are allowed to be modified during
training.

We concatenate the word embedding 𝑒𝑡 and the part-
of-speech embedding 𝑑𝑡 of each word 𝑤𝑡 to generate input
feature vector 𝑥𝑡 = [𝑒𝑡, 𝑑𝑡]. The matrix 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
represents the features of the whole sentence, and is passed to
the BILSTM layer, where n is the length of the input sentence.

3.2.2. BILSTM Layer. Basically, each LSTM unit in the
BILSTM layer is composed of three multiplicative gates: an
input gate 𝑖𝑡, a forget gate 𝑓𝑡, and an output gate 𝑜𝑡. The
gates can control the proportions of information to forget
and to pass on to the next time step. In addition, there is
a memory cell 𝑐𝑡 in each LSTM unit, which can keep the
previous state andmemorize the features of the current input
word. Therefore, the data sources of each LSTM unit are as
follows: the feature vector 𝑥𝑡 = [𝑒𝑡, 𝑑𝑡] at time 𝑡, the hidden

state vector ℎ𝑡−1 before time 𝑡 or ℎ𝑡+1 after time 𝑡, and the cell
vector 𝑐𝑡−1. The forward passes are implemented as follows:

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) ,
𝑓𝑡 = 𝜎 (𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) ,
𝑔𝑡 = tanh (𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 +𝑊𝑐𝑐𝑐𝑡−1 + 𝑏𝑐) ,
𝑐𝑡 = 𝑖𝑡𝑔𝑡 + 𝑓𝑡𝑐𝑡−1,
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) ,
ℎ𝑡 = 𝑜𝑡 tanh (𝑐𝑡) ,

(1)

where 𝑊 are weight matrices, 𝑏 are bias vectors, and their
subscripts have the meaning as the name suggests. 𝜎 denotes
the logistic function.

The backward passes over time are carried out in a similar
way to forward passes. The hidden state vectors of two
directions ℎ𝑡 and ℎ𝑡 are simultaneously computed at time 𝑡
in the BILSTM layer, so we can efficiently make use of past
features and future features for a specific time frame.

3.2.3. Output Layer. We treat entity extraction as a sequence
labeling task. By assigning an entity tag to each word, we
realize preliminary entity extraction on top of the BILSTM
layer. At time 𝑡, we pass the hidden state vectors of two
directions ℎ𝑡 and ℎ𝑡 to a softmax layer.

𝑦𝑡 = softmax (𝑊ℎ𝑦ℎ𝑡 +𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦) . (2)

Here,𝑊 are weight matrices and 𝑏 is bias vector.
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Figure 3: Attention layer.

3.2.4. Objective Function. Weemploy theViterbi algorithm to
inference the tag sequence𝑇 = [𝑡1, 𝑡2, . . . , 𝑡𝑛] for a given input
sentence𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑛]. Tomodel the tag dependency,
we use the transition score A𝑖𝑗 for measuring the probability
of the transformation from tag 𝑖 to tag 𝑗. Thus, the sentence-
level score can be formulated as follows:

𝑠 (𝑊, 𝑇, 𝜃0) =
𝑛∑
𝑖=1

(A𝑡𝑖−1𝑡𝑖 + 𝑦𝑖 (𝑡𝑖)) . (3)

Here, 𝑦𝑖(𝑡𝑖) is the score for choosing tag 𝑡𝑖 for the 𝑖th word
in the input sentence. 𝜃0 is the parameter set of BILSTM.

For a given training instance (𝑊𝑖, 𝑇𝑖), 𝑊𝑖 is a given
sentence and the correct tag sequence for𝑊𝑖 is 𝑇𝑖. We search
for the tag sequence with the highest score:

𝑇∗ = argmax
�̂�

𝑠 (𝑊𝑖, �̂�, 𝜃0) . (4)

Here, �̂� is a predicted tag sequence.
The regularized objective function for 𝑚 training

instances is the loss function 𝐽(𝜃0) including a 𝑙2-norm term:

𝐽 (𝜃0) = 1𝑚
𝑚∑
𝑖=1

𝑙𝑖 (𝜃0) + 𝜆2 𝜃0
2

2 ,
𝑙𝑖 (𝜃0)
= max (0, 𝑠 (𝑊𝑖, �̂�𝑖, 𝜃0) + Δ (𝑇𝑖, �̂�𝑖) − 𝑠 (𝑊𝑖, 𝑇𝑖, 𝜃0)) .

(5)

Here, Δ(𝑇𝑖, �̂�𝑖) is a structured margin loss for predicted
tag sequence �̂�. 𝜆 is an 𝐿2 regularization hyperparameter.

To minimize 𝐽(𝜃0), we use a generalization of gradient
descent called subgradient method [6] which computes a
gradient-like direction.

3.3. Attention Mechanism. Recently, attention mechanisms
have successfully been applied to machine translation [7],

text summarization [8], text comprehension [9], syntactic
constituency parsing [10], relation classification [11], and text
classification [12]. Inspired by those studies, we introduce
attention based method to compute the hidden state vectorsℎ𝑡 and ℎ𝑡 in the BILSTM layer and generate the initial
state 𝑠1 in the decision process. The method can obtain the
information of entity extraction and represent the sentences
that include target entity pair. After the first decision on𝑠1, we realize preliminary entity extraction and get ready
to perform relation extraction. In essence, attention based
method can pass entity information to relation extraction and
obtain feedback information of relation extraction by jointly
updating all the parameters. Attention based method better
integrates entity extraction and relation extraction.

After realizing preliminary entity extraction, we choose
two entities as target entity pair in the sentence 𝑊 =[𝑤1, 𝑤2, . . . , 𝑤𝑛]. The attention layer is depicted in Figure 3.
Let 𝐻 be a matrix consisting of the hidden state vectors[ℎ1, ℎ1, ℎ2, ℎ2, . . . , ℎ𝑛, ℎ𝑛] in the BILSTM layer, and 𝐻 is the
input of the attention layer. Then attention based method
represents the sentence that includes target entity pair as a
weighted sum of these hidden state vectors.

𝐴 = tanh (𝐻) ,
𝛼 = softmax (𝜔𝑇𝐴) ,
𝑠1 = tanh (𝐻𝛼𝑇) .

(6)

Here, 𝛼 is the normalized weight vector and 𝜔 is a
parameter vector. 𝑠1 is the initial state, in which we denote
by 𝑠1 = Att(𝑋; 𝜃1), and 𝜃1 represents all the parameters in
this method.

After generating the initial state 𝑠1, the first decision will
be made to judge if a sentence that includes target entity pair
is a relation mention. We pass 𝑠1 to a softmax output layer
to get 𝑦𝑎, which is the probability of relation mention and
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nonrelation for a sentence. Finally, we can determine to take𝑎1 or 𝑎2.
𝑦𝑎 = softmax (𝑊𝑠𝑦𝑠1 + 𝑏𝑦) . (7)

Here,𝑊 is weight matric and 𝑏 is bias vector.
The objective function for 𝑚 training instances is the

negative log-likelihood:

𝐽 (𝜃1) = − 12𝑚
𝑚∑
𝑖=1

𝑡(𝑖)0 log (𝑦(𝑖)𝑎 (0)) + 𝑡(𝑖)1 log (𝑦(𝑖)𝑎 (1))

+ 𝜆2 𝜃1
2

2

(8)

Here, 𝑡(𝑖)0 and 𝑡(𝑖)1 are the one-hot represented ground
truth. 𝑦(𝑖)𝑎 (0) and 𝑦(𝑖)𝑎 (1) are the estimated probability for
relation mention and nonrelation, respectively. 𝜆 is an 𝐿2
regularization hyperparameter.

To minimize 𝐽(𝜃1), we use a simple optimization tech-
nique called stochastic gradient descent (SGD).

3.4. Tree-LSTM. Unlike traditional sequence LSTM, Tree-
LSTM [13] is constructed over a tree structure. As is known
to all, the dependency tree is very useful for analyzing the
relations between words. Two words may be far apart in
the linear structure and separated by many unrelated words
or preposition structure, but they are in hyponymy for the
dependency tree. Therefore, we construct the Tree-LSTM
over the dependency tree to represent relation mentions in a
bottom-up way. Tree-LSTM can extract the core dependency
relation between target entity pair and generate the transition
state 𝑠2 in the decision process. The second decision on 𝑠2
performs preliminary relation extraction.

We take the relationmention “AFP ENG 20030319.0879-
R2” in Table 1 as an example to illustrate, and the two
entity arguments are “third parties” and “Entertainment.”
Firstly, we perform dependency parsing on the relation
mention and generate the dependency tree, as shown in
Figure 4. Instead of using the full mention boundary, we

use head spans for entities directly. The entity head of “third
parties” is “parties,” and the entity head of “Entertainment”
is “Entertainment.” The core dependency relation between
target entity pair is shown by red lines in Figure 4. So we
use dependency tree as a backbone to construct Tree-LSTM.
Moreover, for the convenience of implementation, we prune
or pad dependency trees to keep the same depth and width.

Like BILSTM, each LSTM unit of Tree-LSTM takes
continuous feature vector of a word as input. In addition to
word embedding 𝑒𝑡 and part-of-speech embedding 𝑑𝑡, we
use entity type embedding 𝑡𝑡 and entity position embedding𝑙𝑡, to which entity type feature and entity position feature
are mapped. We can get the entity type features from the
preliminary results of entity extraction and get the entity
position features by computing the relative distances of the
current word to the two entity arguments. Unlike BILSTM,
the LSTM unit does not accept hidden state vectors of the
adjacent words and accept the hidden state vectors of all
children nodes ℎ𝑡𝑘 as input. The Tree-LSTM is developed
from its leaf node in a recursive way up to the root, which
is the common ancestor (“divesting” in Figure 4) of all the
words. Then we carry out nonlinear transformation on the
hidden state vector of the ancestor to generate 𝑠2, which is
the final representation of relation mentions and serves as
the transition state in the decision process. We denote 𝑠2 by𝑠2 = Tree(𝑋; 𝜃2), and 𝜃2 represents all the parameters in the
Tree-LSTM.

After generating the transition state 𝑠2, the second deci-
sion will be made to classify the relation mention into a
targeted type. Then 𝑠2 is passed to a softmax output layer to
get 𝑦𝑟, which is the probability of different types for a relation
mention. Finally, we choose a type with the maximum
probability, which determines to take 𝑎3 or 𝑎4 . . ..

𝑦𝑟 = softmax (𝑊𝑠𝑦𝑠2 + 𝑏𝑦) . (9)

Here, 𝑊 is weight matric and 𝑏 is bias vector. At each
dependency tree, we use a softmax layer to predict the type
for the root node given the inputs 𝑋 observed at its children
nodes.



Computational Intelligence and Neuroscience 7

Initialize BILSTM, the Attention Layer, and Tree-LSTM with random parameters
𝜂 = 0
Pre-train BILSTM, the Attention Layer, and Tree-LSTM respectively
for epoch = 1, 2, . . . do

for each input sentence𝑋 do
Use the deep learning models above to automatically extract features of𝑋, and generate 𝑠1 and 𝑠2.
for 𝑡 = 1, 2 do𝑟, 𝑠 = the reward and state after taking the action 𝜋(𝑠)𝑎 = 𝜋(𝑠)

Perform gradient descent step:

−𝜕𝐸𝜂𝜕𝜂 = 𝐸[2 (𝑄𝜋 (𝑠, 𝑎) − 𝑄𝜂 (𝑠, 𝑎))
𝜕𝑄
𝜂 (𝑠, 𝑎)
𝜕𝜂 ]

𝑄𝜋 (𝑠, 𝑎) = 1𝑡 𝑟 +
𝑡 − 1
𝑡 𝑄𝜋 (𝑠, 𝑎)

The update rule is

𝜂 = 𝜂 + 𝛼(1𝑡 𝑟 +
𝑡 − 1
𝑡 𝑄𝜂 (𝑠, 𝑎) − 𝑄𝜂 (𝑠, 𝑎))

𝜕𝑄
𝜂
(𝑠, 𝑎)
𝜕𝜂

Where 𝛼 is update step, and 𝑟 is the reward function (Section 3.1), and (𝑠, 𝑎) is the state-action pair of next time.𝜋(𝑠) = argmax
𝑎


𝑄
𝜂
(𝑠, 𝑎)

𝑠 = 𝑠, 𝑎 = 𝑎
end for

end for
end for

Algorithm 1: Training procedure for 𝑄-Learning.

The objective function for 𝑚 training instances is the
negative log-likelihood:

𝐽 (𝜃2) = − 1𝑚
𝑚∑
𝑖=1

log (𝑦(𝑖)𝑟 ) + 𝜆2 𝜃2
2

2 . (10)

Here, 𝑦(𝑖)𝑟 is the estimated probability for the true type
at each root node. The root node of Tree-LSTM is able to
selectively incorporate information from each child. 𝜆 is an𝐿2 regularization hyperparameter.

To minimize 𝐽(𝜃2), we use AdaGrad [14].

3.5.𝑄-Learning. 𝑄-Learning algorithm [15] is a popular form
of reinforcement learning and can be used to learn an optimal
state-action value function 𝑄(𝑠, 𝑎) for the agent. The agent
takes an action 𝑎 in state 𝑠 by consulting 𝑄(𝑠, 𝑎), which is a
measure of the action’s expected long-term reward. The aim
is to maximize some cumulative rewards through a sequence
of actions. As the state space is infinite in the decision process,
it is impractical to obtain 𝑄(𝑠, 𝑎) for all possible state-action
pairs.

For the above challenge, we approximate 𝑄(𝑠, 𝑎) using a
neural network, which can represent 𝑄(𝑠, 𝑎) as a parameter-
ized function 𝑄𝜂(𝑠, 𝑎) = MLP(𝜙(𝑋; 𝜃), 𝑎; 𝜂). 𝜙(𝑋; 𝜃) refers
to 𝑠1 = Att(𝑋; 𝜃1) and 𝑠2 = Tree(𝑋; 𝜃2) above, where 𝜃 can
be obtained by pretraining the deep learning models above
and 𝜂 represents the parameters in the neural network, which
are learnt by performing stochastic gradient descent stepwith
RMSprop [16].

To approximate the real value function 𝑄𝜋 as closely as
possible, we measure the degree of approximation with the
least squares error:

𝐸𝜂 = 𝐸 [(𝑄𝜋 (𝑠, 𝑎) − 𝑄𝜂 (𝑠, 𝑎))2] . (11)

In 𝑄-Learning, we use the estimated value function𝑄𝜂(𝑠, 𝑎) instead of the real value function 𝑄𝜋(𝑠, 𝑎). During
each epoch, the updates of parameters aim to reduce the
discrepancy between the estimation 𝑄𝜂(𝑠, 𝑎) and the expec-
tation 𝑄𝜋(𝑠, 𝑎). The agent starts from a random 𝑄𝜂(𝑠, 𝑎)
and continuously updates its values by making the decisions
and obtaining rewards. Then the agent can maximize its
expected future rewards by choosing the action with the
highest 𝑄𝜂(𝑠, 𝑎). Finally, 𝑄-Learning algorithm gets control
policy 𝜋 in the two-step decision process. Algorithm 1 details
the 𝑄-Learning training procedure.

During the training procedure we pretrain BILSTM, the
attention layer, and Tree-LSTM, respectively. The training
parameters mainly include all the parameters 𝜃0 in BLSTM,
all the parameters 𝜃1 in the attention layer, and all the
parameters 𝜃2 in Tree-LSTM.

The functionality of the attention model in our RL
method is very similar to that of a separate relation men-
tion classification part in a pipeline. We use deep learning
methods to represent words and sentences in the text and
use RL to combine three tasks in the decision process, that
are entity extraction, relation mention classification, and
relation classification. The pipeline architecture just passes
the information of entity extraction to relation extraction and
does not enable information to flow in the global architecture.
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However, our RL method not only combines the above
tasks sequentially but also globally makes decisions. At the
beginning, the decisions have close to a random chance.
After several epochs, they will be stabilizing. Meanwhile,
the parameters in our architecture are globally updated and
eventually converge. Therefore, our RL method can obtain
feedback from decision-making and state changes and enable
information to flow in the global architecture. The attention
model connects entity extraction taskwith relation extraction
task, thus helping us to realize the joint extraction of entities
and relations. Experimental results demonstrate that our RL
method performs slightly better than the pipelinemethod for
both entity extraction and relation extraction, which shows
that we are on the right track.

4. Experiments
4.1. Data. Most previous work has reported results on
ACE2005 data set, so we evaluate our method on ACE2005
for joint extraction of entities and relations. We use three
common metrics to evaluate the performance: micropreci-
sion (𝑃), recall (𝑅), and primary micro 𝐹1-scores (𝐹1). An
entity mention is correct when its entity type and the region
of its head are correct, and a relationmention is correct when
its relation type and both entity arguments are correct.

Data source for English in ACE2005 is as follows: 20%
Newswire (NW), 20% Broadcast News (BN), 15% Broadcast
Conversation (BC), 15% Weblog (WL), 15% Usenet News-
groups/Discussion Forum (UN), and 15% Conversational
Telephone Speech (CTS).The two small subsets UN and CTS
are informal, so we remove them. In addition, in order to
compare with state of the art, we employ the same method as
previous work [17] to split and preprocess the data. Training
set contains 351 documents, development set contains 80
documents, and testing set contains 80 documents.

4.2. Hyperparameters. We set up Python2.7 + Theano +
Cuda7.5 environments to implement our method. We use the
publicly available word embedding Glove [18] to initialize
the word embedding table, and its dimension 𝑛𝑒 is 300.
We fix the dimension of part-of-speech embedding 𝑛𝑑 and
the dimension of entity type embedding 𝑛𝑡 to 50 and fix
the dimension of entity position embedding 𝑛𝑙 to 5. Those
feature embeddings are randomly initialized and allowed to
be modified during training. In addition, we fix the state size
of all the LSTM units to 200 and fix the dimensions of other
hidden layers to 100. We use tanh for the nonlinear function.

We tune hyperparameters using development set to
achieve high 𝐹1. The best hyperparameters are as follows.
Dropout rate [19] is 0.5, minibatch size is 30, the constraint
of max-norm regularization is equal to 3, and initial learning
rate is 0.0005.The reward after each action is described in the
Section 3.1. Therefore, for all the experiments below, we will
directly employ the best hyperparameters.

4.3. Overall Performance. We run experiments to analyze
the effectiveness of the various components of our joint
extraction method.

Firstly, we compare the performance of BILSTM with a
baseline system, LSTM for entity extraction task. We train

Table 2: Performance for entity extraction task.

Method Entity
Score 𝑃 (%) 𝑅 (%) 𝐹1 (%)
LSTM 81.0 78.1 79.5
BILSTM 82.5 79.8 81.1

Table 3: Performance for relation extraction task.

Method Relation
Score 𝑃 (%) 𝑅 (%) 𝐹1 (%)
CNN 63.1 52.9 57.6
Tree-LSTM 63.9 54.1 58.6
RL 63.6 59.4 61.4

models using training set and report models’ performance on
development set in Table 2. The result shows that BILSTM
obtains better performance than LSTM on all evaluation
metrics. Bidirectional model can actually improve the perfor-
mance of sequence tagging task. Therefore, throughout the
experiment, we will use BILSTM to extract entities.

Then, to demonstrate the effectiveness of the relation
extraction component of our method, we carry out exper-
iments on relation extraction when entities are known. We
build a baseline system, CNN. In addition, we parse relation
mentions using the Stanford neural dependency parser [20]
and directly use Tree-LSTM extract relations. On the basis
of Tree-LSTM, we use reinforcement learning method to
control the process of relation extraction. We compare the
performance of the above three methods on development set
in Table 3. The result demonstrates that Tree-LSTM is better
suited to extract relations than CNN, and reinforcement
learning method obtains a substantial gain in recall-score
over Tree-LSTM with 3.7%. Therefore, in the rest of the
experiment, we will use reinforcement learning method
based on Tree-LSTM to extract relations.

Finally, we demonstrate the effectiveness of our joint
extraction method. We build a pipelined system, which
directly connects the entity extraction component and the
relation extraction component above. To be specific, the
pipelined system first trains the entity extraction model and
then builds a separate relation extraction model using the
detected entities. Our joint system is based on the pipelined
system. The joint system uses attention based method to
pass entity information to relation extraction and updates
the parameters in all the components simultaneously dur-
ing the training procedure for 𝑄-Learning, which realizes
the joint extraction of entities and relations. We compare
the performance of the two systems on development set
in Table 4. The result demonstrates that our joint system
slightly improves the performance of entity extraction and
significantly improves the performance of relation extraction.
Therefore, the experiments show that our method is effective
and practical.

Wewill clearly show the process of the above experiments.
Figure 5 shows the average reward after each training epoch.
At the beginning of training, the reward is negative, because
the agent takes actions randomly. But with the increase
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Table 4: Performance of two extraction systems.

Method Entity Relation
Score 𝑃 (%) 𝑅 (%) 𝐹1 (%) 𝑃 (%) 𝑅 (%) 𝐹1 (%)
Pipeline 82.5 79.8 81.1 60.2 43.9 50.8
Joint 83.6 80.4 82.0 60.6 45.9 52.2
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Figure 5: Learning curve of average reward.

of epoch number, the reward improves gradually. Figure 6
shows the learning curves of the performance for entity
extraction and relation extraction. The 𝐹1-score in both (a)
and (b) increases simultaneously. From the two figures, we
can clearly see that all the metrics significantly improve and
then stabilize after 13 epochs of training. Sowe set the number
of training epochs as 13.

4.4. Comparison with State of the Art. Now deep learning
methods achieve state-of-the-art performance in end-to-
end relation extraction task. Miwa and Bansal [21] stacked
bidirectional tree-structured LSTM-RNNs on bidirectional
sequential LSTM-RNNs to extract entities and relations
between them, which could capture both word sequence and
dependency tree substructure information. The method is
denoted by SPTree. Table 5 compares our joint extraction
method with SPTree on the testing set and shows that our
method performs slightly better than SPTree for both entity
mentions and relationmentions. Although ourmethod is not
comparable with SPTree in precision-score, our method out-
performs the best results of SPTree in recall-score. The main
reason is that the reward after each action in reinforcement
learning may play an important role.

4.5. Analysis. We pretrain the attention model which is
used for relation mention classification. Relation mention
classification is always processed in a very unbalanced corpus,
where most sentences are not a relation mention. From
Figure 7, we see that the SGD algorithm gets to the minimum
objective fast, but the objective function’s value is a bit high.
Thatmeans that during the pretraining of the attentionmodel
there would be a huge loss. The parameters in the attention
layer are updated to accepted values, which are prepared for𝑄-Learning. When we do 𝑄-Learning, we learn a stacked
MLP on top of the attention model (without softmax output
layer). From Figure 7, we see that 𝑄-Learning takes more
epochs to converge but reduces the value of the objective

Table 5: Comparison with state of the art.

Method Entity Relation
Score 𝑃 (%) 𝑅 (%) 𝐹1 (%) 𝑃 (%) 𝑅 (%) 𝐹1 (%)
SPTree 85.5 81.2 83.3 65.8 42.9 51.9
Joint 85.0 82.4 83.7 65.9 45.3 53.7

function in the first stage of the MDP. That means that
our reinforcement learning method is effective despite the
huge loss and poor initialization in the pretraining of the
attention model. Moreover, Figure 8 shows the learning
curves of the performance for relationmention classification.
We can see that our reinforcement learningmethod gets good
performance in the 𝐹1-score, which is also a proof of our
effectiveness.

5. Related Work

As for joint extraction of entities and relations, the research
has been dominated by four methods. The first one is
structured prediction. Li and Ji [17] presented an incremental
joint framework to simultaneously extract entity mentions
and relations using structured perceptron with efficient
beam-search. The second one is integer linear programming.
Dan and Yih [22] studied global inference for entity and
relation identification via a linear programming formulation.
The third one is card-pyramid parsing. Kate and Mooney
[23] presented a new method for joint entity and relation
extraction using card-pyramid parsing. The last one is global
probabilistic graphical models. Yu and Lam [24] jointly
identified entities and extracted relations in encyclopedia text
via a graphical model approach.

Recently, deep learning methods have been widely used
in many research areas with the aim of reducing the number
of handcrafted features. However, the only work of end-to-
end (joint) extraction of relations between entities with deep
learning methods is due to Miwa and Bansal [21], and most
researchers simply solve entity extraction, relation classifi-
cation, or relation extraction separately. Chiu and Nichols
[25] presented a novel neural network architecture for named
entity recognition, which automatically detected word- and
character-level features using a hybrid bidirectional LSTM
and CNN architecture. Zhang et al. [26] proposed bidirec-
tional long short-termmemory networks (BLSTM) to model
the sentence with complete, sequential information about all
words for relation classification. Nguyen and Grishman [27]
departed from these traditional approaches with complicated
feature engineering by introducing a convolutional neural
network for relation extraction.

At present, the research of reinforcement learning has
risen. El-Laithy and Bogdan [28] presented a reinforcement
learning framework for spiking networks with dynamic
synapses. Mousavi et al. [29] discussed the notion of con-
text transfer in reinforcement learning tasks. However, few
researchers apply reinforcement learning in text processing
tasks. We use both reinforcement learning and deep learning
to simultaneously extract entities and relations from unstruc-
tured texts. To the best of our knowledge, there has been no
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Figure 8: Performance of relation mention classification.

work on employing reinforcement learning for information
extraction so far. This paper is the first attempt to fill in that
gap and provides a good thinking way for future research in
this area.

6. Conclusions

In this paper we define and research the joint extraction
of entities and relations. We model the task as a two-step
decision process in reinforcement learning. In addition, we
use deep learning methods to represent the state in the
decision process. Attention based method can pass entity
information to relation extraction task. During the training
procedure for 𝑄-Learning, all the parameters are updated
simultaneously to realize the interaction and feedback of
entity information and relation information. The reward
after each action in reinforcement learning apparently helps
to improve the recall-score. Under the same experimental
conditions, our method outperforms the state-of-the-art
method in𝐹1-score of entitymentions and relationmentions.
In future work, we plan to perfect the model of the two-step
decision process and optimize the 𝑄-Learning algorithm.
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