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Complete spacelike hypersurfaces immersed in semi-Riemannianwarped products are investigated. By using a technique according
to Yau (1976) and a reasonable restriction on themean curvature of the hypersurfaces, we obtain some newBernstein-type theorems
which extend some known results proved by Camargo et al. (2011) and Colares and Lima (2012).

1. Introduction

In the present paper, we are interested in the study of the com-
plete spacelike hypersurfaces immersed in semi-Riemannian
warped product manifolds, in particular, in steady state-type
spacetime and hyperbolic-type space. Before giving details of
ourmain results, we first present a brief outline of some recent
papers containing theorems related to ours.

By using a restriction on the height function of a complete
spacelike hypersurface, Caminha and de Lima [1] obtained
someunique results concerning complete spacelike hypersur-
faces with constant mean curvature immersed in steady state
space and hyperbolic space, respectively.

Later, Albujer and Aĺıas [2] proved that on a complete
spacelike hypersurface the constant mean curvature must be
identically 1, provided that such a hypersurface is bounded
away from the infinity of the steady state space. For some
other Bernstein-type results concerning constant mean cur-
vature, we refer the reader to some recent papers by Albujer
et al. [3, 4] and Aquino and de Lima [5].

Also, by using the well known result according to Yau [6],
Camargo et al. in [7] obtained some Bernstein-type results
concerning complete spacelike hypersurfaces, in steady state-
type and hyperbolic-type space. Noticing that in their paper
the mean curvature of the complete spacelike hypersurface
need not be a constant.

de Lima in [8] obtained a new Bernstein-type theorem
concerning complete spacelike hypersurfaces in hyperbolic
space with the bounded mean curvature (not necessarily
constant) and a restriction on the normal angle.

In this paper, following [9, 10] we shall consider the
Laplacian of the integral of the warping function. In fact, by
using a technique provided by Yau in [6] and supposing an
appropriate restriction on the mean curvature, we obtain the
following Bernstein-type theorems.

Theorem 1. Let𝑀𝑛+1 = −𝐼×
𝑓
𝑀
𝑛 be a generalized Robertson-

Walker spacetime whose fiber 𝑀𝑛 is a complete Riemannian
manifold. Let 𝜓 : Σ

𝑛

→ 𝑀
𝑛+1 be a complete and connected

spacelike hypersurface with the mean curvature𝐻 satisfying

𝐻 ≥ sup
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) > 0. (1)

If ∇ℎ has integrable norm on Σ𝑛, then Σ𝑛 is a slice of −𝐼×
𝑓
𝑀
𝑛.

TheRiemannian version ofTheorem 1 is also presented as
follows.

Theorem 2. Let 𝑀𝑛+1 = 𝐼×
𝑓
𝑀
𝑛 be a Riemannian warped

product whose fiber 𝑀𝑛 is a complete Riemannian manifold.
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Let 𝜓 : Σ
𝑛

→ 𝑀
𝑛+1 be a complete and connected spacelike

hypersurface with the mean curvature𝐻 satisfying

0 < 𝐻 ≤ inf
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) . (2)

If ∇ℎ has integrable norm on Σ𝑛, then Σ𝑛 is a slice of 𝐼×
𝑓
𝑀
𝑛.

Suppose that the warping function 𝑓 in both Theorems
1 and 2 is given by 𝑓 = 𝑒

𝑡 for 𝑡 ∈ 𝐼, then the above two
theorems are just the corresponding results shown in [7].
Finally, letting thewarping function𝑓 inTheorem 2 be𝑓 = 𝑒

𝑡

for 𝑡 ∈ R and the fiber 𝑀𝑛 an 𝑛-dimensional Euclidean
space, then Theorem 2 gives a Bernstein-type theorem for
spacelike hypersurfaces immersed in the hyperbolic space
(see Section 4 for details).

This paper is organized as follows. We shall first recall
some notations and collect some basic facts in a preliminaries
section, and some key lemmas used to prove our main
theorems are also given in this section. Section 3 is devoted
to proving some unique theorems concerning spacelike
hypersurfaces in semi-Riemannian warped products. Finally,
in Section 4, some applications of our main theorems in
steady state-type spacetimes and hyperbolic-type spaces are
obtained respectively.

2. Preliminaries

In this section, from [11, 12] we shall recall some basic nota-
tions and facts that will appear along this paper.

Let 𝑀𝑛 be a connected, 𝑛-dimensional (𝑛 ≥ 2) oriented
Riemannian manifold, 𝐼 ⊆ R an interval, and 𝑓 : 𝐼 →

R a positive smooth function. We consider the product
differential manifold 𝐼 × 𝑀

𝑛 and denote by 𝜋
𝐼
and 𝜋

𝑀
the

projections onto the base 𝐼 and fiber 𝑀𝑛, respectively. A
particular class of semi-Riemannian manifolds is the one
obtained by furnishing product manifolds 𝐼 × 𝑀

𝑛 with the
metric

⟨V, 𝑤⟩
𝑝
= 𝜖 ⟨(𝜋

𝐼
)
∗
V, (𝜋
𝐼
)
∗
𝑤⟩ + (𝑓 ∘ 𝜋

𝐼
(𝑝))
2

× ⟨(𝜋
𝑀
)
∗
V, (𝜋
𝑀
)
∗
𝑤⟩ ,

(3)

for any 𝑝 ∈ 𝑀
𝑛+1 and any V, 𝑤 ∈ 𝑇

𝑝
𝑀
𝑛+1, where 𝜖 = ±1.

We call such a space warped product manifold, and 𝑓 is
known as the warping function and we denote the space
by 𝑀𝑛+1= 𝜖𝐼×

𝑓
𝑀
𝑛. Note that −𝐼×

𝑓
𝑀
𝑛 is called a general-

ized Robertson-Walker spacetime [11], in particular, −𝐼×
𝑓
𝑀
𝑛

is called a Robertson-Walker spacetime if the fiber 𝑀𝑛 has
constant sectional curvature. From [13] we know that a gen-
eralized Robertson-Walker spacetime has constant sectional
curvature 𝑘 if and only if the Riemannian fiber 𝑀

𝑛 has
constant sectional curvature 𝑘 and the warping function 𝑓

satisfies the following differential equation:

𝑓
󸀠󸀠

𝑓
= 𝑘 =

𝑓
󸀠2

+ 𝑘

𝑓2
. (4)

It follows from [14, 15] that the vector field (𝑓 ∘ 𝜋
𝐼
)𝜕
𝑡
is

conformal and closed (in this sense that its dual 1-form is

closed) with conformal factor 𝜙 = 𝑓
󸀠

∘ 𝜋
𝐼
, where the prime

denotes differentiation with respect to 𝑡 ∈ 𝐼. For 𝑡
0
∈ 𝐼, we

orient the slice Σ𝑛
𝑡
0

:= {𝑡
0
} × 𝑀

𝑛 by the unit normal vector
field 𝜕

𝑡
, then from [9] we know that Σ𝑛

𝑡
0

has constant 𝑟th
mean curvature𝐻

𝑟
= −𝜖(𝑓

󸀠

(𝑡
0
)/𝑓(𝑡
0
))
𝑟 with respect to 𝜕

𝑡
for

0 ≤ 𝑟 ≤ 𝑛.
A smooth immersion 𝜓 : Σ

𝑛

→ 𝜖𝐼×
𝑓
𝑀
𝑛 of an 𝑛-dimen-

sional connected manifold Σ𝑛 is said to be a spacelike hyper-
surface if the inducedmetric via𝜓 is a Riemannianmetric on
Σ
𝑛. If Σ𝑛 is oriented by the unit vector field𝑁, one obviously

has 𝜖 = 𝜖
𝜕
𝑡

= 𝜖
𝑁
.

We consider two particular functions naturally attached
to complete spacelike hypersurfaces, namely, the vertical
(height) function ℎ = (𝜋

𝐼
)|
Σ
𝑛 and the support function

⟨𝑁, 𝜕
𝑡
⟩. We denote by ∇ and ∇ the gradients with respect to

the metrics of 𝜖𝐼×
𝑓
𝑀
𝑛 and Σ𝑛, respectively.Thus, by a simple

computation we present the gradient of 𝜋
𝐼
on 𝜖𝐼×

𝑓
𝑀
𝑛 as

follows:

∇𝜋
𝐼
= 𝜖 ⟨∇𝜋

𝐼
, 𝜕
𝑡
⟩ 𝜕
𝑡
= 𝜖𝜕
𝑡
. (5)

Moreover, the gradient of ℎ on Σ𝑛 is given by

∇ℎ = (∇𝜋
𝐼
)
⊤

= 𝜖(𝜕
𝑡
)
⊤

= 𝜖𝜕
𝑡
− ⟨𝑁, 𝜕

𝑡
⟩𝑁. (6)

We denote by | ⋅ | the norm of a vector field on Σ𝑛, then we get

|∇ℎ|
2

= 𝜖 (1 − ⟨𝑁, 𝜕
𝑡
⟩
2

) . (7)

According to [2, 16], a spacelike hypersurface 𝜓 : Σ
𝑛

→

𝜖𝐼×
𝑓
𝑀
𝑛 is said to be bounded away from the future infinity

of 𝜖𝐼×
𝑓
𝑀
𝑛 if there exists 𝑡 ∈ 𝐼 such that

𝜓 (Σ
𝑛

) ⊂ {(𝑡, 𝑝) ∈ 𝜖𝐼×
𝑓
𝑀
𝑛

: 𝑡 ≤ 𝑡} . (8)

Analogously, a spacelike hypersurface 𝜓 : Σ
𝑛

→ 𝜖𝐼×
𝑓
𝑀
𝑛 is

said to be bounded away from the past infinity of 𝜖𝐼×
𝑓
𝑀
𝑛 if

there exists 𝑡 ∈ 𝐼 such that

𝜓 (Σ
𝑛

) ⊂ {(𝑡, 𝑝) ∈ 𝜖𝐼×
𝑓
𝑀
𝑛

: 𝑡 ≥ 𝑡} . (9)

Finally, Σ𝑛 is said to be bounded away from the infinity of
𝜖𝐼×
𝑓
𝑀
𝑛 if it is both bounded away from the past and future

infinity of 𝜖𝐼×
𝑓
𝑀
𝑛.

Setting 𝑘 = 0 in Lemma 4.1 of [9], we may obtain
the Laplacian of the integral of the warping function in
a generalized Robertson-Walker spacetime. By using the
technique according to Aĺıas and Colares [9], the second
author and Wang in [10] generalize this result in a semi-
Riemannian warped product as follows.

Lemma 3 (see [9, 10]). Let 𝜓 : Σ
𝑛

→ 𝜖𝐼×
𝑓
𝑀
𝑛 be a spacelike

hypersurface immersed in a semi-Riemannianwarped product.
If

𝜎 (𝑡) = ∫

𝑡

𝑡
0

𝑓 (𝑠) 𝑑𝑠, (10)
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then

Δ𝜎 (ℎ) = 𝜖𝑛 (𝑓
󸀠

(ℎ) + 𝑓 (ℎ) ⟨𝑁, 𝜕
𝑡
⟩𝐻) , (11)

where Δ denotes the Laplacian operator and ℎ is the height
function of Σ𝑛.

Furthermore, we also need the following well known
lemma according to Yau [6].

Lemma 4 (corollary on page 660 of [6]). Let Σ𝑛 be an 𝑛-
dimensional complete Riemannian manifold. If 𝑔 : Σ

𝑛

→ R

is a smooth subharmonic or superharmonic function whose
gradient norm is integrable on Σ

𝑛, then 𝑔 must be actually
harmonic.

3. Proofs of Main Theorems

Based on the above arguments in Section 2, we may present
the proof of Theorem 1 as follows.

Proof of Theorem 1. Since 𝜕
𝑡
is a unitary timelike vector field

globally defined on the ambient spacetime, then there exists
a unique timelike unitary normal vector filed 𝑁 globally
defined on the spacelike hypersurface Σ𝑛 which is the same
time orientation as 𝜕

𝑡
. By using the reverse Cauchy-Schwarz

inequality we have

⟨𝑁, 𝜕
𝑡
⟩
󵄨󵄨󵄨󵄨Σ𝑛

≤ −1 < 0. (12)

Letting 𝜖 = −1, then it follows from Lemma 3 that

Δ𝜎 (ℎ) = −𝑛 (𝑓
󸀠

(ℎ) + 𝑓 (ℎ) ⟨𝑁, 𝜕
𝑡
⟩𝐻) . (13)

The assumptions of Theorem 1 assure that 𝐻 > 0, then, it
follows from (12) that

⟨𝑁, 𝜕
𝑡
⟩𝐻 ≤ −𝐻 < 0. (14)

Noticing that the warping function is positive on 𝐼, then,
by using the above inequality and (1) in (13) we have the
following inequality:

Δ𝜎 (ℎ) = −𝑛𝑓 (ℎ) (
𝑓
󸀠

(ℎ)

𝑓 (ℎ)
+ ⟨𝑁, 𝜕

𝑡
⟩𝐻)

≥ −𝑛𝑓 (ℎ) (
𝑓
󸀠

(ℎ)

𝑓 (ℎ)
− 𝐻)

≥ −𝑛𝑓 (ℎ) (sup
Σ
𝑛

𝑓
󸀠

(ℎ)

𝑓 (ℎ)
− 𝐻) ≥ 0,

(15)

this means that 𝜎(ℎ) is a subharmonic function on Σ𝑛.
On the other hand, since the spacelike hypersurface Σ𝑛 is

bounded away from the infinity of −𝐼×
𝑓
𝑀
𝑛, then the height

function ℎ is bounded on Σ𝑛. Also, we have

|∇𝜎 (ℎ)| = 𝑓 (ℎ) |∇ℎ| . (16)

Since |∇ℎ| is integrable on Σ
𝑛, from (16) we know that

|∇𝜎(ℎ)| is also integrable on Σ𝑛. The above arguments assure

that Lemma 4 is applicable, then applying Lemma 4 on
subharmonic function 𝜎(ℎ) on Σ𝑛 we have

Δ𝜎 (ℎ) = 0. (17)

Putting the above equation into (15) and noting that the
warping function 𝑓 is a smooth positive function on 𝐼, we
obtain (𝑓

󸀠

/𝑓)(ℎ) = −⟨𝑁, 𝜕
𝑡
⟩𝐻, thus, using inequalities (1)

and (12) in this equation we have

sup
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) ≥

𝑓
󸀠

𝑓
(ℎ) = − ⟨𝑁, 𝜕

𝑡
⟩𝐻 ≥ − ⟨𝑁, 𝜕

𝑡
⟩ sup
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) .

(18)

The hypothesis (1) implies that sup
Σ
𝑛(𝑓
󸀠

/𝑓)(ℎ) > 0 on Σ𝑛,
then it follows from the above inequality that −⟨𝑁, 𝜕

𝑡
⟩ ≤ 1;

comparing this inequality with inequality (12) we obtain an
identity ⟨𝑁, 𝜕

𝑡
⟩ = −1. Finally, using 𝜖 = −1 and ⟨𝑁, 𝜕

𝑡
⟩ = −1

in (7) gives that

|∇ℎ|
2

= − (1 − ⟨𝑁, 𝜕
𝑡
⟩
2

) ≡ 0, (19)

which means that ℎ is a constant on Σ𝑛. Then we prove that
Σ
𝑛 is a slice of −𝐼×

𝑓
𝑀
𝑛.

Next we give the Riemannian version of the proof of
Theorem 1 on a Riemannianwarped product space as follows.

Proof of Theorem 2. In this context, wemay consider𝑁 being
the orientation of the hypersurface Σ

𝑛 such that its angle
function satisfies

−1 ≤ ⟨𝑁, 𝜕
𝑡
⟩
󵄨󵄨󵄨󵄨Σ𝑛

≤ 0. (20)

Now, letting 𝜖 = 1, then it follows from Lemma 3 that

Δ𝜎 (ℎ) = 𝑛 (𝑓
󸀠

(ℎ) + 𝑓 (ℎ) ⟨𝑁, 𝜕
𝑡
⟩𝐻) . (21)

The assumption (2) implies that𝐻 is positive, then, from (20)
we have that

−𝐻 ≤ ⟨𝑁, 𝜕
𝑡
⟩𝐻 ≤ 0. (22)

Noticing that the warping function is positive on 𝐼, then,
using the above inequality and (2) in (21) we obtain

Δ𝜎 (ℎ) = 𝑛𝑓 (ℎ) (
𝑓
󸀠

(ℎ)

𝑓 (ℎ)
+ ⟨𝑁, 𝜕

𝑡
⟩𝐻)

≥ 𝑛𝑓 (ℎ) (
𝑓
󸀠

(ℎ)

𝑓 (ℎ)
− 𝐻)

≥ 𝑛𝑓 (ℎ) (inf
Σ
𝑛

𝑓
󸀠

(ℎ)

𝑓 (ℎ)
− 𝐻) ≥ 0,

(23)

this means that 𝜎(ℎ) is a subharmonic function on Σ𝑛.
As the spacelike hypersurface Σ𝑛 is bounded away from

the infinity of 𝐼×
𝑓
𝑀
𝑛, then the height function ℎ is also

bounded on Σ
𝑛. Also, (16) holds in this context. As |∇ℎ|

is integrable on Σ
𝑛, then (16) assures that |∇𝜎(ℎ)| is also
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integrable. From the above arguments we see that Lemma 4 is
applicable; applying Lemma 4 on subharmonic function 𝜎(ℎ)
we obtain (17).Thus, putting (17) into (23) and noting that the
warping function 𝑓 is positive on 𝐼, we obtain (𝑓

󸀠

/𝑓)(ℎ) =

−⟨𝑁, 𝜕
𝑡
⟩𝐻, using inequality (2) in this equation yields that

0 < inf
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) ≤

𝑓
󸀠

𝑓
(ℎ) = − ⟨𝑁, 𝜕

𝑡
⟩𝐻

≤ − ⟨𝑁, 𝜕
𝑡
⟩ inf
Σ
𝑛

𝑓
󸀠

𝑓
(ℎ) .

(24)

It follows from (24) that −⟨𝑁, 𝜕
𝑡
⟩ ≥ 1, comparing this

inequality with inequality (20) we obtain identity ⟨𝑁, 𝜕
𝑡
⟩ =

−1. Finally, using 𝜖 = 1 and ⟨𝑁, 𝜕
𝑡
⟩ = −1 in (7) gives

|∇ℎ|
2

= 1 − ⟨𝑁, 𝜕
𝑡
⟩
2

≡ 0, (25)

which means that ℎ is a constant on Σ𝑛. Then we prove that
Σ
𝑛 is a slice of 𝐼×

𝑓
𝑀
𝑛.

Remark 5. It is worth to point out that Colares and de Lima
[17] obtained some rigidity theorems in semi-Riemannian
warped products which are similar to ours. However, in the
assumptions of Theorems 4.2 and 4.6 of [17], the warping
function 𝑓 is assumed to has convex logarithm. On the other
hand, we refer the reader to [12, 15] for some examples of
semi-Riemannianwarped products whosewarping functions
are not necessarily to have convex logarithm.That is, without
requiring the assumption that ln𝑓 is convex, ourTheorems 1
and 2 attain the same conclusions as the corresponding results
proved in [17].

4. Applications

In this section, we apply ourmain theorems on some physical
models, in particular, on steady state-type space spacetime
and hyperbolic-type space.

According to [2], −R×
𝑒
𝑡𝑀
𝑛 is said to be a steady state-

type spacetime, where𝑀𝑛 is an 𝑛-dimensional complete and
connected Riemannian manifold. In particular, −R×

𝑒
𝑡R𝑛 is

called the (𝑛 + 1)-dimensional steady state spacetime, which
is isometric to an open subset of the de Sitter space S𝑛+1.
The importance of studying the steady state spacetime comes
from the fact that, in cosmology, −R×

𝑒
𝑡R3 is the steady state

model of the universe proposed by Bondi and Gold [18], and
Hoyle [19].

Suppose that thewarping function is given by𝑓 = 𝑒
𝑡, then

the following result follows fromTheorem 1.

Corollary 6. Let𝜓 : Σ
𝑛

→ −R×
𝑒
𝑡𝑀
𝑛 be a complete spacelike

hypersurface in steady state-type spacetime. Suppose that Σ𝑛 is
bounded away from the infinity of−R×

𝑒
𝑡𝑀
𝑛 and that themean

curvature𝐻 satisfies𝐻 ≥ 1. If ∇ℎ has integrable norm on Σ𝑛,
then𝐻 = 1 and Σ𝑛 is a slice of −R×

𝑓
𝑀
𝑛.

We remark that Corollary 6 was proved in [7] by using a
different method from ours.

The hyperbolic-type space is defined by R×
𝑒
𝑡𝑀
𝑛, where

𝑀
𝑛 is a complete connected Riemannianmanifold.Themoti-

vation for investigating the hyperbolic-type space R×
𝑒
𝑡𝑀
𝑛

comes from the fact that the (𝑛 + 1)-dimensional hyperbolic
space H𝑛+1 is isometric to R×

𝑒
𝑡R𝑛. Noting that an explicit

isometry between the half-space model and this hyperbolic-
typemodel has been pointed out by Aĺıas andDajczer in [20].

Now letting the warping function be 𝑓 = 𝑒
𝑡 for 𝑡 ∈ R,

then the following result follows fromTheorem 2.

Corollary 7. Let 𝜓 : Σ
𝑛

→ R×
𝑒
𝑡𝑀
𝑛 be a complete

spacelike hypersurface in hyperbolic-type space. Suppose that
Σ
𝑛 is bounded away from the infinity of R×

𝑒
𝑡𝑀
𝑛 and that the

mean curvature 𝐻 satisfies 0 < 𝐻 ≤ 1. If ∇ℎ has integrable
norm on Σ𝑛, then𝐻 = 1 and Σ𝑛 is a slice of R×

𝑒
𝑡𝑀
𝑛.

Also, letting the warping function be 𝑓 = 𝑒
𝑡 and 𝑀

𝑛

an 𝑛-dimensional Euclidean space, then the following result
follows from Corollary 7.

Corollary 8. Let 𝜓 : Σ
𝑛

→ R×
𝑒
𝑡R𝑛 be a complete spacelike

hypersurface in a hyperbolic space. Suppose that Σ𝑛 is bounded
away from the infinity ofR×

𝑒
𝑡R𝑛 and that the mean curvature

𝐻 satisfies 0 < 𝐻 ≤ 1. If ∇ℎ has integrable norm on Σ𝑛, then
𝐻 = 1 and Σ𝑛 is a horosphere of R×

𝑒
𝑡R𝑛.

Remark 9. De Lima in [8] proved that a complete spacelike
hypersurface immersed in hyperbolic space with the mean
curvature 0 ≤ 𝐻 ≤ 1 and −⟨𝑁, 𝜕

𝑡
⟩ ≥ sup

Σ
𝑛𝐻 is a horosphere,

provided that Σ𝑛 is under a horosphere of the hyperbolic
space and the second fundamental from is bounded.
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