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The idea of network protocol design based on optimization theory has been proposed and used practically in Internet for about
15 years. However, for large-scale wireless ad hoc network, although protocol could be viewed as a recursive solving of a global
optimization problem, protocol design is still facing huge challenge because an effective distributed algorithm for solving global
optimization problem is still lacking. We solve the problem by putting forward a systematic design method based on optimization
decomposition. The systematic method includes primal decomposition method and dual decomposition method, with which a
complex optimization problem can be decomposed into several smaller and independent optimization subproblems. By using
subgradient method, each of these subproblems can be solved distributively. Further, the above two methods can be combined in
different sequences or used recursively to solve more complex optimization problems. Two examples of wireless protocol design,
the transmission control protocol and the joint congestion control and power control protocol, are given to demonstrate its validity.

1. Introduction

Optimization method has been explicitly and widely applied
in Internet and especially become an important approach to
guide the network protocol design. It has been found that the
interaction process of network protocol could be viewed as
a process of solving a global optimization problem, which
has resulted in a new perspective for the design method
of network protocol. As the first paper in this field, Kelly
et al. introduced this new perspective with the research
object of transmission control protocol (TCP) in 1998 [1].
The perspective brought people a theoretical model for TCP
mechanism; thus new TCP protocols came into being, such
as TCP Reno and TCP Vegas. Since then, people began
to cognize and design network protocol via the thought of
optimization methods.

The design method is suitable for wireline network but
the large-scale ad hoc network. The reason is as follows. To
solve a global optimization problem, global information is

inevitably needed; in other words, the solving process must
be executed in an almighty node, which can get any necessary
information at any moment. It is very easy in wireline
network because of its powerful communication capability.
For the large-scale wireless ad hoc network, it is impossible
since it is very difficult to get information from nodes far
away because of its weak communication capability. Thus, if
the design perspective is still kept in large-scale wireless ad
hoc network, a distributed optimization algorithm for solving
global optimization problem is indispensable, which can
solve a global optimization problem only by communication
among neighbor nodes.

In this paper, we put forward a systematic design
method based on optimization decomposition. The system-
atic method includes primal decomposition method and
dual decomposition method, with which a complex opti-
mization problem can be decomposed into several smaller
and independent optimization subproblems. By using sub-
gradient method, each of these subproblems can be solved



distributively. Further, the above two methods can be com-
bined in different sequences or used recursively to solve more
complex optimization problems.

Two examples of wireless protocol design (one is the
transmission control protocol of single-layer and the other
is the joint congestion control and power control protocol of
cross-layer) are given to demonstrate its validity.

The organization of this paper is as follows. Section 2 is
related works. In Section 3, we introduced the optimization
decomposition theory. In Section 4, two design examples are
introduced. Simulation experiment is given in Section 5, and
the last section is conclusions.

2. Related Works

The design of wireless network protocol is more difficult
comparing with its wireline counterpart. Because wireless
transmission has the characteristics of signal attenuation and
interference, the complex interference among wireless links
causes the tight coupling among the network protocol layers.
Power control on the physical layer, for example, has direct
influence on the congestion control of the transport layer, so it
is difficult to make a clear division of network protocol layers
for wireless network. Thus, the traditional hierarchical model
is no longer valid, and the traditional design method does
not work either. What is more, the traditional network design
methodology focuses on referencing the existing protocols to
engineering projects and lacks the support of design theory,
so obtaining satisfactory results for complex wireless network
is difficult.

Obviously, it seems to be a good choice of using the
theory of optimization method to guide the wireless network
protocol design. In this way, characteristics of each layer
can be viewed as a uniform constraint set; thereby, the final
protocol may not have clear stratification. This feature is
very suitable for the characteristics of the wireless network.
Therefore, according to the idea of optimization protocol
design put forward by Kelly, methods of cross-layer schedul-
ing design combined with multiple factors such as routing,
congestion, MAC, power, and adjustable rate appeared in
study of the wireless network in recent years. And the cross-
layer design method is playing an increasingly important
role for improving performance of wireless networks [2].
For example, Lin and Shroff proposed a dual optimization
algorithm which jointed rate control and scheduling together,
and the algorithm could fully utilize the capacity of the
wireless network [3]. Based on network utility maximization
(NUM) model [4], Chiang et al. put forward a cross-layer
distributed algorithm for power control combining with the
TCP [5]. Nama et al. applied the NUM model to optimize
power of node [6]. Fu et al. proposed a fast algorithm for
joint power control and scheduling [7]. Papandriopoulos et
al. presented optimal cross-layer protocols of rate and power
control in condition of high SNR. However, these cross-
layer designs seem to be disorganized and lack theoretical
representation [8], and the practicability of these cross-
layer protocols is thus often based on some specific network
models which lack universality.

International Journal of Distributed Sensor Networks

Literature [9] systematically answered some questions
seemingly simple about the design of wireless network
protocol, which includes whether wireless network protocols
need stratification or not, which layers are they divided into,
what the function of each layer is, and how the interaction
works among these layers. The author proposed the idea
of “layering as optimization decomposition.” Its core idea
is that network protocol layering should be determined
by mathematical results of distributed decomposition of
optimization problems. However, the author only focused
on the decomposition of problems and did not summarize a
universal method for distributed protocol design of wireless
network.

3. Optimization Decomposition Theory

We focus on how to solve a global optimization problem
distributively.

When both objective function and constraints are linear
functions, the problem is a linear optimization problem. In a
similar way, when the objective function and constraints are
nonlinear, the problem is a nonlinear optimization problem.
Particularly, when the objective function and constraints are
both convex functions, the problem becomes the convex
optimization problem.

There are mature solutions to the above problems; how-
ever, most of the existing solutions are centralized. If the
optimization problem is solved via a centralized way, each
node needs to send related information to base station, and
then the base station sends back the solutions to each node
after solving the optimization problem in traditional meth-
ods, such as gradient method, conjugate gradient method,
and feasible direction method. Thus, the mentioned meth-
ods above are not suitable for large-scale wireless network
because of the restriction of bandwidth, energy consumption,
and scalability. So it is necessary to find distributed methods
to solve this kind of optimization problems.

Whether an optimization problem could be solved dis-
tributively depends on the structure of the problem. Some
problems have obviously decomposable structure but they are
rare in practice. There are two factors, complex variables and
complex constraints, which result in difficulty in optimization
decomposition. We employ primal decomposition method
and dual decomposition method to deal with them, respec-
tively.

3.1. Primal Decomposition. We consider the following opti-
mization problem:
max Z i (i y) + Z fi (%)
i=Lk

i=k+1,...,n (1)

X15X 50005 X5 Xy 1005 K 5 Y

st. x;€C; (i=1,2,...,n).

Once the value of y is determined, problem above is
obviously decomposable, so y is referred to as complex
variable.

Problem with objective function containing complex
variable is usually solved via primal decomposition method.
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Lemmal. One has max, , f(x, y) = max, max, f(x,y).

According to Lemma 1, (1) can be decomposed into n
subproblems with constraints

D, (y)=max f;(x;y)
' 2
st. x;€C; (i=1,2,...,k)
®; (y)=max  f; (x;)
3)
st. x;€C; (i=k+1,...,n)

and a master optimization problem with no constraints. The
master problem is used to determine the optimal value of y:

max Z @, (y). (4)
i=1,..0k

Obviously, all subproblems in (2) and (3) are completely
independent and can be solved, respectively. While the mas-
ter optimization problem is not distributed in mathematical
view, if all x; i = 1,2,...,k) are in a local area but not
the global area, the master optimization problem can still be
solved in distributed manner. We are very lucky that most of
the models for protocol design in wireless network belong to
the case.

From the view of economics, when y is regarded as a
public resource, the solution of master optimization problem
provides a supply quantity to the public resource, and k
suboptimization problems calculate their own maximum
benefit, respectively, after the public resource transmitting to
them. Then the master optimization problem adjusts value of
y again according to feedback from k suboptimization prob-
lems. As iteration proceeds, the maximum total efficiency and
the values of x; (i = 1,2,...,n) and y can be gotten.

3.2. Dual Decomposition. We consider the following opti-
mization problem with constraints:

o max Y filx)
SO W S T
st. x;€C; (i=1,2,...,n) (5)
Z h; (x;) = 0.
=12,k

The problem above has distributed solution if there is no
constraint of },_, ,  h;(x;) > 0. So the constraint is called
complex constraint. We usually use method of Lagrange
duality to deal with complex constraint.

Definition 2. We define the Lagrange function of optimiza-
tion problem (5) as

VX A) = Z fi (%) +A Z h; (x;)

i=1,..., i=1,...k

L(x,,...

Z (fi (x;) + Ahy (x;)) (6)
+ Z fi (x;)

i=k+1,..,n
and its Lagrange dual problem as

min max
A0 Xpoee00Xy

L(xp,...,x,A)
@)

st. x;€C; (i=1,2,...,n).

Lemma 3. If Slater condition holds, the primal problem and
its dual problem have the same optimal solution for a convex
optimization problem.

Thus the optimization problem (5) can be solved by
solving its dual problem equivalently. And Lagrange dual
problem can be decomposed into #n suboptimization prob-
lems

®; (A) = max (fi (x;) + Ak (x;))
st. x€C; (i=1,2,...,k) (8)
®; (y)=max  fi(x;)

st. x;,€C; (i=k+1,...,n) 9)
and one master optimization problem. The master optimiza-
tion problem is used to determine the optimal value of A:

min D; (A).
w2 (10)

From the view of economics, when A is regarded as
price of constraints (or shadow price), the solution of master
optimization problem provides the price, and k subopti-
mization problems calculate their own maximum benefit,
respectively, under the price. Then the master optimization
problem adjusts value of A again according to feedback from
k suboptimization problems. We can get the maximum total
efficiency and values of x; (i = 1,2,...,n) as iteration
proceeds.

Like primal decomposition, while the master optimiza-
tion problem is not distributed in mathematical view, if all
x; i = 1,2,...,k) are in a local area but not the global
area, the master optimization problem can still be solved in
distributed manner.

Problems of layering a network are equivalent to the ver-
tical decomposition of a convex optimization problem via the
method of dual decomposition [10], and the suboptimization
problems are representative of different layers of the network.



3.3. Subgradient Method. Both primal decomposition and
dual decomposition are easy to solve (e.g., gradient method
and Newton method) because their subproblems have spe-
cific expressions. However, the expressions of the master
problems are not clear; it is difficult in calculating gradient
and solving problems in traditional methods. Subgradient
method is suitable for the case where the optimization
expression is not clear.

Definition 4. Vector g denotes a subgradient of function f(x)
at xif f(y) = f(x) +g" (y — x), Vy.

Obviously, the subgradient of function f(x) at x is not
unique.

Definition 5. 'The set of all the subgradients of function f(x)
at x is called the subdifferential of function f(x) at x, denoted

as of (x).

Property 1. If f(x)isa convex function and differentiable, the
gradient of f(x) at t satisfies Vf(t) € of (¢).

Property 2. 1f g,(x) € 9f,(x), g,(x) € 0f,(x) hold, g,(x) +
g,(x) € 0(f1(x) + f,(x)) holds.

For an optimization problem, once a subgradient of object
function is gotten, the optimal solution can be computed
iteratively.

Let f be the object function, and we solve the minimum
value of f by iteration

x(k+1) — x(k) _ akg(k)7 (11)

where x® is the value of x and a; is the step size in the kth
iteration and g™ denotes a subgradient of f at x*).

The iteration step sizes in subgradient method are deter-
mined “offline,” and there are many different types of step
size rules, including constant step size, constant step length,
square summable but not summable step, and nonsummable
diminishing step. Readers can refer to [11] for further expla-
nation.

Now, the focus is how to calculate a subgradient for
master optimization problem. Theorems 6 and 8 are used to
get a subgradient of a maximal or minimal function.

Theorem 6. h(x*(A,)) is a subgradient of function g(A) =
min, (f(x) + ATh(x)) at Ay, where f(x) + ATh(x) gets its

minimum at x*(1).
Proof. For any A,
g(A1) = £ (x" (A) + A, R (x" (Ao))
= f(x" (1)) + Ao h(x" (X))
+(Ay - AO)T h(x™ (X))

= g(Mo)+ (A =20) R (x" (A)).
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Lemma 7. —h(x"(A,)) is a subgradient of function g(A) =
max, (f(x) + ATh(x)) at A,.

Theorem 6 and Lemma 7 are mainly used in dual
decomposition. Based on Property 2, a subgradient of master
optimization problem (10) can be gotten by Theorem 6 and
Lemma 7.

Theorem 8. —A"(y,) is a subgradient of convex optimization
function f*(y) = min, f(x), s.t. f(x) < y at y,, where f(x)
is concave, h(x) is convex, A(y) > 0, and A*(y) is the optimal
dual for the convex optimization function with parameter y.
Proof. Since it is a convex optimization problem,
* * * T
F o) = F(x"(0)) < F+A" (5)" (R (%) - yo)
Vx
= F )+ ()" (R0 -y)
* T
A () (r-x) ¥y
x T
< fE+A"(n) (=)

(Vx, y are satisfied with h(x) < y).

(13)

Now we employ a special value x:

X=arg min f (x)

(14)
st. h(x)<y
and then
£ () < FE+A (50) (v- ) )
= F )+ () (7= 0)-
O

Lemma 9. A*(y,) is a subgradient of function f*(y) =
max, f(x), s.t. h(x) < y at y,.

Theorem 8 and Lemma 9 are mainly used in primal
decomposition. Based on Property 2, a subgradient of master
optimization problem (4) can be gotten by Theorem 8 and
Lemma 9.

4. Two Design Examples
We give two design examples using the systematic design
method to verify its validity.

4.1. Problem Formulation

4.1.1. Single-Layer Design: Transmission Control Protocol. We
consider a wireless network with N nodes and L links, where
source node s uses link [ € L(s). Let S(I) denote the set of
source nodes which use link . If S(I) VI is given, it actually
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defines L x N routing matrix R. The element of R is defined
as follows:

1 [eL(s), the source node s uses link ,
Rls = (16)
0 otherwise.

We assume that the link capacity assignment C =
(c1sCpr-vrcy)’ is known. Let X = (x,, %, ...,xN)T be the
source rate assignment.

Let U,(x,) denote the utility when s sends data at rate x,,
and it reflects the satisfaction level of user s when it sends
data at a certain rate. The design object for our transmission
control protocol is to maximize the sum of sources’ utility by
finding the optimal X.

Then transmission control protocol is formulated as the
following global optimization problem:

max Y U, (x,)
s a7)
st. RX<C.

Generally, the utility function U (x,) is increasing and
is strictly concave. It has different forms according to the
different definition of satisfaction level of users. One of its
popular definitions is

w, log x
U(x) =4 (18)

w(1-a) %™ a #1.

4.1.2. Cross-Layer Design: Joint Congestion Control and Power
Control Protocol. We consider a joint congestion control
and power control protocol as the second example. We still
assume that the routing matrix R is known in advance.

Distinct from the above example, the capacity of link is
not fixed in this example. We assume that the capacity of a
link is only associated with the transmit power of its source
node. So the link capacity ¢(p;) is a nonlinear function of the
transmit power p;.

In order to prevent too large transmit power, which may
take adverse effects on other links, a constraint of maximal
summed transmit power is added in this example (it is
indeed necessary for CDMA cellular network). Thus, the joint
congestion control and power control protocol is modeled as
follows:

mx 30,(2)
(19)
s.t. Z x,<q(p) VL

s:ileL(s)

The protocol we designed is trying to find the optimal
solution (x*, p*) for the above optimization problem dis-
tributively.

4.2. Solutions of Examples. Now we solve the two examples
using method we suggest.

4.2.1. Solution of Transmission Control Protocol. For opti-
mization problem (17), the only constraint is a complex
constraint, so we use the duality decomposition method to
solve the problem. We associate a Lagrange multiplier for
each constraint,

L(xp, %0 s X3 A Ay AL)

= Z’US (x,) + Z/\l (g—x.Ry)

(20)
= Z (Us (xs) - xsZRlsAl> + ch/\l'
s 1 1
The dual objective function is
inL(xp, %y, ..., Xp35 A Ao AL)
min L (xp, -, X A A, 1) (1)
So it can be decomposed as N subproblems
@, (1) = max <Us (x,) — x, Rls)H)
* ; (22)
s=12,...,N
and one master problem
fgglzq’s )+ Zl:cl)\l. (23)

Since the suboptimization problem is local and its ana-
Iytic expression is known, it can be solved by using all
kinds of linear or nonlinear methods, which depends on
properties of the function U(x,), while, for the master
optimization problem, we use subgradient method. One of its
subgradients at Ais (¢;— Y Ry x; (A), =Y  Ryexi (A), ..., ¢ —
Y Rpx: (AT, where x; (M) is the optimal solution of the
corresponding subproblem. Then the master problem can be
solved via iteration as follows:

-0 )]
s + (24)

I=1,2,...,L,

where [x], denotes a projection that if x is less than or equal
to zero, we make it be zero, and if it is a positive number, we
retain the value. The projection is to ensure that A should not
be negative.

According to the thought above, node i operates in terms
of process of the protocol. And we can get the final optimum
rate after several iterations. The whole transmission control
protocol can be represented as shown in Algorithm 1.

4.2.2. Solutions of Joint Congestion Control and Power Control
Protocol. We can draw a conclusion from Section 3 that to
decompose a constraint needs one decomposition procedure.
Thus, when there are multiple constraints, we need to do
multiple decompositions. And astonishingly, we could even



International Journal of Distributed Sensor Networks

//Given &, /\i(o)

k=-1;
repeat
k=k+1;

until (Jx] A%) - x2(A®)] < ¢)
A6 Z pen),

The source node of link i collects x (A% of nodes in S(i), and updates its /\,-(k“) according to (24).
The source node s collects /\i(k”) of links in L(s), solves the optimal solution x A+,

ALGORITHM 1

//Given g, €,, P, \P")

k=-1;
repeat
k=k+1;

Send P to all other nodes.

until (|P*D - PO < ¢))

For each node i, calls Algorithm 1 with parameters (&, A} P®)).
Collect all A} (P™) and update plkn) according to (29).

ALGORITHM 2

get different protocols with different sequences of decompo-
sition. For the joint congestion control and power control
protocol, we present two types of decomposition sequences,
primal-dual decomposition and dual-dual decomposition.

(A) Primal-Dual Decomposition. In the optimization model
(19), P is a complex variable, so primal decomposition
method can be used. Thus, the problem can be decomposed
as follows.

The suboptimization problem (congestion control) is as
follows:

U” (P)=max ZUS (x)

s.t. Z x,<q(p) VI

s:leL(s)

and the master optimization problem (power control) is as
follows:

max U” (P)

st. Y p <P (26)
1

The suboptimization problem (25) can be further decom-
posed by dual decomposition method, which is similar to
Section 4.2.1, and it is further decomposed as N subproblems

O (L) = H}§X<Us (%) = x; Z q(p) Az)

leL(s)

s=12,...,N

and one master problem
Iggzd)s (). (28)

Thus, a subgradient of U*(P) at P can be deducted
using decomposite function as [A] (P)c{ (P), A5 (P)CZI(PZ), e
AZ(P)ci(PL)]T, where cl'(Pl) is the derivative.

To solve the mater optimization problem using dual
decomposition method, we need to obtain a subgradient of
U™ (P) under constraints Y; p; < Pr. But it is very difficult
to obtain. So we employ subgradient projection method [12].
First, we get a subgradient of U"(P) at P. Then, we make a
projection of the subgradient to constraints ), p; < Pp. The
projection is a subgradient of (26).

Thus, the master optimization problem updates its power
value as the following iteration:

PED = [PY a2 (P)e] (P), A5 (P)
’ (29)
G (B), A (P (B)]'],

where [ ], denotes the projection on the convex set QO = {P :
P>0,5, p < Prl.

For the suboptimization problem (25), it is similar to
problem (17) and can be further decomposed by dual decom-
position. Thus the joint congestion control and power control
protocol can be represented as Algorithm 2, which is executed
synchronously. For clearance, we describe the algorithm
centralized, although it could be realized distributively.

(B) Dual-Dual Decomposition. We can decompose problem
(19) in another way. First, we use dual decomposition method
to decompose the problem.
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/IGiven g, &, o,

k=-1;
repeat
k=k+1;

h=-1;
repeat
h=h+1;

For all s, solve (30) to get the optimum x; (Al(k)).
For all I, update A,**" from iteration formula (34).

For all ], solve p/ (y(h)) from problem (35).

For all [, update yl(

until (1p; (") - pr ™) < &)
until (|7 (L, %) = x2(4,0)] < &y)

) from iteration formula (37).

ALGORITHM 3

The suboptimization problem includes

@, (1) = max <US (x,) - ( Z /\,> x5>
s IeL(s) (30)

s=1,2,...,N,

H@Q)= max > (Mg (p)
’ ()
s.t. Zpl < PT'
7

The master optimization problem is as follows:

min<< D (I)S(/\)>+H(/\)>. (32)
A20 s=1,2,.,N

According to Lemma 7, a subgradient of subproblem (30)

at A is a vector (e;,e,,...,e;)", where
x; (A;) ifieL(s),
0 else.

For subproblem (31), its constraint has no effect on
variable A; thus, a subgradient at A is the negative derivative
of A, that is, —(c,(£,), & (P,)s - . . e (P ).

Thus, a subgradient of the master optimization problem
at Ay is g(p) = Yesq X; (Ay) foranyl € [1,2,..., L].

Thus, the master optimization problem updates its
“shadow price” as the following iteration:

/\l(kﬂ) = [)‘z(k) -« <Cz (p) - Z x; (Al(k))>:|
+ (34)

seS(l)
vle[l,2,...,L].

The suboptimization problem (31) is not distributed, so
dual decomposition method is employed again to decompose
it as follows.

Its suboptimization problem is as follows:
H(y) = max ((p)Mi—wp) VlellL,2,.... L], (35)

and its master optimization problem is as follows:

min <2ﬁl (A) + ylPT> . (36)
I

As in the above case, problem (31) iterates as

- a{-5 60|
l + (37)

vliel[l,2,...,L].

The whole joint congestion control and power control
protocol can be represented as Algorithm 3.

5. Simulation

We simulate the joint congestion control and power control
protocol in MATLAB. A wireless network with 6 nodes is
set up. There are 3 source nodes, 2 interim nodes, and 1
destination node. Network topology is shown in Figure 1.
Each source node sends data to the unique destination node
at a certain source rate; thus, there are 3 end-to-end data
flows in the network. The routing path for every flow is as
follows. Flow 1 passes through links 1, 3, and 5, flow 2 uses
links 2, 3, and 5, and flow 3 uses links 4 and 5. For each link,
we designate the node which is the start of each link as the
manager of the link. The responsibility of the manager is to
collect and update information of link, such as link power,
link capacity, and congestion coeflicient.

For our experiment, the utility function for each user is
U,(x,) = In(x,) and the capacity of each link is a function
of the link power, g(p;) = 2log,(1 + 2.5p,). Given initial
values randomly, we solve the optimization problem by using
Algorithm 3.

We report the evolution of the total utility and the data
rates of all 3 source nodes in Figure 2. We can see clearly
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o (1@
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FIGURE 1: Network topology for simulation of cross-layer protocol
design.

5 Evolution of source rate and total utility

Source rates x;-x; and total utility

-3 L L L L L L L
0 50 100 150 200 250 300 350 400

Iteration

— X

— X3

— * —— Total utility

FIGURE 2: Trend of total utility and source rates x;, x,, x; during
execution.

in Figure 2 that the value of objective function increases
gradually and finally achieves convergence. At the same time,
although their rates are set with different initial values, each
source node adjusts its rate distributively and eventually
achieves the convergence state. Interestingly, since source
nodes 1 and 2 are indistinguishable in Figure 1, we expect the
evolution of their data rate to be similar. Based on Figure 2,
source rates 1 and 2 converge to the same value with different
initial values.

We also plotted the evolution of congestion coefficient
(Lagrange multiplier) A; and the link power p,. Figures 3
and 4 show the changing of congestion coeflicients and the
link powers during the execution of distributed algorithm,
respectively. Obviously, both of them are convergent at about
250th iteration. Now we further analyze the implication of
trend of the congestion coeflicients and the link powers. From
the network topology, we know that link 5 is used by all 3
data flows and congestion will take place in link 5. That is
the reason why the congestion coefficient A is higher than
other congestion coefficients of links. Similarly, A5 is a little
higher than A, A,, A, as link 3 is used by both sources 1 and

International Journal of Distributed Sensor Networks

L4 Evolution of congestion coefficient

1.2

Congestion coeflicients ;- A5

0 50 100 150 200 250 300 350 400

Iteration
— A Ay
— A — A
A3

FIGURE 3: Trend of congestion coeflicients A, -1, during execution.

Evolution of link power
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g
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—
4L
2k \
O 1 1 1 1 1 1 1
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Iteration
— DN Py
— P — b
b3

FIGURE 4: Trend of link powers p,-p; during execution.

2. To maximize the total utility, manager of link 5 needs to
update the power as high as possible to increase the capacity
of link 5. Because of the total power limit of all links and
influence among these links, the power of link 5 cannot
increase unboundedly and converges to an optimal value with
constraints in the end, which is shown in Figure 4.

Though it seems that the scale of our network topol-
ogy is small, the concise topology can explain all the key
ideas of method we proposed. From the results of our
simulation above, we obtain the maximum total utility
and the optimal solutions of source rate and link power
distributively. The reliability and validity of the optimization
decomposition theory in large-scale wireless network pro-
tocol design are verified by our simulation. So optimization
decomposition theory has a strong significance in practical
problems.
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6. Conclusions

For a decomposable complex optimization problem, to solve
it distributively, different sequences of decomposition can be
employed, which corresponds to different protocol. These
protocols have the same optimization objective but they
may have different performance such as power consumption,
convergence rate, and the number of interactive messages.
We can choose the right sequence according to specification
reasonably. Regretfully, we have no knowledge about how to
select a suitable decomposition sequence now. But it does not
conceal the great value of the method in large-scale wireless
network protocol design.

The subgradient method has little requirement of mem-
ory and it can solve many complex optimization prob-
lems. However, comparing to interior point method, the
subgradient method has slower convergence rate and the
rate of convergence has a big relationship with the scale of
the optimization problems. At present, there are improved
subgradient methods like increment subgradient method to
speed up the convergence rate. If the convergence speed is
fast, it will promote the application value, since it can be
suitable for wireless network with rapid varying topology.
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