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This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for
modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model
(FIM-model) uses molecular units of information to partition the output space in the defuzzification step. Moreover, these
molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata
parameters involved in artificial hydrocarbon networks. In addition, a position controller for a direct current (DC) motor was
implemented using the proposed FIM-model in type-1 and type-2 fuzzy inference systems. Experimental results demonstrate that
the fuzzy-molecular inference model can be applied as an alternative of type-2 Mamdani’s fuzzy control systems because the set of
molecular units can deal with dynamic uncertainties mostly present in real-world control applications.

1. Introduction

It is well known that fuzzy inference models are very impor-
tant in applications when information is uncertain and
imprecise, like: robotics, medicine, control, modeling, and so
forth [1–6]. Moreover, fuzzy inference models may deal with
nonlinearities in the input domain to transform them into an
output domain. In that way, the literature reports three main
models: Takagi-Sugeno inference systems [7], Mamdani’s
fuzzy control systems [8], and Tsukamoto’s inference model
[9].

Roughly speaking, Takagi-Sugeno inference systems
apply polynomial functions to construct the consequent
values using pairs of input-output data of a given system to
model [7]. Mamdani’s fuzzy control systems refer to control
laws that apply fuzzy inference models with fuzzy partitions
in the defuzzification phase [8], obtaining mostly the output
value with the center of gravity (COG) function [10]. In con-
trast, Tsukamoto’s inference models implement monotonic
membership functions [9]. For detailed information, see [11].

The above inference models were developed under type-
1 fuzzy systems. However, these models have disadvantage
in terms of dynamic uncertainties present at inputs. For
example, the latter gives poor performance in control systems
because real-world control applications present dynamic

uncertainties inherently [12, 13]. In contrast, type-2 fuzzy
systems were proposed as an improvement of type-1 fuzzy
inference systems. For instance, recent applications on fuzzy
control systems have demonstrated the ability of type-2 fuzzy
control systems to handle with noise and perturbations [12–
14].

On the other hand, other fuzzy inference models have
been proposed as hybrid algorithms using heuristics to man-
age unusual information, pattern recognition, and learning.
Some of these fuzzy inference models use genetic algorithms,
harmony search algorithms, tabu search, artificial neural net-
works, swarm intelligence techniques, and so forth [3, 4, 15].

Recently, H. Ponce and P. Ponce [16–20] proposed a new
computational algorithm for modeling problems named arti-
ficial hydrocarbon networks based on natural hydrocarbon
compounds. This algorithm claims for stability, well forming
of compounds, easiness of spanning structures, and a degree
of interpretation of the resultant model based on organized
structures. In particular, the basic unit of information in this
algorithm is the molecule. Actually, molecules are simple
packages of information that can be inherited and inter-
preted. At last, basic chemical rules are applied to build the
final structure.

Then, the objective of this paper is to present a novel
fuzzy inference model based on artificial hydrocarbon
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networks named fuzzy-molecular inference (FIM) model. In
that sense, molecules can model consequent values of fuzzy
rules and partition linguistic variables. Moreover, a fuzzy
control system based on the FIM-model is presented as a
case study. Experimental results demonstrate that the fuzzy-
molecular inference model can be applied as an alternative
of type-2 Mamdani’s fuzzy control systems because the set of
molecular units can deal with dynamic uncertainties mostly
present in real-world control applications.

The paper is ordered as follows. Next section presents a
review of artificial hydrocarbon networks algorithm intro-
duced recently in [16–20]. The following sections introduce
new material. Section 3 describes the fuzzy-molecular infer-
ence model in detail, current proposal of the paper. Section 4
introduces an example of how to apply the FIM-model in
fuzzy control systems. Section 5 presents a case study in
which a type-2 fuzzy control system based on the FIM-model
implements a position controller of a direct current (DC)
motor. Section 6 presents the experimental results of the case
study and discusses some differences between the proposed
model and other fuzzy inference systems and the advantages
of the FIM-model to be used as an alternative of type-2 fuzzy
systems. Finally, Section 7 concludes the paper and presents
future directions.

2. Artificial Hydrocarbon Networks

In this section, a brief review of artificial hydrocarbon
networks is presented.However, this algorithm is subjected to
the artificial organic networks technique.Thus, a first descrip-
tion of artificial organic networks technique is discussed and
then artificial hydrocarbon networks algorithm is formally
introduced.

2.1. Brief Review of Artificial Organic Networks. Observations
to chemical organic compounds reveal enough information
to derive the artificial organic networks technique firstly
proposed by H. Ponce and P. Ponce [16–22]. From studies
of organic chemistry, organic compounds are the most stable
ones in nature. In addition, molecules can be seen as units
of packaging information; thus, complex molecules and its
combinations can determine a nonlinear interaction of infor-
mation. Moreover, molecules can be used for encapsulation
and potential inheritance of information. Thus, artificial
organic networks take advantage of this knowledge, inspiring
a computational algorithm that infer and classify information
based on stability and chemical rules that allow formation of
molecules [19, 21].

Artificial organic networks (AONs for short) define four
components: atoms, molecules, compounds, and mixtures;
and two basic interactions among components: covalent
bonds and chemical balance interaction. In order to follow
chemical rules, the following definitions of AONs hold [16–
22].

(a) Atoms. They are the basic units with structure. No
information is stored. In addition, when two atoms have the
same number of degrees of freedom they are called similar

atoms and different atoms otherwise.The degree of freedom is
the number of valence electrons that allow atoms to be linked
with others.

(b) Molecules.They are the interactions of two or more atoms
made of covalent bonds. These components have structural
and behavioral properties. Structurally, they conform the
basis of an organized structure while behaviorally they can
contain information. Thus, molecules are known as the basic
units of information. If a molecule has filled out all of the
valence electrons in atoms, it is stable; but if a molecule has
at least one valence electron without filling, it is considered
as unstable.

(c) Compounds. In structure, they are two or more molecules
interacting with each other linked with covalent bonds.Their
behaviors are mappings from the set of molecular behaviors
to real values.

(d) Mixtures. They are the interaction of two or more
molecules and/or compounds without physical bonds. Mix-
tures are linear combinations of molecules and/or com-
pounds forming a basis of molecules with weights so-called
stoichiometric coefficients.

(e) Covalent Bonds.They are of two types. For this work, polar
covalent bonds refer to the interaction of two similar atoms,
while nonpolar covalent bonds refer to the interaction of two
different atoms.

(f) Chemical Balance Interaction. It refers to find the proper
values of stoichiometric coefficients in mixtures in order to
satisfy constrains in artificial organic networks.

In fact, artificial organic networks follow the energy
model [20] that states the hierarchical order in which com-
ponents are used to form the final structure to minimize
energy. For instance, the first strategy considers formation
of molecules. If molecules cannot deal with the problem,
compounds are required. Finally, mixtures of molecules
and/or compounds will act.

2.2. Description of Artificial HydrocarbonNetworks. Artificial
hydrocarbon networks (AHNs for short) algorithm is based
on artificial organic networks that implement notions of
natural hydrocarbon compounds [19, 21]. Formally, AHNs
define components, interactions, and the training algorithm,
in order to infer and classify information given any system.
In that way, two main procedures are needed for AHNs:
training and reasoning. Following, a brief review of artificial
hydrocarbon networks is presented.

2.2.1. Basic Components. In particular to AHNs, only two
types of atoms are considered: hydrogen atoms H and carbon
atoms C. Those have valence electrons eH = 1 and eC = 4

for the hydrogen and carbon atoms, respectively. In that
sense, hydrocarbon atoms can be bonded with at most one
atom while carbon atoms can be bonded with at most four,
knowing as the octet rule [16–22].
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The basic unit of information is a CH-molecule. These
kinds of molecules are structurally made of hydrogen and
carbon atoms following the octet rule. LetM

𝑖
be the structure

of amolecule, and,𝜑
𝑖
be the behavior ofmoleculeM

𝑖
.Then,𝜑

𝑖

is a mapping from some set 𝑋 to real numbers R. Moreover,
let MH and MC be two molecules with behaviors 𝜑H and
𝜑C, and if (1) holds for these behaviors, then MH and MC
are called CH-molecules, where ℎ is complex constant value
named hydrogen value, 𝑥 is any input value |𝑥| ≤ 1 that
excites a molecule, and d is the number of hydrogen atoms
attached to a carbon atom:

𝜑H (𝑥) = ℎ, ℎ ∈ C,

𝜑C (𝑥) =

𝑑≤eC
∏

𝑖=1

(𝑥 − 𝜑H𝑖) , 𝑥 ∈ R.
(1)

Let MCH, MCH
2

, and MCH
3

be CH-molecules with behaviors
𝜑CH, 𝜑CH

2

, and 𝜑CH
3

like (2), respectively. Then, they are
called CH-primitive molecules. Intuitively, these molecules
can be seen as basic packages to join among them forming
complex molecules-like compounds:

𝜑CH(𝑥) = (𝑥 − ℎ
1
) ,

𝜑CH
2
(𝑥) = (𝑥 − ℎ

1
) (𝑥 − ℎ

2
) ,

𝜑CH
3
(𝑥) = (𝑥 − ℎ

1
) (𝑥 − ℎ

2
) (𝑥 − ℎ

3
) .

(2)

Let C
𝑖
be a compound formed with a set of 𝑝 CH-molecules

M, and let 𝜓
𝑖
be the behavior of C

𝑖
. Then, 𝜓

𝑖
is expressed as

(3), where𝜑
𝑗
are the behaviors ofCH-molecules inM and𝜋 is

the behavior of nonpolar covalent bonds that links molecules

𝜓
𝑖
= 𝜋 (𝜑

1
, . . . , 𝜑

𝑗
, . . . , 𝜑

𝑝
, 𝑥) . (3)

Finally, let C
𝑖
be a 𝑛molecules or compounds with behaviors

𝜓
𝑖
. Then, 𝑆 is a mixture of molecules or compounds and it

is expressed as a linear combination of them like (4); where,
𝛼
𝑖
is a set of real values named stoichiometric coefficients

representing the ratio of molecules or compounds occupied
in the mixture.

𝑆 (𝑥) = ∑

𝑖

𝛼
𝑖
𝜓
𝑖 (
𝑥) . (4)

Let AHNbe amixture ofmolecules or compounds in the set Γ
representing the structure of molecules or compounds (how
they are connected), and, 𝑆 be the behavior of the mixture.
Then, AHN is called an artificial hydrocarbon network if
Γ is spanned from CH-molecules. Figure 1 shows a simple
artificial hydrocarbon network. It is remarkable to say that
topology Γ is a fixed structure parameterized with hydrogen
values ℎ and stoichiometric coefficients 𝛼

𝑖
.

2.2.2. Training of Artificial Hydrocarbon Networks. Artificial
hydrocarbon networks can deal with modeling problems like
inferring or clustering in order to approximate any given
system Σ with a pair of samples (𝑥, 𝑦). In fact, let Σ be a
simple-input-simple-output (SISO) system with input signal

Polar covalent bonds

Nonpolar covalent bondsX

S(X)

𝛼2

𝛼1

𝛼i

C1

C2

Ci

Figure 1: Simple artificial hydrocarbon network. White circles
represent hydrogen atoms, and black circles represent carbon atoms.

𝑥 and output signal 𝑦. The training process of an artificial
hydrocarbon network is summarized in Algorithm 1 which
receives the sample pairs of Σ, the number of CH-molecules
𝑝 and the number of compounds 𝑐. Algorithm 1 outputs the
structure Γ, hydrogen values ℎ, and stoichiometric coeffi-
cients 𝛼

𝑖
.

This is a modified algorithm from the original one
reported in [21]. For instance, 𝑟𝑗𝑘 refers to an intermolecular
distance which defines the distance between the position of
two molecules M

𝑗
and M

𝑘
. Actually, the algorithm iteratively

updates the set of intermolecular distances to define the best
positions of molecules in the input domain using (5). In
that sense, molecules will act under regions defined by these
intermolecular distances. It is remarkable to say that the first
molecule acts from the initial value of the input domain.
In order to iteratively updates intermolecular distances, 𝜂 is
considered the step size or the learning rate, such that, 0 <

𝜂 < 1 and the least squares errors𝐸
𝑗
and𝐸

𝑘
for eachmolecule

𝑟

𝑗𝑘

𝑡+1
= 𝑟

𝑗𝑘

𝑡
− 𝜂 (𝐸

𝑗
− 𝐸
𝑘
) . (5)

On the other hand, the original algorithm considers a generic
interaction of CH-molecules referring to as a nonpolar
covalent bond based training [20]. In this work, a linear chain
of CH-molecules is adopted. Thus, each compound has a
topology in the form of (6), where, the outside of the chain
has MCH

3

molecules and MCH
2

; otherwise

MCH
3

–MCH
2

– ⋅ ⋅ ⋅ –MCH
2

– ⋅ ⋅ ⋅ –MCH
2

–MCH
3

. (6)

Finally, Algorithm 1 considers adjustment parameters 𝜎
𝑗

constant gain for molecular behaviors 𝜑
𝑗
since 𝜑C in (1)

is a normalized product form of a polynomial used in the
least squares estimates (LSEs) method. In fact, consider the
equivalence (7) when reasoning with AHNs. Where the set
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(1) Initialize AHN = 0

(2) For each C
𝑖
do

(3) Initialize 𝑟𝑗𝑘 randomly under the input domain
(4) While stop condition is not reached do
(5) Split (𝑥, 𝑦)-pairs into 𝑝 clusters 𝑦

𝑗
using 𝑟𝑗𝑘

(6) For each cluster 𝑦
𝑗
do

(7) Create a CH-molecule using criterion (6)
(8) Obtain hydrogen values of molecule M

𝑗
using LSE method

(9) Calculate least square error 𝐸
𝑗
between 𝑦

𝑗
and M

𝑗

(10) End for
(11) Update intermolecular distances 𝑟𝑗𝑘 using (5)
(12) End while
(13) Update AHN ← AHN ∪ C

𝑖

(14) Update (𝑥, 𝑦)-pairs with (𝑥, 𝑦 − AHN)-pairs
(15) End for
(16) Obtain stoichiometric coefficients of C

𝑖
compounds using LSE method

(17) Return AHN

Algorithm 1: Training algorithm for artificial hydrocarbon networks.

of 𝑝 values are coefficients of the polynomial form of 𝜑C of
grade 𝑑 ≤ eC
𝜎𝜑C (𝑥)

= 𝑝
𝑑
𝑥

𝑑
+ 𝑝
𝑑−1

𝑥

𝑑−1
+ ⋅ ⋅ ⋅ + 𝑝

1
𝑥 + 𝑝
0
= 𝜎

𝑑≤eC
∏

𝑖=1

(𝑥 − 𝜑H𝑖) ,

𝑥 ∈ R.

(7)

2.2.3. Reasoning of Artificial Hydrocarbon Networks. Once
the training is done, an artificial hydrocarbon network can
be used for reasoning. In that sense, consider an input value
𝑥
0
. The AHN has to be evaluated in 𝑥

0
; thus, the reasoning

value𝑦
0
can be calculated using (8), where 𝑆 is the behavior of

the artificial hydrocarbon network, 𝛼
𝑖
are the stoichiometric

coefficients, 𝑅 is the set of all intermolecular distances
between molecules, and 𝜎

𝑗
are the adjustment parameters

𝑦
0
= 𝑆 (𝑥

0
| 𝐻, 𝛼

𝑖
, 𝑅, 𝜎
𝑗
) . (8)

Notice that, if 𝑐 = 1, it means that there exists one stoichio-
metric coefficient 𝛼

1
= 1.

3. Description of the Proposed Fuzzy-
Molecular Inference Model

The fuzzy-molecular inference model (FMI-model for short)
is a fuzzy inference system that uses a fuzzy partition of
input space in premises and artificial hydrocarbon networks
in consequences as part of fuzzy implications. In this section,
a detailed description of the fuzzy-molecular inferencemodel
is presented. For simplicity, through this section consider
the FMI-model as a type-1 fuzzy system. In Section 5, an
extension to type-2 fuzzy systems is presented.

Let 𝐴 be a fuzzy set and its corresponding membership
function 𝜇

𝐴
(𝑥) of 𝐴, for all 𝑥 ∈ 𝑋, where 𝑋 is the input

domain space. In fact, the membership function is a value
between 0 and 1 for representing the value of belonging 𝑥 to
the fuzzy set 𝐴.

Also, let 𝑅
𝑖
be the 𝑖th fuzzy rule of form as (9),

where {𝑥
1
, . . . , 𝑥

𝑘
} is the set of variables in the antecedent,

{𝐴
1
, . . . , 𝐴

𝑘
} is the set of the fuzzy partition of input space, 𝑦

𝑖

is the variable of the consequent, M
𝑗
is the 𝑗th CH-molecule

of the artificial hydrocarbon network excited by the fuzzy
implication process (see Section 3.3), and Δ is any 𝑇-norm
function

𝑅
𝑖
: IfΔ (𝑥

1
is𝐴
1
, . . . , 𝑥

𝑘
is𝐴
𝑘
) , then 𝑦

𝑖
is M
𝑗
. (9)

If assuming that 𝜇
Δ
(𝑥
1
, . . . , 𝑥

𝑘
) is the result of the 𝑇-norm

function as (10) with conjunction operator ∧, then (9) can be
rewritten as (11), where 𝜑

𝑗
is the molecular behavior of M

𝑗

𝜇
Δ
(𝑥
1
, . . . , 𝑥

𝑘
) = 𝜇
𝐴
1

(𝑥
1
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝐴
𝑘

(𝑥
𝑘
) , (10)

𝑅
𝑖
: IfΔ (𝑥

1
is𝐴
1
, . . . , 𝑥

𝑘
is𝐴
𝑘
) ,

then 𝑦
𝑖
= 𝜑
𝑗
(𝜇
Δ
(𝑥
1
, . . . , 𝑥

𝑘
)) .

(11)

Thus, the fuzzy-molecular inference model is finally ex-
pressed in (11). Figure 2 shows the fuzzy-molecular inference
model as a block diagram.This model represents a nonlinear
inference system for a given crisp input 𝑥 ∈ 𝑋 that follows
three steps, that is, fuzzification, fuzzy inference engine, and
defuzzification, and obtains the corresponding crisp output
𝑦 ∈ 𝑌, where 𝑌 represents the output. Moreover, fuzzy rules
like (9) can also be expressed as a fuzzy matrix that defines
a knowledge base of the problem domain. Each block in the
FMI-model is detailed in the following subsections.

3.1. Fuzzification. The fuzzy-molecular inference model can
be viewed as a block with inputs and outputs. Moreover,
let any given system be a single-input-single-output. Then,
fuzzification maps any given input variable 𝑥, also known
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Knowledge
base

x y

Fuzzification Inference
engine

Defuzzification

If ,then

Figure 2: Block diagram of the fuzzy-molecular inference model.

as a linguistic variable, to a fuzzy value in the range [0, 1].
In particular, this mapping occurs using a fuzzy set 𝐴 and
its corresponding membership function 𝜇

𝐴
(𝑥), such that (12)

holds:

𝜇
𝐴
: 𝑥 󳨃󳨀→ [0, 1] . (12)

In fact, this linguistic variable is partitioned into 𝑚 different
fuzzy sets {𝐴

𝑖
}, for all 𝑖 = 1, . . . , 𝑚. For example, this fuzzy

partition can be “low,” “medium,” “high.”Then, the evaluation
of a given value of 𝑥 is calculated using the set of membership
functions 𝜇

𝐴𝑖
(𝑥), for all 𝑖 = 1, . . . , 𝑚.

The shape of all membership functions depends on
the purpose of the problem domain. The literature reports
different criteria and methods to do so as in [7–9, 11, 23, 24].

3.2. Fuzzy Inference Engine. Once the crisp value of the input
is mapped to a fuzzy subspace as described in Section 3.1,
the next step in the fuzzy-molecular inference model is the
evaluation of the antecedents in fuzzy rules like (11). In this
work, the min function (13) is selected for the 𝑇-norm Δ

𝜇
Δ
(𝑥
1
, . . . , 𝑥

𝑘
) = min {𝜇

𝐴
1

(𝑥
1
) , . . . , 𝜇

𝐴
𝑘

(𝑥
𝑘
)} . (13)

Finally, the consequent value 𝑦
𝑖
is equal to the valued-

behavior 𝜑
𝑗
of the 𝑗th CH-molecule of an artificial hydrocar-

bon network.Thus, the consequent value 𝑦
𝑖
can be calculated

using fuzzy rules (11) with the min function (13), as shown in
(14)

𝑦
𝑖
= 𝜑
𝑗
(min {𝜇

𝐴
1

(𝑥
1
) , . . . , 𝜇

𝐴
𝑘

(𝑥
𝑘
)}) . (14)

3.3. Defuzzification. The last step in fuzzy-molecular infer-
ence model calculates the crisp value of the output 𝑦 (15)
using 𝑛 fuzzy rules, where 𝑦

𝑖
is the consequent value and

𝜇
Δ𝑖
(𝑥
1
, . . . , 𝑥

𝑘
) is the fuzzy evaluation of the antecedents, for

𝑖 = 1, . . . , 𝑛. In particular, (15) is based on the well-known
center of gravity [10]

𝑦 =

∑𝜇
Δ𝑖
(𝑥
1
, . . . , 𝑥

𝑘
) ⋅ 𝑦
𝑖

∑𝜇
Δ𝑖
(𝑥
1
, . . . , 𝑥

𝑘
)

. (15)

As noticed in Section 3.2, the fuzzy-molecular inference
model requires a set of CH-molecules. In this case, let AHN
be an artificial hydrocarbon network with one compound C

that is made of 𝑝 CH-primitive molecules with molecular
behavior of the form as in (2). In this work, compound C
is restricted to a linear chain of CH-molecules like in (16),
where − stands for a covalent bond. Actually, the linear chain
is made of 2 CH

3
molecules at both extremes and (𝑝−2) CH

2

molecules in the inner chain

C = M
1
–M
2
– ⋅ ⋅ ⋅ −M

𝑗
– ⋅ ⋅ ⋅ –M

𝑝−1
–M
𝑝

= CH
3
–CH
2
– ⋅ ⋅ ⋅ –CH

2
– ⋅ ⋅ ⋅ –CH

2
–CH
3
.

(16)

It is remarkable to say that in the fuzzy-molecular inference
model, the AHN is restricted to one univariate compound
with one input 𝜇

Δ
(𝑥
1
, . . . , 𝑥

𝑘
) defined as (13) and one output

𝑦
𝑖
defined as (14). In case that amultiple-inputs-single-output

(MISO) system has to be applied for a particular AHN,
consider generalizing (1) as a multivariate function.

3.4. Knowledge Base. Since, the fuzzy-molecular inference
model has a generic fuzzy inference engine, proper knowl-
edge of a specific problem domain can be enclosed into the
knowledge base (see Figure 2). For instance, this knowledge
base is a matrix that summarizes all fuzzy rules of the form as
in (11) in the following way.

(a) For all input variables𝑥
1
, . . . , 𝑥

𝑘
, represent all possible

combinations of themusing the label of each set in the
fuzzy partition of inputs, such that all antecedents in
the fuzzy rules will be covered.

(b) For each combination (summary of antecedents),
assign the corresponding label of molecule M

𝑗
that

will act when the fuzzy rule is fired.

As an example of the knowledge base matrix construc-
tion, assume that there is a set of fuzzy rules like (17); thus, the
knowledge base matrix for this particular system is shown in
Table 1

𝑅
1
: If 𝑥
1
is𝐴
1
and 𝑥

2
is 𝐵
2
, then 𝑦

1
is M
1
,

𝑅
2
: If 𝑥
1
is 𝐴
2
and 𝑥

2
is 𝐵
1
, then 𝑦

2
is M
1
,

𝑅
3
: If 𝑥
1
is 𝐴
1
and 𝑥

2
is 𝐵
1
, then 𝑦

3
is M
2
.

(17)

3.5. Properties of the Fuzzy-Molecular Inference Model. The
fuzzy-molecular inference model combines interesting prop-
erties from both fuzzy logic and artificial hydrocarbon
networks. Advantages of the FMI-model are as the following.

(i) Fuzzy partitions in the output domain might be seen
as linguistic units, for example, “low,” “high.”

(ii) Fuzzy partitions have a degree of understanding
(parameters are metadata).

(iii) Molecular units deal with noise and uncertainties.

It is remarkable to say that molecules are excited by
consequent values; thus, molecules do not model a given
system, but transfer information from a fuzzy subspace to
a crisp set. Moreover, molecular units have the property of
filtering noise and uncertainties, especially important in real-
world control applications, as described in Section 5.
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Table 1: Knowledge base of (17).

𝑥
1

𝑥
2

𝑦
𝑖

𝐴
1

𝐵
2

M
1

𝐴
2

𝐵
1

M
1

𝐴
1

𝐵
1

M
2

In order to demonstrate the above advantages, an example
of the application of the FIM-model in fuzzy control systems
is provided in the following section. Then, Section 5 presents
a case study that evaluates the performance of the FIM-model
in a real application with dynamic uncertainties.

4. Design of Fuzzy-Molecular Based
Controller for a DC Motor

In this section, the design of a velocity controller for a
DC motor using the fuzzy-molecular inference model is
described. The objective of this fuzzy-molecular controller is
to show an example of how to apply the FMI-model as a fuzzy
control system.

4.1. Definition of the DCMotor Model. For instance, consider
a DC motor that regulates the velocity 𝜔 of its rotor varying
the input voltage V. Let𝐺(𝑠) be the transfer function of a given
DC motor expressed in (18)

𝐺 (𝑠) =

1.5

𝑠

2
+ 14𝑠 + 40.02

. (18)

In order to simulate the performance of the DC motor, a
discrete transfer function 𝐺(𝑧) was obtained using (18) and
a sample time of 0.01 s. The discrete model of DC motor is
shown in (19)

𝐺 (𝑧) =

7.16𝑧 + 6.83

𝑧

2
− 1.86𝑧 + 0.87

× 10

−5
. (19)

Finally, if one supposes that DCmotor is a causal, linear-time
invariant system, then a difference equation of (19) can be
expressed as (20), where 𝜔 is the velocity of the rotor, 𝑢 is the
input voltage, and 𝑘 is the current sample time

𝜔 [𝑘] = 1.86𝜔 [𝑘 − 1] − 0.87𝜔 [𝑘 − 2] + 7.16 × 10

−5
𝑢 [𝑘]

+ 6.83 × 10

−5
𝑢 [𝑘 − 1] .

(20)

4.2. Design of Control Law. The following control law is
designed to achieve a step response of the DC motor model
(20). Assuming the control diagram of Figure 3, the control
law has two inputs—the error signal 𝜀(𝑡) and the first
derivative of error signal ̇𝜀(𝑡)—and one output—the input
voltage 𝑢(𝑡). Thus, a fuzzy-molecular PD controller will be
designed.

Using the fuzzy-molecular inference model described
in Section 3, the control law is formed by three blocks:
fuzzification, fuzzy inference engine, and defuzzification, as
follows.

r(t)
−

e(t)

z−1

̇e(t)

Control law
u(t)

DC motor y(t)

Figure 3: Block diagram of the PD control system implemented.
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Figure 5: Fuzzy sets of the input first derivative error signal.

4.2.1. Fuzzification. The two input variables are partitioned
into five fuzzy sets: “very negative” (VN), “negative” (NN),
“zero” (Z), “positive” (PP), and “very positive” (VP). Figure 4
shows the fuzzy sets of the input variable 𝜀(𝑡), and Figure 5
shows the fuzzy sets of the input variable ̇𝜀(𝑡). It is remarkable
that parameters in the membership functions were tuned
manually, and the input domain was previously normalized.

4.2.2. Fuzzy Inference Engine. The fuzzy inference engine
for the fuzzy-molecular PD controller uses fuzzy rules of
the form as in (11) with consequent values as in (14). In
particular to the application, the implemented knowledge
base is summarized in Table 2.

Notice that Table 2 reports, for each combination of input
values, the fired molecule. For instance, the output signal was
partitioned into five CH-molecules M

𝑗
, for all 𝑗 = 1, . . . , 5,

that represent the action to be held. In particular, the output
signal was partitioned into the following molecules: “very
negative” (MVN), “negative” (MNN), “zero” (MZ), “positive”
(MPP), and “very positive” (MVP).

4.2.3. Defuzzification. The input voltage 𝑢(𝑡), the input signal
of the plant, is the output variable that defines the last block
of the fuzzy-molecular PD controller. In order to calculate
the consequent values of fuzzy rules depicted in Section 4.2.2,
the five CH-molecules are proposed in Figure 6 and were
found using Algorithm 1. Notice that the output variable is
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Table 2: Knowledge base of the fuzzy-molecular PD controller for
DC motor.

𝜀

̇𝜀

VN NN Z PP VP
VN MVN MVN MVN MVN MVN

NN MVN MVN MVN MVN MNN

Z MVN MNN MZ MPP MVP

PP MPP MVP MVP MVP MVP

VP MVP MVP MVP MVP MVP

0 C C

0

C

0

0

C

0

C 0

−4.55E6 −1.01E15

4.55E6

1.13E15 −7.52E7

7.52E7

Figure 6: Artificial hydrocarbon network used in the fuzzy-
molecular PD controller.

finally evaluated using (15), and resultant value is normalized.
Finally, the adjustment parameters 𝜎

𝑗
of CH-molecules are

summarized in Table 3.

4.3. Results of the Velocity Control for a DCMotor. The fuzzy-
molecular PD velocity controller for a DC motor described
above was implemented and simulated. For instance, the
objective of this application is to measure the performance
of the system for a step response.

The system was subjected to a step function as shown in
Figure 7. Results determine that the step response has 17% of
maximum overshoot, a rise time of 0.19 s, a settling time of
0.45 s, and a maximum error of 0.002 in steady state. In order
to measure the stability of the fuzzy-molecular PD controller,
a phase diagram was obtained from the step response.
Figure 8 shows the phase diagram of error signal versus
derivative of error signal. As it can be seen in Figure 8, the
fuzzy-molecular PD controller reaches a steady state near to
the zero input state vector of the controller.

Then, the step was implemented with a reference signal
varying in the range from−2 to 2×1000 rpm.After 10 seconds
with a sample time of 0.01 s, the step response is depicted
in Figure 9, where the light line represents the reference
signal and the strong line represents the actual value of
angular velocity of the rotor in the DC motor. As shown in
Figure 9, the fuzzy-molecular PD controller has an excellent
performance.

From the results obtained so far, it can be seen that
the performance of the fuzzy-molecular PD controller has a
very good quality (see Figure 8). The maximum overshoot,
the settling time, and the maximum error in steady state
correspond to the performance of a PD controller as reported
in the literature of control theory [25].

On the other hand, the fuzzy-molecular PD controller
was easily obtained. In this case, fuzzification was done via
fuzzy sets tuned manually; however, there are other ways
to find the optimal values of parameters in membership
functions (see [7–9, 11, 23, 24]). In addition, defuzzification

Table 3: Adjustment parameters of molecules in the fuzzy-
molecular PD controller.

CH-molecule 𝜎
𝑗

MVN +2.41𝐸 − 14

MNN −4.97𝐸 − 16

MZ 0.0

MPP −4.43𝐸 − 16

MVP −8.85𝐸 − 17
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Figure 7: Step response of the fuzzy-molecular PD controller for
DC motor.
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Figure 8: Phase diagram derivative error signal versus error signal
in the step response of the fuzzy-molecular PD controller for DC
motor.

was implementedwith an artificial hydrocarbon network that
depends on hydrogen and adjustment parameters that can be
easily found using Algorithm 1.

5. Case Study: Fuzzy-Molecular Based
Position Controller for a DC Motor

In this section, the design of a position controller for a
DC motor using the fuzzy-molecular inference model is
described.The objective of this case study is to improve type-
2 fuzzy control systems using the fuzzy-molecular inference
model.
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Figure 9: Step response of the fuzzy-molecular PD controller for
DC motor.

Host
(with FPGA)

Trainer module
(DC motor)

Computer
(monitoring)

Figure 10: Overall system of the case study showing the trainer
hardware module, the NI CompactRIO host, and the LabVIEW
client for monitoring the system.

5.1. Description of the Hardware. The following case study
was implemented on a trainer hardware module. It is pre-
pared for sending reference signals (i.e., from a knob) and
feedback signals (i.e., the current position of a DC motor)
to a host in which a control law is running. The correction
signal computed is sent back to the trainer module in order
to feed a DC motor. In particular to this case study, a NI
CompactRIO reconfigurable and embedded system based on
field programmable gate arrays (FPGA) is used as the host.
Figure 10 shows the overall system.

In addition, LabVIEW software is used for programming
the control law on the NI CompactRIO and for monitoring
the performance of the fuzzy-molecular control system.

On one hand, both the reference signal 𝑟(𝑡) that comes
from a knob and the position signal 𝑦(𝑡) are in the voltage
range [0.0, 5.0]V, where 0.0V represents an angle of 0∘ and
5.0V represents an angle of 180∘. On the other hand, the
correction signal 𝑢(𝑡) is the input voltage of the DC motor in
the range [0.0, 5.0]V, where 0.0V represents the maximum
angular velocity of the motor to rotate counterclockwise,

Control
law

DC motor
r(t)

−

e(t)

z−1

ẏ(t)
u(t)

y(t)

Figure 11: Block diagram of the position control system imple-
mented.
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Figure 12: Fuzzy sets of the input error signal. Solid line: primary
membership function. Dashed line: secondary membership func-
tion.
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Figure 13: Fuzzy sets of the input first derivative position signal.
Solid line: primary membership function. Dashed line: secondary
membership function.

5.0V represents the maximum angular velocity of the motor
to rotate clockwise, and 2.5Vmeans no rotation.

It is remarkable to say that the position of the DC motor
increases in counterclockwise direction and decreases in
clockwise direction.

5.2. Design of Control Law. The following control law is
designed to achieve a reference tracking response of the DC
motor in the trainer model. Assuming the control diagram
of Figure 11, the control law has two inputs—the error signal
𝜀(𝑡) and the first derivative of the position signal ̇𝑦(𝑡)—and
one output—the input voltage 𝑢(𝑡). Thus, a fuzzy-molecular
PD controller will be designed.

Using the fuzzy-molecular inference model described in
Section 3, the control law is designed as follows.

5.2.1. Fuzzification. The two input variables are partitioned
into three type-2 fuzzy sets: “negative” (N), “zero” (Z),
and “positive” (P). Figure 12 shows the fuzzy sets for input
𝜀(𝑡), and Figure 13 shows the fuzzy sets for input ̇𝑦(𝑡). It
is remarkable to say that parameters in the membership
functions were tuned manually.
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Table 4: Knowledge base of the fuzzy-molecular position controller
for the DC motor in the trainer module.

𝜀

̇𝑦

N Z P
N MCW MCW MCW

Z MCW MH MCCW

P MCCW MCCW MCCW
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Figure 14: Artificial hydrocarbon network used in the fuzzy-
molecular position controller.

As shown in Figures 12 and 13, type-2 fuzzy sets are
determined by primary membership function 𝜇𝑈

𝐴
(𝑥) but also

considers an additional value of uncertainty: the secondary
membership function 𝜇

𝐿

𝐴
(𝑥). The region inside these two

membership functions is known as the footprint of uncer-
tainty FOU [10, 14] as expressed in (21)

FOU (𝐴) = ⋃

𝑥∈𝑋

(𝜇

𝐿

𝐴
(𝑥) , 𝜇

𝑈

𝐴
(𝑥)) . (21)

Then, two membership values (from primary and sec-
ondary functions) are computed for one input value. More-
over, if the secondary membership function coincides with
the primary membership function, type-2 is reduced to an
equivalent type-1 fuzzy system.

5.2.2. Fuzzy Inference Engine. The fuzzy inference engine for
the fuzzy-molecular position controller uses fuzzy rules of the
form as in (11) of both primary and secondary membership
values (𝜇

𝐿

𝐴
(𝑥), 𝜇

𝑈

𝐴
(𝑥)). Consequent values 𝑦

𝐿
and 𝑦

𝑈
are

similarly obtained as (15) for both primary and secondary
membership values, respectively. The resultant knowledge
base is summarized in Table 4.

As noted in Table 4, the output signal was partitioned into
three CH-molecules M

𝑗
, for all 𝑗 = 1, . . . , 3, that represent

the action to be held. In particular, the output signal was
partitioned into the following molecules: “clockwise” (MCW),
“halt” (MH), and “counterclockwise” (MCCW).

5.2.3. Defuzzification. In order to calculate the consequent
values of fuzzy rules depicted in Table 4, the three CH-
molecules are proposed in Figure 14 and were found using
Algorithm 1.The adjustment parameters 𝜎

𝑗
of CH-molecules

are summarized in Table 5.
In this case study, the Nie-Tan method [26] is used for

computing the final value of the output variable 𝑢(𝑡) for a
type-2 fuzzy system because of its simplicity of computation.
Other methods like Karnik-Mendel, Greenfield-Chiclana,
or Wu-Mendel might be used [10, 12–14, 26]. The method

Table 5: Adjustment parameters of molecules in Figure 6.

CH-molecule 𝜎
𝑗

MCW −1.0

MH 0.0

MCCW 1.0
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Figure 15: Fuzzy sets of the output correction signal. Solid line:
primarymembership function.Dashed line: secondarymembership
function.

generates a type reduction [26] of the form as in (22), where
𝑦 is the crisp output value 𝑢(𝑡)

𝑦 =

𝑦
𝐿
+ 𝑦
𝑈

2

. (22)

6. Results and Discussion

In order to demonstrate that the fuzzy-molecular inference
model for fuzzy control systems can be used as an alter-
native of type-2 fuzzy control systems, two experiments
were done. The first experiment considers a type-1 fuzzy
controller system and the second experiment considers a
type-2 fuzzy controller system. In both cases, the FIM-
model based fuzzy control system designed in Section 5 is
compared with a Mamdani’s fuzzy controller system using
the same parameters. The output variable was partitioned for
theMamdani’s fuzzy controller system into three type-2 fuzzy
sets: “clockwise” (CW), “halt” (H), and “counterclockwise”
(CCW). Figure 15 shows this partition for the output variable
𝑢(𝑡).

6.1. Performance of the Type-1 Fuzzy-Molecular Controller.
For this experiment, the fuzzy-molecular position controller
for a DCmotor described in Section 5 was reduced to a type-
1 fuzzy system by only considering the primary membership
functions in the fuzzification step, as well as in theMamdani’s
fuzzy controller.

The system was subjected to a step function without
noise as shown in Figure 16. Results of the FMI controller
determine that it had a step response of 0% of maximum
overshoot, a rise time of 1.0 s, and a maximum error of 2.5∘ in
steady state. On the other hand, the systemwas subjected to a
step functionwith 35% of noise as shown in Figure 17. Results
of the FMI controller reports a 0%ofmaximumovershooting,
a rise time of 1.1 s, and a maximum error of 5.8∘ in steady
state measured from position 180∘. For contrasting, Table 6
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Figure 16: Step response without noise of FMI andMamdani type-1
fuzzy controllers.
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Figure 17: Step response with 35% noise of FMI andMamdani type-
1 fuzzy controllers.

summarizes the overall results of the FMI andMamdani fuzzy
controllers.

Notice in Figure 16 that the response of the FMI controller
is 50% faster than the response of the Mamdani controller
and has a less value of maximum error in steady state than
then Mamdani controller. In comparison, Figure 17 shows
that both fuzzy controllers are well stable as measured (5.8∘
and 5.5∘ of maximum error in steady state). However, FMI
controller is still faster (1.1 s of rise time) than the response of
the Mamdani controller (2.5 s of rise time). As noted, FMI
controller has a better response for dynamic uncertainties
than the Mamdani controller.

Also, the systemwas subjected to a ramp functionwithout
noise as shown in Figure 18. Results determine that the FIM
controller has a maximum error of 3.6∘ in steady state while
the Mamdani controller has 6.7∘. On the other hand, the
system was subjected to a ramp function with 35% of noise
as shown in Figure 19. The FMI controller reports 11.0∘ of
maximum error in steady state, and the Mamdani controller
reports 12.3∘. Also, Table 6 summarizes the overall results
of this experiment with respect to the response of FMI and
Mamdani fuzzy controllers.

Table 6: Experimental results of type-1 fuzzy controllers.

Fuzzy controller Noise (%) Rise time (s) Steady-state error (∘)
Step Response

FIM 0.0 1.0 2.5
Mamdani 0.0 2.0 4.7
FIM 35.0 1.1 5.8
Mamdani 35.0 2.5 5.5

Ramp response
FIM 0.0 — 3.6
Mamdani 0.0 — 6.7
FIM 35.0 — 11.0
Mamdani 35.0 — 12.3
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Figure 18: Ramp responsewithout noise of FMI andMamdani type-
1 fuzzy controllers.

It is evident from Table 6 that both fuzzy controllers
decrease their performance in presence of noise. However,
the FIM controller can track the reference signal better than
theMamdani controller, as shown in the steady-state error. In
addition, note that the FMI controller is slightly faster than
the Mamdani controller.

6.2. Performance of the Type-2 Fuzzy-Molecular Controller.
For this experiment, the type-2 fuzzy-molecular position
controller for a DC motor described in Section 5 was imple-
mented as well as the type-2 Mamdani controller.

Again, the system was subjected to a step function with
35% noise and without it as shown in Figures 20 and
21, respectively. The same process was done with a ramp
function, and the responses of both controllers are shown
in Figures 22 and 23, respectively. The overall results are
summarized in Table 7.

As noted from Tables 6 and 7, the step responses of both
FIM and Mamdani type-2 fuzzy controllers remain similar
to type-1 controllers, as expected. Thus, type-1 and type-2
FIM fuzzy controllers are slightly equivalent with or without
perturbations.

FromFigures 22 and 23, it can be seen that the response of
type-2 fuzzy controllers slightly better than type-1 controllers,
as expected [10, 12–14, 26]. From the point of view of ramp
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Figure 19: Ramp response with 35% noise of FMI and Mamdani
type-1 fuzzy controllers.
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Figure 20: Step response without noise of FMI andMamdani type-2
fuzzy controllers.

response, the FIM controller presents similar performance
to the Mamdani controller without noise (3.8∘ and 3.7∘
maximum steady-state errors, resp.). Again, both controllers
present the same tendency when they are exposed to noise,
and in comparison with type-1 controllers, type-2 fuzzy
controllers act slightly better as found in Tables 6 and 7 (FIM:
17.2% better, Mamdani: 1.7% better).

6.3. Discussion of FIM-Models. On one hand, from the
above results, fuzzy-molecular inference models can achieve
fuzzy control applications.Moreover, these FIM-model based
controllers can be used as an alternative of type-2 fuzzy
control systems. This statement comes from the evaluation
and comparison of step and ramp responses between the
FIM-controller designed in Section 5 and theMamdani fuzzy
controller; both models subjected to static and dynamic
uncertainties. In this case study, a Mamdani’s fuzzy control
system was used because it is the fuzzy inference system
most implemented in industry as reported in the literature
[10, 14].

On the other hand, it is important to distinguish the
fuzzy-molecular inference model from other fuzzy inference
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Figure 21: Step response with 35% noise of FMI andMamdani type-
2 fuzzy controllers.
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Figure 22: Ramp response without noise of FMI and Mamdani
type-2 fuzzy controllers.

models like Takagi-Sugeno inference systems or Mamdani’s
fuzzy control systems [7–9, 11]. Thus, Table 8 presents a
comparative chart of the FMI-model, Takagi-Sugeno’smodel,
and Mamdani’s model.

From Table 8, defuzzification process in each fuzzy
inference model is different. As FMI-model uses artificial
hydrocarbon networks, each molecule represents a linguis-
tic partition of the output variable. In the above results,
simple CH-molecules were implemented, but either com-
plex molecules can be used. Thus, defuzzification can have
complex nonlinear mappings in the FMI-model. In contrast,
Takagi-Sugeno’smodel uses polynomial functions, andMam-
dani’s model represents linguistic partitions with member-
ship functions associated with fuzzy sets. Parameters inside
artificial hydrocarbon networks are hydrogen and adjustment
values, polynomial coefficients for Takagi-Sugeno’s model,
and parameters of membership functions in Mamdani’s
model.

In addition, molecules in FMI-model make a mapping
from membership or truth-values to output values also deal-
ing with uncertainties. This is remarkable because Takagi-
Sugeno’s model maps from input values to output values,
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Figure 23: Ramp response with 35% noise of FMI and Mamdani
type-2 fuzzy controllers.

Table 7: Experimental results of type-2 fuzzy controllers.

Fuzzy controller Noise (%) Rise time (s) Steady-state error (∘)
Step Response

FIM 0.0 1.0 2.5
Mamdani 0.0 2.4 4.7
FIM 35.0 1.0 5.0
Mamdani 35.0 2.6 5.5

Ramp response
FIM 0.0 — 3.8
Mamdani 0.0 — 3.7
FIM 35.0 — 9.1
Mamdani 35.0 — 12.1

Table 8: Comparative chart of different fuzzy inference models.

FMI-model Takagi-Sugeno Mamdani

Defuzzification AHNs Polynomial
functions

Membership
functions

Definition of
parameters

Hydrogen
values
Adjustment
values

Coefficients
Parameters of
membership
functions

Mappings in
defuzzification

Membership
values to output
values

Input values to
output values

Membership
values to
output values

and using fuzzy inference values linearly acts on the final
output value. At last, Mamdani’s model makes a mapping
from membership values to output values. In fact, the fuzzy-
molecular inference model combines linguistic partitions of
output variables with molecular structures.

7. Conclusions

In this paper, a new fuzzy algorithm based on artificial hydro-
carbon networks called fuzzy-molecular inference model
(FMI-model) was proposed, taking advantage of the power of
molecular units of information. In this approach, molecules

of artificial hydrocarbon networks are implemented as fuzzy
partitions in the output domain. Since the FMI-model is
based on AHNs, properties of molecules are inherited. Two
characteristics of the proposed fuzzy-molecular inference
model are both interpretation of linguistic molecules and
partial understanding of fuzzy partitions via metaparameters
in AHNs.

In that way, the novel fuzzy algorithm treats molecules
as fuzzy partitions of the output variable, transferring infor-
mation from a fuzzy subspace to a crisp set, allowing to set
the number of fuzzy partitions linguistically, but also these
molecules are characterized by hydrogen values that can be
referred to as meta-data information, giving the opportunity
to partially understand the molecular behavior. Moreover,
the proposed fuzzy-molecular inference model has some
advantages in comparisonwith other fuzzy inference systems.
For instance, FMI-model occupies parameters with meta-
data information in comparison with Mamdani’s inference
system in which parameters associated with membership
functions do not reveal important information of the fuzzy
partition. If parameters aremeta-data information, it is easier
to tune fuzzy partitions because both experts and real data
information coming from the system can be combined into
a single unit, no matter how complex the mapping is. In
addition, since FMI-model does not model a given system
like Takagi-Sugeno’s inference system, it preserves a more
natural way of defuzzification from a fuzzy subspace to a
crisp set. Finally, since molecules in artificial hydrocarbon
networks can filter information [18, 19], the fuzzy-molecular
inference model also shares this property allowing to deal
with uncertain data.

Thus, the proposed fuzzy-molecular inference model has
three steps: fuzzification, fuzzy inference engine, and defuzzi-
fication. Specially, molecules are mappings from implication
values to output variables. In addition, in this work, a
linear chain of CH-primitive molecules was used, but the
FMI-model allows complex molecules associated with each
fuzzy rule handling complex nonlinear mappings from fuzzy
subspaces to crisp sets.

On the other hand, the proposed model was applied to
control the angular velocity of a simulated DC motor in
which the results confirm that the FMI-model can be used in
control applications. Furthermore, a case studywas presented
inwhich the FMI-model was used for controlling the position
of a real DC motor. Experimental results demonstrate that
fuzzy-molecular based control systems can deal with uncer-
tainties as type-2 fuzzy control systems do. Then, it suggests
that FMI-based controllers can be used as an alternative of
type-2 fuzzy control systems. In practical applications where
hardware restricts the operational computations or memory
storage, FMI-based controllers can be implemented because
of its simplicity.

Future research considers the design of training proce-
dures for optimality in molecules at the defuzzification stage
of FMI-models. In addition, since artificial hydrocarbon net-
works are considered under the class of learning algorithms,
the usage of molecular units in FMI-models might be applied
for online adaptation (learning and evolution) of the overall
fuzzy control system to improve its performance.
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