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We mainly present the error analysis for two new cubic spline based methods; one is a lacunary interpolation method and the
other is a very simple quasi interpolation method. The new methods are able to reconstruct a function and its first two derivatives
from noisy function data. The explicit error bounds for the methods are given and proved. Numerical tests and comparisons are
performed. Numerical results verify the efficiency of our methods.

1. Introduction

Cubic spline, as the most commonly used spline in practice,
is a fundamental approximation tool [1–11]. Nowadays, it has
been widely used in many fields such as numerical analysis,
computer aided geometric design, mathematical modeling,
and engineering problems. Essentially, cubic spline is a twice
differentiable piecewise cubic polynomial defined over a
partitioned interval.

Mathematically, cubic spline interpolation is often intro-
duced as follows. Let 𝑦(𝑥) be a function defined over [𝑎, 𝑏],
let

𝑦𝑗 = 𝑦 (𝑥𝑗) , 𝑗 = 0, 1, . . . , 𝑛, (1)

be a set of given function data at the nodes

𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏, (2)

and let

𝑦

0 = 𝑦

(𝑥0) , 𝑦


𝑛 = 𝑦

(𝑥𝑛) (3)

be two boundary derivatives. Then, there exists a unique
cubic spline 𝑠(𝑥) satisfying

𝑠

(𝑥0) = 𝑦


0, 𝑠


(𝑥𝑛) = 𝑦


𝑛,

𝑠 (𝑥𝑗) = 𝑦𝑗, 𝑗 = 0, 1, . . . , 𝑛.

(4)

However, we often meet two troubles in the practical
applications of cubic spline interpolation. The first trouble is
that we cannot obtain the precise function values in (1). They
generally involve some unavoidable measurement noise. The
second trouble is that it often lacks the boundary derivatives
in (3).

To deal with the troubles, in this paper, we give two new
effective cubic spline based methods for reconstructing 𝑦(𝑥),
𝑦

(𝑥), and 𝑦(𝑥) from the given noisy data

𝑦𝑗 = 𝑦 (𝑥𝑗) + 𝜀𝑗, 𝑗 = 0, 1, . . . , 𝑛, (5)

where 𝜀𝑗 is themeasurement noise.The first one is a noisy lac-
unary interpolationmethod (Method I) and the second one is
a very simple noisy quasi interpolation method (Method II).
The error bounds of the methods, which have not been stud-
ied before and are important and useful for the users of cubic
spline, are mainly studied in this paper.

We organize the remainder of this paper as follows. In
Section 2, we present some useful preliminaries; in Section 3,
we give the new methods; in Section 4, we present the theo-
retical results of the errors; in Section 5, we perform some
numerical tests to verify the error analysis; finally, we con-
clude this paper in Section 6.
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2. Preliminaries

2.1. Cubic B-Splines. We assume that the nodes in (2) are
equidistant because this case is very common in practice.The
nodes produce a uniform partitionΔ for [𝑎, 𝑏]withmesh size
ℎ = (𝑏 − 𝑎)/𝑛. The dimension of the cubic spline space over Δ
is 𝑛 + 3. The corresponding cubic B-splines are given below
[4–8]. For 𝑖 = 2, 3, . . . , 𝑛 − 2, let

𝐵𝑖 (𝑥)=
1

6ℎ3

{{{{{{{{{

{{{{{{{{{

{

(𝑥 − 𝑥𝑖−2)
3
, if 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

(𝑥 − 𝑥𝑖−2)
3
− 4(𝑥 − 𝑥𝑖−1)

3
, if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

(𝑥𝑖+2 − 𝑥)
3
− 4(𝑥𝑖+1−𝑥)

3
, if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

(𝑥𝑖+2 − 𝑥)
3
, if 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

0, else.
(6)

The other six B-splines 𝐵−1(𝑥), 𝐵0(𝑥), 𝐵1(𝑥), 𝐵𝑛−1(𝑥), 𝐵𝑛(𝑥),
and 𝐵𝑛+1(𝑥) are generated by the translation, where

𝐵−1 (𝑥) =
1

6ℎ3
{
(𝑥1 − 𝑥)

3
, if 𝑥 ∈ [𝑥0, 𝑥1]

0, else,

𝐵0 (𝑥) =
1

6ℎ3

{{{

{{{

{

(𝑥2 − 𝑥)
3
− 4(𝑥1 − 𝑥)

3
, if 𝑥 ∈ [𝑥0, 𝑥1]

(𝑥2 − 𝑥)
3
, if 𝑥 ∈ [𝑥1, 𝑥2]

0, else,

𝐵1 (𝑥) =
1

6ℎ3

{{{{{{

{{{{{{

{

(𝑥 − 𝑥0 + ℎ)
3
− 4(𝑥 − 𝑥0)

3
, if 𝑥 ∈[𝑥0, 𝑥1]

(𝑥3 − 𝑥)
3
− 4(𝑥2 − 𝑥)

3
, if 𝑥 ∈[𝑥1, 𝑥2]

(𝑥3 − 𝑥)
3
, if 𝑥 ∈[𝑥2, 𝑥3]

0, else,

𝐵𝑛−1(𝑥)=
1

6ℎ3

{{{{{{

{{{{{{

{

(𝑥−𝑥𝑛−3)
3
, if 𝑥∈[𝑥𝑛−3,𝑥𝑛−2]

(𝑥−𝑥𝑛−3)
3
−4(𝑥−𝑥𝑛−2)

3
, if 𝑥∈[𝑥𝑛−2,𝑥𝑛−1]

(𝑥𝑛−𝑥+ℎ)
3
−4(𝑥𝑛−𝑥)

3
, if 𝑥∈[𝑥𝑛−1, 𝑥𝑛]

0, else,

𝐵𝑛 (𝑥)=
1

6ℎ3

{{{

{{{

{

(𝑥−𝑥𝑛−2)
3
, if 𝑥∈[𝑥𝑛−2,𝑥𝑛−1]

(𝑥−𝑥𝑛−2)
3
−4(𝑥−𝑥𝑛−1)

3
, if 𝑥∈[𝑥𝑛−1, 𝑥𝑛]

0, else,

𝐵𝑛+1 (𝑥) =
1

6ℎ3
{
(𝑥 − 𝑥𝑛−1)

3
, if 𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛]

0, else.
(7)

They are linearly independent, nonnegative, and locally sup-
ported. Moreover,

𝐵
(𝑘)
𝑖 (𝑥) = 𝐵

(𝑘)
𝑖+1 (𝑥 + ℎ) , 𝑘 = 0, 1, 2; 𝑖 = 2, 3, . . . , 𝑛 − 3.

(8)

The values of 𝐵𝑖(𝑥), 𝐵

𝑖 (𝑥), and 𝐵


𝑖 (𝑥) at the nodes are listed

in Table 1.

2.2. Approximate Boundary Derivatives. Using two-point
numerical differentiation formula, we have

𝑦

0 =
𝑦1 − 𝑦0

ℎ
=
𝑦1 − 𝑦0

ℎ
+
𝜀1 − 𝜀0

ℎ

= 𝑦

0 +
ℎ

2
𝑦

(𝜉1) +
𝜀1 − 𝜀0

ℎ
= 𝑦

0 + 𝜀

0,

𝑦

𝑛 =
𝑦𝑛 − 𝑦𝑛−1

ℎ
=
𝑦𝑛 − 𝑦𝑛−1

ℎ
+
𝜀𝑛 − 𝜀𝑛−1

ℎ

= 𝑦

𝑛 −
ℎ

2
𝑦

(𝜉2) +
𝜀𝑛 − 𝜀𝑛−1

ℎ
= 𝑦

𝑛 + 𝜀

𝑛.

(9)

Similar results can be obtained by using three-point and five-
point numerical differentiation formulae. See Tables 2 and 3,
where 𝜉1 ∈ (𝑥0, 𝑥1), 𝜉2 ∈ (𝑥𝑛−1, 𝑥𝑛), 𝜉3 ∈ (𝑥0, 𝑥2), 𝜉4 ∈
(𝑥𝑛−2, 𝑥𝑛), 𝜉5 ∈ (𝑥0, 𝑥4), and 𝜉6 ∈ (𝑥𝑛−4, 𝑥𝑛) and 𝜀


0 and 𝜀


𝑛

represent the computational truncated errors to 𝑦(𝑥0) and
𝑦

(𝑥𝑛). They arise from the used numerical differentiation

formulae and the above-mentioned measurement noise.

3. Two New Methods

3.1. Method I. We study the following noisy lacunary cubic
spline interpolation (NLCSI) problem. We hope to find a
cubic spline 𝑠(𝑥) satisfying

𝑠 (𝑥𝑗) = 𝑦𝑗, 𝑗 = 0, 1, 2, . . . , 𝑛. (10)

To make the NLCSI problem uniquely solvable, it requires
using two approximate boundary derivatives in Section 2.2.
Obviously, there also exists a unique noisy lacunary cubic
spline 𝑠(𝑥) satisfying

𝑠

(𝑥0) = 𝑦


0, 𝑠


(𝑥𝑛) = 𝑦


𝑛,

𝑠 (𝑥𝑗) = 𝑦𝑗, 𝑗 = 0, 1, 2, . . . , 𝑛.

(11)

Let 𝑠(𝑥) = ∑𝑛+1𝑖=−1 𝑐𝑖𝐵𝑖(𝑥) be the cubic spline determined by
(11), where the unknown coefficients 𝑐𝑖 (𝑖 = −1, 0, . . . , 𝑛 + 1)
can be obtained by solving the linear system

(
(
(

(

−1 0 1

1 4 1

1 4 1

d d d
1 4 1

1 4 1

−1 0 1

)
)
)

)

(
(
(
(
(
(
(
(
(
(
(

(

𝑐−1

𝑐0

𝑐1

...
𝑐𝑛−1

𝑐𝑛

𝑐𝑛+1

)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(

(

2ℎ𝑦

0

6𝑦0

6𝑦1

...
6𝑦𝑛−1

6𝑦𝑛

2ℎ𝑦

𝑛

)
)
)
)
)
)
)
)
)
)
)

)

(12)

followed from Table 1. Furthermore, we can use 𝑠(𝑥) =
∑
𝑛+1
𝑖=−1 𝑐𝑖𝐵


𝑖 (𝑥) and 𝑠


(𝑥) = ∑

𝑛+1
𝑖=−1 𝑐𝑖𝐵


𝑖 (𝑥) to approximate 𝑦(𝑥)

and 𝑦(𝑥), respectively.
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Table 1: The values of 𝐵(𝑘)𝑖 (𝑥)(𝑖 = −1, 0, . . . , 𝑛 + 1; 𝑘 = 0, 1, 2) at the
nodes.

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 Else

𝐵𝑖(𝑥)
1

6

4

6

1

6
0

𝐵

𝑖 (𝑥)

1

2ℎ
0 −

1

2ℎ
0

𝐵

𝑖 (𝑥)

1

ℎ2
−
2

ℎ2

1

ℎ2
0

Table 2:The approximate boundary derivatives and their errors (I).

Two-point results Three-point results

𝑦

0

𝑦1 − 𝑦0

ℎ

−3𝑦0 + 4𝑦1 − 𝑦2

2ℎ

𝜀

0

ℎ

2
𝑦

(𝜉1) +
𝜀1 − 𝜀0

ℎ
−
ℎ
2

3
𝑦

(𝜉3) +
−3𝜀0 + 4𝜀1 − 𝜀2

2ℎ

𝑦

𝑛

𝑦𝑛 − 𝑦𝑛−1

ℎ

𝑦𝑛−2 − 4𝑦𝑛−1 + 3𝑦𝑛

2ℎ

𝜀

𝑛 −

ℎ

2
𝑦

(𝜉2) +
𝜀𝑛 − 𝜀𝑛−1

ℎ
−
ℎ
2

3
𝑦

(𝜉4) +
𝜀𝑛−2 − 4𝜀𝑛−1 + 3𝜀𝑛

2ℎ

Table 3:The approximate boundary derivatives and their errors (II).

Five-point results

𝑦

0

−25𝑦0 + 48𝑦1 − 36𝑦2 + 16𝑦3 − 3𝑦4

12ℎ

𝜀

0 −

ℎ
4

5
𝑦
(5)
(𝜉5) +
−25𝜀0 + 48𝜀1 − 36𝜀2 + 16𝜀3 − 3𝜀4

12ℎ

𝑦

𝑛

3𝑦𝑛−4 − 16𝑦𝑛−3 + 36𝑦𝑛−2 − 48𝑦𝑛−1 + 25𝑦𝑛

12ℎ

𝜀

𝑛 −

ℎ
4

5
𝑦
(5)
(𝜉6) +
3𝜀𝑛−4 − 16𝜀𝑛−3 + 36𝜀𝑛−2 − 48𝜀𝑛−1 + 25𝜀𝑛

12ℎ

3.2. Method II. By using the given function data, we can dir-
ectly get a cubic spline

̃̃𝑠 (𝑥) =

𝑛+1

∑

𝑖=−1

𝑦𝑖𝐵𝑖 (𝑥) , (13)

where 𝑦−1 = 𝑦(𝑥0 − ℎ) + 𝜀−1 and 𝑦𝑛+1 = 𝑦(𝑥𝑛 + ℎ) + 𝜀𝑛+1. We
can also use ̃̃𝑠(𝑥), ̃̃𝑠


(𝑥), and ̃̃𝑠


(𝑥) to approximate 𝑦(𝑥), 𝑦(𝑥),

and 𝑦(𝑥), respectively.
The method is very simple and effective method for

noisy data because it avoids using approximate boundary
derivatives and also avoids solving the linear system (12).

4. Main Results

4.1. Error Analysis for Method I. We denote (12) by 𝐴𝐶 = �̃�.

Lemma 1. 𝐴 is invertible and ‖𝐴−1‖∞ ≤ 2.

Proof. Add column one to column three and also add column
𝑛+3 to column 𝑛+1, andwe get a strictly diagonally dominant
matrix

𝐴1 =
(
(
(

(

−1 0 0

1 4 2

1 4 1

d d d
1 4 1

2 4 1

0 0 1

)
)
)

)(𝑛+3)×(𝑛+3)

. (14)

Obviously, 𝐴1 is invertible and 𝐴1 = 𝐴𝑃, where

𝑃 =
(
(
(

(

1 0 1

1 0

1

d
1

0 1

1 0 1

)
)
)

)(𝑛+3)×(𝑛+3)

. (15)

We have

𝐴
−1
= 𝑃𝐴
−1
1 ,


𝐴
−1
1

∞
≤ 1, ‖𝑃‖∞ = 2. (16)

Hence, we have ‖𝐴−1‖∞ = ‖𝑃𝐴
−1
1 ‖∞ ≤ ‖𝑃‖∞‖𝐴

−1
1 ‖∞ ≤ 2.

Let 𝑠(𝑥) = ∑𝑛+1𝑖=−1 𝑐𝑖𝐵𝑖(𝑥) be the cubic spline determined
by (4),

𝐶 = (𝑐−1, 𝑐0, . . . , 𝑐𝑛, 𝑐𝑛+1)
𝑇
,

𝑌 = (2ℎ𝑦

0, 6𝑦0, . . . , 6𝑦𝑛, 2ℎ𝑦


𝑛)
𝑇
,

(17)

and then we have 𝐴𝐶 = 𝑌. Let

𝜀

= max {𝜀


0


,

𝜀

𝑛


} ,

𝜀 = max
0≤𝑖≤𝑛
{
𝜀𝑖
} ,

(18)

and we have


�̃� − 𝑌
∞
≤ max {2ℎ𝜀, 6𝜀} ; (19)

see Table 4 for the results, where 𝑀5 = ‖𝑦
(5)
(𝑥)‖∞ =

max𝑎≤𝑥≤𝑏|𝑦
(5)
(𝑥)| and𝑀4,𝑀3, and𝑀2 are defined similarly.

Lemma 2. Consider ‖𝐶 − 𝐶‖∞ ≤ 2‖�̃� − 𝑌‖∞.

Proof. Consider ‖𝐶 − 𝐶‖∞ = ‖𝐴
−1
(�̃� − 𝑌)‖∞ ≤

‖𝐴
−1
‖∞‖�̃� − 𝑌‖∞ ≤ 2‖�̃� − 𝑌‖∞.

Lemma 3. Consider ∑𝑛+1𝑖=−1 |𝐵𝑖(𝑥)| ≡ 1, ∑
𝑛+1
𝑖=−1 |𝐵


𝑖 (𝑥)| ≤ 3/2ℎ,

and ∑𝑛+1𝑖=−1 |𝐵

𝑖 (𝑥)| ≤ 4/ℎ

2.
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Table 4: The bounds of 𝜀 and ‖�̃� − 𝑌‖∞.

Two-point results Three-point results Five-point results

𝜀

≤

1

2
𝑀2ℎ +
2𝜀

ℎ

1

3
𝑀3ℎ
2
+
4𝜀

ℎ

1

5
𝑀5ℎ
4
+
32𝜀

3ℎ

‖�̃� − 𝑌‖∞ ≤ max {𝑀2ℎ
2
+ 4𝜀, 6𝜀}

2

3
𝑀3ℎ
3
+ 8𝜀

2

5
𝑀5ℎ
5
+
64𝜀

3

Proof. Because of property (8), we only need to check them
over a typical subinterval [𝑥𝑗, 𝑥𝑗+1]. By differentiating (6), for
a general 𝑖, we have

𝐵

𝑖 (𝑥)=

1

2ℎ3

{{{{{{{

{{{{{{{

{

(𝑥−𝑥𝑖−2)
2
, if 𝑥 ∈[𝑥𝑖−2, 𝑥𝑖−1]

(𝑥−𝑥𝑖−2)
2
− 4(𝑥−𝑥𝑖−1)

2
, if 𝑥 ∈[𝑥𝑖−1, 𝑥𝑖]

−(𝑥𝑖+2−𝑥)
2
+ 4(𝑥𝑖+1− 𝑥)

2
, if 𝑥 ∈[𝑥𝑖, 𝑥𝑖+1]

−(𝑥𝑖+2 − 𝑥)
2
, if 𝑥 ∈[𝑥𝑖+1, 𝑥𝑖+2]

0, else,

𝐵

𝑖 (𝑥) =

1

ℎ3

{{{{{{{

{{{{{{{

{

𝑥 − 𝑥𝑖−2, if 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]
−3𝑥 − 𝑥𝑖−2 + 4𝑥𝑖−1, if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]
𝑥𝑖+2 − 4𝑥𝑖+1 + 3𝑥, if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]
𝑥𝑖+2 − 𝑥, if 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]
0, else.

(20)

All of them are locally supported over four adjacent subinter-
vals.

(i) By the nonnegativity and partition of unity of cubic
B-splines, for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], we have

𝑛+1

∑

𝑖=−1

𝐵𝑖 (𝑥)
 =

𝑛+1

∑

𝑖=−1

𝐵𝑖 (𝑥) =

𝑗+2

∑

𝑖=𝑗−1

𝐵𝑖 (𝑥) ≡ 1. (21)

(ii) For 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], we have

𝑛+1

∑

𝑖=−1


𝐵

𝑖 (𝑥)


=

𝐵

𝑗−1 (𝑥)

+

𝐵

𝑗 (𝑥)

+

𝐵

𝑗+1 (𝑥)

+

𝐵

𝑗+2 (𝑥)


=
1

2ℎ3
[(𝑥 − 𝑥𝑗+1)

2
+

4(𝑥 − 𝑥𝑗+1)

2
− (𝑥 − 𝑥𝑗+2)

2

+

(𝑥 − 𝑥𝑗−1)

2
− 4(𝑥 − 𝑥𝑗)

2
+ (𝑥 − 𝑥𝑗)

2
]

=
1

2ℎ3
[−4(𝑥 − 𝑥𝑗)

2
+ 4ℎ (𝑥 − 𝑥𝑗) + 2ℎ

2
] ≤
3

2ℎ
.

(22)

(iii) For 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], we have

𝑛+1

∑

𝑖=−1


𝐵

𝑖 (𝑥)


=

𝐵

𝑗−1 (𝑥)

+

𝐵

𝑗 (𝑥)

+

𝐵

𝑗+1 (𝑥)

+

𝐵

𝑗+2 (𝑥)


=
1

ℎ3
[(𝑥𝑗+1 − 𝑥) +


3𝑥 + 𝑥𝑗+2 − 4𝑥𝑗+1



+

−3𝑥 − 𝑥𝑗−1 + 4𝑥𝑗


+ (𝑥 − 𝑥𝑗)]

=
1

ℎ3

{{{{{{{{{

{{{{{{{{{

{

4ℎ − 6 (𝑥 − 𝑥𝑗) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗 +
ℎ

3
]

2ℎ, 𝑥 ∈ [𝑥𝑗 +
ℎ

3
, 𝑥𝑗 +
2ℎ

3
]

6 (𝑥 − 𝑥𝑗) − 2ℎ, 𝑥 ∈ [𝑥𝑗 +
2ℎ

3
, 𝑥𝑗+1]

≤
4

ℎ2
.

(23)

Lemma 4. Let 𝑠(𝑥) and 𝑠(𝑥) be the cubic spline interpolants of
𝑦(𝑥) determined by (4) and (11), respectively. Then we have

|𝑠 (𝑥) − 𝑠 (𝑥)| ≤ 2

�̃� − 𝑌
∞
,


𝑠

(𝑥) − 𝑠


(𝑥)

≤
3

ℎ


�̃� − 𝑌
∞
,


𝑠

(𝑥) − 𝑠


(𝑥)

≤
8

ℎ2


�̃� − 𝑌
∞
.

(24)

Proof. First of all, for 𝑘 = 0, 1, 2, we have


𝑠
(𝑘)
(𝑥) − 𝑠

(𝑘)
(𝑥)

=



𝑛+1

∑

𝑖=−1

(𝑐𝑖 − 𝑐𝑖) 𝐵
(𝑘)
𝑖 (𝑥)



≤

𝐶 − 𝐶
∞

𝑛+1

∑

𝑖=−1


𝐵
(𝑘)
𝑖 (𝑥)

.

(25)

And then using Lemmas 2 and 3, we get these results.

Theorem 5. Let 𝑠(𝑥) be the noisy lacunary cubic spline
interpolant of 𝑦(𝑥) determined by (11). Then one has

𝑠 (𝑥) − 𝑦 (𝑥)
 ≤
5

384
𝑀4ℎ
4
+ 2

�̃� − 𝑌
∞
,


𝑠

(𝑥) − 𝑦


(𝑥)

≤
1

24
𝑀4ℎ
3
+
3

ℎ


�̃� − 𝑌
∞
,


𝑠

(𝑥) − 𝑦


(𝑥)

≤
3

8
𝑀4ℎ
2
+
8

ℎ2


�̃� − 𝑌
∞
.

(26)
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Proof. These results follow from the traditional cubic spline
interpolation error theory [1, 3, 7], Lemma 4, and the follow-
ing triangle inequality

𝑠
(𝑘)
(𝑥) − 𝑦

(𝑘)
(𝑥)

≤

𝑠
(𝑘)
(𝑥) − 𝑠

(𝑘)
(𝑥)


+

𝑠
(𝑘)
(𝑥) − 𝑦

(𝑘)
(𝑥)

, 𝑘 = 0, 1, 2.

(27)

4.2. Error Analysis for Method II. From (13) and Table 1, for
𝑗 = 0, 1, . . . , 𝑛, we have

̃̃𝑠 (𝑥𝑗) =
𝑦𝑗−1 + 4𝑦𝑗 + 𝑦𝑗+1

6
, (28)

̃̃𝑠

(𝑥𝑗) =

𝑦𝑗+1 − 𝑦𝑗−1

2ℎ
, (29)

̃̃𝑠

(𝑥𝑗) =

𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1

ℎ2
. (30)

It is a surprise to find that ̃̃𝑠

(𝑥𝑗) and ̃̃𝑠


(𝑥𝑗) are the same as

the well-known central numerical differentiation formulae.

Lemma 6. Let ̃̃𝑠(𝑥) be the noisy cubic spline quasi interpolant
of 𝑦(𝑥) determined by (13). Then for 𝑗 = 0, 1, . . . , 𝑛, one has


̃̃𝑠 (𝑥𝑗) − 𝑦 (𝑥𝑗)


≤
1

6
𝑀2ℎ
2
+ 𝜀, (31)


̃̃𝑠

(𝑥𝑗) − 𝑦


(𝑥𝑗)

≤
1

6
𝑀3ℎ
2
+
𝜀

ℎ
, (32)


̃̃𝑠

(𝑥𝑗) − 𝑦


(𝑥𝑗)

≤
1

12
𝑀4ℎ
2
+
4𝜀

ℎ2
. (33)

Proof. By (30), we have


̃̃𝑠

(𝑥𝑗) − 𝑦


(𝑥𝑗)


=



𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1

ℎ2
− 𝑦

(𝑥𝑗)



=



𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1

ℎ2
− 𝑦

(𝑥𝑗) +
𝜀𝑗−1 − 2𝜀𝑗 + 𝜀𝑗+1

ℎ2



≤
1

12
𝑀4ℎ
2
+
4𝜀

ℎ2
.

(34)

Theproofs of (31) and (32) are similar, which are omitted.

Theorem7. Let ̃̃𝑠(𝑥) be the noisy cubic spline quasi interpolant
of 𝑦(𝑥) determined by (13). Then we have


̃̃𝑠 (𝑥) − 𝑦 (𝑥)


≤
1

384
𝑀4ℎ
4
+
1

24
𝑀3ℎ
3
+
1

6
𝑀2ℎ
2
+
5

4
𝜀,

(35)


̃̃𝑠

(𝑥) − 𝑦


(𝑥)

≤
5

48
𝑀4ℎ
3
+
1

6
𝑀3ℎ
2
+
3

ℎ
𝜀, (36)


̃̃𝑠

(𝑥) − 𝑦


(𝑥)

≤
5

24
𝑀4ℎ
2
+
4

ℎ2
𝜀. (37)

Proof. Wefirst prove (37). ̃̃𝑠(𝑥) is a cubic spline; hence ̃̃𝑠

(𝑥) is

a piecewise continuous linear function over [𝑎, 𝑏] with
respect to the partition Δ. Let 𝐿(𝑥) be the piecewise linear
interpolant to 𝑦(𝑥) with respect to Δ. For 𝑗 = 1, 2, . . . , 𝑛, let
̃̃𝑠


𝑗 (𝑥) and 𝐿𝑗(𝑥) be the restriction of ̃̃𝑠

(𝑥) and 𝐿(𝑥) over

[𝑥𝑗−1, 𝑥𝑗]. Then we have

̃̃𝑠


𝑗 (𝑥) =
̃̃𝑠

(𝑥𝑗−1)
𝑥𝑗 − 𝑥

ℎ
+ ̃̃𝑠

(𝑥𝑗)
𝑥 − 𝑥𝑗−1

ℎ
,

𝐿𝑗 (𝑥) = 𝑦

(𝑥𝑗−1)
𝑥𝑗 − 𝑥

ℎ
+ 𝑦

(𝑥𝑗)
𝑥 − 𝑥𝑗−1

ℎ
.

(38)

For 𝑗 = 1, 2, . . . , 𝑛, by (38) and (33), we get


̃̃𝑠


𝑗 (𝑥) − 𝐿𝑗 (𝑥)

=


(̃̃𝑠

(𝑥𝑗−1) − 𝑦


(𝑥𝑗−1))

𝑥𝑗 − 𝑥

ℎ

+ (̃̃𝑠

(𝑥𝑗) − 𝑦


(𝑥𝑗))
𝑥 − 𝑥𝑗−1

ℎ



≤
1

12
𝑀4ℎ
2
+
4

ℎ2
𝜀.

(39)

Hence, for all 𝑥 ∈ [𝑎, 𝑏], we have


̃̃𝑠

(𝑥) − 𝐿 (𝑥)


≤
1

12
𝑀4ℎ
2
+
4

ℎ2
𝜀. (40)

Moreover, by the piecewise linear polynomial interpolation
theory [1, 3, 7], for all 𝑥 ∈ [𝑎, 𝑏], we have


𝑦

(𝑥) − 𝐿 (𝑥)


≤
1

8
𝑀4ℎ
2
. (41)

Then (37) follows immediately from (40) and (41).
Next, we prove (36). For 𝑗 = 1, 2, . . . , 𝑛, let ̃̃𝑠



𝑗(𝑥) be the

restriction of ̃̃𝑠

(𝑥) over [𝑥𝑗−1, 𝑥𝑗]. Then for 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], by

(32) and (37), we have


̃̃𝑠


𝑗 (𝑥) − 𝑦

(𝑥)

=

{{{{{

{{{{{

{



∫

𝑥

𝑥𝑗−1

(̃̃𝑠


𝑗 (𝑡) − 𝑦

(𝑡)) 𝑑𝑡 + (̃̃𝑠



𝑗 (𝑥𝑗−1) − 𝑦

(𝑥𝑗−1))



, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗−1 +
ℎ

2
]



∫

𝑥

𝑥𝑗

(̃̃𝑠


𝑗 (𝑡) − 𝑦

(𝑡)) 𝑑𝑡 + (̃̃𝑠



𝑗 (𝑥𝑗) − 𝑦

(𝑥𝑗))



, 𝑥 ∈ [𝑥𝑗−1 +
ℎ

2
, 𝑥𝑗]
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≤

{{{{{

{{{{{

{

∫

𝑥𝑗−1+ℎ/2

𝑥𝑗−1


̃̃𝑠


𝑗 (𝑡) − 𝑦

(𝑡)

𝑑𝑡 +

̃̃𝑠


𝑗 (𝑥𝑗−1) − 𝑦

(𝑥𝑗−1)

, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗−1 +

ℎ

2
]

∫

𝑥𝑗

𝑥𝑗−1+ℎ/2


̃̃𝑠


𝑗 (𝑡) − 𝑦

(𝑡)

𝑑𝑡 +

̃̃𝑠


𝑗 (𝑥𝑗) − 𝑦

(𝑥𝑗)

, 𝑥 ∈ [𝑥𝑗−1 +

ℎ

2
, 𝑥𝑗]

≤
5

48
𝑀4ℎ
3
+
1

6
𝑀3ℎ
2
+
3

ℎ
𝜀.

(42)

Finally, we prove (35). For every subinterval [𝑥𝑗−1, 𝑥𝑗], 𝑗 =
1, 2, . . . , 𝑛, we give

𝛼𝑗1 (𝑥) =
2(𝑥 − 𝑥𝑗−1)

3
− 3ℎ(𝑥 − 𝑥𝑗−1)

2
+ ℎ
3

ℎ3
,

𝛼𝑗2 (𝑥) =
−2(𝑥 − 𝑥𝑗−1)

3
+ 3ℎ(𝑥 − 𝑥𝑗−1)

2

ℎ3
,

𝛽𝑗1 (𝑥) =
(𝑥 − 𝑥𝑗)

2
(𝑥 − 𝑥𝑗−1)

ℎ2
,

𝛽𝑗2 (𝑥) =
(𝑥 − 𝑥𝑗) (𝑥 − 𝑥𝑗−1)

2

ℎ2
.

(43)

They are very useful in cubic Hermite interpolation, and we
also have

𝛼𝑗1 (𝑥) ≥ 0, 𝛼𝑗2 (𝑥) ≥ 0,

𝛽𝑗1 (𝑥) ≥ 0, 𝛽𝑗2 (𝑥) ≤ 0,

𝛼𝑗1 (𝑥) + 𝛼𝑗2 (𝑥) = 1,

𝛽𝑗1 (𝑥) − 𝛽𝑗2 (𝑥) =
(𝑥𝑗−1 − 𝑥) (𝑥 − 𝑥𝑗)

ℎ
≤
ℎ

4
.

(44)

Let ̃̃𝑠𝑗(𝑥) = ̃̃𝑠(𝑥)|[𝑥𝑗−1 ,𝑥𝑗] be the restriction of ̃̃𝑠(𝑥) over
[𝑥𝑗−1, 𝑥𝑗]; then it can also be written as

̃̃𝑠𝑗 (𝑥) =
̃̃𝑠 (𝑥𝑗−1) 𝛼𝑗1 (𝑥) +

̃̃𝑠 (𝑥𝑗) 𝛼𝑗2 (𝑥)

+ ̃̃𝑠

(𝑥𝑗−1) 𝛽𝑗1 (𝑥) +

̃̃𝑠

(𝑥𝑗) 𝛽𝑗2 (𝑥) .

(45)

Let

𝐻𝑗 (𝑥) = 𝑦 (𝑥𝑗−1) 𝛼𝑗1 (𝑥) + 𝑦 (𝑥𝑗) 𝛼𝑗2 (𝑥)

+ 𝑦

(𝑥𝑗−1) 𝛽𝑗1 (𝑥) + 𝑦


(𝑥𝑗) 𝛽𝑗2 (𝑥)

(46)

be the cubic Hermite interpolant of 𝑦(𝑥) over [𝑥𝑗−1, 𝑥𝑗]; then
for 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], by using (31), (32), (44), (45), and (46), we
have


𝑦 (𝑥) − 𝐻𝑗 (𝑥)


≤
1

384
𝑀4ℎ
4
,


̃̃𝑠𝑗 (𝑥) − 𝐻𝑗 (𝑥)



=

(̃̃𝑠 (𝑥𝑗−1) − 𝑦 (𝑥𝑗−1)) 𝛼𝑗1 (𝑥)

+ (̃̃𝑠 (𝑥𝑗) − 𝑦 (𝑥𝑗)) 𝛼𝑗2 (𝑥)

+ (̃̃𝑠

(𝑥𝑗−1) − 𝑦


(𝑥𝑗−1)) 𝛽𝑗1 (𝑥)

+ (̃̃𝑠

(𝑥𝑗) − 𝑦


(𝑥𝑗)) 𝛽𝑗2 (𝑥)



≤ (
1

6
𝑀2ℎ
2
+ 𝜀) +
ℎ

4
(
1

6
𝑀3ℎ
2
+
𝜀

ℎ
)

=
1

24
𝑀3ℎ
3
+
1

6
𝑀2ℎ
2
+
5

4
𝜀.

(47)

By the triangle inequality, we get (35).

5. Numerical Tests and Discussions

5.1. Numerical Tests. In this section, we perform numerical
tests by Matlab. The following examples

𝑓1 (𝑥) =
5

1 + 𝑥2
, 𝑥 ∈ [−1, 1] ,

𝑓2 (𝑥) = 𝑒
𝑥
, 𝑥 ∈ [−1, 1] ,

(48)

are considered.
In every numerical test, the mesh size ℎ and the measure-

ment noise bound 𝜀 are both given. Because themeasurement
noises 𝜀𝑖 (𝑖 = 0, 1, . . . , 𝑛) are random, we let 𝜀𝑖 = 𝜀 ⋅ 𝑟𝑖,
where 𝑟𝑖 (𝑖 = 0, 1, . . . , 𝑛) are random numbers and satisfy
−1 ≤ 𝑟𝑖 ≤ 1.

In Tables 5 and 6, Methods I-1, I-2, and I-3 represent
Method I with two-point, three-point, and five-point approx-
imate boundary derivatives, respectively. CSM represents the
cubic spline method in [11]. 𝐸0, 𝐸1, and 𝐸2 are the maximum
absolute error of the function, the first order derivative, and
the second order derivative, respectively.
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Table 5: Numerical results of 𝑓1(𝑥).

Method I-1 I-2 I-3 II CSM [11]

𝜀 = 10
−4

ℎ = 0.2

𝐸0 7.8 × 10
−3

1.6 × 10
−3

5.9 × 10
−4

6.0 × 10
−2

4.4 × 10
−3

𝐸1 2.4 × 10
−1

4.7 × 10
−2

1.3 × 10
−2

1.4 × 10
−1

2.1 × 10
−2

𝐸2 4.16 0.75 0.41 0.38 0.45

𝜀 = 10
−4

ℎ = 0.1

𝐸0 2.0 × 10
−3

1.3 × 10
−4

1.2 × 10
−4

1.6 × 10
−2

3.4 × 10
−4

𝐸1 1.2 × 10
−1

4.7 × 10
−3

3.0 × 10
−3

3.8 × 10
−2

3.1 × 10
−3

𝐸2 4.29 0.15 0.14 0.10 0.15

𝜀 = 10
−3

ℎ = 0.2

𝐸0 8.0 × 10
−3

1.8 × 10
−3

1.3 × 10
−3

6.0 × 10
−2

4.5 × 10
−3

𝐸1 2.4 × 10
−1

4.7 × 10
−2

1.8 × 10
−2

1.5 × 10
−1

2.3 × 10
−2

𝐸2 4.17 0.75 0.43 0.39 0.45

𝜀 = 10
−3

ℎ = 0.1

𝐸0 2.2 × 10
−3

1.0 × 10
−3

9.1 × 10
−4

1.6 × 10
−2

9.4 × 10
−4

𝐸1 1.2 × 10
−1

1.6 × 10
−2

1.0 × 10
−2

4.0 × 10
−2

1.1 × 10
−2

𝐸2 4.29 0.65 0.42 0.29 0.44

Table 6: Numerical results of 𝑓2(𝑥).

Method I-1 I-2 I-3 II CSM [11]

𝜀 = 10
−5

ℎ = 0.2

𝐸0 8.0 × 10
−3

9.8 × 10
−4

1.7 × 10
−5

1.3 × 10
−2

8.2 × 10
−5

𝐸1 6.8 × 10
−2

8.3 × 10
−3

2.3 × 10
−4

1.4 × 10
−2

1.1 × 10
−4

𝐸2 1.17 0.13 6.8 × 10
−3

7.3 × 10
−3

7.3 × 10
−3

𝜀 = 10
−5

ℎ = 0.1

𝐸0 2.0 × 10
−3

1.3 × 10
−4

1.0 × 10
−5

3.9 × 10
−3

1.2 × 10
−5

𝐸1 3.5 × 10
−2

2.2 × 10
−3

2.7 × 10
−4

4.1 × 10
−3

1.1 × 10
−4

𝐸2 1.21 7.5 × 10
−2

8.3 × 10
−3

3.6 × 10
−3

8.4 × 10
−3

𝜀 = 10
−4

ℎ = 0.2

𝐸0 8.0 × 10
−3

9.8 × 10
−4

1.0 × 10
−4

1.3 × 10
−2

1.2 × 10
−4

𝐸1 6.8 × 10
−2

8.3 × 10
−3

1.4 × 10
−3

1.4 × 10
−2

4.8 × 10
−4

𝐸2 1.17 0.13 0.019 0.010 0.021

𝜀 = 10
−4

ℎ = 0.1

𝐸0 2.0 × 10
−3

1.5 × 10
−4

7.3 × 10
−5

3.9 × 10
−3

8.5 × 10
−5

𝐸1 3.5 × 10
−2

2.6 × 10
−3

2.9 × 10
−3

4.0 × 10
−3

1.0 × 10
−3

𝐸2 1.22 0.08 0.08 0.03 0.09

5.2. Discussions. Generally, themaximum absolute errors𝐸0,
𝐸1, and 𝐸2 vary if one of 𝜀 and ℎ does. If ℎ is fixed and 𝜀
decreases, then the maximum absolute errors 𝐸0, 𝐸1, and 𝐸2
will decrease. But if 𝜀 is fixed while ℎ decreases, the errors will
not decrease necessarily; theymaybe increase sometimes. See
the theoretical results in Theorem 5 and Theorem 7 and the
numerical results in Tables 5 and 6.

When ℎ and 𝜀 are both fixed in a specific test, it is easy to
find that 𝐸0 and 𝐸1 of Method I-2 and Method I-3 are better
than those of Method I-1 and Method II, while 𝐸2 of Method
I-3 andMethod II are better thanMethod I-1 andMethod I-2.
See Tables 5 and 6.

It is very reasonable to compare our methods with the
cubic spline method (CSM) in [11] because our methods are
also based on cubic spline. From Tables 5 and 6, we find that
the errors of Method I-3 are overall better than CSM in [11].
At the same time,𝐸2 ofMethod II are better than CSM in [11].
In summary, when approximating a function, we advise using
Method I-3, Method I-2, and CSM [11]; when approximating
its first order derivative, we advise using Method I-3 and
CSM [11]; when approximating its second order derivative, we
advise using Method I-3, Method II, and CSM [11].

When 𝜀 = 0, Method I-1 and Method II are 𝑂(ℎ2)
methods, Method I-2 is an 𝑂(ℎ3) method, and Method I-
3 is an 𝑂(ℎ4) method. The cubic spline method (CSM)
[11] is also an 𝑂(ℎ4) method, while the method in [12] is
an 𝑂(ℎ2) method; the method in [13] is an 𝑂(ℎ2.5 log ℎ)
method conditionally, only if the shape parameter 𝑐 = 𝑂(ℎ)
therein. Obviously, the approximation orders of Method I-2
and Method I-3 are higher than the methods in [12, 13], the
approximation orders of Method I-1 and Method II equal
that of the method in [12], and the approximation order of
Method I-3 equals that of CSM [11]. Undoubtedly, our meth-
ods are full of approximation ability. Furthermore, [12, 13]
have not studied first order and second order derivative
approximations. At the same time, our methods are more
suitable for noisy data than the methods in [12, 13]. Hence,
Method I-2, Method I-3, and CSM [11] are more preferable
than others.

6. Conclusions

The explicit error bounds for a noisy lacunary cubic spline
interpolation and a simple noisy cubic spline quasi interpo-
lation are well studied in this paper; see Theorems 5 and 7.
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These new results are very useful in numerical approximation
and related practical fields. Moreover, these results are also
verified by some numerical examples. In a word, both theo-
retical analysis and numerical tests show that ourmethods are
well behaved. We end the paper with the following remarks.

(i) Themain contributions of the paper include (i) study-
ing two new methods to approximate a function and
its first order and second order derivatives from the
given noisy data and (ii) analyzing the explicit error
bounds for the methods.

(ii) Themain advantages of our newmethods include the
following: (i) they are very simple; (ii) they are not
only applicable to noisy data but also applicable to
exact data; (iii) Method I-2 and Method I-3 have bet-
ter performance in function approximation and first
order derivative approximation than other methods;
Method I-3 andMethod II have better performance in
second order derivative approximation than other
methods.
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