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The aim of this paper is to determine the stabilizing PID parametric region for multivariable systems. Firstly, a general equivalent
transfer function parameterization method is proposed to construct the multiloop equivalent process for multivariable systems.
Then, based on the equivalent single loops, a model-based method is presented to derive the stabilizing PID parametric region by
using the generalized Hermite-Biehler theorem. By sweeping over the entire ranges of feasible proportional gains and determining
the stabilizing regions in the space of integral and derivative gains, the complete set of stabilizing PID controllers can be determined.
The robustness of the design procedure against the approximation in getting the SISO plants is analyzed. Finally, simulation of a
practical model is carried out to illustrate the effectiveness of the proposed technique.

1. Introduction

Despite the rapid development of advanced process control
techniques, multiloop proportional integral derivative (PID)
control is often used to control multi-input-multi-output
(MIMO) systems [1–3]. The main reason for such popularity
is its simple control structure and the easiness to handle loop
failures. Compared with single-loop controller design, the
tuning ofmultiloop controllers tomeet performance require-
ments is much more difficult because of the interactions
among the loops.Much attention has been devoted to achieve
good performance in view of the limitation imposed by pro-
cess interactions, such as the commonly used independent
design method [4–6].

Although great progress on multiloop PID control has
been achieved in the last decades, some fundamental issues
remain to be addressed for better understanding and more
effective applications ofmultiloop PID control toMIMOmul-
tidelayed plants. Since the essential requirement imposed on
the PID controller is to ascertain the stability of the resulting
closed-loop system, the very first taskwhen using PID control
is to get a stabilizing PID controller for a given process with
time delay [7]. This problem is of great importance, in both

theoretical and practical aspects, and it is also related to the
problems of stability or robustness. Such a stabilizing set
can not only be useful to design PID controllers satisfying
defined performance requirements, but also avoid the time-
consuming stability analysis during the controller tuning
stage.

Therefore, approaches to design the stabilizing PID con-
trollers have attracted much attention in the process control
field over the past decade. In particular, first-order plus dead
time (FOPDT) processes [8–12] have been studied and it has
been also shown that this kind of stability analysis is also
useful in the design context [13–15]. A solution for linear
time-invariant systems using low-order controller has been
proposed in [16]. Explicit solutions have been also introduced
for the case of integral processes [17–19]. Unfortunately,
the aforementioned approaches are still only limited to the
single-input-single-output (SISO) systems. To the best of our
knowledge, no result is available to find the stabilizing PID
parametric region forMIMO systems.This fact motivates the
present paper to provide a complete solution to the problem
of characterizing the set of all multiloop PID parameters
stabilizing multivariable systems with time delays.
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Figure 1: Multivariable control system and each equivalent single
loop.

In this paper, the procedures for determining all stabi-
lizing parameters under multiloop PID control structure for
multivariable systems are provided.The first part is to decom-
pose the multivariable system into an assembly of SISOmod-
els. Then, a model-based method is presented to determine
the range of stabilizing proportional gain for SISO plants.
Finally, a region with known shape and boundaries is used to
show the stabilizing integral and derivative gains. The results
of the stabilizingmultiloop PIDparameter range are obtained
individually without interacting with each other. The robust-
ness of the design procedure against the approximation in
getting the SISO plants is analyzed. Simulation given in the
last section illustrates the effectiveness of the stabilizing PID
parametric region found by the proposed technique.

2. Equivalent Single Loops

A regular 𝑛 multivariable system with diagonal pairing,
which is controlled with a multiloop controller, is drafted in
Figure 1. By considering the interactions among the loops, the
multivariable system is decomposed into a set of equivalent
single loops. Each one of them is represented by its so-called
equivalent transfer function (ETF) [20–22]. The ETF �̂�

𝑖𝑖
has

been shown as shaded area in Figure 1. Let us denote by r, u,
and y the vector of reference inputs, manipulated variables,
and system outputs, respectively, and by 𝐺

𝑐
(𝑠) the diagonal

matrix of one-by-one controllers.
Notations in Figure 1 are as follows: r

𝑖
, u
𝑖
, and y

𝑖
(𝑖 =

1, 2, . . . , 𝑛) are the r, u, and y vectors, where 𝑟
𝑖
, 𝑢
𝑖
, and 𝑦

𝑖
have

been discarded, respectively. 𝐺
𝑐,𝑖𝑖

represents the diagonal
controller where the 𝑖th row and 𝑖th column elements of𝐺

𝑐
(𝑠)

have been removed. Similarly, 𝐺
𝑖𝑖
represents the transfer

functionmatrix inwhich the 𝑖th row and 𝑖th column elements
of 𝐺(𝑠) are removed. g

𝑅𝑖
is the row vector of the 𝑖th row

elements of𝐺(𝑠)when the 𝑖th column elements were dropped
from 𝐺(𝑠), and g

𝐶𝑖
is the column vector of the 𝑖th column

elements of 𝐺(𝑠) when the 𝑖th row elements were dropped
from 𝐺(𝑠).

When the overall system is closed, there are interactions
among control loops as a result of the existence of off-
diagonal elements in the transfer matrix. Considering the
interactions from other loops, the ETFs can be compactly
expressed as follows:

�̂�
𝑖𝑖
= 𝑔
𝑖𝑖
− g
𝑅𝑖
𝐺
𝑐,𝑖𝑖
(𝐼 + 𝐺

𝑖𝑖
𝐺
𝑐,𝑖𝑖
)

−1

g
𝐶𝑖
, (1a)

where �̂�
𝑖𝑖
(𝑠) is denoted as the ETF.

Assumption 1. Under “perfect” control of the remaining loops,
that is, for 𝑦

𝑗
(𝑠) ≅ 𝑟

𝑗
(𝑠), 𝑗 ̸= 𝑖, the following approximation is

valid:

�̂�
𝑖𝑖
= 𝑔
𝑖𝑖
− g
𝑅𝑖
g
𝐶𝑖
. (1b)

This simplification is similar to the one used for the well-
known RGA (relative gain array) used in evaluating the vari-
ables coupling. Since the controllers to be designed include
integral actions to avoid offset, a perfect control approxima-
tion can be considered at the frequencies lower than the cross-
over frequency [4]. This can be expressed as

𝐺
𝑐,𝑖𝑖
(𝐼 + 𝐺

𝑖𝑖
𝐺
𝑐,𝑖𝑖
)

−1

≅ 𝐼. (2)

Therefore, according to the appendix of [4], (1a) is reasonably
simplified as (1b). It can be expressed as

�̂� (𝑠) = [𝐺 (𝑠)]
−𝑇
, (3)

where

�̂� (𝑠) =

[

[

[

[

[

[

[

[

1

�̂�
11
(𝑠)

⋅ ⋅ ⋅

1

�̂�
1𝑛
(𝑠)

.

.

. d
.
.
.

1

�̂�
𝑛1
(𝑠)

⋅ ⋅ ⋅

1

�̂�
𝑛𝑛
(𝑠)

]

]

]

]

]

]

]

]

. (4)

Generally, the interactions in most industrial models [12] can
be effectively represented by a FOPDTmodel of the following
form:

𝑔 (𝑠) =

𝑘𝑒
−𝜃𝑠

𝜏𝑠 + 1

, (5)

where 𝑘, 𝜃, and 𝜏 are the steady gain, the time delay, and the
time constant, respectively.

If the controlled multivariable system is well paired, the
control loop transfer functions will have similar frequency
properties in both situations: the other loops are closed or
open.Hence, the ETFs have the same structures (5) as the cor-
responding open-loop transfer functions with three different
parameters, that is, ̂𝑘, ̂𝜃, and �̂� [22, 23].

Applying (3), the ETF between the 𝑖th manipulated
variable and the 𝑖th controlled variable can be derived as

�̂�
𝑖𝑖
𝑠 + 1

̂
𝑘
𝑖𝑖

𝑒
�̂�𝑖𝑖𝑠
= �̂�
𝑖𝑖
=

adj𝐺
𝑖𝑖

|𝐺|

, (6)
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where |𝐺| is the determinant of 𝐺(𝑠) and adj𝐺
𝑖𝑖
is the 𝑖th row

and the 𝑖th column element of the adjoint matrix of 𝐺(𝑠).
Applying derivative with respect to 𝑠 on both sides of (6),

it yields

�̂�
𝑖𝑖
𝑒
�̂�𝑖𝑖𝑠
+ (�̂�
𝑖𝑖
𝑠 + 1)

̂
𝜃
𝑖𝑖
𝑒
�̂�𝑖𝑖𝑠

̂
𝑘
𝑖𝑖

= −

1

|𝐺|
2

𝑛

∑

𝑝=1

(

𝑛

∑

𝑞=1

(adj𝐺
𝑖𝑞
) 𝑔


𝑞𝑝
) adj𝐺

𝑝𝑖
,

(7)

where 𝑔
𝑞𝑝

is the first derivative of 𝑔
𝑞𝑝
.

Differentiating again both sides of (7), we have

2�̂�
𝑖𝑖
̂
𝜃
𝑖𝑖
𝑒
�̂�𝑖𝑖𝑠
+ (𝜏
𝑖𝑖
𝑠 + 1)

̂
𝜃

2

𝑖𝑖
𝑒
�̂�𝑖𝑖𝑠

̂
𝑘
𝑖𝑖

= −

1

|𝐺|
2

⋅

𝑛

∑

𝑝=1

(

𝑛

∑

𝑞=1

(adj𝐺
𝑖𝑞
) 𝑔


𝑞𝑝
) adj𝐺

𝑝𝑖
+

2

|𝐺|
3

⋅

𝑛

∑

𝑚=1

(

𝑛

∑

𝑙=1

(

𝑛

∑

𝑝=1

(

𝑛

∑

𝑞=1

(adj𝐺
𝑖𝑞
) 𝑔


𝑞𝑝
) adj𝐺

𝑝𝑙
)𝑔


𝑙𝑚
) adj𝐺

𝑚𝑖
,

(8)

where 𝑔
𝑞𝑝

is the second derivative of 𝑔
𝑞𝑝
.

Letting 𝑠 = 0, denoting𝐾 = 𝐺(0)

|𝐾| =
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, (9)

and solving the equation system (6)–(8), the FOPDT model
parameters of each ETF can be calculated as

̂
𝑘
𝑖𝑖
=

1

𝑎
𝑖𝑖

,

�̂�
𝑖𝑖
= √(

𝑏
𝑖𝑖

𝑎
𝑖𝑖

)

2

− (

𝑐
𝑖𝑖

𝑎
𝑖𝑖

),

̂
𝜃
𝑖𝑖
=

𝑏
𝑖𝑖

𝑎
𝑖𝑖

− √(

𝑏
𝑖𝑖

𝑎
𝑖𝑖

)

2

− (

𝑐
𝑖𝑖

𝑎
𝑖𝑖

) =

𝑏
𝑖𝑖

𝑎
𝑖𝑖

− 𝜏
𝑖𝑖
,

(10)

where

𝑎
𝑖𝑖
=

adj𝐾
𝑖𝑖

|𝐾|

,

𝑏
𝑖𝑖
= −

1

|𝐾|
2

𝑛

∑

𝑝=1

(

𝑛

∑

𝑞=1

(adj𝐾
𝑖𝑞
) 𝑔


𝑞𝑝
(0)) adj𝐾

𝑝𝑖
,

𝑐
𝑖𝑖
=

2

|𝐾|
3

⋅

𝑛

∑

𝑚=1

𝑛

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1
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𝑖𝑞
𝑔


𝑞𝑝
(0) adj𝐾𝑝𝑙𝑔



𝑙𝑚
(0) adj𝐾𝑚𝑖

−

1

|𝐾|
2

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

adj𝐾
𝑖𝑞
𝑔


𝑞𝑝
(0) adj𝐾𝑝𝑖.

(11)

adj𝐾
𝑖𝑞
, adj𝐾

𝑝𝑖
, adj𝐾

𝑚𝑖
, and adj𝐾

𝑝𝑙
are simplified as the single

formula using subscripts V and 𝑤 as follows:

adj𝐾V𝑤 = (−1)
V+𝑤

⋅
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.

(12)

In order for the resulting FOPDT model to be feasible, �̂�
𝑖𝑗

and ̂𝜃
𝑖𝑗
should be real and positive. It is clear from (10) that

the following condition should be satisfied for finding feasible
values:

(

𝑏
𝑖𝑖

𝑎
𝑖𝑖

)

2

>

𝑐
𝑖𝑖

𝑎
𝑖𝑖

> 0. (13)

Considering the interactions among control loops, we have
decomposed the multivariable system into a set of SISO
systems. In the following section, the stabilizing PID para-
metric region is determined from the equivalent open loops
in formula (6) directly and independently.

3. Stabilizing Parametric Regions

This section provides a procedure to determine the complete
set of stabilizing PID controllers for the equivalent single
loop obtained in Section 2. The first step of this procedure
is to determine the proportional gain range of the stabilizing
PID controller.Then, for a fixed proportional gain within this
range, the stabilizing integral and derivative parameter with
known shape and boundaries are derived in the second step.

Consider the PID controller defined by

𝑔
𝑐
= 𝑘
𝑝
+

𝑘
𝑖

𝑠

+ 𝑘
𝑑
𝑠, (14)

where 𝑘
𝑝
is the proportional gain, 𝑘

𝑖
is the integral gain, and

𝑘
𝑑
is the derivative gain.
Using the generalized theorem of Hermite-Biehler [9],

the stabilizing range of proportional gain 𝑘
𝑝
for the plant with

transfer function shown in (6) is given by

−

1

̂
𝑘

< 𝑘
𝑝
<

1

̂
𝑘

[

�̂�

̂
𝜃

𝛼
1
sin (𝛼

1
) − cos (𝛼

1
)] , (15)

where 𝛼
1
is the solution of

tan (𝛼) = − �̂�

�̂� +
̂
𝜃

𝛼 (16)

in the interval 𝛼 ∈ (0, 𝜋). For 𝑘
𝑝
values outside this range,

there are no stabilizing P controllers.
For a fixed proportional gain calculated from formula

(15), there are three conditions needed to be considered.
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Figure 2: The stabilizing region of (𝑘
𝑖
, 𝑘
𝑑
).

The parameters 𝑚
𝑗
, 𝑏
𝑗
, and 𝜔

𝑗
, 𝑗 = 1, 2, necessary for

determining the stability boundaries of the areas 𝑇, Δ, and
𝑄 (as shown in Figure 2) can be calculated using (18)–(20),
where 𝑧

𝑗
(𝑗 = 1, 2) are the first and second positive-real

solutions calculated from (17):

̂
𝑘𝑘
𝑝
+ cos (𝑧) − �̂�

̂
𝜃

𝑧 sin (𝑧) = 0, (17)

𝑚
𝑗
=

�̂�
2

𝑧
2

𝑗

, (18)

𝑏
𝑗
= −

�̂�

̂
𝑘𝑧
𝑗

[sin (𝑧
𝑗
) +

�̂�

̂
𝜃

𝑧
𝑗
cos (𝑧

𝑗
)] , (19)

𝜔
𝑗
=

𝑧
𝑗

̂
𝑘
̂
𝜃

[sin (𝑧
𝑗
) +

�̂�

̂
𝜃

𝑧
𝑗
(cos (𝑧

𝑗
) + 1)] . (20)

So far, a comprehensive method has been presented to com-
pute the entire set of stabilizing PID controller parameters
for a FOPDT model. By means of (15), the 𝑘

𝑝
-axis can be

gridded. For each 𝑘
𝑝
, the stable region in the (𝑘

𝑑
, 𝑘
𝑖
)-plane

is determined by (17)–(20) and the stable region is a set of
convex polygons.

In summary, the procedure for determining the stabiliz-
ing multiloop PID parameters is as follows.

Step 1. Calculate the ETF of the 𝑖th loop based on (10).

Step 2. Pick 𝑘
𝑝
in the range determined by (15).

Step 3. Find the roots 𝑧
1
and 𝑧
2
of (17).

Step 4. Compute the parameters 𝑚
𝑗
, 𝑏
𝑗
, and 𝜔

𝑗
, 𝑗 = 1, 2,

associated with the previous solutions 𝑧
𝑗
by using (18)–(20).

Step 5. According to the case in Figure 2, determine the
stabilizing region in the 𝑘

𝑖
-𝑘
𝑑
space.

Step 6. Go to Step 1 until 𝑖 is equal to 𝑛.

The validity of the design is based on the validity of
the SISO models (6). Thence, Assumption 1, (1b), should be
checked. Its impact is analyzed in the example that follows.

Remark. In the previous development, a FOPDT model has
been assumed, as shown in (5). This model has been consid-
ered as a good approximation for most industrial processes
[12]. If a higher order model is assumed, the rationale is
similar, but due to the larger number of parameters, the
procedure becomes much more complicated.

4. Simulation Study

This example is presented to illustrate the procedure to deter-
mine all stabilizing PID parameters for multivariable system.
It represents a pilot-scale distillation column consisting of
an eight-tray plus reboiler separating methanol and water
introduced by [24]

𝐺 (𝑠) =

[

[

[

[

[

12.8𝑒
−𝑠

16.7𝑠 + 1

−18.9𝑒
−3𝑠

21𝑠 + 1

6.6𝑒
−7𝑠

10.9𝑠 + 1

−19.4𝑒
−3𝑠

14.4𝑠 + 1

]

]

]

]

]

. (21)

Each ETF can be calculated by (10) as follows:

�̂�
1
=

6.37𝑒
−0.31𝑠

10.53𝑠 + 1

;

�̂�
2
=

−9.65𝑒
−4.27𝑠

6.27𝑠 + 1

.

(22)

In terms of (15), the necessary conditions for the proportional
controller to stabilize the multivariable system are 𝑘

𝑝1
∈

(−0.16, 9.85) and 𝑘
𝑝2

∈ (−0.33, 0.10). According to the
algorithm in Section 4, stabilizing multiloop PID controller
parameters are calculated and regions of stability for each
loop are shown in Figures 3 and 4, respectively.

To demonstrate the effectiveness of the stabilizing regions
drawn by Figures 3 and 4, two parameter sets of the PID
controllers are selected as one is inside the stabilizing region
and the other one is outside of the region.When 𝑘

𝑝1
= 0.16 ∈

(−0.16, 9.85) is selected in the first loop, the stabilizing region



Mathematical Problems in Engineering 5

10

5

0

−5
2

0

−2 0

20

40

60

k
p
1

k
d1 ki1

Figure 3: The stabilizing parametric region of loop 1.

k
p
2

k
d2

ki2

0.4

0.2

0

−0.2

−0.4
1

0

−1 −0.2

−0.1

0

Figure 4: The stabilizing parametric region of loop 2.

k
d

ki

2

1

0

−1

−2
0 0.5 1 1.5 2 2.5

Figure 5: The stabilizing region of (𝑘
𝑖
, 𝑘
𝑑
) for 𝑘

𝑝1
= 0.16.

of (𝑘
𝑖
, 𝑘
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) is presented in Figure 5, which is determined by the

parameters 𝑧
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Figure 6: Step responses under stable and unstable controller
parameters.

controlled process under set-point steps for each loop. The
set-point changes are set in 𝑡 = 0 s and 𝑡 = 150 s for the first
and second loop, respectively.

From Figure 6, we find that if the controller parameters of
one loop surpass the stabilizing range, the whole controlled
multivariable systems will be unstable.

Assumption Validation. For the set of stabilizing parameters
selected in both loops, the Bode plots of the exact ETF in (1a)
and the corresponding approximated ETF computed in (22)
are depicted in Figure 7. Also the step responses of both ETFs
(the exact one and the approximated) are plotted in Figure 8.

This illustrates the validity of the approximation and
thence the whole procedure to design the PID parameters for
the MIMO plant.

5. Conclusions

This paper presents a comprehensive method to compute the
entire set of PID controller parameters for multivariable sys-
tems with the objective of closed-loop stabilization. The pro-
cedure to determine the complete set of stabilizing PID con-
trollers is achieved in two stages. First, the MIMO system is
transformed to a set of equivalent single loops, assuming per-
fect pairing control.Then, the range of proportional gains for
equivalent single loops is calculated to determine the stabiliz-
ing regions in the space of integral and derivative gains. The
results of this paper provide insight into designing and ana-
lyzing stabilizing PID for multivariable systems. Future work
will be devoted to investigate the PID stabilizing ranges
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for linear multivariable systems under centralized control
structure.
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