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We review theoretical models for nonelectromagnetic emission,mainly neutrinos and cosmic rays, from gamma-ray bursts (GRBs).
In various stages of the relativistic jet propagation, cosmic-ray ion acceleration and subsequent neutrino emission are expected.
GRBs are popular candidate sources of the highest-energy cosmic rays, and their prompt phase has been most widely discussed.
IceCube nondetection of PeVneutrinos coincident withGRBs has put interesting constraints on the standard theoretical prediction.
The GRB-UHECR hypothesis can critically be tested by future observations. We also emphasize the importance of searches for
GeV-TeV neutrinos, which are expected in the precursor/orphan or prompt phase, and lower-energy neutrinos would be more
guaranteed and their detections even allow us to probe physics inside a progenitor star. Not only classical GRBs but also low-power
GRBs and transrelativistic supernovae can be promising sources of TeV-PeV neutrinos, and we briefly discuss implications for the
cumulative neutrino background discovered by IceCube.

1. Introduction

The most luminous explosions in the universe, gamma-
ray bursts (GRBs), are characterized by nonthermal photon
emission in both the prompt and afterglow phases. In such
extreme phenomena, nonleptonic emissions, such as cosmic
rays and neutrinos, have been suggested. Waxman [1] and
Vietri [2] pointed out GRBs as possible sources of ultrahigh-
energy cosmic rays (UHECRs). Then, associated neutrino
emission was predicted [3, 4].

The GRB jets have several candidate sites where nonther-
mal particles are accelerated. First, the energetic jet launched
from the central engine may generate a jet’s head-cocoon
structure (e.g., [5, 6]) in the progenitor star. Then, the shock
wave reaches the stellar surface (shock breakout, e.g., [7–
9], for the supernova case), and the jet propagates in the
interstellar medium (ISM) or the wind material from the
progenitor. In the classical internal shock model, the prompt
gamma-ray emission is attributed to internal shocks due to
the inhomogeneity in the jet or the temporal variability of
the engine activity. At ∼1016–1017 cm from the central engine,
the jet starts deceleration via interactions with the external
medium. The external shock in this stage corresponds to

the afterglow observed at optical, 𝑋, and radio wavelengths.
In those various stages of the jet evolution, we can expect
particle acceleration, which may result in not only photon
emission but also neutrino and cosmic-ray emissions.

In this paper, we review studies on neutrino and cosmic-
ray emission from GRBs. The multimessenger astronomy is
an important subject, the present day is just at the dawn
of neutrino astrophysics, since IceCube recently detected
astrophysical neutrinos [10–13]. The detected PeV neutrino
flux is compatible with various upper bounds based on the
UHECR production rate [14–16], which may suggest some
connection betweenUHECRs and PeV neutrinos. In the next
decade, the connection between neutrinos and high-energy
celestial objects may be revealed by not only IceCube but also
other neutrino detectors [17–21].

GRBs will be detected with also gravitational wave (GW)
detectors [22] such as aLIGO [23], aVirgo [24], and KAGRA
[25]. The promising candidate of short GRB sources espe-
cially is a binary neutron star merger, which is the primary
target for GW detectors. The recent claim of detection of a
“kilonova,” infrared transient about ∼10 days after the burst,
from short GRB 130603B [26] is encouragingly consistent
with the binary merger models, in which 𝑟-process nuclei
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produced in the neutron rich ejecta provide the infrared
energy via their radioactive decays (e.g., [27, 28] and the
references therein). Therefore, GW observations of GRBs
will be one of the hottest research areas in the next decade.
Taking into account qualitative difference between GW and
neutrinos, we omit this topic in this paper. However, we
should notice the importance of the future correlation study
between GW and neutrino detectors (e.g., [29–33]).

2. GeV-TeV Neutrinos in
the Precursor/Orphan Stage

In the most widely accepted scenario for long GRBs, a
relativistic jet is launched from a black hole-accretion disk
system in a core collapse of a massive star. Alternatively,
the central engine may be a fast-rotating, highly magnetized
neutron star. The classical fireball scenario [34] supposes
that a radiation-dominated electron-positron pair plasma is
formed just above the accretion disk. The accretion disk may
emit copious thermalMeVneutrinos, whichmay generate the
fireball via neutrino pair annihilation [35–37]. However, the
contribution of the GRB thermal neutrinos would be negligi-
ble compared to the diffuse supernova neutrino background
[38]. Here, we discuss high-energy neutrinos produced in the
early stage of the fireball.

The bulk Lorentz factor of the fireball evolves with radius
𝑅 as Γ ∼ 𝑅/𝑅

0
, where 𝑅

0
is the initial size of the fireball. The

acceleration saturates at 𝑅 ∼ 𝜂𝑅

0
, where 𝜂 ≡ (𝐿 jet/ ̇

𝑀𝑐

2
). At

the base of the fireball, a significant fraction of baryons may
be in the form of neutrons. Initially 𝑝 and 𝑛 components are
tightly coupled via nuclear elastic scattering with the cross-
section of ⟨𝜎elVrel⟩ ∼ 𝜎pp𝑐, where the cross-section for pion
production via pp-collision is 𝜎pp ∼ 3 × 10

−26 cm2. When the
scattering timescale (𝑛



𝑝
⟨𝜎elVrel⟩)

−1 becomes longer than the
dynamical timescale 𝑅/(𝑐Γ), 𝑝 and 𝑛 components decouple.
Defining the density ratio 𝑓

𝑛
≡ 𝑛



𝑛
/𝑛



𝑝
, the proton density in

the comoving frame can be written as

𝑛
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=
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2
𝑚

𝑝
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. (1)

If the decouple occurs during the acceleration period, only
the𝑝 component can be accelerated by the radiation pressure.
Then, the relative velocity between 𝑝 and 𝑛 flows can be high
enough to produce pions via 𝑛𝑝 collision.Then, we can expect
neutrino emissions at an energy of a few GeV from pion and
muon decays [39, 40]. If the decouple occurs later, internal
shocks should also play a role in dissipation. If we adopt the
Poynting flux dissipationmodel as an alternative acceleration
mechanism, the jet may initially evolve as Γ ∼ (𝑅/𝑅

0
)

1/3

[41], depending on the dissipation mechanism. Koers and
Giannios [42] and Gao and Mészáros [43] calculated the
neutrino flux for such models.

This compound-flow model has been considered in the
context of the photospheric scenario for prompt emission, in
which the origin of gamma-ray photons is mainly thermal
rather than synchrotron.The injection of secondary electron-
positron pairs via inelastic 𝑛𝑝 collisions leads to a nonthermal
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GRB stacking analyses with DeepCore + IceCube fromMurase et al.
[45].

component in the photon spectrum [44]. Such models
inevitably predict quasithermal neutrino emission in the 10–
100GeV range [45–47]. However, detecting neutrinos from
a single GRB is challenging. Murase et al. [45] showed that
∼10 yr stacking analyses will be needed to find quasithermal
neutrino signatures (see Figure 1).

The jet inside a progenitor star can be the site where
precursor and orphan neutrinos are produced [48–51]. A
significant fraction of the jets originated from core collapse
of massive stars may fail to break through the stellar enve-
lope. The shock-accelerated protons can produce pions via
interactions with thermal photons and thermal nucleons. If
cosmic-ray acceleration occurs in the high density plasma,
cooling effects of pions can strongly limit neutrino energies,
and contributions from kaons can be dominant at higher
energies [52–54]. Neutrinos from choked jets can also be
expected for massive progenitors in the first generation of
stars (Pop. III stars [55]).

However, particle acceleration postulated in choked jets
and subphotospheric GRB emission models is inefficient in
high-power jets [51]. The high radiation pressure inside the
progenitors deforms the shock structure [56], where the
shock transition layer becomes thicker than the collisionless
mean-free path of particles, so that particles cannot be
efficiently accelerated to very high energies. Murase and
Ioka [51] derives radiation constraints on high-energy neu-
trino production, taking into account the fact that the jet
is collimated and becomes cylindrical rather than conical.
Although high-power GRB jets cannot be good neutrino
emitters, interestingly, it is shown that low-power GRB jets
are more promising sources of TeV neutrinos. Low-power
jets are more difficult to penetrate the star, so that “choked
jets” or “failed GRBs” may be better neutrino sources. If the
fraction of the choked GRBs is high enough, this greatly
enhances the neutrino background flux compared to the
estimate according to only the observed GRB rate [51].
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Then, can we still expect nonthermal neutrinos from
high-power GRBs? An interesting idea to overcome this
difficulty is to invoke the neutron-proton-converter (NPC)
acceleration mechanism [57, 58], and Murase et al. [45]
pointed out that this mechanism naturally occurs in GRB
jets as long as neutrons are loaded. When compound flows
cause internal shocks, neutrons from the upstream can easily
cross the shock transition layer and may be converted again
into protons in the downstream. Then, such protons are
easily isotropized by magnetic fields, and some of them can
go back to the upstream as neutrons. Kashiyama et al. [58]
first performed numerical simulations and showed that a
good fraction of the incoming neutron energy is converted
into high-energy nucleons. Since the neutrino-nucleon cross-
section increases as energy, the NPC accelerationmechanism
enhances the detectability of neutrinos.

Detections of high-energy neutrinos produced in jets
inside a star will bring to us precious information about the
progenitor stars from the energy-dependent onset time of the
neutrinos and cutoff energy in the neutrino spectrum [59].
One would be able to study neutrino oscillation including
matter effects [60, 61], and flavor measurements could allow
us to probe magnetic fields [62] or other new physics effects
such as neutrino decay or quantum decoherence [63].

3. PeV Neutrinos and UHECRs in
the Prompt Emission Stage

The internal shock in the prompt emission stage is one of
the candidates of UHECR acceleration site. Using the con-
ventional energy fraction parameters 𝜖

𝑒
and 𝜖

𝐵
, the magnetic

field in the jet frame is written as
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Although synchrotron cooling often limits the maximum
energy of accelerated protons, if not, equating the dynamical
timescale and acceleration timescale 𝜉𝜀
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where 𝜉 > 1 is the effective Bohm factor. According to the
local GRB rate of 0.1–1Gpc−3 yr−1 (e.g., [64]), the required
energy of accelerated protons to explain local UHECR flux
(integrated from the minimum proton energy to the maxi-
mum proton energy) is 10–100 times the gamma-ray energy
released in the prompt phase (e.g., [65]). Although the GRB

rate in our Galaxymay be very low, a possible past GRB could
contribute to the observed flux and composition of cosmic
rays [66, 67].However, the required baryon loading factor has
to be quite large.

If cosmological GRBs are sources of UHECRs, the arrival
time is energy-dependent owing to intergalactic and galactic
magnetic fields, so that individual sources could show a
narrow spectral feature, depending on the apparent source
number density [68–70]. Although a point source or striking
anisotropy in the arrival directions of UHECRs has not been
found yet [71], the UHECR constraints are still consistent
with the GRB-UHECR scenario [70, 72].

Results of the Pierre Auger Collaboration claimed on
depths of shower maximum for UHECRs suggest an increas-
ing fraction of heavy nuclei [73, 74], while the data of the
Telescope Array Team can still be interpreted as a proton
dominated composition [75]. If the GRB jet is magnetically
dominated, heavy nuclei may be synthesized because of its
low entropy [76]. The survival of UHE nuclei in emission
regions has been shown to be possible [65, 77, 78].

The timescale of photomeson production is calculated by
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where 𝜇 is the cosine of the photon incident angle and
𝐾

𝑝𝛾
is the proton inelasticity. If we adopt the rectangular

approximation for pion production around the Δ-resonance
(however see [79] for importance of multipion production),
𝜎
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where 𝑡



dyn ≈ 𝑟/Γ

𝑗
𝑐 is the dynamical time, 𝐾

Δ
∼ 0.2, 𝜀

Δ
∼

0.3GeV, Δ𝜀

Δ
∼ 0.2GeV, 𝐿𝑏

𝛾
is the luminosity at 𝜀

𝑏

𝛾
, 𝛽 is the

photon index, 𝑅 is the emission radius, and Γ is the bulk
Lorentz factor of jets. The typical neutrino energy is given by
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For a low-energy portion (𝜀
𝑝

< 𝜀
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𝑝
), the photomeson

production efficiency decreases as 𝑡
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𝑝 . For a high-
energy portion, if 𝛽 ∼ 1, the timescale does not depend on
proton energy.

The cumulative neutrino background intensity is
obtained by integrating the comoving GRB rate, 𝑅GRB(𝑧),
into (e.g., [80])
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and 𝑁](𝜀]) (neutrinos GeV
−1) is the average neutrino spec-

trum per burst.
Several authors have estimated the cumulative neutrino

flux from GRBs [79, 81–87]. The IceCube Collaboration has
put interesting constraints on theoretical predictions [88].
However, their theoretical model used for interpretations has
several caveats that do not exist in earlier theoretical papers
(e.g., [79, 86]).The predicted flux based on the original paper
[4] is actually lower than that shown by Abbasi et al. [88].
Note that this difference does not arise from astrophysical
uncertainty, so it should be properly taken into account [89–
92]. As a result, only optimistic models such as the ones
with large baryon loading factors have been ruled out by
observations. Furthermore, nondetections of neutrinos from
the nearby bright burst GRB 130427A [93] severely constrain
the neutrino production efficiency [94].

In addition, several sophisticated developments have
been made (e.g., [92, 95–100]). Asano andMészáros [95] car-
ried out time-dependent numerical simulations of hadronic
cascades for a wide range of parameter sets, adopting the
luminosity function in the work of Wanderman and Piran
[64] and a log-normal distribution of variability timescale
(𝛿𝑡 ∼ 𝑅/Γ

2
𝑐). The diffuse neutrino intensity is well below

the experimental limit by IceCube indicated by Abbasi et al.
[88] (see Figure 2) and the latest result shown by Aartsen
et al. [101], while UHECRs released by GRBs contribute
to only above 10

19.5 eV in this parameter set. The neutrino
production efficiency should be suppressed by larger Γ or
smaller 𝑓

𝑝
at least for bright GRBs. We should also notice

that, depending on models, the neutrino intensity can be
dominated by contributions from a few very bright GRBs,
while most UHECRs are released from relatively less lumi-
nous GRBs. Bustamante et al. [97] performed simulations
of internal shocks and first calculated neutrino, gamma-ray,
and UHECR emission from multiple emission regions. They
took into account all the detailed microphysics, including
multipion production and neutrino mixing. They found
that the neutrino emission is dominated by contributions
around the photosphere, while UHECRs and gamma rays
come from larger radii. Interestingly, it is shown that
the minimum diffuse neutrino is pretty robust, which is
∼10−11 GeV cm−2 s−1 sr−1. This implies that, in the internal
shock model, the GRB-UHECR hypothesis can be more
robustly tested by next-generation neutrino detectors.

Large nonthermal baryon loading factors have been
challenged by gamma rays as well as neutrinos. If protons
are efficiently accelerated in the prompt phase as assumed
in the above models, electromagnetic cascades triggered by
pionic gamma rays and/or proton synchrotron emission may
generate GeV-TeV photons [102–108]. Actually Fermi has
found extra spectral components in the GeV energy range,
which are possible signatures of the hadronic cascades [109–
112]. However, other interpretations exist, including leptonic
models [113–117] and early afterglow models [118–120]. In
hadronicmodels, the required energy of protons to agreewith
the observed GeV flux is 10–100 times the gamma-ray energy
itself [121–123], which is consistent with the GRB-UHECR
scenario. If all GRBs have such a large proton luminosity,

10−10

10−11

10−12

10−13

10−14

1014 1015 1016 1017 1018 1019 1020

𝜀 (eV)

𝜀2
J(
𝜀)

(e
rg

/c
m
2
/s

/s
r)

CRs
Auger

IC40 + 59

Neutrino

GZK neutrino

Figure 2: CR (black) and neutrino diffuse intensities in the model
calculation in the work of Asano and Mészáros [95].

hadronic cascade emission should overwhelm the original
leptonic component and distort the gamma-ray spectrum
[124]. Most GRBs do not have strong evidence of the extra
spectral components in the GeV range [125, 126], which
implies that the neutrino production efficiency should not be
high either [127].

There are alternative models of the prompt emission, in
which hadronic cascades play a crucial role. The leptonic
stochastic acceleration model (e.g., [128]) assumes a narrow
energy distribution of electrons due to the balance of accel-
eration and cooling. While such an energy distribution can
naturally reproduce the hard spectral index in the low-energy
portion, a high-energy component is needed to be explained.
Murase et al. [129] considered hadronic cascade processes
as an efficient electron injection mechanism, and the syn-
chrotron spectrum is shown to be very hard.The combination
of thermal and synchrotron spectra can explain spectra of
various GRBs. In the model of Petropoulou et al. [130],
the secondary photons produced via hadronic cascades are
scattered by secondary electron-positron pairs. This comp-
tonization makes a band-like spectrum. Such models always
accompany some neutrino emission, so that constraints by
IceCube should be taken into account.

Although the internal shock model can reproduce the
observed light curves and gamma-ray spectra qualitatively,
there are several quantitative difficulties such as the emis-
sion efficiency, low-energy spectral index, and the narrow
distribution of the spectral peak energies. An alternative
model is the dissipative photosphere model [44, 47, 131–
135], in which some fraction of the jet energy is dissipated
into nonthermal electrons near the photosphere. In such
models, the dissipation radius, where particle acceleration
is expected, is much smaller than that in the internal shock
model. As a result, the 𝑝𝛾 and 𝑝𝑝 efficiency becomes higher,
while the cooling effect on pions/muons softens the neutrino
spectrum [136, 137]. For Poynting flux dominated jets, they
have a relatively larger photosphere and magnetic field. Such
differences in model characteristics lead to some variety in
neutrino spectra [65, 91, 138, 139].
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TeV gamma-ray observations in the CTA era will also
be relevant. If CTA detects a GRB, its huge photon statistics
provide dedicated light curves.The correlation study between
TeV and MeV light curves allows us to determine the
emission mechanism of GeV-TeV photons. If the GeV-TeV
photons are secondary photons from hadronic cascades,
GeV-TeV light curves will correlate with MeV gamma-ray
variability but would show broader pulse profiles reflecting
the longer timescale of the photomeson production than the
electron cooling [140].

The dominant contributions to the UHECRs and cumu-
lative neutrino background may come from another popula-
tion of GRBs, such as low-luminosity GRBs (LL GRBs [142–
144]). Though the gamma-ray energy, 𝐸iso ≲ 10

51 erg, is
much lower, its higher event rate makes LL GRBs candidate
sources of UHECRs and neutrinos [65, 141, 145, 146]. As
shown in Figure 3, one of the model spectra in the works of
Murase et al. [141] and Murase and Ioka [51] is interestingly
close to the observed diffuse PeV neutrino intensity (∼
10−8 GeV cm−2 s−1 sr−1 [11]).

So far, all LL GRBs are accompanied by broad-line-
type Ic supernovae with mildly relativistic ejecta [147, 148].
The UHECR production and neutrinos from such a mildly
relativistic shock [65, 149] and shock breakout [58] have been
discussed as well. The shock breakout model of Kashiyama
et al. [58] predicts TeV gamma rays as well as high-energy
neutrinos, so future TeV gamma-ray observations such as
CTAwill be important although the detection possibility with
CTA may be <∼0.1 yr−1 [150, 151].

4. EeV Neutrinos and UHECRs in the
Afterglow Phase

Afterglow emission is caused by external shocks propagating
the ISM or wind material. The external-forward shock has
been considered as the site of UHECR and EeV neutrino
production [152–154]. The long-lasting GeV emissions from
several GRBs detected with Fermi can be interpreted as
afterglows [118, 119], in which a significant fraction of the
bulk energy is dissipated into electrons, unless only a fraction
of the particles are injected into nonthermal acceleration.
Note that the spectral peak is in the EeV range; this model
cannot explain the cumulative neutrino background detected
by IceCube. We should also notice the theoretical difficulty
of particle acceleration to ultrahigh energies at the forward
shock (see, e.g., [155] and the references therein). The rel-
ativistic shock often becomes superluminal, where particle
acceleration is inefficient at very high energies. It has been
thought that UHECRs cannot be generated by the shock
acceleration mechanism at the forward shock, but other
possibilities such as stochastic acceleration have also been
invoked [152].

On the other hand, the external-reverse shock has been
one of the good sites ofUHECRproduction andEeVneutrino
production, since it is mildly relativistic or nonrelativistic
[156].The low photon density in the afterglow phase typically
implies a moderate efficiency of photomeson production.
The afterglow picture is now rich in the Swift era, and
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many models have been proposed. UHECRs accelerated at
the reverse shock can interact with photons produced by
both forward and reverse shocks. Murase [80] investigated
various possibilities and showed that it is possible to detect
EeV neutrinos by next-generation neutrino detectors such as
Askaryan Radio Array (see Figure 4).

In addition, afterglow emission may include components
coming from internal dissipation. A famous example is X-ray
flare emission. Although high-energy gamma-ray emission
from flares is typically discussed in view of leptonic models
[157], it is possible to expect hadronic emission as well
[158]. Since the photomeson production efficiency is likely
to be higher than that in the prompt phase, neutrinos
coincident with flares and afterglow emission (caused by
internal dissipation) can be as much important as prompt
neutrino emission [80, 158].
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5. Summary

The multimessenger era of GRBs is now coming. In par-
ticular, the IceCube Collaboration has discovered high-
energy neutrinos, and neutrino astrophysics has now started.
Although GRB neutrinos have not been found yet, detecting
GRB neutrinos is still one of the appealing possibilities to
identify neutrino sources. Even with nondetections, the latest
constraints are important to test the connection between
GRBs and UHECRs. Gamma-ray observations by Fermi have
also provided complementary information, and CTA may
enable us to detect TeV gamma rays from GRBs with high
statistics.

CTA should also be powerful to study afterglow mech-
anisms. So far, there has been no indication of hadronic
emission in the afterglow phase, but it is possible to expect
associated UHECR and EeV neutrino emission. Searches for
extremely high-energy neutrinos from afterglows will also
be improved in the future; next-generation detectors such
as Askaryan Radio Array may enable us to test the GRB-
UHECR hypothesis even in afterglow models.

In addition, GeV-TeV neutrino detections are also
promising, and analyses for such low-energy neutrinos from
choked jets and GRBs before jet breakouts should be impor-
tant to reveal the jet physics and relationship between GRBs
and supernovae. In this case, gamma rays cannot escape
directly, so neutrinos provide us with a unique opportunity.
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[40] M. J. Rees and P. Mészáros, “Dissipative photosphere models of
gamma-ray bursts and X-ray flashes,”TheAstrophysical Journal,
vol. 628, no. 2, p. 847, 2005.

[41] G. Drenkhahn, “Acceleration of GRB outflows by Poynting flux
dissipation,”Astronomy andAstrophysics, vol. 387, no. 2, pp. 714–
724, 2002.

[42] H. B. J. Koers and D. Giannios, “Neutron-rich gamma-ray
burst flows: dynamics and particle creation in neutron-proton
collisions,” Astronomy & Astrophysics, vol. 471, no. 2, pp. 395–
408, 2007.
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[90] S. Hümmer, P. Baerwald, and W. Winter, “Neutrino emission
from gamma-ray burst fireballs, revised,” Physical Review Let-
ters, vol. 108, no. 23, Article ID 231101, 5 pages, 2012.

[91] H.-N. He, R.-Y. Liu, X.-Y.Wang, S. Nagataki, K.Murase, and Z.-
G. Dai, “Icecube nondetection of gamma-ray bursts: constraints
on the fireball properties,” Astrophysical Journal, vol. 752, no. 1,
article 29, 2012.

[92] R.-Y. Liu and X.-Y.Wang, “Diffuse PeV neutrinos from gamma-
ray bursts,”The Astrophysical Journal, vol. 766, no. 2, article 73,
2013.

[93] M. Ackermann,M. Ajello, K. Asano et al., “Fermi-LAT observa-
tions of the gamma-ray burst GRB 130427A,” Science, vol. 343,
no. 6166, pp. 42–47, 2013.

[94] S. Gao, K. Kashiyama, and P. Mészáros, “On the neutrino non-
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from gamma-ray bursts,”TheAstrophysical Journal, vol. 641, pp.
L89–L92, 2006.

[158] K. Murase and S. Nagataki, “High energy neutrino flashes from
far-ultraviolet and X-ray flares in gamma-ray bursts,” Physical
Review Letters, vol. 97, Article ID 051101, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


