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The paper presents addition of fuzzy numbers realisedwith the application of themultidimensional RDMarithmetic and horizontal
membership functions (MFs). Fuzzy arithmetic (FA) is a very difficult task because operations should be performed here on
multidimensional information granules. Instead, a lot of FAmethods use 𝛼-cuts in connection with 1-dimensional classical interval
arithmetic that operates not on multidimensional granules but on 1-dimensional intervals. Such approach causes difficulties in
calculations and is a reason for arithmetical paradoxes. The multidimensional approach allows for removing drawbacks and
weaknesses of FA. It is possible thanks to the application of horizontal membership functions which considerably facilitate
calculations because now uncertain values can be inserted directly into equations without using the extension principle. The paper
shows how the addition operation can be realised on independent fuzzy numbers and on partly or fully dependent fuzzy numbers
with taking into account the order relation and how to solve equations, which can be a difficult task for 1-dimensional FAs.

1. Introduction

Fuzzy arithmetic [1–14] is used in uncertainty theory [15–20],
grey systems [21, 22], granular computing [9, 23], computing
with words [23–26], decision-making [27, 28], and other
sciences and engineering branches [4, 26, 29, 30]. Authors
of first concepts of the fuzzy arithmetic (shortly FA) based
on 𝐿-𝑅 (left-right) fuzzy numbers were Dubois and Prade [1].
With years, FA has been improved and its new versions have
been introduced, for example, the popular 𝛼-cuts’ version
[4, 6, 31], which in this paper will be called 𝜇-cuts’ FA. In
general, all versions of FA can be divided [4] into elementary
FA, standard FA, and advanced FA versions. Examples of
advanced FA methods can be the generalized vertex method
[32], constrained FA [7, 8, 21], algorithmic FA [9], transfor-
mation method and extended transformation method [4],
and inverse FA [4]. It seems that mostly used FA versions
are based on 𝛼-cuts [2] and on Moore’s interval arithmetic
(shortly IA) [33–35]. In the FA literature, many examples of
practical FA applications can be found, for example, [4, 26,
27, 36, 37]. Practical problems require effective FAs which

would enable solving uncertain linear and nonlinear equation
systems, differential equations, integral calculations, and so
forth [38, 39]. Therefore, many scientists investigate these
problems and publish achieved results from this area [40–
64].However, almost always they emphasise that the achieved
level of FA is not satisfactory and that further investigations
are necessary. Therefore, investigations on IA and FA have
been continued nonstop. It is testified by new publications
in journals, conferences, and new books. Though FA has
achieved many application successes, it further on has many
weak points. For example, Dymova and Sevastjanov report in
their papers [27, 61, 62] the present FA has considerable dif-
ficulties in solving even simple equations with one unknown
variable. There exist also difficulties in defining neutral and
inverse elements for addition and multiplication.

The most popular version of FA is the arithmetic based
on 𝛼-cuts, where an 𝛼-cut of a fuzzy set 𝐴, denoted as 𝐴

𝛼
, is

defined by (1), where𝑋means domain of the set and 𝑥means
an element of this domain [4]. Consider

𝐴
𝛼
= cut
𝛼
(𝐴) = {𝑥 ∈𝑋 | 𝜇̃

𝐴
(𝑥) ≥ 𝛼} . (1)
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FA based on 𝛼-cuts uses principles of the classicalMoore’s
interval arithmetic [33, 34] for realisation of elementary
arithmetic operations such as addition, subtraction, multi-
plication, and division. Though this arithmetic has many
applications, its possibilities are limited, because of some
drawbacks, which are commented on also by Moore himself
in his books. For example, if 𝑋, 𝑌, and 𝑍 are intervals, the
distributive law,

𝑋 ⋅ (𝑌+𝑍) = 𝑋 ⋅ 𝑌+𝑋 ⋅𝑍, (2)

does not always hold. Additionally, an additive inverse of an
interval is not defined. If 𝑋 = [𝑥, 𝑥], then 𝑋 + (−𝑋) = [𝑥 −

𝑥, 𝑥 − 𝑥] ̸= [0, 0].
As Dymowa shows in [27], there are great difficulties in

solving even simple interval equations with one unknown.
Let us assume that in a system there exists the dependence
𝑎+𝑥 = 𝑐.This dependence can be presented in few equivalent
forms:

𝑎 + 𝑥 = 𝑐,

𝑎 = 𝑐 − 𝑥,

𝑥 = 𝑐 − 𝑎,

𝑎 + 𝑥− 𝑐 = 0.

(3)

If only approximate values of 𝑎 and 𝑐 are known, 𝑎 ∈ [1, 3]
and 𝑐 ∈ [2, 5], and value 𝑥 is not known, then, on the basis of
(3), four interval equations (4)–(7) can be written:

[1, 3] + [𝑥, 𝑥] = [2, 5] , (4)

[1, 3] = [2, 5] − [𝑥, 𝑥] , (5)

[𝑥, 𝑥] = [2, 5] − [1, 3] , (6)

[1, 3] + [𝑥, 𝑥] − [2, 5] = 0. (7)

Solving (4), two equations, 1 + 𝑥 = 2 and 3 + 𝑥 = 5,
are obtained. They give the solution [𝑥, 𝑥] = [1, 2]. Solving
(5), two equations, 1 = 2 − 𝑥 and 3 = 5 − 𝑥, are obtained.
They give the solution [𝑥, 𝑥] = [2, 1] being an inverse interval.
Solving (6), the solution [−1, 4] is obtained and from (7) we
get the solution [4, −1], which is also an inverse interval.Thus,
various solutions, [1, 2], [2, 1], [−1, 4], and [4, 1], are obtained
depending on extension form of the original dependence. In
the case of more complicated mathematical dependencies,
the solution number can be considerably higher.

Another paradox of FA based on 𝜇-cuts and Moore
arithmetic (shortly 𝜇-cuts’ FA) [33–35] is not satisfying the
cancellation law for multiplication. For example, equation
𝑋𝑍 = 𝑌𝑍 in the general case does not mean that 𝑋 = 𝑍. It
can be testified by an example shown below inwhich notation
[1, 2, 3] means the triangle membership function (shortly
MF) with support beginning, core position, and support end.
Consider

𝑋𝑍 = [1, 2, 3] ⋅ [−1, 0, 1] = [−3, 0, 3] = 𝑌𝑍

= [2, 2.5, 3] ⋅ [−1, 0, 1] = [−3, 0, 3] ,
(8)

a b c d x

𝜇

1

Figure 1: Trapezium membership function.

but

𝑋 = [1, 2, 3] ̸= 𝑌 = [2, 2.5, 3] . (9)

Because of this feature of 𝜇-cuts’ FA, transformations of
formulas are not allowable. Why? It will be shown further
on. Next important paradox of 𝜇-cuts’ FA is the observation
that, during calculation of results of nonlinear formulas, for
example, 𝐶 = 𝐴 − 𝐴

2, we obtain different, nonunique
solutions depending on which form of the formula is used:
𝐶1 = 𝐴−𝐴

2, 𝐶2 = 𝐴(1−𝐴), or𝐶3 = (𝐴−1) + (1−𝐴)(1+𝐴).
For 𝐴 = [0, 1, 2], three different solutions are obtained: 𝐶1 =

[−4, 0, 2], 𝐶2 = [−2, 0, 2], and 𝐶3 = [−4, 0, 4]; see Figure 4.
Which solution is correct? The above phenomenon means
that each transformation of an equation form, in the case of
𝜇-cuts’ FA, can change its solution and that solutions are not
unique. Further on, it will be shown that in the case of the
multidimensional RDM FA such paradoxes do not occur.

The above examples show that the classical IA, which is
a basis of the 𝜇-cut version of FA, is not ideal, though it
can solve certain problems. Therefore, it can and should be
further developed. Further on, a version of FA that is based
on horizontal membership functions (MFs) and on 𝜇-cuts
will be presented. It also applies the multidimensional RDM
arithmetic (M-RDM arithmetic) which has been elaborated
by Andrzej Piegat. It has been developed together with
coworkers: Marek Landowski, Marcin Pluciński, and Karina
Tomaszewska [10, 37, 65–70].

2. Horizontal Membership Function

Fuzzy systems use vertical membership functions which were
introduced by Zadeh [23]. They have the following form:
𝜇 = 𝑓(𝑥), where 𝑥 is an independent variable and 𝜇 is a
dependent one. Figure 1 shows an example of the trapezoidal
MF and formula (10) gives its description:

𝑥 ∈ [𝑎, 𝑏] : 𝜇 (𝑥) =

(𝑥 − 𝑎)

(𝑏 − 𝑎)

,

𝑥 ∈ [𝑏, 𝑐] : 𝜇 (𝑥) = 1,

𝑥 ∈ [𝑐, 𝑑] : 𝜇 (𝑥) =

(𝑑 − 𝑥)

(𝑑 − 𝑐)

.

(10)
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Figure 2: Visualization of the horizontal approach to fuzzy membership functions.

Vertical MF realises the mapping 𝑥 → 𝜇. The present
fuzzy arithmetic is based on just such MFs. The idea of
horizontal MFs has been elaborated by Andrzej Piegat. In
this paper, an example of a trapezium MF will be presented
but horizontal MFs can be used for all types of MFs. A
function 𝜇(𝑥) is unambiguous in the direction of the variable
𝜇 (Figure 1) and ambiguous in the direction of 𝑥.Therefore, it
seems impossible to define a membership function in the 𝑥-
direction.The function from Figure 1 assigns two values of 𝑥,
𝑥
𝐿
(𝜇) and 𝑥

𝑅
(𝜇), for one value of 𝜇. However, let us introduce

the RDM variable: 𝛼
𝑥

∈ [0, 1]. This variable has meaning
of the relative-distance-measure and allows for determining
of any point between two borders 𝑥

𝐿
(𝜇) and 𝑥

𝑅
(𝜇) of the

function (Figure 2). RDM variable 𝛼
𝑥
takes a value of zero

on the left border and a value of 1 on the right border of
the function. Between the left border and the right border
it takes fractional values. The idea of RDM variables was
successfully used in themultidimensional IA [37, 67–70].The
multidimensional IAhas shown that full andprecise solutions
of granular problems have formofmultidimensional granules
that cannot be explained and understood in terms of 1-
dimensional approaches.

Formula (11) defines the left border and the right border
of the trapeziumMF (Figure 2). Consider

𝑥
𝐿
= 𝑎+ (𝑏 − 𝑎) 𝜇,

𝑥
𝑅
= 𝑑− (𝑑 − 𝑐) 𝜇.

(11)

RDM variable 𝛼
𝑥
allows for a gradual transition of points

between the left border and the right border.The interval𝑥(𝜇)
in Figure 2 is defined by the following formula:

𝑥 = 𝑥
𝐿
+ (𝑥
𝑅
−𝑥
𝐿
) 𝛼
𝑥
, 𝛼
𝑥
∈ [0, 1] ,

𝑥 = [𝑎 + (𝑏 − 𝑎) 𝜇]

+ [(𝑑 − 𝑎) − 𝜇 ((𝑏 − 𝑎) + (𝑑 − 𝑐))] 𝛼
𝑥
.

(12)

It can be noted in formula (12) that 𝑥 = 𝑓(𝜇, 𝛼
𝑥
) is an

unambiguous function existing in the 3D space, which can
be seen in Figure 3.

1

1

0 1

5

4

x

3

𝜇

𝛼x

Figure 3: The horizontal membership function 𝑥 = (1 + 2𝜇) + (4 −

3𝜇)𝛼
𝑥
, where 𝛼

𝑥
, 𝜇 ∈ [0, 1], corresponding to the function from

Figure 2, in the 3D space as the unambiguous function.

It should be also noticed that RDM variables 𝛼
𝑖
introduce

the continuous Cartesian coordinate system in interval and
fuzzy arithmetic calculations. In Moore’s arithmetic and in
𝜇-cuts’ FA based on it, only borders of intervals or 𝜇-cuts, for
example, [𝑎, 𝑏]+[𝑐, 𝑑] = [𝑎+𝑏, 𝑐+𝑑], take part in calculations.
Insides of intervals are not taken into account. This fact
hinders solving of more complicated problems and results in
many paradoxes observed in IA and FA calculations. It also
deprives IA and FA of many mathematical properties which
the conventional mathematics of crisp numbers has. Few of
these properties will be presented further on.

Thanks to the fact that RDM variables 𝛼
𝑖
introduce in

interval calculations local and continuous Cartesian coordi-
nate system, RDM FA possesses almost the same mathemat-
ical properties as arithmetic of crisp numbers.

2.1. Additive Inverse Element −𝑋 of Element𝑋. In 𝜇-cuts’ FA,
trapezoidal membership function can be defined as a fuzzy
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interval with left border 𝑥
𝐿
(𝜇) = 𝑎+(𝑏−𝑎)𝜇 and right border

𝑥
𝑅
(𝜇) = 𝑑 − (𝑑 − 𝑐)𝜇 (formula (13) and Figure 2). Consider

𝑋(𝜇) = [𝑥
𝐿
(𝜇) , 𝑥

𝑅
(𝜇)] . (13)

A negative element −𝑋 is determined by the following
formula:

−𝑋 (𝜇) = − [𝑥
𝐿
(𝜇) , 𝑥

𝑅
(𝜇)] = [−𝑥

𝑅
(𝜇) , − 𝑥

𝐿
(𝜇)] . (14)

The subtraction result𝑋(𝜇) − 𝑋(𝜇) determined by (15) is
a fuzzy interval of nonzero span which means that, in 𝜇-cuts’
FA additive, inverse element does not exist. Consider

𝑋(𝜇) −𝑋 (𝜇)

= [− (𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)) , 𝑥

𝑅
(𝜇) − 𝑥

𝐿
(𝜇)] ̸= [0, 0] .

(15)

In the case of RDM FA, the element 𝑋(𝜇, 𝛼
𝑥
) is deter-

mined by (16) and its negative element −𝑋(𝜇, 𝛼
𝑥
) by (17).

Consider

𝑋(𝜇, 𝛼
𝑥
) = {𝑥 (𝜇, 𝛼

𝑥
) : 𝑥 (𝜇, 𝛼

𝑥
) = 𝑥
𝐿
(𝜇)

+ 𝛼
𝑥
(𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)) , 𝛼

𝑥
∈ [0, 1]} ,

(16)

−𝑋 (𝜇, 𝛼
𝑥
) = {𝑥 (𝜇, 𝛼

𝑥
) : 𝑥 (𝜇, 𝛼

𝑥
) = −𝑥

𝐿
(𝜇)

− 𝛼
𝑥
(𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)) , 𝛼

𝑥
∈ [0, 1]} .

(17)

It is easy to check that the subtraction result 𝑋 − 𝑋 is
exactly equal to zero:

𝑋(𝜇, 𝛼
𝑥
) −𝑋 (𝜇, 𝛼

𝑥
) = 0. (18)

Thus, in the case of RDM FA, there exists the inverse
additive element −𝑋(𝜇, 𝛼

𝑥
).

2.2. Distributive Law of Multiplication. In the 𝜇-cuts’ FA,
similarly as inMoore’s interval arithmetic, the distributive law
holds only in the limited form:

𝑋(𝜇) [𝑌 (𝜇) +𝑍 (])] ⊆ 𝑋 (𝜇) 𝑌 (𝜇) +𝑋 (𝜇)𝑍 (𝜇) . (19)

In the multidimensional, continuous RDM FA, the dis-
tributive law holds fully. Consider

𝑋(𝜇, 𝛼
𝑥
) [𝑌 (𝜇, 𝛼

𝑦
) +𝑍 (𝜇, 𝛼

𝑧
)]

= 𝑋 (𝜇, 𝛼
𝑥
) 𝑌 (𝜇, 𝛼

𝑦
) +𝑋 (𝜇, 𝛼

𝑥
) 𝑍 (𝜇, 𝛼

𝑧
) ,

𝛼
𝑥
, 𝛼
𝑦
, 𝛼
𝑧
∈ [0, 1] .

(20)

Proof. For any three intervals expressed in RDM notation,
with 𝛼

𝑥
, 𝛼
𝑦
, 𝛼
𝑧
∈ [0, 1],

𝑋(𝜇, 𝛼
𝑥
) = [𝑥

𝐿
(𝜇, 𝛼
𝑥
) , 𝑥
𝑅
(𝜇, 𝛼
𝑥
)]

= {𝑥 (𝜇, 𝛼
𝑥
) : 𝑥 (𝜇, 𝛼

𝑥
) = 𝑥
𝐿
(𝜇)

+ 𝛼
𝑥
[𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)]} ,

𝑌 (𝜇, 𝛼
𝑦
) = [𝑦

𝐿
(𝜇, 𝛼
𝑦
) , 𝑦
𝑅
(𝜇, 𝛼
𝑦
)]

= {𝑦 (𝜇, 𝛼
𝑦
) : 𝑦 (𝜇, 𝛼

𝑦
) = 𝑦
𝐿
(𝜇)

+ 𝛼
𝑦
[𝑦
𝑅
(𝜇) − 𝑦

𝐿
(𝜇)]} ,

𝑍 (𝜇, 𝛼
𝑧
) = [𝑧

𝐿
(𝜇, 𝛼
𝑧
) , 𝑧
𝑅
(𝜇, 𝛼
𝑧
)]

= {𝑧 (𝜇, 𝛼
𝑧
) : 𝑧 (𝜇, 𝛼

𝑧
) = 𝑧
𝐿
(𝜇)

+ 𝛼
𝑧
[𝑧
𝑅
(𝜇) − 𝑧

𝐿
(𝜇)]} ,

(21)

we have

𝑋(𝜇, 𝛼
𝑥
) [𝑌 (𝜇, 𝛼

𝑦
) +𝑍 (𝜇, 𝛼

𝑧
)] = (𝑥

𝐿
(𝜇)

+ 𝛼
𝑥
[𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)])

⋅ [(𝑦
𝐿
(𝜇) + 𝛼

𝑦
[𝑦
𝑅
(𝜇) − 𝑦

𝐿
(𝜇)])

+ (𝑧
𝐿
(𝜇) + 𝛼

𝑧
[𝑧
𝑅
(𝜇) − 𝑧

𝐿
(𝜇)])] = (𝑥

𝐿
(𝜇)

+ 𝛼
𝑥
[𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)]) (𝑦

𝐿
(𝜇)

+ 𝛼
𝑦
[𝑦
𝑅
(𝜇) − 𝑦

𝐿
(𝜇)]) + (𝑥

𝐿
(𝜇)

+ 𝛼
𝑥
[𝑥
𝑅
(𝜇) − 𝑥

𝐿
(𝜇)]) (𝑧

𝐿
(𝜇)

+ 𝛼
𝑧
[𝑧
𝑅
(𝜇) − 𝑧

𝐿
(𝜇)]) = 𝑋 (𝜇, 𝛼

𝑥
) 𝑌 (𝜇, 𝛼

𝑦
)

+𝑋 (𝜇, 𝛼
𝑥
) 𝑍 (𝜇, 𝛼

𝑦
) .

(22)

2.3. Different Forms of Nonlinear Formulas. Let us consider
results of 𝜇-cuts’ FA and RDM FA for the nonlinear formula
𝐶 = 𝐴 − 𝐴

2, where 𝐴 is the fuzzy interval 𝐴 = [0, 1, 2]
(Figure 4).This formula can take at least 3 forms:𝐶1 = 𝐴−𝐴

2,
𝐶2 = 𝐴(1 − 𝐴), and 𝐶3 = (𝐴 − 1) + (1 − 𝐴)(1 + 𝐴). Fuzzy
interval 𝐴 has the form 𝐴 = [𝑎

𝐿
(𝜇), 𝑎
𝑅
(𝜇)] = [𝜇, 2 − 𝜇].

Calculating value of 𝐶 for particular forms, 𝐶1, 𝐶2, and 𝐶3,
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Figure 4: Three different membership functions of “results” of the fuzzy formula 𝐶 = 𝐴 − 𝐴
2 written in three equivalent forms 𝐶1 =

𝐴 − 𝐴
2, 𝐶2 = 𝐴(1 − 𝐴), 𝐶3 = (𝐴 − 1) + (1 − 𝐴)(1 + 𝐴) obtained with 𝜇-cuts’ fuzzy arithmetic, where 𝐴 = [𝜇, 2 − 𝜇].

with the application of 𝜇-cuts’ FA, three different results are
obtained:

𝐶1 = [−4+ 3𝜇−𝜇
2
, 2−𝜇−𝜇

2
] ,

with support span [−4, 2] ,

𝐶2 = [−2+ 3𝜇−𝜇
2
, 2− 3𝜇+𝜇

2
] ,

with support span [−2, 2] ,

𝐶3 = [−4+ 5𝜇−𝜇
2
, 4− 5𝜇+𝜇

2
] ,

with support span [−4, 4] .

(23)

Each of the results, 𝐶1, 𝐶2, and 𝐶3, is different. For 𝜇 = 0,
resultsmean spans (widths) ofMF supports.They are equal to
[−4, 2], [−2, 2], and [−4, 4]. The differences are considerable.
Thus, the formula 𝐶 = 𝐴 − 𝐴

2 cannot be calculated uniquely
with 𝜇-cuts’ FA. If we use the multidimensional RDM FA,
then interval 𝐴 is expressed by (24) and its square 𝐴

2 by
(25), where 𝑎 is generic variable of 𝐴. One should notice that
functions expressing 𝐴 and 𝐴

2 are fully coupled (correlated);
that is, values of 𝑎 and 𝛼

𝑎
have to be identical both in 𝐴 and

in 𝐴
2. Consider

𝐴: 𝑎 = 𝑎
𝐿
+𝛼
𝑎
(𝑎
𝑅
− 𝑎
𝐿
) = 𝜇 + 2𝛼

𝑎
(1−𝜇) , (24)

𝐴
2: 𝑎2 = [𝜇 + 2𝛼

𝑎
(1−𝜇)]

2
, 𝛼
𝑎
∈ [0, 1] . (25)

Formula 𝐶1 = 𝐴 − 𝐴
2 can be determined by

𝐶1 = 𝐴−𝐴
2
: 𝑎 − 𝑎

2

= [𝜇 + 2𝛼
𝑎
(1−𝜇)] − [𝜇 + 2𝛼

𝑎
(1−𝜇)]

2
,

𝛼
𝑎
∈ [0, 1] .

(26)

Formula 𝐶2 = 𝐴(1 − 𝐴) can be determined by

𝐶2 = 𝐴 (1−𝐴) : 𝑎 (1− 𝑎)

= [𝜇 + 2𝛼
𝑎
(1−𝜇)] ⋅ {1− [𝜇 + 2𝛼

𝑎
(1−𝜇)]}

= [𝜇 + 2𝛼
𝑎
(1−𝜇)] − [𝜇 + 2𝛼

𝑎
(1−𝜇)]

2
= 𝑎− 𝑎

2
,

𝛼
𝑎
∈ [0, 1] .

(27)

As can be seen, result for the second form 𝐶2 is the same
as for 𝐶1. Result for the third form 𝐶3 can be determined by

𝐶3 = (𝐴− 1) + (1−𝐴) (1+𝐴) : (𝑎 − 1)

+ (𝑎 − 1) (1+ 𝑎)

= {[𝜇 + 2𝛼
𝑎
(1−𝜇)] − 1}

+ {1− [𝜇 + 2𝛼
𝑎
(1−𝜇)]}

⋅ {1− [𝜇 + 2𝛼
𝑎
(1−𝜇)]}
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Figure 5: Full and complete 3D result of formula𝐶 = 𝐴−𝐴
2, where

𝐴 = [𝜇, 2 − 𝜇], obtained with use of the multidimensional RDM
FA (29), with marked upper (right) and lower (left) constraint of 2D
membership function.

= {[𝜇 + 2𝛼
𝑎
(1−𝜇)] − 1}

+ {1− [𝜇 + 2𝛼
𝑎
(1−𝜇)]

2
}

= [𝜇 + 2𝛼
𝑎
(1−𝜇)] − [𝜇 + 2𝛼

𝑎
(1−𝜇)]

2

= 𝑎− 𝑎
2
, 𝛼
𝑎
∈ [0, 1] .

(28)

The result 𝐶3 is identical to 𝐶1 and 𝐶2. As the analysed
example shows the multidimensional RDM FA provides
unique solutions for nonlinear formulas independently of
their mathematical form, it cannot be said about 𝜇-cuts’
FA. To better realise this fact, particular solutions will be
visualised in Figure 4.

One can easily see that all three solutions, 𝐶1, 𝐶2, and 𝐶3,
are incorrect. According to the solution 𝐶1, it is possible that
the difference 𝑐 = 𝑎 − 𝑎

2 for 𝑎 ∈ [0, 2] could be equal to, for
example, −4 or +2. However, these values cannot be obtained
with any value of 𝑎 ∈ [0, 2]. According to the “result” 𝐶2,
possible values of 𝑐 = 𝑎 − 𝑎

2 could be equal to +1 or +2. But,
in fact, these values are impossible. According to the “result”
𝐶3, possible values of 𝑐 are equal to −4 or +4. However, it is
not true.

The full and precise 3D solution, in which formula
(obtained with use of the RDM FA) is given by

𝐶: 𝑐 = 𝜇− 𝜇
2
+ 2𝛼
𝑎
(1−𝜇) − 4𝛼

𝑎
(1−𝜇)

− 4𝛼2
𝑎
(1−𝜇)

2
,

(29)

is shown in Figure 5.
If we are interested in the simplified, traditional MF of

the full 3D result in the horizontal version, it can be easily

1

𝜇

−2 −1 0.250 c

cL cR

Figure 6:Membership function representing the span of the full 3D
result of the fuzzy formula 𝐶 = 𝐴 − 𝐴

2.

determined analytically on the basis of formula (30) for
particular membership levels (𝜇-cuts). Consider

𝐶 = 𝐴−𝐴
2
= [𝑐
𝐿
(𝜇) , 𝑐
𝑅
(𝜇)]

= [min
𝛼
𝑎

(𝑐 (𝜇, 𝛼
𝑎
)) ,max
𝛼
𝑎

(𝑐 (𝜇, 𝛼
𝑎
))] ,

𝜇, 𝛼
𝑎
∈ [0, 1] ,

(30)

where 𝑐(𝜇, 𝛼
𝑎
) is determined by formula (29). Extremes

of 𝑐(𝜇, 𝛼
𝑎
) can be detected by usual, analytical function

examination. However, one should remember that function
extremes can lie not only on domain borders of variable 𝛼

𝑎

(𝛼
𝑎

= 0, 𝛼
𝑎

= 1) but also inside of the domain (fractional
values of 𝛼

𝑎
). Then, the extremes can be detected by identifi-

cation of critical points of the derivative d𝑐(𝜇, 𝛼
𝑎
)/d𝛼
𝑎
= 0.

In the analysed problem, examination of the function
𝑐(𝜇, 𝛼

𝑎
) has shown that its left border 𝑐

𝐿
(𝜇) and right border

𝑐
𝑅
(𝜇) have mathematical form expressed by the following

formula:

𝐶 = 𝐴−𝐴
2
= [𝑐
𝐿
(𝜇) , 𝑐
𝑅
(𝜇)] ,

𝑐
𝐿
= 𝑐 (𝜇, 𝛼

𝑎
= 1) = − 2+ 3𝜇−𝜇

2
,

𝑐
𝑅
=

{

{

{

0.25 for 𝜇 ∈ [0, 0.5]

𝑐 (𝜇, 𝛼
𝑎
= 0) = 𝜇 − 𝜇

2 for 𝜇 ∈ [0.5, 1] .

(31)

Membership function representing the span (width) of
the full result 𝑐(𝜇, 𝛼

𝑎
) of the fuzzy formula 𝐶 = 𝐴 − 𝐴

2 is
shown in Figure 6.

Comparison of MFs of results obtained with use of the
𝜇-cuts’ FA (Figure 4) and with use of the multidimensional
RDM FA (Figure 6) shows that “results” provided by the
popular 𝜇-cuts’ FA are excessively broad and false, because
they suggest that certain values of the result 𝑐 = 𝑎 − 𝑎

2

are possible (e.g., −4, +2, +4, and others), whereas they in
fact are impossible. It can be easily checked analytically or
numerically for various allowed values of 𝑎 ∈ [0, 2].

Similarly, as the fuzzy formula 𝐶 = 𝐴 − 𝐴
2 has been

solved with use of the multidimensional RDM FA, other
linear and nonlinear formulas or equations can be solved also.
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Figure 7: Membership functions of uncertain weights𝑋1 and 𝑋2 of two stones S1 and S2.

Their solutions usually will be less uncertain than solutions
obtained with not-multidimensional methods.

3. Addition of Two Independent
Triangle Fuzzy Numbers

Triangle numbers (Figure 7) are used in practice very fre-
quently. Two numbers “about 1.0” and “about 1.1” can rep-
resent weights of two stones, S1 and S2, that were weighed
on the scales. The scales have shown 𝑥1 = 1.0 kg for stone
1 and 𝑥2 = 1.1 kg for stone 2. Because the scales have the
maximal error ±0.1 kg, stone weights are uncertain and can
be described by fuzzy numbers: 𝑋1 is [0.9, 1.0, 1.1] and 𝑋2 is
[1.0, 1.1, 1.2].

Horizontal MF of the stone S1 is given by (32) and
horizontal MF of the stone S2 is given by (33). Consider

𝑥1 = [𝑎1 +𝜇 (𝑏1 − 𝑎1)] + 𝛼
𝑥1

(𝑑1 − 𝑎1) (1−𝜇) ,

𝑥1 = [0.9+ 0.1𝜇] + 0.2𝛼
𝑥1

(1−𝜇) , 𝛼
𝑥1

∈ [0, 1] ,
(32)

𝑥2 = [𝑎2 +𝜇 (𝑏2 − 𝑎2)] + 𝛼
𝑥2

(𝑑2 − 𝑎2) (1−𝜇) ,

𝑥2 = [1.0+ 0.1𝜇] + 0.2𝛼
𝑥2

(1−𝜇) , 𝛼
𝑥2

∈ [0, 1] .
(33)

If we want to calculate the sum 𝑦 of weights of both
stones, then the calculation with horizontal MFs can be
made similarly as in a classical arithmetic, without use of
the extension principle of Zadeh [37]. It is necessary only
when vertical MFs are used. According to this principle, the
membership function of the addition result is determined by
(34), where 𝐴1 and 𝐴2 are fuzzy numbers [4, 10]. Consider

𝜇
𝐴1+𝐴2

(𝑦) = ⋁

𝑦=𝑥1+𝑥2

[𝜇
𝐴1

(𝑥1) ∧ 𝜇
𝐴2

(𝑥2)] ,

∀𝑥1, 𝑥2, 𝑦 ∈ 𝑅.

(34)

If horizontal MFs are used, then the sum 𝑦 = 𝑥1 + 𝑥2 is
created directly by adding 𝑥1 and 𝑥2 determined by (32) and
(33). Consider

𝑥1 ∈ [𝑎1, 𝑑1] ,

𝑥2 ∈ [𝑎2, 𝑑2] ,

𝑦 = 𝑥1 +𝑥2

= [(𝑎1 + 𝑎2) + 𝜇 (𝑏1 + 𝑏2 − 𝑎1 − 𝑎2)]

+ [𝛼
𝑥1

(𝑑1 − 𝑎1) + 𝛼
𝑥2

(𝑑2 − 𝑎2)] (1−𝜇) ,

𝑦 = [1.9+ 0.2𝜇] + 0.2 (𝛼
𝑥1

+𝛼
𝑥2
) (1−𝜇) ,

𝛼
𝑥1
, 𝛼
𝑥2
, 𝜇 ∈ [0, 1] .

(35)

Formula (35) shows that the sum 𝑦 = 𝑥1 + 𝑥2 is not 1-
dimensional. It is a function defined in the 4D space because
𝑦 = 𝑓(𝜇, 𝛼

𝑥1
, 𝛼
𝑥2
). Thus, it cannot be visualised but it can

be shown as the projection onto the 3D space: 𝛼
𝑥1

× 𝛼
𝑥2

× 𝑌

(Figure 8). The fourth dimension 𝜇 is shown in a form of 𝜇-
cuts. For 𝜇 = 0, sum (35) takes a form: 𝑦 = 1.9+0.2(𝛼

𝑥1
+𝛼
𝑥2
).

For 𝜇 = 1, the sum has value 𝑦 = 2.1 independently of values
of 𝛼
𝑥1
and 𝛼
𝑥2
. Surfaces of both 𝜇-cuts can be seen in Figure 8.

The multidimensional result granule (Figure 8) contains
an infinitive number of 𝜇-cuts corresponding to particular
fractional values of 𝜇 ∈ [0, 1]. Figure 8 shows only two border
cuts for 𝜇 = 0 and 𝜇 = 1. Apart from the 3D projection
shown in Figure 8, other projections of the full 4D granule
are also possible. Figure 9 shows the projection onto the 3D
space𝑋1 ×𝑋2 × 𝜇. In this figure, addition results 𝑦 = 𝑥1 + 𝑥2
are shown in a form of contour lines 𝑦 = 𝑥1 + 𝑥2 = const.

Each of the contour lines 𝑦 = const is the set of infinite
number of tuples {𝑥1, 𝑥2} satisfying the condition 𝑥1+𝑥2 = 𝑦.
As can be seen in Figure 9, sum 𝑦 = 2.3 can occur only for
𝑥1 = 1.1 and 𝑥2 = 1.2. Instead, sum 𝑦 = 2.1 has considerably
greater possibility of occurrence because the number of tuples
{(𝑥1, 𝑥2) | 𝑥1 + 𝑥2 = 𝑦 = 2.1} is infinitely large. The value
𝑦 = 2.1 occurs, for example, for 𝑥1 = 1.0 and 𝑥2 = 1.1 and
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Figure 8: Multidimensional granule of the addition result of
two fuzzy numbers “about 1.0” and “about 1.1” being the set of
quadruples {𝜇, 𝛼

𝑥1
, 𝛼
𝑥2
, 𝑦}determined by formula (35) andprojected

onto the 3D space 𝛼
𝑥1

× 𝛼
𝑥2

× 𝑌.
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Figure 9: Projection of the full 4D addition result granule onto the
3D space 𝑋1 × 𝑋2 × 𝜇 with slant contour lines corresponding to
particular addition results 𝑦 = 𝑥1 + 𝑥2 = const.

for 𝑥1 = 1.01 and 𝑥2 = 1.09. A cardinality of particular sets
𝑌
𝑦
[69] can be calculated with the following formula:

Abs Card (𝑦) = Card (𝑦)

= ∫

𝐶

min [𝜇 (𝑥1) , 𝜇 (𝑥2)] d𝑠,
(36)

where 𝐶 is a contour line defined as
𝐶 = {(𝑥1, 𝑥2) | 𝑥1 +𝑥2 =𝑦, 𝑥1 ∈ (𝑎1, 𝑑1) , 𝑥2

∈ (𝑎2, 𝑑2)} .
(37)

The cardinality of particular sets 𝑌
𝑦
is equal to an area

of 𝑦-cuts of the granule (Figure 9). It is easy to calculate. For
example, the cardinality of the set 𝑌2.1 equals

Card (𝑦 = 2.1) =

1
2
√(𝑑2 − 𝑎2)

2
+ (𝑑1 − 𝑎1)

2

≈ 0.14142.
(38)

It is the greatest of all cardinalities (Max Abs Card(𝑦)). It can
be shown that the cardinality of particular sets is a square
function of the sum 𝑦 = 𝑥1 + 𝑥2 ((39) and (40)).

For 𝑦 < 𝑎1 + 𝑑2,

Abs Card (𝑦) = Card (𝑦)

= [

𝑦 − (𝑎1 + 𝑎2)

(𝑎2 + 𝑑1) − (𝑎1 + 𝑎2)
]

2

⋅Max Abs Card (𝑦) .

(39)

For 𝑦 ≥ 𝑎1 + 𝑑2,

Abs Card (𝑦) = Card (𝑦)

= [

(𝑑1 + 𝑑2) − 𝑦

(𝑑1 + 𝑑2) − (𝑑1 + 𝑎2)
]

2

⋅Max Abs Card (𝑦) .

(40)

The absolute cardinality of the sum 𝑦 = 𝑥1 + 𝑥2 can take
various numeric values.Therefore, it should be normalised to
interval [0, 1] for convenience ((41) and (42)).Thenormalised
cardinality Norm Card(𝑦) can also be called the relative
cardinality Rel Card(𝑦).

For 𝑦 < 𝑎1 + 𝑑2,

Norm Card (𝑦) = Rel Card (𝑦)

=

Abs Card (𝑦)

Max Abs Card (𝑦)

= [

𝑦 − (𝑎1 + 𝑎2)

𝑑1 − 𝑎1
]

2

.

(41)

For 𝑦 ≥ 𝑎1 + 𝑑2,

Norm Card (𝑦) = Rel Card (𝑦)

=

Abs Card (𝑦)

Max Abs Card (𝑦)

= [

(𝑑1 + 𝑑2) − 𝑦

𝑑2 − 𝑎2
]

2

.

(42)

It should be noticed that formulas (41) and (42) concern
fuzzy numbers with an identical support. In the considered
example, 𝑑1 − 𝑎1 = 𝑑2 − 𝑎2 = 0.2, so they take the following
form:

For 𝑦 < 𝑎1 +𝑑2: Norm Card (𝑦) = (

𝑦 − 1.9
0.2

)

2
,

For 𝑦 ≥ 𝑎1 +𝑑2: Norm Card (𝑦) = (

2.3 − 𝑦

0.2
)

2
.

(43)

The cardinality distribution of particular values of the
sum 𝑦 = 𝑥1 + 𝑥2 for the considered example is shown in
Figure 10.
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Figure 10: Normalised cardinality distribution Norm Card(𝑦) of
the occurrence of particular values of the sum 𝑦 = 𝑥1 + 𝑥2 being
the 2D representation of the 4D addition result of two independent
fuzzy numbers “about 1.0” and “about 1.1” shown in Figure 7.

It should be emphasised once more that the distribution
determined by formula (43) and shown in Figure 10 is not the
addition result of two fuzzy numbers but only 2D information
about the cardinality of particular sum values 𝑦 = 𝑥1 + 𝑥2
derived from the full 4D addition result given by (35). The
representation provided by Zadeh’s extension principle (34)
can also be obtained on the basis of the exact solution (35).
The full 4D solution is given below. Consider

𝑦 = (1.9+ 0.2𝜇) + 0.2 (𝛼
𝑥1

+𝛼
𝑥2
) (1−𝜇)

𝛼
𝑥1
, 𝛼
𝑥2
, 𝜇 ∈ [0, 1] .

(44)

The minimal value of the sum (the left border) 𝑦
𝐿
for

various levels of 𝜇 ∈ [0, 1] is obtained for 𝛼
𝑥1

= 𝛼
𝑥2

= 0:

𝑦
𝐿
= 1.9+ 0.2𝜇. (45)

The maximal sum value (the right border) 𝑦
𝑅
is obtained

for 𝛼
𝑥1

= 𝛼
𝑥2

= 1:

𝑦
𝑅
= 2.3− 0.2𝜇. (46)

The 2D representation of the addition result of two fuzzy
numbers “about 1.0” and “about 1.1” obtained with formulae
(45) and (46) is shown in Figure 11.

The 2D representation obtained according to Zadeh’s
extension principle (34) informs only about the maximal
spread of the full solution granule on particular 𝜇-levels
(Figure 9). Geometrically, the distribution from Figure 11
corresponds to the cross section going from the corner 𝑦 =

𝑎1+𝑎2 = 1.9 to the corner 𝑦 = 𝑑1+𝑑2 = 2.3 through the peak
of the membership function in Figure 9.

1

0
1.9 2.1 2.3 y = x1 + x2

𝜇

Figure 11: 2D representation of the full 4D addition result obtained
with formulas (45) and (46) corresponding to the “result” obtained
with Zadeh’s extension principle (34).

a2 = 1.0

b2 = 1.1

d2 = 1.2

x2

x1a1 = 0.9 b1 = 1.0 d1 = 1.1

x1 > x2

x1 = x2

Infeasible
tuples {x1, x2}

tuples {x1, x2}

Domain of
feasible

Figure 12: Domain of feasible tuples of weight values {𝑥1, 𝑥2}which
can take part in adding of fuzzy numbers 𝑥1 and 𝑥2.

4. Addition of Two Fuzzy Numbers with
Taking into Account the Order Relation

Let us analyse an example of a fuzzy number addition similar
to that in Section 3, but with small difference, with the
additional knowledge that not only MFs of added numbers
but also their order relation is known.

Thus, there are two stones S1 and S2 which had been
weighed on spring scales with maximal error equal to 0.1 kg.
Therefore, weights 𝑥1 and 𝑥2 of stones are uncertain and can
be expressed in the formof fuzzy numbers:𝑋1 is [0.9, 1.0, 1.1]
and 𝑋2 is [1.0, 1.1, 1.2]. MFs of uncertain weights are shown
in Figure 7. After weighting the stones on the spring scales,
their weights were compared on balance scales. The scales
showed that the weight 𝑥2, though uncertain, is greater
than 𝑥1. Therefore, the weights order 𝑥2 > 𝑥1 is known
and can be taken into account in the weights’ adding. The
knowledge of the order relation changes (constraints) the
domain of possible weight tuples {𝑥1, 𝑥2} in comparison with
the example from Section 3. Now less tuples will be feasible
(Figure 12).

In the considered example, uncertain weights 𝑥1 and
𝑥2 are expressed by the same horizontal MFs as given by
formulas (32) and (33). However, the addition result 𝑦 is
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Figure 13: 3D projection of the 4D granule of the addition result of
two fuzzy numbers “about 1.0” and “about 1.1” onto the space 𝑋1 ×

𝑋2 × 𝑌.

determined by more constraints (formula (47)) as in the case
without the weights’ order relation. Consider

𝑥1 ∈ [𝑎1, 𝑑1] ,

𝑥2 ∈ [𝑎2, 𝑑2] ,

𝑥1 < 𝑥2,

𝑦 = 𝑥1 +𝑥2

= [(𝑎1 + 𝑎2) + 𝜇 (𝑏1 + 𝑏2 − 𝑎1 − 𝑎2)]

+ [𝛼
𝑥1

(𝑑1 − 𝑎1) + 𝛼
𝑥2

(𝑑2 − 𝑎2)] (1−𝜇) ,

𝑦 = [1.9+ 0.2𝜇] + 0.2 (𝛼
𝑥1

+𝛼
𝑥2
) (1−𝜇) ,

𝛼
𝑥1
, 𝛼
𝑥2
, 𝜇 ∈ [0, 1] .

(47)

Equations (47) determine the full and precise addition
result𝑦 = 𝑓(𝛼

𝑥1
, 𝛼
𝑥2
, 𝜇) that has a formof the 4D information

granule. This granule cannot be visualised. However, we can
visualise its 3D projection onto the space𝑋1 × 𝑋2 × 𝑌 that is
shown in Figure 13.

A comparison of addition result granules obtained with-
out (Figure 8) and with (Figure 13) taking into account the
order relation 𝑥2 > 𝑥1 shows that it considerably changes the
granules shape. Figure 14 shows other projection of the full
4D result granule onto the space 𝑋1 × 𝑋2 × 𝜇. Values of the
sum 𝑦 = 𝑥1 +𝑥2 are shown in this figure in a form of contour
lines of constant 𝑦 values.

The granule of the addition result from Figure 14 can
be compared to the result granule of addition without the
order relation 𝑥2 > 𝑥1 shown in Figure 9. The comparison
shows that the relation 𝑥2 > 𝑥1 considerably decreases
the domain of possible solutions. At the same time, we can
observe decrease of cardinalities of particular 𝑦 values for

1

𝜇
About 1.0

About 1.1

0

0

1

1

a1 = 0.9 b1 = 1.0 d1 = 1.1 x1

x2

Infeasible
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a 2
=
1.
0

b 2
=
1.
1

d 2
=
1.
2

Contour line
y = x1 + x2 = 2.1 = const

y = 2.3 = d1 + d2

y = 2.1 = d1 + a2

y = 2.0

y = 2.1
y = 2.2 Tuples {x1, x2}

𝛼x2

𝛼x1

Figure 14: Projection of the full 4D result granule of the addition
of two fuzzy numbers “about 1.0” and “about 1.1” with taking into
account the order relation 𝑥2 > 𝑥1 onto the 3D space𝑋1 × 𝑋2 × 𝜇.

𝑦 ∈ [2.0, 2.2]. Now, formulas for cardinalities take new forms:
(50)–(56). Consider

Max Abs Card =

1
2
⋅

7
8
⋅ √(𝑑2 − 𝑎2)

2
+ (𝑑1 − 𝑎1)

2
. (48)

For 𝑦 ∈ [𝑎1 + 𝑎2, 𝑎1 + 𝑏2] = [1.9, 2.0],

Abs Card (𝑦) =

8
7
[

𝑦 − (𝑎1 + 𝑎2)

𝑑1 − 𝑎1
]

2

⋅Max Abs Card,

(49)

Norm Card (𝑦) =

8
7
[

𝑦 − (𝑎1 + 𝑎2)

𝑑1 − 𝑎1
]

2

=

8
7
(

𝑦 − 1.9
0.2

)

2
.

(50)

For 𝑦 ∈ [𝑎1 + 𝑏2, 𝑎1 + 𝑑2] = [2.0, 2.1],

Abs Card (𝑦)

=

8
7
{[

𝑦 − (𝑎1 + 𝑎2)

𝑑1 − 𝑎1
]

2

−

1
8
[

𝑦 − (𝑎1 + 𝑏2)

𝑑1 − 𝑏1
]

2

}

⋅Max Abs Card,

(51)

Norm Card (𝑦)

=

8
7
{[

𝑦 − (𝑎1 + 𝑎2)

𝑑1 − 𝑎1
]

2

−

1
8
[

𝑦 − (𝑎1 + 𝑏2)

𝑑1 − 𝑏1
]

2

}

=

8
7
[(

𝑦 − 1.9
0.2

)

2
−

1
8
(

𝑦 − 2.0
0.1

)

2
] .

(52)
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Figure 15: 2D representation of the full 4D result in a form of the cardinality distribution for the case of the addition of two independent
fuzzy numbers (a) and for the case of the addition of two fuzzy numbers constrained by the order relation 𝑥2 > 𝑥1 (b).

For 𝑦 ∈ [𝑎1 + 𝑑2, 𝑏1 + 𝑑2] = [2.1, 2.2],

Abs Card (𝑦)

=

8
7
{[

(𝑑1 + 𝑑2) − 𝑦

𝑑2 − 𝑎2
]

2

−

1
8
[

(𝑏1 + 𝑑2) − 𝑦

𝑏1 − 𝑎1
]

2

}

⋅Max Abs Card,

(53)

Norm Card (𝑦)

=

8
7
{[

(𝑑1 + 𝑑2) − 𝑦

𝑑2 − 𝑎2
]

2

−

1
8
[

(𝑏1 + 𝑑2) − 𝑦

𝑏1 − 𝑎1
]

2

}

=

8
7
[(

2.3 − 𝑦

0.2
)

2
−

1
8
(

2.2 − 𝑦

0.1
)

2
] .

(54)

For 𝑦 ∈ [𝑏1 + 𝑑2, 𝑑1 + 𝑑2] = [2.2, 2.3],

Abs Card (𝑦) =

8
7
[

(𝑑1 + 𝑑2) − 𝑦

𝑑1 − 𝑎1
]

2

⋅Max Abs Card,

(55)

Norm Card (𝑦) =

8
7
[

(𝑑1 + 𝑑2) − 𝑦

𝑑1 − 𝑎1
]

2

=

8
7
(

2.3 − 𝑦

0.2
)

2
.

(56)

Figures 15(a) and 15(b) show the comparison of 2D
representations of full 4D addition results in a form of
cardinality distributions Norm Card(𝑦) determined by (50)–
(56).

It should be noticed that the 2D representation obtained
with use of Zadeh’s extension principle (34) is still identical
and has the form shown in Figure 16 independently whether
the addition is realised with or without taking into account
the order relation 𝑥2 > 𝑥1.

The extension principle (34) does not “perceive” the
domain loss (compare Figures 8 and 13)which is its important

1

0

𝜇

1.9 2.0 2.1 2.2 2.3 y

About∗∗ 2.1

Figure 16: 2D representation of the full 4D addition result obtained
with use of the extension principle (34) both for the case of two
independent numbers and dependent numbers constrained by the
order relation 𝑥2 > 𝑥1.

drawback. It provides even less information about the full 4D
addition result than the 2D representation determined with
formulas (50)–(56) and shown in Figure 15.

5. Addition of Two Fully Dependent
Fuzzy Numbers

Correlations between variables have no significance in the
case of an addition of two crisp numbers. However, in
the case of intervals, fuzzy intervals, and fuzzy numbers,
mutual dependencies are of great importance. Let us consider
another example.

Small John did not know exactly howmuchmoney he had
in his money box after a month of saving. He evaluated that
the sum was about $10, at least $7, and nomore than $13.This
evaluation can be expressed by the fuzzy number [46, 49, 51].
His father promised to double the saved sum after 1 month.
He opened the box, checked the sum, and added exactly the
same sum to the box. However, father did not inform John of
the sum he added. How much money does small John have
in the box now?

Let us denote by 𝑥1 the uncertain sum of money which
small John had in the money box at the beginning: 𝑥1 is
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Figure 17:Visualization of the addition result of two fully dependent
fuzzy numbers: “about 10” + “about 10” for which the condition
𝛼
𝑥1

= 𝛼
𝑥2
has to be satisfied.

“about 10” [46, 49, 51]. The horizontal MF of the set “about
10” can be determined on the base of formula (32):

𝑥1 = 7+ 3𝜇+ 6𝛼
𝑥1

(1−𝜇) , 𝜇, 𝛼
𝑥1

∈ [0, 1] . (57)

Though the precise value of the sum 𝑥1 is not known for
us and for John, his father knew it and added the same sum
𝑥2 to John’s money box. Because 𝑥1 = 𝑥2, then from (58) we
can conclude that 𝛼

𝑥1
= 𝛼
𝑥2
. Consider

𝑥1 = 7+ 3𝜇+ 6𝛼
𝑥1

(1−𝜇) = 𝑥2

= 7+ 3𝜇+ 6𝛼
𝑥2

(1−𝜇) , 𝛼
𝑥1
, 𝛼
𝑥2
, 𝜇 ∈ [0, 1] .

(58)

It means that both RDM variables and also variables 𝑥1
and 𝑥2 are mutually fully coupled (correlated). The resulting
sum 𝑦 = 𝑥1 + 𝑥2 can be expressed by the following formula:

𝑦 = 𝑥1 +𝑥2 = 14+ 6𝜇+ 6 (1−𝜇) (𝛼
𝑥1

+𝛼
𝑥2
) ,

𝛼
𝑥1

= 𝛼
𝑥2

𝛼
𝑥1
, 𝛼
𝑥2
, 𝜇 ∈ [0, 1] ,

(59)

and it is visualised in Figure 17.
As Figure 17 shows, the addition result “about 20” is in

this case the flat and not 3D information granule as in the
case of the addition of fully independent fuzzy numbers; see
Figure 9. As before, the flat 2D representation in the form of
the horizontal MF 𝑦 = 𝑓(𝜇) can be determined on the basis
of exact solution (59). This function can be characterized
with left and right border functions 𝑦

𝐿
(𝜇) and 𝑦

𝑅
(𝜇). Both

functions can be determined from the full result:

𝑦 = 14+ 6𝜇+ 12𝛼
𝑥1

(1−𝜇) . (60)

The left,minimal function border is obtained forminimal
values of RDM variables 𝛼

𝑥1
= 𝛼
𝑥2

= 0. Consider

𝑦
𝐿
(𝜇) = 14+ 6𝜇. (61)

1

0

𝜇

14 20 26 y

About 20

yL yR

Figure 18: 2D representation of the full 4D result (59) 𝑦 =

𝑓(𝜇, 𝛼
𝑥1
, 𝛼
𝑥2
) of the addition of two fully dependent fuzzy numbers

“about 10” + “about 10” satisfying the condition 𝛼
𝑥1

= 𝛼
𝑥2
.

The right border of the 2D representation, the border of
maximal 𝑦 values, is obtained for maximal values of RDM
variables 𝛼

𝑥1
= 𝛼
𝑥2

= 1. Consider

𝑦
𝑅
(𝜇) = 26− 6𝜇. (62)

2D representation of the full 4D addition result (59) is
shown in Figure 18.

6. Solving Additive Fuzzy Equation: 𝐴 + 𝑋 = 𝐶

As it was mentioned in Section 1, solving equations with
one unknown 𝑥 makes great difficulties even for the interval
arithmetic which is considerably simpler than the fuzzy
arithmetic. It will be shown in this section that solving fuzzy
equations with use of horizontal MFs is possible and not
difficult. Let us consider the last example.

Corn harvested fromfield 1wasweighed on the scales that
havemaximal error equal to 1 ton.The scales indicated 5 tons.
Thus, the true weight 𝑎 of the corn can be expressed in a form
of the fuzzy number𝐴 = [4, 5, 6]. Corn harvested fromfield 2
was not weighed on the field. Therefore, its true weight 𝑥 was
not known even approximately. Both crops were brought to
a warehouse. There, they were mixed and weighed together
on 3 scales that also have the maximal error equal to 1 ton.
The scales indicated 15 tons. Thus, the sum 𝑐 of crops can be
expressed in a form of the fuzzy number 𝐶 = [14, 15, 16].
How large is the weight 𝑥 of the crop from field 2? The
knowledge of 𝑎 and 𝑥 is important, because farmers 1 and 2
should be paid fairly for their delivery.

This problem cannot be solved uniquely with 𝜇-cut
method based on the traditional interval arithmetic. How-
ever, it can be solved with an application of horizontal MFs
(63) which can be constructed on the basis of the general
formula (12). Consider

𝐴 = [4, 5, 6] : 𝑎 = 4+𝜇+ 2𝛼
𝑎
(1−𝜇) ,

𝐶 = [14, 15, 16] : 𝑐 = 14+𝜇+ 2𝛼
𝑐
(1−𝜇) ,

𝜇, 𝛼
𝑎
, 𝛼
𝑐
∈ [0, 1] .

(63)

Value 𝑐, though known only approximately, is the result of
the addition of also only approximately known values 𝑎 and
𝑥. They are connected by a dependence 𝑎 + 𝑥 = 𝑐. Thus, the
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Figure 19: 3D projection of the full 4D solution of (64) from the
space 𝐴 × 𝐶 × 𝑋 × 𝜇 onto the space 𝐴 × 𝑋 × 𝜇.

unknown value 𝑥 of crop from field 2 can be calculated from
the following formula:

𝑥 = 𝑐 − 𝑎

= [14+𝜇+ 2𝛼
𝑐
(1−𝜇)] − [4+𝜇+ 2𝛼

𝑎
(1−𝜇)]

= 10+ 2 (𝛼
𝑐
−𝛼
𝑎
) (1−𝜇) 𝜇, 𝛼

𝑎
, 𝛼
𝑐
∈ [0, 1] .

(64)

It can be easily noticed that formula (64) is four-
dimensional: 𝑥 = 𝑓(𝜇, 𝛼

𝑎
, 𝛼
𝑐
). It cannot be expressed exactly

in the 2D space, which is suggested by the extension principle
and various versions of the fuzzy arithmetic. However, it can
be visualised in a form of the 3D projection on subspaces, for
example, on the subspace𝐴×𝑋×𝜇 (variable 𝛼

𝑎
is equivalent

to variable 𝑎 because of the transformation 𝑎 = 4 + 2𝛼
𝑎
)

(Figure 19).
Figure 19 shows the support of the membership function

of solution (64) being the 𝜇-cut of this function on the level
𝜇 = 0. It can be noticed that this support does not have a
shape of a rectangle but of a parallelogram, which is shown
additionally in Figure 20.

Figure 20 shows that the solution of the fuzzy equation
𝐴 + 𝑋 = 𝐶 is not 1-dimensional one and therefore it is not
possible to express it in a form of the interval [𝑥, 𝑥] which
is usually done by these versions of fuzzy arithmetics that
are based on the classical IA. Moore’s IA provides us with
two possible solutions: (65) and (66). The first result (65) is
obtained if the equation𝐴+𝑋 = 𝐶 is solved for the cut 𝜇 = 0.
Consider

𝐴+𝑋 = 𝐶,

[4, 6] + [𝑥, 𝑥] = [14, 16] ,

4+𝑥 = 14, 𝑥 = 10,

6+𝑥 = 16, 𝑥 = 10,

[𝑥, 𝑥] = [10, 10] .

(65)

Solution (65) represents only one of many possible solu-
tion subsets: it is the subset containing tuples {(𝑎, 𝑥) | 𝑥 = 10}.

Domain of feasible
tuples {a, x}

Domain of infeasible
tuples {a, x}

TP1

TP2

4 5 6 a

𝛼a

x = 11

x = 10

x = 9

x

12

11

10

9

8

c
=
c
=
16

c
=
c
=
14

Figure 20: Support of the 3D membership function of the solution
from Figure 19. TP1 = (5, 9.5) and TP2 = (4.5, 9) are examples of
test points that can be used for the correctness testing of obtained
solutions.

However, apart from this subset, there is also an infinitely
large set of solution tuples {𝑎, 𝑥} which satisfy the interval
equation 𝐴 + 𝑋 = 𝐶. Example of such tuple is the test point
TP1 (𝑎, 𝑥) = (5.0, 9.5) in Figure 20, because, for 𝑎 = 5 ∈ [4, 6],
the sum 𝑎 + 𝑥 = 𝑐 = 5 + 9.5 = 14.5 ∈ [14, 16].

The second possible solution of the equation 𝐴 + 𝑋 = 𝐶

for 𝜇 = 0 gives formula (66). Consider

𝐴+𝑋 = 𝐶,

[4, 6] + [𝑥, 𝑥] = [14, 16] ,

[𝑥, 𝑥] = [14, 16] − [4, 6] = [8, 12] .

(66)

One can easily convince himself that this result is not the
precise solution of the considered equation. It is only infor-
mation about the greatest span [8, 12] of the precise solution
(64), which has a form of a parallelogram (Figure 20). As
can be seen in Figure 20, for the interval [𝑥, 𝑥] = [8, 12],
we can create an infinite number of tuples {𝑎, 𝑥} which
are not solutions of the considered equation. For example,
the tuple (4.5, 9) corresponding to the test point TP2 has
coordinates 𝑎 = 4.5 ∈ [4, 6] and 𝑥 = 9 ∈ [8, 12] =

[𝑥, 𝑥]. Above-mentioned examples show that only multidi-
mensional approach to the fuzzy and interval arithmetic can
give correct problem solutions. It should be noticed that the
maximal solution span [8, 12] provided byMoore’s arithmetic
can be easily obtained from the multidimensional solution
(64) of equation𝐴+𝑋 = 𝐶. If we are interested in the solution
span on the cut level𝜇 = 0, then this value of𝜇 can be inserted
into (64) being 4D solution and, as a result, we obtain

𝑥 = 𝑐 − 𝑎 = 10+ 2 (𝛼
𝑐
−𝛼
𝑎
) , 𝛼

𝑎
, 𝛼
𝑐
∈ [0, 1] . (67)

A simple analysis of this equation gives the conclusion
that the minimal value 𝑥 occurs for 𝛼

𝑎
= 1 and 𝛼

𝑐
= 0. This
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Figure 21: 2D distribution of the full 4D solution of the fuzzy
equation 𝐴 + 𝑋 = 𝐶 in a form of the cardinality distribution of
particular 𝑥 values, 𝑥 ∈ [8, 12].

value equals 𝑥 = 8. The maximal value 𝑥 occurs for 𝛼
𝑎
= 0

and 𝛼
𝑐

= 1. It is equal to 12. Hence, the maximal solution
span [𝑥, 𝑥] = [8, 12]. Figure 21 shows 2D representation of
the full 4D solution of the equation 𝐴 + 𝑋 = 𝐶 in a form of
the cardinality distribution of particular 𝑥 values.

7. Conclusions

The paper presents the new concept of horizontal MFs which
were used for the addition as the exemplary operation on
fuzzy numbers. The application of such functions in combi-
nation with the RDM arithmetic enables multidimensional
approach to operations on fuzzy numbers and thereby it
allows for removing some drawbacks and weaknesses of the
fuzzy arithmetic. The use of horizontal MFs considerably
facilitates calculations because now uncertain values can be
inserted directly into equations without using the extension
principle.

Additionally, the RDM arithmetic enables taking into
account correlations occurring between arguments of math-
ematical operations which is not possible using one-
dimensional approach offered by classic FA methods.
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