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Many real-world optimization problems are actually of dynamic nature.These problems change over time in terms of the objective
function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic
algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it
is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates
a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA), on solving dynamic
problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other
state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of
the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA
significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.

1. Introduction

Many population-based metaheuristic algorithms have been
used to solve stationary optimization problems where the
fitness landscape is fixed during the course of optimization.
However, most of the real-world optimization problems may
face some uncertainties that may come from sources such as
dynamic change of the attributes or the goal of the optimiza-
tion problem [1]. For instance, in the Travelling Salesman
Problem (TSP), if traffic jams are faced on some roads, the
time between cities associated with those roads is no longer
fixed and is increased [2]. The job scheduling problem can
also face some uncertainties such as changes of due dates,
orders, arrival of new jobs, and faults in the work of some
machines [3, 4]. Thus, proposing metaheuristic algorithms
that can deal with such problems is very important. Addition-
ally, the existing metaheuristic algorithms should be adapted
to deal with such dynamic optimization problems (DOPs).

Therefore, in recent years, there has been growing con-
cern from researchers in the optimization community in the
dynamic optimization domain. As a result, in the literature,
many metaheuristic algorithms have been applied or modi-
fied to handle the DOPs. One of the first metaheuristic algo-
rithms used to explore the DOPs was the genetic algorithm
(GA) [4]. Ursem [5] proposed a multinational GA to deal
with the DOPs by evolving the algorithm parameters during
the search process. Grefenstette [6] adopted a self-adaptive
GA for dynamic environments. The proposed algorithm can
select different mutation or crossover operators based on the
agent idea to control the selection process. Yang [7] proposed
a memory-based GA to solve DOPs. Simões and Costa [8]
investigated a GA based on an immune system for DOPs.
In addition, the differential evolution (DE) has been applied
to solve the DOPs as can be found in Mendes and Mohais
[9], Brest et al. [10], and Mukherjee et al. [11]. Mendes and
Mohais [9] introduced a multipopulation DE for the DOPs.
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Brest et al. [10] proposed a self-adaptive multipopulation DE
integrated with aging mechanism for DOPs. Mukherjee et
al. [11] presented a variant of DE that modified the genetic
operators of the DE to suit the dynamic optimization. The
proposed algorithm utilized locality-induced mutation and
crossover operators that acted as a retention strategy by
employing the previously stored information to adaptively
deal with the DOPs.

Swam intelligence-based metaheuristics have also been
investigated in the dynamic environments. Eberhart and
Shi [12] investigated particle swarm optimization (PSO) in
tracking a single spatially changing peak. Hu and Eberhart
[13] presented an adaptive PSO to automatically track a wide
variety of changes in a dynamic system. Parrott and Li [14]
investigated PSO with multiple parallel subpopulations to
track multiple peaks simultaneously. Blackwell and Branke
[15, 16] proposed some improvements on PSO to work well
on DOPs by building interacting multiswarms. Wang et al.
[17] introduced a memory scheme to PSO that is triggered
whenever the exploration of the population results in a peak
to deal with dynamic environments. Recently, Kordestani et
al. [18] presented an oscillating triangular inertia weight in
PSO, which is a time-varying inertia weight parameter, and
investigated its performance on tracking optima in dynamic
environments. The Ant Colony Optimization (ACO) algo-
rithm has also been studied and adapted to work in dynamic
environments. Eyckelhof and Snoek [2] presented a new ant
system technique to a dynamic TSP problem. Tfaili et al.
[19] used a multiagent ant colony algorithm, called Dynamic
HybridContinuous InteractingAntColony (DHCIAC track),
which hybridized between ant colony and dynamic simplex
methods to optimize a set of dynamic test functions.

The Artificial Bee Colony (ABC) has also been applied
to solve the DOPs. Raziuddin et al. [20] proposed a variant
of ABC for DOPs based on a differential update strategy
and an external archive or memory. In this variant, the good
solutions through the generations are retained in a memory
and a number of these solutions are randomly selected
for the differential update strategy. In this update strategy,
the weighted difference between the bee and its neighbor
is added to the elite bee. Jiang [21] proposed a modified
version of ABC for solving DOPs.The proposed ABC divides
the population into two types: the sensitive bees and the
optimizing bees.The sensitive beeswork asmonitors to detect
the environmental changes and the optimizing bees act as
respondents to changes by searching the changing optimal
solution. Kojima et al. [22] proposed an improved version
over Basic ABC for solving DOPs with some modifications
to the procedures of the Basic ABC. Nakano et al. [23] have
further modified the improved ABC in [22] for DOPs by
incorporating a detection scheme and a memory scheme of
the best solutions. Nseef et al. [24] presented an adaptive
multipopulationABC for dynamic optimization.Thenumber
of subpopulations in the proposed ABC changes over time
based on the environmental changes strength to adapt to
these changes.

In addition, an immune-based algorithm that is called
Artificial ImmuneNetwork forOptimization (opt-aiNet) [25]
was proposed for static optimization and then extended to

deal with DOPs [1, 26]. This extended dynamic version is
calledArtificial ImmuneNetwork forDynamicOptimization
(dopt-aiNet). Recently, Turky and Abdullah [27] proposed
a multipopulation harmony search with an external archive
for dynamic optimization. Other swarm intelligence-based
algorithms have been also adapted to solve DOPs such as
the Cuckoo Search (CS) [28] and the artificial fish swarm
algorithm (AFSA) [29]. A comprehensive survey on swarm
intelligence-based algorithms for dynamic optimization can
be found in [30].

Over the years, various dynamic optimization problems
have been proposed to investigate the population-based
metaheuristic approaches in the dynamic environments.
Among these problems is the Moving peaks benchmark
by Branke [31] that was employed in many works such as
those studies done by Blackwell and Branke [15, 16], Turky
and Abdullah [27], and Kordestani et al. [18] and the DF1
generator developed by Morrison and De Jong [32] that was
used for testing metaheuristics in dynamic environments in
works like that performed by Tfaili et al. [19]. However, there
was no unified method for constructing dynamic optimiza-
tion problems across the real space, combinatorial space,
and binary space. Thus, recently, a Generalized Dynamic
Benchmark Generator (GDBG) has been proposed for all
the three spaces [33]. Using this generator, six dynamic
benchmark problems were generated in the real solution
space [34, 35]. These benchmarks can be included under two
benchmark instances: Dynamic Composition Benchmark
Generator (DCBG) and Dynamic Rotation Peak Benchmark
Generator (DRPBG) [34, 35].

Then, many researchers were motivated to employ these
new benchmark problems to study the performance of vari-
ous metaheuristic algorithms in the dynamic environments.
De França and Von Zuben [1] used these challenging bench-
marks to test the performance of an adapted variant of the
dopt-aiNet algorithm [26] in changing environments. Yu and
Suganthan [36] adopted an evolutionary programming (EP)
version based on a set of explicit memories to deal with these
challenging dynamic benchmark problems. Korošec and Šilc
[37] applied the differential ant-stigmergy algorithm (DASA)
on the newly proposed dynamic benchmark problems. Li
and Yang [38] proposed a variant of PSO (CPSO) that
employed a hierarchical clustering method and a fast local
search to address the dynamic environments constructed by
the benchmarks. Mukherjee et al. [11] presented a modified
variant of DE (MDE-LiGO) that utilized locality-induced
genetic operators and tested it on the same benchmarks.
Good surveys regarding the problems and metaheuristic
algorithms in the dynamic environments were conducted by
Mori and Kita [4], Blackwell et al. [3], Branke [39], Cruz et al.
[40], Nguyen et al. [41], and Mavrovouniotis et al. [30].

A recently developed swarm intelligence algorithm is the
Bees Algorithm (BA). The Bees Algorithm (BA) is a bee
swarm-based algorithm proposed by Pham et al. [42] and
inspired by the foraging behavior of swarm of honeybees.
A few works have been done to investigate the performance
of BA on DOPs [43, 44]. These problems were optimization
benchmarks in chemical engineering. Recently, a modified
version of Bees Algorithm, which is called Patch-Levy-based
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Bees Algorithm (PLBA), has been proposed by Hussein et al.
[45, 46]. The PLBA has been adopted to solve challenging
static real-parameter optimization problems [45]. The exper-
imental results showed that the PLBA outperformed other
BA variants and some of the other state-of the-art algorithms
on a set of challenging static real-parameter optimization
problems. Additionally, PLBA was competitive with other
state-of-the-art algorithms.ThePLBAhas also been proposed
for multilevel image thresholding [46]. The experiments
indicated that the PLBA significantly outperformed Basic BA
and other sate-of-the-art algorithms. Encouraged by these
promising results of the PLBA in solving these types of static
problems, we validate the performance of PLBA and other
variants of BA on the set of recently proposed dynamic
multimodal benchmarks [34, 35] mentioned above.

Thedynamic version of an optimization algorithm should
be able to dynamically adapt to the environmental changes
[24]. A dynamic optimization problem requires an opti-
mization algorithm that is able not only to find the global
optimum but also to detect the environmental change and
track the changing global optimal solution [36, 38]. Some
of the following features should characterize an optimization
algorithm to deal with dynamic environments [3, 30, 39]:
diversity creation, diversity maintenance, memory of old
solutions, and multipopulation feature. The memory of old
solutions can be advantageous to act as the initial population
for a new change in the environment, where a new change
is considered as the arrival of a new problem [36]. The
memory can be beneficial especially in the case that the
new optimal solution is not far from its previous positions
[36]. The multipopulation strategy has been applied to track
many peaks in the search space [24, 36, 38]. The memory
andmultipopulation are widely proposed and integratedwith
the optimization algorithms to enhance the diversity of the
populations. Thus, it can be stated that the most important
task in dealing with dynamic optimization problems is
maintaining the diversity of the solutions [36, 38] to ensure
that the population are not stuck into a single optimumwhere
it cannot make further progress [36].

Several strategies have been adopted tomaintain diversity
in dynamic optimization problems such as hypermutation
in GAs [11], the random immigrant scheme [11], prediction
scheme and the memory-based methods, which are con-
sidered a special case of it [24], self-adaptive strategy [24],
and multipopulation strategy [11, 24]. The hypermutation
strategy maintains the diversity by increasing the mutation
rate for some generations after the dynamic environmen-
tal change [11]. The random immigrant strategy maintains
the diversity by replacing a part of the population with
randomly generated solutions in each generation [11]. The
hypermutation and random immigrant have been used for
GA and evolutionary algorithms. Predictions schemes make
the algorithm able to learn patterns from the previous search
history and predict the upcoming changes. Examples of
prediction-based techniques can be found in [47–49]. Many
memory-based methods can be found in the literature such
as Branke [31], Eggermont and Lenaerts [50], Branke [51],
Yu and Suganthan [36], Yang [52], Daneshyari and Yen [53],
and Wang et al. [17]. Self-adaptive schemes maintain the

diversity by adaptively improving the search behavior of the
algorithm, thus reducing the need for the manual tuning of
the algorithm parameters [24]. Examples of methods based
on this scheme are available in [5, 6, 18].Themultipopulation
strategies have been widely applied to maintain the diversity
of the population in the dynamic optimization problems.
The methods based on the multipopulation strategy divide
the population into subpopulations and distribute them over
the search space to track multiple peaks in the search space
[11, 24]. Many multipopulation methods can be found in the
literature such as Branke et al. [54], Blackwell andBranke [15],
Li and Yang [38], Li et al. [55], Turky and Abdullah [27], and
Nseef et al. [24]. Li et al. [56] conducted a comprehensive
experimental analysis on the performance ofmultipopulation
methods and investigated the difficulties related to the mul-
tipopulation strategy. One of the challenging issues to apply
the multipopulation strategy to DOPs is the identification of
the suitable number of subpopulations [30].Thus, researchers
have been motivated to propose adaptive multipopulation
algorithms to deal with DOPs.

Blackwell [57] proposed a self-adaptingmultiswarm opti-
mizer based on a simple rule for generating and removing
subswarms, which helps in the dynamic change of the
number of subswarms. This optimizer was one of the first
adaptive methods concerning the number of populations
[30]. Li et al. [55] proposed an adaptive multiswarm opti-
mizer (AMSO), which employs a single-linkage hierarchi-
cal clustering method to generate the proper number of
subpopulations. In the proposed optimizer, the diversity
of the population is maintained based on the differences
of the number of subpopulations between two successive
diversity increasing points. Li et al. [56] proposed an adaptive
multipopulation framework for solving the DOPs, in which
the number of populations is adjusted based on a database
storing historical information of the changes in the algorithm
behavior. Ali et al. [58] proposed an adaptivemultipopulation
version of DE, in which each population has its own life cycle
and size.The life cycle and the size of each population in each
generation are controlled by a success-based scheme, which
adaptively changes them based on the previous success of the
population. Yazdani et al. [29] proposed amultiswarmAFSA,
where the swarms are categorized into parent and child
swarms. The parent swarms are employed to find uncovered
peaks and the child swarms are responsible for covering
and tracking the located peaks. Whenever a parent swarm
converges to a new peak, it generates a child swarm to cover
that peak and track it. This parent-child mechanism was
proposed to address the challenging issue of the unknown
number of peaks.

The diversity in BA-based algorithms is created and
maintained by keeping a large portion of the population
(𝑛 − 𝑚) scouting for new promising solutions. In the PLBA,
features such as the patch concept and Levy flights help the
PLBA to track more than one peak in the sense of maximiza-
tion problems. The patch environment in the initialization
part helps in spreading the solutions out along the search
space. The Levy flights in the initialization and global search
parts with a suitable search size enhance PLBA to maintain
diversity because of the rare long jumps of these flights. In
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addition, at the same time, the greedy local search based on
Levy flight with a suitable small search size reduces the length
of the long steps of Levy flight that work together with the
frequent short steps on exploiting the new regions and thus
finding the new optimum.

The key objectives of this paper are as follows:
(1) To validate the performance of the recently proposed

PLBA and other variants of BA on the set of recently
proposed dynamic multimodal benchmarks [34, 35]
mentioned above and compare among them.

(2) To apply the PLBA to challenging DOPs and compare
it with other state-of-the-art algorithms.

(3) To show the advantage of modelling additional natu-
ral aspects in nature-inspired metaheuristics such as
BA, which are the patch concept and Levy motion.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief description of the Basic BA, Shrinking-
based BA, Patch-Levy-based Bees Algorithm (PLBA), and
other state-of-the-art algorithms. Section 3 describes the
adaptation of the PLBA algorithm and other BA versions
to deal with dynamic environments. Section 4 presents the
results of performance evaluations and experiments obtained
for the PLBA and compares them with those obtained using
other BA variants and other state-of-the-art algorithms.
Finally, Section 5 concludes this paper.

2. Brief Description of
the Compared Algorithms

2.1. Basic BA. The Bees Algorithm (BA) is a bee-based
optimization algorithm inspired by the foraging behavior of a
swarmof honeybees. Basic BAperforms a kind of exploitative
local search combined with an exploratory global search [59].
Both search modes implement a uniform random search. In
the global search, the scout bees are uniformly distributed
at random to different areas of the search space to scout
for potential solutions. In the local search, follower bees are
recruited to exploit patches that scout bees have found to be
more promising. Two processes are required to conduct the
local search, namely, the selection and recruitment processes.
In the selection process, the patches found to be more
promising are chosen, whereas in the recruitment operation,
follower bees are recruited for the promising patches, while
more bees are recruited for the best patches out of those
selected.

2.2. Shrinking-Based BA. Shrinking-based BA is an improved
version over Basic BA, which includes the neighborhood
shrinking step as an additional step over Basic BA [59]. In
this paper, the shrinking procedure is implemented to all of
the patches simultaneously, using a global memory at each
iteration of the BA, after the recruitment stage [59].

2.3. Patch-Levy-Based Bees Algorithm (PLBA). PLBA is an
enhanced variant of BA, in which the population initializa-
tion, local search, and global search are performed according
to the patch concept and Levy motion [45, 46]. In the ini-
tialization part of PLBA, the search space that represents the

environment is divided into clear segments, which represent
patches, such that the food sources are clearly distributed in
patches.The centres of the patches are used to represent areas
inside the hive.Then, the bees are distributed randomly from
these hive areas according to the Levy flight distribution,
which is believed to approximate the natural flight patterns of
bees. In the global search, the scout bees are distributed from
the hive areas, which are chosen to be the same areas of the
hive from which they are initially distributed. Then, the bees
start to scout according to the Levy flight as in the initial step.
The local search inside a patch is performed based on Levy
looping flights. The patch and Levy concepts in the PLBA
algorithm are modelled in the initialization, local, and global
parts. The pattern in Levy flights can be described by many
relatively short steps (corresponding to the detection range of
the searcher) that are separated by occasional longer jumps.
Thus, generating step sizes according to a Levy distribution
can be advantageous since the frequent short steps help in
making more population members exploit the most promis-
ing regions and at the same time the rarely occurred long
jumps help in keeping a portion of the members exploring
the distant regions of solution space [46]. This can help in
accelerating the convergence to the optimal solutions.

2.4. Other State-of-the-Art Algorithms. As stated in the intro-
duction (Section 1), the optimization algorithms that were
tested on the recently proposed dynamic benchmarks [34,
35] include dopt-aiNet [1], PSO [1], rPSO [38], rGA [38],
Memory-based EP [36], CPSO [38], DASA [10, 37], and
MDE-LiGO [11]. Therefore, these algorithms were employed
in the comparisons of this paper as the other state-of-the-art
algorithms.

The dopt-aiNet is the artificial immune network algo-
rithm designed for dynamic optimization. The dopt-aiNet
maintained the diversity by detecting the redundant solutions
and removing the worst ones, replacing them and inserting
newly generated solutions. To rapidly locate the nearest local
optimum, the Gaussian mutation in opt-aiNet was modified,
where the step size is automatically calculated using a Golden
Section Procedure. The dopt-aiNet employed a small and
constantly changing population.

The PSO is the standard PSO without restart. The
rPSO (PSO with restart) is the standard PSO, in which the
population is reinitialized when an environmental change
is detected. The rGA is the standard genetic algorithm
which reinitializes the population when a dynamic change is
detected.

The Memory-based EP is the evolutionary programming
algorithm with an ensemble of memories to address the
dynamic optimization. The Memory-based EP proposed a
dynamic strategy parameter tomake the algorithmmore suit-
able for the dynamic optimization. The algorithm enhanced
the diversity of the population by using an ensemble of
external memories to be used as the initial population for
a new environmental change. When the memories cannot
help and the population loses its diversity, the population is
reinitialized except the best one.

The CPSO is a variant of PSO that employs a hierarchical
clustering technique and a fast local search procedure to deal
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with the optimization problems. CPSOmodified the learning
strategy in standard PSO for the global search to cover as
many promising local optima as possible and speed the
local search. Then, CPSO used an adaptive multipopulation
strategy by using a single-linkage hierarchical clustering
technique to generate a suitable number of subswarms and
track multiple peaks. The hierarchical clustering can be con-
sidered better than the traditional multipopulation method
in the sense that it helps in producing the proper number of
subpopulations [38].

The DASA is then differential ant-stigmergy algorithm.
It is an ACO-based algorithm integrated with a differen-
tial graph representation. The DASA used a pheromone
mechanism as a way of communication between ants. The
pheromone mechanism is an automatic and dynamic means
with negative and positive feedbacks imitating the short-term
and long-term memories [60].

The MDE-LiGO is a modified variant of DE that utilized
locality-induced genetic operators. The MDE-LiGO main-
tained the diversity by extending the traditional mutation
and crossover operators of DE to locality-based operators
to retain the local traits of the best parents in the offspring,
thus helping in preserving the diversity of the population.
The locality-induced operations guide the newly generated
solutions to cover promising local regions throughout the
search space. Then, the MDE-LiGO performed Fuzzy C-
Means (FCM) clustering method to divide the population
into distinct local regions. The best solutions from each
cluster are retained and the others are reassigned (i.e., reini-
tialized) in the search space for a new environmental change
to cover new potential regions. FCM can be considered better
than the hard clustering because it is especially suitable for
the overlapped datasets that are common in the optimization
problems that have many basins of attractions [11].

3. The PLBA and Other BA Variants for
Dynamic Optimization

In the PLBA and other BA-based algorithms used in the
comparisons, to deal with the dynamic changes, the solutions
of the last iteration before the detection of the change are
reevaluated and used as a good start for the next change.
In addition, the parameters that are related to shrinking
procedure, ngh in Shrinking-based BA and 𝛾2 in the PLBA,
are reinitialized each time a change is detected. In the case of
dimensional change, in addition to the reevaluation of the last
solutions and the reinitialization of the shrinking parameters,
the solutions are resized. Therefore, it can be easily observed
that the PLBA and other BA-based algorithms are used
without any modification except for the reevaluations of the
solutions when the change is detected and the reinitialization
of the shrinking parameters.

4. Experimental Setup and Results

4.1. Experimental Setup
4.1.1. Benchmark Functions. The performance of the PLBA
is evaluated in the dynamic environments using 6 dynamic

Table 1: Summary of the dynamic benchmark functions employed
in the experiments.

Function
number Search space Function name

𝐹1 𝑋 [−5, 5]𝑑 Dynamic rotation peak with 10
Dynamic rotation peak with 50𝐹2 𝑋 [−5, 5]𝑑 Composition of Sphere function𝐹3 𝑋 [−5, 5]𝑑 Composition of Rastrigin function𝐹4 𝑋 [−5, 5]𝑑 Composition of Griewank function𝐹5 𝑋 [−5, 5]𝑑 Composition of Ackley function𝐹6 𝑋 [−5, 5]𝑑 Hybrid composition function

multimodal benchmark problems.These problems were gen-
erated by theGDBG system that was proposed by Li and Yang
[33] and provided for CEC’2009 competition on evolutionary
computation in dynamic environments. According to Li et
al. [34], the control parameters of the GDBG system can
undergo 7 change types: 𝑇1 (small step change), 𝑇2 (large
step change), 𝑇3 (random change), 𝑇4 (chaotic change),𝑇5 (recurrent change), 𝑇6 (recurrent change with noise),
and 𝑇7 (random change with dimensional change). Detailed
information regarding the framework of these changes can be
found in the description given by Li et al. [34, 35].

The summary of the employed benchmarks is given in
Table 1. The first benchmark problem 𝐹1 is the dynamic
rotation peak function with 10 and 50 peaks. Thus, two
instances of 𝐹1 are used. The other five test problems
(𝐹2–𝐹6) are dynamic composition benchmark functions.
Each problem instance undergoes the seven change types
(𝑇1–𝑇7); thus, a total of 49 test cases are examined. The most
important parameters of the test problemswere set as follows:
dimension (𝑑) = 10 in the case of unchanged dimension and𝑑 ∈ [5, 15] in the case of dimensional change, the search
space (𝑋) ∈ [−5, 5]𝑑, the change frequency (frequency or
Max_FES/change) = 10,000 × 𝑑, and the number of changes
per run (num_change/run) = 60. The remaining parameters
can be found in the description given by Li et al. [34].

4.1.2. Performance Evaluation. The performance of PLBA in
the dynamic environments is evaluated on 49 test cases that
result from testing seven change types with each problem
instance out of the seven problem instances where the first
problem has two instances, as can be seen in Table 1. For
each test case, the average best (Avg_best), the average
mean (Avg_mean), and the standard deviation (STD) of
the absolute error in the function value over 20 runs are
calculated as follows:

Avg_best = 𝑅𝑁∑
𝑖=1

minnum_change
𝑗=1

𝐸last
𝑖,𝑗 (𝑡)𝑅𝑁 ,

Avg_mean = 𝑅𝑁∑
𝑖=1

num_change∑
𝑗=1

𝐸last
𝑖,𝑗 (𝑡)(𝑅𝑁 × num_change) ,

STD = √∑𝑅𝑁𝑖=1 ∑num_change
𝑗=1 (𝐸last

𝑖,𝑗 (𝑡) − Avg_mean)2𝑅𝑁 × num_change
,

(1)
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Table 2: The parameters used with different values for different dynamic problems in the BA variants.

Function Basic BA Shrinking-based BA PLBA𝑛𝑔ℎ 𝑛𝑔ℎinit 𝑠𝑓 𝑃 𝛾1 𝛾2_init 𝛾3 𝑡 𝑠𝑓𝐹1 0.001 5 0.990 15 1 0.1 1 1 0.990𝐹2 0.001 5 0.980 15 0.1 1 1 5 0.970𝐹3 1 3 0.999 19 0.1 1 1 5 0.990𝐹4 0.1 3 0.990 19 0.1 1 1 5 0.980𝐹5 0.1 3 0.990 19 0.1 1 1 5 0.980𝐹6 0.009 3 0.990 19 0.1 1 1 5 0.980

where𝐸last
𝑖,𝑗 (𝑡) = |𝑓(𝑥best(𝑡))−𝑓(𝑥∗(𝑡))| is the absolute error in

a function value for each change after reaching themaximum
number of evaluations per change (Max_FES/change). The
Max_FES/change = 10,000 ∗ 𝑑. 𝑥best(𝑡) and 𝑥∗(𝑡) are the
best solution and global optimum, respectively, at time 𝑡.
Additionally,𝑅𝑁 is the total number of runs of the considered
algorithm.

The average best and average mean of the absolute error
values are used to ascertain the solution quality obtained by
the PLBAon the dynamic problems.The average best gives an
idea of how close the algorithm got from the global optimum
during the whole environmental change type [1], whereas
the average mean provides an indication of how close the
algorithm was from the global optimum during the entire
optimization process [1].

To evaluate the performance of the PLBA in terms of
both solution quality and convergence speed, the overall
performance of PLBA is measured according to Li et al. [34]
as follows:

Performance = 49∑
𝑘=1

mark𝑘, (2)

wheremark𝑘 is themarkingmeasurement of the performance
of the algorithm on the 𝑘th test case among 49 test cases.
Themaximummark values (markmax), as concluded from the
description given by Li et al. [34], are 1.5, 2.4, 1, and 1.6 for
(𝑇1–𝑇6) in 𝐹1, (𝑇1–𝑇6) in (𝐹2–𝐹6), 𝑇7 in 𝐹1, and 𝑇7 in (𝐹2–𝐹6),
respectively. The corresponding percentages are 0.015, 0.024,
0.01, and 0.016, respectively. Based on these percentages, the
mark𝑘 is defined as

mark𝑘 = percentage𝑘

× 𝑅𝑁∑
𝑖=1

num_change∑
𝑗=1

𝑟𝑖,𝑗(𝑅𝑁 × num_change) ,
(3)

where 𝑟𝑖,𝑗 is defined as follows:

𝑟𝑖,𝑗 = 𝑟last𝑖,𝑗1 + ∑𝑆𝑠=1 ((1 − 𝑟𝑠𝑖,𝑗) /𝑆) , (4)

where 𝑟last𝑖,𝑗 is the relative value of the best solution to the
global optimum for each change after reaching Max_FES
and 𝑟last𝑖,𝑗 = 𝑓(𝑥best(𝑡))/𝑓(𝑥∗(𝑡)) for maximization problems

Table 3: Summary of the overall performance of the algorithms
employed in the comparisons.

Algorithm Overall performance
DASA [37] 65.201996
Memory-EP [36] 58.093927
CPSO [38] 57.574184
PLBA 45.72351
Shrinking-based BA 43.447886
dopt-aiNet [1] 38.29035
rGA [38] 38.079177
rPSO [38] 33.255316
Basic BA 13.15165
PSO [1] 0.0014

and 𝑟last𝑖,𝑗 = 𝑓(𝑥∗(𝑡))/𝑓(𝑥best(𝑡)) for minimization problems,
whereas 𝑟𝑠𝑖,𝑗 is the relative value of the best solution to the
global optimum at the 𝑠th sampling during one change, and𝑆 = Max_FES/change/𝑠𝑓, where 𝑠𝑓 is the sampling frequency
and 𝑠𝑓 = 100 according to Li et al. [34].

Additionally, the median performance of the relative
value (𝑟(𝑡)) of the best solution (𝑥best(𝑡)) to the global
optimum (𝑥∗(𝑡)) is depicted on convergence graphs for each
problem for total runs with termination after Total_FES over
num_change changes.

4.1.3. Parameter Settings. The performance of PLBA is com-
pared with that of Basic BA and Shrining-based BA in
the dynamic environment. In addition, an additional set
of experiments is conducted to compare the performance
of PLBA with other variants of the current state-of-the-art
population-based algorithms.The parameter settings of these
algorithms can be found in their references.

In order to perform a fair comparison among the BAs,
the three versions of BA are executed with the same setting
for the common parameters: 𝑛 = 20 for the number of scout
bees, 𝑚 = 3 for the number of selected sites, 𝑒 = 1 for the
number of elite sites, 𝑛𝑒𝑝 = 4 for the number of recruited
bees for each site of the 𝑒 sites, and 𝑛𝑠𝑝 = 1 for the number
of bees recruited for every site of the remaining (𝑚 − 𝑒) sites.
In addition, the parameters relevant to each version are set to
different values for different problems, as shown in Table 2.

4.2. Experimental Results. Because no results regarding the
mark scores of MDE-LiGO were reported by Mukherjee et
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Table 4: Average best error values achieved for problems 𝐹1–𝐹6 by PLBA.
Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7

Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best𝐹1(10) 0 0 0 0 0 0 0𝐹1(50) 0 0 0 0 0 0 0𝐹2 0 0 0 0 0 0 0𝐹3 0 8.6383 5.64881𝑒 − 013 0 8.68001 1.23564 0𝐹4 4.44089𝑒 − 013 0 3.33955𝑒 − 013 0 0 0 5.29354𝑒 − 013𝐹5 4.08562𝑒 − 014 4.26326𝑒 − 014 4.26326𝑒 − 014 4.08562𝑒 − 014 4.26326𝑒 − 014 4.08562𝑒 − 014 4.26326𝑒 − 014𝐹6 0 0 0 0 0 0 0

Table 5: Mean error values achieved for problems 𝐹1–𝐹6 by PLBA.
Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD𝐹1(10) 8.07 13.04 13.13 15.21 6.10 10.71 14.93 16.93 2.99 5.31 14.51 19.92 9.07 10.05𝐹1(50) 11.62 11.47 11.98 13.50 8.92 7.99 16.72 18.85 3.56 4.43 19.96 24.34 9.82 11.72𝐹2 13.68 12.21 77.09 149.65 72.69 142.82 28.70 25.69 124.44 171.60 12.90 17.66 11.89 14.46𝐹3 59.67 159.57 790.01 248.01 709.51 290.15 477.03 450.46 724.34 192.92 533.58 435.76 549.51 370.49𝐹4 20.34 19.11 289.50 267.22 149.17 229.86 16.35 20.87 249.67 236.95 24.69 66.18 91.94 170.28𝐹5 10.45 11.88 14.85 19.22 12.77 15.00 24.34 27.84 15.57 17.13 10.57 15.10 30.68 178.70𝐹6 9.34 13.81 34.62 68.48 48.26 368.03 18.37 23.67 110.27 225.74 31.99 79.47 25.05 45.82

Table 6: Average best error values achieved for problems 𝐹1–𝐹6 by Shrinking-based BA.

Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7
Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best𝐹1(10) 0 0 0 0 0 0 0𝐹1(50) 0 0 0 0 0 0 0𝐹2 0 3.73035𝑒 − 013 4.68958𝑒 − 013 3.97016𝑒 − 013 1.0516𝑒 − 012 3.89022𝑒 − 013 0𝐹3 50.0557 59.6404 400.825 35.0292 764.626 73.2274 68.2266𝐹4 0 0 0 0 0 0 0𝐹5 4.26326𝑒 − 014 4.17444𝑒 − 014 4.17444𝑒 − 014 4.08562𝑒 − 014 4.26326𝑒 − 014 4.08562𝑒 − 014 4.17444𝑒 − 014𝐹6 4.44089𝑒 − 013 5.71987𝑒 − 013 4.26326𝑒 − 013 0 0 0 0

Table 7: Mean error values achieved for problems 𝐹1–𝐹6 by Shrinking-based BA.

Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD𝐹1(10) 4.38 8.22 12.01 16.84 11.30 14.13 11.01 17.44 5.68 6.57 11.81 18.32 7.08 8.51𝐹1(50) 9.24 9.75 10.99 11.89 9.48 10.60 8.22 12.44 2.29 3.82 19.35 21.06 9.43 9.11𝐹2 11.80 14.80 88.87 163.86 97.74 166.20 31.58 31.39 180.59 190.25 19.86 34.82 23.72 53.02𝐹3 655.75 150.43 912.92 196.89 890.63 100.87 794.33 305.47 901.48 60.69 914.66 298.7 793.31 254.67𝐹4 8.99 11.23 118.79 211.95 150.28 228.57 29.02 30.32 257.19 229.92 27.21 87.61 36.60 108.87𝐹5 28.65 20.95 13.87 18.40 7.43 10.34 27.58 27.47 15.17 15.98 11.25 14.72 10.76 12.62𝐹6 30.18 17.64 47.39 98.33 69.65 178.07 33.25 62.76 194.69 306.43 28.66 66.42 40.54 110.67

Table 8: Average best error values achieved for problems 𝐹1–𝐹6 by Basic BA.
Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7

Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best Avg_best𝐹1(10) 0.0575077 0.0458898 0.0412556 0.178853 0.0776968 0.131012 0.0468226𝐹1(50) 0.0711283 0.0486264 0.0467527 0.114642 0.111445 0.0694867 0.0379723𝐹2 0.803693 11.9098 8.75428 0.992304 22.436 1.09661 1.1218𝐹3 587.682 804.557 774.819 585.857 863.274 530.679 469.399𝐹4 62.5302 105.805 110.402 84.2297 111.169 81.7393 86.4602𝐹5 193.573 201.513 204.459 175.131 255.796 175.39 123.798𝐹6 19.0539 166.304 396.32 141.408 413.333 27.1496 24.2779
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Table 9: Mean error values achieved for problems 𝐹1–𝐹6 by Basic BA.
Problem 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD𝐹1(10) 6.52 9.53 21.50 18.02 24.98 14.60 29.54 22.32 33.53 19.39 38.45 27.07 30.30 17.86𝐹1(50) 12.00 9.99 20.14 13.48 24.32 14.29 23.91 21.01 19.36 15.17 25.35 23.59 27.74 15.63𝐹2 32.92 49.21 451.14 145.69 407.20 147.86 200.54 231.59 401.04 89.40 334.78 255.47 349.24 204.19𝐹3 778.73 70.90 1040.93 69.30 996.42 78.99 929.32 250.12 1015.76 58.92 1000.11 260.08 912.83 144.03𝐹4 121.99 48.65 511.29 179.66 471.55 171.99 236.81 195.04 455.12 123.28 318.18 245.83 332.36 193.25𝐹5 297.68 51.64 366.33 63.20 355.66 101.99 302.17 54.18 409.26 123.51 311.39 101.42 355.64 278.32𝐹6 359.18 324.98 869.70 125.34 824.36 94.28 695.83 258.23 833.96 88.88 772.18 253.43 763.19 209.37

Table 10: Average rankings of BA variants (Friedman) on dynamic
benchmark problems 𝐹1–𝐹6 in terms of the solution quality.

Algorithm Ranking
PLBA 1.4286
Shrinking-based BA 1.5918
Basic BA 2.9796𝑝 value 0

Table 11: Average rankings of BA variants (Friedman) on dynamic
benchmark problems 𝐹1–𝐹6 in terms of both solution quality and
convergence speed.

Algorithm Ranking
PLBA 1.4286
Shrinking-based BA 1.5714
Basic BA 3𝑝 value 0

al. [11], the MDE-LiGO was not included in the comparisons
of the overall performance (see Table 3) and the comparisons
among the algorithms in terms of both the solution quality
and convergence speed (see Tables 15 and 17), which are
indicated by the mark scores. TheMDE-LiGO was employed
in the comparisons in terms of the solution quality only (see
Tables 14 and 16) because of the availability of its average
means in Mukherjee et al. [11], which give indication of the
quality of the solutions. Table 3 presents a summary of the
overall performance of the PLBA, Shrinking-based BA, Basic
BA, dopt-aiNet, PSO, rPSO, rGA, Memory-based EP, CPSO,
and DASA. In addition, the overall performance and mark
scores of these algorithms on each test case are given in Tables
22–30. Tables 4–9 show the results of the average best, average
mean, and standard deviations of the error values achieved
for each test case by PLBA, Shrinking-based BA, and Basic
BA over 20 runs. Figures 1–3 present the convergence graphs
of PLBA, Shrinking-based BA, and Basic BA, respectively, on
the tested problems. In these figures, relative values (𝑟(𝑡)) are
presented for each change type (𝑇𝑖) as 𝑟(𝑡) + 𝑖 − 1, where0 ≤ 𝑟(𝑡) ≤ 1 and 𝑖 = 1, 2, . . . , 7.
4.2.1. Analysis of the Results of the PLBA. From the overall
performance and mark scores in Table 22 and from Figure 1,
it can be seen that the PLBA algorithm achieved the best

Table 12: Adjusted 𝑝 values associated with BA variants (Friedman)
on dynamic benchmark problems 𝐹1–𝐹6 in terms of the solution
quality.

Algorithm Unadjusted 𝑝 𝑝 Holm 𝑝 Hochberg
Basic BA 0 0 0
Shrinking-based BA 0.41902 0.41902 0.41902

Table 13: Adjusted 𝑝 values associated with BA variants (Friedman)
on dynamic benchmark problems 𝐹1–𝐹6 in terms of both solution
quality and convergence speed.

Algorithm Unadjusted 𝑝 𝑝 Holm 𝑝 Hochberg
Basic BA 0 0 0
Shrinking-based BA 0.4795 0.4795 0.4795

Table 14: Average rankings of PLBA and other algorithms (Fried-
man) on dynamic benchmark problems 𝐹1–𝐹6 in terms of the
solution quality.

Algorithm Ranking
MDE-LiGO 1.5102
CPSO 3.0408
DASA 3.2857
Memory-based EP 3.7959
PLBA 5.3878
dopt-aiNet 5.4898
rGA 6.2041
rPSO 7.2857𝑝 value 0

performance on 𝐹1 (the rotation peak problem), followed
by 𝐹5 (the composition Ackley problem) over all change
types. On the other hand, the PLBA algorithm had the
worst performance on 𝐹3 (the composition Rastrigin). For
this function, all the compared algorithms had the worst
performance on this function and they could not track the
optimum of this function. This is may be attributed to the
difficulties that are exposed by the surface of this function
in static environments [61] that make it more complicated
in the case of dynamic environments. Nevertheless, PLBA
performed better than some algorithms such as dopt-aiNet,
CPSO, rPSO, Shrinking-based BA, and Basic BA on this
function.
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Figure 1: Continued.



10 Discrete Dynamics in Nature and Society

0

1

2

3

4

5

6

7

r(
t)

0 2 × 10
6

3 × 10
6

4 × 10
6

5 × 10
6

6 × 10
6

1 × 10
6

Number of evaluations
(g)

Figure 1: Convergence graph of PLBA for (a) 𝐹1 (𝑚 = 10), (b) 𝐹1 (𝑚 = 50), (c) 𝐹2, (d) 𝐹3, (e) 𝐹4, (f) 𝐹5, and (g) 𝐹6 where relative values (𝑟(𝑡))
are presented for each 𝑇𝑖 as 𝑟(𝑡) + 𝑖 − 1, where 0 ≤ 𝑟(𝑡) ≤ 1 and 𝑖 = 1, 2, . . . , 7.
Table 15: Average rankings of PLBA and other algorithms (Fried-
man) on dynamic benchmark problems 𝐹1–𝐹6 in terms of both
solution quality and convergence speed.

Algorithm Ranking
DASA 1.551
CPSO 2.5714
Memory-based EP 2.9796
PLBA 4.2041
rGA 5.1429
dopt-aiNet 5.4082
rPSO 6.1429𝑝 value 0

Table 16: Adjusted 𝑝 values associated with PLBA and other
algorithms (Friedman) on dynamic benchmark problems 𝐹1–𝐹6 in
terms of the solution quality.

Algorithm Unadjusted p p Holm p Hochberg
rPSO 0 0 0
rGA 0 0 0
dopt-aiNet 0 0 0
PLBA 0 0 0
Memory-based EP 0.000004 0.000012 0.000012
DASA 0.000333 0.000667 0.000667
CPSO 0.001982 0.001982 0.001982

For other problems, the performance of the PLBA algo-
rithm is fairly well and can be considered competitive with
other optimization techniques. Furthermore, it can be seen in
Table 22 and Figure 1 that although the dimensional change
is the most challenging scenario, the PLBA performed fairly
well on this change type in all benchmark problems and

Table 17: Adjusted 𝑝 values associated with PLBA and other
algorithms (Friedman) on dynamic benchmark problems 𝐹1–𝐹6 in
terms of both solution quality and convergence speed.

Algorithm Unadjusted p p Holm p Hochberg
rPSO 0 0 0
dopt-aiNet 0 0 0
rGA 0 0 0
PLBA 0 0 0
Memory-based EP 0.001063 0.002126 0.002126
CPSO 0.019385 0.019385 0.019385

better than other algorithms such as Basic BA, dopt-aiNet,
and rPSO, as can be seen in Tables 24–26.

By investigating the results in Tables 4 and 5 and in
Figure 1, it can be seen that the PLBA performed well on 𝐹1
(the rotation peak function) and 𝐹5 (the composition Ackley
function) over all change types. This confirms what has been
pointed out that PLBA had the best performance on these
two functions. For 𝐹2 (the composition sphere function) and𝐹6 (the hybrid composition problem), the PLBA presented
similar behaviors and obtained good results in change types𝑇1 (the small change), 𝑇4 (the chaotic change), 𝑇6 (the recur-
rent change with noise), and 𝑇7 (the random change with
changed dimension). On the other hand, PLBA struggled
to find the optimum in other change types, especially the
recurrent change (𝑇5) where the average mean of this change
type was very high compared to other types.

Concerning the composition Griewank function (𝐹4),
although PLBA was able to produce good results in some
change types, it still struggled to search for the optimum
in some change types, especially 𝑇2 (large step change), 𝑇3
(random change), and 𝑇5 (recurrent change) where their
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Figure 2: Continued.
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Figure 2: Convergence graph of Shrinking-based BA for (a) 𝐹1 (𝑚 = 10), (b) 𝐹1 (𝑚 = 50), (c) 𝐹2, (d) 𝐹3, (e) 𝐹4, (f) 𝐹5, and (g) 𝐹6 where
relative values (𝑟(𝑡)) are presented for each 𝑇𝑖 as 𝑟(𝑡) + 𝑖 − 1, where 0 ≤ 𝑟(𝑡) ≤ 1 and 𝑖 = 1, 2, . . . , 7.
average means were very high compared to other change
types. Regarding the most difficult function, which is the
compositionRastrigin function (𝐹3), although PLBAwas able
to reach the global optimum or stay close to it in its best
cases (Avg_best results) in almost all change types, PLBA,
on average, performed badly in all change types except for
the small change type where its average mean was very low
compared to other change types as expected, because of the
simplicity of this change type.

An interesting finding is that although it is quite obvious
for the problems to be solved smoothly in the case of the small
step change, it is not natural for an algorithm to handle the
chaotic or dimensional changes. Nevertheless, PLBAwas able
to handle these change types as well. It can also be observed
that PLBA performed fairly well on 𝐹6, even though it is a
hybrid composition function, as can be seen in the Avg_best
results in all change instances and in the Avg_mean in most
change types.

4.2.2. Comparisons among the BAs. By comparing the overall
performance of all BA-based algorithms, it can be clearly
seen in Table 3 and Figures 1–3 that the Basic BA is much
worse than the PLBA and Shrinking-based BA. On the other
hand, the PLBA achieved the best performance. However,
although the overall performance of PLBA is higher than that
of Shrinking-based BA, the difference is not significant and
the results are generally comparable, as can be seen in Figures
1 and 2 and as will be observed in the statistical analysis in
Tables 12 and 13. This may be due to the dynamic change that
is caused by the shrinking procedure and is suitable to the
dynamic environment to track the optimum. In addition, the
number of dimensions (𝑑 = 10) that is not very large may
contribute to this comparable performance of Shrinking-
based BA with PLBA. By examining the results of test cases,
it can be observed in Tables 4 and 6, Tables 5 and 7, Tables
22 and 23 and in Figures 1(d) and 2(d) that PLBA achieved

much better performance than Shrinking-based BA in all
change types on the composition Rastrigin function (𝐹3),
which is the most difficult problem. As mentioned before,
this function exposes difficulties in the static environments,
and it is expected to expose more difficulties in the dynamic
environment.

The results of the average means and mark scores of test
cases were analyzed statistically to test the significance of
the results in terms of solution quality only and in terms of
both solution quality and convergence speed, respectively.
To statistically analyze the results produced by PLBA and
other BA versions, the Friedman test was used.The Friedman
test is the best-known statistical method for testing the
performance differences between more than two algorithms
[62]. Tables 10 and 11 tabulate the ranks achieved by this
test for the three BA-based algorithms using the average
mean and mark score results, respectively. It can be clearly
seen in these tables that PLBA ranked first, followed by
Shrinking-based BA in terms of solution quality only or in
terms of both solution quality and convergence speed. The 𝑝
values calculated using the Friedman test (0) showed a highly
significant difference among the BA-based algorithms.

Subsequently, Holm and Hochberg post hoc tests were
used to detect the concrete differences among the BA-based
algorithms. Tables 12 and 13 depict the adjusted 𝑝 values
obtained by the pot hoc tests considering the PLBA as the
control method using the average mean and mark score
results, respectively. As can be seen in these tables, the Holm
and Hochberg test strongly suggested a highly significant
difference in the performance between the PLBA and the
Basic BA in terms of solution quality only or in terms of
both solution quality and convergence speed. On the other
hand, no significant difference was found between PLBA and
Shrinking-based BA.This confirmed the previous conclusion
that has been done based on the overall performance.
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Figure 3: Continued.
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Figure 3: Convergence graph of Basic BA for (a) 𝐹1 (𝑚 = 10), (b) 𝐹1 (𝑚 = 50), (c) 𝐹2, (d) 𝐹3, (e) 𝐹4, (f) 𝐹5, and (g) 𝐹6 where relative values
(𝑟(𝑡)) are presented for each 𝑇𝑖 as 𝑟(𝑡) + 𝑖 − 1, where 0 ≤ 𝑟(𝑡) ≤ 1 and 𝑖 = 1, 2, . . . , 7.

4.2.3. Comparisons with Other State-of-the-Art Algorithms.
From the overall performance in Table 3, it can be obviously
noticed that the standard PSO without any modification
had the worst performance and the DASA achieved the
best performance. It can also be observed that the PLBA
performed better than rPSO, rGA, and dopt-aiNet and
performed worse than CPSO, Memory-based EP, and DASA
in the dynamic environment. A point of interest to note is that
the PLBA achieved better performance than the dopt-aiNet
that was designed especially to deal with DOPs and included
all the desirable features to deal with these problems such as
diversity generation, diversity maintenance, memory usage,
and multipopulation capability.

It is also worth noting that although CPSO outperformed
PLBA, PLBA performed better than CPSO on 𝐹3 (the com-
position Rastrigin). PLBA also performed better than dopt-
aiNet on 𝐹5 (the composition Ackley problem) and on 𝐹6 (the
hybrid composition function) in all change types (see Tables
22, 25, and 29).

There is an interesting finding that the Basic BA per-
formed much better than the standard PSO, with total mark
score of 13.15165 and 0.0014, respectively. Basic BA may take
advantage from its better diversity by keeping a large portion
of the population scouting for new promising solutions.
Another interesting finding is that PLBA achieved good
results although it does not have all the required features in
the dynamic environments such as the usage of memory and
multipopulation capabilities. However, as mentioned before
in Section 1, features such as the patch concept and Levy
flights help in guiding the search in different promising
areas along the search space. The patch environment in the
initialization part helps in spreading the solutions out along
the search space. The Levy flights with a suitable search size
in the initialization and global search parts enhance PLBA to
maintain diversity because of the rare long jumps. In addition,

at the same time, the greedy local search based on Levy flight
with a suitable small search size reduces the length of the long
steps of Levy flight that work together with the frequent short
steps on exploiting the new regions and thus finding the new
optimum.

The Friedman test was also used to test the global
differences in the results obtained by PLBA and the other
state-of-the-art algorithms in terms of solution quality only
and in terms of both solution quality and convergence speed.
Tables 14 and 15 depict the ranks calculated through the
Friedman test employing the average mean and mark score
results, respectively. As mentioned above in Section 4.2, the
results of MDE-LiGO were not included in the comparisons
of the mark scores, which give indication of both the solution
quality and convergence speed. On the other hand, theMDE-
LiGO was considered in the comparisons of the average
means, which give indication of the solution quality only.
This was because there were no results of the mark scores
reported for the MDE-LiGO, as mentioned in Section 4.2.
Therefore, including MDE-LiGO, it can be clearly seen that
MDE-LiGO was the best performing algorithm and CPSO
was the second best performing algorithm considering only
the solution quality. Considering both solution quality and
convergence speed, DASA was the best algorithm and CPSO
was the second best algorithm, given that the MDE-LiGO
was excluded for the reason explained above. The different
ranks of CPSO and DASA in the two cases showed that the
CPSO achieved better results than DASA in the dynamic
environments but DASAwas faster than CPSO. In both cases,
rPSO was the worst performing algorithm. For the PLBA, it
ranked the fifth in the first case and the fourth in the second
case. The 𝑝 values calculated using the statistic from the
Friedman test (0) strongly suggested a significant difference
among the algorithms considered.
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Table 18: Average rankings of PLBA and other comparable algo-
rithms (Friedman) on dynamic benchmark problems𝐹1–𝐹6 in terms
of the solution quality.

Algorithm Ranking
PLBA 1.8163
dopt-aiNet 2.2245
rGA 2.5306
rPSO 3.4286𝑝 value 0

Table 19: Average rankings of PLBA and other comparable algo-
rithms (Friedman) on dynamic benchmark problems𝐹1–𝐹6 in terms
of both solution quality and convergence speed.

Algorithm Ranking
PLBA 1.6327
rGA 2.449
dopt-aiNet 2.5918
rPSO 3.3265𝑝 value 0

Subsequently, Holm andHochbergmethods were used to
detect the concrete difference between the best performing
algorithm and the rest of the algorithms. Table 16 shows the
adjusted 𝑝 values obtained by Holm and Hochberg methods
consideringMDE-LiGO (the best algorithm considering only
the solution quality) as the control method, whereas Table 17
presents the adjusted 𝑝 values considering DASA (the best
algorithm considering both solution quality and convergence
speed) as the control method. It can be clearly seen in
Table 16 that Holm and Hochberg test strongly suggested
a significant difference between MDE-LiGO and each of
the rest of the algorithms in terms of solution quality at
significance level 𝛼 = 0.01. Considering both solution quality
and convergence speed, Holm and Hochberg test strongly
suggested a significant difference between DASA and each of
the remaining algorithms. It should be noted that the worst
performing algorithm was actually PSO or Basic PSO, but
because there is no detailed results reported for it by De
França andVonZuben [1], it was not included in the statistical
comparisons.

Two additional sets of statistical comparisons were con-
ducted among the PLBA and the algorithms that were
outperformed by PLBA employing the average mean and
mark score results. The aim was to check if there is a
significant difference among them, in general, and between
PLBA and each of these algorithms, in particular. Regarding
the ranks, it can be clearly seen in Tables 18 and 19 that
PLBA ranked first, as can also be seen from the previous
rankings where PLBA ranked before these algorithms. The𝑝 values computed based on the ranks calculated by the
Friedman test (0) suggested a highly significant difference
among the algorithms. Considering only the solution quality,
the Holm and Hochberg tests showed a highly significant
improvement of PLBA over rPSO at a significance level 𝛼 =0.01 and over rGA with a level of significance 𝛼 = 0.05,

Table 20: Adjusted 𝑝 values associated with PLBA and other com-
parable algorithms (Friedman) on dynamic benchmark problems𝐹1–𝐹6 in terms of the solution quality.

Algorithm Unadjusted p p Holm p Hochberg
rPSO 0 0 0
rGA 0.00617 0.01234 0.01234
dopt-aiNet 0.117601 0.117601 0.117601

Table 21: Adjusted 𝑝 values associated with PLBA and other com-
parable algorithms (Friedman) on dynamic benchmark problems𝐹1–𝐹6 in terms of both solution quality and convergence speed.

Algorithm Unadjusted p p Holm p Hochberg
rPSO 0 0 0
dopt-aiNet 0.000235 0.000471 0.000471
rGA 0.001749 0.001749 0.001749

whereas no significant difference was found between dopt-
aiNet and PLBA, as can be seen in Table 20. On the other
hand, considering both solution quality and convergence
speed, PLBA showed a significant improvement over all other
considered algorithms, including dopt-aiNet, with a level of
significance 𝛼 = 0.01, as can be seen in Table 21.

In general, the superiority of an algorithm over other
algorithms can be accounted for by its better diversity and
its ability to adapt to environmental changes because of the
strategies and features that characterize this algorithm to
address the DOPs. For example, it can be noticed that MDE-
LiGO was the best performing algorithm and rGA, rPSO,
and standard PSO were the worst performing algorithms in
terms of solution quality.This can be explained by the notion
that the MDE-LiGO integrated features that have advantages
over the features of the other algorithms such as the FCM
clustering that is considered better than hard clustering in
CPSO as pointed out in Section 2.4. It also retained the traits
of the best individuals in offspring, thus helping in increasing
the diversity of the population.On the other hand, PSOmight
face the difficulty of diversity loss due to the attraction of
the global best particle to all particles causing premature
convergence on local optima [38]. For the rGA and rPSO,
they represented the simple and standard versions of GA
and PSO, respectively, with only a reinitializationmechanism
to maintain the diversity when an environmental change is
detected.

In addition, it can be observed that PLBA achieved better
results than rGA, rPSO, and standard PSO. This can be
accounted for by the patch concept, Levy motion, and the
shrinking parameters, in addition to the replacement of worst
solutions (i.e., random immigrant scheme), where all these
features can help in maintaining the diversity as explained
above in this section and in Section 1. Keeping the last
solutions of the previous dynamic change to be used as the
initial solutions for the next change might contribute to the
good performance of PLBA over the rGA, rPSO, and PSO.
The PLBA also performed better than dopt-aiNet, although it
was designed especially for dynamic environments.The lower
performance for the dopt-aiNet, which is a modified variant
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of another dopt-aiNet, comparedwith the PLBAmight be due
to themodifications that have been done to the original dopt-
aiNet in order to reduce the computation complexity of the
algorithm. The modifications included the removal of some
mutation operators and the limitation of the search for the
step size of the Gaussian mutation to a specific range and
to a low number of function evaluations. In addition, the
memory population was not used and the number of clones
was reduced to one clone per cell. These modifications might
contribute to reducing the computation cost, but on the other
hand they might reduce the diversity of the algorithm. The
nature of the algorithm and its procedure can be suitable for
dynamic optimization such as DASA that has dynamic and
adaptive pheromone mechanism that can act as short-term
and long-term memories, as described in Section 2.4. Gen-
erally, the contribution of a specific strategy to the diversity
maintenance depends on the way of its implementation and
affected by other schemes integrated with it.

5. Conclusion

This paper introduced a recently proposed version of Bees
Algorithm (PLBA) for solving DOPs and investigated its
performance on a set of dynamic multimodal benchmark
problems with environmental changes of different degrees
of difficulties. In addition, the performance of PLBA was
compared with other BA versions, and with other state-
of-the-art algorithms found in the literature. The results
have shown that PLBA could track the optimal solution
and give reasonable solutions most of the time. The com-
parisons among BA-based algorithms showed that PLBA
outperformed Shrinking-based BA and Basic BA. However,
although the PLBA was better than Shrinking-based BA on
the dynamic problems, the results were generally comparable.
Therefore, it could be concluded that the dynamic change of
the step size is a desirable characteristic of an algorithm to
track the changed optimal solution. The experiments have
also indicated that PLBA performed much better than the
standard PSO, rPSO, rGA, and dopt-aiNet algorithms on
dynamic optimization and was competitive with others on
some results.

There as an interesting note that, apart from the reeval-
uation of the last solutions of the previous change and the
reinitialization of the shrinking parameter, no modifications
were needed for PLBA to deal with dynamic environments
and achieve promising results. The patch environment, Levy
flights, and keeping a large portion of the population scouting
were good capabilities to deal with the tested DOPs. The
inclusion of other features that are desirable for dealing with
dynamic environments may enhance the performance of
PLBA much more on the dynamic optimization.

Appendix

See Tables 22–30.
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[40] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in
dynamic environments: a survey on problems, methods and
measures,” Soft Computing, vol. 15, no. 7, pp. 1427–1448, 2011.

[41] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: a survey of the state of the art,” Swarm and
Evolutionary Computation, vol. 6, pp. 1–24, 2012.

[42] D. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M.
Zaidi, “The bees algorithm-a novel tool for complex optimisa-
tion problems,” in Proceedings of the 2nd Virtual International
Conference on Intelligent Production Machines and Systems
(IPROMS ’06), Cardiff, UK, 2006.

[43] M. Castellani, Q. T. Pham, andD. T. Pham, “Dynamic optimisa-
tion by amodified bees algorithm,” Proceedings of the Institution
of Mechanical Engineers. Part I: Journal of Systems and Control
Engineering, vol. 226, no. 7, pp. 956–971, 2012.



Discrete Dynamics in Nature and Society 27

[44] D. Pham, Q. Pham, A. Ghanbarzadeh, and M. Castellani,
“Dynamic optimisation of chemical engineering processes
using the bees algorithm,” in Proceedings of the 17th Interna-
tional Federation of Automatic Control (IFAC) World Congress,
Seoul, Korea, July 2008.

[45] W. A. Hussein, S. Sahran, and S. N. H. S. Abdullah, “An
improved Bees Algorithm for real parameter optimization,”
International Journal of Advanced Computer Science & Applica-
tions, vol. 6, pp. 23–39, 2015.

[46] W. A. Hussein, S. Sahran, and S. N. H. S. Abdullah, “A fast
scheme for multilevel thresholding based on a modified bees
algorithm,”Knowledge-Based Systems, vol. 101, pp. 114–134, 2016.

[47] I. Hatzakis and D. Wallace, “Dynamic multi-objective opti-
mization with evolutionary algorithms: a forward-looking
approach,” in Proceedings of the 8th Annual Genetic and Evo-
lutionary Computation Conference, pp. 1201–1208, ACM, July
2006.

[48] A. Simões and E. Costa, “Improving prediction in evolutionary
algorithms for dynamic environments,” in Proceedings of the
11th Annual Genetic and Evolutionary Computation Conference
(GECCO ’09), pp. 875–882, ACM, July 2009.

[49] J. Branke and D. C. Mattfeld, “Anticipation and flexibility
in dynamic scheduling,” International Journal of Production
Research, vol. 43, no. 15, pp. 3103–3129, 2005.

[50] J. Eggermont and T. Lenaerts, “Dynamic optimization using
evolutionary algorithms with a case-based memory,” in Pro-
ceedings of the 14th Belgium Netherlands Artificial Intelligence
Conference (BNAIC ’02), H. Blockeel and M. Denecker, Eds.,
2000.

[51] J. Branke, Evolutionary Optimization in Dynamic Environments,
vol. 3, Springer, 2012.

[52] S. Yang, “On the design of diploid genetic algorithms for prob-
lem optimization in dynamic environments,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’06), pp.
1362–1369, IEEE, July 2006.

[53] M. Daneshyari and G. G. Yen, “Dynamic optimization using
cultural based PSO,” in Proceedings of the IEEE Congress of
Evolutionary Computation (CEC ’11), pp. 509–516, IEEE, June
2011.

[54] J. Branke, T. Kaussler, C. Schmidt, and H. Schmeck, “A multi-
population approach to dynamic optimization problems,” in
Adaptive Computing in Design andManufacturing, pp. 299–308,
Springer, 2000.

[55] C. Li, S. Yang, andM.Yang, “An adaptivemulti-swarmoptimizer
for dynamic optimization problems,” Evolutionary Computa-
tion, vol. 22, no. 4, pp. 559–594, 2014.

[56] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S.
Yang, “An adaptivemultipopulation framework for locating and
tracking multiple optima,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 4, pp. 590–605, 2016.

[57] T. Blackwell, “Particle swarm optimization in dynamic environ-
ments,” in Evolutionary Computation in Dynamic andUncertain
Environments, vol. 51 of Studies in Computational Intelligence,
pp. 29–49, Springer, Berlin, Germany, 2007.

[58] M. Z. Ali, N. H. Awad, P. N. Suganthan, and R. G. Reynolds, “An
adaptive multipopulation differential evolution with dynamic
population reduction,” IEEE Transactions on Cybernetics, 2016.

[59] W.A.Hussein, S. Sahran, and S.N.H. S. Abdullah, “The variants
of the Bees Algorithm (BA): a survey,” Artificial Intelligence
Review, vol. 47, no. 1, pp. 67–121, 2017.

[60] M. S. Packianather, M. Landy, and D. T. Pham, “Enhancing the
speed of the bees algorithm using pheromone-based recruit-
ment,” in Proceedings of the 7th IEEE International Conference
on Industrial Informatics (INDIN ’09), pp. 789–794, Wales, UK,
June 2009.

[61] W.A.Hussein, S. Sahran, and S.N.H. S. Abdullah, “Patch-Levy-
based initialization algorithm for Bees Algorithm,” Applied Soft
Computing Journal, vol. 23, pp. 104–121, 2014.
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