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The authors address likelihood ratio statistics used to test simultaneously conditions on mean vectors and patterns on covariance
matrices. Tests for conditions on mean vectors, assuming or not a given structure for the covariance matrix, are quite common,
since they may be easily implemented. But, on the other hand, the practical use of simultaneous tests for conditions on the mean
vectors and a given pattern for the covariance matrix is usually hindered by the nonmanageability of the expressions for their
exact distribution functions. The authors show the importance of being able to adequately factorize the c.f. of the logarithm of
likelihood ratio statistics in order to obtain sharp and highly manageable near-exact distributions, or even the exact distribution in
a highly manageable form. The tests considered are the simultaneous tests of equality or nullity of means and circularity, compound
symmetry, or sphericity of the covariance matrix. Numerical studies show the high accuracy of the near-exact distributions and
their adequacy for cases with very small samples and/or large number of variables. The exact and near-exact quantiles computed
show how the common chi-square asymptotic approximation is highly inadequate for situations with small samples or large number

of variables.

1. Introduction

Testing conditions on mean vectors is a common procedure
in multivariate statistics. Often a given structure is assumed
for the covariance matrix, without testing it, or otherwise
this test to the covariance structure is carried out apart. This
is often due to the fact that the exact distribution of the
test statistics used to test simultaneously conditions on mean
vectors and patterns on covariance matrices is too elaborate to
be used in practice. The authors show how this problem may
be overcome with the development of very sharp and man-
ageable near-exact distributions for the test statistics. These
distributions may be obtained from adequate factorizations
of the characteristic function (c.f.) of the logarithm of the
likelihood ratio (l.r.) statistics used for these tests.
The conditions tested on mean vectors are

(i) the equality of all the means in the mean vector,

(ii) the nullity of all the means in the mean vector
and the patterns tested on covariance matrices are

(i) circularity,
(ii) compound symmetry,
(iii) sphericity.
Let X = [X,,..., Xp]' be a random vector with Var(X) =

>.. The covariance matrix X is said to be circular, or circulant,
ifzc = [Ul]]’ i,j = ]., e ,p, With

0;; = Var (X;) = ‘73’ W

2
Oiisk = Ojii = COV (Xi’Xi+k) =00 P>

where p = p, ;. = Corr(X;, X; ), fori=1,....psk=1,...,
p—i



For example, for p = 6 and p = 7, we have

Loprpps popr
Pl pppsopa
2P P L oprpaops
Ps P2 P L opops
PPy PP 1P
LPi P2 P P21 1]

(1 ppps ps PPy @)
Pr 1 ppyps P3P
PP lopropropsops
Zczaé Ps P2 Pt L opioprops
PsPs PP L opp
PrPs Ps PPl op
LP1 P2 P Ps P2 P11

Besides the almost obvious area of times series analysis,
there is a wealth of other areas and research fields where
circular or circulant matrices arise, such as statistical signal
processing, information theory and cryptography, biological
sciences, psychometry, quality control, and signal detection,
as well as spatial statistics and engineering, when observa-
tions are made on the vertices of a regular polygon.

We say that a positive-definite px p covariance matrix X
is compound-symmetric if we can write

S =bEy,+(a-b)I,=al,+b(E,, -1,),
(3)

with — <b<a.

4
(p-1)
For example, for p = 4, we have

abbb
babb
“ lbbab
bbba

If, in (3), b = 0, we say that the matrix is spheric.

The Lr. tests for equality and nullity of means, assuming
circularity, and the Lr. tests for the simultaneous test of
equality or nullity of means and circularity of the covariance
matrix were developed by [1], while the test for equality
of means, assuming compound symmetry, and the test for
equality of means and compound symmetry were formulated
by [2] and the test for nullity of the means, assuming
compound symmetry, and the simultaneous test for nullity of
the means and compound symmetry of the covariance matrix
were worked out by [3]. The exact distribution for the Lr. test
statistic for the simultaneous test of equality of means and
circularity of the covariance matrix was obtained in [4] and is
briefly referred to in Section 2, for the sake of completeness,
while near-exact distributions for the Lr. test statistic for the
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simultaneous test of nullity of the means and circularity of
the covariance matrix are developed in Section 3. Near-exact
distributions for the Lr. test statistics for the simultaneous test
of equality and nullity of the means and compound symmetry
of the covariance matrix are developed in Sections 4 and 5,
using a different approach from the one used in Section 3.
The Lr. statistics for the tests of equality and nullity of all
means, assuming sphericity of the covariance matrix, may be
analyzed in Appendix C and the Lr. statistics for the simulta-
neous tests of equality and nullity of all means and sphericity,
together with the development of near-exact distributions for
these statistics, may be examined in Sections 6 and 7.

Since, as referred above, the exact distributions for the
statistics for the simultaneous tests of conditions on means
vectors and patterns of covariance matrices are too elaborate
to be used in practice, the authors propose in this paper
the use of near-exact distributions for these statistics. These
are asymptotic distributions which are built using a different
concept in approximating distributions which combines an
adequately developed decomposition of the c.f. of the statistic
or of its logarithm, most often a factorization, with the action
of keeping then most of this c.f. unchanged and replacing the
remaining smaller part by an adequate asymptotic approxi-
mation [5, 6]. All this is done in order to obtain a manageable
and very well-fitting approximation, which may be used to
compute near-exact quantiles or p values. These distributions
are much useful in situations where it is not possible to obtain
the exact distribution in a manageable form and the common
asymptotic distributions do not display the necessary preci-
sion. Near-exact distributions show very good performances
for very small samples, and when correctly developed for
statistics used in Multivariate Analysis, near-exact distribu-
tions display a sharp asymptotic behavior both for increasing
sample sizes and for increasing number of variables.

In Sections 3-7, near-exact distributions are obtained
using different techniques and results, according to the struc-
ture of the exact distribution of the statistic.

In order to study, in each case, the proximity between the
near-exact distributions developed and the exact distribution,
we will use the measure

dt, (5)

_E,oo

Ao 1 J+°° Dy (t) — Dy, ()
t

with

max |Fy (w) - Fyy, (w)| = max |F\ (&) - Fy (&)| < A, (6)

where A represents the Lr. statistic, @, (¢) is the exact c.f. of
W = —log A, @y, (t) is the near-exact c.f,, and Fyy(-), F5(-),
Fy,(-), and F,(-) are the exact and near-exact c.d.f’s of W and
A.

This measure is particularly useful, since in our cases we
do not have the exact c.d.f. of A or W in a manageable form,
but we have both the exact and near-exact c.f’s for W =
—log A.
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2. The Likelihood Ratio Test for
the Simultaneous Test of Equality of Means
and the Circularity of the Covariance Matrix

Let X ~ N, (4, %), where pt = [p ...

of size n, the (2/n)th power of the Lr. statistic to test the null
hypothesis

,/,tp] Then, for a sample

Hy:py == pys
(7)

=2,

c

- Vip
i =
V +Vp —j+2,p—j+2°

withv; =v, ;, (j=2,...

,m), and where v;; is the jth diag-
onal element of V, and

wj
yjz», j=1, and also j=m+ 1 if p is even, (10)
- y]z. +y}2)7j+2, j=2,...,m, and also j =m + 1 if p is odd,
with Y = [y;] = nXU, where X is the vector of sample
means.

This test statistic was derived by [1, sec. 5.2], where the
expression for the Lr. test statistic has to be slightly corrected.
According to [1],

a2
A =]y (11)
j=2
where
Beta( %) j=2,....m+1,
Y; ~ (12)
] j+ .
Beta( 5 >, j=m+2,...,p,

are a set of p — 1 independent r.v’s.

From this fact we may write the c.f. of W, = —log A | as

_ E(eftm) _ E(e—itlogAl) -F (A—lit)

_ ”ﬁr(n/z) r((n-j)/2-it)
iaT((n=j)/2)T (n/2~it) (13)

Oy, (1)

. ﬁ T((n+1)/2)T((n- j)/2-it)
j:m+2r((n_j)/2)r((n+ 1)/2—1'1').

By adequately handling this c.f,, the exact distribution of
W, is obtained in [4] as a Generalized Integer Gamma (GIG)

1 { (271(]'—1)(1'—1))
ij — 1C0S| —— | +SIn
VP p

j=1, and also j=m+ 1 if p is even,

i=2,...

is
A1

Vi oVt w;

A, = 2P hyp

(8)
_2p-m- [Vl S

b
Vi Vit w;

where m = [p/2], A is the maximum likelihood estimator
(m.le.) of T,V = nU' AU, where U is the matrix with running
element

5k

€

,m, and also j=m+ 1 if p is odd,

distribution (see [7] for the GIG distribution), since we may

write
P -r- . -1;
o=11(57) (FF-1)
j=1
for
Tj
-2+ pmod?2 .
%» j=1L (15)
— pmod 2 i—1-pmod?2 .
ppmodz |jcispmed2| L,

A popular asymptotic approximation for the distribution
of nW, is the chi-square asymptotic distribution with a
number of degrees of freedom equal to the difference of
the number of unknown parameters under the alternative
hypothesis and the number of parameters under the null
hypothesis, which gives for ntW;, = -nlogA,, for A in
(8), a chi-square asymptotic distribution with p(p + 3)/2 -
[(p +2)/2] — 1 degrees of freedom. Although this is a valid
approximation for large sample sizes, in practical terms, this
approximation is somewhat useless given the fact that it gives
quantiles that are much lower than the exact ones, as it may be
seen from the quantiles in Table 1, namely, for small samples
or when the number of variables involved is somewhat large.

From the values in Table 1 we may see that even for quite
large sample sizes and rather small number of variables as
in the case of p = 10 and n = 460, the asymptotic chi-
square quantile does not even match the units digit of the
exact quantile, a difference that gets even larger as the number
of variables increases. The chi-square asymptotic quantiles
are always smaller than the exact ones, their use leading to
an excessive number of rejections of the null hypotheses, a
problem that becomes a grievous one when we use smaller
samples or larger numbers of variables.
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TaBLE 1: Exact and asymptotic 0.95 and 0.99 quantiles for nW, where W, = —log A, for the statistic A in (8), for different values of p and
samples of size n = p + 1, 50, 450.

P n exact Asymptotic- X2
a=0.95
10 76.77780315606147980433710659
1 184.84579506364826855487849906
60 82.86779631112725385496956047
460 77.50088072977322094345813820
15 153.19790274395621072198817490
16 356.83946609433702153375390686
65 169.23132191434840041430238602
465 155.17420633635277455721974156
25 379.74587752919253597245376194
26 853.62442647392551959929457598
75 437.12290346767321994020024210
475 387.31925318201483716457949700
50 1382.92839770564012472044120417
51 2983.52950629554250120199516974
100 1719.07640203276757900109720368
500 1434.09183007253302711800352147
a=0.99
10 85.95017624510346845181671517
1 221.13637373719535956938670312
60 92.78317859393323169599466291
460 86.75984117402977424037787646
15 165.84100085082047675645088502
16 409.92566639020778120425384446
65 183.23718212829228159346647123
465 167.98095654076846741881112565
25 399.22970790268112734530953113
26 940.55141434060365229501805667
75 459.68274728064743270409254333
475 407.19370031104569525049581690
50 1419.46244733465596475819616876
51 3156.01716925813527651187643029
100 1765.17588807596249988258749774
500 1471.99072215013613268320536543

3. The Likelihood Ratio Test for the

where m, v, and wj, as well as the matrices A and V, are

Simultaneous Test of Nullity of Means and
the Circularity of the Covariance Matrix

For a sample of size 1, the (2/n)th power of the Lr. test statistic
to test the null hypothesis

H, : Y= 0;
(16)
=2,
is
A, = 20 AT 1
2 vy SVt w;
Jj J J
(17)

2p-m-1) [V S

=2 N
Vq =1 Vj +wj

defined as in the previous section.
According to [1],

d p
AZEHY]-, (18)
=1
where
Beta(n;],%>, j=L....m+1,
Y; ~ .. (19)
Beta(n_] u) j=m+2 p
2 bl 2 bl ] P ] bl

are a set of p independent r.v’s.
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Taking W, = —log A, and following similar steps to the
ones used in [4] to handle the c.f. of W}, we may write the c.f.
of W, as

I'(n/2)T((n—1)/2—it)
I'((n-1)/2)T (n/2 —it)

A5 (5"

j=1

q)Wz (1) =
(20)

for r; given by (15).

This shows that the exact distribution of W, is the same
as that of the sum of GIG distributions of depth p with an
independent Logbeta((n — 1)/2, 1/2) distributed r.v.

But then, using the result in expression (3) of [8], we
know that we can replace asymptotically a Logbeta(a, b)
distribution by an infinite mixture of I'(b — 2j,a + (b — 1)/2)
distributions (j = 0, 1,...), for large values of a. This means
that we can replace asymptotically

T (n/2)T ((n—1) /2 - it)
T((n-1)/2)T (/2 —it)

byz < - 1/22 )1/2+2j on

(n -1 12-1 | )‘“/2”1’)
. + —1it .
2 2

As such, in order to obtain a very sharp and manageable
near-exact distribution for W,, we will use, as near-exact c.f.

for W,,
> 1/2+2j

%m:{zn( n-1 1/2
n-1 1/2-1 (1/2+21 P .r‘
() e

-<";'—lt>”} S (5
1/2-1

1/2-1 242 4 —(1/2+2j)
+ 5 > <2 + 3 —it>

e (5"

j-1

where the weights 775, j = 0,...,m — 1, will be determined in

such a way that

o o
— Oy (1) = 5P, @) . h=1....m (23)
ot" t=0 oth =0

withm,, =1- Z] o 7T

CD;,2 (t) is the c.f. of a mixture of m + 1 Generalized Near-
Integer Gamma (GNIG) distributions of depth p + 1 (see [5]
for the GNIG distribution).

As such, using the notation for the p.d.f. and c.d.f. of the
GNIG distribution used in Section 3 of [6], the near-exact
p.d.fs and c.d.f’s for W, = —log A, and A, are

m
1 n-1
* _ GNIG I .
fm(w)—];)njf (wlrl,...,p,2+2], 5>
n—-p n-1

+ 1/2_1- +1>
e ) > P 2 ’p >

< 1 n-1
* GNIG .
sz(w):anF (wlrl,...,rp,§+2]; R

0 2
”)n—p’n—l . 1/2_1;P+1>,
2 2 2
ﬁﬁ&=zmﬁ“%4%mqu
j=0
+1)l
)p g

. R GNIG 1
FAZ(E)—];)nj(l—F (—logelrl,..., »5

(24)
IE 5 + 2],

-1 —pn-1 1/2-1
1 ,...,n p,n + /

2 2 2 2

+2j;n 1,...,n p)n ! + 12 1;p+1>),
2 2 2 2
withr,..., » given by (15).

In Table 2 we may analyze values of the measure A in (5)
for the near-exact distributions developed in this section, for
different values of p and different sample sizes. We may see
how these near-exact distributions display very low values of
the measure A, indicating an extremely good proximity to the
exact distribution, even for very small sample sizes, and how
they display a sharp asymptotic behavior for increasing values
of pand n.

In Table 3 we may analyze the asymptotic quantiles for
nW, for the common chi-square asymptotic approximation
for L.r. statistics, here with p(p + 3)/2 — [(p + 2)/2] degrees
of freedom and the quantiles for the near-exact distributions
that equate 2, 6, and 10 exact moments. These quantiles are
shown with 26 decimal places in order to make it possible
to identify the number of correct decimal places for the
quantiles of the near-exact distributions that match 2 and 6
exact moments. We should note that the quantiles of the near-
exact distributions that match 10 exact moments always have
much more than 26 decimal places that are correct. Also for
the statistic in this section, we may see the lack of precision
of the asymptotic chi-square quantiles.

4. The Likelihood Ratio Test for the
Simultaneous Test of Equality of
Means and Compound Symmetry of the
Covariance Matrix

Let us assume that X ~ Np(g, ¥), with p= Uy ... ,/AP]'. We
are interested in testing the hypothesis

Hyopy == pys
r= ch’

(25)
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TABLE 2: Values of the measure A in (5), for the near-exact distributions of the Lr. test statistic A , in (17), which match m exact moments, for

different values of p and samples of size n = p + 1, 50, 450.

m
P " 2 4 6 10 20
10 1 2.12x 107" 5.95x 107 1.23x 1071 1.35x 1072 1.02 x 107%
60 3.12x 107" 232x107% 1.46 x 1072 2.80 x 107** 1.41x107%°
460 152x 107" 322x107% 5.78 x 107%* 9.53x 107 1.70 x 107%
15 16 4.12x 107" 9.90 x 107" 2.09 %107 4.06 x 107% 1.32%x107%°
65 5.95x 107" 1.60 x 107 3.86 x 107 1.28 x 107 1.59 x 10~
465 4.76 x 107%° 5.11x 107 492 %107 2.69x 107 5.39 x 107
25 26 3.00 x 107" 291x107% 2.75x107% 1.56 x 107 1.83 x 107
75 5.13 x 107'¢ 2.85x107% 147 x107% 2.52x107% 3.53 %107
475 9.86 x 1072 3.91x 107! 1.45 x 107% 1.30 x 107 4.82 %107
50 51 411x 107" 495x 1077 6.07 x 1072 6.98 x 107* 2.02x107%
100 9.04x 1078 3.48 x 107% 1.27 x 107 1.16 x 107% 522x 1077
500 9.25x 107 7.77 x 107 6.23 x 107" 2.77%10°% 7.62x 1071
where X represents a compound symmetric matrix, as Wilks [2] has also shown that
defined in (3).
For a sample of size n, the (2/n)th power of the Lr. test 4P
statistic is (see [2]) A, = HYJ’ (31)
j=2
Ay = 4] T (26) where
(@+(p-1)b)(a-b+s2)"
where Yj~Beta<n21,;_?1 +%)’ (32)
, 1
4 [a] k] X (In nEnn> * @ form a set of p — 1 independent r.vs.

with X being the n x p sample matrix and E,,, a matrix of Is

of dimension n x n,

E(A

As such, the hth moment of A ; may be written as

a:lia“ )
p L ﬁ CRSEITRDCR T
o 28) 2 (=) DT (2+ -2/ (p-1)+ k) O
-~ 2
b= Qi T’l—p
p(p—l)j;k;l’ (n>-"22).
S TIZ(X j—X) , (29) Slncethegxpressmn in (33) remains valid for any complex
=1 h, we may write the c.f. of W; = —log A 5 as
ith .
h Dy, (1) = E(AT")
X;= lix
= Hr(n/zw 2)/(p- )T ((n=j)/2-it) CY
. (30) ST((n-j)/2)T(n/2+(j-2)/(p-1)-it)
X-1¥%,
pPia . .
Y which may be rewritten as
Dy, ()
ﬁ n/2+(1 2)/(p-1)I((n-j)/2+1(-2)/(p-1) +j/2| - ﬁr N2+1G=2)/(p=D)+j2])T((n-7)/2-it) | (35)
2T (=241 -2/ (p-1)+j2)T(n/2+(j-2)/(p-1) - 2 T((n=7)/12)T((n=j) 2+ 1(-2)/(p-1)+j/2] -it) |

Dy, 1 (1)

Dy, (1)
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Then, we may apply on @y, ,(#) the relation

F(a+n)

—Tw H(a+€) YaeC, neN, (36)
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to obtain

PT(n/2+(j-
[0) =
w, (8) {EF((n—j)/2+

{ lﬂ[ LG-2)/(p-D)+j/2]-1 ( "

=2 £=0

(o)

(/2+(i=2)/(p-1))T((n=j) 2+ 1(i-2)/(p-1) +j/2] -

2)/(p=)T((n=j)/2+[(i=2)/(p=1) +j/2] ~it)
1(G=2)/(p-1)+j/2)T(n/2+(j-2)/(p-

1) —it)

(37)

{1

(n=7)12+1(i-2)/(p-1)+j2)T(n/2+(j=2)/(p-1) -

S (5

)}

Dy, 1 (1)
with
g—l, j=1, if (p mod4) =
(p+1 L
r;= 1 j=1,if (p m0d4) #0, (398)
—-j+2
{%J ap.

Expression (37) shows that the exact distribution of W; is
the same as that of the sum of GIG distributed r.vs of depth p
with an independent sum of p — 2 independent Logbeta((n —
N2+1G=-2/(p-D+j2LG-2/(p-D+j2-1(-
2)/(p—1)+ j/2]) r.v5s.

Our aim in building the near-exact distribution will be
to keep @y, ,(#) unchanged and approximate asymptotically
DOy 1 (D).

In order to obtain this asymptotic approximation, we will
need to use a different approach from the one used in the
previous section. We will use the result in sec. 5 of [9], which
implies that a Logbeta(a, b) distribution may be asymptoti-
cally replaced by an infinite mixture of I'(b+j,a) (j = 0,1,...)
distributions.

Using a somewhat heuristic approach, we will thus
approximate @y, ;(¢) by a mixture of I'(r+ j, A*) distributions
where

p . . _
S
= (39)
p-3 ((p+1)mod2)+((p+1)mod4)
= +
2 2(p+1)m0d4

is the sum of the second parameters of the Logbeta r.vs in
®y, ;(¢) and A" is the common rate parameter in the mixture

Dy, 2 (t)

of two Gamma distributions that matches the first 4 moments
of @y, ,(t), that is, A" in

dh #\7 * =T,
oy (i
r; =T dh
+(1-p)(A7)* (A" —it) 2) T (40)
t=0
'q)m,l(t) > h:l,...,4.
t=0

As such, in order to build the near-exact distributions for
W;, we will use, as near exact c.f. for Wj,

oy, () = {Zn W) - )(””}
P n—j\"/n-j N\
HEHICON.

(41)
L +j —(r+j)
=Y (A" (=)
j=0
Pt r
T(57) (57 -0)
V2 2
where the weights mj, j=0,...,m— 1, will be determined in
such a way that
h h
—,, (t =—0 )| , h=1,....,m, (42
ath W3()t=0 ath VVS()t=O m ( )

with 7, =1 - Z;":_Ol ;.

The c.f. in (41) is, for integer r, the c.f. of a mixture of m +
1 GIG distributions of depth p + 1 or, for noninteger r, the
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TABLE 4: Values of the measure A in (5), for the near-exact distributions of the L.r. test statistic A ; in (26), which match m exact moments, for

different values of p and samples of size n = p + 1, 50, 450.

p n "
2 4 6 10 20

10 11 9.68 x 107’ 3.84x 107" 1.07 x 107 1.36 x 1072 571 x107%
60 3.01x107%° 1.24x 107" 3.49x 107 6.90 x 107%¢ 8.11 x 1074
460 6.80 x 107" 3.93x107% 1.95 x 1072 9.75 x 107 7.94x107%

15 16 9.99 x 1071° 1.62x 107" 449x107" 291 x 107 3.19x 107"
65 9.85x 107! 336 x 107 224%x107% 9.91x 107! 1.76 x 107%
465 2.81x 107" 2.09x107% 3.35x 107 9.96 x 107 3.22x 107

25 26 6.12x 107" 1.73 x 107'¢ 6.85 % 107% 1.67 x 107 1.52x 107
75 1.87x 107" 2.86 x 107" 5.76 x 107 1.12x 107 2.66 x 107
475 7.06 x 107 3.38x 1072 221x107%8 6.35x 107% 2.53x107%

50 51 1.78 x 1072 5.44x 107" 224%x107% 9.80 x 107 8.74x10°%
100 2.35x 107" 9.83x 107" 494% 107 2.44 % 107¢ 1.64 x 107
500 225%x 107 5.94 x 107 1.76 x 107%° 2.05%x 107 8.50 x 10772

c.f. of a mixture of m + 1 GNIG distributions of depth p + 1,
with shape parametersry,...,7r,,7+j (j =0,...,m) and rate
parameters (n—1)/2,...,(n— p)/2,A".

This will yield, for noninteger r, near-exact distributions
whose p.d.f’s and c.d.f’s for W; = —log A ; and A ; are

* < ,T’l—].
fwa(w)zerijNIG<w|rl,...,rp,r+];T,...,
=0
n-p .,
_)A; +1))
> p
N GNIG n-1
F;\G(w):zﬂjF (wlrl,...,rp,r+j;T,...,
=0
n-p .
"2 g,
> p

* _ e GNIG [ . (43)
fAS(E)—anf logl|ry,...,rp,r+j;
=0

n—1 n—p .
s AT +1)
2 2 P

>

|-

m
FL @) = Zﬂj (1 _ FONIG <_10ge TR N
=0

.n—1 n—p .
+ s PR AP+ 1))
with ry,...,7, given by (38). For integer r, we will only have
to replace in the above expressions the GNIG p.d.f. and c.d.f.
by the GIG p.d.f. and c.d.f,, respectively.

In Table 4, we may analyze values of the measure A in
(5) for the near-exact distributions developed in this section,
for different values of p and different sample sizes. We may
see how these near-exact distributions display, once again,
very low values of the measure A even for very small sample
sizes, indicating an extremely good proximity to the exact
distribution and how, once again, they display a sharp asymp-
totic behavior for increasing values of p and n, although for
large values of p, namely, for p = 50 in Table 4, one may have

to consider larger values of n in order to be able to observe
the asymptotic behavior in terms of sample size.

The asymptotic quantiles for nW; in Table 5, for the com-
mon chi-square asymptotic approximation for Lr. statistics,
now with p(p +3)/2 - 3 degrees of freedom, display again, as
in the previous sections, an almost shocking lack of precision,
mainly for small sample sizes and/or larger numbers of
variables. On the other hand, the near-exact quantiles show
a steady evolution towards the exact quantiles for increasing
number of exact moments matched, with the quantiles for
the near-exact distributions that match 6 exact moments
displaying more than 20 correct decimal places, for the larger
sample sizes.

5. The Likelihood Ratio Test for the
Simultaneous Test of Nullity of Means and
Compound Symmetry of the
Covariance Matrix

Let us assume now that X ~ N P(y, Y). We are interested in

testing the hypothesis
Hy:p=0;
. (44)
= z“cs'
We may write
Hy = Hyyjo1 © Hyys (45)
where
Hyyjop : ¢ = 0, assuming ¥ =%,
(46)

Hy : 2 =2

While, for a sample of size n, the (2/n)th power of the Lr.
statistic to test Hy,,, may be shown to be (see Appendix A
for details)

@-6)" (a+(p-1)b

- —, (47)
(‘30 - EO)p 1 (ao +(p-1) bo)

A2|1 =
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where @ and b are given by (28) and

= _Zaﬂw

p] 1
(48)
a
= p(p—l ]zlk% b
with
Aq = [y ] = X'X, (49)

where X is the n x p sample matrix, the Lr. test statistic to test
H,, is shown by [2] to be

_ |A]
M e areony)

again with @ and b given by (28) and A given by (27).
The L.r. test to test H,, in (44) is thus

|Al
Ay = A1A2|1 = . (51)

(@ - Eo)P_1 (@ +(p-1)by)

For a sample of size n, A );, the (2/n)th power of the Lr.
test statistic to test Hy,|y;, may be shown to be distributed as

(see [3] and Appendix A for details) Y? “'Y,, where Y, and Y,
are independent, with

Y, ~Beta<(n_1)(p_1),p_l),

2 2

-11
Y2~Beta<n ,—>,
2 2

(52)

1

while [2] shows that the (2/n)th power of the Lr. statistic to
test Hy, is distributed as ]_[fzij*, where Y are independent,
with

g
Yfk~Beta<n ],]
J 2 p-1

+j;1). (53)

Based on Theorem 5 in [10], it is then possible to show
that the Lr. statistics to test Hy; and H,o; are independent,
since A | is independent of (a — b '@+ (p- 1)b) and Ay
is built only on this statistic, since (d@, — b,)? " (@, + (p — 1)b,)
is the same statistic in a constrained subspace.

From this fact, we may show that the (2/n)th power of
the Lr. statistic to test H;, in (44), A, is distributed as (see

Appendix B for details)
p
HY; e (54)
=2

where all r.v’s are independent, with

i,
Yfk*~Beta<n ],] +
J 2

—
N .
~—

>

(55)

Y ~ Beta(n_ 1,1).
2 2
We note that the r.vis Y;*

and (32).
As such, the c.f. of W, = —log A, may be written as

are the same as the r.vs Y; in (31)

ED(m2+(i-2)/(p-I)T((n=j)/2+1(i-2)/(p=1) +j/2] -
7

D=7 2+1(G-2)/(p=1) +jl2)T(n/2+ (j-2)/ (p—1) - it)

it)| T(n/2)T((n-1)/2-
I((n-1)/2)T (n/2 -

o)

q)V\Q,l(t)

with r; given by (38).

Then, following a similar approach to the one used for
W, and A, in the previous section, we obtain near-exact
distributions with a similar structure to those in that section,
now with

L&z G -2
—z+z 5{ +5J

-1
Jj= 2p p (57)
((p+ 1) mod 2) + ((p + 1) mod 4)
- 2 2(p+1) mod 4

and with 1* determined as the solution of a system of equa-
tions similar to the one in (40), with @y, , replaced by @y, ;.

Dy, ()

This will yield for A, and W, near-exact distributions
with p.d.f’s and c.d.f’s given by (43), now with r given by (57).

We should note that as it happens with A ; and Wj, also
for W, and A 4, ¥ may be either an integer or a half-integer,
so that, in those cases where r is an integer, the near-exact
distributions are mixtures of GIG distributions, while when r
is noninteger, they are mixtures of GNIG distributions.

In Table 6 we may analyze values of the measure A in (5)
for the near-exact distributions developed in this section, for
different values of p and different sample sizes. We may see
how these near-exact distributions display similar properties
to those of the near-exact distributions developed for A ; in
the previous section.
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TABLE 6: Values of the measure A in (5), for the near-exact distributions of the L.r. test statistic A , in (51), which match m exact moments, for

different values of p and samples of size n = p + 1, 50, 450.

m
p n
2 4 6 10 20
10 1 2.54%107° 591 x 107" 9.61x107'° 2.01x%107%° 8.06 x 107%
60 2.80x 107" 3.92x 107'° 436x 107" 7.29 x 1072¢ 1.73 x 107
460 7.70 x 107"3 142x107% 2.88x 107 1.38x 107 9.04x 107®
15 16 1.36 x 10710 1.88x 107 5.28 x 1071 3.92x 107 9.44 x 107¢
65 444 %1071 1.52x107% 2.70 x 1072° 922 %1078 2.19% 107
465 2.05% 107" 8.43x107% 3.28x 1072 438 %107 1.62x 107
25 26 3.13x 107" 1.07 x 10716 2.08x 1072 225x107% 1.37x107%
75 7.48 x 10712 1.25x 1078 2.38x107% 6.06 x 107! 5.83x 107%
475 3.30x 107" 1.93x 107 1.03x 107 1.73x 107 9.08 x 10°%°
50 51 1.49 x 107" 443 x 107" 1.32%x107% 9.24 x 107 237 %107
100 1.71 x 107" 6.92x 107" 241 %107 236 x 107°° 1.62x 1078
500 1.24x 107" 3.26 x 107 6.45 x 107° 2.06 x 107 1.20%x1077°
In Table 7, the asymptotic chi-square quantiles are made ~ where A is the matrix in (27) and
available for the common chi-square asymptotic approxima-
tion for Lr. statistics, now with p(p + 3)/2 — 2 degrees of free- ~n/ ~1
> A,=(X-E X-E R 62
dom, as well as the near-exact quantiles for nW,. Similar con- 0 ( mit ) ( mi ) (62)
clusions to those drawn in the previous sections apply here.
with
6. The Likelihood Ratio Test for the ~ 1E X 1 E X
Simultaneous Test of Equality of Means K= p PP p (63)
and Sphericity of the Covariance Matrix
, We have
IfX ~ NP(E’ Y), where Y= (1> ppls and we are inter-
ested in testing the null hypothesis p n O
()= > (X;-X,;). (64)
Iib: Ml = et e = ”P;
2 2 (58)
L=0"1, (with o unspeciﬁed),
we may write
Hy = Hopj1 © Hop» (59)
where
. 2
Hyjo1 : 4y = -+ = Wy, assuming X = 071,
. (60)
Hy, : X =01,

where, for a sample of size n, the (2/n)th power of the Lr.
statistic to test Hy,jo;, versus an alternative hypothesis that
assumes sphericity for the covariance matrix and no structure
for the mean vector, may be shown to be (see Appendix C for

details)
NEICRY
AZ'“(tr(Ao)) ’ (e

(65)

A B
where X = [X;] (i = L...,mj = 1,...,p)is the sample
matrix and
- 1&- - 19
X = P X, with X = ;ZX,»J-. (66)
j:l i=1

In (65), from standard theory on normal r.v’s, since X;; ~
N(ptj,az), independent fori =1,...,n,

(j=1....p), (©7

2
~ Xn—l’
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and, since, under Hy,;, we have Yj ~ N, o?/n), i.id. for The (2/n)th power of the Lr. statistic to test H,, in (60) is
j =1,..., p, under this null hypothesis, thus
» (% _%) |A]
(X -X = = —
j=1 ( j ) 2 68 As=ApA, = , (76)
e (68) (tr (1/p) Ao))’
Thus, since the r.v’s in (67) are independent for j = 1,..., p, where, from Theorem 5 in [10], we may assure the indepen-
dence between A ,; and A} and as such say that
A” 2
? ~ Xn-1)p (69)
a [& .
while, from (68), Ag= {ng} Y, (77)
_* ~ 32 (70) , . - *
o2 Xp-1° where all r.vs are independent, Y; are the r.visin (75),and Y
is a r.v. with the same distribution as A, in (72).
Since A* and B” are independent, given that A* is inde- Let us take Wy = —log A5, W, = —log Ay, and W, =
pendent of all Yj (j =1,...,p) and B" is defined only from —log A . Then we will have
the Xj, then
(Dw_,, () = q)wl (1) q)Wz ), (78)
tr (A) A" n-1)p p-1
tr (A) T A+ B Beta( 5 > 2 ) (71 where, using (36), we may write, for odd p,
-1 -1\\? _ Wy _ —tlog Ayr) _ —it
A2|1~(Beta<w,p7>) . (72) Oy, (1) = E(e™) = E(e") = E(A3))
I ((np—1)/2)T ((np - p) /2 - pit)
From [6, 11] and [12, sec. 10.7], the (2/n)th power of the T (np—1)/2— pit) T ((np — p) /2)

Lr. statistic to test H, in (60) is given by

(p-1/2-1 -1
4] _ m-p N\(ne-p
A = , = + pit+¢
Ve (1/p) A)F (73) g < 2 >< 2 )
with (see [6]) T np—pr2jy mp—p+2j N 7))
L - g ( 2 ) < 2 plt)
A =11Y, 74
1 g j ( ) B (p-1)/2-1 n-—1+ (2]) /p
= H —
where, for j =2,..., p, j=0
R . -1 27 -1
Yj~Beta<n2],]P1+]21> (75) -<—n +2( J)/‘p—it) ,
are a set of p — 1 independent r.v’s. and, for even p, following similar steps,
oy, (1) = e =1) /)T ((np — p) 12 - pit)
T ((np - 1) /2 - pit) T ((np - p) /2)
_I((np-1)/2)T ((np —2) /2 - pit) T ((np — 2) /2) T ((np — p) /2 - pit)
[((np=1) /2= pit) T ((np = 2) /2) T ((np - 2) /2 = pit) T ((np - ) /2)

(80)

_T((np-1) /)T ((np - 2) /2 - pit) [PH? mp—p np-p . -1
_F((np—1)/2—pit)F((np_2)/2){H( 5 +€>( 5 —pzt+€)}

_T((np-1)/2)T((np-2) /2 - pit) {”“(n— 1 +(21')/P)(”—1+(2j)/f’ —it)_l}.

€=0

T ((np-1)/2-pit) T ((np-2)/2) 2 2

j=0
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Taking for Oy, (t) the expression for Oy, (t) in (A.6) in
[6], we may write
Dy, (1)
_ Pl_—k[‘F((nf D/2+(j-1)/p)T((n-1)/2-it) 111 T((n-1)/2+(j-1)/p)T(n/2 - it) (F((np— 1)/2)r((np72)/271911))“’”““"dz
I T(=0/2+(j=1)/p=it)T((n=-1)/2) | | e T ((r=1)/2+(j=1)/p=it)T (n/2) | \T((np 1) /2~ pit) T ((np -2)/2)
Dy, 1 (1) (81)
bon— N n—j N R e ) fp\ (n-1+ )\
Afey s T () (e
Dy (1)
where k* = | p/2], with p.d.f’s and c.d.f’s, respectively, given by
1 i=1 * _ N ,GNIG
> J=5 fWS(w)—Zﬂjf wl L.l 1, 1r
p—j+2 ' (82) =0 L(p-1)/2]-1
[SELET P
. . n=1+2/p n-1+2[(p-1)/2| -
> 2 P 2 >
Then, following a similar approach to the one used for W; [(p—1)/21—1, with step 2/p
and A 5, in Section 4, we obtain near-exact distributions with
a somewhat similar structure to those in that section, now n—1 n-p p-1
ith ey AT +[ J ,
wit 5 > p >
p
(p+1) mod 2 PZk: j- (86)
r= m
p F‘f‘,ﬁ(w):anFGNIG Wl Lol r, 1yt
(83) =0 L(p-D)/2]-1
P .
j-1 1) _ p-pmod2
+'__Z < » _5>——4 Lanol+2/p n-1+2(p-1)/2] -
j=p-k*+1 15 > > >
2 2
[(p-1)/2]-1, with step 2/p
and with A* determined as the solution of a system of equa-
tions similar to the one in (40), with @y, | replaced by @y, ;. n-1 TP g Pt lp -1 J
This will yield for Wy near-exact distributions which are 2 2 2
mixtures of m+1 GIG or GNIG distributions, according to the 4

fact that r is an integer or a noninteger, of depth p+[(p-1)/2],
with shape parameters

and for A 5 with p.d.f’s and c.d.f’s, respectively, given by

m
* GNIG
1,,,,,1,r1,,,_,rp,r+j (j:() m)’ (84) fAs(w):Zﬂjf —lOgEl 1, .,1,71,...,Tp,r
L(p-1)/2]-1 j=0 L(p-1)/2]-1
. n—1+2/p n-1+2[(p-1)/2| -
with r; by (82) and r given by (83), and corresponding rate + 75 2 s > ,
parameters L(p-1)/2]-1, with step 2/p
n-1+2/p n-1+2|(p-1)/2]| - n-1 n—pA*.pJ{p—lJ 1
B e ees B N 2 LI 2 > > 2 e,
[(p—-1)/2]-1, with step 2/p P
(85)
n-1 n—p .,
Sy A (w)_zn FNG _loge| 1,...,1,7,
p L(p-1)/2]-1
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TABLE 8: Values of the measure A in (5), for the near-exact distributions of the L.r. test statistic A 5 in (76), which match m exact moments, for

different values of p and samples of size n = p + 1, 50, 450.

m

P " 2 4 6 10 20
10 1 1.64x107® 1.39 x 107" 4.04 %107 3.00 x 107 9.74x 107
60 7.64 x 107" 6.34x 107" 1.40 x 107" 2.69 %1078 1.99 x 107
460 1.92 x 1072 2.93x 107" 1.15x 1075 6.96 x 107 2.56 x 107
15 16 228 x 107" 5.87 x 107" 1.29x 1078 462 %107 1.31x107%
65 4,07 x 107" 4.01x107'¢ 1.45 x 1072 1.66 x 1072 3.79 x 107
465 1.38x 107" 3.10x 107%° 2.73x107%¢ 3.09x 107 6.60 x 107!
25 26 1.35x 107" 536 x 107" 5.76 x 1072 1.44 x 107% 291x107%
75 7.41x 107" 1.74 x 107 1.62 x 107 1.83 x 107! 5.01x107%
475 4.09 x 107 298 x 1074 9.09 x 107 1.49 x 107% 3.64x 107
50 51 1.73 x 107" 251%x107" 1.28x107% 7.57 x 107%® 8.22x107%
100 3.12x 107" 5.88 x 107" 3.52x107% 2.54 %107 8.43x10™%
500 428 x 107" 4.66 x 107 1.59 x 107% 3.78 x 107* 1.17x1077°

STt + which may be written as
n-1+2/p n-1+2|(p-1)/2]-2 H, = Hgy), © Hy,» (89)
3 e 3 ,
L(p-1)/2]-1, with step 2/p where
Hpyjop : ¢4 =0, assuming X = azlp,

- (90)

L]

[ — R

p
(87)

We should note that as it happens with A ; and W;, also
for W5 and A ;, r may be either an integer or a half-integer,
so that, in those cases where r is an integer, the near-exact
distributions are mixtures of GIG distributions, while when
is noninteger, they are mixtures of GNIG distributions.

In Table 8 are displayed the values of the measure A in (5)
for the near-exact distributions developed for W, and A 5 and
in Table 9 we may find the chi-square asymptotic quantiles
for nW;, based on a chi-square distribution with p(p+3)/2 -
2 degrees of freedom and the quantiles for the near-exact
distributions with m = 2, 6, and 10. Similar conclusions to
those drawn for the asymptotic and near-exact distributions
for the L.r. statistics in the previous sections also apply here.

7. The Likelihood Ratio Test for the
Simultaneous Test of Nullity of Means and
Sphericity of the Covariance Matrix

We now assume X ~ N P([/l, Y), and we now want to test the
null hypothesis

Hy:u=0;
(88)

Y =0l

» (with o’ unspeciﬁed) ,

2
Hy : 2 =01,

For a sample of size n, the (2/n)th power of the Lr. statistic
to test Hy,|o;, Versus an alternative hypothesis that assumes
sphericity for the covariance matrix and no structure for the
mean vector, may be shown to be (see Appendix D for details)

@)Y
w=(ie) )

where A is the matrix in (27) and now
A, =X'X, (92)

which was already used in Section 5.
We now have

P n 2
tr(4o) = Y. X (Xy)
=1i=1
P on VY N (93)
=22 (X -X;) +n) (X)),
=1i=1 =1
A B
where A* is the r.v. defined in (65), X = (Xl G =
1,...,mj=1,..., p)is the sample matrix, and
_ 1&
X;= ;;XU. (94)
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In (93), from standard theory on normal r.v’s, since under
Hpyyjop We haveyj ~ N(0,0°/n), independent for j = 1,..., p,
under this null hypothesis,

— \2
Zil SONN:S 2 (95)

?ln o2 = Ay

Since A™ and B"" are independent, given that A™ is inde-
pendent ofall X; (j = 1,..., p) and B*" is defined only from

Yj, then, given the distribution of A* in (69),

tr(4) A" (n-Dp g)
tr(A,) A" +B* Beta( > 2) OO
~-1 p
o~ (2202, 2)Y o)

Since Hyy is the same hypothesis as Hj; in Section 6, the
(2/n)th power of the L.r. statistic to test H,, in (90) is thus
|A]
(tr ((1/p) Ao))
where A is given by (27) and A, by (92) and where, from

Theorem 5 in [10], we may assure the independence between
A,); and Ay, so that

Ag=AyA = (98)

1=

Ag

P
{HYJ} Y*, (99)
j=2

D, (6) = I (np/2)T ((np— p) /2 - pit) _

I (np/2)T ((np~1) /2 - pit) T ((np -

Mathematical Problems in Engineering

where all r.v’s are independent, Y; are the r.vlsin (75),and Y*
is a r.v. with the same distribution as A ,|; in (97).

Then, if we take Wy = —logA4 W, = —log Ay, and
W, = —log A |, we may write

Oy, () = Oy, () Dy, (1), (100)

where, using (36), we may write, for even p,

Oy, () = E(eth) _ E(e—tlog/\zu) _ E(A—zzltl)

_ T(np/2)T ((np - p) /2 - pit)
T (np/2 - pit) T ((np - p) /2)

:Pﬁl(”Pz_Pw)(”Pz_P—pit+£)_1

=0

pl2-1

_ 1—[ (np p+2]>(np—p+2j_

2
Pﬁ( 1+(zJ)/p)

(n-1+@ilp -
— :

while, for odd p, we may write

-1 (101)
pit)

1)/2)T ((np - p) /2 - pit)

T (np/2 - pit)T ((np - p)/2)

" T(np/2- pit) T ((np-1)/2)

£=0

T (np/2 - pit) T ((np—1) /2) T ((np -
T (np/2)T ((np-1)/2 - pit) {“’ 11—’[2 ' (np -

2

1) /2= pit)T ((np - p) /2)

+e>($ —pit+€>_1]>

(102)

_ T(np/2)T((np - 1) /2 - pit) (p-p2-1 (n
T (np/2 — pit) T ((np - 1) /2)

Jj=0

Following then a similar procedure to the one used in the
previous section, in order to build near-exact distributions for

Oy, (1)

1+ /p) ( el it)‘l} |

We and A g, we take for ®y, () the expression for @y, () in
(A.6) in [6] and write

j=1 j=p-k*+1

R T(-0 2+ (- 1) /p)T(n-1) /2~ it) L
{Hf(m—l)m(]—l)/p it)I ((n-1)/2) H

T((n=1)/2+(j-1)/p-it)T (n/2)

T (np/2 - pit) T ((np—1) /2)

C((n=1)/2+(j—1)/p)T (/2 zt>} (r(np/Z)r((np— 1) /2 - pit) )""“’“

Dy 1 O]

(103)

) (5

{ﬁ(;:] - it)r,}{Lpﬁl(n—1+2(2j)/p><n—1+

Ci)lp ,.t)* }

Dy 2 (1)

where k* = | p/2], and the r;are defined in (82).
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Then, we may obtain near-exact distributions for W and
A ¢, with a similar structure to those in the previous section,

now with
§ (f—_1_1>
p 2

j=p—k*+1

k"
_ pmod?2 PS
LIS

-1
+
P

(104)
_ p-2+3(pmod2)
= ; ,

with A* determined as the solution of a system of equations
similar to the one in (40), with @y, ; replaced by @y ;.

This yields for W, near-exact distributions which are
mixtures of m + 1 GIG or GNIG distributions, according to
the fact that  is an integer or a noninteger, of depth p+|[ p/2],
with shape parameters

L., Lr,..., (j=0,...,m),
Lp/2)-1

TpsT +j (105)

with r; by (82) and r given by (104), and corresponding rate
parameters

n-1+2/p n-1+2|p/2]-2
2 Yoo 2 >
p/2]-1, with step 2/p
) (106)
-1 n-— N
" Y paA >
2 2
p
with p.d.f’s and c.d.f’s, respectively, given by
' (GNIG
f&(w):anf WL ity
j=0 Lp/2)-1
+,'n—l+2/p n—-1+2|p/2]-2
b 2 I 2 b
p/2]-1, with step 2/p
n-1 n-—p .. [pJ
s AP+ T ,
2 2 2
p
(107)
m
F;\,é(w):anFGNIG WL oLy, T
j=0 Lp/21-1
+,.n—1+2/p n-1+2|p/2]-2

> e >

2 2
Lp/2]-1, with step 2/p

2]

[ ——_ R—

p

19

and for A ¢ with p.d.f’s and c.d.f’s, respectively, given by

m
* GNIG
fAs(w)ZZTl’jf —logl | L., Lry,...,rpr
j=0 Lp/2)-1
+4,7’l—l+2/p n-1+2|p/2| -2
; 3 eens 5 ,
Lp/2]-1, with step 2/p

n—l’m)n—P,/\*;p+{£J l
2 2 2 ¢

(108)

L....,1,r,

m
FZG (w) = an 1-FNC| _loge |
Jj=0 Lp/2]-1

-1+2 n-1+2|p/2|-2
..,rp,r+j;n /p,..., Lp/2] ,
2 2

Lp/2]-1, with step 2/p

]

P

We should note that as it happens with the statistics
in Sections 3-6, also for Wy and A4, r may be either an
integer or a half-integer, so that, in those cases where r is an
integer, the near-exact distributions are mixtures of GIG dis-
tributions, while when r is noninteger, they are mixtures of
GNIG distributions.

In Tables 10 and 11 are displayed the values of the measure
A'in (5) for the near-exact distributions developed for Wy and
A and the chi-square asymptotic quantiles for nWj, based
on a chi-square distribution with p(p + 3)/2 — 1 degrees
of freedom, together with the quantiles for the near-exact
distributions with m = 2, 6, and 10. In these tables we
may observe the same developments discovered in previous
sections. Although in Table10 we may observe a slight
increase in the values of the measure A when we go from
p =10to p = 15 as well as when we compare the near-exact
distributions that match only 2 exact moments for p = 10 and
p = 25, the near-exact distributions developed end up having
a sharp asymptotic behavior for increasing p, which is clearly
visible when we compare the values of A for p = 50 with those
for any other p.

8. Conclusions

The near-exact approximations developed in this paper allow
the practical and precise implementation of simultaneous
tests on conditions on mean vectors and of patterns on cova-
riance matrices. These approximations are based on mixtures
of Generalized Near-Integer Gamma or Generalized Integer
Gamma distributions which are highly manageable and for
which there are computational modules available on the
Internet: https://sites.google.com/site/nearexactdistributions/
home. Numerical studies show the quality and accuracy of
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TABLE 10: Values of the measure A in (5), for the near-exact distributions of the Lr. test statistic A ; in (98), which match m exact moments,

for different values of p and samples of size n = p + 1, 50, 450.

p n "
2 4 6 10 20

10 1 1.14x 107 5.65 x 107 6.84x 107" 3.17 x 107 3.95x 107
60 253 x 107" 2.02x 107 4.05%x 1074 7.58 x 107 5.45 x 107
460 6.89 x 107" 1.10 x 107 5.17x107% 1.29 x 1078 3.73 x 107

15 16 2.69%107° 5.09x 107 526 x 1071 334x107% 3.53x 107¢
65 4.00x 107" 1.68 x 107" 458 x 1072 3.83x107% 2.62x107%
465 1.33 x 107" 1.25x 107 7.40 x 1072¢ 3.82x 1077 9.27 x10°%!

25 26 1.30 x 107 3.24x107'¢ 427 x 1074 7.05 % 107%° 2.14x107%
75 6.66 x 107" 9.02x 107" 6.11 x 107 2.92x107! 3.64x 107
475 3.61x 107" 1.52x 107% 3.12x 107 1.76 x 107 459 x 107

50 51 1.78x 107" 2.02x107% 5.12x107% 1.83x107% 1.14x107%
100 332x 107" 487 x107% 1.59 x 1072 1.82x 107 7.39 % 107%
500 468 x 107" 3.93x 107 7.64 %107 3.73x107% 6.76 x 10777

near-exact distributions developed, contrary to what hap-
pens, for example, with usual chi-square approximation. A
natural extension of this work will be to develop approxima-
tions that will allow the implementation of simultaneous tests
on the equality or nullity of several mean vectors and on the
equality of the corresponding covariance matrices to a given
matrix which may have a specific structure.

Appendices

A. On the Likelihood Ratio Test
Statistic to Test the Nullity of Means
Assuming Compound Symmetry of the
Covariance Matrix

The Lr. statistic to test the null hypotheses

H, :

>

=
Il
=}

Z=X (A1)

versus H; : X =X (and any y)

is the Lr. statistic to test the null hypothesis H,o; in (46),
which is

« _ maxL,
21 =

b A.2
max L, (A2)

where L, the likelihood function under Hj, in (A.1) above,
is, for X, defined as in (3), for which we have X | = (a -

b)Y (a+ (p- 1),

Lo = @0 ™" (@-0)" " (a+ (p-1)b)) "
(A.3)

. e—(l/Z)tr[X’XZ;SI],

where X is the n x p sample matrix, and L, the likelihood
function under H, in (A.1), is

Ly=@n) ™ (@-b)"" (a+(p-1) b))_”/2
(A.4)
o~ (D E(X-Ey ) (X-Epy )2 ]

where E,; is an #n x 1 vector of I’s.

Since under H, we have @ and b, the m.Les of a and b
given by (28), and the m.Le. of 2 is ics = (1/n)@l,+ E(Epp -
1,)), then

ic_sl = ﬂA _ ((a . (p B 2) E)
@+ (p-2)ab-(p- )b (A.5)
I _E(Epp - Ip)) )
max L, = (2m) """ ((a - E)p_l (@a+(p-1) E)>_n/2
(A.6)

D) tr[Ai:]’

where A = (X — Enlz’)(X - Emz,) is the matrix defined in
(27), with X, the vector sample means, which is the m.Le. of
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. 1A - {pa(a+(p—2)
a+(p-2)ab-(p-1)b
-b)-bp(p- 1)5} = np,
(A7)
so that
max L,
12 (A.8)

e P2,

@ (a1 (= (- )

Under H, the m.le’s of a and b are @, and by, given by
(48),and the m Le. of X, is £ ) = (1/n)(@1, +by(E,,—1,)),
so that

Sl =n ! ((a
cs(0) — T -~ 2 0
a(z)+ (p—2)asby - (p—-1)b,

+(p-2)by) 1, - by (Ep, - 1,)).

max Ly = (2m) " ((a, - b,)" (a

(A.9)

(o) EO))%/Z (DA o)

where A is the matrix defined in (49).
Given the definition of @, and b, in (48), following similar

steps to the ones used under H;, tr[Aoics(o)] = np, so that
finally

max Ly = (2m) """
: ((ao ~by)" (@ + (p-1) EO))_"/2 (A.10)
e P2,

As such, we have

~\ p— —~ n/2
N @-5)"" (a+(p-1)b) )
=\ T = .

(@ -50)" (@ +(p-1)b,)

and its (2/n)th power given by A ,|; in (47).
Let H,, be a Helmert matrix of order p. Then

!
H,% H, = A

(A12)
=diag<a+(p—l)b,a—b,...,a—b>,
o1
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and if we take A* = H PAH1I7’ we will have

- 1 &
a-b=a-b= lz .
P-1i=m (A.13)
a+(p-Db=a+(p-1)b=a,
wherea;; (j=1,..., p) are the diagonal elements of A™.
Since, for A in (27), we have
A~ Wp (1’1 -1 ch) g (A14)
then
* !
A" = H,AH) ~ W, (n-1,4), (A15)

so that the diagonal elements of A* are independent, with

*

a, K (=Lep),

(A.16)

where A ; is the jth diagonal element of A.

Assuch,a—b = @ — b is distributed as (a-b)/(p-1)
times a chi-square r.v. with (n—1)(p — 1) degrees of freedom,
independently distributed froma+ (p-1)b = a + (p - )b
which is distributed as a + (p — 1)b times a chi-square with
n— 1 degrees of freedom.

Concerning the matrix A in (49), we know that

Ag~ W, (1,2), (A.17)
so that

AG = H,AgH, ~ W, (n,A), (A18)
which shows that the diagonal elements of Ag, a5 (j =
1,..., p), are independently distributed, with

a*
0(j7) 2

X
Aj

(A19)

But then, the m.l.e’s of a and b, under H, in (A.1), are
given by (48) or, equivalently,

ag—by=ay-by = —

ay+(p-1)b =ao+(P‘1)Eo =“§(11)

as such, with ﬁ(;\o = @, — by distributed as (a — b)/(p -
1) times a chi-square r.v. with n(p — 1) degrees of freedom,
independently distributed from a, + (p — 1)b, = d,+(p—1)b,
which is distributed as a + (p — 1)b times a chi-square with n
degrees of freedom.
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We can write

! 1 ! 1 ]
A=X <In—;E,m>X:XX—;XEmX

(A.21)

1

=A,--X'E, X,
n
or
1

Ay=A+-X'E, X, (A.22)

n

where, by application of Cochran’s Theorem (see, e.g., [12,
Thm. 7.4.1]), it is easy to show that, under H, in (A.1), A and
(1/m)X'E,,,X are independent, since we can write

(A.23)

where, under the null hypothesis in (A.1), the ith column of
X'is

X;~N,(0.Z), (A.24)
and we have
<In - lEnn) <1Enn> = lErm - i21:5;1111-3nn
n n n n
(A.25)
1 1
= _Erm - _Enn =0,
n n
with
1 1
rank <In - ;E,m> =tr <In - ;E,m> =n-1,
(A.26)
1
K (—E ) -1,
ran B
which yields for A the distribution in (A.14) and
1,
A= - X'E, X~ W, (1,2), (A27)
so that
Al = HPAIH; ~W,(1,4), (A.28)

sothat,for j = 1,..., p, each jth diagonal element of A7, a; i
has a distribution such that

a )
A—” ~ x5, (A.29)
i
with
Go-by=a-b+a, - b, (A.30)

23

where

1 &,
a, —b = _p— 1;%”].),

(A31)

so that ﬂ is independent of a - band it has a distribution
which is that of a chi-square with p — 1 degrees of freedom,
multiplied by (a — b)/(p — 1), while we also have

a+(p-Dh=a+(p-Db+a +(p-1)b, (A32)

where a, +/G?1)I91 is distributed as a chi-square with 1
degree of freedom, multiplied by a + (p — 1)b, and distributed

independently of a +TpT1 )b.

As such
a-b _a-b
d, — b, a, — b
(A.33)
~Beta<(n_1)(p_l),p_l),
2 2
which is independently distributed from
a+(p-1)b _a+(p-1)b
G+ (p-1)by (p—

yielding for A ,; in (47) the distribution stated in Section 5,
as also stated by Geisser in [3], but where the expression for
the Lr. statistic should be corrected to be stated as in (A.11).

B. On the Distribution of A , in (51)

In order to show the distribution of A, in (51) as mentioned
in (54) and (55), all we need to do is to show that

P
{HY;* } ) (B.1)
j=2

for Yj* in (53), Y, in (52), and Yj** in (55), where Y; is
independent of all Y.

Let us take A} as a r.v. whose distribution is the same as
that of the product of r.v’s on the left hand side of (B.1) and A,
as a r.v. whose distribution is the same as that of the product
of r.vis on the right hand side of (B.1).

Then, using the multiplication formula for the Gamma
function

1=

p
(]

n—1
T (nz) = 2m)' ™2 n"fzfl/znl" (z + E) , (B.2)
n

k=0
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we may write

E[(A)]

& (-1 2+ (
B B T((n-j)/2)T (-1 /2+(i-2)/(p-

(p-1)h)
(p—1)h)

BT @02+ (-2 (- )T (=) 2+ )
Ui are ni2:G-2/6-0 >}(3)

DMPINNWﬁM+M}
1) +h)

(n-1)(p-1)/2)T(n(p-1)/2+

T(n(p-1)/2)T (-1 (p-1)/2+
I

)T ((n-1)/2+j/(p~
)T (n/2+j/ (p -

2)/(p-1)T((n-j)/2+h)
1) +h)

. P2T (nf2+j/ (p-
=0 I((n-1/2+j/(p-

T2+ (-
-5 -)/2)T(m2+(-2)/(p-

But then, since both A} and A’, have a delimited support,
more precisely, between zero and 1, their distribution is deter-

d
mined by their moments and as such A} = A%.

C. Derivation of the L.r. Statistic to Test
Equality of Means, Assuming Sphericity
of the Covariance Matrix

Let us suppose that X ~ N (i, X), where p = [, ,//lp]’,
and that we want to test the hypotheses

Hyjo1 : phy = =+ + = Wy, assuming X = 021p
(C1)
versus Hyyjg 1 2 = 021p (and no structure for y) ,
based on a sample of size .
Under H,)g;, the m.Le. of p is
- = 1
p=X= ;X E.., (C2)
with
X=[X,....%,], (C3)

where X is the n x p sample matrix and E,; is a matrix of
dimensions n x 1 of I’s, that is, a column vector of n Is. Also,
under this same hypothesis, the m.le. of X is

(C4)

where

- 1315 (x, _X,) - ST

p]ln

where X;; is the element in the ith row and jth column of X
and A is the matrix in (27).

Mathematical Problems in Engineering

Since the likelihood function is

I\ ! -1
L= (27.[)—”1’/2 |Z|—"/2 o WD tl(X=Epp) (X-Epp)Z ], (C.6)
its maximum under Hi,y; in (C.1) is thus
~ —np/2 |~27 |12
maxL, = L([_J,Z) =Qn)™"P 'O’ Ip|
o~ U2 H(X-EnX) (X-E, X)1/5)1,] _ Qn) "
_2\"P/2 (1/26%) tr[(X-Ey X ) (X—E,y X )]
. (o ) e ! ' (C7)

_ _2\"MPI2 _(1)25* _
_ (27_[) np/2 (0_2) np, e (1/26°) tr(A) _ (27_[) np/2

,(MMyWQ@n
np '

Under the null hypothesis Hy,y; in (C.1), the m.Le. of  is

14— 1 '
EZXJ- E, = EEPPX E,
= (C.8)
1k x
P pp=—
where (1/p) Z?:I Xj = X and the m.l.e. of T is
3o = O‘(Z)IP, (C.9)
with
o, 1&1Y
Gy==y - (x;-X) = —tr( o) (C.10)

where A is the matrix in (62), so that the maximum of the
likelihood function under Hy,y; in (C.1) is

~ —-n/2
max L, = L(EO,ZO) (2m) P52, "

e (12 trl(X~En )" (X-En i )(1/55)],] _ (2) P

(C1)

_2\"MPI2 (1252 _
-(ag) "PI2 —(1/26)tr(Ag) _ (2) P2

—np/2

(t (Ao) " o2
np

The L.r. statistic to test the hypotheses in (C.1) is thus

~ (tr (Ay) fnp) ™"
(tr (A) /np) """

_<mm>wz
~\tr(4) ,

so that its (2/n)th power is the statistic A ,|; in (72).

max L,

A, =
2 max L,

(C12)
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D. Derivation of the L.r. Statistic to Test the
Nullity of Means, Assuming Sphericity of
the Covariance Matrix

Let us suppose that X ~ N, (4, 2), where p = [py,..., 4],
and that we want to test the hypotheses
Hyyop : p# =0, assuming ¥ = O'ZIP
- (D)

versus Hyyg 1 2 = O'ZIP (and no structure for ﬁ),

based on a sample of size n.
Under Hy,o; in (D.1), the m.Le’s of 4 and X are the same as

those in Appendix C, since this hypothesis is the same as the
alternative hypothesis in (C.1) in Appendix C, and, as such,
the function L,, the maximum of the likelihood function
under H, o, in (D.1), isthe sameas L, in (C.7) in Appendix C.

Under the null hypothesis Hy,|o; in (D.1), the m.Le. of £

is
Sy =01, (D.2)
with
L, 1&g 2 1
0, = E;;; (Xij) = ; tr(Ag), (D.3)

where A is the matrix in (92), so that the maximum of the
likelihood function under Hyy)p; in (D.1) is given by a similar

function to that in (C.11), now with A, given by (92) and ;
given by (D.3).

The L. statistic to test the hypotheses in (D.1) is thus, for
Ain (27) and A in (92),
(tr (4o) fnp) ™"
(tr (A) /n‘t))_"p/2

(@) \*?
“\tr(4,) ’

so that its (2/n)th power is the statistic A ,|; in (91).

A = max L, _
2 max L,

(D4)
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