
Research Article
Quality Measures for Improving Technology Trees

Teemu J. Heinimäki and Tapio Elomaa

Department of Mathematics, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Teemu J. Heinimäki; teemu.heinimaki@tut.fi

Received 23 October 2014; Accepted 22 March 2015

Academic Editor: Yiyu Cai

Copyright © 2015 T. J. Heinimäki and T. Elomaa. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The quality of technology trees in digital games can be improved by adjusting their structural and quantitative properties.Therefore,
there is a demand for recognizing and measuring such properties. Part of the process can be automated; there are properties
measurable by computers, and analyses based on the results (and visualizations of them) may help to produce significantly better
technology trees, even practically without extra workload for humans. In this paper, we introduce useful technology tree properties
and novel measuring features implemented into our software tool for manipulating technology trees.

1. Introduction

Skill progression of player characters (PCs), acquiring new
talents, achieving perks, and developing available technolo-
gies are essential parts inmany popular digital games.Mental,
physiological, and material upgrades significantly affect the
narration of a game.They also partly establish the game logic
and make it visible and understandable for the player. When
players are able to grasp the intended logic, a feeling of more
logical consequences follows. It leads to more profound user
immersion and increases the enjoyment of play.The upgrades
can also be used to partition the game horizon into separate
stages or eras. Furthermore, the accumulating abilities set
short-term goals for the player.

Technology trees (or tech trees for short), as they are called
especially in strategy games, are structures used routinely
to model and implement these aspects of gameplay. They
describe and define the dependencies of technological (in a
very broad sense) progress followed in the game. In other
game genres, tech trees are called with different names such
as skill trees or talent trees. Also within the genre of strategy
games there is some variance in the terminology; for instance,
the term tech web is sometimes used. In this work, however,
we categorize all such structures under the common concept
of tech trees.

Despite the central status of tech trees in modern (real-
world, commercial) games, our experience and a survey show

that they suffer from many deficiencies in practice. In this
work, we demonstrate that weaknesses in tech trees can be
automatically screened and detected by using suitably defined
quality measures. That opens up the possibility to rectify
the defects that might have been introduced to tech trees
unintentionally. Our vision is that in the future automatic
improvement possibilities offered by generic tools will be
available for tech trees failing to meet the given quality
criteria.The primary reasons for striving for such automation
are our aim to improve efficiency and the desire to overcome
the human limitations and guarantee a high game quality.
One should also remember the fact that a gamedesigner is not
necessarily a programmer [1]. Different easy-to-use software
tools are already used for many purposes in real-world game
development. They have often a considerable positive impact
on the quality of the end products, so why not create and use
tools also to construct, measure, and adjust tech trees?

The main contribution of this work is the introduction
of several measures for monitoring the quality of technology
trees. In addition, a general-purpose software tool called Tech
Tree Tool (TTT) [2] is improved by implementing quality
monitoring. In order to empirically qualify the measures, we
determine them, as applicable, for Sid Meier’s Civilization V
(Firaxis Games, 2010) (Civ 5) and discuss the results.

Even though we use Civ 5 as our default example, the
results and observations are by no means restricted to this
particular game or even the genre it represents. We could as

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2015, Article ID 975371, 10 pages
http://dx.doi.org/10.1155/2015/975371

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206712471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Computer Games Technology

well have used, for instance, Kerbal Space Program (Squad,
Beta Version 0.90.0 2014) as an illustrative example; it is a
quite different game: a space flight simulator. However, in
order to expose the illustrations to as wide an audience as
possible, we stick to Civ 5 as our running example.

Next, in Section 2, we focus on the nature of technologies
and characterize tech trees. We continue in Section 3 by
pointing out some typical problems within them. After that,
we introduce themeasures that we find usable as indicators in
quality assurance, first for technology trees (in Section 4) and
then for individual technologies (in Section 5). Thereafter,
Section 6 sheds some light on our automated measuring
implementation, which is then tested with Civ 5 in Section 7.
Finally, Section 8 discusses briefly thematter of adjusting and
improving tech trees based on measurements, and Section 9
concludes the paper.

2. The Nature of Technologies and
Technology Trees

Tech trees have become essential structures forming crucial
mechanisms in digital games. There are different kinds of
tech trees, and they “fulfill various strategic and narrative
functions” [3]. Traditionally, technology trees have been
associated with strategy games, of which most feature them
[4], but effectively similar constructs are used also within
other game genres. A classical example is Diablo II (Blizzard
North, 2000) that is often mentioned as the game that truly
introduced such structures within the genre of computer
role-playing games. The idea of the “character skill tree” of
the game was based on technology trees of strategy games
[5]. Adoption to different genres and subgenres has led to
variance in terminology; a tech tree-like structure may come
under the disguise of a different name, but the difference
is essentially only in the terms used for the items (e.g.,
“technologies,” “perks,” or “talents”) that can be selected to be
developed or purchased.The targets of their effects also vary;
for instance, “talents” typically affect individual characters
and “technologies” larger entities such as tribes, nations, or
species. However, the basic idea of the structures remains
the same. In this paper, we consider all these variants as
technology trees. Correspondingly, those selectable items are
henceforth called technologies or shortly techs.

A tech tree can be seen, for instance, as “a structure
that controls progress from one technology to a better
technology, enabling the player to create better facilities or
more powerful units” ([6], page 141), or simply “a flow-chart
showing the dependencies of upgrades and buildings” ([6],
page 72). These views reflect the main two sides of the coin
called technology tree; tech trees are typically seen either
as (1) structures (mechanisms) for defining and controlling
development (upgrading), based on dependency relations of
technologies, or (2) flow-chart-like presentations on these
dependencies. In this paper, we concentrate more on the
former point of view.

Tech trees are not usually trees in graph-theoretical sense
but can take forms of different, typically acyclic andweighted,
(multi)digraphs. It is natural to treat technologies as nodes of

a graph and define their relations using weighted edges. (In
order to be able to handle different technology trees using
a general characterization, we use a derivative of this basic
approach: we basically consider weights to be associated with
sets of edges. Sections 4 and 6 illuminate this more.) In
addition to these basic components of any graph, additional
data, for instance, information related to presentation or
effects of the technologies, are typically needed.

Games come in various forms and flavours, and so do
technologies used in them. For instance, personal properties,
perks, traits, feats, and talents of game agents (e.g., PCs)
can be seen and modeled as technologies, if the agents
can learn or otherwise acquire them. Such techs are often
found in games featuring roleplaying elements. For instance,
a thievery-oriented PCmight be improved bymaking it learn
Basic Lockpicking or, already having acquired, say, Improved
Stealth, advancing it to Stealth Mastery.

In strategy games, on the other hand, the players typically
act as commanders, “controlling things from a discrete
distance” [7].This is reflected on the “traditional tech trees” of
these games: the effects of technologies target typically larger
wholes than individual characters.

Even when discussing these original tech trees, the word
technology is used quite liberally: not all “technologies”
found in strategy games are technical in nature at all. A
player might, for example, develop Banking in order to
bolster the economy of the controlled nation, invent Free
Time to raise the general morale, or let the citizens learn
Ghuli’Xi’ulian Language to be able to communicate with a
neighboring game faction. These are abstract technologies
[8]; their manifestations do not correspond to visible unit
instances “on the board.” Abstract techs can represent, for
instance, cultural or administrative innovations and achieve-
ments. Various subtypes, like forms of government, religions,
ideological movements, monuments, and pieces of art, fall
into these categories. However, abstract techs can also contain
technologies, technical devices, and technological inventions
in the conventional sense (such as Printing Press or Jet
Engines).

Sometimes, technologies represent different unit types
(like samurai, healer, or dragon) used in the game, or, more
accurately speaking, the abilities to produce units of the
corresponding types. For instance, developing a technology
called Fluffy Bunny could let the player produce fluffy bunnies
(visible unit instances of the type “fluffy bunny”) within
the game world (given that other possible prerequisites, e.g.,
being able to pay the production costs and having necessary
production facilities, are met). A single technology may
also have several effects of possibly various natures; it is
possible to have techs enabling unit production and giving
simultaneously also other abilities [9].

Similarly, building types (if buildings are not treated as
units) may have their specific construction-enabling tech-
nologies, and technologies can, in addition to their other
effects, allow constructing buildings of certain types. Espe-
cially in real-time strategy games, the capability to con-
struct buildings often depends on the types of the buildings
already built. Buildingsmay enable “developing technologies”

International Journal of Computer Games Technology 3

in them, but also the dependencies between building types
can be modeled by technology trees.

Technology trees serve many purposes. According to
Sid Meier, undoubtedly the most famous computer game
designer in the western world, the addictiveness of SidMeier’s
Civilization (MicroProse, 1991) is at least partially due to
“interesting decisions” [10]. A tech tree is certainly one of the
most obvious ways to provide a player with possibilities to
make such decisions. In addition to functioning as an upgrad-
ing system, tech trees can be used to represent technological
history, as release mechanisms, and as narrative tools [3].
The decisions made by a player are often goal-oriented: the
overall goal is typically victory, but acquiring technologies
sets also short-term goals. Even if a technology does not have
any significant impact on the gameplay, having it developed
may, nevertheless, be something to brag about (see the article
by Gazzard [11] concerning different rewards). As Huizinga
([12], page 50) put it, “in all games it is very important that
the player should be able to boast of his success to others.”

3. On the Demand for Monitoring
Tech Tree Quality

Various properties affect the observed quality of a technology
tree, and many common defects may reduce it. In order
to find features typically considered problematic, we have
been conducting an informal (unpublished) survey since
2012 by observing severalWWWdiscussion forums. Because
of the nature of the data, they may be biased; they have been
acquired from a (somewhat arbitrary) set of forums, some
of which concentrate on specific games (the sites we have
been monitoring include, e.g., http://www.quartertothree
.com/game-talk/, http://forums.2k.com/, http://forums.civfa-
natics.com/, http://www.gamespot.com/forums/, and http://
forums.steampowered.com/forums/).Occasionally, also inter-
preting and categorizing the actual problems based on web
publicationsmay be problematic. Because of these difficulties,
we do not announce any exact results, but only claim that by
analyzing hundreds of writings (by various authors) we have
found several problems that seem significant based on the
frequency of them being mentioned or otherwise. We leave
it as future work to validate the importance of the identified
defect types.

Based on this survey, our experience, that of some of
our fellow gamers, and WWW articles found using search
engines, the most typical problems concerning existing tech
tree implementations in real games seem to include

(i) too small or too large number of technologies,
(ii) too few requirements for developing technologies

(allowing bypassing techs in an undesirable way),
(iii) too obvious strong paths (not encouraging to explore

the tree, but only to exploit the known efficient
strategy),

(iv) poor balancing (temporal or resource-wise),
(v) too limited possibilities to explore the tech tree during

a game,

(vi) typically fixed and rigid (predefined) structure with-
out any possibility of temporal variation or, for
instance, variation between different game instances,

(vii) meaningless technologies (with onlyminor effects not
motivating to advance in a tech tree),

(viii) requirements that do not make sense semantically,
thematically, or historically.

The list presented here is not intended to be generally
comprehensive. Grievances concerning visualization, aes-
thetics, and interaction issues are omitted (although com-
mon), because our focus lies on the structure and functional-
ity, not on user interface (UI) details.

Of course, the quality of a tech tree is a highly subjective
matter, and adjusting tech tree properties is all about making
tradeoffs. However, in order to make justified adjustments to
any direction, one must be able to evaluate tree properties.
Common concerns serve as a good guideline for deciding
which features are important. Balancing tech trees in terms of
time and (other) resources is a generallymeaningful problem.
In this paper, we focus on such balancing, since somewhat
objectively measurable tech tree features affecting the issue
can be found. Balancing can be either internal balancing
(within a tech tree) or balancing between different tech trees.

One typical central function of a technology tree is to
control game flow with respect to time; tech trees are used
for so-called gating and for controlling the narration or
the overall “big picture game experience.” Therefore, the
temporal aspect cannot be overlooked, when analyzing a tech
tree. By internal balancing we mean a process of modifying a
tech tree formaking it behave internally in amore favourable,
balanced manner. If two technologies are supposed to be
relatively on the same requirement level in the tech tree (e.g.,
they could belong to the same historical period), more or less
same amount of efforts ought to be required for achieving
them.

Typically, such efforts manifest themselves as gathering
and spending resources. Time can be a resource type itself,
but also cumulating assets, like science points or energy, can
be used. In a more general characterization, of course, also
noncumulating assets besides time can be allowed. However,
in practice, such are seldom (if ever) used.

If a player is free to develop a technology, the time con-
sumption for obtaining it depends often quite directly on the
other resource requirements and the resource income at the
corresponding game situation; a certain amount of resources
must be accumulated and allocated for the development task
in order to acquire the desired tech. Some additional time
can be spent in carrying out the development task itself, in
particular, if all the needed resources must be collected in
advance.

The means and methods of gaining resources vary.
Resources can be, for example, won in war, collected by
peasants from mines, produced in factories, or gained by
research work. However, the resource income can often be
estimated as a function of game time, regardless of the exact
earning method. When proceeding in a balanced tech tree,
the requirements for developing each technology should be
in accordance with the desired temporal flow (or “resource

4 International Journal of Computer Games Technology

Javelin

Cruise
Missile

Axe

20

30

Integrated
Circuit

10

28

Satellite
Navigation

2

21

6 4 3

9

1618

X

Y

Figure 1: A problematic technology tree. Rounded rectangles depict
technologies. They are of Boolean nature: either one possesses a
technology, or not. The dependencies (marked with arrows) are of
type OR. The numbers indicate costs in gold nuggets for advancing
in the tech tree along the arrows. The costs for obtaining entrance
nodes (ENs, the nodes representing the technologies that are initially
available for development) are marked inside the corresponding
rectangles.

flow”) so the game proceeds smoothly and is gated as
intended.

Consider the illustrative tech tree of Figure 1. Both Axe
and Javelin are meant to be easily achievable primitive
technologies. The minimum costs for obtaining them are of
the same magnitude (six and five gold nuggets, resp.). Also
Integrated Circuit, Satellite Navigation, and Cruise Missile are
intended to be mutually “on the same level”: they represent
rather advanced technologies of the same historical era. All
the three have powerful game effects, although this is not
directly visible in the figure. However, via Javelin, Cruise
Missile can be developed by using only seven gold nuggets.
On the other hand, the minimum cost for getting Integrated
Circuit is 62 nuggets, and that of Satellite Navigation is 60
nuggets. These two costs are relatively close to each other, as
they should be, but the cost for obtaining Cruise Missile is
significantly lower. Suchmagnitude difference implicates that
the design is faulty. In this case, the problem is, naturally, the
overly inexpensive technology Cruise Missile, which would,
based on its achievability, belong to the same technological
level with Axe and Javelin, but thematically, and based on the
effects of the techs, this does not make much sense.

The problem with the design is also a flow problem; one
should not be able to achieve an advanced technology like
Cruise Missile too early; not only would such a feature be
narratively awkward, but it might also manifest itself as a
problem of strong paths, clearly superior routes to follow.
Given the chance to obtain a powerful technology at an early

stage via a certain route, probably that route is practically
always chosen. The strong path problem can be alleviated
by good internal balancing. If different techs are supposed
to represent the same requirement level, the corresponding
costs for obtaining them should be close to each other. Hence,
a more balanced tech tree (in this sense) can be obtained by
smoothing out differences between the costs of such techs.

In a balanced tech tree, the problem may only arise if the
original assumption of the suitable requirement level for a
tech is wrong. Looking from another perspective, effects of
a tech should always be suitable for and on a par with the
intended requirement level.Therefore, adjusting a tech tree in
order to fix the problem requires estimates for game impacts
of technologies involved. These estimates should be based
on proposed requirement levels and offered game-dependent
benefits.

So, internal balancing deals with a single tech tree, trying
tomake it better. By balancing between different tech trees, on
the other hand, we mean a process aiming to make different
tech trees behave similarly enough. This kind of balancing
is important, for instance, when creating various tech trees
to be used by different factions (e.g., nations) competing
against each other. The common reason to use individual
tech trees for the factions is the desire to clearly distinguish
between them.Therefore, the dissimilarities between the tech
trees should not be only cosmetic (e.g., different tech names):
there should be actual variation in advantages, disadvantages,
options, and meaningful strategies. However, the feeling of
fairness in a game is important [13], and normally all the
playable factions should be able to win.The playing should be
enjoyable and meaningful. Therefore, none of the tech trees
ought to be strongly underpowered or overpowered despite
their differences.

4. Indicators for Characterizing
Technology Trees

To make it easier to discuss measuring tech tree features, let
us define some quality (and other) indicators. Let 𝑇 be a tech
tree with 𝑛 distinct technologies. For simplicity, we assume
here that there is only one resource type of interest, 𝑟, to
be considered at a time. If there are several resource types
affecting the situation, the indicator values can be defined
separately with respect to each of them.

Useful global indicators describing the properties of 𝑇 as
a whole are at least

(i) its size, which we consider in terms of distinct tech-
nologies (and not the number of edges, as is the
graph-theoretical convention), so here it would be 𝑛
techs,

(ii) tree requirement (TR), the minimum amount of
resources of type 𝑟 needed to get all the 𝑛 distinct
technologies in 𝑇 developed,

(iii) average resource consumption for acquiring technolo-
gies (ARCFAT),

(iv) expected final tech coverage (ETC),
(v) average branching factor (ABF) of 𝑇.

International Journal of Computer Games Technology 5

In order to define ARCFAT, a measure of local nature is
needed.We call it resources expected to be needed for acquiring
a tech locally (REAL). ARCFAT is the arithmetic mean of the
REAL values of all the techs in 𝑇.

The REAL value concerning the development of tech-
nology 𝑡 is the arithmetic mean of its local costs (in 𝑟).
These costs correspond to the parent combinations that can
allow (and are here assumed to allow) the development. In
a simple (deterministic) case, a tech has only a single fixed
local cost value, and the averaging over alternative parent
combinations leading to the tech is unnecessary. In a more
complicated case, the REAL value could be affected by, for
example, randomization.

An interesting special case is REAL in respect to time
(that we consider here as a resource among others). In this
case, the REAL value for technology 𝑡 is effectively the average
of the expected development time requirements correspond-
ing to the possible parent technology combinations allowing
𝑡 to be developed. Such a measure can be straightforwardly
used, for instance, to facilitate planning and constructing a
tech tree, when targeting for some desired (expected) game
duration.

The ETC value for 𝑇 in a game featuring sequential
technology development and technologies of Boolean devel-
opment statuses can be defined as 𝑒/(𝑚 ⋅ 𝑛), where 𝑒 is the
expected gain of resource 𝑟 of a game and 𝑚 is the ARCFAT
value of 𝑇. The ETC values are useful, when striving to tackle
the problem of too limited possibilities to explore the tech
tree during a game, ormore generally, when trying to provide
the players with the possibility to explore as much of a tree as
desired in a typical game.

Knowing the exact ABF of a tech tree is usually not
needed in time or space complexity analyses of the algorithms
manipulating tech trees due to their modest sizes and the
fact that the ABFs are typically small. However, one can draw
conclusions on the structure and nature of a tech tree based
on the ABF value of it. If the value is high, one probably has to
really keepmaking choices frequently, but in the case of a low
value, the tech tree probably has almost linear paths, and the
focus is more on selecting the path(s) to follow and changing
it when appropriate.

The values of the global indicator measures can be used
for rough comparisons between tech trees. They are also
useful in improving a single tech tree or designing such (and
related game properties) from scratch. To clarify this, let us
assume that we are creating a tech tree 𝑇 and have formed a
prototype with the following known (measurable) indicator
values: ARCFAT = 350 r, TR = 5000, and size = 20 techs.
We want ETC to be around 90 percent. Resources of type 𝑟
are somehow produced or gathered during the game, and we
want to define the details for the resource system. A simple
estimate for the total amount of resource type 𝑟 that one
should be able to gain during a game can be obtained simply
by taking the TR value andmultiplying it by the desired ETC.
In this case, the estimate is 0.9 ⋅ 5000 𝑟 = 4500 𝑟.

Typically, the first technologies to obtain are relatively
inexpensive, and the costs increase when advancing in a tech
tree. Hence, technologies which are eventually not obtained
in a game probably include many of the most expensive ones.

Therefore, the estimated value might be more than enough.
However, generally using the ARCFAT for calculating the
lower bound in order to define the desired resource gain is
a better solution. In our example, there are 20 techs, and on
average each of them requires 350 𝑟 to be developed. Hence,
an ARCFAT-induced lower bound in this case would be 0.9 ⋅
(20 ⋅ 350 𝑟) = 6300 𝑟 (during a typical game).

Often, it is a good idea to give players some extra
resources to let them have more freedom to proceed via
nonoptimal routes; all the players are not interested in
optimizing exactly, when playing. Too scarce resource supply
may lead to players never proceeding to expensive techs, thus
rendering them unnecessary. On the other hand, of course, if
there is an upper tech coverage limit defined that is not to be
exceeded, resources should not be granted too generously, or
the number of achievable techs should be limited in another
way.

Consider another example. Let 𝑇 and 𝑈 be tech trees
intended to be used for the same purpose by two different
mutually competing factions (one tech tree for each of them).
If the expected curves of income for these factions (in 𝑟, as
a function of wall time or play turns) are similar, one can
assume that the total amounts of 𝑟 gained by the factions
during a game are near to each other, as long as the game starts
and ends at the same time for both players. Typically, the sizes
of𝑇 and𝑈 should be about the same.This, of course, assumes
that ARCFAT values and the desired ETC values are also near
to each other. In some rare cases, this assumption might not
hold, but nevertheless, the measures are useful and help in
making desired adjustments. The ARCFAT values should be
adjusted suitably for maximizing the enjoyment of advancing
in a tech tree. It is frustrating to have to wait for a very long
time for even simple technologies, but on the other hand, a
game most probably has also other contents besides making
tech choices, so all the gaming time cannot be used for that.
To summarize, as a rule of thumb, the sizes and the ARCFAT
values of 𝑇 and 𝑈 ought to be similar. If this is not the case,
adjustments to at least one of the tech trees are probably
needed.

A simple, but quite powerful, way to roughly adjust
the global properties of a tech tree is to choose a suitable
coefficient, 𝑐, and then, for each tech 𝑡, simply to multiply the
needed resource requirements by 𝑐 (for all the possible parent
technology combinations allowing the development of 𝑡).
This affects directly the REAL values and thus also ARCFAT
measures. Moreover, via ARCFAT, the effect of the operation
reaches to ETC. Game length can also be manipulated this
way via REAL and ARCFAT values for time resource.

5. Indicators for Characterizing Technologies

Besides REAL, there are also other important indicator
measures of a local nature to be found. Let 𝑡 be a technology in
a tech tree 𝑇 with a total number of 𝑛 distinct technologies,
and let 𝑄 be the set of those technologies in 𝑇, into which
there are nontrivial paths from 𝑡. Interesting local indicators
for the single node 𝑡 include at least

6 International Journal of Computer Games Technology

(i) gating indicator number 1 (GIN1) = 𝑎/(𝑛 − 1), where 𝑎
is the cardinality of the set 𝑄,

(ii) gating indicator number 2 (GIN2)= 𝑏/(𝑛−1), in which
𝑏 is the number of technologies in 𝑄 that require 𝑡
to be developed prior to their own development (i.e.,
there are no alternative routes leading to them and
bypassing 𝑡),

(iii) optimal cost (OC) = the minimum amount of resour-
ces of type 𝑟 needed to get 𝑡 developed without any
prior development in 𝑇,

(iv) requirement ratio (RR) = OC/TR (assuming TR dif-
fers from zero).

These local indicators can be used, for instance, to
estimate which technologies should receive extra attention.
As an example, a high value of GIN2 for a technology 𝑡

indicates that it should be possible,maybe even easy, to obtain
𝑡, because otherwise a large portion of the existing tech tree
is effectively not needed for anything.

The tech tree of Figure 1 has 19 nodes in total, so that
𝑛 − 1 = 18. From node Axe 14 nodes (the grey ones plus
𝑋 and 𝑌) can be reached. Thus, GIN1 for Axe is 14/18 =

7/9. The value is relatively high, as expected: it is easy to
check visually from the figure that only a small portion of
the tech tree is inaccessible via Axe. Technologies 𝑋 and
𝑌 could be developed without Axe via Javelin and Cruise
Missile. Therefore, these two technologies are not counted to
number 𝑏 when calculating GIN2 value. The 12 grey nodes
in Figure 1 represent technologies that require Axe prior to
being developed themselves. Hence, the indicator GIN2 has
the value 12/18 = 2/3, which is less than the value ofGIN1 but
still rather large; the grey nodes alone make a large portion of
the tech tree, and Axe is a mandatory node in all the possible
paths leading to them.

OC values were already calculated for the argument of
Cruise Missile being too cheap to achieve in the example of
Figure 1. For instance, the OC value for Satellite Navigation
is 60 gold nuggets by minimization over alternative routes
leading to its development. In order to demonstrate TR
and RR, let us use even smaller example tree illustrated in
Figure 2.

Let us determine the TR (with respect to 𝑟) assuming
OR-type dependencies. This problem resembles closely the
graph-theoretical minimum directed spanning tree problem,
but with tech trees instead of one root there can be several
ENs. To obtain A, B, C, D, E, G, and I, there are no choices
to be made: the cost for getting these nodes developed is (1 +
2 + 5 + 8 + 3 + 10 + 24) 𝑟 = 53 𝑟. We can consider them to
have been paid for and developed. Now, the optimal choice
for developing𝐹 is via𝐷using 7 𝑟, and for developing𝐻 (after
developing 𝐹) it is via 𝐹 using 15 𝑟, so that TR = 53 + 7 + 15
= 75. Now, the OC value (still with respect to 𝑟) for, say, 𝐹, is
1 + 5 + 9 = 15, so RR value for 𝐹 is 15/75 = 1/5. On the other
hand, theRR value of 𝐼 equals (1+8+10+24)/75 = 43/75.This
value is considerably larger than 1/5, which indicates that 𝐼 is
more expensive than 𝐹.Therefore, 𝐼 is suitable to be the more
advanced technology of the two.

A B

C D E

F G

H I

1 2

3
5 8

79 10

15 20 24

Figure 2: A simple example tech tree depicted using the conventions
established in Figure 1. The costs are expressed in resources of type
𝑟.

6. Measuring the Indicators: Implementation

In a previous work [2], we proposed a generic approach for
implementing technology trees to obtain diverse benefits.
We also introduced a software tool for creating technology
trees easily and partially automating the process of tech tree
creation. We have now augmented our software tool, TTT,
with a capability of measuring important tech tree properties.

Our previous paper [14] discusses temporal layer analysis.
The basic idea is presented in Figure 3. A technology tree is
converted into a forest consisting of real (graph-theoretical)
trees by duplicating nodes (representing technologies) as
necessary. Then, the nodes, having visual representations,
are arranged topologically in a way that makes it easy to
analyze tech tree properties visually and find problems.
In Figure 3, there are six different time layers corresponding
to specific points in time, and there is a node corresponding
to a technology on a layer if and only if it is possible to get the
tech developed at the time represented by the layer. Time is
assumed to be the only resource type in use, the development
status of each node is Boolean, and having one developed
parent is a sufficient precondition for developing a tech node
in this setting (that is, the dependencies between technologies
are treated as OR-type ones). The progress is assumed to be
sequential and without any slack time.

We implemented a modified version of this conversion in
TTT.The idea is still mostly the same, but in order to limit the
amount of nodes to be generated and drawn,we only consider
possible paths leading to a given technology, not necessarily
the whole tech tree. On the other hand, the topologies are
presented for all required resource types, not only time. We
call this approach generalized time layer approach (GTLA).

Resource demands (of the resource types under scrutiny)
are accumulated into eachnode along different routes starting
from the ENs. The resource requirements of each node are
resolved for each requested resource type, and the values
are “pushed” top-down to (new) nodes corresponding to the
children in the original tech tree. Then, these newly created
nodes are processed similarly, and the process continues,
until all the nodes have been exhausted.

International Journal of Computer Games Technology 7

Time
layer:

0

1

1

1

2

2 2

2 333

4

5

A

A

B

B

C

C

D

D

E

E

F

F

FG G

G

Figure 3: Generating a forest (on the right-hand side) based on
a tech tree (on the left-hand side) and representing the optimal
times to achieve technologies via different routes topologically.
The numbers next to the tech tree edges are corresponding time
requirements.

Figure 4: A part of a simple example tech tree. A partial screen
capture from TTT.

Consider the tech tree structure of Figure 4 and applying
GTLA to obtain possible paths leading to Computers. In
Figure 5, the graphical presentation of these paths (in terms of
different resource type requirements) is shown, as presented
in the TTT UI.

From the graphical representation, it is easy to detect,
for instance, the paths leading to optimal total resource
consumptions in terms of the resource type of interest as well
as the OC values themselves. Even simpler representation,
with fewer plot points to consider, can be obtained by aggre-
gating different resource types into a more general resource
requirement plot.Differentweights for distinct resource types
can be used.

Figure 5: Possible technology paths to Computers in the tech
tree of Figure 4 plotted for three resource types. The paths are
depicted as horizontal successions (from left to right) of circles, each
representing a technology. A partial screen capture from TTT.

So, GTLA can be used, among other things, to determine
OC values. However, the method in its simplicity is only
suitable for tech trees, in which any technology can be
developed, if allowed by any parent technology. This is
(typically) true for tree-like tech trees, in which a technology
has at most one parent, and for tech trees based on OR-type
dependency relations, like the one in Figure 4. In the example
tree there are two technologies,Writing and Computers, with
two parents each. However, having a single parent technology
developed suffices to develop the corresponding child. In the
TTT UI (see Figure 4), this fact is visible as the identifier sets
attached to edges starting on different parents, {0} and {1},
containing different elements.

The idea is that the identifiers, and-bunch identifiers
(ABIs), of the edges arriving from the parent nodes determine
sufficient edge sets that allow a tech to be developed. In
order to develop it, for an ABI present in the ABI set of
some incoming edge, it must hold that all the incoming
edges having this ABI in their ABI sets must fire (accept the
development) simultaneously [2]. In this paper, we assume
for simplicity that an edge fires, whenever the technology
corresponding to its start node has been developed. This is
typically the case with real-world tech trees with binary tech
development statuses.

In order to illustrate the idea behind ABIs, let us modify
the example tech tree of Figure 4 a bit. In the tech tree of
Figure 6, there are AND-type dependencies involved. Spoken
Language is not anymore a prerequisite for Engraving or Ink,
and to be able to developWriting, one must have in addition
to Spoken Language either Engraving or Ink developed. The
freedom to determine several sufficient AND-type parent
groups for a technology (and the ABI set characterization)
adds considerably to the overall flexibility of tech trees and
facilitates using thematically sensible dependency structures.

GTLA proceeds locally from ENs towards the leaf techs
without considering all the necessary requirements (parents)
when used with this tech tree. Hence, it gives too optimistic

8 International Journal of Computer Games Technology

Figure 6: A modified example tech tree. A partial screen capture
from TTT.

(1) function approximate OCs():
(2) 𝐶 ← the set of ENs
(3) while |𝐶| > 0 do
(4) 𝑁 ← 0

(5) for each 𝑛 in 𝐶 do
(6) handle node(𝑛)
(7) swap(𝐶,𝑁)

Algorithm 1: A function for going through a tech tree appropri-
ately. Executing this results in having OC estimates for each node,
as well as estimated optimal ancestor sets and optimal ABIs.

OC results in this case. Therefore, a more general method for
copingwith this kind ofmore complex tech trees and estimat-
ing their OC values and optimal routes was developed and
implemented in TTT. Now, each tech may have several dif-
ferent parent subsets allowing its development, and each such
subset may have its own respective resource requirements.
In other words, a technology may have several alternative
price tags, with the actual cost to be paid depending on the
developed prerequisite tech combination.TheOC estimation
algorithm, usable with acyclic tech trees, is presented in
Algorithm 1 as the pseudocode function approximate OCs.
The function handle node, used by approximate OCs, is
given in Algorithm 2.

The functions do not aim at plotting the possible paths
leading to a tech, since their number in nontrivial tech
trees can be large because of different possible orders of
developing prerequisites. Instead, for every technology in the
tech tree, the OC value is estimated and a corresponding
ABI set, via which one probably achieves the tech optimally,
is determined. Estimated optimal route for developing the
technology of interest is available in the form of the set of
optimal ancestors (opt anc) for each node after executing
approximate OCs.

To simplify the presentation in Algorithms 1 and 2,
the resource type under scrutiny has been omitted in the
pseudocode, and it is assumed that all the relevant operations

(1) function handle node(𝑛):
(2) 𝑛.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0

(3) for each 𝑎 in 𝑛.𝑎𝑏𝑖 𝑠𝑒𝑡𝑠 do
(4) 𝑅 ← 0

(5) 𝑎𝑏𝑖 𝑠𝑜𝑙V𝑒𝑑 ← true
(6) for each incoming edge 𝑒 of 𝑛 with ABI 𝑎 do
(7) 𝑝 ← 𝑒.𝑠𝑡𝑎𝑟𝑡 𝑛𝑜𝑑𝑒

(8) if 𝑝.𝑠𝑜𝑙V𝑒𝑑 then
(9) 𝑅 ← 𝑅 ∪ {𝑝}

(10) else
(11) 𝑎𝑏𝑖 𝑠𝑜𝑙V𝑒𝑑 ← false
(12) if 𝑎𝑏𝑖 𝑠𝑜𝑙V𝑒𝑑 then
(13) 𝑛.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑛.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
(14) 𝐴 ← ⋃

𝑝∈𝑅

𝑝.𝑜𝑝𝑡 𝑎𝑛𝑐

(15) 𝑠 ← 𝑛.𝑐𝑜𝑠𝑡(𝑎) + ∑
V∈𝐴

V.𝑐𝑜𝑠𝑡(V.𝑜𝑝𝑡 𝑎𝑏𝑖)

(16) if 𝑠 < 𝑛.𝑜𝑝𝑡 𝑐𝑜𝑠𝑡 then
(17) 𝑛.𝑜𝑝𝑡 𝑐𝑜𝑠𝑡 ← 𝑠

(18) 𝑛.𝑜𝑝𝑡 𝑎𝑏𝑖 ← 𝑎

(19) 𝑛.𝑜𝑝𝑡 𝑎𝑛𝑐 ← 𝐴 ∪ {𝑛}

(20) if 𝑛.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = |𝑛.𝑎𝑏𝑖 𝑠𝑒𝑡𝑠| then
(21) 𝑛.𝑠𝑜𝑙V𝑒𝑑 ← true
(22) for each 𝑐 in 𝑛.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
(23) if not 𝑐.𝑠𝑜𝑙V𝑒𝑑 then
(24) 𝑁 ← 𝑁 ∪ {𝑐}

(25) else
(26) 𝑁 ← 𝑁 ∪ {𝑛}

(27) for each 𝑝 in 𝑛.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do
(28) if not 𝑝.𝑠𝑜𝑙V𝑒𝑑 then
(29) 𝑁 ← 𝑁 ∪ {𝑝}

Algorithm 2: A function used by approximate OCs for handling
an individual node and making the necessary additions to the next
node layer.

and variables are with respect to it. The functions could,
of course, take resource type parameters and use them in
bookkeeping.

The basic idea is to start with the ENs as the active set
(layer) 𝐶 of nodes to be handled. For each node in 𝐶, the
function handle node is executed. It forms the layer𝑁 to be
handled during the next round, and the execution proceeds
this way a layer after another, until the values have been
solved for the whole tech tree. The algorithm stops, because
eventually all the nodes in a tech tree of a finite size will
be solved, and thus 𝑁 will be the empty set after the loop
of the lines (5) and (6) of approximate OCs. Each call to
handle node eithermarks a node solved and adds its children
to 𝑁 or adds its unsolved parents to 𝑁, which prevents
looping infinitely.

The obtained values are only estimates, because v.opt abi
(handle node, line (15)) is not necessarily the optimal ABI
with respect to 𝑛 but only V itself. However, in practice, the
estimates obtained this way for real tech trees are typically
accurate, and making the simplifying assumption of global
optimality of the determined optimal ABIs reduces the
required computing time and space usage into a sensible level.
The optimal ABI values can be used for determining the costs

International Journal of Computer Games Technology 9

Biology

0 20000 40000 60000 80000 100000

Combust
Dynamit
Electri
Flight
Radio
Railroa
Refrige
Replace
Steam p
Telegra
Advance
Atomic
Compute
Ecology
Electro
Globali
Lasers
Mass me
Nuclear
Penicil
Plastic
Radar
Robotic
Rocketr
Satelli
Stealth
Future
Nanotec
Nuclear
Particl

Figure 7: Minimum science requirements for the technologies of
the last three eras in Civ 5, as plotted by TTT. (In order to improve
the image quality for publication, the figure was redrawn based
on a TTT screen capture.) Distinct techs are represented on their
corresponding rows, and the horizontal locations of circles (their
midpoints) represent the OC values of the corresponding techs. OC
values increase linearly along the horizontal axis from left to right,
as indicated.

for individual techs, when estimating the TR value for a tech
tree.

7. Measuring a Real-World Tech Tree

To test our tool improvements, we created a TTT representa-
tion of the tech tree ofCiv 5, because it is a good representative
of technology trees used in contemporary digital games.
The game is rather recent, but the technology tree is used
in a conventional fashion. The Vanilla version with science
cost estimates taken from a web source [15] was used. We
ran the algorithm of Algorithm 1 for the tech tree. Because
of the structure of it, the exact OC values were obtained.
The operation took time of 16 milliseconds with a standard
desktop computer (Intel Core i5-3470 running at 3.20GHz,
16GB RAM, 64-bit Microsoft Windows Enterprise).

In Figure 7, the science point (or “beaker”)OC results have
been plotted for the technologies of the last three eras of the
game: Industrial Era (white), Modern Era (grey), and Future
Era (black). These kinds of plots are beneficial for checking
visually that technologies are as easy or hard to obtain as they
should be or spotting problems concerning internal balanc-
ing. As the eras in Civ 5 represent distinct intervals in the
(temporal) continuum of overall technological development,

Fu
tu

re
 T

ec
h

Ph
ys

ics

Nu
cle

ar
 fi

ssi
on

Co
m

pu
te

rs

Co
m

bu
sti

on

Bi
ol

og
y

As
tro

no
m

y

Sa
ili

ng

Ph
ilo

so
ph

y

Ag
ric

ul
tu

re

0

0.2

0.4

0.6

0.8

1

1.2

GIN
RR

Civ 5 technologies
(only some of the names are shown)

Figure 8: GIN (= GIN1 = GIN2) values and corresponding RR
values of the technologies in the Civ 5 tech tree.

it wouldmake sense for technologies categorized to belong to
the same era to have minimum science requirements of the
same magnitude.

As can be seen in Figure 7, the requirements for the
Industrial Era technologies do not differ much from each
other. Modern Era has more variance in this sense, and the
technology Future Tech of the Future Era seems to be clearly
an outlier that should be checked carefully, if the technology
tree was under development. In this case, however, the huge
amount of science points required is due to the unique nature
of Future Tech; it can only be developed after developing all
the other techs.

Besides OCs, we let TTT also compute other interesting
(local and global) indicator values for the technologies of
the Civ 5 tech tree. There are no surprises in the results.
GIN1 values are equal to correspondingGIN2 values, because
Civ 5 tech tree does not offer alternative routes to achieve
technologies. In Figure 8, the technologies are ordered into an
increasing order based on their GIN1 values (= GIN2 values),
marked simply as GIN in the figure. Also, the corresponding
RR values are shown in the same figure.

When GIN values increase, RR values tend to decrease.
This makes sense, because near ENs there are (typically, and
not only in this case) inexpensive technologies, via which
one has to proceed in order to access the other parts of the
tech tree. On the other hand, the final technologies typically
require lots of resources and they limit access to only few even
more advanced techs.

The TR value for beakers is 100,487, the ARCFAT value is
1,357.93, and the ABF is approximately 1.49. TR and ARCFAT
do not tell very much in a case of a single tech tree without

10 International Journal of Computer Games Technology

anything to compare to, but based on the modest ABF value
and the additional fact that the tech tree is connected, one can
conclude that it is also rather deep.

It is worth highlighting that the indicator values obtained
might be rather different, if measured from a patched version
of the game (possibly augmented with downloadable content
packages), as the tech tree properties have changed since the
Vanilla version. The fact that the tech tree has been modified
several times demonstrates that it is really an important
part of the game. As mentioned, used costs are also only
approximations; the exact in-game costs depend, for instance,
on the number of cities the player has.

8. On Correcting a Tech Tree

Whenever measurements indicate problems, taking correc-
tive steps can be either easy or tedious. With TTT, adjusting
the tech tree structure and modifying local properties, like
resource requirements and dependency relations of a single
technology, are easy, since the tool has been created for
effortless technology tree manipulation. The novel features
make such manual adjustments even easier. Especially worth
mentioning is the fact that the GTLA view (see Figure 5)
allows (imposing necessary restrictions) the user to drag
technologies along their respective paths and to commit
the corresponding resource requirement changes into the
actual tech tree presentation of the program, from which
functional technology tree code is generated automatically,
when desired. This way the user can see the effects of
planned changes to other technologies visually before actually
applying them.

As far as global adjustments (affecting the characteristics
of a tech tree as a whole) are considered, our tool so far
supports setting the desired TR value, based on which the
system is capable of adjusting the tech tree multiplicatively.
The modification is performed simply by determining and
applying a suitable multiplier for all the technology costs in
the tech tree.

9. Conclusion

In this paper, we have introduced indicator values and
discussed algorithms and our implementation for analyzing
technology tree features for proper adjustments. The imple-
mentation was also tested with a real, popular computer
game, and thus its capability to produce and visualize data,
which we strongly believe to be useful, was verified.

As future work, more general, important, andmeasurable
tech tree features should be pointed out, and corresponding
measuring and correcting procedures ought to be imple-
mented. Moreover, the automated analysis features currently
present in our software should be improved. Also, a consider-
able number of real-world tech trees ought to be analyzed in
order to find good practices and typical tendencies to guide
in the further development and fine-tuning of adjustment
automation procedures.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Hallford and J. Hallford, Swords & Circuitry: A Designer's
Guide to Computer Role-Playing Games, Stacy L. Hiquet, 2001.

[2] T. J. Heinimäki andT. Elomaa, “Facilitating technology forestry:
software tool support for creating functional technology trees,”
in Proceedings of the 3rd International Conference on Innovative
Computing Technology (INTECH ’13), pp. 510–519, London, UK,
August 2013.

[3] T. Ghys, “Technology trees: freedom and determinism in
historical strategy games,” Game Studies, vol. 12, no. 1, 2012.

[4] P. Tozour, “Introduction to Bayesian networks and reasoning
under uncertainty,” inAIGameProgrammingWisdom, S. Rabin,
Ed., pp. 345–357, Charles River Media, 2002.

[5] E. Schaefer, “Blizzard entertainment’sDiablo II,” inPostmortems
from Game Developer, A. Grossman, Ed., pp. 79–90, CMP
Books, CMPMedia LLC, San Francisco, Calif, USA, 2003.

[6] D. Morris and L. Hartas, Strategy Games, Ilex Press Ltd, Lewes,
UK, 2004.

[7] M. Barton, Dungeons and Desktops: The History of Computer
Role-Playing Games, CRC Press, 2008.

[8] T. J. Heinimäki, “Technology trees in digital gaming,” in Pro-
ceedings of the 16th InternationalAcademicMindTrekConference
(AMT ’12), pp. 27–34, October 2012.

[9] T. Owens, “Modding the history of science: values at play in
modder discussions of SidMeier’s CIVILIZATION,” Simulation
& Gaming, vol. 42, no. 4, pp. 481–495, 2010.

[10] R. Rouse III, Game Design: Theory and Practice, Wordware
Publishing, 2nd edition, 2005.

[11] A. Gazzard, “Unlocking the gameworld: the rewards of space
and time in videogames,” Game Studies, vol. 11, no. 1, 2011.

[12] J. Huizinga, Homo Ludens—A Study of the Play-Element in
Culture, Beacon Press, 1971.

[13] E. Adams, Fundamentals of Game Design, New Riders Publish-
ing, 2nd edition, 2009.

[14] T. J. Heinimäki, “Considerations on measuring technology
tree features,” in Proceedings of the 4th Computer Science and
Electronic Engineering Conference (CEEC ’12), pp. 145–148,
Colchester, UK, September 2012.

[15] List of technologies in Civ5, 2014, http://civilization.wikia
.com/wiki/Technologies%28Civ5%29.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

