
Research Article
A Simulation Perspective: Error Analysis in the Distributed
Simulation of Continuous System

Yao-fei Ma and Xiao Song

School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

Correspondence should be addressed to Yao-fei Ma; mayaofeibuaa@163.com

Received 8 January 2015; Revised 8 April 2015; Accepted 15 April 2015

Academic Editor: Yun-Bo Zhao

Copyright © 2015 Y.-f. Ma and X. Song.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To construct a corresponding distributed system from a continuous system, the most convenient way is to partition the system into
parts according to its topology and deploy the parts on separated nodes directly. However, system error will be introduced during
this process because the computing pattern is changed from the sequential to the parallel. In this paper, themathematical expression
of the introduced error is studied. A theorem is proposed to prove that a distributed system preserving the stability property of the
continuous system can be found if the system error is limited to be small enough. Then, the compositions of the system error are
analyzed one by one and the complete expression is deduced, where the advancing step T in distributed environment is one of the
key factors associated. At last, the general steps to determine the step T are given. The significance of this study lies in the fact that
the maximum T can be calculated without exceeding the expected error threshold, and a larger T can reduce the simulation cost
effectively without causing too much performance degradation compared to the original continuous system.

1. Introduction

Engineering problems involve dealing with physical sys-
tems. Since most physical laws are described by differential
equations, simulation in engineering is in fact related to
numerical resolution of differential equations. This is called
continuous system simulation and even the components (i.e.,
the subsystems or submodels) of it are generally described in
time discretization manner [1].

The large engineering system has sustained requirement
on distributed simulation for two reasons. First, the continu-
ous growth on system scale and complexity results in intense
demand on computing capacity, which can be mitigated in
distributed environment by scattering the computing load
to networked nodes. Second, the system itself is sometimes
geographically fragmented; thus, the distributed structure
is needed to be consistent with its topology. Except those
constructed in distributed manner from scratch, there are
still many classic continuous systems that were constructed
in the nondistributed way, in that the system was designed
and tested without considering the possible scenario of
distributed simulation.Thedemand to transform such system
into the distributed one emerges.

The classic continuous system is characterized by com-
puting its components in pipeline, where a computing
sequence is set up and the components are computed one
by one within a step; the sequence is determined by the
component’s input/output characteristics and the data depen-
dence. By contrast, the computation on each component in
the distributed environment will start simultaneously and
advance in a parallel manner; the updating data is exchanged
periodically through the network for synchronization.

The difference between two computing patterns can
be formulized as follows. Suppose a system containing 𝑛
components:𝑀 = {𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
}. A single component can

be represented as 𝑚
𝑖
= {𝑥
𝑖
, 𝑦
𝑖
, 𝑓
𝑖
}, where 𝑥

𝑖
is the input, 𝑦

𝑖
is

the output, and 𝑓
𝑖
is the model function. We have 𝑦

𝑖
= 𝑓
𝑖
(𝑥
𝑖
).

Assuming a computing sequence 𝑄 = {𝑞
1
, . . . , 𝑞

𝑖
, . . . , 𝑞

𝑛
}

has been determined in the nondistributed environment, the
pipeline computing within one step can be described as
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𝑦
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𝑖 = 2, . . . , 𝑛,

(1)

where 𝑘 = 0, 1, 2, . . . , ℎ is the step size and the subscript 𝑞
𝑖

refers to the index in 𝑄. In the pipeline computing, the first
component is assumed to get the input from a signal source
𝐼, and the others get inputs following the data dependence
among themselves.

By contrast, the one-step computing in distributed envi-
ronment can be described as
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) ,

𝑖 = 2, . . . , 𝑛,

(2)

where 𝑇 is the advancing step of the distributed system. It
should be noted that the computing sequence is not held any
more in this case.

There are two differences comparing these two comput-
ing processes. First, the computing is synchronous in the
nondistributed environment. For each component, the input
is updated to time step 𝑘 firstly, and then the output at 𝑘
is computed (the data dependence among components is
assumed to be consistent with the computing sequence). On
the other hand, the computation is parallel in the distributed
environment and each component starts simultaneously.The
input of a component will still hold the value of step (𝑘 −
1) when the output at 𝑘 needs to be computed. Second,
the advancing steps of two environments, ℎ and 𝑇, may be
different. In the nondistributed environment, ℎ is determined
by the equation solver; either fixed or variable step is
employed.However, the determination of𝑇needs to consider
the bandwidth of the underlying network, signal frequency,
human perception limitation, and so forth. It is often the case
where the whole system advances with a fixed 𝑇 and 𝑇 ≥ ℎ.

A formal approach capable of partitioning a system
into parallel parts and properly handling the above two
issues is the key to build a distributed simulation from a
nondistributed one.This problem, denoted as the Partitioning
Problem, was early studied in the simulation of complex
mechanical systems [2, 3] and then became a research focus
in the field of discrete event simulation [2, 4, 5] and the
decentralized, large-scale control system [6, 7]. However, the
proposed approaches all involved extra efforts to reformulize
or reengineer the simulated system and did not consider the
possible difference on ℎ and 𝑇 either.These drawbacks set up
barriers to apply these approaches broadly.

In [4], anovel partitioning approach is proposed using the
system’s topology.This approach is easy to perform sincemost
classic simulations have block-diagram structures, but it is
“lossy” because the disorder of the component’s input/output
data cannot be avoided, thus leading to the error on state

trajectory of the resulting distributed system. To reduce
the error, a portioning rule was proposed to eliminate the
possible cumulative delays caused by improper partitioning,
which contribute a lot to the overall error.

This paper will study the mathematical expression of this
error. The correlation between the error and the advancing
step 𝑇 in distributed environment is revealed. Then, a max-
imum 𝑇 can be calculated according to the error threshold
specified by the system engineer. The significance to find
the maximum 𝑇 lies in the fact that a larger 𝑇 will improve
the parallelism of the partitioned system by reducing the
synchronization frequency between nodes, without causing
too much performance degradation at the same time.

2. Literature Review

The Partitioning Problem was early studied in the coupled
problem [2, 5] of complex mechanical system simulation,
where the fluids, thermal, control, and structure subsystems
interacted with each other and formed multi-physical-field
system [8]. The partitioning is applied to decompose such
system into partitions with physical or computational con-
siderations. The resulting system could separately advance
in time over each partition, thus gained high simulation
efficiency. However, these studies were focused on the finite
element analysis, not for general purpose simulation.

The Partitioning Problem is also critical to build the
decentralized, large-scale control system [6, 7]. A graph-
based approach was employed in that the system states were
connected as vertexes and the coupling strength (measured
by weight factor) between any two of them was evalu-
ated. Small weight connections were more likely to form
the partitioning edge by which the system was split into
relative independent parts. Another methodwas to use the
delay differential equations [9, 10] to describe the dynamic
of the distributed system. Networked control scheme [11]
was constructed to obtain the convergence and stability in
control of the system. However, this approach focuses on
the influence of signal delay associated with network latency,
rather than the errors caused by the change of computing
pattern. In our opinion, such errorswill still exist even though
the underlying network is perfect and has no delay.

In the Modeling and Simulation (M&S) domain, DEVS
(Discrete Event System Specification) theory casts light into
the solving of Partitioning Problem. The basic idea was to
transform a continuous system into the DEVS form by
quantizing the system states. A DEVS system is comprised
of a set of connected components (called “atomic model”
or “coupled model”). The output of each component will
hold unchanged until the values of the states it maintained
exceed some predefined quantized level. As a result, the
time driving continuous system is transformed into an event
driving system; thus, it can be decoupled and partitioned
easily [12–14]. The transformed system is suitable for asyn-
chronous, distributed environment in nature; however, the
“illegitimacy” phenomenon, where the states may transit for
unlimited times within a limited period, often causes the
simulation to fail to converge correctly.
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Figure 1: An inverted pendulum system.The states are “cart position” and “pendulum angle.” A computing sequence is maintained (indicated
by red numbers) in the nondistributed environment.

As an extension of DEVS, the QSS approach [15–17] was
proposed to resolve the “illegitimacy” problem by using a
special “hysteretic quantization” method, where the output
of each component (or model, as called in DEVS system)
will not transit to the next quantization level during its
descending period until the change has exceeded certain
threshold. QSS provides a general approach for the Partition-
ing Problem since each QSS model interacts with discrete,
states updating events. However, the QSS model needs to
be particularly designed to allow states transiting between
quantization levels. The changes of states are triggered by
unpredicted threshold crossing events inQSS. In otherwords,
the advancing “step” of QSS system is unpredicted and
time-varying. This characteristic makes QSS unsuitable for
applications such as the Hardware-In-the-Loop (HIL) or
Man-In-the-Loop (MIL) simulation, where the system has
to advance with some fixed step 𝑇 to align the hardware’s
working frequency or to take care of the needs of human
perception.

The approaches mentioned above all involve extra efforts
to reformulize or reengineer the simulated system. For
example, in the graph-based approach, the detailed analysis
of the coupling strength between system states requests the
engineer to have full knowledge of system dynamics.TheQSS
approach also needs the system components to be modified
to follow the DEVS formulation. Additionally, the possible
difference between ℎ and 𝑇 was not considered either. These
drawbacks set up barriers to apply these approaches broadly.

By contrast, the partitioning approach proposed in [4]
took the advantage of the system’s structure characteristics;
no extra work is needed except for decomposing the sys-
tem according to the data transferring route. However, the
incurred error needs to be further studied considering the
possible correlation with 𝑇.

The content of this paper is organized as follows: in
Section 3, the previous work is briefly reviewed. In Section 4,
the mathematical expression of the errors is given with
theorems. In Section 5, a series of steps are concluded to
determine the maximum 𝑇.

3. Problem Description

Normally, a continuous system can be represented by a block
diagram as Figure 1 shows [4]. This assembling approach
based on basic components is commonly seen in the con-
struction of complex system.

The components within this system can be classified into
two categories: the Direct-Feed-Through (DFT) component
and the Non-Direct-Feed-Through (NDFT) component. The
output ofDFT component is directly associatedwith its input;
that is, the output at time 𝑡 is determined by the input at
the same time. On the other hand, the output of NDFT
component is only determined by its current state and has
nothing to do with the current input. It implies that, when
computing a DFT component, the components it depends
on should be computed firstly to maintain the correct data
dependence.TheNDFT component has no such requirement
since its current output does not rely on the current input.

With parallel computing in the distributed environment,
more deductions can be deduced from the foregoing. First,
if part of the system deployed on a separate node formed
a NDFT component (both DFT and NDFT component can
have recursive structure), its output would be delayed for
𝑇 when updating to other nodes. Second, if two or more
DFT components were cascaded, they should not be divided
into different nodes; otherwise, the output delay would
accumulate from the first DFT component. For example, if
the components (5), (7), and (9) in Figure 1 were deployed
to different nodes, the output of component (9) will be 3𝑇
delayed compared to the original system, component (7) is
2𝑇 delayed, and component (5) is 𝑇 delayed.

These outcomes have been observed in the experiments
of [4], and a partitioning rule was proposed to reduce
the accumulated delays. The rule is simple: the distributed
DFT component should be avoided; each partitioned part
should be ensured to form a NDFT component. The system
performance was improved by applying this rule, as shown in
Figure 2.

Although the partitioning rule made the distributed
system more close to the original continuous system, there



4 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time (s)

Ca
rt

 p
os

iti
on

T = h

T = 2h

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time (s)

Ca
rt

 p
os

iti
on

T = 5h

T = 10h

T = 50h

T = 100h

(b)

Figure 2: (a)The comparison of the trajectories (“cart position”). (a)The distributed system became unstable when 𝑇 = 2ℎ without applying
the partitioning rule. (b) By applying this rule, the distributed system was stable even when 𝑇 = 100ℎ.

is still one step (𝑇) delay among each node.This delay cannot
be eliminated completely because of the parallelism nature
of distributed environment, leading to the system error
(denoted as Δ𝐸). To understand the influence of 𝑇 to Δ𝐸, the
mathematical expression of Δ𝐸 needs to be formulized.

To simplify the analysis of Δ𝐸, an abstract control system
containing two components is employed here: one compo-
nent is the Controller and the other is the Plant. This system
is assumed to be Asymptotically Stable. Denoting the original
continuous system asCS and the distributed system asDS, the
controller and plant can be described as differential equations
in CS [15]:

Controller (CS) :
{
{
{
{

{
{
{
{

{

̇
𝑥
𝑐
(𝑡) = 𝑓

𝑐
(𝑥
𝑐
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𝑐
(𝑡))

𝑦
𝑐
(𝑡) = 𝑔

𝑐
(𝑥
𝑐
(𝑡) , 𝑢
𝑐
(𝑡))

𝑢
𝑐
= 𝑦
𝑝
,

(3a)
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{
{
{

{
{
{
{

{
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𝑝
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,
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where 𝑥
𝑐
(𝑡) and 𝑥

𝑝
(𝑡) are system states, 𝑦

𝑐
(𝑡) and 𝑦

𝑝
(𝑡) are

outputs, 𝑢
𝑐
(𝑡) and 𝑢

𝑝
(𝑡) are inputs, 𝑓

𝑐
(∗) and 𝑓

𝑝
(∗) are state

functions, and 𝑔
𝑐
(∗) and 𝑔

𝑝
(∗) are output functions. In DS,

the controller and the plant are described as

Controller (DS) :
{
{
{
{

{
{
{
{
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)
𝑑
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𝑐
)
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(𝑡 − 𝑇) ,

(4b)

where (∗)
𝑑

is the discretization operator. This operator
indicates the operand updates its value to the external world
following the advancing step 𝑇, just like being discretized.

Perturbation Analysis is used here to analyze the com-
position of Δ𝐸. Perturbation analysis treats Δ𝐸 as the out-
come of disturbances to CS such as the output delay and
discretization. The difference between CS and DS can be
determined without formulizing the differential equations of
both systems and then comparing the eigenvalues. First of
all, the DS system is expressed in the form of perturbation
equations:

̇𝑥
𝑝
= 𝑓
𝑝
(𝑥
𝑝
, (𝑔
𝑐
)
𝑑
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𝑝
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𝑝
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𝑐
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𝑝
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where

(i) Δ𝑥
𝑐
= 𝑥
𝑐
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𝑐
, the error of controller state caused

by time delay;
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𝑝
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𝑝
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𝑝
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𝑝
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𝑝
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(iv) Δ𝑦
𝑐𝑑
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discretization.

The system error is represented as

Δ𝐸 =

󵄩
󵄩
󵄩
󵄩
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𝑝
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𝑝
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𝑐𝑑
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)

󵄩
󵄩
󵄩
󵄩
󵄩
. (6)

To find out the detailed expression of Δ𝐸, a preparation
theorem is proposed as follows.

4. The Mathematical Analysis

4.1. A Preparation Theorem. Based on the assumption of
Asymptotically Stable, the functions of 𝑓

𝑝
(∗), 𝑔

𝑝
(∗), 𝑓

𝑐
(∗),

and 𝑔
𝑐
(∗) in (3a), (3b), (4a), and (4b) are further assumed

to be Lipschitz Continuous over a region 𝐷, where 𝐷 is a
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and 𝑥

𝑐
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For convenience, the time symbol 𝑡 is omitted unless neces-
sary. 𝐷

𝑥
𝑝

and 𝐷
𝑥
𝑐

are nonsaturation regions for 𝑥
𝑝
and 𝑥

𝑐
,

respectively, that is, the state spaces of the controller and the
plant. 𝐷

𝑦
𝑝

and 𝐷
𝑦
𝑐

are nonsaturation regions for 𝑦
𝑝
and 𝑦

𝑐
,

respectively, that is, the output spaces of the controller and
the plant. With this assumption, a preparation theorem [18]
is given.

Theorem 1 (preparation theorem). For an asymptotically
stable CS as shown in (3a) and (3b), if (a) the functions 𝑓(∗)
and 𝑔(∗) are continuously differentiable and (b) a Lyapunov
function 𝑉 is defined over an open region 𝐷 containing the
original point (assumed to be the equilibrium point), then a DS
can be obtained from CS, in that all start positions lying in an
arbitrary interior region (denoted as 𝐷

1
) of 𝐷 are attracted to

another arbitrary interior region (𝐷
2
) of 𝐷

1
in finite time. 𝐷

1

and𝐷
2
are defined by sections of𝑉 crossed by two level surfaces.

This theorem is critical because it guarantees that DS can
be derived from a CS given that CS is stable. The assumption
that the original point is the equilibrium is easy to be satisfied
by translation transformation of the state variables.

Proof. Define an auxiliary function:
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(8)

We have

𝛼 (𝑥, 0, 0, 0, 0) =
̇V (𝑥), (9)

where 𝑥 = (𝑥
𝑝
, 𝑥
𝑐
) and V(𝑥) is the Lyapunov function of CS.

Define the second auxiliary function 𝛽(∗) over a region
𝐷
3
:

𝛽 (Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)

= sup
𝑥∈𝐷
3

(𝛼 (𝑥, Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)) ,

(10)

where 𝐷
3
= 𝐷
2
− 𝐷
1
. 𝛽(∗) is continuous since 𝛼(∗) is

continuous. Then, we have

𝛼 (𝑥, Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)

< 𝛽 (Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)

(11a)

and then

𝛽 (0, 0, 0, 0, 0) = sup
𝑥∈𝐷
3

(𝛼 (𝑥, 0, 0, 0, 0)) = sup
𝑥∈𝐷
3

(
̇V (𝑥)) . (11b)

A positive real number 𝑠 can be found since ̇V(𝑥) is the
negative definition to satisfy:

̇V (𝑥) < −𝑠. (12a)

Combining (11b), then

𝛽 (0, 0, 0, 0, 0) < −𝑠. (12b)

As a result, a region𝐷
4
can always be found in the vicinity of

the origin of 𝛽(∗):

𝐷
4
= {(Δ𝑥

𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
) |

󵄩
󵄩
󵄩
󵄩
󵄩
(Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)

󵄩
󵄩
󵄩
󵄩
󵄩
= Δ𝐸 < 𝜌} ,

(13)

where 𝜌 is a positive real number defining the radius of 𝐷
4
.

Another positive real number 𝑠
1
(0 < 𝑠

1
< 𝑠) can be found to

satisfy (14) over𝐷
4
:

𝛽 (Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
) < −𝑠

1
. (14)

Considering inequality (11a), we have

𝛼 (𝑥, Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
) < −𝑠

1
, 𝑥 ∈ 𝐷

3
. (15)

Consider (9), and we have

̇V (𝑥) < −𝑠
1
, 𝑥 ∈ 𝐷

3
. (16)

To integrate both sides of (16) in [0, 𝑡],

𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥
0
) < −𝑠

1
∗ 𝑡, (17a)

𝑉 (𝑥 (𝑡)) < 𝑉 (𝑥
0
) − 𝑠
1
∗ 𝑡, (17b)

where 𝑥
0
∈ 𝐷
3
is the start point of state trajectory. Inequation

(17b) means the state trajectory in DS is strictly constrained
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by a diminishing function in 𝐷
3
. Considering the fact that

̇V(𝑥) < 0, we have

𝑉 (𝑥
0
) < 𝑉
𝐷
1

, (18a)

𝑉 (𝑥 (𝑡)) < 𝑉
𝐷
1

− 𝑠
1
∗ 𝑡, (18b)

where 𝑉
𝐷
1

is the value of 𝑉(𝑥) where the state trajectory
crosses the level surface that defines region 𝐷

1
. Inequations

(18a) and (18b) mean that the state trajectory of DS will stay
inside𝐷

1
. Considering ̇V(𝑥) < 0, we also have

𝑉 (𝑥
0
) > 𝑉
𝐷
2

, (19)

where 𝑉
𝐷
2

is the value of 𝑉(𝑥) where the state trajectory
crosses the level surface that defines region 𝐷

2
. Then, the

solution trajectory of DS will go from the start point to 𝐷
2

within finite time:

Δ𝑡 <

𝑉 (𝑥
0
) − 𝑉
𝐷
2

𝑠
1

. (20)

Inequation (20) means a DS can be found, whose trajectory
will converge to the equilibriumpoint of CS eventually within
finite time, given CS being asymptotically stable and the
system error being constrained as (13) shows.

4.2. TheMathematical Expression of System Error. Themath-
ematical expression of Δ𝐸 is studied by analyzing each
component of it.

4.2.1. Δ𝑥
𝑐
. Δ𝑥
𝑐
is the variation of the controller’s state value

within time interval𝑇. According to the definition in (5a) and
(5b),

Δ𝑥
𝑐
= 𝑥
𝑐
(𝑡 − 𝑇) − 𝑥

𝑐

= ∫

𝑡

𝑡−𝑇

𝑓
𝑐
(𝑥
𝑐
(𝜏) , 𝑢

𝑐
(𝜏)) ⋅ 𝑑𝜏,

(21a)

󵄩
󵄩
󵄩
󵄩
Δ𝑥
𝑐

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

𝑡−𝑇

𝑓
𝑐
(𝑥
𝑐
(𝜏) , 𝑢

𝑐
(𝜏)) ⋅ 𝑑𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

. (21b)

Integrating both sides of (21b),

󵄩
󵄩
󵄩
󵄩
Δ𝑥
𝑐

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

𝑡−𝑇

𝑓
𝑐
(𝑥
𝑐
(𝜏) , 𝑢

𝑐
(𝜏)) ⋅ 𝑑𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ ∫

𝑡

𝑡−𝑇

󵄩
󵄩
󵄩
󵄩
𝑓
𝑐
(𝑥
𝑐
(𝜏) , 𝑢

𝑐
(𝜏))

󵄩
󵄩
󵄩
󵄩
⋅ 𝑑𝜏.

(22)

𝑓
𝑐
(∗) is bounded in [𝑡 − 𝑇, 𝑡] since it is continuously

differentiable (one of the conditions inTheorem 1). Then, we
have

󵄩
󵄩
󵄩
󵄩
Δ𝑥
𝑐

󵄩
󵄩
󵄩
󵄩
≤ ∫

𝑡

𝑡−𝑇

𝑀
𝑓
𝑐

⋅ 𝑑𝜏 = 𝑀
𝑓
𝑐

⋅ 𝑇, (23)

where𝑀
𝑓
𝑐

is the upper bound of 𝑓
𝑐
(∗) within [𝑡 − 𝑇, 𝑡].

4.2.2. Δ𝑥
𝑝
. Δ𝑥
𝑝
is the variation of the plant’s state value

within time interval 𝑇. Following a similar approach in the
analysis of Δ𝑥

𝑐
, we have

󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑥
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
𝑓
𝑝

⋅ 𝑇, (24)

where𝑀
𝑓
𝑝

is the upper bound of 𝑓
𝑝
(∗) within [𝑡 − 𝑇, 𝑡].

4.2.3. Δ𝑦
𝑝
. Δ𝑦
𝑝
is the variation of the plant’s output within

time interval 𝑇. According to (5a) and (5b), we have

Δ𝑦
𝑝
= 𝑔
𝑝
(𝑥
𝑝
(𝑡 − 𝑇)) − 𝑔

𝑝
(𝑥
𝑝
)

= 𝑔
𝑝
(𝑥
𝑝
+ Δ𝑥
𝑝
) − 𝑔
𝑝
(𝑥
𝑝
) ,

(25a)

󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑝
(𝑥
𝑝
+ Δ𝑥
𝑝
) − 𝑔
𝑝
(𝑥
𝑝
)

󵄩
󵄩
󵄩
󵄩
󵄩
. (25b)

Considering 𝑔
𝑝
(∗) is Lipschitz Continuous (Theorem 1), we

have
󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝑝
(𝑥
𝑝
+ Δ𝑥
𝑝
) − 𝑔
𝑝
(𝑥
𝑝
)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑀
𝑔
𝑝

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑥
𝑝
+ Δ𝑥
𝑝
) − (𝑥

𝑝
)

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝑀
𝑔
𝑝

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑥
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
.

(26a)

Considering (24), we have
󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
𝑔
𝑝

⋅ 𝑀
𝑓
𝑝

⋅ 𝑇, (26b)

where𝑀
𝑔
𝑝

is the Lipschitz Const of 𝑔
𝑝
(∗).

4.2.4. Δ𝑦
𝑝𝑑
. Δ𝑦
𝑝𝑑

is caused by discretization on the plant’s
output, where the discrete interval is 𝑇. Δ𝑦

𝑝𝑑
is bounded by

the changing rate of the output, as shown in Figure 3.
According to the definitions in (5a) and (5b), we have

󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑝𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑔
𝑝
)
𝑑
− 𝑔
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
≤ Δ𝑦
𝑝
. (27)

Considering (26b),
󵄩
󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑝𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
𝑔
𝑝

⋅ 𝑀
𝑓
𝑝

⋅ 𝑇. (28)

4.2.5. Δ𝑦
𝑐𝑑
. Similarly, we have

󵄩
󵄩
󵄩
󵄩
Δ𝑦
𝑐𝑑

󵄩
󵄩
󵄩
󵄩
≤ 𝑀
𝑔
𝑐

⋅ 𝑀
𝑓
𝑐

⋅ 𝑇. (29)

Combining (6), (23), (24), (26b), (28), and (29),

Δ𝐸 =

󵄩
󵄩
󵄩
󵄩
󵄩
(Δ𝑥
𝑐
, Δ𝑥
𝑝
, Δ𝑦
𝑝
, Δ𝑦
𝑐𝑑
, Δ𝑦
𝑝𝑑
)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ √𝑀
2

𝑓
𝑐

(1 +𝑀
2

𝑔
𝑐

) +𝑀
2

𝑓
𝑝

⋅ (1 + 2𝑀
2

𝑔
𝑝

) ⋅ 𝑇,

(30)

where √𝑀2
𝑓
𝑐

(1 + 𝑀
2

𝑔
𝑐

) + 𝑀
2

𝑓
𝑝

⋅ (1 + 2𝑀
2

𝑔
𝑝

) ⋅ 𝑇 defines the
upper bound of Δ𝐸. Once an expected Δ𝐸 is given (denoted
as Δ𝐸∗), 𝑇max can be determined:

𝑇max =
Δ𝐸
∗

√𝑀
2

𝑓
𝑐

(1 +𝑀
2

𝑔
𝑐

) +𝑀
2

𝑓
𝑝

⋅ (1 + 2𝑀
2

𝑔
𝑝

)

(31)
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The value of Δypd is
bounded by the

changing rate of y

T 2T 3T 4T 5T 6T T 2T 3T 4T 5T 6T

yy

Figure 3: Δ𝑦
𝑝𝑑

is bounded by the changing rate of the output value.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Time (s)

x1
x2

−0.5

−1

−1.5

Figure 4: The trajectories of 𝑥
1
, 𝑥
2
, where 𝑘 = 5, 𝑅 = 5, 𝑚 = 1, and

the initial value 𝑥𝑡=0
1
= 𝑥
𝑡=0

2
= 1.

1

s

x1

Integrator

Partitioning

fx2 =
−k

m
x1 −

−R

m
x2

1

s

x2

Integrator

Figure 5: This simple system is partitioned into two parts by the
dash line to form a distributed system.

for any 𝑇 < 𝑇max, and the overall error will be less than
Δ𝐸
∗. Equation (31) also indicates the way to partition CS

will influence𝑇max: themore the parts partitioned (supposing
each part is deployed on a node), the greater the denominator
of the right part of (31), thus the smaller that of the allowable
𝑇max.

0 2 4 6 8 10

0

0.5

1.0

Time (s)

The upper bound: 1.0

−0.5

−1.0

−1.5

The lower bound: −1.3844

Figure 6: The plot of ̇𝑥
1
.𝑀
𝑓𝑥1

is determined by the bound of it in
this example.

5. Experiment

Adistributed simulation is constructed in this section to show
the determination of 𝑇. The original continuous system is a
point mass system with fraction as follows:

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
=

−𝑘

𝑚

𝑥
1
−

𝑅

𝑚

𝑥
2
,

(32)

where 𝑘 is spring const,𝑚 ismass, and𝑅 is friction coefficient.
This system is asymptotically stable; the trajectories of 𝑥

1
and

𝑥
2
are shown in Figure 4.
A distributed system can be partitioned from the original

system, where the structure has the block-diagram represen-
tation (see Figure 5).

The differential equations of these two parts are

Component I:
{

{

{

̇𝑥
1
= 𝑓
𝑥
1

= 𝑥
2

𝑦
1
= 𝑔
𝑥
1

= 𝑥
1
,

(33a)

Component II:
{

{

{

̇𝑥
2
= 𝑓
𝑥
2

=

−𝑘

𝑚

𝑥
1
−

𝑅

𝑚

𝑥
2

𝑦
2
= 𝑔
𝑥
2

= 𝑥
2
,

(33b)
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Figure 7: The comparison of 𝑥
1
and 𝑥

2
. In the distributed simulation, 𝑇 is set to be 0.1 s, 0.15 s, and 0.2 s, respectively; the trajectories of 𝑥

1

and 𝑥
2
are compared in each case.
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where 𝑦
1
, 𝑦
2
are the output of components I and II, respec-

tively. These two parts are deployed on two nodes, forming
the simple distributed system.

Equation (31) indicates that the parameters reflecting
system dynamic need to be determined firstly, which are as
follows:

𝑀
𝑓
𝑥1

: the upper bound of function 𝑓
𝑥
1

within any time
interval [𝑡 − 𝑇, 𝑡];

𝑀
𝑔
𝑥1

: the Lipschitz Const of function 𝑔
𝑥
1

;

𝑀
𝑓
𝑥2

: the upper bound of function 𝑓
𝑥
2

within any time
interval [𝑡 − 𝑇, 𝑡];

𝑀
𝑔
𝑥2

: the Lipschitz Const of function 𝑔
𝑥
2

.

From the engineering perspective, these parameters can be
directly observed from the simulation results of the original
system. In this case,𝑀

𝑓
𝑥1

is determined by the lower bound
of ̇𝑥
1
as Figure 6 shows.

As a result,𝑀
𝑓
𝑥1

= −1.3844. According to the definition
of Lipschitz Const, 𝑀

𝑔
𝑥1

is limited by the upper bound of
̇𝑔
𝑥
1

, that is, the upper bound of ̇𝑥
1
in this case. Then, we

have𝑀
𝑔
𝑥1

= −1.3844. Following similar procedures, we have
𝑀
𝑓
𝑥2

= −1.7796,𝑀
𝑔
𝑥2

= −1.7796. According to (31), 𝑇max is
estimated as follows:

𝑇max ≈ √𝑀
2

𝑓
𝑥2

(1 +𝑀
2

𝑔
𝑥2

) +𝑀
2

𝑓
𝑥1

⋅ (1 + 2𝑀
2

𝑔
𝑥1

)

≈ 0.211 ⋅ Δ𝐸.

(34)

The distributed system described in (33a) and (33b) is
simulated. The trajectories of the system states are compared
to those of the original continuous system, as Figure 7 shows.
The threshold value of Δ𝐸 is 0.5, and then 𝑇max is estimated
to be 0.1055 s according to (34). Three configurations, where
𝑇 = 0.1 s, 𝑇 = 0.15 s, and 𝑇 = 0.2 s, are tested in the form of
distributed simulation. As expected, only the case 𝑇 = 0.1 s
satisfies that both 𝑥

1
and 𝑥
2
do not exceed the threshold value

of Δ𝐸.
However, the actual error does not exceed the threshold

value immediately when 𝑇 is configured to be greater than
0.1 s, as shown in Figures 7(c) and 7(d).The reason is that𝑇max
is not strictly estimated sincemany associated parameters use
their boundary values.

6. Conclusion

The mathematical expression of Δ𝐸 helps us to gain the
insight of system error produced in the construction of the
distributed system using the partitioning approach. Giving
an expected threshold of Δ𝐸, a proper advancing step 𝑇
of the distributed system can be determined. A larger 𝑇,
compared to the integral step in the nondistributed system,
will reduce the data-exchange frequency between simulation
nodes, leading to the reduction of demands on system timing
performance and network bandwidth. Then, the simulation
cost is saved eventually. In fact, this approach can also

play a role in multicore or multi-CPU parallel computing
environments.

However, for systems that may become unstable after
system partitioning, this approach is not so convenient since
a Lyapunov function of the continuous system needs to
be found firstly. The parameters defining specific regions
satisfying (13)–(15) also need to be determined. More work
needs to be done to improve this approach’s availability.
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