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MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC
systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with
radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal
model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model,
the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the
parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are
compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV).
The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling
loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has
an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

1. Introduction

Model predictive control (MPC) is a powerful control tech-
nique, which can be used in both local and supervisory
control in HVAC systems. For example, it was employed to
control the zone air temperature serving as a local controller
of the VAV damper [1]. Yuan and Perez [2] employed MPC
to regulate the temperature within the limits and supply ade-
quate fresh air in aVAV system.Most importantly, the superi-
ority of MPC lies in saving energy as a supervisory controller
of HVAC systems. Henze et al. [3] used this technique to
generate the optimal setpoint of zone air temperature and the
optimal charging and discharging profile of thermal storage
for energy saving. Široký et al. [4] applied MPC and weather
prediction in a building heating system for energy conserva-
tion. MPC is an advanced concept for HVAC systems; there-
fore it has been widely studied in recent years, which can be
found in a review carried out by Afram and Janabi-Sharifi [5].

MPC uses a system model to predict the future states of
the system. In the model predictive control of the building
thermal process, an accurate building thermal model is a
precondition, which is used for the calculation of cooling

load, diagnosis of building thermal properties, and prediction
of indoor thermal comfort. Generally, the model used for
calculating the building thermal process can be classified into
three categories: physical model, black-box model, and gray-
box model. Among these three models, the physical model is
most widely used, and there are various software tools using
the physical model to simulate the heat transfer process, such
as DOE-2, HAPE-20, BLAST, TAS, HVACSIM+, TRNSYS,
SPARK, and ESP-r [6, 7]. For improving the accuracy, the
physical model is generally solved by the impulse response
method or the finite difference method. As a result of high
order of the method used, physical model has large cal-
culation costs, but it is a detailed method to represent the
physical process. By contrast, the black-box model driven
by data cannot reflect the physical thermal process, but it is
less time-consuming. However, since the black-box model is
determined by the sample data formodel training, thismodel
gets inaccurate results when the predicting data exceeds the
scope of sample data. Combining the advantages of physical
model and black-box model, the gray model was developed.
This model has the characteristics of fewer calculation costs,
less time consumption, and part revelation of the physical
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thermal process [8]. Since themodels forMPC have to be less
time-consuming, in comparison with the other two models,
the simplified gray-box model with lower model order is
more suitable for the MPC solution.

As a simplified gray-box model, the lumped parameter
model always combines with other models to construct
the MPC controller. Hazyuk et al. [9] adopted this model
and state space model to construct MPC for intermittent
heating buildings. In their study, the results showed that
the forecasting error was below 10%. To maximize the MPC
performance, both improving the calculation accuracy and
reducing the calculation time of lumped parameter model
are valid approaches. For improving the calculation accuracy,
it is crucial to identify the model parameters. Based on
the simplified thermal response model [10], the least square
method was used to identify parameters of a solar house [11].
They found that the model parameters had the quality of
nonuniqueness and it was unsuitable for evaluating the build-
ing thermal performance. However, the model can adjust the
parameters using the sample data, so it is suitable for the
building energy management system. Gouda et al. [12] used
the sequence quadratic programming method to identify the
model parameters of various constructions and to compare
different order models.The results showed that second-order
model balanced the computational accuracy and calculation
consumption moderately. The genetic algorithm with data
recorded by building management system was employed to
identify the RC model parameters in frequency-domain [13,
14]. Based on the time domain and frequency-domain analy-
sis, a method to simplify the RC model was established [15],
and this method has higher applicability than the method
based on electrical analogy [16]. Besides the real building
operation data, the data acquired from the simulation tools
can be used to identify the model parameters as well. O’Neill
et al. [17] adopted EnergyPlus [18] to test the forecast model
consisting of 3R2C and Extended Kalman Filter. Similarly,
a cost-effective building thermal model was verified by
EnergyPlus [19]. What is more, EnergyPlus and MATLAB
were integrated by BCVTB [20] to develop a cooling load
prediction model for optimizing HVAC control, and the
model parameters were recognized using the data calculated
by simulation tool [21, 22]. The above researches show that
the lumped parameter model has a strong ability to forecast
the indoor temperature and the cooling load,which is suitable
for theMPC.However, for the building equippedwith radiant
terminals, there are some differences from the building with
air-based system. In the building with radiant terminals,
the long wave radiation between interior surfaces cannot be
neglected and the control variable of indoor environment
is usually the operative temperature. What is more, in the
building with all-air system, the incident solar radiation on
the interior surfaces firstly warms up the construction. Then
the cooling load is generated by convective heat exchange. By
contrast, the incident solar radiation on the radiant cooling
surface is directly absorbed. Due to the above differences,
the long wave radiation among the indoor surfaces and the
incident solar radiation on the envelope surfaces cannot be
calculated by these models and they are incapable of evaluat-
ing wall surface temperatures accurately. Based on the above

reasons, these models in the literature [11–13, 15, 19, 21] are
inapplicable for theMPC in buildings with radiant terminals.

In order to optimize the operation of the air-conditioning
systemwith radiant terminals byMPC technology, this paper
presents a prediction model for a building with radiant floor.
This model consists of three parts: simplified RC model,
black-model, and semiempirical model. The simplified RC
model is used to describe the heat transfer process of the
building, and the black-box model is used to forecast the
incident solar radiation on the envelope surfaces, while the
semiempirical model is adopted to calculate the long wave
radiation between interior surfaces. The model parameters
are recognized by the genetic algorithm, and the sampling
data for the recognition is derived from TRNSYS. Finally, the
model is used in a case study to predict the indoor operative
temperature and the cooling load of both radiant terminals
and ventilation system.

2. Simplified Building Thermal Model

The RC model adopts different model structures to repre-
sent building elements with various heat conduction and
thermal storage. In most studies, the optimization method
is employed to simplify the RC model and to determine
the model parameters. It is verified that the second-order
RC model can reduce the calculation time without any
compromise of calculation accuracy compared to the higher-
order model [11]. Similarly, Gouda et al. [12] proved that the
optimized 2nd-order model could simulate both lightweight
and heavyweight buildings with the minimal accuracy loss.
Thus, the low-order RCmodel is used to describe the thermal
process of building envelope in this paper. The mean radiant
temperature is adopted for calculating the long wave radia-
tion between interior wall surfaces, and a black-box model is
used to predict the solar radiation on the envelope surfaces.

2.1. Lumped ParameterModel of Envelopes. Both 3R2Cmodel
and 2R1C model are adopted to build the thermal network
model of the building, as shown in Figure 1. All the enclosure
structures are assumed to be connected to the outdoor
environment, and the thermal mass such as interior walls
and furniture in the room are neglected in the model. Due
to the different orientations of the building, solar radiations
on the different surfaces are distinct, leading to the different
surface temperatures. To accurately calculate the operative
temperature, heat transmissions from the external walls and
the roof are separately calculated (1)–(4), and the heat storage
performance of window (5) is considered by 2R1C model.
The radiant surface is calculated as a surface with a constant
temperature. The energy balance for indoor air is shown in
(6). The heat gains from internal equipment and occupants
are calculated in (6):
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Figure 1: Schematic of the simplified building thermal model.
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2.2. Long Wave Radiation Model. In the building equipped
with radiant terminals, on one hand, due to the large tem-
perature difference between the radiant surface and interior
surfaces, there is long wave radiation heat exchange between
radiant terminals and interior surfaces. On the other hand,
because of the solar radiation on different interior surfaces,
there are temperature differences between the inside envelope
surfaces.Therefore, interior surfaces have longwave radiation
heat exchange among each other.

The radiant heat transfer between interior surfaces is
calculated with the mean radiant temperature based on the
balancemethod ofWalton [23].Themodel calculates the long
wave radiation from one surface to the other surfaces with
a fictitious surface temperature which is a weighted average
value of other surfaces temperatures, as shown in (7)–(9).
The shape factors of every surface to the fictitious surface are
calculated by (10), so the long wave radiation can be derived
in (11). Because of less calculation, this model is suitable for
the model predictive controller:
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2.3. Prediction Model of Solar Radiation Heat Gain. Solar
radiation on the outside surface of wall or window will
increase the surface temperatures, generating the heat flux
through the wall or the window. This heat flux was not con-
sidered in some researches [13, 15], and the ambient air tem-
perature was used as the boundary condition of outside wall
or window. But for a building with radiant terminals, in order
to forecast the indoor environment and radiant cooling load,
it is necessary to take the solar radiation into consideration.
Cooling capacity of the radiant system is primarily affected
by the cooling load type [24]. The convective heat transfer
accounts for a small proportion of the cooling capacity when
the mean surface temperature of radiant terminals is close
to the air temperature. The long wave radiation and incident
solar radiation are the dominant heat gains removed by
radiant terminals. Thus, a perfect prediction of the solar
radiation (both direct and diffuse radiation) is important for
calculating the cooling load of the radiant terminals. For
this reason, both long wave radiation and solar radiation are
demanded to be accurate. Thus, the integration temperature
[25] converted by the sun radiation and ambient temperature
is used as the boundary condition for the exterior wall, which
is shown in (12) and can be used for bothwall (𝑇wall,𝑖) and roof
(𝑇rf ) equations. For the window, because the transmissivity of
glass is largely greater than absorptivity, the outside surface
temperature of window is unaffected by the incident solar
radiation. Hence, the ambient temperature (𝑇out) is adopted
as the boundary condition of the window:

𝑇wall/rf ,𝑖 = 𝑇out +
𝛾
𝑖
𝐽
𝑖

ℎ
𝑖

. (12)
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Figure 2: Structure chart of BP neural model for incident solar radiation.

On the other hand, direct solar radiation is one of the
affecting factors for the surface temperatures, and the tem-
peratures of interior surfaces are the most important factors
for the indoor long wave radiation load supplied by radiant
terminals. Therefore, it is important to forecast the direct
solar radiation on the inside surface for the long wave
radiation calculation. For the above reasons, both incident
solar radiations on the inside and outside surface of envelopes
are significant for the load forecasting model. Incident solar
radiations on the envelope surfaces (𝑞sol, 𝐽𝑖) are influenced by
a lot of factors, such as solar azimuth, solar altitude, intensity,
building orientation, and envelope surface absorptivity. How-
ever, for existing buildings with the known orientation and
envelope surface absorptivity, solar radiation on the envelope
surface is only a function of the solar azimuth, altitude, and
intensity. Solar radiation physical model [26] can predict the
solar radiation on the various orientation building surfaces.
However, direct solar radiation on the inside envelope sur-
faces is influenced by many factors that are not considered in
the physical model, involving the window orientation, area,
and glass transmissivity. Therefore, it is difficult to determine
the short wave radiation on the inside envelope surfaces.
Moreover, due to the shading effect of other buildings and
shading devices, the incidental solar radiation on the block
cannot be accurately calculated. Thus, it is an effective way
to build a forecast model based on the measurement data to
predict the radiation in order to avoid the uncertainties.

In this study, the black-box model driven by data is used
for building the prediction models for solar radiation on
both inside and outside envelope surfaces (𝑞sol, 𝐽𝑖). Through
analyzing the sample data, the black-box model can express
the regulation between the input data and output data. Then
the regulation can be used for predicting unknown results
by the input data [27]. As a frequently used black-box model
[28], back propagation neural network has a lot of advantages,
such as self-adaptation and powerful ability to deal the noisy
data and missing data [28]. Hence, BP neural network with
two layers is adopted to identify the regulation between
the solar radiation on various envelope surfaces and the
horizontal incident solar radiation, as shown in (13)-(14).The
incident solar radiation on the horizontal plane and the time
in 24-hour time system are used to calculate the heat gains
of incident solar radiation on the outside surfaces and the
short wave radiation on the inside surfaces. The structure of
the neural network is shown in Figure 2. This mode from
the input layer to the output layer has the characteristics
of nonlinear mapping and the ability to avoid the local
minimum problem.There are 20 neurons in the hidden layer,

and the output layer is the weighted sum of hidden layer. The
sigmoid function and linear function are used for the hidden
layer and the output layer, respectively:

𝑞sol,𝑖 = 𝑓 (IT, 𝑡) , (13)

𝐽
𝑖
= 𝑓 (IT, 𝑡) . (14)

3. Identification Method of Model Parameters

Themodel identification is amethod to determine amodel to
describe the test system based on the input and output data.
In general, the model identification method can be classified
into two categories: with and without the reference model.
Since the model identification method with the reference
model is intelligible and flexible, it is adopted to build the
prediction model for the indoor environment and cooling
load. Meanwhile, the hybrid model as shown in Section 2 is
employed as the referencemodel.The referencemodel is used
for calculating the results of the sample data. Then the model
parameters are adjusted to reduce the difference between
results of referencemodel and the actual value of sample data.
Repeat this process until the difference can be acceptable.
Finally, the parameters getting the acceptable difference can
serve as the predicting model parameters. As described in
Section 2, there are six unknown parameters {𝑔, 𝑐, 𝑓, 𝑅, 𝛾, ℎ}
in the RC model.

The output of the RC model, such as the inside envelope
surface temperatures, indoor temperature, and cooling load
removed by radiation system and ventilation system, are
used for building the objection function, as shown in (15).
It consists of the differences between actual value and the
output data of the predicting model:
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𝑄fr
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2
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(15)
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𝑁

∑

𝑖=1

𝜔wall,𝑖 + 𝜔air + 𝜔win + 𝜔𝑄air + 𝜔𝑄fr = 1, (16)

𝜔rf , 𝜔wall,𝑖, 𝜔air, 𝜔win, 𝜔𝑄air , 𝜔𝑄fr ≥ 0, (17)

where fitness, 𝑄air(𝑡), and 𝑄fr(𝑡) are the objection function,
cooling load of radiation system, and ventilation system,
respectively. The cooling load of radiation system is defined
as the heat transfer (combined radiant and convective) at
the radiant surface. The cooling load of ventilation system
is defined as convective heat removed by the ventilation air.
According to the demand of multiobjective optimization, all
the weight factors 𝜔 have to satisfy the conditions in (16) and
(17).

To get themodel parameters, it is crucial to solve the opti-
mization problem in (15) with the specified conditions in (16)
and (17). Since the model is complicated and there are many
model parameters, the genetic algorithm independent of the
gradient of optimization function is employed to solve the
problem. In order to accelerate the calculation and ensure the
physical meaning for the model parameters, these unknown

parameters are determined within a range as given in (18).
These unknown parameters of the model are compiled into
the individual chromosomes, which are used for calculating
the objection function. Through comparing the objection
function values, these individuals with biggish objection
function value are selected to create the new generation
through the crossover and mutation operation. Then the
objection function is evaluated again by the new generation.
The GA solver will stop when the relative difference between
the objection function values of two generations is acceptable
or reaches the maximum generations, as shown in Figure 3.
Finally, the individual with the best fitness value is selected as
the model parameter:

0.01 ≤ 𝑅
𝑖
≤ 20,

1 × 10
4
≤ 𝑐wall,𝑖 ≤ 1 × 10

7
,

10 ≤ 𝑐win ≤ 1 × 10
3
,

0 ≤ 𝛾
𝑖
≤ 1,

1 ≤ ℎ
𝑖
≤ 30,
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Table 1: Construction element properties.

Element Layers Thickness [m] Thermal conductivity
[W/(m⋅K)]

Specific heat
capacity [J/(kg⋅K)]

Density
[kg/m3]

External wall
Brick 0.24 0.89 1000 1800

Insulation 0.1 0.04 800 40
Plaster 0.015 1.39 1000 2000

Roof Concrete 0.24 2.10 800 2400
Insulation 0.16 0.04 800 40

Window 𝑈-value 2.27 𝑇sol-value 0.83

3

∑

𝑖=1

𝑓
𝑖
= 1,

2

∑

𝑖=1

𝑔
𝑖
= 1.

(18)

4. Case Study

In the inhabited buildings, the occupants’ activity has an
influence on the accurately measuring of envelope cooling
load and the solar radiation. Instead of a real building a virtual
building is used to test the model identification method in
this paper.

4.1. Testing Case. Simulation tools are convenient to get the
sample data for model identification. Therefore, the sim-
ulation tool—TRNSYS—is selected to generate the sample
data for testing the identification method, and the following
conditions are assumed.

(1) The building thermal performance is stable in the
identification period.

(2) The convective heat transfer coefficients of envelope
surfaces are not affected by air velocity and air tem-
perature.

(3) The radiant floor is assumed to have the uniform
and constant temperature. Since the purpose of this
model is to predict the effect of radiant terminal
temperature on the thermal environment and cooling
load of system, the detailed thermal process of radiant
floor with circulating water is not considered.

The simulated case is depicted in Figure 4, and the dimen-
sion of this reference room is 4.9m (length)× 2.7m (width)×
4.8m (height). One window with a dimension of 2.0m
(width) × 3.0m (height) is located in the south wall, and
the percentage of glazed area compared to the south wall
area is 46.3%. The convective heat transfer coefficients of
surfaces are determined according to EN ISO 15255 [29].
Thermal properties of the constructions are listed in Table 1.
The internal heat sources involve two occupants and two
computers, with the total power of 580W, and the daily
operation profile is depicted in Figure 5. The indoor thermal
environment of this building is controlled by both cooling
floor and ventilation system.

Ventilation

Incident solar radiation
Long wave radiation
Convection

2.0m2.7m

4.9m

Figure 4: Geometry of the building for testing case.
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Figure 5: Normal patterns of internal load.

4.2. Solar Radiation on Envelop Surfaces. In order to identify
the parameters of the model, the solar radiation on the
envelope surfaces has to be identified firstly. The data calcu-
lated by the TRNSYS simulation tool, including horizontal
solar radiation, time, short wave radiation on inside surfaces,
and incident solar radiation on outside surfaces, is used
for training the black-box model. The sample data of solar
radiation during one week is shown in Figure 6. Obviously,
the intensities of solar radiation on all surfaces are basically
proportional to the horizontal solar radiation (IT). The short
wave radiation on the floor is larger than those on the other
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Table 2: CV of predicted values for incident solar radiation.

South wall North wall West wall East wall Roof Floor
Inside — — 9.66% 9.23% — 8.67%
Outside 7.22% 9.79% 13.23% 12.16% 0.67% —
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(b) Incident solar radiation on the outside envelope surfaces

Figure 6: Sample data of solar radiation of surfaces and horizontal solar radiation.

inside surfaces. Because the short wave radiation cannot
reach the inside surface of northwall, southwall, and roof, the
short wave radiation of them is zero. Moreover, the outside
surface of east wall has the larger solar radiation in the
forenoon. By contrast, the west wall has the larger solar radia-
tion in the afternoon. Since there is no incident solar radiation
in the night, the radiation heat fluxes of all surfaces are zero.

The data of incident solar radiation and solar heat gains
for all envelope surfaces within one month are used as the
sample data for building the black-box model. For improving
the prediction accuracy of the incident solar and model
training speed, the sample data is normalized to a range of
0 to 1 in the preprocessing. The sample data is randomly
divided into two groups, training sample and testing sample.
The training sample is used for building the predictionmodel
for the solar heat gains on the envelope, while the testing
sample is used for validation. The predicted values of solar
radiation heat gain on the inside surfaces and outside surfaces
by themodel and the actual value of sample data are shown in
Figure 7. It can be seen that themodel has the sameprediction
accuracy for the training data and testing data. Moreover,
comparing Figures 7(a) and 7(b), because of the influence of
the window structure and glass transmissivity, it is very clear
that the solar heat gains of inside surfaces are far less than
those of outside envelope surfaces.

The coefficient of variation of root mean square (CV)
as given in (19) has the ability to test the average deviation
between the predicted value and the actual value, which is
not affected by the sample data size. For this reason, the CV

value is adopted to test themodel performance for estimating
the solar heat gain:

CV =

√∑
𝑛

𝑖=1
(𝑦
𝑖
− �̂�
𝑖
)
2

/𝑛

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨

, (19)

where 𝑦
𝑖
, 𝑦
𝑖
, �̂�
𝑖
, and 𝑛 are sample data actual value, average

value of sample data, predicted value by the model, and
sample data amount, respectively.

The CV values of the solar radiation heat gains on both
side surfaces of envelopes are calculated to evaluate the
prediction model with the test sample, which is presented in
Table 2. The prediction model is enough accurate to forecast
the solar radiation heat gain of envelope inside surfaces, with
all CV values being below 10%. But the adaptability of the
predictionmodel for the outside surfaces facing east and west
is poor, and the CV values are greater than 10%. Because the
solar radiation on the outside envelope-surfaces has a small
effect on the building cooling load, the errors of prediction
value are acceptable. So the black-box model is considered
to be reliable for the prediction of solar radiation heat gains.
Accordingly, it is used in the RC model to forecast the solar
radiation heat gains of envelope surfaces (𝑞sol and 𝐽𝑖).

4.3. Data for Identification. The simulation process is influ-
enced by the initial conditions, and a duration called “warm-
up” is needed to eliminate the influence of the initial con-
ditions on the simulation results. As depicted in Figure 8,
there are seven cases with different “warm-up” durations
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Figure 8: Schematic diagram for warm-up period of simulation
case.

from 2 days to 14 days. All cases are started at the same initial
conditions with the same ambient environment. Due to the
different “warm-up” durations, it is obvious that the indoor
temperatures of different cases are different. After the “warm-
up” duration, the calculation results will not be affected by
the initial conditions. According to Figure 8, in the last day,
the indoor temperatures have no difference between 12 days
and 14 days. It shows that the simulation case can avoid the
influence of initial conditions through a transitional period
of 14 days. In order to ensure the identification accuracy of
model parameters, the simulation data during the “warm-up”
process are not included in the sample data. After the 14-day
“warm-up” process, the simulation results within 4 days are
used for identifying the simplified model.

5. Results and Discussions

For the model predictive control of the ventilation system
combining radiant terminals and air system, accurate fore-
casting results of both indoor air temperature and temper-
atures of envelope surfaces are crucial. In order to apply
the model in MPC, all the envelope parameters have to be
amenable for different ambient conditions and system status.
For this reason, the meteorological parameters depicted in
Figure 9 are employed to test the reliability of the identifica-
tion method and the prediction model.

Since the operative temperature as described in (20) can
represent the effect of air temperature and envelope tempera-
ture on the indoor environment, it is used for testing the
model in terms of cooling load of air system and radiant
cooling floor:

𝑡
𝑜
= 𝑎
𝑟
𝑡
𝑟
+ (1 − 𝑎

𝑟
) 𝑡air, (20)

𝑡
𝑟
=
(0.08 (𝑡rf + 𝑡fr) + 0.23 (𝑡𝑤 + 𝑡𝑒) + 0.35 (𝑡𝑠 + 𝑡𝑛))

(2 × (0.08 + 0.23 + 0.35))
, (21)
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Figure 9: Ambient temperature and horizontal global solar radia-
tion.

𝑡
𝑠
=
𝐴
𝑠
𝑡wall,𝑠 + 𝐴win𝑡win

𝐴
𝑠
+ 𝐴win

, (22)

where 𝑡
𝑟
is themean radiant temperature and 𝑎

𝑟
is the radiant

fraction. 𝑎
𝑟
is a function of relative velocity recommended

by international standard ISO 7730 [30]. Because the indoor
air velocity is usually below 0.2m/s, it is assumed to be
0.5. The mean radiant temperature 𝑡

𝑟
which is used for

a standing person [31] can be calculated with (21). Since
there is a window on the south surface of envelope, the
south surface temperature 𝑡

𝑠
is calculated by the area-weight

average temperature of window surface and wall surface
(22). The simplified thermal model for radiant system is
tested by TRNSYS and the testing results with various floor
temperatures, air volumes, and supply air temperatures are
shown in Figures 10–12.

5.1. Effect of Floor Temperature. Figure 10 shows the effect of
floor temperature on the operative temperature and the cool-
ing load when the supply air temperature is 18∘C with an air
change rate of 1 h−1. As seen in Figure 10, with the same other
conditions, both operative temperature and cooling load of
air system increase with the floor surface temperature, while
the cooling load supplied by the floor decreases.Theoperative
temperature deviations between the simplified model and
TRNSYS are less than 0.26∘C. Meanwhile, the floor cooling
load deviations are less than 6.9W/m2 and the cooling load
deviations of ventilation system are less than 0.9W/m2.

5.2. Effect of Air Change Rate. Similarly, Figure 11 presents the
effect of air change rate when the supply air temperature is
18∘C and floor temperature is 19∘C. As shown in Figure 11,
with the same other conditions, both operative temperature
and cooling load supplied by the floor decrease with the
increase of air change rate, while the cooling load of air
system increases significantly. In this case, the deviations of
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Figure 10: Results of simplified model and TRNSYS with various 𝑇fr (ACH = 1 and 𝑇
𝑠
= 18∘C).

operative temperature, floor cooling load, and ventilation sys-
tem cooling load are less than 0.25∘C, 6.9W/m2, and 1.9W/
m2, respectively.

5.3. Effect of Supply Air Temperature. Figure 12 describes the
effect of various supply air temperature with an air change
rate of 1 h−1 and floor temperature of 19∘C. In Figure 12,
with the same other conditions, the operative temperature

increases with the supply air temperature. Meanwhile, the
cooling load supplied by the floor decreases slightly. Besides,
the cooling load of air system significantly increases with
the fall of supply air temperature. The operative temperature
deviations between the simplified model and TRNSYS are
less than 0.25∘C.Meanwhile, the floor cooling load deviations
are less than 6.9W/m2 and the cooling load deviations of
ventilation system are less than 0.9W/m2.
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Figure 11: Results of simplified model and TRNSYS with various ACH (𝑇fr = 19∘C and 𝑇
𝑠
= 18∘C).

According to Figures 10–12, the results of the simplified
model under various conditions are consistent with those
calculated by TRNSYS. It shows that the model parameters
derived from the identification method are good for the
simulation case.

In order to further investigate the deviation of operative
temperature, cooling load of floor, and ventilation system,
Figure 13 shows the results of these three parameters (in
Figure 10) in detail. Apparently, the deviations of operative

temperature and cooling load of floor and ventilation system
change with time periodically and the values reach the
maximum at noon. That is because the black-box model of
incident solar radiation is unfaithful when the solar radiation
is too large. Therefore, the deviation can be reduced through
improving the incident solar radiation model.

The CV values of the results in Figures 10–12 are listed in
Table 3, and the adaptability of simplified model for various
control parameters can be compared. It is very clear that the
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Figure 12: Results of simplified model and TRNSYS with various 𝑇
𝑠
(𝑇fr = 19∘C and ACH = 1).

Table 3: CV values of operative temperature and cooling load.

Figure 10 Figure 11 Figure 12
𝑇op 0.63% 0.52% 0.46%
Cooling load of floor 11.93% 9.59% 9.61%
Cooling load of ventilation system 5.66% 7.07% 5.35%
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Figure 13: Deviation of simplified model and TRNSYS.

CV values of 𝑇op under all conditions are smaller than those
of both floor system cooling load and air system cooling load.
All the CV values of 𝑇op are below 1%. By contrast, the CV
values for floor cooling load (about 12%) are larger than those
of both operative temperature and air system cooling load.

The incident solar radiation is the most important factor
for the floor cooling load, and the values in the second and the
third days are greater than those in other days (as depicted
in Figure 9). Accordingly, it is clear that the cooling loads
in the second and the third days are larger than those in
other days (Figures 10(b), 11(b), and 12(b)). Since there are
prediction errors in the solar radiation heat gains for the
envelope surfaces, the error of floor cooling load is larger
than the cooling load of ventilation system. Besides, an accu-
rate prediction of the indoor temperature is beneficial to
avoid the condensation, which is an important control mis-
sion for radiant cooling systems. Although there is a larger
prediction error in cooling loads, the prediction of operative
temperature is accurate. Therefore, the simplified model is
sufficient for MPC in buildings with radiant systems.

6. Conclusions

In the building with radiant cooling, on one hand, the radi-
ant surface induces long wave radiant heat exchange between
the cooling surface and other surfaces. On the other hand,
the incident solar radiation on the cooling surface through
the window is absorbed directly. Both the long wave radi-
ation and the incident solar radiation are the dominant
influencing factors for the cooling capacity of the radiant
surface. Therefore, it is important to accurately calculate the
above two factors for the prediction model of MPC. In this
paper, the semiempirical model and black-box model are
adopted with RC model to construct the prediction model
for the building with radiant terminals. The RC model is
used for modeling the heat transfer of building envelopes.

The incident solar radiation is forecasted by the black-box
model and the long wave radiant heat exchange is forecasted
by the semiempiricalmodel. In order to accurately predict the
indoor environment and cooling load, the genetic algorithm
is employed to identify the model parameters.

The reference model and identification method are tested
with TRNSYS. The testing results show that the reference
model is suitable for the simulation case. The CV values of
operative temperature are below 1% and the CV values of
cooling load are within 12%. The accurate operative temper-
ature is beneficial to avoid the cooling surface condensation.
But due to the lower accuracy of black-box model for solar
radiation heat gains of envelopes, the predictive accuracy for
cooling load of radiant floor is slightly lower. However, the
maximum error of prediction value is only about 12%, so
the model accuracy is considered to be acceptable for the
supervisory control purpose.

Compared with other building simulation tools, the
hybrid model in this paper can integrate with other HVAC
component models to realize the supervisory control more
conveniently. Due to the application of hybrid model, the
model complexity has increased.This may smoothly increase
the calculation time for the parameter identification. But
the model complexity does not have a significant effect on
the application of the hybrid model. In the future work,
it is necessary to improve the accuracy of the model and
to increase the model parameter identification efficiency.
Moreover, the radiant terminal model will be built and
combined with the simplified building thermal model in this
paper to optimize the control of the radiant system.

Symbols

𝐴: Area (m2)
𝑐: Thermal capacity (J⋅m−2⋅K−1)
𝑐
𝑝
: Specific heat capacity (J⋅kg−1⋅K−1)
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𝐹: Radiation view factor
𝑓: Proportion of thermal resistance
fitness: Objection function
𝑔: Proportion of specific heat capacity
ℎ: Convective heat transfer coefficient

(W⋅m−2⋅K−1)
IT: Incident solar radiation on the horizontal

plane (W⋅m−2)
𝐽: Incident solar radiation (W⋅m−2)
𝑚: Supply air rate (kg/s)
𝑞: Heat flow (W⋅m−2)
𝑉: Room volume (m3)
𝑄air: Cooling load of ventilation system

(W⋅m−2)
𝑄fr: Cooling load of radiant system (W⋅m−2)
𝑅: Thermal resistance (m2⋅K⋅W−1)
𝑡: Time (h)
𝑇: Temperature (K)
𝑆: Internal load (W)
𝑇sol: Transmissivity of window.

Greek Symbols

𝜀: Emissivity
𝜔: Weight factor
𝛾: Absorption coefficient
𝜌: Air density (kg⋅m−3)
𝜎: Stefan-Boltzmann constant (W⋅m−2⋅K−4).

Subscripts

rf : Roof
fr: Floor
wall: Wall
win: Window
𝑠: Supply air
air: Indoor air
rad: Long wave radiation
sol: Solar direct radiation
out: Outside
𝑙: Outside node of 3R2C model
𝑜: Inside node of 3R2C model.
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