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1. Introduction

In this article, we consider a mathematical model of the weak interaction as patterned accord-
ing to the Standard Model in Quantum Field Theory (see [1, 2]). We choose the example of
the weak decay of the intermediate vector bosons W* into the full family of leptons.

The mathematical framework involves fermionic Fock spaces for the leptons and
bosonic Fock spaces for the vector bosons. The interaction is described in terms of
annihilation and creation operators together with kernels which are square integrable with
respect to momenta. The total Hamiltonian, which is the sum of the free energy of the particles
and antiparticles and of the interaction, is a self-adjoint operator in the Fock space for the
leptons and the vector bosons and it has an unique ground state in the Fock space for a
sufficiently small coupling constant.

The weak interaction is one of the four fundamental interactions known up to now.
But the weak interaction is the only one which does not generate bound states. As it is well
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known, it is not the case for the strong, electromagnetic, and gravitational interactions. Thus
we are expecting that the spectrum of the Hamiltonian associated with every model of weak
decays is absolutely continuous above the energy of the ground state, and this article is a first
step towards a proof of such a statement. Moreover a scattering theory has to be established
for every such Hamiltonian.

In this paper we establish a Mourre estimate and a limiting absorption principle for
any spectral interval above the energy of the ground state and below the mass of the electron
for a small coupling constant.

Our study of the spectral analysis of the total Hamiltonian is based on the conjugate
operator method with a self-adjoint conjugate operator. The methods used in this article are
taken largely from [3, 4] and are based on [5, 6]. Some of the results of this article have been
announced in [7].

For other applications of the conjugate operator method see [8-19].

For related results about models in Quantum Field Theory see [20, 21] in the case of
the Quantum Electrodynamics and [22] in the case of the weak interaction.

The paper is organized as follows. In Section 2, we give a precise definition of the
model we consider. In Section 3, we state our main results and in the following sections,
together with the appendix, detailed proofs of the results are given.

2. The Model

The weak decay of the intermediate bosons W* and W~ involves the full family of leptons
together with the bosons themselves, according to the Standard Model (see [1, formula
(4.139)] and [2]).

The full family of leptons involves the electron e~ and the positron e*, together with the
associated neutrino v, and antineutrino v,, the muons y~ and p* together with the associated
neutrino v, and antineutrino v, and the tau leptons 7~ and 7" together with the associated
neutrino v, and antineutrino v,.

It follows from the Standard Model that neutrinos and antineutrinos are massless
particles. Neutrinos are left handed, that is, neutrinos have helicity —1/2 and antineutrinos
are right handed, that is, antineutrinos have helicity +1/2.

In what follows, the mathematical model for the weak decay of the vector bosons
W™ and W~ that we propose is based on the Standard Model, but we adopt a slightly more
general point of view because we suppose that neutrinos and antineutrinos are both massless
particles with helicity +1/2. We recover the physical situation as a particular case. We could
also consider a model with massive neutrinos and antineutrinos built upon the Standard
Model with neutrino mixing [23].

Let us sketch how we define a mathematical model for the weak decay of the vector
bosons W+ into the full family of leptons.

The energy of the free leptons and bosons is a self-adjoint operator in the correspond-
ing Fock space (see below), and the main problem is associated with the interaction between
the bosons and the leptons. Let us consider only the interaction between the bosons and the
electrons, the positrons, and the corresponding neutrinos and antineutrinos. Other cases are
strictly similar. In the Schrodinger representation the interaction is given by (see [1, page 159,
equation (4.139)] and [2, page 308, equation (21.3.20)])

I= dexqf_e(x)y“(l —15) Wy, () W) + fd3xlv_w<x>r“(1 —1) e (OWa(x),  (21)
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where y*, a = 0,1,2,3 and 5 are the Dirac matrices and ¥.(x) and 1I_‘.(x) are the Dirac fields
fore_, e, v,, and v,.
We have

1 3/2 3 (p/) * U(p’s) —">
@-(%) 3 [or ( (.9 0D vt (.9 0 -

W, (x) = W (x)1y".

Here po = (|p|* + mﬁ)l/ % where m, > 0 is the mass of the electron, and u(p,s) and v(p, s) are

the normalized solutions to the Dirac equation (see [1, Appendix]).

The operators b, . (p, s) and b; , (p, s) (resp., be,-(p,s) and b; _(p, s)) are the annihilation
and creation operators for the electrons (resp., the pos1trons) sat1sfy1ng the anticommutation
relations (see below).

Similarly we define ¥,,(x) and 1I’_ve(x) by substituting the operators c,,.(p,s) and
¢y, +(p,s) for b..(p,s) and b ,(p,s) with po = |p|. The operators c,,.(p,s) and c;_,(p,s)
(resp., ¢y,,-(p,s) and ¢}, _(p, s)) are the annihilation and creation operators for the neutrinos
associated with the electrons (resp., the antineutrinos).

For the W, fields we have (see [24, Section 5.3])

3/2 3
Wa(x) = <§%;> 3 [k <ea(k a(k, ) + ep(k, Da' (k, e ™). (23)
A=-1,0,1 \/

Here ko = (|k|* + m%v)l/ 2 where myy > 0 is the mass of the bosons W*. W* is the antiparticule
of W~. The operators a.(k, 1) and aj(k, 1) (resp., a_(k,A) and a’ (k, A)) are the annihilation
and creation operators for the bosons W~ (resp., W) satisfying the canonical commutation
relations. The vectors €,(k, ) are the polarizations of the massive spin 1 bosons W* (see [24,
Section 5.2]).

The interaction (2.1) is a formal operator and, in order to get a well-defined operator
in the Fock space, one way is to adapt what Glimm and Jaffe have done in the case of the
Yukawa Hamiltonian (see [25]). For that sake, we have to introduce a spatial cutoff g(x) such
that g € L!(R3), together with momentum cutoffs y(p) and p(k) for the Dirac fields and the
W, fields, respectively.

Thus when one develops the interaction I with respect to products of creation and
annihilation operators, one gets a finite sum of terms associated with kernels of the form

(1) x(p2)p(R)g(p1 +p2 - k), (2.4)

where g is the Fourier transform of g. These kernels are square integrable.

In what follows, we consider a model involving terms of the above form but with more
general square integrable kernels.

We follow the convention described in [24, Section 4.1] that we quote: “The state-
vector will be taken to be symmetric under interchange of any bosons with each other, or
any bosons with any fermions, and antisymmetric with respect to interchange of any two
fermions with each other, in all cases, whether the particles are of the same species or not.”
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Thus, as it follows from [24, Section 4.2], fermionic creation and annihilation operators of
different species of leptons will always anticommute.

Concerning our notations, from now on, ¢ € {1,2,3} denotes each species of leptons.
¢ =1 denotes the electron e~ the positron e* and the neutrinos v,, V.. £ = 2 denotes the muons
u~, p* and the neutrinos v, and v,, and ¢ = 3 denotes the tau-leptons and the neutrinos v,
and V.

Let ¢; = (p1,51) be the quantum variables of a massive lepton, where p; € R® and
s1 € {-=1/2,1/2} is the spin polarization of particles and antiparticles. Let & = (py, s2) be the
quantum variables of a massless lepton where p, € R3 and s; € {-1/2,1/2} is the helicity of
particles and antiparticles, and, finally, let {3 = (k, 1) be the quantum variables of the spin 1
bosons W* and W~ where k € R3 and A € {-1,0,1} is the polarization of the vector bosons
(see [24, Section 5]). We set ; = R3 x {-1/2,1/2} for the leptons and %, = R3 x {-1,0,1} for
the bosons. Thus L?(%) is the Hilbert space of each lepton and L?(X,) is the Hilbert space of
each boson. The scalar product in Lz(Zj), j =1,2is defined by

(r9) - [ FOswa =12 25)
Here

= > fdp, = > Idk, (p,keR3). (2.6)
3 s=+1/2,-1/2 3 1=0,1,-1

The Hilbert space for the weak decay of the vector bosons W* and W~ is the Fock
space for leptons and bosons that we now describe.

Let G be any separable Hilbert space. Let QS (resp., @ S) denote the antisymmetric
(resp., symmetric) nth tensor power of &. The fermionic (resp., bosonic) Fock space over &,
denoted by §,(6) (resp., §s(6)), is the direct sum

Fa(6) =é® S <resp., 5s(S) =é é 6>, (2.7)
n=0 s

n=0 a

where ®26 = ®SG = C. The state Q = (1,0,0,...,0,...) denotes the vacuum state in §,(S)
and in §4(6).

For every ¢, §¢ is the fermionic Fock space for the corresponding species of leptons
including the massive particle and antiparticle together with the associated neutrino and
antineutrino, that is,

4
o=@ (%) €=125. (2.8)
We have
Se= @ g 29)

q¢20,4,20,r¢>0,r¢>0
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with

ST _ <® 2 zl)> (é) L2(21)> o <® L2<zl>> 0 <® L2<21>>. (210)

Here g, (resp., q,) is the number of massive fermionic particle (resp., antiparticles) and r,
(resp., 7¢) is the number of neutrinos (resp., antineutrinos). The vector € is the associated
vacuum state. The fermionic Fock space denoted by §1 for the leptons is then

3
3L=Q 3o, (2.11)
=1

and Q; = ®>_, Q¢ is the vacuum state.
The bosonic Fock space for the vector bosons W* and W~, denoted by Fw, is then

Sw =5 (L) @ 5 (LA(%2)) = & (L*(%2) @ LA(22) ). (2.12)
We have
- @3, (2.13)
£>0,£>0

where S(t H (® L*(%))® (® L2(Zz)) Here t (resp., t) is the number of bosons W~ (resp.,
W). The vector Qyy is the corresponding vacuum.

The Fock space for the weak decay of the vector bosons W* and W™, denoted by §, is
thus

§=3L®Fw, (2.14)

and Q = Q; ® Qyy is the vacuum state.

For every ¢ € {1,2,3} let ®, denote the set of smooth vectors ¢, € F¢ for which

(9e/q,/ (Geqgrete)
¥,

Let

") has a compact support and ¢, = 0 for all but finitely many (qe¢,q,,7¢,7¢)-

—3
=@, De. (2.15)

Here ® is the algebraic tensor product. .
Let Dy denote the set of smooth vectors ¢ € Fw for which ¢ has a compact support
and ¢ = 0 for all but finitely many (t,t).
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Let
D =9D8Dy. (2.16)

The set © is dense in §.

Let A¢ be a self-adjoint operator in §, such that ®, is a core for A,. Its extension to §r
is, by definition, the closure in § of the operator A; ® 1, ® 13 with domain ®; when ¢ =1, of
the operator 1; ® A, ® 13 with domain ©; when ¢ = 2, and of the operator 1; ® 1, ® A3 with
domain ©; when ¢ = 3. Here 1, is the operator identity on .

The extension of A, to §1 is a self-adjoint operator for which ®y is a core and it can
be extended to §. The extension of A, to § is, by definition, the closure in § of the operator
Ag ® 1y with domain ©, where Ag is the extension of A, to §r. The extension of Ay to §is a
self-adjoint operator for which ® is a core.

Let B be a self-adjoint operator in Fw for which Dy is a core. The extension of the
self-adjoint operator A, ® B is, by definition, the closure in § of the operator A;®1, ® 13 ® B
with domain ® when ¢ = 1, of the operator 1; ® A, ® 13 ® B with domain ® when ¢ = 2, and
of the operator 1; ® 1, ® A3 ® B with domain © when ¢ = 3. The extension of A ® B to § is a
self-adjoint operator for which @ is a core.

We now define the creation and annihilation operators.

For each ¢ = 1,2,3, byc(é1) (resp., b;/s(gl)) is the fermionic annihilation (resp.,
fermionic creation) operator for the corresponding species of massive particle when € = +
and for the corresponding species of massive antiparticle when e = —. The operators by (¢1)
and by (&) are defined as usually (see, e.g., [20, 26]; see also the detailed definitions in [27]).

Similarly, foreach ¢ = 1,2, 3, cg (&) (resp., CZ,e (&2)) is the fermionic annihilation (resp.,
fermionic creation) operator for the corresponding species of neutrino when € = + and for
the corresponding species of antineutrino when € = —. The operators c; (&) and Cpe (&) are
defined in a standard way, but with the additional requirements that for any ¢, €', € and €', the

operators bﬂ/s(gl) and cﬁ,rs,(gz) anticommutes, where #f stands either for a * or for no symbol
(see the detailed definitions in [27]).

The operator a.(¢3) (resp., a:(¢s)) is the bosonic annihilation (resp., bosonic creation)
operator for the boson W~ when ¢ = + and for the boson W* when ¢ = — (see, e.g., [20, 26],

or [27]). Note that a”(&3) commutes with bg (¢1) and cg, (&)
The following canonical anticommutation and commutation relations hold:

{bec(@) by . (&)} = Geebc6(1-8)),
{coclea) ey (&)} = 60066 (82— 83),
[ac(&s), a7 (85)] = 6ee6(83 - &3),
[bee (@), bee (81)) = {ceel@) coe ()} =0, (217)
[ac(&), ae (8)] =0,
(bee (1), coe (@) = {bee@) ¢ @)} =0,
[bee(&), ac(&)] = [bee(@r), al ()] = [cee(é), ac(és)] = [cee(é), al (&)] =0,

where we used the notation 6(¢; — 5}) =owb(k-k).
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We recall that the following operators, with ¢ € L2(%),

bee() = fz boc@p@de,  coc(p) = fz Cec@p@)de,

(2.18)
o) = [ P @p@d )= [ d@pwas
are bounded operators in § such that
|66 )] = ||t @) | = llell2» (2.19)

where bl (resp., c) is b (resp., c) or b* (resp., c*).

The operators bg,e((l)) and Cﬁ,e(‘l’) satisfy similar anticommutaion relations (see, e.g.,
[28]).

The free Hamiltonian Hj is given by

Ho=H" +H? + HY

3 3
=23 jﬁ@%(ﬁ%@@ﬁZij@mM@%@mz (2.20)

¢=1 e=%

-3, [0 @i,

where

) 172 .
(él <|P1| + 1715) , with 0 <my <mp <ms3,
wéz)(éz) = |pa|, (2.21)

1/2
w® (&) = (kP +mi,) ",

where myy is the mass of the bosons W* and W~ such that my, > ms.
The spectrum of Hj is [0, o0) and 0 is a simple eigenvalue with Q as eigenvector. The
set of thresholds of Hy, denoted by T, is given by

= {Pml +qmy +rms +smy; (p,q,r,8) ENY, prg+r+s> 1}, (2.22)

and each set [t, 00), t € T, is a branch of absolutely continuous spectrum for Hj.
The interaction, denoted by Hj, is given by

2
Hi=> H", (2.23)
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where

3
H" =Y Zj Gy (81,862,836} (81)C) o (82) ac (&) d&1d&adés

0=1 e#¢€

3
3 3 [ GOt o) )eces (@)oo (@) dindidss,

0=1 e#¢€
(2.24)
3
HP =3 3 [GE) b bl (), (s () dindiads
¢=1e#¢€
S o0
+>> f tee(61,62,63)ac(83)Cee (62)bee(81)dE1dE2dEs.
l=1e+#¢€
The kernels G' e 2) S,( ,+), a =1,2,are supposed to be functions.
The total Hamiltonian is then
H=Hy+gH;, g>0, (2.25)

where g is a coupling constant.
The operator H 1(1) describes the decay of the bosons W* and W~ into leptons. Because

of H 1(2) the bare vacuum will not be an eigenvector of the total Hamiltonian for every g > 0
as we expect from the physics.

Every kernel Gy ¢ (¢1, &2, ¢3), computed in theoretical physics, contains a 6-distribution
because of the conservation of the momentum (see [1] and [24, Section 4.4]). In what follows,
we approximate the singular kernels by square integrable functions.

Thus, from now on, the kernels G(e )6, are supposed to satisfy the following hypothesis.

Hypothesis 2.1. Fora =1,2,€=1,2,3, ¢,¢’ = +, we assume

G (&1, &, &) € LA(31 x Ty x 3). (2.26)

Remark 2.2. A similar model can be written down for the weak decay of pions v~ and 7" (see
[1, Section 6.2]).

Remark 2.3. The total Hamiltonian is more general than the one involved in the theory of weak
interactions because, in the Standard Model, neutrinos have helicity —1/2 and antineutrinos
have helicity 1/2.

In the physical case, the Fock space, denoted by §', is isomorphic to S’L ® §w, with

(2.27)
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The free Hamiltonian, now denoted by H|), is then given by

3 3
Hy= 3, [l @b @becnd+ X3 [ Ipaleie(m)ces(po)dpm

0=1 e=% /=1 e=%

(2.28)
-3, [0 @i,

and the interaction, now denoted by Hj, is the one obtained from H; by supposing that
G@ (&, (p2,52),¢3) = 0if s = €(1/2). The total Hamiltonian, denoted by H’, is then given
by H' = H| + gH;. The results obtained in this paper for H hold true for H" with obvious
modifications.

Under Hypothesis 2.1 a well-defined operator on ® corresponds to the formal
interaction Hj as it follows.
The formal operator

f ng,ef (&1,82,83)by (&1)Cp o (82) ac(83)dg1dédEs (2.29)
is defined as a quadratic form on (D, ® Dw) x (D, ® Dw) as
[ (coctben e G o )p)dndeads, (230)

where ¢, ¢ € D, @ Dyy.
By mimicking the proof of [29, Theorem X.44], we get a closed operator, denoted by

H 1(111)6 o associated with the quadratic form such that it is the unique operator in §, ® §w such
that D, @ Dy C D(H 1(,15),6,6') is a core for H I(,le),e,e, and
1 1 * *
Hf) .= f Gy (81,82, 8)b) . (81)C) o (&2) @ (83)dé1d&dds (231)

as quadratic forms on (D¢ ® Dw) x (D¢ @ D).
Similarly for the operator (H I(lé) ce) s we have the equality as quadratic forms

(Hi..) = jc;;g,e, (&1, &2, &)L (&) cee (2)bee(é1)ddidérdis. (2.32)

Again, there exists two closed operators H I(Zé)e o and (H 1(226 s,)* such that D, ® Dy C
), D¢ ® Dy C D((HY

D(H? /5,6/6,)*), and D, ® Dy is a core for H I(,zé),e,e’ and (H 1(,28),5,6')* and

14,
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such that

HY - fcifze (&1, b2, 8B}, (61)C) o (E2)a! (&) dés dads,
(2.33)

(H..) = fcfze(gl,«:z,g3>ae<§3>ce,er(@)bae(«;l)dgldgzd«;a

as quadratic forms on (D¢ ® Dw) x (D¢ @ D).

We will still denote by H I("; e and (H 1(525 o) (a=1,2) their extensions to §. The set D
is then a core for HI(’?E » and (HI(‘?G E,)*.
Thus
: (a) 2) *
24
H=Ho+g> > > (HY..+(HY..)) (2.34)
a=1,2 =1 e#¢€

is a symmetric operator defined on .

We now want to prove that H is essentially self-adjoint on ® by showing that H I(Dze o
and (H 1(025 )" are relatively Hy-bounded.

Once again, as above, for almost every ¢;3 € X, there exists closed operators in §;,

denoted by B ,(¢3) and (BY" (&))" such that

lee

BY (&) = fczlje @1, i, )b (@) coe (&) dirdes,

(B @) = [ G b b0, ()6l (@)
(2.35)
B2 @) = [ G @1t 00, @) @31

(B @) =~ [ Gt tbeul)cen @)l

as quadratic forms on D, x D,.
We have that ©, ¢ D(B(" (2)) (resp., D¢ C D((BY,(8))") is a core for B (&)

lee lee
(resp., for (Bé“e)e, (¢3))"). We still denote by Bé“e) +(é3)) and (Bé“e) +(é3))") their extensions to ;.

It then follows that the operator H; with domain ® is symmetric and can be written in
the following form:

H- 5SS (O, (1)) = 5 5 (B @ 0@

a=12¢=1e#€ a=12¢=1e#€
(2.36)

+ 22

3
a=12¢=1e#¢€

[ (B2 @) e aiae
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Let N, denote the operator number of massive leptons ¢ in §,, that is,
Ne= 3 [ b @be)ds 237)

The operator Ny is a positive self-adjoint operator in §,. We still denote by Ny its extension
to 1. The set ©; is a core for Ny.
We then have the following.

Proposition 2.4. For almost every & € 3, %(Bg’s),e, (&), 9((35,‘,”3,6,(‘;3))*) > D(N,?), and for
(OFS Q(Né/z) C §L one has

”B‘Z“/ 71 < ”Ggle)fe’(" v63) L2(21x21)||Né/2q)| 5
(@) 0 <oty N2 o
O,e,e'\53 5 o 2ee\r /63 e B .

Proof. The estimates (2.38) are examples of N estimates (see [25]). The proof is quite similar
to the proof of [20, Proposition 3.7]. Details can be found in [27] but are omitted here. O

Let

HE) = [0 @acea @ (239)

Then H (3) is a self-adjoint operator in Fw, and Dy is a core for Héi) .
We get the following.

Proposition 2.5. One has

|2

Hj nge)ef(éa) ®a€(§3)d§31p

) ? 2.40
) |68 @182, 8)| oo Mo w12 (5160 (2.40)
- .[zllexzz w(3) ((§3) él ‘;2 §3 H( et ) @ < O,e> ’
2
| 262 @) 0 azenazay
| Z'E’el él/ §2/ §3) | 1/2 (3) 1/2 2
: J‘Zl X1 X3 w(3) ((;3) d§1d§2d§3 H (Ng + 1) B <H0,€> v (241)

+ Pl‘
PREINTIV

for every W € D(Hy) and every 1 > 0.

Gy €,<§1,§z,§3>|2d§1d§zd§3> () ve+ 2o+ )
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Proof. Suppose that ¥ € %(N}/2)®%((Hé2)1/2). Let
¥.(&) = 0@ (&) ((Ne+ 1) 0 ac(&) ) . (242)
We have

((BEo@)) (Ne+ 172 01) W, (&) dés
(2.43)

f (B (8))" ® ac(ds)dis¥ = fzzm

Therefore, for ¥ € (N, v 2)®9((H03))1/ %), (2.40) follows from Proposition 2.4.
We now have

‘U By (&) ®al (§3)1}rd§3

= f( éug)er (&) ® ac (&)Y, Béae)e' (&)@ as(§3)‘I‘> désdé; + ’[ ” (Bg‘e),e,(g) ® 1>‘P||2d§3,
(2.44)
L . (B () @ ac ()W, By L (&) © ac(8) W) désdd,

1
- fzzxzz w® (&) 20 ()"

x ((BY2 @) (Ne+ 1) 0 1)We(&), (BY (&) (N + 1)72 91) We (&) ) déade

2
< < [ B e 1>-”2||&||w€<;3>||d§3>

5 wO (&)

() 2
< <J‘ Md§1d§2d§3> H(Ne + 1)1/2 ® <Héi)>1/2'lp
2y xXyxZp

'2

w® (&)

Furthermore (2.45)
[ (@ er)e] e

- J’ ZZ||<B§,“€>€,(§3)(Ne )2 01) (Ne+ 120 1) .

IN

G él,gz,g3>|2dgldgzd§3> (e + 170+ L)

<J‘21 XX X3

for every 1> 0.
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By (2.40), (2.45), and (2.46), we finally get (2.41) for every ¥ € D(N,/*)8D(H). It
then follows that (2.40) and (2.41) are verified for every ¥ € ©(Hp). O

We now prove that H is a self-adjoint operator in § for g sufficiently small.
Theorem 2.6. Let g1 > 0 be such that

3gt (1 ShY g
m—w<;%+1>u > e

=12 ¢=1 e#€

2
(2.47)

L2(Z1xZ1 %)

Then for every g satisfying g < g1, H is a self-adjoint operator in § with domain D(H) = D(H)),
and ® is a core for H.

Proof. Let ¥ be in ©. We have

3 2
| <12y ZZ{ || (B2 @) e acewass| +| [ (B2, @) o arewas

)

a=124¢=1e#€
(2.48)
Note that
||| < || | < e,
) : : (2.49)
INEW|| < —— || Ho W]l < — || Ho W] < — || Ho¥]|,
Mmy mq mq
where
Hue = 3 [0l @b, @becteds + 3 [wf @), Gees)dee (250)

We further note that

1 p 1
<m_% >||H0‘P|| +g||H0‘P|| +<2 8'B>|I‘I‘|| (2.51)

1721
H(Ne +) 0 (HE)) v
1

E

for >0, and

np

1
nl((Ne+1) @ D¥|* + —|[|%|* < lzllHo‘Pll2 +—=
4n my 1

oW +n<1+—ﬁ>||11’|| —||‘P||2.
(2.52)
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Combining (2.48) with (2.40), (2.41), (2.51), and (2.52) we get for >0, 3> 0

| H w2 <6<Z PIP] [ >
a=1,2 =1 €#¢€
1 1 1 1
(g (=5 1) IHWIP + P o + (1 + —)Ilq‘llz
mwy ml 2mwm1 me 4p

(B len ) (oo () e )

(2.53)
by noting
|G€se’ (§1/§2/ §3)|2 1 ()
= d&dédé < — |G, 2.54
J‘Ellesz w(B) (53) él éz §3 a mw “ bee ( )
By (2.53) the theorem follows from the Kato-Rellich theorem. O
3. Main Results
In the sequel, we will make the following additional assumptions on the kernels G(Ze),e,.
Hypothesis 3.1. (i) Fora=1,2,¢=1,2,3,¢,€ =4,
G2 @20
[ 2L g dgadts < oo (31)
2 xX %2y |P2|
(ii) There exists C > O such that fora =1,2,¢=1,2,3,¢,€ = =+,
5 1/2
<f G (b, 8)| d§1d§2d§3> <Co (3.2)
Sy x{|p2|<o}xy

(iii) Fora=1,2,¢=1,2,3,¢, =+,and i,j =1,2,3

(iit.a) f R (CEA/STCHM RS |"didadis < oo,

2 (3.3)
dé1dérdés < co.

2~ (a)

(21,82, 83)

iii.b f Sps
( ) leleZZPZ’PZJ ap ap]
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(iv) There exists A > m; such thatfora=1,2,¢=1,2,3,¢,€ =+,
Giffe)le, (é1,é2,8) =0 if |po| > A (3.4)

()

lee”

Remark 3.2. Hypothesis 3.1(ii) is nothing but an infrared regularization of the kernels G
In order to satisfy this hypothesis it is, for example, sufficient to suppose that

G (&1, &) = |p2] PG (81, 80, 8), (3.5)

where éé‘;),e, is a smooth function of (p1, p2, p3) in the Schwartz space.

Hypothesis 3.1(iv), which is a sharp ultraviolet cutoff, is actually not necessary, and
can be removed at the expense of some additional technicalities. However, in order to
simplify the proof of Proposition 3.5, we will leave it.

Our first result is devoted to the existence of a ground state for H together with the
location of the spectrum of H and of its absolutely continuous spectrum when g is sufficiently
small.

Theorem 3.3. Suppose that the kernels G;”S) . satisfy Hypotheses 2.1 and 3.1(i). Then there exists

0 < g < g1 such that H has a unique ground state for g < g». Moreover
o(H) = 0.c(H) = [info(H), o) (3.6)

with info(H) < 0.

According to Theorem 3.3 the ground state energy E = inf o(H) is a simple eigenvalue
of H, and our main results are concerned with a careful study of the spectrum of H above the
ground state energy. The spectral theory developed in this work is based on the conjugated
operator method as described in [5, 6, 30]. Our choice of the conjugate operator denoted by
A is the second quantized dilation generator for the neutrinos.

Let a denote the following operator in L?(%):

1
a= §<p2 (IVp, +1Vp, - PZ) (3.7)

The operator a is essentially self-adjoint on C§° (R3,C?). Its second quantized version dI'(a) is
a self-adjoint operator in §,(L?(X1)). From the definition (2.8) of the space F, the following
operator in §¢

Ar=101edl(a)el+1eoleledl(a) (3.8)

is essentially self-adjoint on Dr.
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Let now A be the following operator in §y:

A=A1931L313+11 9 A ®1;+1;®1, ® As. (39)

Then A is essentially self-adjoint on Dj.

We will denote again by A its extension to §. Thus A is essentially self-adjoint on ©
and we still denote by A its closure.

We also set

()= (1 La?)", (3.10)

We then have the following.

Theorem 3.4. Suppose that the kernels Gg’;e, satisfy Hypotheses 2.1 and 3.1. For any 6 > 0 satisfying
0 < & < my there exists 0 < g5 < g» such that, for 0 < g < gs, the following points are satisfied.

(i) The spectrum of H in (inf o (H), my — 8] is purely absolutely continuous.
(ii) Limiting absorption principle.

For every s > 1/2 and ¢, ¢ in §, the limits
lim (¢, (A)™*(H - L +ig)(A) ) (3.11)

exist uniformly for \ in any compact subset of (inf o(H), m; — 6].
(iii) Pointwise decay in time.
Suppose s € (1/2,1) and f € CF(R) with supp f C (info(H), my — 6). Then

Ay f(H) ()

- O<t1/2‘5> (3.12)

ast — oo.

The proof of Theorem 3.4 is based on a positive commutator estimate, called the
Mourre estimate, and on a regularity property of H with respect to A (see [5, 6, 30]). Accord-
ing to [4], the main ingredient of the proof is auxiliary operators associated with infrared
cutoff Hamiltonians with respect to the momenta of the neutrinos that we now introduce.

Let yo(*), Yoo (") EC®(R, [0,1]) with yo=1on (-o0,1], Yoo =1 0n [2, 00) and xo? + Yoo 2 =1.

For 0 > 0 we set
A
Xo(p) —xO<—0 /

3.13
x°(p) =xoo<|p|>, G139

X)) =1-xs(p),

where p € R3.



Advances in Mathematical Physics

17

The operator Hj is the interaction given by (2.23) and (2.24) and associated with the

kernels X"(pz)Gg‘e),e, (&1, &, ¢3). We then set
Ho' = H() + gHI,G-

Let

36 =210 {(p2,52);
27 =210 {(p2 52);

p2| <o},

p2| > o}
Sezo = Fa(L2(Z10)) @ Fa(L2(Z10)),
89, = %a(L2(2))) @ Ba(L2(XY)),

Fe2=Te20®8y,

Se1 = é Sa (LZ (21)>-

(3.14)

(3.15)

The space §¢,1 is the Fock space for the massive leptons ¢, and §¢» is the Fock space for the

neutrinos and antineutrinos ¢.

Set
39 = 301039,
3’2,0' = 8:&2,0-
We have
Fe =Ty ®Feo
Set
3
57 =Q) 37
=1
3
SL,O' = ® SZ,O'
=1
We have

SL=35.®FLo-

(3.16)

(3.17)

(3.18)

(3.19)
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Set
37 =37 ®Jw- (3.20)
We have
F=3Lo®3’. (3.21)
Set
0 _ RPN
=35, [l @oes.pe.enas,
@ _ < @) 5\
Hy” = ;Z; ; Iwg (&2)cp o (82)cee(52)dSo,
HY = 3 [0 @a @)@, (322)
3
HP =S5 [ ol @, @,
¢=1e=x" |p2|>0
2 S 2
HO-3 5 wPec e
¢=1 e=x 7 |p2|<o
We have on §° ® §o

HY =H 01, +1° @ H. (3.23)

Here, 19 (resp., 15) is the identity operator on 3¢ (resp., §s).
Define

H? = Hy|z0, Hg = Holzo. (3.24)
We get

H=H" +HP" +H + gH;, on 3,
(3.25)
Ho=H®1,+1°® H) on § ®F.

In order to implement the conjugate operator theory, we have to show that H° has a gap in
its spectrum above its ground state.
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We now set, for p > 0and 77 >0,

Cﬁn=<i<l+%>+ 3p +%(1+ﬁ)>1/2,

my m myym;?
(3.26)
Bg, = <i<1 + i) + 12( (1 + l) + l))1/2
= mw 7 4P ') )
Let
—(G@ (. ..
G= <G€’€’€,( r ))u:1,2;€:1,2,3;e,s’::k,s#e” (327)
and set
3 1/2
@ | (3.28)
K(G) = GY . .
@) a:m; €¢€,|| Cee || [2(z x5 x5))
Let
= 81K (G)Cpy
Cpp=Cpp| 1+ ——>——— ),
B P < 1-— glK(G)Cﬁq
(3.29)
~ K(G)C K(G)Bs,C
By = (14 S5 () K OBnCi Yy
1-g1K(G)Cpy, 1-g1K(G)Cgy
Let
| (@ |2 12
G,Y (&1,¢, &)
~ le€
K(G) = > f ; dgideds | (3.30)
a=12 ¢=1e#e 7 T1xZix%, |p2|
Let 6 € R be such that
0<6<my. (3.31)
We set
~ 4Ay ~ ~ ~
D= sup< T 6,1>K(G) (2m1Cpy + Byy), (332)

where A > m; has been introduced in Hypothesis 3.1(iv).
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Let us define the sequence (0y),,59 by

Op = A/
6
or=m; -7,
2 (3.33)

oy =m —6=y0y,

Opi1 =YOu, n2>1,

wherey =1-6/(2m; - 6).
Let gél) be such that

) y-v
0< <inf{ 1,¢;, —— ). (3.34)
8s < 81 3D >
For0< g< gél) we have
3¢gD
O<y<< _8_>, (3.35)
Y
3¢D
0< 0,1 << _gT>o"’ n>1. (3.36)

Set

H"=H%; H!=HY, n>0,

(3.37)
E" =info(H"), n2>0.

We then get the following.

Proposition 3.5. Suppose that the kernels GY satisfy Hypotheses 2.1, 3.1(i), and 3.1(iv). Then

lee
there exists 0 < g5 < gél) such that, for g < gs and n > 1, E" is a simple eigenvalue of H" and H"
does not have spectrum in (E", E" + (1 - 3g1~)/y)on).

The proof of Proposition 3.5 is given in the appendix.

We now introduce the positive commutator estimates and the regularity property of
H with respect to A in order to prove Theorem 3.4.

The operator A has to be split into two pieces depending on o.
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Let

1o (p2) = X20 (P2),
1°(p2) = % (p2),

(3.38)
a5 = 1o (p2) as (p2),
a? =17 (p2)an’ (p)-
Since 12 + (n°)* = 1, and [1, [11o, a]] = 0 = [1°, [, a]], we obtain (see [4])
Mo+ (1] Mo, 11 11
a=a’+ag. (3.39)
Note that we also have
1 2. . 2
ag = 5 (1a(p2) P2 VP2 +iVp2 10 (p2) 'P2),
(3.40)
o 1 o 2 . . o 2
a’ = 5(11 (p2)’p2-iVp2 +iVp2 - 1% (p2) P2

The operators a, a;, and a° are essentially self-adjoint on C{° (R3,C?) (see [5,
Proposition 4.2.3]). We still denote by a, as, and a their closures. If @ denotes any of the
operator a, a;, and a®, we have

2(d) = {ueLz(Zl); ﬁueLz(Zl)}. (3.41)

The operators dI'(a), dT'(a°), and dI'(a,) are self-adjoint operators in §,(L*(Z1)), and
we have

dI'(a) = dI'(a®) + dI'(a,). (3.42)
By (2.8), the following operators in §,, denoted by Ay and Ay, respectively,

Aj=1e1edl(a’)el+1e1®ledl(a’),

(3.43)
Asgr=101edl(as)®1+1®191edl(ay)
are essentially self-adjoint on D,.
Let A and A, be the following two operators in §;:
A° :AT®12®13+11®A3®13+11®12®Ag,
(3.44)

As=An1®91L013+11 0 Asn @13+ 11 ® 1, ® Ags.
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The operators A° and A, are essentially self-adjoint on ®y. Still denoting by A° and A, their
extensions to §, A% and A, are essentially self-adjoint on ® and we still denote by A° and A,
their closures.

We have

A=A+ A,. (3.45)

The operators a, a°, and a, are associated to the following C®-vector fields in R3,
respectively:

v(p2) = p2,
v?(p2) = 1°(p2) P2, (3.46)
Vo (p2) = 110 (p2) P2

Let U(p) be any of these vector fields. We have
[U(p)| <Tp| (3.47)
for some I’ > 0, and we also have
u(p) =o(lpDp, (3.48)

where the o’s are defined by (3.46) and (3.48) and fulfil |p|*(d"/d|p|*)?(|p|]) bounded for
a=0,1,2.
Let ¢ (-) : R> — R3 be the corresponding flow generated by U:

d
3¢ (P) =V (g:(p)), (3.49)
po(p) =p-
@i (p) is a C*-flow and we have
e Mp| < g1 (p)| < e™|p. (3.50)

¢ (p) induces a one-parameter group of unitary operators U (t) in L*(%;) = L*(R?, C?) defined
by

UMF) () = Fg1(p)) (det Vyu (p)) . (3:51)

Let ¢:(-), ¢7 (), and ¢ (-) be the flows associated with the vector fields v(-), v7(-), and vs(-),
respectively.



Advances in Mathematical Physics

23

Let U(t), U°(t), and U, (t) be the corresponding one-parameter groups of unitary
operators in L?(%;). The operators a, a°, and a, are the generators of U (t), U°(t), and U, (%),

respectively, that is,

Ut =ea,
uo(t) — e—ia"tl
U, (t) = e it

Let

@) = (w (&)

2=123

dr(w® Jw(z)(52)CZ,€(§2)Cee(§2)d§2-
Z 1 €

Let V (t) be any of the one-parameter groups U (t), U°(t), and U(t). We set

VPV = (VOwPvey), .

and we have

VHwPV () =w? (¢).

Here ¢ is the flow associated to V (t).
This yields, for any ¢ € ©, (see [11, Lemma 2.8])

dr e‘l“tw(z)e’“‘> - dl"(w(z)))(p

dr(w@ od)t (2)>>

dr(etw (z)e”‘at> —dr (w(2>>>(p

w® o p? - w<2>>>(/,,

Proposition 3.6. Suppose that the kernels Gé“s) o satisfy Hypothesis 2.1.

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)



24 Advances in Mathematical Physics

For every t € R one has, for g < g1,

(i) €MD(Hy) = e D(H) c D(Hy) = D(H),
(i) et D(Hp) = A" D(H) ¢ D(Hy) = D(H), (3.59)
(iii) et 4oD(Ho) = e D(H) c D(Ho) = D(H).

Proof. We only prove (i), since (ii) and (iii) can be proved similarly. By (3.56) we have, for
peD,

e Hoe"p = (HY + HY +dr' (w® o ) ). (3.60)
It follows from (3.50) and (3.60) that

[ Froe™ || < e[| Hop]l (3.61)
This yields (i) because ® is a core for Hy. Moreover we get

”HoeitA(Ho +1)! ” < et (3.62)

In view of © (Hy) = ©(H), the operators Hy(H + i)' and H(H,+i)"" are bounded, and there
exists a constant C > 0 such that

”He”A(H +i)! H < Cellf, (3.63)
Similarly, we also get

”HoeitA"(HO n 1)—1” < el

|| Foe™ e (Fo + 1) | < e,
(3.64)
||HeitA"(H+ i)_1|| < Cell,

||Heion(H +i)! || < Cell.

O

Let H;(G) be the interaction associated with the kernels G = (G(g'xe) ) a=12,0=12 3¢ # e'=ir

where the kernels (G(Ze),s,) satisfy Hypothesis 2.1.
We set

V()G = (V(t)G(“)

. 3.65
e ) a=1,2,4=1,23;e# €=+ ( )
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We have for ¢ € © (see [11, Lemma 2.7]),

e H(G)e'Mp = H (e 7™G) g,
e AT H (G)eih"lp = Hy (e"*"'G) g, (3.66)

e_iA(’tHI(G)eiA"t(p — HI (e—iaatc)q)'

According to [5, 6], in order to prove Theorem 3.4 we must prove that H is locally of
class C2(A9), C*(A,), and C?(A) in (—oo,m; — 6/2) and that A and A, are locally strictly
conjugate to H in (E,m; — 6/2).

Recall that H is locally of class C*(A) in (—oo,my — 6/2) if, for any ¢ € Cy((-o0,my —
6/2)), p(H) is of class C2(A); that is, t — e Atp(H)e Ay is twice continuously differentiable
forall ¢ € CF((-o0,m; —6/2)) and all ¢ € §.

Thus, one of our main results is the following one.

Theorem 3.7. Suppose that the kernels G satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii).

lee
(a) H is locally of class C*(A), C*(A?), and C*(Ay) in (oo, my — 6/2).

(b) H is locally of class C*(A°) in (—co,my — 6/2).

It follows from Theorem 3.7 that [H,iA], [H,iAs], [H,iA°], and [H?,iA°] are defined
as sesquilinear forms on Jg Ex (H)3§, where the union is taken over all the compact subsets
K of (-0, m1 — 6/2).

Furthermore, by Proposition 3.6, Theorem 3.7 and [4, Lemma 29], we get for all ¢ €
Cy((E,m;-6/2)) and all ¢ €,

[ itA _
p(H)[H,iAlp(H)y = lim p(H) | H, “— ]tp(H)%

QitAs _

¢(H)[H,iAs;]o(H)y = lim(H) [ H,

]tp(H )y,

(3.67)
[ itAC
g(H)[H,iATp(H)y = limg(H) | H, = ; 1]‘!’(H)<Pr

eitA" -1

p(H)[H, iA%Jo(H?)y = lim ¢(H?) [H", ]tp(H”)qf-

The following proposition allows us to compute [H,iA], [H,iA°], [H,iAs], and

[H?,iA°] as sesquilinear forms. By Hypotheses 2.1 and 3.1(iii.a), the kernels Gé‘/’g)’e, (é1,+,&)
belong to the domains of a, a%, and a,.
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Proposition 3.8. Suppose that the kernels ng‘e)le, satisfy Hypotheses 2.1 and 3.1(iii.a). Then
a) forall ¢ € D(H) one has
(i) lim;o[H, (¢4 - 1) /t]g = (AT (w®) + gH;(-iaG))e,
H, (" =1)/ty = dT((1°)"w'?) + gH1(-ia°G))gs,

[
[
[H, (" = 1)/t]gp = (AT ((n0)*w®) + gH(~ia,G))y,
(iv) limy—o[HY, (¢ = 1) /tg = (dT((7°)*w®) + gH; (~ia® (§° (p2)G))) ;

(i) lim; g

(iii) limy_o

(b) and

(i) supg e ILH, (¢4 = 1)/t (H + 1) Y < oo,

H, (" = 1) /t](H + i)"Y < oo,

H, (¢ = 1) /t](H +1) 7| < o0,
o (@A —1)/t](H +i)7Y| < oo.

(ii) SUP1i<1 [

[
[
(iii) SUPgjri<1 I
[H

(iv) SUP(1i<1 [

Proof. Part (b) follows from part (a) by the uniform boundedness principle. For part (a), we
only prove (a)(i), since other statements can be proved similarly.
By (3.50), we obtain

%|wf) (9e(p2)) - we)(P2)| ST |< el — 1>wéz) (p2) (3.68)

for¢=1,2,3.
By (3.56)—(3.58) and Lebesgue’s Theorem we then get for all ¢ € D(H)

. #A 1] L A i @)

52 -t sl - ()
tim | o, &1 = liml[e‘”*“’H e~ Holy = dr((n°)"w®) (3.69)
ol Y t =y 0 oy n ¥ '
tim | o, & =1, liml[e"’tA"H e = Holy =dr((10)"w)
] I ¢ fm 0 o|lg Mo .

By (3.66), we obtain, for all ¢ € D(H),

itA

. 1] 1 ; .
lim [HI(G)/ £ ]tp = lim [e “AH;(G)e™ - HI(G)](P = H;(-i(aG))y,



Advances in Mathematical Physics

eitA" -1

}1—I>I(1) [HI(G)r
eitAg -1 )
t

}1_1;% [HI (G)/

eitA" -1 )

mhwwm

= H;(-i(a’ (X° (p2)G))) .

This concludes the proof of Proposition 3.8.

NS T e o
w=}gr5;[e N H L (§7 (p2)G)e™ ~ Hi(§ (p2)G) |y

27

. 1 i o : o .
g = lim= [ Hi(G)e" ~ HI(G)|y = Hi(-i(a"G))y,

1 —i i .
g = lim [e Ha 11 (G)eitAe — HI(G)]q; = Hi(-i(asG))y,

(3.70)

O

Combining (3.67) with Proposition 3.8, we finally get for every ¢ € Ci°((-o0, m1-6/2))

and every ¢ € §

o(H)[H, iAlgp(H)y = p(H) [dT' (w®) + gH; (=i(aG))| p(H)p,
9(H)[H,iA"]g(H)y = p(H) [dr ((17)*0®) + gHi(-i(a"G)) | p(H)gs

o(H)[H,iAslp(H)g = o(H) [T ((10)*0®) + gHi (-i(a,G)) | p(H)g,

p(HO)[HT,iA” p(H)g = p(H)[dr (1) *0®) + gHi (=i(a” (F7G))) | p(H)gs

We now introduce the Mourre inequality.
Let N be the smallest integer such that

Ny >1

We have, for g < g(l),

Let

(3.71)
(3.72)
(3.73)

(3.74)

(3.75)

(3.76)

(3.77)
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We choose f € C{°(R) such that 1> f >0 and

(1 ifAe [(Y—ey)21Y+ey]/

(OFs
0 if)L>y+l 1_3g5D_Y =y7+2e
f) =1 N Y v (3.78)

~ 2
3g{"D
0 if)a<<y—%<l— gﬁy —y>> = (y-2¢,)>

Note that y +2¢, <1 - 3gD/y for g < gél) and y — €y >y/N.
We set, forn >1,

£,(1) = f<i>. (3.79)
On
Let
Hn = Ho‘,,/
E, = info(H,), (3.80)
(2) (2)
HOn = HOan‘

Let P" denote the ground state projection of H". It follows from Proposition 3.5 that, forn > 1
and g < g < gy,

fulHy = Ey) = P"® f,(Hgo ). (3.81)
Note that
E,=E" =info(H"). (3.82)
Set
a*=a‘,
anp = dg,,
A" = A%,
(3.83)
An = Aon/
5 =5,

%’n = Son-
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We have
§=8"®38u,
(3.84)
A=A"+ A,.
We further note that
a" o (p2) = a". (3.85)
By (3.72), (3.74), and (3.85), we obtain
[H,iA"] = [H",iA"]|®1 (3.86)

as sesquilinear forms with respect to § = §" ® §y.
Furthermore, it follows from the virial theorem (see [6, Proposition 3.2] and
Proposition 6.1) that

P"[H",iA"]P" = 0. (3.87)

By (3.81) and (3.87) we then get, for g < g5 < g(l),

fu(H, — En)[H,iA"] fn(H, — E,) = 0. (3.88)

We then have the following.

Proposition 3.9. Suppose that the kernels GW satisfy Hypotheses 2.1 and 3.1. Then there exists

e e

Cs > 0 and gél) > 0 such that gél) < gs and

2

Fu(Hy — Ep)[H, iAn] fa(Hp - Ey) > éﬁ%on Fu(Hy - Ep)? (3.89)

forn>1and g < gél).

Let Eo(H — E) be the spectral projection for the operator H — E associated with the
interval A, and let

An = [(Y - er)zo'nf (Y + EY)Gn]/ n>1. (3.90)
Note that

[Cpi2, Ons1] C <(Y - ey)zon, (y + ey)on>, n>1. (3.91)
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Theorem 3.10. Suppose that the kernels foe) o satisfy Hypotheses 2.1 and 3.1. Then there exists

Cs > 0and géz) > 0 such that géz) < gé” and

2

Ea, (H - E)[H,iA]Es, (H - E) > Cs %onEA" (H-E) (3.92)

forn>1and g < géz).

4. Existence of a Ground State and Location of the Absolutely
Continuous Spectrum

We now prove Theorem 3.3. The scheme of the proof is quite well known (see [9, 31]). It

follows from Proposition 3.5 that H" has a unique ground state, denoted by ¢”, in §":

H'g" =E"¢", ¢" e D(H", [|¢"]|=1, n>1. @1

Therefore H,, has an unique normalized ground state in §, given by (ﬁl = ¢" © Q,, where Q,
is the vacuum state in §,:

Hupn = E"¢n, Pu€D(Hy), |Pnll=1, n>1 (4.2)

Since ||$n|| = 1, there exists a subsequence (ny);>;, converging to oo such that ($nk)k21
converges weakly to a state ¢ € §. We have to prove that ¢ #0. By adapting the proof of
Theorem 4.1 in [22] (see also [20]), the key point is to estimate ||cg¢(¢,)Dy |z in order to show
that

"4z, = o(s), (4.3)

i > f ||Ce,e(§2)<l~’n

/=1 €

uniformly with respect to n.

The estimate (4.3) is a consequence of the so-called “pull-through” formula as it
follows.

Let Hj, denote the interaction H; associated with the kernels 1,5} (m)Gé‘fe)/E,. We
thus have

Hoce,e (82)Pn = Coe(&2) Hon - w5 (E2)coe () Pns

~ - - (4.4)
gHincee(52)Pn = ceoe(§2) SHInn + §Ve e (§2) P
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with

Veee(82) =8 f Gyre(1, &, 8)b5 . (1) ac (&) dérdes

+ gf Goro (81,82, &)b) o (&)@l (&) dérdis.

This yields

(Hn -E,+ wg) (§2)>C€,e(§2)$n =Viee (§2)$n

By adapting the proof of Propositions 2.4 and 2.5 we easily get

IVeeewlls < -2 < > IIGEJ‘Se (d2,7)

+g||Gese &) lll.

L2(51x%2)

where ¢ € ©(H,).

/2 ”
s [
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(4.5)

(4.6)

(4.7)

Let us estimate ||H0<jN)n||. By (2.53), (2.54), (3.26), and (3.28) we have

8| Hiad]| < 8K G (Cpu|| Ho | + Bn).
| o] < 1Eal + 8| Hingha -
Therefore
IE,| K(G)B
[ Fodu| < 1= SK(G)Cpy T 1 —gglK(G)ﬂ::ﬂ,l‘

By (3.82), (A.11), and (4.9), there exists C > 0 such that

7

Jrof.

uniformly in n and g < g1.
By (4.6), (4.7), and (4.10) we get

||C€e¢n |P2 <C1/2 <Z”Gg€€( 2,°)

(2)
+ G2 (&,
L2(21x22)> ” é’,e,e( §2 )

(4.8)

(4.9)

(4.10)

Lz@lxzz))' (4.11)
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By Hypothesis 3.1(i), there exists a constant C(G) > 0 depending on the kernels G =
(Gé‘;),e,) 0=123a12,¢ # 0+ and such that

2
d& < C(G)*g~ (4.12)

3 ~
) [ Jleected

The existence of a ground state $ for H follows by choosing g sufficiently small, thatis, g < g,
as in [20, 22]. By adapting the method developed in [32] (see [32, Corollary 3.4]), one proves
that the ground state of H is unique. We omit here the details.

Statements about o(H) are consequences of the existence of a ground state and follows
from the existence of asymptotic Fock representations for the CAR associated with the

Cﬁ,e(éz)’s. For f € L*(R3,C?), we define on ®(H)) the operators
Cﬁe,te (f) = eitHe—itHocﬁe/e (f)eitHogitH (4.13)

By mimicking the proof given in [21, 31] one proves, under the hypothesis of Theorem 3.3
and for f € C*(R? C?), that the strong limits of CFe“e (f) whent — oo exist for ¢ € D(Hy):

. t
tim & ()= () (4.14)
The operators cﬁz( f) satisfy the CAR and we have
. (NF=0, feCr(®C?), (4.15)

where $ is the ground state of H.
It then follows from (4.14) and (4.15) that the absolutely continuous spectrum of H
equals to [inf o(H), o0). We omit the details (see [21, 31]).

5. Proof of the Mourre Inequality

We first prove Proposition 3.9. In view of Proposition 3.8(a)(iii) and (3.73), we have, as
sesquilinear forms,

[H,iA] = (1- g)dl((1,)°w®) + g(dr ((no)’w®?)) + gHi(-i(a,G)).  (51)

Let 3(;) (resp., &'9) be the Fock space for the massive leptons ¢ (resp., the neutrinos and
antineutrinos €).

We have

Fe=3" e3P, (5.2)
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Let

3
3:(1) =Fw® <® S(D)[ 8’(2) - ® 822) (53)

o=1
We have

5=30gz® (5.4)

T is the Fock space for the massive leptons and the bosons W#, and §® is the Fock space
for the neutrinos and antineutrinos.
We have, as sesquilinear forms and with respect to (5.4),

dr((,)"w®) + Hi(-i(asG))

3
=33 [ e e Geese)des
=1 €

0=1e#¢e a=1,2 |P | (55)

3 M ()
+ Z Z f|P2| (11 ® 1o (p2)Cp (&) + Z gee—gz 12>

M o (E2)
x| ione(p)cee(l) + D, —==T—01, |d&

a=1,.2 | 2|
3 (a)* (a)
S5 [( sl o) (5 e o, Y,
l=1e#e€ a=1,2 |P2| a=1,.2 |P2|

where

M (&) =i f < (ana(pz>c,§‘73,€,(§1,§2,§3>)>b;,€,<§1>aef<§3>dgld§3, (5.6)
a=1,2

and where 1; is the identity operator in .
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By mimicking the proofs of Propositions 2.4 and 2.5, we get, for every ¢ € D,

2 ee’o(g ) (“S)G,U(g )
22 q”’[ > - 172 - 21, > = 172 - @l Jyde
leze w12 |p2| w12 |p2|

a 2
lee o (52)
( — 1n ® 12> ‘I’déz
a2 |pal

' Dac1p <L”10 (Pz)leef) (81,82, 63) |2
f w®(&)|p2|

3

>

{=1e#€

(5.7)

IN

dgidgrdés H (H(g3)>1/2

o

Noting that |(a#s)(p2)| £ C uniformly with respect to o, it follows from Hypotheses 2.1 and
3.1 that there exists a constant C(G) > 0 such that

d¢idédés < C(G)o. (5.8)

| D12 (‘"lo (p2) GZ),E:) (é1,¢2,83) |2
f w® (&) |pa]

This yields

(a)* (“)
_f Z L"(‘gz) ®1, #/(52) ®1, )d& >-C(G)o. (5.9)
a=1,2 |Pz | a=1,2 |p2 |

Combining (5.1), (5.5) with (5.9), we obtain
[H,iA,] 2 (1-8)dr((1s,)*w®) - §C(G)a. (5.10)
We have
dr((10,)*w®) > H). (5.11)
By (3.76), (3.81), and (5.11) we get
fa(Hy = E)AT (16, 20® ) fu (Hy = En)
> Py fo(HG) Y HY fu(HSY) (5.12)

2

> 50 fulHy— En)”

for g < gg)
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This, together with (5.10), yields for g < gél)

fn(Hn - En) [H/ lAn]fn(Hn - En)

M\ ¥ (13)
> (1 85") xa0nfu(Hu = En)’ = §C(G)0n ful Hy — En)’.
Setting
. 1-g5 y?

g? =inf <g§1>, T(é)% , (5.14)

we get
1-g5 72
fn(Hn - En)[Hr lAn]fn(Hn - En) 2 2 o manfn(Hn - En)2 (515)

for g < g
885 -
Proposition 3.9 is proved by setting §(§1) = éz) and Cs = (1 - gél)) /2.
The proof of Theorem 3.10 is the consequence of the following two lemmas.

Lemma 5.1. Assume that the kernels G

vee Satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a
constant D > 0 such that

|E - E,| < gDo,? (5.16)

forn>1and g < g®.

Proof. Let ¢ (resp., $n) be the unique normalized ground state of H (resp., H,). We have

E=En < (¢ (H = H)$n),

(5.17)
E,—E< (¢, (H. - H)$)
with
H - H, = gHi (Y0, (p2)G). (5.18)
Combining (2.53) and (2.54) with (3.26)—(3.28) and (5.18), we get
” (H - Hn)‘fﬂ < 8K (xo, (P2)G) (Cﬁn||H0$n + Bﬂn>/
(5.19)

| (H = Hi)¢|| < §K (X, (P2) G) (Cpyl| Hod || + Bgyy)-
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It follows from Hypothesis 3.1(ii), (4.10), and (5.19) that there exists a constant D > 0 such
that

7

max (|| (H - H,)

(H - Hn)¢||) < gDo,? (5.20)
forn>1and g < g®@.
By (5.17), this proves Lemma 5.1. O

Lemma 5.2. Suppose that the kernels GW

0.0 Satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a
constant C > 0 such that

| fu(H = E) = fu(H, - Ey)|| < gCoy (5.21)

forn>1and g < g?.

Proof. Let fN () be an almost analytic extension of f(-) given by (3.78) satisfying

0zf (x +iy)| < Cy* (5.22)

Note that f(x +iy) € C& (R?). We thus have

df ~ of
f(s) = fsz(zs) df(z) = —%a—gdxdy. (5.23)

Using the functional calculus based on this representation of f(s), we get

1

H _E, 20, )

(5.24)

fn(H_E)_fn(Hn_En)=0n (H_Hn+En_E)

J‘ 1
H-E-zo,

Combining (2.53) and (2.54) with (3.26)—(3.28) and Hypothesis 3.1(ii), we get, for every ¢ €
D(Hp) and for g < g?,

gl (1o, C) gl < 28Co2K(G)(Corll(Ho+ Dyl + (Cou + Bp)llwl)-  525)
This yields

g|| Hi (o, (p2)G) (Ho + )| < gCr0,2 (5.26)

for some constant C; > 0 and for g < ¢.
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By mimicking the proof of (A.21) we show that there exists a constant C, > 0 such that

| (Ho + 1) (H, - By - 20,)7| < C2<1 - —lImlzlGn>

or g < gW.
Combining Lemma 5.1 and (5.24) with (5.25)—(5.27) we obtain

of 0z '
I H - B) = fH - En)] < 8C [ o7 zy)z(x+zy)|dx(iy

for some constant C > 0 and for g < g?.

Using (5.22) and f (x +1y) € CP° (R?) one concludes the proof of Lemma 5.2.

We now prove Theorem 3.10.

Proof. It follows from Proposition 3.9 that

fn(Hy — E)[H,iA] fn(H, — E,)

- 2
= fu(Hy = Ey)[H, iAy] fu(Hy — En) > cg%on Fu(Hy = En)?

forn>1and g < gé”.
This yields

folH = E)[H, iA, ] fu(H - E)
> CoLoufulH - P
= fu(H = E)[H,iA] (fu(Hy ~ Ex) = fa(H ~ E))
= (fa(Hy = Ey) = fu(H = E)) [H,iA] fu(H,, ~ Ey)
+ éa%on(fn<Hn ~Eu) = fa(H - E))’

- 2
¥ cﬁ%onfn(H — E)(fu(Hy - Ey) - fu(H - E))

2

+ Co 300 (fu(Ha = Ex) = fu(H = E)) fu(H - E).

(5.27)

(5.28)

(5.29)

(5.30)
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Combining Proposition 3.8(i) and (5.23) with (5.26) and (5.27) we show that [H,iA] f,,(H, —
E,) and f,(H - E)[H,iA] are bounded operators uniformly with respect to n. This, together
with Lemma 5.2, yields

fn(H - E)[H,iA]f,(H - E) > 661{[—20,1 fu(H - E)* - Cgo, (5.31)

for some constant C > 0 and for g < inf(g®, gél)).
Multiplying both sides of (5.31) with E,,(H — E) we then get

2

Ea, (H - E)[H,iA]Es, (H - E) > Cs %anEAn (H - E) - Cg0,Ea, (H - E). (5.32)
Setting
s o2
~2) _ . Cs Y ~(1)
g5 < 1nf<€m,g(2),g6 >, (5.33)
Theorem 3.10 is proved with Cs = Cs — C(N?/y2)3 > 0. O

6. Proof of Theorem 3.7

We set
itA-1
At = € 7
t
adA[' = [At/']/
eitA? _q (6.1)
AY = ——,
it A 1
e (O J—
Aot = t

The fact that H is of class C'(A), C}(A%), and C!(A,) in (o0, m; — 6/2) is the consequence
of the following proposition.

Proposition 6.1. Suppose that the kernels G(ZG),E, satisfy Hypotheses 2.1 and 3.1(iii.a). For every ¢ €
Cy((-oo,my = 6/2)) and g < g1, one then has

sup [ (), Al || < e,

0<|t<1
051;'191" [p(H), A7]|| < oo,
<[t|<
: 6.2)
sup || [p(H), At] || < oo,
0<lt|<1

sup [[[p(H®), 47] | < oo.

0<|ti<1
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Proof. We use the representation
o(H) = [ dp(a)(z- ),

where ¢(z) is an almost analytic extension of ¢ with

. 10
|o=p(x+iy)| <Clyl,  dd(z) =~ =d(z)dxdy.

Note that ¢(x +iy) € C(R?).
We get

ad s p(H) = fdgb(z)(z ~ H)[A, H](z - H)™.

This yields

llada,p(F)]| < 081|t1|131||[A:,H](i—H)’1|| f|d¢<z>|||<z—H>*1||||<i—H><z—H>*1||.

It is easy to prove that

|dg(=)|

|[Im z|2

< o0.

[ldp@]| - 1|6 -1 < c

By Proposition 3.8(b) (i) and (6.7) we finally get, for g < g1,

sup ||ada,@(H)|| < oo.
0<|t|<1

In a similar way we obtain, for g < gi,

sup || [A7, p(FD)] | < oo,
0<|t|<1

sup || [Aor, p(H)] || < oo,
0<|t|<1

sup || [A7, p(H)] || < oo.
0<|ti<1

The proof of Theorem 3.7 is the consequence of the following proposition.

39

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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Proposition 6.2. Suppose that the kernels GE,“E) o satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii). One then

has, for g < g1,
sup (4, (A, HII(H + )| < o,
0<|t|<1
sup || [A7, [A7, H]](H +i)7!|| < o,
0<[t|<1 (6.10)
sup || [Aor, [Aot, HII(H +i) " || < oo,
0<|t<1
sup (A7, [A7, HOY](HE +i) || < oo.
0<|t|<1
Proof. We have, for every ¢ € D(H),
[Ar, [Ay, H]lg = tlzezuA <e-2ifAHe2i*A — e A4 4 H) w. (6.11)
By (3.56) we get
1 ..
[As, [Ar, Holly = e (dr(w(2> o por — 2w @ o Py + w(2)>>(p, (6.12)
where, for ¢ =1,2,3,
(@l o gu) (p2) =2(w? 0 40) (p2) + w0 (p2) = | (p2) | =2|du(p2) | + pal- (613)
We further note that
1 02
112 (p2)| =2 (p2) | + |p2]] < sup | = [$s(p2)]|,
t 0
Isl<2]t]] 5 (6.14)
& rls|
552 |95 (P2)| = [ds(p2)| < € ¥[p2]-
Combining (6.12) with (6.13) and (6.14) we get
|TAx T4 Holl (Ho +1)7|| < &,
(6.15)

sup (A, A, Holl(Ho +1)7'|| < ¢

0<|ti<1
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In a similar way we obtain

sup
0<|t|<1

[AY, [A?, Ho]] (Ho + 1) ” <ce?,
(6.16)

sup

[Aot, [Aot, Hol1 (Hp +1)7" || < Ce¥,
0<|t|<1

Here C is a positive constant.
Let us now prove that

sup

sup |14 L4 H@LI(H +” | <o, (6.17)

By (3.66) and (6.11) we get, for every ¢ € D(H),

[At/ [At/ HI(G)]](P

S, 3 5 G (mn(G, ) 2 (6 )e « (L))o

a=12¢=123¢€#¢€

2 2 X (i%A <HI (Ggfe),e’;Zt> —2H; <G$,x€),e’;t> +Hi <Gg;)f€’?°)>%

a=12¢=123¢€#¢€

(6.18)
where
Géﬁ,er;t é1,82,83) = (D (Pz))l/zcgf;e, (&1; Pt (p2), 52;&3)
. (6.19)
= (e”t“GZ),s) (é1,&2,83)-
Combining (2.53) and (2.54) with (3.26)—(3.28) and (6.18) we get
1A LA, Hi@Ng | € 8K (G (Coll(Ha + Dyl + (G + By lgl). - (620
Here K(Gy¢) > 0 and
K(G)? = l”G(“’ 26 +6@ |1 621
) 2 lee 2t et e LZ(lezleZ)' ( . )

a=12¢=123¢€#e€
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) 1/2
. (6.22)
L2(Z1xZ1x2,)

We further note that, for 0 < [t| < 1,

2
O @
0s2 leess

0<|s|<2

K(Gy) £ sup Z
a=120=123¢c#¢

We get

(3i6600) = 3(7CE) + (7 (2 TnGEL)),
(i) = 32, »

—ita 2 (a)
+ Z € <P 2,iP Zlapz,iPzJGé’,s,e’)'
ij=12,3

NI N

(e (P2 VinGile)) (6.23)

Recall that 7 is an one parameter group of unitary operators in L?(Z; x 1 x 35).
Combining Hypothesis 3.1(iii.a) and (iii.b) with (6.20)-(6.23) we finally get

sup
0<|t|<1

[Ar, [A, Hi(G)]1(Ho+ 1) < oo. (6.24)

In view of ®(H) = ®(Hy) the operators Hy(H + i)' and H(Hy - 1)"" are bounded and we
obtain

sup ||[A, [Ar, Hol](H + i)_1|| < o,
0<|t|<1
(6.25)
sup || (A, [4r, Hi(G)I1(H +1)7'|| < co.
0<|t<1
This yields
sup (4, [A, HII(H +) || < 0 (6.26)
0<Jt/<1

forg< q1.
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Let V(p2) denote any of the two C*-vector fields v°(p;) and v, (p2) and let @ denote
the corresponding a” and a, operators. We get

(Bemes)ns

(7™ ((div v (p2))’GY2, ) ) (1,62 &5)

N

+

% (e ((divV(p2))V(p2) - ViuGi ) ) @1 22, 85)
3
< o <Z V (Pz) (aizh,ipz,jvf (P2) > > G(eae ¢ > > (§1, §2/ 53) (6.27)
< it <l]21V (Pz) (Pz) Bp é . €,> > (é1,82, &)
< <,21 Vi(p2)Vi(p2) o ap ap Gy, ) > (41,62, 80)-

Combining the properties of the C* fields v°(p,) and v, (p,) together with Hypotheses 2.1,
3.1(i) and 3.1(iii) we get, from (6.25) and by mimicking the proof of (6.26),

I\)I’—‘

NIH

+

NI~

sup [, [A7, H]J(H +i)7!|| < o0
0<|t|<1
(6.28)
sup || [Aot, [Aot, HII(H +1) " || < o0
o<lfl<1
for g < ¢1.
Similarly, by mimicking the proof of (6.28), we easily get, for g < g1,
sup ||[A?, [A7, HO]] (H® +i)! || < 0. (6.29)
0<Jt<1
This concludes the proof of Proposition 6.2. O

We now prove Theorem 3.7.

Proof of Theorem 3.7. In view of [5, Lemma 6.2.3] (see also [4, Proposition 28]), the proof of
Theorem 3.7 will follow from Proposition 6.1 and the following estimates:

sup || [As, [Ar, o(H)]]|| < oo, (6.30)

0<|t|<1
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sup [|[AY, [A7, p(FD)]]|| < oo,
0<Jti<1

sup || [Ast, [Act, o(H)]] || < oo, (6.31)

0<|t<1

sup [|[A7, [A7, o(H)]]|| < oo
0<t/<1

for every ¢ € C5°((-o0,m1 — 6/2)) and for g < g1.
Let us prove (6.30). The estimates (6.31) can be proved similarly.
To this end, let ¢ be an almost analytic extension of ¢ satisfying

3
7

|0z¢(x +iy)| < Cly
(6.32)

! 62¢(z)dx dy.

w0z

o(H) = j (z- H)Y'dp(z), d(z) =

It follows that

[Ai[AL 9(H)]]

= f((z - H) ' [Adl A, HI(z - H) ' +2(z - H) ' [A, H](z - H) ' [A, H(z - H) ) dg(2).

(6.33)
We note that
||(H+i)(H—z)’1H< € forzesu ¢ (6.34)
~ |Imz|’ PP ¢- '
We also have
sup f (z - H)'[A[A, H]](z - H)'dé(z)
0<|t|<1
A Ag, HI(H + ) |1+ iy 2 — 11y || 1422
< sup f[eatan e o flen o - [FEE2 (6.35)
< Csup |4, [Ay, HIN(H + )| |d¢(z)2|.
0<Jt[<1 |[Im z|
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Therefore, combining Proposition 3.8(b) (i) and (6.34) we obtain

fd¢<z><H —2) U [A, H|(H - 2) ' [A, H|(H - 2)”!

sup
0<|t|<1
= sup f (H-z)'[A, HI(H + i) (H +i)(H-z) '[A;, H|(H + i) "(H + i) (H- 2) ' ||d¢(z)
0<|t|<1
< c< |d¢(?|> sup ||[Ar, H](H + i)-1n2 < oo.
ly| 0<lti<1
(6.36)

Inequality (6.36) together with (6.35) yields (6.30), and H is locally of class C?(A) on
(oo, m1 —6/2) for g < q1.

In a similar way it follows from Propositions 3.8(b), 6.1, and 6.2 that H is locally of class
C?(A”%) and C?(A,) in (—oo, m;—6/2) and that HY is locally of class C?(A°) in (—c0, m1-6/2),
for g < g1. This ends the proof of Theorem 3.7. O

7. Proof of Theorem 3.4

By (3.91), U1 ((y - eY)Zon, (y + €y)on)) is a covering by open sets of any compact subset
of (E,m; — 6] and of the interval (E,m; — 6] itself. Theorem 3.4(i) and (ii) follow from [6,

Theorems 0.1 and 0.2] and Theorems 3.7 and 3.10 above with g5 = géz) , where §éz) is given in
Theorem 3.10. Theorem 3.4(iii) follows from [30, Theorem 25].

Appendix

In this appendix, we will prove Proposition 3.5. We apply the method developed in [3]
because every infrared cutoff Hamiltonian that one considers has a ground state energy
which is a simple eigenvalue.
Let, forn >0,
Son — gn

Zﬁl =31 N {p2; Onn < |P2| < On},

Sizh =8a(L2(31)) o3 (%5)), -
SZH = é S?,E}n
=1

We have

5n+1 ~ %n ® %vz+l‘ (A2)
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Let Q" (resp., Q1) be the vacuum state in " (resp., in 3+1). We now set

3
e =HO v HO 4+ 3 Y f AL RSTA TS (A3)
On+1<|P2|<0n

¢=1 e=%

The operator HJli! is a self-adjoint operator in §*.
Let us denote by H}' and H}‘;l the interaction H; given by (2.23) and (2.24) but
associated with the following kernels:

7 (p2) G (1,60, 83), (A4)
(57 (p2) = £ (2)) G (81,2, 83), (A5)

respectively, where Y is defined by (3.13).
Let forn >0,

H!'=H"-E",
— (A.6)
H!=H!e®1" +1,® HI".

The operators H" and H” are self-adjoint operators in 3" and §"*!, respectively. Here 1" and
17+1 are the identity operators in §" and §7*!, respectively.

Combining (2.53) and (2.54) with (3.26)—(3.28) we obtain for n > 0,
glH ¢l < gK(G) (Cpy [ Hog || + Benll ) (A7)

for every ¢ € D(H[) C §".
It follows from [33, Section V, Theorem 4.11] that

n

§K(G)By  s1K(G)Byy

=~ 1-@K(G)Cpy = 1-g1K(G)Cpy’

(A.8)
.. SK(G)By,
~ 1-21K(G)Cyy
We have
(Q", H"Q") = 0. (A.9)
Therefore
E" <0, (A.10)
K(G)B

E"| <8 (G)Byy (A11)

|
<9 — 1K(G)Cpy
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Let

K (G) = K<1Gn+1S|P2|SZO‘nG>’ (A.12)
Combining (2.53) and (2.54) with (3.26) and (A.12) we obtain for n > 0
sl Fite ] < s @ (Conl| ] + Bl ) (A13)

for ¢ € %(H(’)“l) C !, where we remind that Hg+1 = Ho|gonn as defined in (3.24).
We have, for every ¢ € D(HJ™),

Hyly = Hig + By - g(H} o 15 )y, (A14)
and by (A7)
| (@ 12 )| < 8K @) (Con| 3 ] + Bunllos]). (A15)
In view of (A.11) and (A.14) it follows from (A.15) that

sl (7 e 1o

. gK(G)Cgy ||’Hf | gK(G)By, <1 ., _8K(©G)By > 1ol (A.16)
1 - g1K(G)Cyy 1-g1K(G)Cpy 1-21K(G)Cpy
By (3.29), (A.13), (A.14), and (A.16) we finally get

3| Hi|| < gKi @) (Cp | Hitgr|| + Bl (A.17)

For n > 0, a straightforward computation yields
K™(G) < 0,K(G) < sup (%, 1>IZ(G) “’;” . (A.18)

Recall that, forn >0,

Opy1 < M. (A.19)

By (A.17), (A.18), and (A.19), we get, for ¢ € D(Hy),

g||H}1;1qr|| < gKi"(G) (@n” <ﬁ:—l + 0n+1>‘l’n + (@ﬂml + Eﬂﬂ) ”‘I’”)f (A.20)
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and for ¢ € §,

_ 5 G+ B
Hi (2 + ona) )| < 8K77(G) <cpq + M) Il

i

o (A21)
< %sup<%,1>12(c) (2m1Cy + By ) 1
Thus, by (A.21), the operator HJ'! (H" + 0,.1) " is bounded and
g‘ Ht (Hi + O'n+1>_1 < g%, (A22)
where D is given by (see (3.32))
D= sup(zz\—]_/(s, 1)12((;) (2mCy + By )- (A.23)
This yields, for ¢ € ®(H?),
sl < 62 | (7 < v o] a2
Hence it follows from [33, Section V, Theorems 4.11 and 4.12] that
g| (H}‘;lqr, qr>| < g? ((ﬁf + oml)q;, (,u). (A.25)
Let géz) > 0 be such that
gg)% <1, g¥<gl. (A.26)
By (A.25) we get, for g < géz) ,
H™' =H'+E"+ gH"!' > E" - ?om + <1 - g)m. (A.27)

Because (1 - gﬁ/y)ﬁf > 0 we get from (A.27)

D
En+1 > E" - gTO-rHl/ n>0. (A.28)
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Suppose that ¢" € §" satisfies ||¢"|| = 1 and, for € > 0,
(¢", H"¢") <E" +e.
Let
l'pm-l — ‘Pn ® Qn+1 c gn+1
" .

We obtain

En+1 < <(’I}n+1’Hn+1(’I}n+1> < E" + € +g<¢‘,n+1’HIn;1q'}n+1>.

By (A.25), (A.29), (A.30), and (A.31) we get, for every € > 0,

D D
En+1 <E"+ €<1 + gT) + gTO'nJrl/

where g < géz).
This yields

E™ <E"+ gTom,

and by (A.28), we obtain

gD

E" — En+1 <2 Ghi.
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(A.29)

(A.30)

(A31)

(A.32)

(A.33)

(A.34)

For n =0, since 0p = A, remind that Hg = H6‘=0 = Hg“ = Hy|za. Thus, the ground state
energy of H{ is 0 and it is a simple isolated eigenvalue of Hj with Q°, the vacuum in §°, as

eigenvector. Moreover, since A > m;,
inf<o<H8> \ {0}> =my,

thus (0, m,) belongs to the resolvent set of Hg .

(A.35)

By Hypothesis 3.1(iv) we have H’ = HJ. Hence E° = {0} is a simple isolated

eigenvalue of H? and H® = HY. We finally get

inf(o(Hf) - {0}> =my >my — g = 0.

(A.36)
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We now prove Proposition 3.5 by induction in n € N*. Suppose that E" is a simple
isolated eigenvalue of H" such that

inf(c(H!) \ {0}) > < - @>on, n>1. (A.37)

Since (3.36) gives 0,1 < (1 -3gD/y)oy, for g < géz), 0 is also a simple isolated eigenvalue of
H" such that

inf<o<’ﬁf) \ {0}) > Ot (A.38)

We must now prove that E"*! is a simple isolated eigenvalue of H"*! such that

~ n+ 3gD
1nf<o<H+ 1) \ {0}) > < - T>Gn+1. (A.39)
Let
A =gy inf CH™ ).
wesm};#o(¢,w>-o;¢e%<Hn+1>;||¢||—1<¢ ) (A40)

By (A.27) and (A.33), we obtain, in §"*!,

(A41)

By (A.30), ¢"*! is the unique ground state of Ef, and by (A.38) and (A.41), we have, for
()
8§58/

)L(n+1) > inf <¢, Hf+1¢>

(@Gm)=0,peD(H™)|g1=1

D 2¢D 3¢D
> _g_ O'n+1_g_0'n+1: 1_g_ Ons1 > 0.
Y Y Y

This concludes the proof of Proposition 3.5 by choosing gs = géz), if one proves that H'

(A.42)

satisfies Proposition 3.5. By noting that 0 is a simple isolated eigenvalue of HO such that
inf(c(H?) \ {0}) = 01, we prove that E! is indeed an isolated simple eigenvalue of H! such
that inf(c(H!) \ {0}) > (1 - 3¢D/y)o1 by mimicking the proof given above for H*1.
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