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This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM) and a
coupled genetic algorithm (c-GA). We developed the inverse technique using a coupled genetic algorithm that can make global
solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper
allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of
the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are
simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results
demonstrate the excellence of themethod from the standpoints of computation efficiency and avoidance of premature convergence.

1. Introduction

Recently, moving loads detection technologies have been
developed to assess the bridge condition with limited infor-
mation related to moving loads. In these studies, the mea-
surement of the weight and velocity of the moving vehicle
is significant for the design of bridges and pavements,
performance assessment, bettermaintenance, and the control
of illegal vehicles on bridges and highways.

A variety of methods have been carried out to identify the
weight and velocity of moving vehicles on bridge structures.
These methods are called system identification (SI) methods
based on the inverse problem because it uses the static or
dynamic responses of structures such as natural frequency,
mode shape, and time histories of acceleration of the vehicles.
At an early stage of the development of the moving load
identification method, only static axle loads are measured.
Improved methods capable of identifying both the static
and dynamic moving loads were developed from the latter
half of the 1980s. Hoshiya and Maruyama [1] identified a
moving load on a simply supported beam by applying an
extended Kalman filter. O’Connor and Chan [2, 3] developed
a method that measured both static and dynamic loads using

strain responses obtained from bridge decks modeled as an
assembly of lumped masses with the massless elastic beam
element. Considering the interaction forces between vehicle
and bridge with the viscous damping on the Euler-Bernoulli
beam model, Law et al. [4] identified moving loads using
modal superposition principle in time domain. Moreover,
Law et al. [5] proposed a frequency time domain method
by performing Fourier transformation of the load-response
relationship to identify the moving load directly using least
squares. Chan et al. [6] applied a moving loads identification
method based on Euler’s beam theory together with modal
analysis. In addition to these methods, Steffen Jr. and Rade
[7] used a Fourier series to identify moving loads on a
simply supported beam. To obtain a good quality of moving
loads, Chan et al. [8] developed a method applicable to the
prestressed concrete bridges considering the effect of the
prestress on the structure. Chan and Ashebo [9] identified
moving loads on a continuous bridge using only a target
span. Also, they found that the accuracy of the identified
value of moving loads based on bending moment response is
better than acceleration response.The effect of the interaction
between the bridge and the vehicle, such as the dynamic
properties of the bridge and vehicle, made the road surface
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roughness an important criterion for the identification of
the moving load and many studies have been proposed to
confirm the results. Cantieni [10] performed the field test
regarding the vehicle-bridge interaction. Hwang and Nowak
[11] contributed to the development of a reliability-based
design code by developing a process for the calculation of the
dynamic load. Wang et al. [12] studied the dynamic response
of a single span multigirder bridge deck under single and
two vehicle loads with different velocities by adopting grillage
beam theory and Huang et al. [13] extended this method
to multigirder bridges. Chatterjee et al. [14] performed a
simulation with a quarter truck model by simplifying the
continuous bridge deck as a continuous Euler-Bernoulli
beam subjected to torsional vibration. In addition, the effect
of the speed parameter, the vehicle/bridge frequency ratio,
and damping of the bridge and road roughness was reported
by Yang et al. [15].

To solve these inverse problems, direct search methods
based onmetaheuristics techniques and artificial intelligence,
such as genetic algorithms (GAs), simulated annealing (SA)
methods, and neural networks (NN), have been introduced
and promisingly applied to the field of structural identifica-
tion [16]. Among them, GAs attract our attention because
they do not require a considerable amount of data in advance
in dealing with complex problems and make global solu-
tion search possible as opposed to classical gradient-based
optimization techniques. Suh et al. [17] presented a coupled
neurogenetic technique that is able to identify the region and
extent of damage in a beam or frame structure using only
frequency information. Mares and Surace [18] demonstrated
the ability of a GA to identify damage in elastic structures.
Friswell et al. [19] combined the genetic and eigen sensitivity
algorithms for locating damage. Chou and Ghaboussi [20]
proposed a GA-based method to determine the region and
extent of damage in truss structures from the measured static
displacements. Krawczuk [21] presented a wave propagation
approach to detect damage in beam structures based on GA
and the gradient technique. However, conventional GAs have
a limit in solving inverse problems using GA because of the
high computational cost of a large number of iterations: it
is necessary to perform iterative forward computations for
each chromosome. Thus, the total time spent in solving the
forward problem could be extremely long, usually on the
order of magnitude of several thousand or more depending
on the complexity of the problem. Unlike these, a uniform
microgenetic algorithm (𝜇GA) can avoid premature conver-
gence and deliver faster convergence to the near optimal
region than a simple GA. Carroll [22] found that a uniform
𝜇GA ismore robust in handing an order-3 deceptive function
than the traditional GA methods. Au et al. [23] developed a
natural-frequency-based 𝜇GA for detecting damage in a one-
dimensional beam. Lee and Wooh [24] applied a 𝜇GA for
detecting damage in plate structures subjected to dynamic
loading. However, the numerical examples used in the studies
are not practical in that they regard damage as a prede-
termined rectangular element. Rus et al. [25] examined the
identification of defects in laminated composite structures
subjected to in-plane static loads using the boundary element
method (BEM). They used an elliptic function with five

unknown parameters to represent an arbitrary damage shape.
However, this approach has several limitations such as the
use of static loads, limitation to in-plane behaviors, and lack
of capability to detect the extent of damage. Lee et al. [26]
presented a method to detect stiffness degradations using
a modified bivariate Gaussian function, with which it is
possible to consider an arbitrary damage shape. The method
has been applied to concrete plates subjected to impact loads
using the finite element method (FEM) and 𝜇GA. Lately,
Park et al. [27] proposed a damage-detection technique to
determinate damage distribution, which is a modified form
of the bivariate Gaussian distribution function. This method
uses a combination of the combined finite element method
(FEM) and the advanced 𝜇GA and moving loads as input
excitation. However, it is required to know the position and
velocity of the moving load in advance [28].

In this study, an advanced coupled GA (c-GA) is devel-
oped for solving the inverse problem. The c-GA can avoid
premature convergence like 𝜇GA and provide faster conver-
gence to the near optimal solution than 𝜇GA by introducing
a conventional gradient-based technique for which local
searching power is sufficient due to fast convergence. In
this study, we use a three-dimensional (3D) beam model for
obtaining themeasurement data.The approach of the present
study is more similar to reality than using the samemodel for
generating the simulated experiment and using the inverse
procedure. This is because the difference of measured data
due to modeling error between real bridges and numerical
models can be accounted for. A one-dimensional (1D) beam
model is used to run an inverse procedure to obtain better
computational efficiency. In this study, themodel uncertainty
is significantly considered as a realistic circumstance.

2. Forward Procedure

For the transient analysis of a bridge deck subjected to the
effects of moving loads, an implicit time integration method,
called the Newmark integration technique, is adopted with
the integration parameters 𝛽 = 1/4 and 𝛾 = 1/2, which lead
to constant-average acceleration approximation. Considering
a moving load with a velocity V on a plate element, the total
moving distance (𝑡+Δ𝑡𝐷

𝑡
) of the load at time 𝑡 +Δ𝑡 is given by
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the initial coordinate of the moving load in the transverse
direction, 𝐿

𝑥
1

and 𝐿
𝑥
2

are the lengths of the plate in the 𝑥
1

and 𝑥
2
directions, respectively, and INT() means the integer

part of the value in parentheses.
The moving load vectors F

𝑘
(𝑡) at an arbitrary location on

the𝑁𝑑
𝑘
th element of the plate should be inevitably distributed

into the nodal loads F
𝑁
𝑘

(𝑡) using the zero-order Hermite
(Lagrange) interpolation functionΦ.The natural coordinates
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(4)

In a four-node element with three degrees of freedom
per node, the moving load distribution into four neighbor-
hood nodes not considering distribution of moment can be
expressed as
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The total external force vectors F applied on the plate at
𝑡 + Δ𝑡 can be obtained by summing the distributed 𝑛 loads as
given by
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In the Newmark integration scheme, the effective loads at
time 𝑡 + Δ𝑡 can be calculated as
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Ü) . (7)

The dynamic displacements U, accelerometers Ü, and
velocities U̇ at time 𝑡 + Δ𝑡 can be solved as
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where the triangularized effective stiffness matrix is K̂ = K̃ +
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the Newmark integration method, respectively.
The governing equation ofmotion of the system is written

in the form

MÜ + K̃U = F (𝑡) , (9)

whereU and Ü are the displacement and acceleration vectors,
respectively; M is the mass matrix without loss before and
after damage; K̃ is the stiffness reduction matrix; F(𝑡) is the
time history of the applied moving load.

3. Coupled Genetic Algorithm

The accuracy of a system identification method applying a
conventional gradient-based technique may be influenced
by the insufficient initial information. That is, the trap of
minima due to the incomplete initial values often occurs and
this problem should be dealt with. In this study, to resolve
the earlier trouble of a gradient-based technique in estimat-
ing system parameters, the advanced system identification
technique applying the c-GA is employed. In general, GAs
are good at global searching but slow at converging because
they are necessary to perform iterative forward computations
for each chromosome. On the other hand, a conventional
gradient-based technique is good at local searching but lacks
a global search power; thus, to enhance searching capability
and improve convergence performance, the incorporation
of a GA with a conventional gradient-based optimization
technique is enough to attract attention. The introduced c-
GA is such an algorithm. In addition, the c-GA can overcome
limitations in solving inverse problems using a conventional
GA because the high computational cost of a large number of
iterations can be reduced dramatically by operating on a very
small population size. The small population size very often
leads to the phenomenon of genetic drift in chromosomes
over a few generations. To maintain the genetic diversity
in the population, the c-GA enhances the genetic operation
and search strategy. To identify the unknown parameters,
the c-GA should be combined with the FEM that can reflect
the change of structural properties and loading condition in
bridges in the present state. In other words, the FE model
parameters that can explain the change of stiffness due to
damage under moving loads sensitively should be utilized as
identification parameters in an inverse procedure. In terms
of the genetic algorithm, the unknown parameter vector q𝑠
is represented by the selected individuals in each iteration.
Meanwhile, dynamic analysis using the combination of FEM
and c-GA can be considered the following vector function:

U : Ω ⊂ R
𝑠
󳨀→ Γ ⊂ R

𝑁

U (q𝑠) = [1𝑈 2𝑈 ⋅ ⋅ ⋅
𝑁
𝑈]
𝑇

; q𝑠 ∈ Ω,
(10)

where Ω is the vector space of identification variables; 𝑠 is
the number of identification variables; Γ is the vector space of
dynamic response such as displacements or acceleration data;
𝑁 is the number of measured data used to identify a system;
1
𝑈, . . . ,

𝑁
𝑈 are dynamic responses calculated by using the

dynamic analysis combining the FEM with the c-GA from
an arbitrary q𝑠. The function U reflects the distribution of
stiffness reductions in structures transformed equivalently
from dynamic responses changed from damages. Thus, the
system identification for computing a distribution of stiffness
reduction is described as the following optimization problem
set:

minimize(Ξ =
𝑁

∑

𝑖=1

[
𝑖

Ψ −
𝑖

𝑈(q𝑠)]
2
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where 1Ψ, . . . ,𝑁Ψ are the measured data and 𝑖𝑈 : R𝑠 → R

(𝑖 = 1, . . . , 𝑁) is the function satisfying U = [
1
𝑈, . . . ,

𝑁
𝑈]
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Figure 1: A flow chart for identifying the region of damage and the distribution of stiffness change using the combination of FEM and c-GA.
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and the proposed c-GA.

Figure 1 illustrates a flow chart for identifying the parameters
q𝑠 computed by the combination of FEM and c-GA, as
applied in this study. Using the combined finite element anal-
ysis and coupled genetic algorithm, the location of a damaged
region as well as the distribution of deteriorated stiffness
finally can be determined by investigating the unknown
parameters q𝑠.

4. Numerical Examples

4.1. Comparison with Other Algorithms. The performance
of the coupled genetic algorithm (c-GA) proposed in this
study is compared with that of the well-known simple genetic
algorithm (SGA) and themicrogenetic algorithm (𝜇GA).The
test function used is called the foxhole function and the form
is as follows:

𝑓 (x) = (0.002 +
25

∑

𝑗=1

(𝑗 +

2

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6

)

−1

)

−1

, (12)

in which the coefficient 𝑎
𝑖𝑗
is continuous, nonconvex, non-

quadratic, and multimodal, has low-dimensional detection
property, and, especially, has 25 local solutions. The global
solution exists at x = [−32 −32]

𝑇 and the function value
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Figure 3: 3D-reality concrete beam model [29, 30].
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Figure 4: Numerical model and four moving load excitation cases of a beam used in the finite element model.

at the point is unity. In Figure 2, convergence rates obtained
through the SGA, the 𝜇GA, and the proposed c-GA are
represented. The figures indicate that the convergence rate
of the c-GA is faster than the others. The reason is that the
c-GA decreases the size of the population by 1/5 compared
with the SGA; thus, the computation amount in a forward
procedure is reduced, which increases the power for detecting
the optimal global solution by introducing the gradient-like
selection technique in reproduction operation and adopting
enhanced strategies such as the elitist strategy and the scaling
windows scheme compared with the 𝜇GA.

4.2. Moving Force Detection

4.2.1. Numerical Model. To consider the uncertainties
between 2D model and 3D reality, the measurement data
obtained from the actual bridge modeled by a three-
dimensional FE model [29, 30] shown in Figure 3 are used
in the inverse procedure for detecting the characteristics of
moving loads. Because of the uncertainties that occurred

from the differentmodels, attention is needed to the selection
of the measurement range and location for the moving load
excitation. In this study, the dynamic responses such as
acceleration, velocity, and displacement are measured at the
bottom of the 3D solid model and moving loads are excited
at the center line on the top of it as depicted in Figure 3. The
geometrical andmaterial properties of the beam are the same
as those of the numerical model. For the verification of the
ability to identifymoving loads using the proposed technique
combined with the FEM and the c-GA, in this study, three
cases of numerical tests are carried out. To focus on the
identification of moving loads, we consider an undamaged
concrete beam’s 20 divided elements (𝑁1 = 20) subjected
to the moving load of unknown velocity and weight, as
shown in Figure 4. The length, height, width, and density
of the beams are 24.0m, 0.8m, 0.4m, and 2,400 kg/m3,
respectively. In implementation using the coupled genetic
algorithm, we examine 4∼5 individuals due to moving load
excitation cases and the probability of uniform crossover was
set as 1.0.The combination of given possibilities (211 = 2048)
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Table 1: Estimated parameters values of the final run for the different examples for each case (Ψ: measured value, Ψ∗: estimated value).

Measured and estimated values

Model Parameter EX1 EX2 EX3

Ψ Ψ
∗

Ψ Ψ
∗

Ψ Ψ
∗

Case I

V1
0

36.00 36.08 36.90 39.45 64.80 64.57
𝑐
1

1
1.50 1.64 0.90 1.03 −1.50 −1.30

𝑐
1

2
1.50 1.33 1.10 1.06 −1.50 −1.59

𝑤
1

1
100.00 101.85 100.00 101.85 100.00 101.85

Case II

V1
0

50.40 50.84 57.60 55.78 57.60 57.34
V2
0

39.60 39.23 36.00 35.85 46.80 47.00
𝑤
1

1
70.00 75.02 70.00 73.16 70.00 69.26

𝑤
2

1
100.00 98.68 100.00 97.99 100.00 103.27

Case III

V1
0

39.60 38.82 64.80 63.45 54.00 51.76
𝑐
1

1
3.50 3.73 −3.50 −3.15 −2.00 −1.63

𝑤
1

1
80.00 83.92 80.00 88.221 80.00 88.22

𝑤
1

2
120.00 119.89 120.00 114.91 120.00 111.19

Case IV

V1
0

39.60 39.62 57.60 57.60 61.20 61.34
𝑐
1

1
2.00 1.99 −2.50 −2.49 −2.50 −2.55

𝑤
1

1
70.00 68.77 70.00 69.75 70.00 75.32

𝑤
1

2
130.00 129.76 130.00 128.79 130.00 125.07

𝑤
1

3
130.00 123.99 120.00 128.88 130.00 142.76

can be encoded in binary digits to form each individual. In
our case, we use an individual containing 68 chromosomes.

The main goal of this study is to identify the weight
and velocity of the moving load passing on a bridge by
adopting the quadratic function. In this study, the weight (𝑤)
of the moving load will be considered as a constant and a
quadratic function is applied to describe the characteristic
on the velocity of moving loads because the actual velocity of
the moving load may take shape in a smooth curve and will
be changed continuously. Thus, the moving velocity of the 𝑖
vehicle is expressed as

V𝑖 = V𝑖
0
+ 𝑐
𝑖

1
𝑡 + 𝑐
𝑖

2
𝑡
2
, (13)

where V𝑖
0
denotes the initial velocity of the 𝑖th vehicle (or axle);

𝑐
𝑖

1
and 𝑐𝑖
2
denote the coefficients of the 𝑖 vehicle with respect to

time. Therefore, general identification variables for detecting
moving load properties are given by

q𝑠 = [V𝑖
0
𝑐
𝑖

𝑗
𝑤
𝑖

𝑘
]
𝑇

(𝑖 = 1, . . . , 𝑛V; 𝑗 = 1, 2; 𝑘 = 1, . . . , 𝑛𝑤) ,

(14)

where 𝑖 denotes the number of vehicles considered; 𝑗 denotes
the number of the coefficients used to present the character-
istic of velocities; 𝑘 denotes the number of the axle weights
considered. With different moving load parameters in (13),
three examples (EX1∼EX3) for four moving load excitation
cases (Case I∼IV) are given in Table 1.

To quantitatively represent the accuracy of the known
parameters identified, the relative percentage errors (RPE)

are calculated with respect to the estimated values using the
following equation:

RPE =
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑖
− 𝑞
𝑖

0

󵄨󵄨󵄨󵄨󵄨

𝑞
𝑖

0

× 100 (%) , (15)

where 𝑞𝑖 and 𝑞𝑖
0
denote the identified and the original values

of the known parameters, respectively.

4.2.2. Detection of Parameters. The estimated values of iden-
tification variables of several examples (EX1, EX2, and EX3)
for Cases I, II, III, and IV based on the c-GA are represented
in Table 1 with RPE in parentheses. Figure 5 shows the com-
parison of themeasured velocity and estimated velocity of the
vehicle for EX2 in Case I. As the loading time of a moving
load increases, the difference in velocities becomes more or
less increased but the overall values are found to not be
significantly different. The measured and estimated vertical
displacements at the midpoint about the same example and
case are plotted in Figure 6. The best fitness function values
for EX2 in Case I are shown in Figure 7. It is confirmed from
this figure that the estimated values of the parameters would
be close to real values when the number of generations is
increased. The other examples for EX1 and EX2 in Case I
showed a similar tendency.

Case II, representing bridges subjected tomoving loads of
multivehicles, is to describe a more realistic situation about a
moving load excitation. Unlike Case I, all moving loads are
assumed to move with constant velocities. In addition, two
velocities and two weights of the moving loads are estimated.
Figure 8 shows a comparison of the measured and estimated
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Figure 6: Measured and estimated displacements at the middle
sensor for EX2 in Case I.

velocities of the vehicles for EX1 in Case II. The difference
between the measured and estimated velocities is found to
be very small. The estimated vertical displacements at the
midpoint about the same example and case agree well with
the measured ones as depicted in Figure 9. The best fitness
function values are plotted in Figure 10. The convergence
rate of unknown parameters for Case II is relatively slow
compared to Case I since the number of moving loads is
double and the moving load properties contained in the
dynamic response are superposed and, thus, each property
of the moving load is not easily identified. However, it can be
observed from the figure that the value of the fitness function
converges after approximately the 3,000th generation. The
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Figure 7: Best fitness function values for EX1 in Case II.
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Figure 8: Measured and estimated velocities of the moving load for
EX1 in Case II.

other examples for EX2 and EX3 in Case II showed a similar
tendency. In Case III, two axle loads are considered to
describe midsize vehicles such as a car. Unlike Cases I and
II, in this case, a moving load is assumed to move with
constant acceleration. Two axle weights distributed into the
front and rear wheels in a vehicle are estimated. Figure 11
shows a comparison of themeasured and estimated velocities
of the vehicle for EX1 in Case II. The initial velocity of the
vehicle shows a slight difference but the overall values are
found to not differ significantly. In this case, a vertical velocity
is used as the dynamic response data for identifying the
unknown parameters. The vertical velocities at the midpoint
of the 3D-reality model and the equivalent model are plotted
in Figure 12. The behavior between the two models is shown
to be identical from the figure. It is seen from Figure 13 that
the estimated values of the parameters would be close to
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Figure 9: Measured and estimated displacements at the middle
sensor for EX1 in Case II.
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Figure 10: Best fitness function values for EX1 in Case II.

real values if the number of generations is increased. The
other examples for EX2 and EX3 in Case III showed a similar
tendency.

In Case IV, three axle loads are considered to represent
large vehicles such as a truck. Like Case III, in this case, the
moving load is assumed tomovewith constant acceleration as
well. Figure 14 shows a comparison of the measured velocity
and estimated velocity of EX3. As depicted in the figure, the
velocity of the vehicle is detected exactly. The quantitative
properties of the moving load are also present in Table 1.
Initial velocity V1

0
and constant acceleration 𝑐1

1
are relatively

exactly evaluated as 0.224% and 2.120%, respectively, in RPE.
The accuracy of estimation results of axle loads is unsteady in
this example but, in the remaining examples (EX1 and EX2),
for the most, part axle loads are exactly evaluated with the
relative percentage errors being less than 5%, as expected.

0 0.5 1 1.5 2 2.5
38

40

42

44

46

48

50

52

54

56

Time (s)

Ve
lo

ci
ty

 (k
m

/h
)

Measured
Estimated

Figure 11: Measured and estimated velocities of the moving load for
EX1 in Case III.
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Figure 12: Measured and estimated velocities at the middle sensor
for EX1 in Case III.

In this case, accelerations are used as the dynamic response
data for identifying unknown parameters. The accelerations
at the midpoint of the 3D-reality model and the equivalent
model are plotted in Figure 15. From the figure, we see that
the behavior between the two models is shown to be similar.
The best fitness function values are plotted in Figure 16, and
it is seen that the estimated values of the parameters would be
close to real values if the number of generations is increased.
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Figure 13: Best fitness function values for E1 in Case III.
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Figure 14:Measured and estimated velocities of themoving load for
EX3 in Case IV.

5. Summary and Conclusions

In this study, unknown moving loads parameters in a beam-
type structure are estimated by using the c-GA, which has
a superior computational efficiency. The damage character-
istics are not considered to investigate only properties of
moving loads. A quadratic function is applied to describe the
characteristic of the velocity of moving loads. In addition,
to consider modeling error in this study, dynamic responses
obtained from a three-dimensional FEmodel under amoving
load are used to obtain measurement data. Parametric case
studies showed that the proposed technique combining the
FEM and the c-GA is adequate to detect the properties of
moving loads. Based on the present computational results, the
following conclusions may be derived.
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Figure 15: Measured and estimated velocities at the middle sensor
for EX3 in Case IV.
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Figure 16: 16 best fitness function values for EX3 in Case IV.

(1) The c-GA, in comparison with its predecessor (SGA)
or other conventional searching techniques, is more
attractive not only because it can avoid premature
convergence but also because it converges faster.

(2) The weight and velocity of the moving load are
estimated with small error for examples in Cases I, II,
III, and IV considered in this study.

(3) The velocity properties of moving loads are relatively
evaluated by using a quadratic function for represent-
ing continuous moving velocity.

(4) The detections based on the dynamic response such
as displacement, velocity, and acceleration are all
effective in the inverse procedure.

It is concluded from numerical examples that the pro-
posed method works well for the numerical experiments
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that were tested. However, our moving load characterization
using two-dimensional modeling is a limited example for
solving the inverse problem of complex structures with large
degrees of freedom; hence, more advanced studies should be
carried out for more realistic bridge models such as a slab
or continuous bridge. In addition, for the application of an
uncertain measurement system, it is necessary to develop
filtering techniques that are capable of canceling noise signals
thatmay be contained in themeasured data. Furthermore, for
more complicated situations like damaged bridges subjected
to unknown moving loads, more advanced studies that can
simultaneously detect the characteristics of the damage and
the moving load are needed.
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