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The segmentation of scarred and nonscarred myocardium in Cardiac Magnetic Resonance (CMR) is obtained using different
features and feature combinations in a Bayes classifier. The used features are found as a local average of intensity values and the
underlying texture information in scarred and nonscarred myocardium. The segmentation classifier was trained and tested with
different experimental setups and parameter combinations and was cross validated due to limited data. The experimental results
show that the intensity variations are indeed an important feature for good segmentation, and the average area under the Receiver
Operating Characteristic (ROC) curve, that is, the AUGC, is 91.58 + 3.2%. The segmentation using texture features also gives good
segmentation with average AUC values at 85.89 + 5.8%, that is, lower than the direct current (DC) feature. However, the texture
feature gives robust performance compared to a local mean (DC) feature in a test set simulated from the original CMR data. The

segmentation of scarred myocardium is comparable to manual segmentation in all the cross validation cases.

1. Introduction

After a myocardial infarction (MI), the myocardium does not
function properly due to scarring of the tissue. Late Gadolin-
ium Enhanced Cardiac Magnetic Resonance (LGE-CMR)
imaging is used for assessing morphology of myocardium
after an ML

Segmenting the scarred areas from the healthy myocar-
dium is an important prerequisite for various diagnostic anal-
yses. For example, the scar size is largely responsible in left
ventricular remodeling [1]. The scar size and texture, as well
as the left ventricle ejection fraction, are also important to
identify patients with high risk of getting life threatening
arrhythmias and decide who will benefit from implantation
of implantable cardioverter-defibrillator (ICD) [2]. The scar
size is also related to the heart rate of ventricular tachycardia
[3].

Earlier work focuses mostly on manual or semiautomatic
methods for segmenting the scarred area [2, 4]. At Stavanger
University Hospital (SUS), as in many other hospitals today,

the cardiologists will provide their input in a semiautomatic
system to segment the heart muscle from the surrounding
areas as well as to segment scarred from healthy areas. This
is a time consuming job and will be vulnerable to inter-
observer variability. In recent years, there has been some
publications on fully automatic methods for segmenting the
myocardial muscle [5, 6] and also methods to segment the
scarred areas from the healthy parts of the heart muscle in
LGE-CMR images [5, 7-9]. Algohary et al. [10] are proposing
an automatic method for segmenting the scar using a com-
bination of two imaging techniques, late enhancement and
Strain Encoding (SENC) by using a combination of Otsu’s
method, morphological operations, and clustering.

Corsi et al. [8] are doing a simple thresholding as they
define scarred area as all myocardial tissue with inten-
sity value >80% of the maximum intensity value of the
myocardium at each slice [8]. This method can only be used
on slices where the presence of a scar is known. In a slice (or
patient) without scar, this method will induce a scar area, and
the paper fails to mention this problem. The method does



not take into account that the degree of damage can vary
from patient to patient, and therefore the threshold of 80% is
not suitable for all the patients. A simple threshold is almost
guaranteed to produce some small false detection areas in
some slices.

Dikici et al. [5] use a Support Vector Machine (SVM)
classifier to distinguish between the scarred and healthy
myocardium tissue. They argue to use a supervised classifier
rather than a method based on thresholding because the
degree of damage can vary from patient to patient and also
because of the partial voluming effects. The three features
they use in the classifier are (i) the intensity of a pixel relative
to the average myocardial intensity, (ii) the standard deviation
of the relative pixel intensities with respect to its next
neighbors, and (iii) myocardial contrast defined as the ratio
of the mean myocardial intensity over the mean intensity of
the entire image. Features (i) and (ii) are calculated for every
pixel, whereas feature (iii) is calculated for every slice. All
the calculations and scaling are performed on a slice by slice
level. In training and testing, they use only three slices for
each patient, from the middle of the ventricle. The reported
segmentation accuracy on these middle slices is 88.39% with
a sensitivity of 81.34% and specificity of 92.28%. Feature (i)
seems to be very dependent on the scar size at that particular
slice and would possibly benefit from being calculated over
the entire 3D volume instead. Since they only test the middle
slices they will not experience the slices near the top or
bottom of the heart where the scar can cover most of the
myocardial muscle. Feature (ii) applies local characteristics
and can be considered a textural measure.

The approach by Tao et al. [7] is a three step method:
(i) initialization, (ii) false acceptance removal, and (iii)
false rejection removal. The initialization is based on Otsu’s
method for thresholding; that is, the probability density
function (PDF) of the intensity levels is estimated, and a
threshold is found as a function of the estimated PDE The
technique expects a bimodal PDF for a two class problem
and uses an optimization criterion to maximize the ratio
of between-class variance and within-class variance. Starting
with a segmented heart muscle this does not work very well
because the scar is much smaller than the healthy area, and
the bimodality of the PDF is not very evident. Tao et al.
suggest to improve this by including the blood pool. Thus,
they are actually finding a good threshold to separate the
blood pool from the heart muscle. The scar will be closer
to the blood pool than to the healthy myocardium in terms
of intensity levels, and this way they separate the scarred
area from the healthy myocardial area. The thresholding is
performed jointly on the entire 3D volume (all slices). It is
followed by false acceptance removal by connectivity filtering
using a two pass algorithm [11]. The false acceptance removal
is performed on a slice to slice level and will remove small
and thin areas labeled as scar after the thresholding. Region
growing is done as a last step. Voxels that are connected to the
scarred region and having intensity values larger than 2 x SD
of the healthy region are included in the scarred region. The
region growing is done on a slice by slice level, so that the SD
is calculated for each slice. Tao et al. report experiments of
20 postinfarction patients compared to manually traced scars
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from two individual observers using the Dice index metrics.
The method is dependent on the blood pool intensity level,
which might be questionable. Local textures are not taken
into account.

Recent studies showed that the scar tissue is hetero-
geneous in nature and that the mortality of patients with
reduced LVEF depends on the heterogeneity of scar tissue [12,
13]. Texture features from gray-level co-occurrence matrices
and Local Binary Patterns (LBPs) were used in our group’s
previous work to classify patients with high and low risk of
getting arrhythmia [14, 15]. Other results from our recent
work [16] strengthened our claim that there are textural
differences between the healthy myocardium and the scar
tissue; thus we want to explore this further. We are concerned
about the fact that not all slices (or patients) have scar. We
also know that the degree of damage will vary from patient
to patient and thus the intensity levels of the scar relative to
the healthy myocardium might differ from patient to patient,
making relative features problematic. On the other hand, the
intensity values of the healthy myocardium might vary from
patient to patient, making absolute features problematic.
Thus, we do not want to base the method on thresholding but
rather train a classifier with both textural and intensity based
features, conceptually related to Dikici’s method. However,
we believe that we need to consider the whole 3D volume
of the myocardium as the basis in all our calculations. This
will include slices without scar occasionally and/or slices
with scars covering the entire myocardium. To avoid the
problem of the varying degree of damage (or even no damage)
we classify the LGE-CMR images without scaling relative
to assumed healthy areas, or maximum values (assumed to
be scar). The problem of the intensity values varying from
patient to patient, also in the healthy areas, is difficult to
address since the degree of damage can vary at the same
time. Thus, we carefully exclude a couple of outliers from
our training set; however they are included in the test set to
examine the robustness of the method. The exclusion is done
automatically in the training process.

Section 2 discusses material and methods. Section 3
shows the experimental framework. The results are presented
and discussed in Section 4. Finally, the paper is concluded
and expected future work is suggested.

2. Material and Methods

This section explains the material and methods used in
this work. Section 2.1 discusses the CMR material used in
the experiments. The proposed segmentation scheme using
Bayes classifier and the feature extraction are illustrated in
Section 2.2 and Section 2.3, respectively.

2.1. Material. The Department of Cardiology in Stavanger
University Hospital provided the LGE-CMR images for
our experiments, and the experiments were conducted in
MATLAB. The LGE-CMR images is a group of 24 patients,
all with high risk of getting arrhythmia, and they were stored
according to the Digital imaging and communications in
medicine (DICOM) format with 512 x 512 pixel resolution.
The number of image slices with visible scar in each patient
varies approximately from 5 to 12 depending on the size



ISRN Biomedical Imaging

of scar and heart. Only short-axis CMR images were used
in our experiments. The LGE-CMR images were acquired
from 1.5 Tesla Philips Intera machine. Images were obtained
with a pixel size of 0.82 x 0.82mm’, covering the whole
ventricle with short-axis slices of 10 m thickness, without
interslice gap. As shown in Figure 1 manual segmentation of
the myocardium and infarction tissues were used to form the
labeled training sets for the both tissues. The CMR images
were not preprocessed before experimenting.

2.2. Segmentation Using Bayes Decision Theory. The segmen-
tation of the scarred and nonscarred myocardium is obtained
by using Bayes decision theory. The class specific probability
density function (PDF) modeling specific feature vector
values discriminating the scar or the healthy myocardial areas
is estimated as p(v | scar) and p(v | myo), respectively.
In addition, prior probabilities expressing the proportions of
the number of observed pixels being either scar or healthy
myocardium are estimated as P(scar) and P(myo). According
to Bayes rule, the posterior probability of a pixel being scarred
and healthy myocardium can be calculated as

(P (scar) p (v | scar))

P(scar|v) = , )
)
P(myo | v) = (P (myo)p}z‘(,\)l | myo))’ (2)

where p(v) = P(scar) p(v | scar) + P(myo) p(v | myo) and v is
the feature vector. The class specific PDFs can be estimated
using parametric or nonparametric methods. In this work,
the parameters in the class specific PDFs are calculated
using Maximum Likelihood (ML) estimation. The ML [17]
technique is a popular method for parametric estimation of
an unknown PDE The ML estimates of the mean m,,; and
the covariance matrix Sy, of normally distributed data V =

{Vi,Vy .. ts V..., v } are given below:
1 &
my, = _va
L
. 3)
T
Swme = —Z (v =y ) (v; —myg )

i=1
where L is the number of training feature vectors.

For a specific image, v can be computed for every pixel
in the segmented myocardium and the value of P(scar | v)
and P(myo | v) can be computed for each of these pixels
according to (1). There could be different ways of finding the
features of the myocardium. The feature value v can be of
any dimension, and in this work they are based on mean
intensity and texture of each pixel in the myocardium. The
extraction of feature vectors for the myocardium is illustrated
in the following Section 2.3. Feature vector v of myocardium
in general can be represented as

v = [feature,, feature,, .. ., feature;| , (4)

where [ is the dimension of feature vector v. Finally, the
segmentation of scarred and nonscarred myocardium is
obtained by assigning the pixel to the class that has greater
posterior probability.

FIGURE 1: Cropped short-axis CMR image showing manual segmen-
tation of myocardium and scar tissues. The green and blue dots
in the image are manually marked (by cardiologist) coordinates
to segment the myocardium and scar. The magenta and yellow
contours generated by cubic spline interpolations of the above
coordinates show the myocardium and scar tissues, respectively.

2.3. Extraction of Features. As discussed in Section 1, features
based on intensity and texture information are used for the
segmentation of scarred and nonscarred myocardium. The
mean intensity value of sliding window image patches is used
to obtain the DC feature for each pixel, dc(i, j). The texture
features are calculated using sparse representation by cap-
turing the underlying texture information using dictionary
learning techniques. The texture features are named R(i, j),
R,.(i, j), and Rp(i, j) and will be discussed in detail. R, (3, j)
is correlated with textural features of the healthy myocardial
region and R(i, j) is correlated with textural features of the
scarred region. R, (i, j) is a scaled value of the above two
texture features. The four combination of features used in this
work are represented as follows:

v=[de(i )]s v=[de(i )R (i, j) Ry (i )]s
v=[de( )R, )], v=[R, ()]

The detailed process of extracting the DC and texture
features is discussed in the following Sections 2.3.1 and 2.3.2.

(5)

2.3.1. DC Feature. Historically, in electronics field, the mean
is commonly referred to as DC (direct current) value [18].
We define the feature dc(i, j) = mean(I /g, (i j)) (Where
I /5.y is the neighborhood around the pixel I(i, j)), such
that a new image I,., with dc(i, j) as values at pixel posi-
tion (i, j), is made as a sliding window averaging over the
myocardium. DC-value dc(i, j) has been used to segment
scarred myocardium because of the intensity differences
present in the healthy and scarred myocardium tissues
enhanced with the contrast agents. The intensity variations of
the scarred and healthy myocardium in LG enhanced CMR
image are visible in Figure 1. This is probably the feature
that would match the cardiologists segmentation best, since



it reflects the type of information (intensity variations) they
use to manually segment the scarred tissue from the healthy
myocardium in the CMR images.

2.3.2. Dictionary-Based Textural Features. Sparse represen-
tations and learned dictionaries have been shown to work
well for texture classification by Skretting and Husoy in [19]
and by Mairal et al. [20]. Sparse representation of learned
dictionary atoms reflects the typical texture present in the
training set. For each pixel in the myocardium, two textural
features are calculated using dictionary learning and sparse
representation. One is correlated with textural features of
healthy myocardial region R, (i,j) and the other one is
correlated with textural features of scarred region R,(i, j).
In this paper, Recursive Least Squares Dictionary Learning
Algorithm (RLS-DLA) presented in [21] is used for dictionary
learning and ORMP vector selection algorithm presented in
[22] is used for sparse representation.

2.3.3. Recursive Least Squares Dictionary Learning Algorithm.
A dictionary D is an ensemble of finite number of atoms
and can be used to represent signals. A linear combination
of some of the atoms in the dictionary gives exact or approx-
imate representation of the original signal. Let a column
vector x of finite length N represent the original signal. The
dictionary atoms are arranged as columns in a N x K matrix
D. The representation, or the approximation of the signal, X,
and the representation error, r, can be expressed as

K
5C'=Zw(k)d(k)=Dw, r=x-X=x-Dw, (6)
k=1

where w is sparse coeflicient vector.

Dictionary learning is the task of learning or training a
dictionary on a available training set such that it adapts well
to represent that specific class of signals. The training vectors
and the sparse coefficients are arranged as columns in the
matrices X and W, respectively. The objective in dictionary
learning is to give a sparse representation of the training set
X in order to minimize the sum of the squared error. The cost
function is formulated as

argminF (D, W) = argminznri“; st lwly<s,  (7)
DW pw 5

where s is sparsity. The pseudonorm | - ||, is the number of
nonzero elements. This is a very hard optimization problem.
The problem can be solved in two steps algorithm. Step (1)
find W using vector selection algorithms, keeping D fixed.
Each column in W is given as

w; = argmin||x; - Dw;|, st Jwly <s. (8)
w

Step (2) keeping W fixed, find D. The dictionary update step
depends on the dictionary learning method we choose to use.

The RLS-DLA algorithm presented in [21] is an on-
line dictionary learning algorithm that address the above
problems. It updates the dictionary with the arrival of each
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new training vector. In deriving updating rules for RLS-
DLA, we define X, = [x;,%,,...,x,] of size N xt, W, =
[wy, Wy, ..., w,] of size K x t and C, = (W,W])™" for the
“time step” t. At each times step the dictionary D,_; and
the C matrix are updated so that they obey the least squares
solution D, = (XtW'tT)(VVtW'tT)*l. The matrix inversion
lemma (Woodbury matrix identity) is applied on C, to get
the following update rules:

C,=C,_; - ouu’, ©)

T
D,=D, | +aru,

whereu = C,_,w, and @ = 1/(1 + thu) andr, = x, — D,_;w,
is the approximation error.

With the inclusion of an adaptive forgetting factor A, in
RLS-DLA, the update equation (9) is changed to

C, = (/\ZICH) —auu’, (10)

where u = (;'C,_,)w,. The remaining equations remain the
same. Due to introduction of the forgetting factor, RLS-DLA
has good converging properties and is less dependent on the
initial dictionary. RLS-DLA requires less training time due to
updating the dictionaries on-line.

2.3.4. Texture Feature Extraction Using Sparse Representation.
In Frame Texture Classification Method (FTCM) presented
by Skretting and Husoy [19], texture in a small image patch
is modeled as sparse linear combination of dictionary atoms.
FTCM is developed by modeling a texture as a tiled floor
where all the tiles are identical. The color or the gray level,
at a given position in the floor, is given by an underlying
continuous periodic two-dimensional function. It is shown
based on this model that a vector from spatial neighborhood
is indeed a sparse combination of finite dictionary atoms.

Texture feature extraction requires testing and training
phases and the whole CMR data set is divided into training
and testing images. In training phase, texture feature, Rp, is
computed by sparse representation of training images with
the help of dictionaries learned on the training images. The
algorithm for sparse representation in our work proceeds
as follows. Consider the myocardium in a CMR image
I that contains two texture classes: healthy and scarred
myocardium. The training vector y; for each pixel in the
training image is made from that specific pixel and its
neighborhood VN x VN. In the training set, each pixel
is categorized into a specified texture class. Then, the dic-
tionariesD; and D,, are trained for the predefined texture
classes (scar and myocardium) using RLS-DLA. Using the
two trained dictionaries, each training vector y, is then
represented sparsely using ORMP vector selection algorithm
[22]. For training set, the residual images R, and R,, which
are of same size as the original image are calculated for the
two texture classes. For each pixel in the myocardium of a
training image, the residuals (or representation errors) for the
dictionaries D, and D,, are calculated as

R (i,j) = |y = Dawill, R, (ij) =y =D, (1)

where w; and w;" are sparse coeflicient vectors.
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A pixel should give less error or residual to the dictionary
it belongs. Finally, the residuals R, and R, are combined to
form the texture feature, R,. The texture feature is calculated
as the ratio of the residual using D,,, to the sum of the residuals
using D, and D,,. It is shown as follows:

o R,, (i)
R, (i, ) = (R, (i, j) + R, (i, /)

Pixel by pixel R, value can be interpreted as the scaling of
residuals R, and R,,. Smaller values of R, means that the
pixel is not likely to be scar (i.e., healthy myocardium) and
larger values means that it is likely to be scar. The texture
features calculated from the training set are used to estimate
the prior probabilities and PDFs. The test feature vectors
are collected from the test image set, in the same way as
training feature vectors. The residual images R, and R,, for
test images are calculated for D, and D,, as training images.
Texture is defined as spatial distribution of gray levels. Texture
is not pixel-by-pixel local except in the edge between two
textures. Therefore, some sort of smoothing is used on the test
residual images before the final segmentation of the scarred
myocardium [19]. Before calculating R, the test residual
images R, and R,, are smoothed using a a x a pixel separable
Gaussian low pass filter with variance o”.

(12)

3. Experimental Setup

The main aim of our experiments was to compute different
features and compare their ability in segmenting the scar
from the healthy myocardium using Bayes classifier. The
objectives that were explored in our experiments are the
discriminative power of the features, the robustness of the fea-
tures, and examples of the segmented images for illustration.
The subsequent subsections discuss about the experimental
setup.

3.1. Experimental Details. Our experiments consist of three
cases or setups. Each experimental case used different param-
eters for finding the DC and texture features. Table 1 shows
details of the used parameters. The three cases were chosen
in order to investigate the following: (1) No. of training
patients required for training the classifier, (2) neighborhood
size needed to find the features of scarred myocardium,
and (3) to find sparsity required to represent the original
image patch in scarred myocardium. The three cases were
separately cross validated four times to test the robustness
of our segmentation technique. The 24 patients were divided
into four groups (Gl, G2, G3, and G4) each containing 6
patients. In case (i) and case (ii), we used one group for
training and the remaining three groups for testing, with
fourfold cross validation. In case (iii), two groups were used
for training and the remaining two groups were used for
testing purposes. While selecting two groups for training,
there were six possible ways of combining the four groups
of patients. All the six possible combinations were used to
train the dictionaries and the classifier in case (iii). In G3, the
intensity values of one specific patient are four times higher
than the average intensity values of the entire CMR data. It

TABLE 1: The three experimental cases used for segmentation of
scarred and nonscarred myocardium.

Experimental Cases

parameters Case (i) Case (ii) Case (iii)
Window size 3x3 3x3 5%5
Sparsity 2 4 2
No. of trair'ling groups 3(18) 3(18) 2(12)
(no. of patients)

No. of testing groups 1(6) 1(6) 2(12)

(no. of patients)

was considered as an outlier while training the Bayes classifier
and hence the patient was removed while training the Bayes
classifier for all feature combinations in three cases. However,
the patient was allowed to be used as a test patient.

3.2. Training and Testing Phase. In all CMR Images, we take
into account only myocardium segmented by cardiologists.
The training phase involves extraction of the DC and texture
features in all the three cases. The process was illustrated in
Sections 3.2.1and 3.2.2.

3.2.1. Extraction of DC Feature dc(i,j). Two sets of training
vectors were generated from scar and healthy myocardium.
The neighborhood size 3 x 3 and 5 x 5 were used to form
training vectors as explained in Section 2.3.1. The same neigh-
borhood size must be used while training and finding the DC
images I.. The DC images obtained from the training images
were used to form the training feature set. The parameters of
the class specific PDFs: the mean and the standard deviation
were found using ML estimation according to (1) using the
training feature set. DC values were scaled to have zero
mean and unit variance before finding the ML estimates. The
scaling coeflicients from the training were stored to scale the
test vectors.

3.2.2. Extraction of Texture Features R (i,j), R,,(i,j), and
R,(i,5). The texture features were calculated using the same
training and test set employed in finding the DC features.
Two sets of training vectors were generated from the scarred
and nonscarred myocardium segmented by cardiologists.
The training vector and test vectors were generated in the
same way as in the DC feature experiment using the same
neighborhood sizes. Consider the pixels on the border zones,
their neighborhood extends into other regions that are
not under consideration. If we use training vectors from
border regions, then the dictionaries might learn the texture
properties of other regions along with the texture properties
they were intended to learn. So, the training vectors for
the pixels whose neighborhood span other regions were not
considered in our experiments. This is depicted in Figure 2.
The dictionaries were learned by RLS-DLA as explained
in Section 2.3.3 after generating the training vectors from
both areas. The dictionary sizes of 9 x 90 and 25 x 150
were used in the experiments with window sizes 3 x 3 and
5 x 5, respectively. The initial dictionaries were formed by



Other image parts

FIGURE 2: The training vector of a pixel is extracted as long as its
neighborhood is within one texture area. The neighborhood of pixels
P,, P,, and P, includes more than one texture, and the corresponding
feature vectors are excluded from the training set. P, and P, have
the entire neighborhood within one texture region, and hence, the
corresponding feature vector is included in that texture’s training set.

randomly selecting 90(150) vectors of length 9(25) from the
training sets. The forgetting factor was initialized to 0.995
and slowly increased towards 1 according to the exponential
method described in [21]. The sparsities s used in our work
are 2 and 4. For each pixel in the myocardium of training
images, the scaled residual Rp(i, 7) was found from residual
images as explained in Section 2.3.4. The training feature set
was generated from R,(7, ), R,,,(i, j),and R, (i, j). The training
feature set generated from texture features was used to train
the Bayes classifier as described in Section 2.2.

In the testing phase, the DC and texture features
were generated as in the training phase. As described in
Section 2.3.4, the only difference in the testing phase is that
the test residual images R,(, j), R,,(i, j), and Rp(i, j) were
smoothed using low pass Gaussian filter witho = 5and 9 x 9
window size. Finally, the segmentation results of the scarred
myocardium were generated employing Bayes classifier as
explained in Section 2.2.

3.3. ROC Analysis. The DC and texture features R, R,,,
R, could be combined in different ways. In all the three
experimental cases, four combinations of feature vectors were
tested. They are (1) dc, (2) d¢, R, R,,, (3) dg, Ry, and
(4)R,,. The segmentation results obtained in all the three
cases with the four combinations of features were compared
to the manual segmentation to obtain Receiver Operating
Characteristic (ROC) curves [23]. Area under curve (AUC)
was used to quantify the performance of the classifier. In all
the three cases, each feature combination was subjected to
fourfold cross validation. In order to find the discriminative
power of the four feature combinations, the true positives
and true negatives of all the test patients in the fourfold cross
validation were averaged to find the AUC values in the three
cases.

The standard deviation of AUC values was computed to
examine the robustness of the DC and texture features. The
standard deviation of AUC value was computed from the
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TaBLE 2: Comparison of the average AUC values from the ROC
analysis of the four different feature combinations in the three
experimental cases.

Testing
Average of AUC values
Cases (window size, sparsity) dc R, R,,dc R, dc R,
Case (i) (3x3,2) 0.92 0.92 092  0.85
Case (ii) (3 x 3, 4) 0.92 0.92 092  0.86
Case (iii) (5 x 5, 2) 0.91 0.90 091  0.86

mean true positives and true negative for all the 24 patients.
The sensitivity (true positives) and specificity (true negatives)
of each patient in all the cross validations of case (i), case (ii),
and case (iii) had to be averaged before finding the standard
deviation due to the multiple testing of each patient in all
the cases. The confidence interval in Figure 4 was also found
in the same way. The results are discussed in the following
section.

4. Results and Discussion

Referring to the ROC analysis, the discriminative power of
the four feature combinations and the robustness of the DC
and texture feature are discussed in the subsequent sections.

4.1. Discriminative Power of Features. The average ROC
curves of the three cases are shown in Figure3 and the
corresponding AUC values are tabulated in Table 2. The DC
feature performed well as seen in Figure 3 and Table 2. From
Table 2, it can be found that the feature combinations (1)
dc, (2) de, R, Ry, and (3) dc, R,, give almost similar AUC
values in all the three cases. The performance of DC feature
alone as well as other combinations using the DC feature gives
almost same performance with different number of training
patients and window size. The texture features did not add
any discriminative power to the DC based classifier. Complex
classifiers and improved ways of combining DC and texture
features might be required to take advantage of the DC and
texture feature combinations.

The average AUC values of texture feature, RP, are less
than the average AUC values of the other feature combina-
tions. This could be partly due to the smoothing of residuals
images during final segmentation. The smoothing helped in
increasing the classification power between the two texture
regions, but it might had introduced false negatives at border
areas. The sparsity, s, was chosen as two, and four as the
discriminative power of residuals of both texture classes will
be less when we use more dictionary atoms to represent
the test vector. The texture feature, R, performed better in
case (iii), and it shows that the texture feature might need
more training patients or a window size of 5 x 5 for better
segmentation. There has been good agreement between the
average AUC values of training and test patients in all cases
and feature combinations.

Figure 7 shows the segmentation of scarred myocardium
using the DC and texture feature, R, at 80% sensitivity
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Window = 3 x 3; sparsity = 2

Window = 3 x 3; sparsity = 4

Window = 5 x 5; sparsity = 2
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feature combinations.

Window = 5 x 5; sparsity = 2

T e T T T L

—
T

eee
N o o

Sensitivity
e
o

S e
)]

S o9
= W

(=]

01 02 03 04 05 06 07 08 09 1
1 — specificity
Case (iii): window size 5x 5and S = 2
—— DC
Upper confidence limit of DC
Lower confidence limit of DC
RP
+-- Upper confidence limit of R,
+-- Lower confidence limit of R,
—— Ciofolo et al. [6] (reported results)

FI1GURE 4: ROC curves of the DC, dc, and texture feature, R, with
confidence interval in case (iii).

level in the second trial of case (i) (the color description is
explained under the figure). The segmentation results from
DC and texture feature in Figure 7 shows that, at the same
sensitivity level, the texture feature gives more false positives
in the first three CMR slices.

Figure 8 shows the segmentation of scarred myocardium
at various sensitivity levels (95%, 90%, 85%, 80%, and 75%)
on the ROC curves of DC and texture feature, R,. The
specificity decreases faster for texture feature, R, compared
to DC feature at the same sensitivity levels. The false positives
segmented with the texture feature in Figure 8 at varying
sensitivity levels are connected together instead of being
random. One can speculate that this can be gray-zone area
of the scarred myocardium. Gray-zone area [12, 13] is the

TaBLE 3: Comparison of the standard deviation AUC values of 24
patients from the fourfold cross validation of four different feature
combinations in the three experimental cases.

Standard deviation of AUC values of 24 patients

Cases (window size, sparsity)  dc R, R, dc Rp, dc Rp

Case (i) (3 x 3,2) 0.032 0031 0035 0.072
Case (ii) (3 x 3, 4) 0.032  0.032 0034 0.074
Case (iii) (5 x 5, 2) 0.035  0.039  0.041 0.070

area where the healthy and the scarred myocardium are
interwoven together.

4.2. Robustness of Features. Patient specific scaling of inten-
sity values might be a problem as for the robustness of
the analyzed features. Hence, we focused to analyze the
robustness of DC and texture features individually. Table 3
shows the standard deviation of the AUC values. The standard
deviation of AUC values of DC feature and its combinations
are less compared to the texture feature, R,. The standard
deviation of AUC values of R, in case (iiif is slightly less
compared to other cases of R,. Though the number of test
patients are different in the cases, the reduction in standard
deviation of R, of case (iii) shows that the texture feature
might require more training patients and a window size
of 5 x 5. Figure 4 shows ROC curves of DC and texture
feature, R, with confidence limits of case (iii). In case (iii),
where the texture feature performs well, the upper confidence
limit of the texture feature, R,, almost coincidences with
average ROC curve of the DC feature. This indicates that the
performance of DC and texture is not significantly different.

In order to show that the texture feature performance is
robust on the outliers, we simulated a test set by scaling the
original intensities of CMR slices. The CMR images used in
our work are from the same MRI device. Even though the
MRI machine automatically tries to produce MRI images to
be in the same scale of intensities, the CMR images of all the
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FIGURE 7: The segmentation plots of the scarred myocardium in the CMR images of the patients implanted with ICD using the DC value and
texture feature, R,,, in the second trial of case (i) at 80% sensitivity level on the ROC curve. Column (a) the cropped CMR images containing
left ventricle. (b) The manually segmented myocardium along with the segmentation results using the DC feature. (c) The segmentation

results of the scarred myocardium using the texture feature, R,

. Color Specification: blue: myocardium, cyan: scar, and yellow: other image

parts and black contour is the cardiologists segmentation of the scarred myocardium.

patients used in our work vary from one patient to another.
With our CMR data, the DC feature performed better than
the texture feature. The AUC values for the simulated test
were calculated using the already trained classifier in case
(iil). The AUC values of the simulated testing set of a patient
are plotted against the scaling factor in Figure 5. Figure 5
shows the plots of several AUC values versus intensity scaling
factor of eight patients. The initial impression of Figure 5
is that the texture features give the same performance for
different scaling factors whereas the DC feature performance
varies, either by increasing or decreasing the scaling factor.
Figure 5 infers that the DC feature gives good performance on
the test patient whose intensities fall in the range of the train-
ing patient set whereas texture feature, R ,, performance is not
altered with intensity variations. The robust performance of
the texture feature on different scaling factors might imply
that the dictionaries captured the physiological difference
between the scarred and nonscarred myocardium. Therefore,
we belief that the textural features might give details that are

not perceived by the cardiologist and not credited in the ROC
analysis.

4.3. Comparison to Previous Works. The segmentation of
the scarred and nonscarred myocardium using the DC and
texture feature was compared to Dikici et al. [5]. The main
results reported by Dikici et al. [5] (sensitivity: 81.34% and
specificity: 92.28%) were plotted as one isolated point in
Figure 4, compared to the ROC plots of DC and texture
features in case (iii). This point lies above both these ROC
curves but not above the 95% confidence interval of the DC
feature. The result is however not calculated on our study
material but is included for comparison. Dikici et al. [5] does
not include all the CMRI slices of a patient for training and
testing where as in our work we include all the CMRI slices,
that is, the scar volume.

Figure 6 shows the similarity measure, Dice index [7]
calculated on volume of the scar at different sensitivity levels
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FIGURE 8: The segmentation results of the scarred myocardium in the CMR image of a patient implanted with ICD using the DC and texture
feature, Rp’ in the second trial of case (i) at 95%, 90%, 85%, 80%, and 75% sensitivity levels on the ROC curve. Column (a) the cropped CMR
images containing left ventricle. (b) The manually segmented myocardium along with the segmentation results using the DC feature. (c) The
segmentation results of the scarred myocardium using the texture feature, R,,. Color Specification: blue: myocardium, cyan: scar, and yellow:
other image parts and black contour is the cardiologists segmentation of the scarred myocardium.

on our CMR data. Dice index gives the percentage of overlap
between manual and automatic segmentation [7]. The Dice
index increases till 80% sensitivity level and falls later due
to the increase in false positives. The Dice index measures
reported by Tao et al. in [7] were compared to Dice index
measures calculated at 80% sensitivity level and they were
plotted as two isolated points (compared to two manual
segmentations) in Figure 6. Figure 6 shows that one point is
above all the Dice index curves whereas the other point lies
on the upper limit of the DC feature and its combinations.
The Dice index of DC and other DC combinations performed

better than the texture feature. While Tao et al. calculated
Dice index at volumetric level in [7], CMR image slices with
small scar size were removed totally as the slices with small
scar sizes give zero Dice index, and it effects the average
Dice index measures. In our Dice index calculations, we
considered all image slices regardless of the size of the scar.
This could be a reason for the low Dice index measures on
our data compared to Tao et al. [7] reported results. Another
reason for the low Dice index measures of our method could
be due to the false acceptance and false rejection removal
stages after thresholding in [7].
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5. Conclusion

The DC feature segments the scarred myocardium compara-
tively better than the texture feature on our CMR data, and
the combination of the DC and texture features does not
seem to improve the overall performance compared to the
DC feature alone. The DC feature also needs fewer training
patients than the texture feature method seems to need.
However, the texture feature from the learned dictionaries
and sparse representation is shown to be much more robust
when it comes to scaling variations, that is, variations in the
intensity value range. The DC feature seems to reflect the
way cardiologist perceive the scarred myocardium in CMR
images whereas our results indicate that the texture features
can be explored to investigate the heterogeneous nature of the
scarred myocardium. Our belief that the texture feature can
be used to explore the properties of the scarred myocardium
got strengthened with the cardiac segments experiment based
on the probability mapping of the scarred myocardium in
our recent paper [24]. Our method uses the entire scar
volume for training and testing the classifier and works well
in comparison to the previous works which did not use the
the entire scar volume either during training or testing [5, 7].
Other ways of combining DC and texture features and other
texture features will be explored in future work.
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