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Support vector machine (SVM) has been applied very successfully in a variety of classification systems. We attempt to solve the
primal programming problems of SVM by converting them into smooth unconstrained minimization problems. In this paper,
a new twice continuously differentiable piecewise-smooth function is proposed to approximate the plus function, and it issues a
piecewise-smooth support vector machine (PWSSVM). The novel method can efficiently handle large-scale and high dimensional
problems. The theoretical analysis demonstrates its advantages in efficiency and precision over other smooth functions. PWSSVM
is solved using the fast Newton-Armijo algorithm. Experimental results are given to show the training speed and classification
performance of our approach.

1. Introduction

In the last several years, support vector machine (SVM) has
become one of the most promising learning machines
because of its high generalization performance and wide
applicability for classification, forecasting, and estimation in
small-sample cases [1–6]. In addition, SVMs have surpassed
the performance of artificial neural networks in many areas
such as text categorization, speech recognition, and bioinfor-
matics [7–11].

Basically, the main idea behind SVM is the construction
of an optimal hyper plane, which has been used widely in
classification [5, 8–16]. It can be formulated into an uncon-
strained optimization problem [17–21], but the objective
function is nonsmooth. To overcome this disadvantage, Lee
and Mangasarian used the integral of the sigmoid function
to get a smooth SVM(SSVM) model in 2001 [17]. It is a
very important and significant result to SVM since many
famous algorithms can be used to solve it. In 2005, Yuan et
al. proposed two polynomial functions, namely, the smooth
quadratic polynomial function and the smooth forth poly-
nomial function, and got QPSSVM and FPSSVM models
[20, 21]. Xiong et al. derived an important recursive formula
and a new class of smoothing functions using the technique
of interpolation functions in [20]. In 2007, Yuan et al. used a
three-order spline function to smooth the objective function

of unconstrained optimization problemof SVMand obtained
TSSVM model [21]. However, the efficiency or the precision
of the algorithms was limited.

A natural problem is whether there is another smooth
function to get a more efficient smooth SVM than existing
works. In this paper, we introduce a piecewise function to
smooth SVM and obtain a novel piecewise smooth support
vector machine (PWSSVM). Theoretical analyses show that
approximation accuracy of the piecewise smooth function
to the plus function is higher than the available. Rough set
theory is used to prove the global convergence of PWSSVM
and the upper bound of convergence is proposed. The fast
Newton-Armijo algorithm [22, 23] is employed to train the
PWSSVM. Our new method is implemented in batches
and can efficiently handle large-scale and high dimensional
problems. Numerical experiments confirm the theoretical
results and demonstrate that PWSSVM is more effective than
the previous smooth support vector machine models.

The paper is organized as follows. In Section 2, we state
the pattern classification and describe the PWSSVM. The
approximation performance of smooth functions to the plus
function is compared in Section 3. The convergence per-
formance of PWSSVM is given in Section 4. The Newton-
Armijo algorithm is applied to train PWSSVM in Section 5.
Section 6 shows numerical comparisons. Finally, a brief
conclusion of this paper is made.
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In this paper, unless otherwise stated, all vectors are
columnvectors. For a vector𝑥 in the 𝑛-dimensional real space
𝑅
𝑛, the plus function 𝑥

+
is defined as (𝑥

+
)
𝑖
= max (0, 𝑥

𝑖
),

𝑖 = 1, . . . , 𝑛. The scalar (inner) product of two vectors 𝑥, 𝑦
in the 𝑛-dimensional real space will be denoted by 𝑥 ⋅ 𝑦 and
the 𝑝-norm will be denoted by ‖ ⋅ ‖

𝑝
. For a matrix 𝐴 ∈ 𝑅

𝑚×𝑛,
𝐴
𝑖
is the 𝑖th row of 𝐴 which is a row vector in 𝑅

𝑛. A column
vector of ones of 𝑛 dimensionwill be denoted by 𝑒. If𝜑 is a real
valued function defined in the 𝑛-dimensional real space 𝑅𝑛,
the gradient of 𝜑 is denoted by ∇𝜑(𝑥) which is a row vector
in 𝑅
𝑛 and 𝑛 × 𝑛 the Hessian matrix of 𝜑 at 𝑥 is denoted by

∇
2

𝜑(𝑥).

2. Piecewise-Smooth Support Vector Machine

In this paper, let us consider a binary classification problem
with 𝑚 training samples in the 𝑛-dimensional real space
𝑅
𝑛. It is represented by the 𝑚 × 𝑛 matrix 𝐴, according to

membership of each point 𝐴
𝑖
in the class 1 or −1 as specified

by a given 𝑚 × 𝑚 diagonal matrix 𝐷 with 1 or −1 along
its diagonal. For this problem, the standard SVM with a
linear kernel is given by the following quadratic programwith
parameter 𝜐 > 0

min
(𝑤,𝛾,𝑦)∈𝑅

𝑛+1+𝑚

𝜐𝑒
Τ

𝑦 +

1

2

𝑤
Τ

𝑤

s.t. 𝐷 (𝐴𝑤 − 𝑒𝛾) + 𝑦 ≥ 𝑒 𝑦 ≥ 0,

(1)

where 𝑒 is a vector of ones, 𝑤 is the normal to the bounding
plane, and 𝑏 is the distance of the bounding plane to the
origin. The linear separating plane is defined as follows:

𝑃 = {𝑥
𝑖
| 𝑥
𝑖
∈ 𝑅
𝑛

, 𝑤
Τ

𝑥
𝑖
= 𝑏} . (2)

The first term in the objective function of (1) is the 1-norm of
the slack variable 𝑦 with weight 𝜐. Replace the first term with
the 2-norm vector 𝑦. Add (1/2)𝛾

Τ

𝛾 to the objective function
which induces strong convexity but has little or no effect
on the problem. SVM model is replaced by the following
problem:

min
(𝑤,𝛾,𝑦)∈𝑅

𝑛+1+𝑚

𝜐

2

𝑦
Τ

𝑦 +

1

2

(𝑤
Τ

𝑤 + 𝛾
Τ

𝛾)

s.t. 𝐷 (𝐴𝑤 − 𝑒𝛾) + 𝑦 ≥ 𝑒 𝑦 ≥ 0.

(3)

Let 𝑦 = (𝑒 −𝐷(𝐴𝑤− 𝑒𝛾))
+
, where (⋅)

+
replaces negative com-

ponents of a vector by zeros, then we can convert the SVM
problem (3) into the following unconstrained optimization
problem:

min
(𝑤,𝛾)∈𝑅

𝑛+1

1

2

𝜐
󵄩
󵄩
󵄩
󵄩
(𝑒 − 𝐷 (𝐴𝑤 − 𝑒𝛾))

+

󵄩
󵄩
󵄩
󵄩

2

+

1

2

(𝑤
Τ

𝑤 + 𝛾
Τ

𝛾) . (4)

This is a strongly convex minimization problem and it has a
unique solution. Let max {0, 𝑥} = 𝑥

+
. The function (𝑥)

+
is a

continuous but nonsmooth function. Therefore, many opti-
mization algorithms based on derivative and gradient cannot
solve the problem (4) directly.

In 2001, Lee and Mangasarian [17] employed the integral
of the sigmoid function 𝑝(𝑥, 𝑘) to approximate the nondiffer-
entiable function 𝑥

+
as follows:

𝑝 (𝑥, 𝑘) = 𝑥 +

1

𝑘

log (1 + 𝜀
−𝑘𝑥

) , 𝑘 > 0, (5)

where 𝜀 is the base of natural logarithm and 𝑘 is a smoothing
parameter. They got the SSVMmodel.

In 2005, Yuan et al. [18] presented two polynomial func-
tions as follows:

𝑞 (𝑥, 𝑘) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑥, 𝑥 ≥

1

𝑘

,

𝑘

4

𝑥
2

+

1

2

𝑥 +

1

4𝑘

, −

1

𝑘

< 𝑥 <

1

𝑘

, 𝑘 > 0,

0, 𝑥 ≤ −

1

𝑘

,

ℎ (𝑥, 𝑘) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑥, 𝑥 ≥

1

𝑘

,

−

1

16𝑘

(𝑘𝑥 + 1)
3

(𝑘𝑥 − 3) , −

1

𝑘

< 𝑥 <

1

𝑘

, 𝑘 > 0,

0, 𝑥 ≤ −

1

𝑘

.

(6)
Using the above smooth functions to proximate plus function
𝑥
+
, they got two smooth polynomial support vector machine

models (FPSSVM and QPSSVM). The authors also showed
that FPSSVM and QPSSVM were more effective than SSVM
in [18].

In 2007, Yuan et al. [21] presented a three-order spline
function as follows:

𝑇 (𝑥, 𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑥 < −

1

𝑘

,

𝑘
2

6

𝑥
3

+

𝑘

2

𝑥
2

+

1

2

𝑥 +

1

6𝑘

, −

1

𝑘

≤ 𝑥 < 0,

−

𝑘
2

6

𝑥
3

+

𝑘

2

𝑥
2

+

1

2

𝑥 +

1

6𝑘

, 0 ≤ 𝑥 ≤

1

𝑘

,

𝑥, 𝑥 >

1

𝑘

.

(7)
They used the smooth function 𝑇(𝑥, 𝑘) to approach the
plus function and got a new smooth SVM model TSSVM.
However, the efficiency or the precision of these algorithms
above was limited.

In this paper, we propose a novel smooth function 𝜑(𝑥, 𝑘)
with smoothing parameter 𝑘 > 0 to approximate to the func-
tion 𝑥

+
as follows:

𝜑 (𝑥, 𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑥 < −

1

3𝑘

,

3

2

𝑘
2

(𝑥 +

1

3𝑘

)

3

, −

1

3𝑘

≤ 𝑥 < 0,

𝑥 +

3

2

𝑘
2

(

1

3𝑘

− 𝑥)

3

, 0 ≤ 𝑥 ≤

1

3𝑘

,

𝑥, 𝑥 >

1

3𝑘

.

(8)
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The first- and second-order derivatives of 𝜑(𝑥, 𝑘) are

∇𝜑 (𝑥, 𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑥 < −

1

3𝑘

,

9

2

𝑘
2

(𝑥 +

1

3𝑘

)

2

, −

1

3𝑘

≤ 𝑥 < 0,

1 −

9

2

𝑘
2

(

1

3𝑘

− 𝑥)

2

, 0 ≤ 𝑥 ≤

1

3𝑘

,

1, 𝑥 >

1

3𝑘

,

∇
2

𝜑 (𝑥, 𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑥 < −

1

3𝑘

,

9𝑘
2

(𝑥 +

1

3𝑘

) , −

1

3𝑘

≤ 𝑥 < 0,

9𝑘
2

(

1

3𝑘

− 𝑥) , 0 ≤ 𝑥 ≤

1

3𝑘

,

0, 𝑥 >

1

3𝑘

.

(9)

The solution of the problem (3) can be obtained by solving the
following smooth unconstrained optimization problem with
the smoothing parameter 𝑘 approaching infinity as

min
(𝑤,𝛾)∈𝑅

𝑛+1

Φ
𝑘
(𝑤, 𝛾) =

1

2

𝜐
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑒 − 𝐷 (𝐴𝑤 − 𝑒𝛾) , 𝑘)

󵄩
󵄩
󵄩
󵄩

2

+

1

2

(𝑤
Τ

𝑤 + 𝛾
Τ

𝛾) .

(10)

Thus, we develop a new smooth approximation for problem
(3).

3. Approximation Performance Analysis of
Smooth Functions

In this section, we will compare the approximation perfor-
mance of smooth functions to plus function.

Lemma 1 (see [17]). 𝑝(𝑥, 𝑘) is defined as the integral of the
sigmoid function in [17], and 𝑥

+
is the plus function. The

following conclusions can be obtained:

(1) 𝑝(𝑥, 𝑘) is arbitrary rank smooth about 𝑥;
(2) 𝑝(𝑥, 𝑘) ≥ 𝑥

+
;

(3) for 𝜌 > 0, |𝑥| < 𝜌, 𝑝(𝑥, 𝑘)2 − 𝑥
2

+
≤ (log 2/𝑘)2 + (2𝜌/

𝑘) log 2.

Lemma2 (see [18]). 𝑞(𝑥, 𝑘) and ℎ(𝑥, 𝑘) are defined as (6), and
𝑥
+
is plus function. We can obtain the following conclusions:

(1) 𝑞(𝑥, 𝑘) is one rank smooth about 𝑥, and ℎ(𝑥, 𝑘) is twice
rank smooth about 𝑥;

(2) 𝑞(𝑥, 𝑘) ≥ 𝑥
+
and ℎ(𝑥, 𝑘) ≥ 𝑥

+
;

(3) for any 𝑥 ∈ 𝑅, 𝑞(𝑥, 𝑘)2 − 𝑥
2

+
≤ 1/11𝑘

2 and ℎ(𝑥, 𝑘)
2

−

𝑥
2

+
≤ 1/19𝑘

2.

Lemma 3 (see [19]). 𝑇(𝑥, 𝑘) is defined as (7), and 𝑥
+
is plus

function. The following results are easily obtained:

(1) 𝑇(𝑥, 𝑘) is twice rank smooth about 𝑥;
(2) 𝑇(𝑥, 𝑘) ≥ 𝑥

+
;

(3) for any 𝑥 ∈ 𝑅, 𝑇(𝑥, 𝑘)2 − 𝑥
2

+
≤ 1/24𝑘

2.

Theorem 4. The piecewise approximation function 𝜑(𝑥, 𝑘)

defined in (8) has the following properties:

(1) 𝜑(𝑥, 𝑘) is twice rank smooth about 𝑥;
(2) for any 𝑥 ∈ 𝑅, 𝜑(𝑥, 𝑘) ≥ 𝑥

+
,

(3) for any 𝑥 ∈ 𝑅, then 𝜑(𝑥, 𝑘)
2

− 𝑥
2

+
≤ 1/216𝑘

2.

Proof. (1) According to the formulas (8) and (9), one can
easily obtain the results in (1).

(2) In the following, we verify the fact 𝜑(𝑥, 𝑘) ≥ (𝑥)
+
≥ 0.

(i) The equation 𝜑(𝑥, 𝑘) = (𝑥)
+
holds while 𝑥 ∈ (−∞, −(1/

3𝑘)) ∪ (1/3𝑘,∞). (ii) Since 𝜑(𝑥, 𝑘) is a monotone increasing
function, we have the following result 𝜑(𝑥, 𝑘) − (𝑥)

+
= 𝜑(𝑥,

𝑘) ≥ 𝜑(−(1/3𝑘), 𝑘) = 0 while 𝑥 ∈ [−(1/3𝑘), 0). (iii) For 𝑥 ∈

[0, 1/3𝑘], we have 𝜑(𝑥, 𝑘) − (𝑥)
+
= (3/2)𝑘

2

(1/3𝑘 − 𝑥)
3

≥ 0.
Hence, we have the conclusion 𝜑(𝑥, 𝑘) ≥ (𝑥)

+
≥ 0.

(3) For 𝑥 ∈ (−∞, −(1/3𝑘)) ∪ (1/3𝑘,∞), 𝜑(𝑥, 𝑘)2 −𝑥2
+
= 0,

the inequality in conclusion (3) is satisfied naturally.
For −(1/3𝑘) ≤ 𝑥 ≤ 0, since 𝑥

+
= 0, 𝜑(𝑥, 𝑘)2 − 𝑥

2

+
= 𝜑(𝑥,

𝑘)
2. Because𝜑(𝑥, 𝑘) is positive value, continuous, and increas-

ing function for −(1/3𝑘) ≤ 𝑥 ≤ 0, we have 𝜑(𝑥, 𝑘)2 ≤ 𝜑(0,

𝑘)
2

= 1/324𝑘
2

≤ 1/216𝑘
2.

For 0 < 𝑥 ≤ 1/3𝑘, let

𝑠 (𝑥) = 𝜑(𝑥, 𝑘)
2

− 𝑥
2

+
= (𝑥 +

3

2

𝑘
2

(

1

3𝑘

− 𝑥)

3

)

2

− 𝑥
2

=

9

4

𝑘
4

(𝑥 −

1

3𝑘

)

6

− 3𝑘
2

𝑥(𝑥 −

1

3𝑘

)

3

.

(11)

In order to obtain the result, making the variable substitution
𝑡 = 𝑘𝑥 (obviously 𝑡 ∈ (0, 1/3)), then we have 𝑠(𝑡) = (3/

𝑘
2

)[(3/4)(𝑡 − (1/3))
6

− 𝑡(𝑡 − (1/3))
3

]. For 𝑡 ∈ (0, 1/3), the
maximum point of 𝑠(𝑡) is 𝑡 = 0.0605 and 𝑠(𝑡) = 𝜑

2

(𝑥, 𝑘) −

(𝑥)
2

+
≤ 𝑔(0.0605) ≈ 0.0046/𝑘

2

≤ 1/216𝑘
2.

In conclusion, we have 𝜑(𝑥, 𝑘)2 − 𝑥
2

+
≤ 1/216𝑘

2.

Theorem 5. Let 𝜌 = 1/𝑘, and 𝑘 > 0. Consider the following.

(1) If the smooth function is defined as (5), then by
Lemma 1, we have

𝑝(𝑥, 𝑘)
2

− 𝑥
2

+
≤ (

log 2
𝑘

)

2

+

2𝜌

𝑘

log 2

= (log22 + 2 log 2) 1

𝑘
2
≈ 0.6927

1

𝑘
2
.

(12)

(2) If the smooth functions are defined as (6), by Lemma 2,

𝑞(𝑥, 𝑘)
2

− 𝑥
2

+
≤

1

11𝑘
2
≈ 0.0909

1

𝑘
2
,

ℎ(𝑥, 𝑘)
2

− 𝑥
2

+
≤

1

19𝑘
2
≈ 0.0526

1

𝑘
2
.

(13)
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(3) If the smooth function is defined as (7), by Lemma 3,

𝑇(𝑥, 𝑘)
2

− 𝑥
2

+
≤

1

24𝑘
2
≈ 0.0417

1

𝑘
2
. (14)

(4) If the smooth function is defined as (8), by Theorem 4,

𝜑(𝑥, 𝑘)
2

− 𝑥
2

+
≤

1

216𝑘
2
≈ 0.0046

1

𝑘
2
. (15)

Theorem 5 shows that the proposed piecewise smooth
function 𝜑(𝑥, 𝑘) achieves the best degree of approximation to
the plus function 𝑥

+
. When 𝑘 is fixed, it is easy to obtain the

different smooth capability of the above smooth functions. The
smooth performance comparison is given in Figure 1, where we
set the smooth parameter 𝑘 = 10 and 𝜌 = 1/𝑘.

4. Convergence Performance of PWSSVM

In this section, the convergence of PWSSVM will be pre-
sented. By using rough set theory, we prove that the solution
of PWSSVM can closely approximate the optimal solution of
the original model (4) when 𝑘 goes to infinity. Furthermore,
a formula for computing the upper bound of convergence is
deduced.

Theorem 6. Let 𝐴 ∈ 𝑅
𝑚×𝑛 and 𝑏 ∈ 𝑅

𝑚×1. Define the real-
valued functions in the 𝑛-dimensional real space 𝑅𝑛 as follows:

𝑓 (𝑥) =

1

2

󵄩
󵄩
󵄩
󵄩
(𝐴𝑥 − 𝑏)

+

󵄩
󵄩
󵄩
󵄩

2

2
+

1

2

‖𝑥‖
2

2
,

𝑔 (𝑥, 𝑘) =

1

2

󵄩
󵄩
󵄩
󵄩
𝜑 (𝐴𝑥 − 𝑏, 𝑘)

󵄩
󵄩
󵄩
󵄩

2

2
+

1

2

‖𝑥‖
2

2
,

(16)

where 𝜑(⋅) is defined in (8), 𝑘 > 0. Then we have the following
results:

(1) 𝑓(𝑥) and 𝑔(𝑥, 𝑘) are strongly convex functions;

(2) there exists a unique solution 𝑥
∗ tomin

𝑥∈𝑅
𝑛 𝑓(𝑥), and

a unique solution 𝑥
∗

𝑘
tomin

𝑥∈𝑅
𝑛 𝑔(𝑥, 𝑘);

(3) for any 𝑘 > 0, 𝑥∗
𝑘
and 𝑥∗ satisfy the following condition:

󵄩
󵄩
󵄩
󵄩
𝑥
∗

𝑘
− 𝑥
∗󵄩
󵄩
󵄩
󵄩

2

≤

𝑚

432𝑘
2
; (17)

(4) lim
𝑘→∞

‖𝑥
∗

𝑘
− 𝑥
∗

‖ = 0.

Proof. (1) For any 𝑘 > 0, 𝑓(𝑥) and 𝑔(𝑥, 𝑘) are strongly convex
functions because ‖ ⋅ ‖2 is strong convex function.

(2) Let 𝐿V(𝑓(𝑥)) be the level set of𝑓(𝑥) and let 𝐿V(𝑔(𝑥, 𝑘))

be the level set of 𝑔(𝑥, 𝑘). Since 𝑥
+

≤ 𝜑(𝑥, 𝑘), it is easy to
obtain 𝐿V(𝑔(𝑥, 𝑘)) ⊂ 𝐿V(𝑓(𝑥)) ⊂ {𝑥 | ‖𝑥‖

2

2
≤ 2V}. Therefore,

𝐿V(𝑓(𝑥)) and𝐿V(𝑔(𝑥, 𝑘)) are compact subsets in𝑅𝑛. Using the
strong convexity property of 𝑓(𝑥) and 𝑔(𝑥, 𝑘) for 𝑘 > 0, there
is a unique solution to min

𝑥∈𝑅
𝑛 𝑓(𝑥) and min

𝑥∈𝑅
𝑛 𝑔(𝑥, 𝑘),

respectively.
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Figure 1: Comparison of approximation performance of smooth
functions (𝑘 = 10).

(3) By using the first order optimization condition and
considering convex property of 𝑓(𝑥) and 𝑔(𝑥, 𝑘), we have
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(18)

Add the two formulas above and notice that𝜑(𝑥, 𝑘) ≥ 𝑥
+
, and

then we have
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According to the third result of Theorem 4, we obtain the
conclusion ‖𝑥

∗

𝑘
− 𝑥
∗

‖
2

≤ 𝑚/432𝑘
2.

(4) According to ‖𝑥
∗

𝑘
− 𝑥
∗

‖
2

≤ 𝑚/432𝑘
2, we have

lim
𝑘→∞

𝑥
∗

𝑘
= 𝑥
∗.
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5. The Newton-Armijo
Algorithm for PWSSVM

Following the results of the previous section, one can obtain
the twice continuous differentiability of the objective func-
tion of problem (10). In order to take advantage of this feature,
we use the Newton-Armijo method to train PWSSVM since
it is a faster method than the BFGS algorithm [18, 19, 21]. The
Newton-Armijo algorithm for problem (10) works as follows.

5.1. Newton-Armijo Algorithm

Step 1 (initialization). Start with any (𝑤
0

, 𝛾
0

) ∈ 𝑅
𝑛+1, 𝜏 and

set 𝑖 := 0.

Step 2. ComputeΦ𝑖 = Φ
𝑘
(𝑤
𝑖

, 𝛾
𝑖

) and 𝑔
𝑖

= ∇Φ
𝑘
(𝑤
𝑖

, 𝛾
𝑖

).

Step 3. If ‖𝑔𝑖‖
2
≤ 𝜏, then stop and accept (𝑤𝑖, 𝛾𝑖). Otherwise,

compute Newton direction 𝑑
𝑖

∈ 𝑅
𝑛+1 from the following

linear system:

∇
2

Φ(𝑤
𝑖

, 𝛾
𝑖

; 𝑘
𝑖

) 𝑑
𝑖

= −(𝑔
𝑖

)

Τ

, (20)

where “Τ” denotes transpose symbol.

Step 4 (Armijo stepsize). Choose a stepsize 𝜆
𝑖
= max{1, 1/2,

1/4, . . .} such that
Φ
𝑘
(𝑤
𝑖

, 𝛾
𝑖

) − Φ
𝑘
((𝑤
𝑖

, 𝛾
𝑖

) + 𝜆
𝑖
𝑑
𝑖

) ≥ −𝜌𝜆
𝑖
𝑔
𝑖

𝑑
𝑖

, (21)

where 𝜌 ∈ (0, 1/2) and set

(𝑤
𝑖+1

, 𝛾
𝑖+1

) = (𝑤
𝑖

, 𝛾
𝑖

) + 𝜆
𝑖
𝑑
𝑖

. (22)

Step 5. Replace 𝑖 by 𝑖 + 1 and go to Step 2.

We need to only solve a linear system of (20) instead of
a quadratic program in our smooth approach. Because the
objective function is strong convex, it is not difficult to obtain
that our Newton-Armijo algorithm for training PWSSVM
converges globally to the unique solution [17, 23]. Hence,
the start point is not important. In this paper, we always set
(𝑤
0

, 𝛾
0

) = 𝑒, where 𝑒 denotes a column vector of ones of 𝑛
dimension.

PWSSVM described above can solve the linear classifi-
cation problems. In fact, we can extend some of the results
in Section 2 to nonlinear PWSSVM with kernel technique as
[17]. Furthermore, The Newton-Armijo algorithm can also
solve nonlinear PWSSVM successfully.

6. Numerical Experiments

Newton-Armijo cannot be applied to QPSSVMmodel due to
lack of the second-order derivative. In fact, the classification
capacity of FPSSVM is slightly better than QPSSVM [18–21].
In our experiment, we do not compare QPSSVM with the
other smooth SVMmethod. To demonstrate the effectiveness
and speed of PWSSVM,we compare the performance numer-
ically among SSVM, FPSSVM, TSSVM, and PWSSVM. The
four smooth SVMs are all trained by the fast Newton-
Armijo algorithm. All experiments are run on Personal
Computer with 3.0GHz and a maximum of 1.99GB of the

Table 1: PWSSVMcomparedwith SSVM, FPSSVM, andTSSVMon
NDC generated dataset with difference sizes (𝐶 = 10).

Trains/dimension Algorithm
Train

correctness
(%)

Test
correctness

(%)

Time
(s)

SSVM 90.86 91.25 278.97

2,000,000/10 FPSSVM 90.86 91.25 367.46
TSSVM 90.98 91.33 342.45
PWSSVM 91.34 91.75 339.64
SSVM 87.64 87.08 417.64

2,000,000/20 FPSSVM 87.88 88.05 449.28
TSSVM 87.89 88.05 446.45
PWSSVM 88.14 88.36 449.20
SSVM 94.26 93.60 11.17

10,000/100 FPSSVM 94.78 93.60 11.33
TSSVM 94.77 93.77 6.24
PWSSVM 94.85 95.52 4.26
SSVM 96.67 86.20 56.22

10,000/1000 FPSSVM 96.69 86.14 66.52
TSSVM 96.69 86.16 26.69
PWSSVM 97.94 86.23 18.73

memory available. The programs of PWSVM, FPSSVM, and
TSSVM are written in theMATLAB language.This computer
runs Win7 with MATLAB 7.0.1. The source code of SSVM,
“ssvm.m,” is obtained from the author’s website for the linear
problem [24], and “lsvmk.m” for the nonlinear problem.
In our experiments, all of the input data and the variables
needed in programs are kept in the memory. For SSVM,
TSSVM, FPSSVM, and PWSSVM, an optimality tolerance of
10
−8 is used to determine when to terminate. Gaussian kernel

is used in all our experiments.
The first experiment is used to demonstrate the capability

of PWSSVM in solving larger problems.The results in Table 1
are designed to compare the training correctness, the testing
correctness, and the training time among the four smooth
SVMs on a massively sized dataset. The datasets are created
using Musicants NDC Data Generator [25] with different
sizes. The test samples are 5% of the training samples. The
experiment results show that PWSSVMhas the highest train-
ing accuracy and testing accuracy. Furthermore, PWSSVM
can be used to solve problems more quickly than the other
three smooth SVMs when the number of the sample data is
relative small.

The second experiment is designed to demonstrate the
effectiveness of PWSSVM through the “tried and true”
checkerboard dataset [26]. One highly nonlinearly separable
but simple example is the checkerboard dataset which has
often been used to show the effectiveness of nonlinear kernel
methods [17]. The checkerboard dataset is generated by uni-
formly discretizing the regions [0, 1] × [0, 1] to 2002 = 40000

points and labeling two classes “White” and “Black” spaced
by 3 × 3 grid as Figure 2 shows.
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Table 2: PWSSVM compared with SSVM, FPSSVM, and TSSVM
on checkerboard dataset with difference sizes (𝐶 = 100).

Training size Algorithm
Train

correctness
(%)

Test
correctness

(%)

Time
(s)

SSVM 99.60 98.28 4.61

1000 FPSSVM 99.60 98.28 4.35
TSSVM 99.62 98.28 4.23
PWSSVM 99.80 98.76 4.01
SSVM 98.84 98.54 11.97

2000 FPSSVM 99.22 98.59 9.63
TSSVM 99.22 98.59 9.35
PWSSVM 99.22 98.68 9.55
SSVM 98.47 98.88 25.21

3000 FPSSVM 98.64 98.88 21.58
TSSVM 98.68 98.90 17.21
PWSSVM 98.85 98.94 17.36
SSVM 99.34 99.51 47.09

5000 FPSSVM 99.48 99.51 39.29
TSSVM 99.52 99.51 38.76
PWSSVM 99.79 99.65 38.23

0 50 100 150 200
0

50

100

150

200

Figure 2: The figure of the checkerboard dataset.

In the first trial of this experiment, the training set con-
tains 1000 points randomly sampled from the checkerboard
(for comparison, they are obtained from [17]) which contain
514 “white” samples and 486 “black” samples and the rest
39,000 points are in the testing set. Gaussian kernel function
𝐾(𝑥, 𝑦) = exp (−0.5 ||𝑥 − 𝑦||

2

) is used and 𝐶 = 100. Total
time for the 1000-point training set using PWSSVM with a
Gaussian kernel is 4.01 s. The train accuracy of PWSSVM is
99.80%.The test accuracy of PWSSVM is 98.76% on a 39,000-
point test set. TSSVM solves the same problem within 4.23 s,
and the train accuracy and the test accuracy are 99.62% and
98.28%. FPSSVM and SSVM obtain the train accuracy of
99.60%within 4.35 s and 4.61 s, respectively.The test accuracy
of them are 98.28%.

The rest results are presented in Table 2.The training set is
randomly selected from the checkerboardwith different sizes.
The remaining samples are used as test samples. We compare
the classification results of PWSSVM, TSSVM, FPSSVM, and
SSVM with the same Gaussian kernel function. The results
in Table 2 demonstrate that PWSSVM can solve massive
problems quickly, followed by TSSVM, FPSVM, and SSVM
in turn. The experimental results show that PWSSVM can
obtain the highest train precision and test precision.

7. Conclusions

A novel PWSSVM is proposed in this paper. It only needs to
find the unique minima of the unconstrained differentiable
convex quadratic function. The proposed method has many
advantages over those available, such as good classification
performance and less training time cost. The numerical
results show that PWSSVM has excellent generalization
ability.
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