
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2009, Article ID 978903, 52 pages
doi:10.1155/2009/978903

Research Article
Spectral Theory for a Mathematical Model of the
Weak Interaction—Part I: The Decay of the
Intermediate Vector Bosons W±

J.-M. Barbaroux1, 2 and J.-C. Guillot3
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1. Introduction

In this article, we consider a mathematical model of the weak interaction as patterned accord-
ing to the Standard Model in Quantum Field Theory (see [1, 2]). We choose the example of
the weak decay of the intermediate vector bosonsW± into the full family of leptons.

The mathematical framework involves fermionic Fock spaces for the leptons and
bosonic Fock spaces for the vector bosons. The interaction is described in terms of
annihilation and creation operators together with kernels which are square integrable with
respect tomomenta. The total Hamiltonian, which is the sum of the free energy of the particles
and antiparticles and of the interaction, is a self-adjoint operator in the Fock space for the
leptons and the vector bosons and it has an unique ground state in the Fock space for a
sufficiently small coupling constant.

The weak interaction is one of the four fundamental interactions known up to now.
But the weak interaction is the only one which does not generate bound states. As it is well
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known, it is not the case for the strong, electromagnetic, and gravitational interactions. Thus
we are expecting that the spectrum of the Hamiltonian associated with every model of weak
decays is absolutely continuous above the energy of the ground state, and this article is a first
step towards a proof of such a statement. Moreover a scattering theory has to be established
for every such Hamiltonian.

In this paper we establish a Mourre estimate and a limiting absorption principle for
any spectral interval above the energy of the ground state and below the mass of the electron
for a small coupling constant.

Our study of the spectral analysis of the total Hamiltonian is based on the conjugate
operator method with a self-adjoint conjugate operator. The methods used in this article are
taken largely from [3, 4] and are based on [5, 6]. Some of the results of this article have been
announced in [7].

For other applications of the conjugate operator method see [8–19].
For related results about models in Quantum Field Theory see [20, 21] in the case of

the Quantum Electrodynamics and [22] in the case of the weak interaction.
The paper is organized as follows. In Section 2, we give a precise definition of the

model we consider. In Section 3, we state our main results and in the following sections,
together with the appendix, detailed proofs of the results are given.

2. The Model

The weak decay of the intermediate bosons W+ and W− involves the full family of leptons
together with the bosons themselves, according to the Standard Model (see [1, formula
(4.139)] and [2]).

The full family of leptons involves the electron e− and the positron e+, together with the
associated neutrino νe and antineutrino νe, the muons μ− and μ+ together with the associated
neutrino νμ and antineutrino νμ, and the tau leptons τ− and τ+ together with the associated
neutrino ντ and antineutrino ντ .

It follows from the Standard Model that neutrinos and antineutrinos are massless
particles. Neutrinos are left handed, that is, neutrinos have helicity −1/2 and antineutrinos
are right handed, that is, antineutrinos have helicity +1/2.

In what follows, the mathematical model for the weak decay of the vector bosons
W+ and W− that we propose is based on the Standard Model, but we adopt a slightly more
general point of view because we suppose that neutrinos and antineutrinos are both massless
particles with helicity ±1/2. We recover the physical situation as a particular case. We could
also consider a model with massive neutrinos and antineutrinos built upon the Standard
Model with neutrino mixing [23].

Let us sketch how we define a mathematical model for the weak decay of the vector
bosonsW± into the full family of leptons.

The energy of the free leptons and bosons is a self-adjoint operator in the correspond-
ing Fock space (see below), and the main problem is associated with the interaction between
the bosons and the leptons. Let us consider only the interaction between the bosons and the
electrons, the positrons, and the corresponding neutrinos and antineutrinos. Other cases are
strictly similar. In the Schrödinger representation the interaction is given by (see [1, page 159,
equation (4.139)] and [2, page 308, equation (21.3.20)])

I =
∫
d3xΨe(x)γα

(
1 − γ5

)
Ψνe(x)Wα(x) +

∫
d3xΨνe(x)γ

α(1 − γ5)Ψe(x)Wα(x)∗, (2.1)



Advances in Mathematical Physics 3

where γα, α = 0, 1, 2, 3 and γ5 are the Dirac matrices and Ψ·(x) and Ψ·(x) are the Dirac fields
for e−, e+, νe, and νe.

We have

Ψe(x) =
(

1
2π

)3/2 ∑
s=±1/2

∫
d3p

(
be,+
(
p, s
)u(p, s)

√
p0

eip·x + b∗e,−
(
p, s
)v(p, s)

√
p0

e−ip·x
)
,

Ψe(x) = Ψe(x)†γ0.

(2.2)

Here p0 = (|p|2 +m2
e)

1/2 where me > 0 is the mass of the electron, and u(p, s) and v(p, s) are
the normalized solutions to the Dirac equation (see [1, Appendix]).

The operators be,+(p, s) and b∗e,+(p, s) (resp., be,−(p, s) and b
∗
e,−(p, s)) are the annihilation

and creation operators for the electrons (resp., the positrons) satisfying the anticommutation
relations (see below).

Similarly we define Ψνe(x) and Ψνe(x) by substituting the operators cνe,±(p, s) and
c∗νe,±(p, s) for be,±(p, s) and b∗e,±(p, s) with p0 = |p|. The operators cνe,+(p, s) and c∗νe,+(p, s)
(resp., cνe,−(p, s) and c

∗
νe,−(p, s)) are the annihilation and creation operators for the neutrinos

associated with the electrons (resp., the antineutrinos).
For theWα fields we have (see [24, Section 5.3])

Wα(x) =
(

1
2π

)3/2 ∑
λ=−1,0,1

∫
d3k√
2k0

(
εα(k, λ)a+(k, λ)eik·x + ε∗α(k, λ)a

∗
−(k, λ)e

−ik·x
)
. (2.3)

Here k0 = (|k|2 +m2
W)1/2 wheremW > 0 is the mass of the bosonsW±.W+ is the antiparticule

of W−. The operators a+(k, λ) and a∗+(k, λ) (resp., a−(k, λ) and a∗−(k, λ)) are the annihilation
and creation operators for the bosons W− (resp., W+) satisfying the canonical commutation
relations. The vectors εα(k, λ) are the polarizations of the massive spin 1 bosonsW± (see [24,
Section 5.2]).

The interaction (2.1) is a formal operator and, in order to get a well-defined operator
in the Fock space, one way is to adapt what Glimm and Jaffe have done in the case of the
Yukawa Hamiltonian (see [25]). For that sake, we have to introduce a spatial cutoff g(x) such
that g ∈ L1(R3), together with momentum cutoffs χ(p) and ρ(k) for the Dirac fields and the
Wμ fields, respectively.

Thus when one develops the interaction I with respect to products of creation and
annihilation operators, one gets a finite sum of terms associated with kernels of the form

χ
(
p1
)
χ
(
p2
)
ρ(k)ĝ

(
p1 + p2 − k

)
, (2.4)

where ĝ is the Fourier transform of g. These kernels are square integrable.
In what follows, we consider a model involving terms of the above form but withmore

general square integrable kernels.
We follow the convention described in [24, Section 4.1] that we quote: “The state-

vector will be taken to be symmetric under interchange of any bosons with each other, or
any bosons with any fermions, and antisymmetric with respect to interchange of any two
fermions with each other, in all cases, whether the particles are of the same species or not.”
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Thus, as it follows from [24, Section 4.2], fermionic creation and annihilation operators of
different species of leptons will always anticommute.

Concerning our notations, from now on, � ∈ {1, 2, 3} denotes each species of leptons.
� = 1 denotes the electron e− the positron e+ and the neutrinos νe, νe. � = 2 denotes the muons
μ−, μ+ and the neutrinos νμ and νμ, and � = 3 denotes the tau-leptons and the neutrinos ντ
and ντ .

Let ξ1 = (p1, s1) be the quantum variables of a massive lepton, where p1 ∈ R
3 and

s1 ∈ {−1/2, 1/2} is the spin polarization of particles and antiparticles. Let ξ2 = (p2, s2) be the
quantum variables of a massless lepton where p2 ∈ R

3 and s2 ∈ {−1/2, 1/2} is the helicity of
particles and antiparticles, and, finally, let ξ3 = (k, λ) be the quantum variables of the spin 1
bosons W+ and W− where k ∈ R

3 and λ ∈ {−1, 0, 1} is the polarization of the vector bosons
(see [24, Section 5]). We set Σ1 = R

3 × {−1/2, 1/2} for the leptons and Σ2 = R
3 × {−1, 0, 1} for

the bosons. Thus L2(Σ1) is the Hilbert space of each lepton and L2(Σ2) is the Hilbert space of
each boson. The scalar product in L2(Σj), j = 1, 2 is defined by

(
f, g
)
=
∫
Σj
f(ξ)g(ξ)dξ, j = 1, 2. (2.5)

Here

∫
Σ1

dξ =
∑

s=+1/2,−1/2

∫
dp,

∫
Σ2

dξ =
∑

λ=0,1,−1

∫
dk,

(
p, k ∈ R

3
)
. (2.6)

The Hilbert space for the weak decay of the vector bosons W+ and W− is the Fock
space for leptons and bosons that we now describe.

Let S be any separable Hilbert space. Let
⊗n

aS (resp.,
⊗n

sS) denote the antisymmetric
(resp., symmetric) nth tensor power of S. The fermionic (resp., bosonic) Fock space over S,
denoted by Fa(S) (resp., Fs(S)), is the direct sum

Fa(S) =
∞⊕
n=0

n⊗
a

S

(
resp., Fs(S) =

∞⊕
n=0

n⊗
s

S

)
, (2.7)

where
⊗0

aS =
⊗0

sS ≡ C. The state Ω = (1, 0, 0, . . . , 0, . . .) denotes the vacuum state in Fa(S)
and in Fs(S).

For every �, F� is the fermionic Fock space for the corresponding species of leptons
including the massive particle and antiparticle together with the associated neutrino and
antineutrino, that is,

F� =
4⊗

Fa
(
L2(Σ1)

)
� = 1, 2, 3. (2.8)

We have

F� =
⊕

q�≥0,q�≥0,r�≥0,r�≥0
F
(q� ,q� ,r� ,r�)
�

(2.9)
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with

F
(q� ,q� ,r� ,r�)
�

=

(
q�⊗
a

L2(Σ1)

)
⊗
⎛
⎝ q�⊗

a

L2(Σ1)

⎞
⎠ ⊗
(

r�⊗
a

L2(Σ1)

)
⊗
(

r�⊗
a

L2(Σ1)

)
. (2.10)

Here q� (resp., q�) is the number of massive fermionic particle (resp., antiparticles) and r�
(resp., r�) is the number of neutrinos (resp., antineutrinos). The vector Ω� is the associated
vacuum state. The fermionic Fock space denoted by FL for the leptons is then

FL =
3⊗
�=1

F�, (2.11)

and ΩL =
⊗3

�=1Ω� is the vacuum state.
The bosonic Fock space for the vector bosonsW+ andW−, denoted by FW , is then

FW = Fs
(
L2(Σ2)

)
⊗ Fs
(
L2(Σ2)

)
	 Fs
(
L2(Σ2) ⊕ L2(Σ2)

)
. (2.12)

We have

FW =
⊕
t≥0,t≥0

F
(t,t)
W , (2.13)

where F
(t,t)
W = (

⊗t
sL

2(Σ2)) ⊗ (
⊗t

sL
2(Σ2)). Here t (resp., t) is the number of bosons W− (resp.,

W+). The vector ΩW is the corresponding vacuum.
The Fock space for the weak decay of the vector bosonsW+ andW−, denoted by F, is

thus

F = FL ⊗ FW, (2.14)

and Ω = ΩL ⊗ΩW is the vacuum state.
For every � ∈ {1, 2, 3} let D� denote the set of smooth vectors ψ� ∈ F� for which

ψ
(q� ,q� ,r� ,r�)
�

has a compact support and ψ
(q� ,q� ,r� ,r�)
�

= 0 for all but finitely many (q�, q�, r�, r�).
Let

DL =
⊗̂3

�=1
D�. (2.15)

Here
⊗̂

is the algebraic tensor product.
Let DW denote the set of smooth vectors φ ∈ FW for which φ(t,t) has a compact support

and φ(t,t) = 0 for all but finitely many (t, t).
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Let

D = DL⊗̂DW. (2.16)

The set D is dense in F.
Let A� be a self-adjoint operator in F� such that D� is a core for A� . Its extension to FL

is, by definition, the closure in FL of the operator A1 ⊗ 12 ⊗ 13 with domain DL when � = 1, of
the operator 11 ⊗ A2 ⊗ 13 with domain DL when � = 2, and of the operator 11 ⊗ 12 ⊗ A3 with
domain DL when � = 3. Here 1� is the operator identity on F� .

The extension of A� to FL is a self-adjoint operator for which DL is a core and it can
be extended to F. The extension of A� to F is, by definition, the closure in F of the operator
Ã� ⊗ 1W with domain D, where Ã� is the extension of A� to FL. The extension of A� to F is a
self-adjoint operator for which D is a core.

Let B be a self-adjoint operator in FW for which DW is a core. The extension of the
self-adjoint operator A� ⊗ B is, by definition, the closure in F of the operator A1 ⊗ 12 ⊗ 13 ⊗ B
with domain D when � = 1, of the operator 11 ⊗A2 ⊗ 13 ⊗ B with domain D when � = 2, and
of the operator 11 ⊗ 12 ⊗A3 ⊗ B with domain D when � = 3. The extension of A� ⊗ B to F is a
self-adjoint operator for which D is a core.

We now define the creation and annihilation operators.
For each � = 1, 2, 3, b�,ε(ξ1) (resp., b∗

�,ε
(ξ1)) is the fermionic annihilation (resp.,

fermionic creation) operator for the corresponding species of massive particle when ε = +
and for the corresponding species of massive antiparticle when ε = −. The operators b�,ε(ξ1)
and b∗

�,ε
(ξ1) are defined as usually (see, e.g., [20, 26]; see also the detailed definitions in [27]).
Similarly, for each � = 1, 2, 3, c�,ε(ξ2) (resp., c∗�,ε(ξ2)) is the fermionic annihilation (resp.,

fermionic creation) operator for the corresponding species of neutrino when ε = + and for
the corresponding species of antineutrino when ε = −. The operators c�,ε(ξ2) and c∗�,ε(ξ2) are
defined in a standard way, but with the additional requirements that for any �, �′, ε and ε′, the
operators b��,ε(ξ1) and c

�

�′,ε′(ξ2) anticommutes, where � stands either for a ∗ or for no symbol
(see the detailed definitions in [27]).

The operator aε(ξ3) (resp., a∗ε(ξ3)) is the bosonic annihilation (resp., bosonic creation)
operator for the boson W− when ε = + and for the boson W+ when ε = − (see, e.g., [20, 26],
or [27]). Note that a�(ξ3) commutes with b��,ε(ξ1) and c

�

�′,ε′(ξ2).
The following canonical anticommutation and commutation relations hold:

{
b�,ε(ξ1), b∗�′,ε′

(
ξ′1
)}

= δ��′δεε′δ
(
ξ1 − ξ′1

)
,

{
c�,ε(ξ2), c∗�′,ε′

(
ξ′2
)}

= δ��′δεε′δ
(
ξ2 − ξ′2

)
,

[
aε(ξ3), a∗ε′

(
ξ′3
)]

= δεε′δ
(
ξ3 − ξ′3

)
,

{
b�,ε(ξ1), b�′,ε′

(
ξ′1
)}

=
{
c�,ε(ξ2), c�′,ε′

(
ξ′2
)}

= 0,
[
aε(ξ3), aε′

(
ξ′3
)]

= 0,

{b�,ε(ξ1), c�′,ε′(ξ2)} =
{
b�,ε(ξ1), c∗�′,ε′ (ξ2)

}
= 0,

[b�,ε(ξ1), aε′(ξ3)] =
[
b�,ε(ξ1), a∗ε′(ξ3)

]
= [c�,ε(ξ2), aε′(ξ3)] =

[
c�,ε(ξ2), a∗ε′ (ξ3)

]
= 0,

(2.17)

where we used the notation δ(ξj − ξ′j) = δλλ′δ(k − k′).
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We recall that the following operators, with ϕ ∈ L2(Σ1),

b�,ε
(
ϕ
)
=
∫
Σ1

b�,ε(ξ)ϕ(ξ)dξ, c�,ε
(
ϕ
)
=
∫
Σ1

c�,ε(ξ)ϕ(ξ)dξ,

b∗�,ε
(
ϕ
)
=
∫
Σ1

b∗�,ε(ξ)ϕ(ξ)dξ, c∗�,ε
(
ϕ
)
=
∫
Σ1

c∗�,ε(ξ)ϕ(ξ)dξ

(2.18)

are bounded operators in F such that

∥∥∥b��,ε(ϕ)
∥∥∥ =
∥∥∥c��,ε(ϕ)

∥∥∥ = ∥∥ϕ∥∥L2 , (2.19)

where b� (resp., c�) is b (resp., c) or b∗ (resp., c∗).
The operators b�

�,ε
(ϕ) and c

�

�,ε
(ϕ) satisfy similar anticommutaion relations (see, e.g.,

[28]).
The free HamiltonianH0 is given by

H0 = H
(1)
0 +H(2)

0 +H(3)
0

=
3∑
�=1

∑
ε=±

∫
w

(1)
� (ξ1)b∗�,ε(ξ1)b�,ε(ξ1)dξ1 +

3∑
�=1

∑
ε=±

∫
w

(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2

+
∑
ε=±

∫
w(3)(ξ3)a∗ε(ξ3)aε(ξ3)dξ3,

(2.20)

where

w
(1)
� (ξ1) =

(∣∣p1∣∣2 +m2
�

)1/2
, with 0 < m1 < m2 < m3,

w
(2)
� (ξ2) =

∣∣p2∣∣,
w(3)(ξ3) =

(
|k|2 +m2

W

)1/2
,

(2.21)

wheremW is the mass of the bosonsW+ andW− such thatmW > m3.
The spectrum of H0 is [0,∞) and 0 is a simple eigenvalue with Ω as eigenvector. The

set of thresholds ofH0, denoted by T , is given by

T =
{
pm1 + qm2 + rm3 + smW ;

(
p, q, r, s

) ∈ N
4, p + q + r + s ≥ 1

}
, (2.22)

and each set [t,∞), t ∈ T , is a branch of absolutely continuous spectrum forH0.
The interaction, denoted byHI , is given by

HI =
2∑
α=1

H
(α)
I , (2.23)
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where

H
(1)
I =

3∑
�=1

∑
ε /= ε′

∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)aε(ξ3)dξ1dξ2dξ3

+
3∑
�=1

∑
ε /= ε′

∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)a

∗
ε(ξ3)c�,ε′(ξ2)b�,ε(ξ1)dξ1dξ2dξ3,

H
(2)
I =

3∑
�=1

∑
ε /= ε′

∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)a

∗
ε(ξ3)dξ1dξ2dξ3

+
3∑
�=1

∑
ε /= ε′

∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)aε(ξ3)c�,ε′(ξ2)b�,ε(ξ1)dξ1dξ2dξ3.

(2.24)

The kernels G(2)
�,ε,ε′(·, ·, ·), α = 1, 2, are supposed to be functions.

The total Hamiltonian is then

H = H0 + gHI, g > 0, (2.25)

where g is a coupling constant.
The operatorH(1)

I describes the decay of the bosonsW+ andW− into leptons. Because
of H(2)

I the bare vacuum will not be an eigenvector of the total Hamiltonian for every g > 0
as we expect from the physics.

Every kernelG�,ε,ε′(ξ1, ξ2, ξ3), computed in theoretical physics, contains a δ-distribution
because of the conservation of the momentum (see [1] and [24, Section 4.4]). In what follows,
we approximate the singular kernels by square integrable functions.

Thus, from now on, the kernelsG(α)
�,ε,ε′ are supposed to satisfy the following hypothesis.

Hypothesis 2.1. For α = 1, 2, � = 1, 2, 3, ε, ε′ = ±, we assume

G
(α)
�,ε,ε′(ξ1, ξ2, ξ3) ∈ L2(Σ1 × Σ1 × Σ2). (2.26)

Remark 2.2. A similar model can be written down for the weak decay of pions π− and π+ (see
[1, Section 6.2]).

Remark 2.3. The total Hamiltonian ismore general than the one involved in the theory of weak
interactions because, in the Standard Model, neutrinos have helicity −1/2 and antineutrinos
have helicity 1/2.

In the physical case, the Fock space, denoted by F′, is isomorphic to F′
L ⊗ FW , with

F′
L =

3⊗
�=1

F′
�,

F′
� =

(
2⊗
a

L2(Σ1)

)
⊗
(

2⊗
a

L2
(
R

3
))

.

(2.27)
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The free Hamiltonian, now denoted byH ′
0, is then given by

H ′
0 =

3∑
�=1

∑
ε=±

∫
w

(1)
� (ξ1)b∗�,ε(ξ1)b�,ε(ξ1)dξ1 +

3∑
�=1

∑
ε=±

∫
R3

∣∣p2∣∣c∗�,ε(p2)c�,ε(p2)dp2

+
∑
ε=±

∫
w(3)(ξ3)a∗ε(ξ3)aε(ξ3)dξ3,

(2.28)

and the interaction, now denoted by H ′
I , is the one obtained from HI by supposing that

G(α)(ξ1, (p2, s2), ξ3) = 0 if s2 = ε(1/2). The total Hamiltonian, denoted by H ′, is then given
by H ′ = H ′

0 + gH
′
I . The results obtained in this paper for H hold true for H ′ with obvious

modifications.

Under Hypothesis 2.1 a well-defined operator on D corresponds to the formal
interactionHI as it follows.

The formal operator

∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)aε(ξ3)dξ1dξ2dξ3 (2.29)

is defined as a quadratic form on (D� ⊗ DW) × (D� ⊗ DW) as

∫(
c�,ε′(ξ2)b�,ε(ξ1)ψ,G

(1)
�,ε,ε′aε(ξ3)φ

)
dξ1dξ2dξ3, (2.30)

where ψ, φ ∈ D� ⊗ DW .
By mimicking the proof of [29, Theorem X.44], we get a closed operator, denoted by

H
(1)
I,�,ε,ε′ , associated with the quadratic form such that it is the unique operator in F� ⊗FW such

that D� ⊗ DW ⊂ D(H(1)
I,�,ε,ε′) is a core forH(1)

I,�,ε,ε′ and

H
(1)
I,�,ε,ε′ =

∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)aε(ξ3)dξ1dξ2dξ3 (2.31)

as quadratic forms on (D� ⊗ DW) × (D� ⊗ DW).
Similarly for the operator (H(1)

I,�,ε,ε′)
∗, we have the equality as quadratic forms

(
H

(1)
I,�,ε,ε′

)∗
=
∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)a

∗
ε(ξ3)c�,ε′(ξ2)b�,ε(ξ1)dξ1dξ2dξ3. (2.32)

Again, there exists two closed operators H(2)
I,�,ε,ε′ and (H(2)

I,�,ε,ε′)
∗ such that D� ⊗ DW ⊂

D(H(2)
I,�,ε,ε′), D� ⊗ DW ⊂ D((H(2)

I,�,ε,ε′)
∗), and D� ⊗ DW is a core for H(2)

I,�,ε,ε′ and (H(2)
I,�,ε,ε′)

∗ and
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such that

H
(2)
I,�,ε,ε′ =

∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)a

∗
ε(ξ3)dξ1dξ2dξ3,

(
H

(2)
I,�,ε,ε′

)∗
=
∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)aε(ξ3)c�,ε′(ξ2)b�,ε(ξ1)dξ1dξ2dξ3

(2.33)

as quadratic forms on (D� ⊗ DW) × (D� ⊗ DW).
We will still denote byH(α)

I,�,ε,ε′ and (H(α)
I,�,ε,ε′)

∗ (α = 1, 2) their extensions to F. The set D

is then a core forH(α)
I,�,ε,ε′ and (H(α)

I,�,ε,ε′)
∗.

Thus

H = H0 + g
∑
α=1,2

3∑
�=1

∑
ε /= ε′

(
H

(α)
I,�,ε,ε′ +

(
H

(2)
I,�,ε,ε′

)∗)
(2.34)

is a symmetric operator defined on D.
We now want to prove that H is essentially self-adjoint on D by showing that H(α)

I,�,ε,ε′

and (H(α)
I,�,ε,ε′)

∗ are relativelyH0-bounded.
Once again, as above, for almost every ξ3 ∈ Σ2, there exists closed operators in FL,

denoted by B(α)
�,ε,ε′(ξ3) and (B(α)

�,ε,ε′(ξ3))
∗ such that

B
(1)
�,ε,ε′(ξ3) = −

∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)b�,ε(ξ1)c�,ε′(ξ2)dξ1dξ2,

(
B
(1)
�,ε,ε′(ξ3)

)∗
=
∫
G

(1)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)dξ1dξ2,

B
(2)
�,ε,ε′(ξ3) =

∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)b

∗
�,ε(ξ1)c

∗
�,ε′(ξ2)dξ1dξ2,

(
B
(2)
�,ε,ε′(ξ3)

)∗
= −
∫
G

(2)
�,ε,ε′(ξ1, ξ2, ξ3)b�,ε(ξ1)c�,ε′(ξ2)dξ1dξ2

(2.35)

as quadratic forms on D� × D� .
We have that D� ⊂ D(B(α)

�,ε,ε′(ξ3)) (resp., D� ⊂ D((B(α)
�,ε,ε′(ξ3))

∗) is a core for B(α)
�,ε,ε′(ξ3)

(resp., for (B(α)
�,ε,ε′(ξ3))

∗). We still denote by B(α)
�,ε,ε′(ξ3)) and (B(α)

�,ε,ε′(ξ3))
∗) their extensions to FL.

It then follows that the operatorHI with domain D is symmetric and can be written in
the following form:

HI =
∑
α=1,2

3∑
�=1

∑
ε /= ε′

(
H

(α)
I,�,ε,ε′ +

(
H

(α)
I,�,ε,ε′

)∗)
=
∑
α=1,2

3∑
�=1

∑
ε /= ε′

∫
B
(α)
�,ε,ε′(ξ3) ⊗ a∗ε(ξ3)dξ3

+
∑
α=1,2

3∑
�=1

∑
ε /= ε′

∫ (
B
(α)
�,ε,ε′(ξ3)

)∗ ⊗ aε(ξ3)dξ3.
(2.36)
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LetN� denote the operator number of massive leptons � in F� , that is,

N� =
∑
ε

∫
b∗�,ε(ξ1)b�,ε(ξ1)dξ1. (2.37)

The operator N� is a positive self-adjoint operator in F� . We still denote by N� its extension
to FL. The set DL is a core forN� .

We then have the following.

Proposition 2.4. For almost every ξ3 ∈ Σ2, D(B(α)
�,ε,ε′(ξ3)), D((B(α)

�,ε,ε′(ξ3))
∗) ⊃ D(N1/2

�
), and for

Φ ∈ D(N1/2
�

) ⊂ FL one has

∥∥∥B(α)
�,ε,ε′(ξ3)Φ

∥∥∥
FL

≤
∥∥∥G(α)

�,ε,ε′(·, ·, ξ3)
∥∥∥
L2(Σ1×Σ1)

∥∥∥N1/2
� Φ
∥∥∥

FL

,

∥∥∥(B(α)
�,ε,ε′(ξ3)

)∗
Φ
∥∥∥

FL

≤
∥∥∥G(α)

�,ε,ε′(·, ·, ξ3)
∥∥∥
L2(Σ1×Σ1)

∥∥∥N1/2
�

Φ
∥∥∥

FL

.

(2.38)

Proof. The estimates (2.38) are examples ofNτ estimates (see [25]). The proof is quite similar
to the proof of [20, Proposition 3.7]. Details can be found in [27] but are omitted here.

Let

H
(3)
0,ε =

∫
w(3)(ξ3)a∗ε(ξ3)aε(ξ3)dξ3. (2.39)

ThenH(3)
0,ε is a self-adjoint operator in FW , and DW is a core forH(3)

0,ε .
We get the following.

Proposition 2.5. One has
∥∥∥∥
∫ (

B
(α)
�,ε,ε′(ξ3)

)∗ ⊗ aε(ξ3)dξ3Ψ
∥∥∥∥
2

≤

⎛
⎜⎝
∫
Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2
w(3)(ξ3)

dξ1dξ2dξ3

⎞
⎟⎠
∥∥∥∥(N� + 1)1/2 ⊗

(
H

(3)
0,ε

)1/2
Ψ
∥∥∥∥
2

,

(2.40)

∥∥∥∥
∫
B
(α)
�,ε,ε′(ξ3) ⊗ a∗ε(ξ3)dξ3Ψ

∥∥∥∥
2

≤

⎛
⎜⎝
∫
Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2
w(3)(ξ3)

dξ1dξ2dξ3

⎞
⎟⎠
∥∥∥∥(N� + 1)1/2 ⊗

(
H

(3)
0,ε

)1/2
Ψ
∥∥∥∥
2

+

(∫
Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2dξ1dξ2dξ3
)(

η
∥∥∥(N� + 1)1/2 ⊗ 1Ψ

∥∥∥2 + 1
4η

‖Ψ‖2
)

(2.41)

for every Ψ ∈ D(H0) and every η > 0.
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Proof. Suppose that Ψ ∈ D(N1/2
� )⊗̂D((H(3)

0,ε )
1/2). Let

Ψε(ξ3) = w(3)(ξ3)
1/2
(
(N� + 1)1/2 ⊗ aε(ξ3)

)
Φ. (2.42)

We have
∫ (

B
(α)
�,ε,ε′(ξ3)

)∗ ⊗ aε(ξ3)dξ3Ψ =
∫
Σ2

1(
w(3)(ξ3)

)1/2
((
B
(α)
�,ε,ε′(ξ3)

)∗
(N� + 1)−1/2 ⊗ 1

)
Ψε(ξ3)dξ3.

(2.43)

Therefore, for Ψ ∈ D(N1/2
�

)⊗̂D((H(3)
0,ε )

1/2), (2.40) follows from Proposition 2.4.
We now have

∥∥∥∥
∫
B
(α)
�,ε,ε′(ξ3) ⊗ a∗ε(ξ3)Ψdξ3

∥∥∥∥
2

F

=
∫(

B
(α)
�,ε,ε′(ξ3) ⊗ aε

(
ξ′3
)
Ψ, B(α)

�,ε,ε′
(
ξ′3
) ⊗ aε(ξ3)Ψ

)
dξ3dξ′3 +

∫ ∥∥∥(B(α)
�,ε,ε′(ξ3) ⊗ 1

)
Ψ
∥∥∥2dξ3,

(2.44)

∫
Σ2×Σ2

(
B
(α)
�,ε,ε′(ξ3) ⊗ aε

(
ξ′3
)
Ψ, B(α)

�,ε,ε′
(
ξ′3
) ⊗ aε(ξ3)Ψ

)
dξ3dξ′3

=
∫
Σ2×Σ2

1

w(3)(ξ3)
1/2w(3)

(
ξ′3
)1/2

×
((
B
(α)
�,ε,ε′(ξ3)(N� + 1)−1/2 ⊗ 1

)
Ψε

(
ξ′3
)
,
(
B
(α)
�,ε,ε′
(
ξ′3
)
(N� + 1)−1/2 ⊗ 1

)
Ψε(ξ3)

)
dξ3dξ′3

≤
(∫

Σ2

1

w(3)(ξ3)
1/2

∥∥∥B(α)
�,ε,ε′(ξ3)(N� + 1)−1/2

∥∥∥
FL

‖Ψε(ξ3)‖dξ3
)2

≤
⎛
⎝
∫
Σ1×Σ1×Σ2

∣∣G(α)(ξ1, ξ2, ξ3)
∣∣2

w(3)(ξ3)
dξ1dξ2dξ3

⎞
⎠
∥∥∥∥(N� + 1)1/2 ⊗

(
H

(3)
0,ε

)1/2
Ψ
∥∥∥∥
2

.

(2.45)

Furthermore
∫
Σ2

∥∥∥(B(α)
�,ε,ε′(ξ3) ⊗ 1

)
Ψ
∥∥∥2dξ3

=
∫
Σ2

∥∥∥(B(α)
�,ε,ε′(ξ3)(N� + 1)−1/2 ⊗ 1

)(
(N� + 1)1/2 ⊗ 1

)
Ψ
∥∥∥2dξ3

≤
(∫

Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2dξ1dξ2dξ3
)(

η‖(N� + 1)Ψ‖2 + 1
4η

‖Ψ‖2
)

(2.46)

for every η > 0.
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By (2.40), (2.45), and (2.46), we finally get (2.41) for every Ψ ∈ D(N1/2
� )⊗̂D(H(3)

0,ε ). It
then follows that (2.40) and (2.41) are verified for every Ψ ∈ D(H0).

We now prove thatH is a self-adjoint operator in F for g sufficiently small.

Theorem 2.6. Let g1 > 0 be such that

3g2
1

mW

(
1
m2

1

+ 1

)∑
α=1,2

3∑
�=1

∑
ε /= ε′

∥∥∥G(α)
�,ε,ε′

∥∥∥2
L2(Σ1×Σ1×Σ2)

< 1. (2.47)

Then for every g satisfying g ≤ g1, H is a self-adjoint operator in F with domain D(H) = D(H0),
and D is a core forH.

Proof. Let Ψ be in D. We have

‖HIΨ‖2 ≤ 12
∑
α=1,2

3∑
�=1

∑
ε /= ε′

{∥∥∥∥
∫ (

B
(α)
�,ε,ε′(ξ3)

)∗ ⊗ aε(ξ3)Ψdξ3

∥∥∥∥
2

+
∥∥∥∥
∫(

B
(α)
�,ε,ε′(ξ3)

)
⊗ a∗ε(ξ3)Ψdξ3

∥∥∥∥
2
}
.

(2.48)

Note that

∥∥∥H(3)
0,εΨ
∥∥∥ ≤ ∥∥∥H(3)

0 Ψ
∥∥∥ ≤ ‖H0Ψ‖,

‖N�Ψ‖ ≤ 1
m�

‖H0,�Ψ‖ ≤ 1
m1

‖H0,�Ψ‖ ≤ 1
m1

‖H0Ψ‖,
(2.49)

where

H0,� =
∑
ε

∫
w

(1)
� (ξ1)b∗�,ε(ξ1)b�,ε(ξ1)dξ1 +

∑
ε

∫
w

(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2. (2.50)

We further note that

∥∥∥∥(N� + 1)1/2 ⊗
(
H

(3)
0,ε

)1/2
Ψ
∥∥∥∥
2

≤ 1
2

(
1
m2

1

+ 1

)
‖H0Ψ‖2 + β

2m2
1

‖H0Ψ‖2 +
(
1
2
+

1
8β

)
‖Ψ‖2 (2.51)

for β > 0, and

η‖((N� + 1) ⊗ 1)Ψ‖2 + 1
4η

‖Ψ‖2 ≤ η

m2
1

‖H0Ψ‖2 + ηβ

m2
1

‖H0Ψ‖2 + η
(
1 +

1
4β

)
‖Ψ‖2 + 1

4η
‖Ψ‖2.

(2.52)
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Combining (2.48) with (2.40), (2.41), (2.51), and (2.52)we get for η > 0, β > 0

‖HIΨ‖2 ≤ 6

(∑
α=1,2

3∑
�=1

∑
ε /= ε′

∥∥∥G(α)
�,ε,ε′

∥∥∥2
)

×
(

1
2mW

(
1
m2

1

+ 1

)
‖H0Ψ‖2 + β

2mWm
2
1

‖H0Ψ‖2 + 1
2mW

(
1 +

1
4β

)
‖Ψ‖2

)

+ 12

(∑
α=1,2

3∑
�=1

∑
ε /= ε′

∥∥∥G(α)
�,ε,ε′

∥∥∥2
)(

η

m2
1

(
1 + β
)‖H0Ψ‖2 +

(
η

(
1 +

1
4β

)
+

1
4η

)
‖Ψ‖2

)
,

(2.53)

by noting

∫
Σ1×Σ1×Σ2

|G�,ε,ε′(ξ1, ξ2, ξ3)|2
w(3)(ξ3)

dξ1dξ2dξ3 ≤ 1
mW

∥∥∥G(α)
�,ε,ε′

∥∥∥2. (2.54)

By (2.53) the theorem follows from the Kato-Rellich theorem.

3. Main Results

In the sequel, we will make the following additional assumptions on the kernels G(α)
�,ε,ε′ .

Hypothesis 3.1. (i) For α = 1, 2, � = 1, 2, 3, ε, ε′ = ±,

∫
Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2
∣∣p2∣∣2 dξ1dξ2dξ3 <∞. (3.1)

(ii) There exists C > 0 such that for α = 1, 2, � = 1, 2, 3, ε, ε′ = ±,

(∫
Σ1×{|p2|≤σ}×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2dξ1dξ2dξ3
)1/2

≤ Cσ2. (3.2)

(iii) For α = 1, 2, � = 1, 2, 3, ε, ε′ = ±, and i, j = 1, 2, 3

(iii.a)
∫
Σ1×Σ1×Σ2

∣∣∣[(p2 · ∇p2

)
G

(α)
�,ε,ε′

]
(ξ1, ξ2, ξ3)

∣∣∣2dξ1dξ2dξ3 <∞,

(iii.b)
∫
Σ1×Σ1×Σ2

p22,ip
2
2,j

∣∣∣∣∣∣
∂2G

(α)
�,ε,ε′

∂p2,i∂p2,j
(ξ1, ξ2, ξ3)

∣∣∣∣∣∣
2

dξ1dξ2dξ3 <∞.

(3.3)
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(iv) There exists Λ > m1 such that for α = 1, 2, � = 1, 2, 3, ε, ε′ = ±,

G
(α)
�,ε,ε′(ξ1, ξ2, ξ3) = 0 if

∣∣p2∣∣ ≥ Λ. (3.4)

Remark 3.2. Hypothesis 3.1(ii) is nothing but an infrared regularization of the kernels G(α)
�,ε,ε′ .

In order to satisfy this hypothesis it is, for example, sufficient to suppose that

G
(α)
�,ε,ε′(ξ1, ξ2, ξ3) =

∣∣p2∣∣1/2G̃(α)
�,ε,ε′(ξ1, ξ2, ξ3), (3.5)

where G̃(α)
�,ε,ε′ is a smooth function of (p1, p2, p3) in the Schwartz space.

Hypothesis 3.1(iv), which is a sharp ultraviolet cutoff, is actually not necessary, and
can be removed at the expense of some additional technicalities. However, in order to
simplify the proof of Proposition 3.5, we will leave it.

Our first result is devoted to the existence of a ground state for H together with the
location of the spectrum ofH and of its absolutely continuous spectrumwhen g is sufficiently
small.

Theorem 3.3. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1(i). Then there exists

0 < g2 ≤ g1 such thatH has a unique ground state for g ≤ g2. Moreover

σ(H) = σac(H) = [inf σ(H),∞) (3.6)

with inf σ(H) ≤ 0.

According to Theorem 3.3 the ground state energy E = inf σ(H) is a simple eigenvalue
ofH, and our main results are concerned with a careful study of the spectrum ofH above the
ground state energy. The spectral theory developed in this work is based on the conjugated
operator method as described in [5, 6, 30]. Our choice of the conjugate operator denoted by
A is the second quantized dilation generator for the neutrinos.

Let a denote the following operator in L2(Σ1):

a =
1
2
(
p2 · i∇p2 + i∇p2 · p2

)
. (3.7)

The operator a is essentially self-adjoint on C∞
0 (R3,C2). Its second quantized version dΓ(a) is

a self-adjoint operator in Fa(L2(Σ1)). From the definition (2.8) of the space F� , the following
operator in F�

A� = 1 ⊗ 1 ⊗ dΓ(a) ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ dΓ(a) (3.8)

is essentially self-adjoint on DL.
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Let now A be the following operator in FL:

A = A1 ⊗ 12 ⊗ 13 + 11 ⊗A2 ⊗ 13 + 11 ⊗ 12 ⊗A3. (3.9)

Then A is essentially self-adjoint on DL.
We will denote again by A its extension to F. Thus A is essentially self-adjoint on D

and we still denote by A its closure.
We also set

〈A〉 =
(
1 +A2

)1/2
. (3.10)

We then have the following.

Theorem 3.4. Suppose that the kernelsG(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1. For any δ > 0 satisfying

0 < δ < m1 there exists 0 < gδ ≤ g2 such that, for 0 < g ≤ gδ, the following points are satisfied.

(i) The spectrum ofH in (inf σ(H), m1 − δ] is purely absolutely continuous.
(ii) Limiting absorption principle.

For every s > 1/2 and ϕ, ψ in F, the limits

lim
ε→ 0

(
ϕ, 〈A〉−s(H − λ ± iε)〈A〉−sψ) (3.11)

exist uniformly for λ in any compact subset of (inf σ(H), m1 − δ].
(iii) Pointwise decay in time.

Suppose s ∈ (1/2, 1) and f ∈ C∞
0 (R) with supp f ⊂ (inf σ(H), m1 − δ). Then

∥∥∥〈A〉−se−itHf(H)〈A〉−s
∥∥∥ = O

(
t1/2−s

)
(3.12)

as t → ∞.

The proof of Theorem 3.4 is based on a positive commutator estimate, called the
Mourre estimate, and on a regularity property ofH with respect toA (see [5, 6, 30]). Accord-
ing to [4], the main ingredient of the proof is auxiliary operators associated with infrared
cutoff Hamiltonians with respect to the momenta of the neutrinos that we now introduce.

Let χ0(·), χ∞(·)∈C∞(R, [0, 1])with χ0=1 on (−∞, 1], χ∞=1 on [2,∞) and χ0
2 +χ∞2=1.

For σ > 0 we set

χσ
(
p
)

= χ0

(∣∣p∣∣
σ

)
,

χσ
(
p
)

= χ∞

(∣∣p∣∣
σ

)
,

χ̃σ
(
p
)

= 1 − χσ
(
p
)
,

(3.13)

where p ∈ R
3.
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The operatorHI,σ is the interaction given by (2.23) and (2.24) and associated with the
kernels χ̃σ(p2)G

(α)
�,ε,ε′(ξ1, ξ2, ξ3). We then set

Hσ := H0 + gHI,σ . (3.14)

Let

Σ1,σ = Σ1 ∩
{(
p2, s2

)
;
∣∣p2∣∣ < σ},

Σσ
1 = Σ1 ∩

{(
p2, s2

)
;
∣∣p2∣∣ ≥ σ}

F�,2,σ = Fa
(
L2(Σ1,σ)

)
⊗ Fa
(
L2(Σ1,σ)

)
,

Fσ�,2 = Fa
(
L2(Σσ

1

)) ⊗ Fa
(
L2(Σσ

1

))
,

F�,2 = F�,2,σ ⊗ Fσ�,2,

F�,1 =
2⊗

Fa
(
L2(Σ1)

)
.

(3.15)

The space F�,1 is the Fock space for the massive leptons �, and F�,2 is the Fock space for the
neutrinos and antineutrinos �.

Set

Fσ� = F�,1 ⊗ Fσ�,2

F�,σ = F�,2,σ .
(3.16)

We have

F� 	 Fσ� ⊗ F�,σ . (3.17)

Set

FσL =
3⊗
�=1

Fσ�

FL,σ =
3⊗
�=1

F�,σ .

(3.18)

We have

FL 	 FσL ⊗ FL,σ . (3.19)
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Set

Fσ = FσL ⊗ FW. (3.20)

We have

F 	 FL,σ ⊗ Fσ. (3.21)

Set

H
(1)
0 =

3∑
�=1

∑
ε=±

∫
w

(1)
� (ξ1)b∗�,ε(ξ1)b�,ε(ξ1)dξ1,

H
(2)
0 =

3∑
�=1

∑
ε=±

∫
w

(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2,

H
(3)
0 =

∑
ε=±

∫
w(3)(ξ3)a∗ε(ξ3)aε(ξ3)dξ3,

H
(2)σ
0 =

3∑
�=1

∑
ε=±

∫
|p2|>σ

w
(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2,

H
(2)
0,σ =

3∑
�=1

∑
ε=±

∫
|p2|≤σ

w
(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2.

(3.22)

We have on Fσ ⊗ Fσ

H
(2)
0 = H(2)σ

0 ⊗ 1σ + 1σ ⊗H(2)
0,σ . (3.23)

Here, 1σ (resp., 1σ) is the identity operator on Fσ (resp., Fσ).
Define

Hσ = Hσ |Fσ , Hσ
0 = H0|Fσ . (3.24)

We get

Hσ = H(1)
0 +H(2)σ

0 +H(3)
0 + gHI,σ on Fσ,

Hσ = Hσ ⊗ 1σ + 1σ ⊗H(2)
0,σ on Fσ ⊗ Fσ.

(3.25)

In order to implement the conjugate operator theory, we have to show that Hσ has a gap in
its spectrum above its ground state.
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We now set, for β > 0 and η > 0,

Cβη =
(

3
mW

(
1 +

1
m1

2

)
+

3β
mWm1

2
+
12η
m1

2

(
1 + β
))1/2

,

Bβη =
(

3
mW

(
1 +

1
4β

)
+ 12
(
η

(
1 +

1
4β

)
+

1
4η

))1/2

.

(3.26)

Let

G =
(
G

(α)
�,ε,ε′(·, ·, ·)

)
α=1,2;�=1,2,3;ε,ε′=±,ε /= ε′

, (3.27)

and set

K(G) =

(∑
α=1,2

3∑
�=1

∑
ε /= ε′

∥∥∥G(α)
�,ε,ε′

∥∥∥2
L2(Σ1×Σ1×Σ2)

)1/2

. (3.28)

Let

C̃βη = Cβη

(
1 +

g1K(G)Cβη

1 − g1K(G)Cβη

)
,

B̃βη =

(
1 +

g1K(G)Cβη

1 − g1K(G)Cβη

(
2 +

g1K(G)BβηCβη

1 − g1K(G)Cβη

))
Bβη.

(3.29)

Let

K̃(G) =

⎛
⎜⎝∑

α=1,2

3∑
�=1

∑
ε /= ε′

∫
Σ1×Σ1×Σ2

∣∣∣G(α)
�,ε,ε′(ξ1, ξ2, ξ3)

∣∣∣2
|p2|2

dξ1dξ2dξ3

⎞
⎟⎠

1/2

. (3.30)

Let δ ∈ R be such that

0 < δ < m1. (3.31)

We set

D̃ = sup
(

4Λγ
2m1 − δ , 1

)
K̃(G)

(
2m1C̃βη + B̃βη

)
, (3.32)

where Λ > m1 has been introduced in Hypothesis 3.1(iv).
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Let us define the sequence (σn)n≥0 by

σ0 = Λ,

σ1 = m1 − δ

2
,

σ2 = m1 − δ = γσ1,

σn+1 = γσn, n ≥ 1,

(3.33)

where γ = 1 − δ/(2m1 − δ).
Let g(1)

δ be such that

0 < g(1)
δ

< inf

(
1, g1,

γ − γ2
3D̃

)
. (3.34)

For 0 < g ≤ g(1)
δ we have

0 < γ <

(
1 − 3gD̃

γ

)
, (3.35)

0 < σn+1 <

(
1 − 3gD̃

γ

)
σn, n ≥ 1. (3.36)

Set

Hn = Hσn ; Hn
0 = Hσn

0 , n ≥ 0,

En = inf σ(Hn), n ≥ 0.
(3.37)

We then get the following.

Proposition 3.5. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1, 3.1(i), and 3.1(iv). Then

there exists 0 < g̃δ ≤ g
(1)
δ such that, for g ≤ g̃δ and n ≥ 1, En is a simple eigenvalue of Hn and Hn

does not have spectrum in (En, En + (1 − 3gD̃/γ)σn).

The proof of Proposition 3.5 is given in the appendix.
We now introduce the positive commutator estimates and the regularity property of

H with respect to A in order to prove Theorem 3.4.
The operator A has to be split into two pieces depending on σ.
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Let

ησ
(
p2
)
= χ2σ

(
p2
)
,

ησ
(
p2
)
= χ2σ(p2),

aσ = ησ
(
p2
)
aησ
(
p2
)
,

aσ = ησ
(
p2
)
aησ
(
p2
)
.

(3.38)

Since η2σ + (ησ)2 = 1, and [ησ, [ησ, a]] = 0 = [ησ, [ησ, a]], we obtain (see [4])

a = aσ + aσ. (3.39)

Note that we also have

aσ =
1
2

(
ησ
(
p2
)2
p2 · i∇p2 + i∇p2 · ησ

(
p2
)2
p2
)
,

aσ =
1
2

(
ησ
(
p2
)2
p2 · i∇p2 + i∇p2 · ησ

(
p2
)2
p2
)
.

(3.40)

The operators a, aσ, and aσ are essentially self-adjoint on C∞
0 (R3,C2) (see [5,

Proposition 4.2.3]). We still denote by a, aσ, and aσ their closures. If ã denotes any of the
operator a, aσ, and aσ , we have

D(ã) =
{
u ∈ L2(Σ1); ãu ∈ L2(Σ1)

}
. (3.41)

The operators dΓ(a), dΓ(aσ), and dΓ(aσ) are self-adjoint operators in Fa(L2(Σ1)), and
we have

dΓ(a) = dΓ(aσ) + dΓ(aσ). (3.42)

By (2.8), the following operators in F� , denoted by Aσ
� and Aσ� , respectively,

Aσ
� = 1 ⊗ 1 ⊗ dΓ(aσ) ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ dΓ(aσ),

Aσ� = 1 ⊗ 1 ⊗ dΓ(aσ) ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ dΓ(aσ)
(3.43)

are essentially self-adjoint on D� .
Let Aσ and Aσ be the following two operators in FL:

Aσ = Aσ
1 ⊗ 12 ⊗ 13 + 11 ⊗Aσ

2 ⊗ 13 + 11 ⊗ 12 ⊗Aσ
3 ,

Aσ = Aσ1 ⊗ 12 ⊗ 13 + 11 ⊗Aσ2 ⊗ 13 + 11 ⊗ 12 ⊗Aσ3.
(3.44)
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The operatorsAσ andAσ are essentially self-adjoint on DL. Still denoting byAσ andAσ their
extensions to F,Aσ andAσ are essentially self-adjoint on D and we still denote byAσ andAσ

their closures.
We have

A = Aσ +Aσ. (3.45)

The operators a, aσ, and aσ are associated to the following C∞-vector fields in R
3,

respectively:

v
(
p2
)
= p2,

vσ
(
p2
)
= ησ
(
p2
)2
p2,

vσ
(
p2
)
= ησ
(
p2
)2
p2.

(3.46)

Let V(p) be any of these vector fields. We have

∣∣V(p)∣∣ ≤ Γ
∣∣p∣∣ (3.47)

for some Γ > 0, and we also have

V(p) = ṽ(∣∣p∣∣)p, (3.48)

where the ṽ’s are defined by (3.46) and (3.48) and fulfil |p|α(dα/d|p|α)ṽ(|p|) bounded for
α = 0, 1, 2.

Let ψt(·) : R
3 → R

3 be the corresponding flow generated by V:

d
dt
ψt
(
p
)
= V(ψt(p)),

ψ0
(
p
)
= p.

(3.49)

ψt(p) is a C∞-flow and we have

e−Γ|t|
∣∣p∣∣ ≤ ∣∣ψt(p)∣∣ ≤ eΓ|t|

∣∣p∣∣. (3.50)

ψt(p) induces a one-parameter group of unitary operatorsU(t) in L2(Σ1) 	 L2(R3,C2) defined
by

(
U(t)f

)(
p
)
= f
(
ψt
(
p
))(

det∇ψt
(
p
))1/2

. (3.51)

Let φt(·), φσt (·), and φσt(·) be the flows associated with the vector fields v(·), vσ(·), and vσ(·),
respectively.
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Let U(t), Uσ(t), and Uσ(t) be the corresponding one-parameter groups of unitary
operators in L2(Σ1). The operators a, aσ , and aσ are the generators of U(t), Uσ(t), and Uσ(t),
respectively, that is,

U(t) = e−iat,

Uσ(t) = e−ia
σ t,

Uσ(t) = e−iaσ t.

(3.52)

Let

w(2)(ξ2) =
(
w

(2)
� (ξ2)

)
�=1,2,3

,

dΓ
(
w(2)
)
=

3∑
�=1

∑
ε

∫
w

(2)
� (ξ2)c∗�,ε(ξ2)c�ε(ξ2)dξ2.

(3.53)

Let V (t) be any of the one-parameter groupsU(t),Uσ(t), andUσ(t). We set

V (t)w(2)V (t)∗ =
(
V (t)w(2)

� V (t)∗
)
�=1,2,3

, (3.54)

and we have

V (t)w(2)V (t)∗ = w(2)(ψt). (3.55)

Here ψt is the flow associated to V (t).
This yields, for any ϕ ∈ D, (see [11, Lemma 2.8])

e−iAtH0eiAtϕ −H0ϕ =
(
dΓ
(
e−iatw(2)eiat

)
− dΓ
(
w(2)
))
ϕ

=
(
dΓ
(
w(2) ◦ φt −w(2)

))
ϕ,

(3.56)

e−iA
σtH0eiA

σtϕ −H0ϕ =
(
dΓ
(
e−ia

σ tw(2)eia
σ t
)
− dΓ
(
w(2)
))
ϕ

=
(
dΓ
(
w(2) ◦ φσt −w(2)

))
ϕ,

(3.57)

e−iAσtH0eiAσtϕ −H0ϕ =
(
dΓ
(
e−iaσ tw(2)eiaσ t

)
− dΓ
(
w(2)
))
ϕ

=
(
dΓ
(
w(2) ◦ φσt −w(2)

))
ϕ.

(3.58)

Proposition 3.6. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypothesis 2.1.
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For every t ∈ R one has, for g ≤ g1,

(i) eitAD(H0) = eitAD(H) ⊂ D(H0) = D(H),

(ii) eitA
σD(H0) = eitA

σD(H) ⊂ D(H0) = D(H),

(iii) eitAσD(H0) = eitAσD(H) ⊂ D(H0) = D(H).

(3.59)

Proof. We only prove (i), since (ii) and (iii) can be proved similarly. By (3.56) we have, for
ϕ ∈ D,

e−itAH0eitAϕ =
(
H

(1)
0 +H(3)

0 + dΓ
(
w(2) ◦ φt

))
ϕ. (3.60)

It follows from (3.50) and (3.60) that

∥∥∥H0eitAϕ
∥∥∥ ≤ eΓ|t|

∥∥H0ϕ
∥∥. (3.61)

This yields (i) because D is a core forH0. Moreover we get

∥∥∥H0eitA(H0 + 1)−1
∥∥∥ ≤ eΓ|t|. (3.62)

In view of D(H0) = D(H), the operatorsH0(H + i)−1 andH(H0+ i)
−1 are bounded, and there

exists a constant C > 0 such that

∥∥∥HeitA(H + i)−1
∥∥∥ ≤ CeΓ|t|. (3.63)

Similarly, we also get

∥∥∥H0eitA
σ
(H0 + 1)−1

∥∥∥ ≤ eΓ|t|,

∥∥∥H0eitAσ (H0 + 1)−1
∥∥∥ ≤ eΓ|t|,

∥∥∥HeitA
σ
(H + i)−1

∥∥∥ ≤ CeΓ|t|,
∥∥∥HeitAσ (H + i)−1

∥∥∥ ≤ CeΓ|t|.

(3.64)

Let HI(G) be the interaction associated with the kernels G = (G(α)
�,ε,ε′)α=1,2;�=1,2,3;ε /= ε′=±,

where the kernels (G(α)
�,ε,ε′) satisfy Hypothesis 2.1.

We set

V (t)G =
(
V (t)G(α)

�,ε,ε′

)
α=1,2;�=1,2,3;ε /= ε′=±

. (3.65)
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We have for ϕ ∈ D (see [11, Lemma 2.7]),

e−iAtHI(G)eiAtϕ = HI

(
e−iatG

)
ϕ,

e−iA
σtHI(G)eiA

σtϕ = HI

(
e−ia

σ tG
)
ϕ,

e−iAσtHI(G)eiAσtϕ = HI

(
e−iaσ tG

)
ϕ.

(3.66)

According to [5, 6], in order to prove Theorem 3.4 we must prove that H is locally of
class C2(Aσ), C2(Aσ), and C2(A) in (−∞, m1 − δ/2) and that A and Aσ are locally strictly
conjugate toH in (E,m1 − δ/2).

Recall thatH is locally of class C2(A) in (−∞, m1 − δ/2) if, for any ϕ ∈ C∞
0 ((−∞, m1 −

δ/2)), ϕ(H) is of class C2(A); that is, t → e−iAtϕ(H)eitAψ is twice continuously differentiable
for all ϕ ∈ C∞

0 ((−∞, m1 − δ/2)) and all ψ ∈ F.
Thus, one of our main results is the following one.

Theorem 3.7. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii).

(a) H is locally of class C2(A), C2(Aσ), and C2(Aσ) in (−∞, m1 − δ/2).

(b) Hσ is locally of class C2(Aσ) in (−∞, m1 − δ/2).

It follows from Theorem 3.7 that [H, iA], [H, iAσ], [H, iAσ], and [Hσ, iAσ] are defined
as sesquilinear forms on

⋃
K EK(H)F, where the union is taken over all the compact subsets

K of (−∞, m1 − δ/2).
Furthermore, by Proposition 3.6, Theorem 3.7 and [4, Lemma 29], we get for all ϕ ∈

C∞
0 ((E,m1 − δ/2)) and all ψ ∈ F,

ϕ(H)[H, iA]ϕ(H)ψ = lim
t→ 0

ϕ(H)

[
H,

eitA − 1
t

]
ϕ(H)ψ,

ϕ(H)[H, iAσ]ϕ(H)ψ = lim
t→ 0

ϕ(H)

[
H,

eitAσ − 1
t

]
ϕ(H)ψ,

ϕ(H)[H, iAσ]ϕ(H)ψ = lim
t→ 0

ϕ(H)

[
H,

eitA
σ − 1
t

]
ϕ(H)ψ,

ϕ(Hσ)[Hσ, iAσ]ϕ(Hσ)ψ = lim
t→ 0

ϕ(Hσ)

[
Hσ,

eitA
σ − 1
t

]
ϕ(Hσ)ψ.

(3.67)

The following proposition allows us to compute [H, iA], [H, iAσ], [H, iAσ], and
[Hσ, iAσ] as sesquilinear forms. By Hypotheses 2.1 and 3.1(iii.a), the kernels G(α)

�,ε,ε′(ξ1, ·, ξ3)
belong to the domains of a, aσ , and aσ .
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Proposition 3.8. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1(iii.a). Then

(a) for all ψ ∈ D(H) one has

(i) limt→ 0[H, (eitA − 1)/t]ψ = (dΓ(w(2)) + gHI(−iaG))ψ,
(ii) limt→ 0[H, (eitA

σ − 1)/t]ψ = (dΓ((ησ)2w(2)) + gHI(−iaσG))ψ,
(iii) limt→ 0[H, (eitAσ − 1)/t]ψ = (dΓ((ησ)

2w(2)) + gHI(−iaσG))ψ,
(iv) limt→ 0[Hσ, (eitA

σ − 1)/t]ψ = (dΓ((ησ)2w(2)) + gHI(−iaσ(χ̃σ(p2)G)))ψ;

(b) and

(i) sup0<|t|≤1‖[H, (eitA − 1)/t](H + i)−1‖ <∞,

(ii) sup0<|t|≤1‖[H, (eitA
σ − 1)/t](H + i)−1‖ <∞,

(iii) sup0<|t|≤1‖[H, (eitAσ − 1)/t](H + i)−1‖ <∞,

(iv) sup0<|t|≤1‖[Hσ, (eitA
σ − 1)/t](H + i)−1‖ <∞.

Proof. Part (b) follows from part (a) by the uniform boundedness principle. For part (a), we
only prove (a)(i), since other statements can be proved similarly.

By (3.50), we obtain

1
|t|
∣∣∣w(2)

�

(
φt
(
p2
)) −w(2)

�

(
p2
)∣∣∣ ≤ 1

|t|
(
eΓ|t| − 1

)
w

(2)
�

(
p2
)

(3.68)

for � = 1, 2, 3.
By (3.56)–(3.58) and Lebesgue’s Theorem we then get for all ψ ∈ D(H0)

lim
t→ 0

[
H0,

eitA − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itAH0eitA −H0

]
ψ = dΓ

(
w(2)
)
ψ,

lim
t→ 0

[
H0,

eitA
σ − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itA

σ

H0eitA
σ −H0

]
ψ = dΓ

((
ησ
)2
w(2)
)
ψ,

lim
t→ 0

[
H0,

eitAσ − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itAσH0eitAσ −H0

]
ψ = dΓ

((
ησ
)2
w(2)
)
ψ.

(3.69)

By (3.66), we obtain, for all ψ ∈ D(H),

lim
t→ 0

[
HI(G),

eitA − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itAHI(G)eitA −HI(G)

]
ψ = HI(−i(aG))ψ,



Advances in Mathematical Physics 27

lim
t→ 0

[
HI(G),

eitA
σ − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itA

σ

HI(G)eitA
σ −HI(G)

]
ψ = HI(−i(aσG))ψ,

lim
t→ 0

[
HI(G),

eitAσ − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itAσHI(G)eitAσ −HI(G)

]
ψ = HI(−i(aσG))ψ,

lim
t→ 0

[
HI

(
χ̃σ
(
p2
)
G
)
,
eitA

σ − 1
t

]
ψ = lim

t→ 0

1
t

[
e−itA

σ

HI

(
χ̃σ
(
p2
)
G
)
eitA

σ −HI

(
χ̃σ
(
p2
)
G
)]
ψ

= HI

(−i(aσ(χ̃σ(p2)G)))ψ.
(3.70)

This concludes the proof of Proposition 3.8.

Combining (3.67)with Proposition 3.8, we finally get for every ϕ ∈ C∞
0 ((−∞, m1−δ/2))

and every ψ ∈ F

ϕ(H)[H, iA]ϕ(H)ψ = ϕ(H)
[
dΓ
(
w(2)
)
+ gHI(−i(aG))

]
ϕ(H)ψ, (3.71)

ϕ(H)[H, iAσ]ϕ(H)ψ = ϕ(H)
[
dΓ
((
ησ
)2
w(2)
)
+ gHI(−i(aσG))

]
ϕ(H)ψ, (3.72)

ϕ(H)[H, iAσ]ϕ(H)ψ = ϕ(H)
[
dΓ
((
ησ
)2
w(2)
)
+ gHI(−i(aσG))

]
ϕ(H)ψ, (3.73)

ϕ(Hσ)[Hσ, iAσ]ϕ(Hσ)ψ = ϕ(Hσ)
[
dΓ
((
ησ
)2
w(2)
)
+ gHI

(−i(aσ(χ̃σG)))]ϕ(Hσ)ψ. (3.74)

We now introduce the Mourre inequality.
LetN be the smallest integer such that

Nγ ≥ 1. (3.75)

We have, for g ≤ g(1)
δ ,

γ < γ +
1
N

(
1 − 3gD̃

γ
− γ
)
< 1 − 3gD̃

γ
,

γ

N
≤ γ − 1

N

(
1 − 3gD̃

γ
− γ
)
< γ.

(3.76)

Let

εγ =
1
2N

⎛
⎝1 − 3g(1)

δ
D̃

γ
− γ
⎞
⎠. (3.77)
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We choose f ∈ C∞
0 (R) such that 1 ≥ f ≥ 0 and

f(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if λ ∈
[(
γ − εγ

)2
, γ + εγ

]
,

0 if λ > γ +
1
N

⎛
⎝1 − 3g(1)

δ
D̃

γ
− γ
⎞
⎠ = γ + 2εγ ,

0 if λ <

⎛
⎝γ − 1

N

⎛
⎝1 − 3g(1)

δ
D̃

γ
− γ
⎞
⎠
⎞
⎠

2

=
(
γ − 2εγ

)2
.

(3.78)

Note that γ + 2εγ < 1 − 3gD̃/γ for g ≤ g(1)
δ and γ − εγ > γ/N.

We set, for n ≥ 1,

fn(λ) = f
(
λ

σn

)
. (3.79)

Let

Hn = Hσn,

En = inf σ(Hn),

H
(2)
0n = H(2)

0σn
.

(3.80)

Let Pn denote the ground state projection ofHn. It follows from Proposition 3.5 that, for n ≥ 1
and g ≤ g̃δ ≤ g(1)

δ
,

fn(Hn − En) = Pn ⊗ fn
(
H

(2)
0,n

)
. (3.81)

Note that

En = En = inf σ(Hn). (3.82)

Set

an = aσn ,

an = aσn ,

An = Aσn,

An = Aσn,

Fn = Fσn ,

Fn = Fσn .

(3.83)
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We have

F 	 Fn ⊗ Fn,

A = An +An.
(3.84)

We further note that

anχ̃σn
(
p2
)
= an. (3.85)

By (3.72), (3.74), and (3.85), we obtain

[H, iAn] = [Hn, iAn] ⊗ 1 (3.86)

as sesquilinear forms with respect to F = Fn ⊗ Fn.
Furthermore, it follows from the virial theorem (see [6, Proposition 3.2] and

Proposition 6.1) that

Pn[Hn, iAn]Pn = 0. (3.87)

By (3.81) and (3.87)we then get, for g ≤ g̃δ ≤ g(1)
δ ,

fn(Hn − En)[H, iAn]fn(Hn − En) = 0. (3.88)

We then have the following.

Proposition 3.9. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1. Then there exists

C̃δ > 0 and g̃(1)
δ > 0 such that g̃(1)

δ ≤ g̃δ and

fn(Hn − En)[H, iAn]fn(Hn − En) ≥ C̃δ
γ2

N2
σnfn(Hn − En)2 (3.89)

for n ≥ 1 and g ≤ g̃(1)
δ .

Let EΔ(H − E) be the spectral projection for the operator H − E associated with the
interval Δ, and let

Δn =
[(
γ − εγ

)2
σn,
(
γ + εγ

)
σn
]
, n ≥ 1. (3.90)

Note that

[σn+2, σn+1] ⊂
((
γ − εγ

)2
σn,
(
γ + εγ

)
σn
)
, n ≥ 1. (3.91)
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Theorem 3.10. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1. Then there exists

Cδ > 0 and g̃(2)
δ > 0 such that g̃(2)

δ ≤ g̃(1)
δ and

EΔn(H − E)[H, iA]EΔn(H − E) ≥ Cδ
γ2

N2
σnEΔn(H − E) (3.92)

for n ≥ 1 and g ≤ g̃(2)
δ

.

4. Existence of a Ground State and Location of the Absolutely
Continuous Spectrum

We now prove Theorem 3.3. The scheme of the proof is quite well known (see [9, 31]). It
follows from Proposition 3.5 thatHn has a unique ground state, denoted by φn, in Fn:

Hnφn = Enφn, φn ∈ D(Hn),
∥∥φn∥∥ = 1, n ≥ 1. (4.1)

ThereforeHn has an unique normalized ground state in F, given by φ̃n = φn ⊗Ωn, where Ωn

is the vacuum state in Fn:

Hnφ̃n = Enφ̃n, φ̃n ∈ D(Hn),
∥∥∥φ̃n
∥∥∥ = 1, n ≥ 1. (4.2)

Since ‖φ̃n‖ = 1, there exists a subsequence (nk)k≥1, converging to ∞ such that (φ̃nk)k≥1
converges weakly to a state φ̃ ∈ F. We have to prove that φ̃ /= 0. By adapting the proof of
Theorem 4.1 in [22] (see also [20]), the key point is to estimate ‖c�,ε(ξ2)Φ̃n‖F in order to show
that

3∑
�=1

∑
ε

∫ ∥∥∥c�,ε(ξ2)φ̃n
∥∥∥2dξ2 = O

(
g2
)
, (4.3)

uniformly with respect to n.
The estimate (4.3) is a consequence of the so-called “pull-through” formula as it

follows.
Let HI,n denote the interaction HI associated with the kernels 1{|p2|≥σn}(p2)G

(α)
�,ε,ε′ . We

thus have

H0c�,ε(ξ2)φ̃n = c�,ε(ξ2)H0φ̃n −w(2)
� (ξ2)c�,ε(ξ2)φ̃n,

gHI,nc�,ε(ξ2)φ̃n = c�,ε(ξ2)gHI,nφ̃n + gV�,ε,ε′(ξ2)φ̃n
(4.4)
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with

V�,ε,ε′(ξ2) = g
∫
G

(1)
�,ε′ε(ξ1, ξ2, ξ3)b

∗
�,ε′(ξ1)aε(ξ3)dξ1dξ3

+ g
∫
G

(2)
�,ε′ε(ξ1, ξ2, ξ3)b

∗
�,ε′(ξ1)a

∗
ε(ξ3)dξ1dξ3.

(4.5)

This yields

(
Hn − En +w(2)

� (ξ2)
)
c�,ε(ξ2)φ̃n = V�,ε,ε′(ξ2)φ̃n. (4.6)

By adapting the proof of Propositions 2.4 and 2.5 we easily get

∥∥V�,ε,ε′ψ∥∥F
≤ g

mW
1/2

(∑
α=1,2

∥∥∥G(α)
�,ε,ε′(·, ξ2, ·)

∥∥∥
L2(Σ1×Σ2)

)∥∥∥H1/2
0 ψ
∥∥∥

+ g
∥∥∥G(2)

�,ε,ε′(·, ξ2, ·)
∥∥∥
L2(Σ1×Σ2)

∥∥ψ∥∥,
(4.7)

where ψ ∈ D(H0).
Let us estimate ‖H0φ̃n‖. By (2.53), (2.54), (3.26), and (3.28)we have

g
∥∥∥HI,nφ̃n

∥∥∥ ≤ gK(G)
(
Cβη

∥∥∥H0φ̃n
∥∥∥ + Bβη

)
,

∥∥∥H0φ̃n
∥∥∥ ≤ |En| + g

∥∥∥HI,nφ̃n
∥∥∥.

(4.8)

Therefore

∥∥∥H0φ̃n
∥∥∥ ≤ |En|

1 − g1K(G)Cβη
+

gK(G)Bβη
1 − g1K(G)Cβη

. (4.9)

By (3.82), (A.11), and (4.9), there exists C > 0 such that

∥∥∥H0φ̃n
∥∥∥ ≤ C, (4.10)

uniformly in n and g ≤ g1.
By (4.6), (4.7), and (4.10) we get

∥∥∥c�,εφ̃n
∥∥∥ ≤ g∣∣p2∣∣

(
C1/2

(
2∑
α=1

∥∥∥G(α)
�,ε,ε′(·, ξ2, ·)

∥∥∥
L2(Σ1×Σ2)

)
+
∥∥∥G(2)

�,ε,ε′(·, ξ2, ·)
∥∥∥
L2(Σ1×Σ2)

)
. (4.11)
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By Hypothesis 3.1(i), there exists a constant C(G) > 0 depending on the kernels G =
(G(α)

�,ε,ε′)�=1,2,3;α=1,2;ε /= ε′=± and such that

3∑
�=1

∑
ε

∫ ∥∥∥c�,ε(ξ2)φ̃n
∥∥∥2dξ2 ≤ C(G)2g2. (4.12)

The existence of a ground state φ̃ forH follows by choosing g sufficiently small, that is, g ≤ g2,
as in [20, 22]. By adapting the method developed in [32] (see [32, Corollary 3.4]), one proves
that the ground state ofH is unique. We omit here the details.

Statements about σ(H) are consequences of the existence of a ground state and follows
from the existence of asymptotic Fock representations for the CAR associated with the
c
�

�,ε
(ξ2)’s. For f ∈ L2(R3,C2), we define on D(H0) the operators

c
� t

�,ε

(
f
)
= eitHe−itH0c

�

�,ε

(
f
)
eitH0e−itH. (4.13)

By mimicking the proof given in [21, 31] one proves, under the hypothesis of Theorem 3.3
and for f ∈ C∞

0 (R3,C2), that the strong limits of c� t
�,ε
(f) when t → ±∞ exist for ψ ∈ D(H0):

lim
t→±∞

c
� t

�,ε

(
f
)
ψ := c�±�,ε

(
f
)
ψ. (4.14)

The operators c�±�,ε(f) satisfy the CAR and we have

c±�,ε
(
f
)
φ̃ = 0, f ∈ C∞

0

(
R

3,C2
)
, (4.15)

where φ̃ is the ground state ofH.
It then follows from (4.14) and (4.15) that the absolutely continuous spectrum of H

equals to [inf σ(H),∞). We omit the details (see [21, 31]).

5. Proof of the Mourre Inequality

We first prove Proposition 3.9. In view of Proposition 3.8(a)(iii) and (3.73), we have, as
sesquilinear forms,

[H, iAσ] =
(
1 − g)dΓ((ησ)2w(2)

)
+ g
(
dΓ
((
ησ
)2
w(2)
))

+ gHI(−i(aσG)). (5.1)

Let F
(1)
�

(resp., F
(2)
�
) be the Fock space for the massive leptons � (resp., the neutrinos and

antineutrinos �).
We have

F� 	 F
(1)
� ⊗ F

(2)
� . (5.2)



Advances in Mathematical Physics 33

Let

F(1) = FW ⊗
(

3⊗
�=1

F
(1)
�

)
, F(2) =

3⊗
�=1

F
(2)
� . (5.3)

We have

F 	 F(1) ⊗ F(2), (5.4)

F(1) is the Fock space for the massive leptons and the bosons W±, and F(2) is the Fock space
for the neutrinos and antineutrinos.

We have, as sesquilinear forms and with respect to (5.4),

dΓ
((
ησ
)2
w(2)
)
+HI(−i(aσG))

=
3∑
�=1

∑
ε

∫
ησ
(
p2
)2∣∣p2∣∣c∗�,ε(ξ2)c�,ε(ξ2)dξ2

+
3∑
�=1

∑
ε /= ε′

∫∣∣p2∣∣
⎛
⎝11 ⊗ ησ

(
p2
)
c∗�,ε(ξ2) +

∑
α=1,2

M(α)∗
�,ε,ε′,σ(ξ2)∣∣p2∣∣ ⊗ 12

⎞
⎠

×
⎛
⎝11 ⊗ ησ

(
p2
)
c�,ε(ξ2) +

∑
α=1,2

M(α)
�,ε,ε′,σ(ξ2)∣∣p2∣∣ ⊗ 12

⎞
⎠dξ2

−
3∑
�=1

∑
ε /= ε′

∫⎛
⎝∑

α=1,2

M(α)∗
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠
⎛
⎝∑

α=1,2

M(α)
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠dξ2,

(5.5)

where

M(α)
�,ε,ε′,σ(ξ2) = i

∫(∑
α=1,2

(
aησ
(
p2
)
G

(α)
�,ε,ε′(ξ1, ξ2, ξ3)

))
b∗�,ε′(ξ1)aε′(ξ3)dξ1dξ3, (5.6)

and where 1j is the identity operator in F(j).
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By mimicking the proofs of Propositions 2.4 and 2.5, we get, for every ψ ∈ D,

3∑
�=1

∑
ε /= ε′

⎛
⎝ψ,

∫⎛
⎝∑

α=1,2

M(α)∗
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠
⎛
⎝∑

α=1,2

M(α)
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠ψdξ2

⎞
⎠

=
3∑
�=1

∑
ε /= ε′

∥∥∥∥∥
∫(∑

α=1,2

Mα
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

)
ψdξ2

∥∥∥∥∥
2

≤

⎛
⎜⎝
∫ ∣∣∣∑α=1,2

(
aησ
(
p2
)
G

(α)
�,ε,ε′

)
(ξ1, ξ2, ξ3)

∣∣∣2
w(3)(ξ3)

∣∣p2∣∣ dξ1dξ2dξ3

⎞
⎟⎠
∥∥∥∥
(
H

(3)
0

)1/2
ψ

∥∥∥∥.

(5.7)

Noting that |(aησ)(p2)| ≤ C uniformly with respect to σ, it follows from Hypotheses 2.1 and
3.1 that there exists a constant C(G) > 0 such that

∫ ∣∣∣∑α=1,2

(
aησ
(
p2
)
G

(α)
�,ε,ε′

)
(ξ1, ξ2, ξ3)

∣∣∣2
w(3)(ξ3)

∣∣p2∣∣ dξ1dξ2dξ3 ≤ C(G)σ. (5.8)

This yields

−
∫⎛
⎝∑

α=1,2

M(α)∗
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠
⎛
⎝∑

α=1,2

M(α)
�,ε,ε′,σ(ξ2)∣∣p2∣∣1/2

⊗ 12

⎞
⎠dξ2 ≥ −C(G)σ. (5.9)

Combining (5.1), (5.5)with (5.9), we obtain

[H, iAn] ≥
(
1 − g)dΓ((ησn)2w(2)

)
− gC(G)σn. (5.10)

We have

dΓ
((
ησn
)2
w(2)
)
≥ H(2)

0n . (5.11)

By (3.76), (3.81), and (5.11) we get

fn(Hn − En)dΓ
(
ησn

2w(2)
)
fn(Hn − En)

≥ Pn ⊗ fn
(
H

(2)
0n

)
H

(2)
0n fn
(
H

(2)
0n

)

≥ γ2

N2
σnfn(Hn − En)2

(5.12)

for g ≤ g(1)
δ

.
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This, together with (5.10), yields for g ≤ g(1)
δ

fn(Hn − En)[H, iAn]fn(Hn − En)

≥
(
1 − g(1)

δ

) γ2
N2

σnfn(Hn − En)2 − gC(G)σnfn(Hn − En)2.
(5.13)

Setting

g
(2)
δ = inf

⎛
⎝g

(1)
δ ,

1 − g(1)
δ

2C(G)
γ2

N2

⎞
⎠, (5.14)

we get

fn(Hn − En)[H, iAn]fn(Hn − En) ≥
1 − g(1)

δ

2
γ2

N2
σnfn(Hn − En)2 (5.15)

for g ≤ g(2)
δ

.
Proposition 3.9 is proved by setting g̃(1)

δ = g(2)
δ and C̃δ = (1 − g(1)

δ )/2.
The proof of Theorem 3.10 is the consequence of the following two lemmas.

Lemma 5.1. Assume that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a

constant D > 0 such that

|E − En| ≤ gDσn2 (5.16)

for n ≥ 1 and g ≤ g(2).

Proof. Let φ (resp., φ̃n) be the unique normalized ground state ofH (resp.,Hn). We have

E − En ≤
(
φ̃n, (H −Hn)φ̃n

)
,

En − E ≤ (φ, (Hn −H)φ
) (5.17)

with

H −Hn = gHI

(
χσn
(
p2
)
G
)
. (5.18)

Combining (2.53) and (2.54)with (3.26)–(3.28) and (5.18), we get

∥∥∥(H −Hn)φ̃n
∥∥∥ ≤ gK(χσn(p2)G)

(
Cβη

∥∥∥H0φ̃n
∥∥∥ + Bβη

)
,

∥∥(H −Hn)φ
∥∥ ≤ gK(χσn(p2)G)(Cβη

∥∥H0φ
∥∥ + Bβη).

(5.19)
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It follows from Hypothesis 3.1(ii), (4.10), and (5.19) that there exists a constant D > 0 such
that

max
(∥∥∥(H −Hn)φ̃n

∥∥∥,∥∥(H −Hn)φ
∥∥) ≤ gDσn2 (5.20)

for n ≥ 1 and g ≤ g(2).
By (5.17), this proves Lemma 5.1.

Lemma 5.2. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a

constant C > 0 such that

∥∥fn(H − E) − fn(Hn − En)
∥∥ ≤ gCσn (5.21)

for n ≥ 1 and g ≤ g(2).

Proof. Let f̃(·) be an almost analytic extension of f(·) given by (3.78) satisfying

∣∣∣∂zf̃(x + iy
)∣∣∣ ≤ Cy2. (5.22)

Note that f̃(x + iy) ∈ C∞
0 (R2). We thus have

f(s) =
∫
df̃(z)
z − s , df̃(z) = − 1

π

∂f̃

∂z
dxdy. (5.23)

Using the functional calculus based on this representation of f(s), we get

fn(H − E) − fn(Hn − En) = σn
∫

1
H − E − zσn (H −Hn + En − E) 1

Hn − En − zσndf̃(z).
(5.24)

Combining (2.53) and (2.54) with (3.26)–(3.28) and Hypothesis 3.1(ii), we get, for every ψ ∈
D(H0) and for g ≤ g(2),

g
∥∥HI

(
χσnG

)
ψ
∥∥ ≤ 2gCσn2K(G)

(
Cβη

∥∥(H0 + 1)ψ
∥∥ + (Cβη + Bβη

)∥∥ψ∥∥). (5.25)

This yields

g
∥∥∥HI

(
χσn
(
p2
)
G
)
(H0 + 1)−1

∥∥∥ ≤ gC1σn
2 (5.26)

for some constant C1 > 0 and for g ≤ g(2).
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By mimicking the proof of (A.21)we show that there exists a constant C2 > 0 such that

∥∥∥(H0 + 1)(Hn − En − zσn)−1
∥∥∥ ≤ C2

(
1 +

1
|Imz|σn

)
(5.27)

or g ≤ g(1).
Combining Lemma 5.1 and (5.24) with (5.25)–(5.27) we obtain

∥∥fn(H − E) − fn(Hn − En)
∥∥ ≤ gCσn

∫ ∣∣∣(∂f̃/∂z)(x + iy
)∣∣∣

y2
dxdy (5.28)

for some constant C > 0 and for g ≤ g(2).
Using (5.22) and f̃(x + iy) ∈ C∞

0 (R2) one concludes the proof of Lemma 5.2.

We now prove Theorem 3.10.

Proof. It follows from Proposition 3.9 that

fn(Hn − En)[H, iA]fn(Hn − En)

= fn(Hn − En)[H, iAn]fn(Hn − En) ≥ C̃δ
γ2

N2
σnfn(Hn − En)2

(5.29)

for n ≥ 1 and g ≤ g̃(1)
δ

.
This yields

fn(H − E)[H, iAn]fn(H − E)

≥ C̃δ
γ2

N2
σnfn(H − E)2

− fn(H − E)[H, iA]
(
fn(Hn − En) − fn(H − E))

− (fn(Hn − En) − fn(H − E))[H, iA]fn(Hn − En)

+ C̃δ
γ2

N2
σn
(
fn(Hn − En) − fn(H − E))2

+ C̃δ
γ2

N2
σnfn(H − E)(fn(Hn − En) − fn(H − E))

+ C̃δ
γ2

N2
σn
(
fn(Hn − En) − fn(H − E))fn(H − E).

(5.30)
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Combining Proposition 3.8(i) and (5.23) with (5.26) and (5.27) we show that [H, iA]fn(Hn −
En) and fn(H − E)[H, iA] are bounded operators uniformly with respect to n. This, together
with Lemma 5.2, yields

fn(H − E)[H, iA]fn(H − E) ≥ C̃δ
γ2

N2
σnfn(H − E)2 − C̃gσn (5.31)

for some constant C̃ > 0 and for g ≤ inf(g(2), g̃
(1)
δ

).
Multiplying both sides of (5.31) with EΔn(H − E)we then get

EΔn(H − E)[H, iA]EΔn(H − E) ≥ C̃δ
γ2

N2
σnEΔn(H − E) − C̃gσnEΔn(H − E). (5.32)

Setting

g̃
(2)
δ

< inf

(
C̃δ

C̃

γ2

N2
, g(2), g̃

(1)
δ

)
, (5.33)

Theorem 3.10 is proved with Cδ = C̃δ − C̃(N2/γ2)g̃(2)
δ

> 0.

6. Proof of Theorem 3.7

We set

At =
eitA−1

t
,

adAt · = [At, ·],

Aσ
t =

eitA
σ − 1
t

,

Aσt =
eitAσ − 1

t
.

(6.1)

The fact that H is of class C1(A), C1(Aσ), and C1(Aσ) in (−∞, m1 − δ/2) is the consequence
of the following proposition.

Proposition 6.1. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1 and 3.1(iii.a). For every ϕ ∈

C∞
0 ((−∞, m1 − δ/2)) and g ≤ g1, one then has

sup
0<|t|≤1

∥∥[ϕ(H), At

]∥∥ <∞,

sup
0<|t|≤1

∥∥[ϕ(H), Aσ
t

]∥∥ <∞,

sup
0<|t|≤1

∥∥[ϕ(H), Aσt

]∥∥ <∞,

sup
0<|t|≤1

∥∥[ϕ(Hσ), Aσ
t

]∥∥ <∞.

(6.2)
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Proof. We use the representation

ϕ(H) =
∫
dφ(z)(z −H)−1, (6.3)

where φ(z) is an almost analytic extension of ϕwith

∣∣∂zφ(x + iy
)∣∣ ≤ C∣∣y∣∣2, dφ(z) = − 1

π

∂

∂z
φ(z)dxdy. (6.4)

Note that φ(x + iy) ∈ C∞
0 (R2).

We get

adAtϕ(H) =
∫
dφ(z)(z −H)−1[At,H](z −H)−1. (6.5)

This yields

∥∥adAtϕ(H)
∥∥ ≤ sup

0<|t|≤1

∥∥∥[At,H](i −H)−1
∥∥∥
∫∣∣dφ(z)∣∣∥∥∥(z −H)−1

∥∥∥
∥∥∥(i −H)(z −H)−1

∥∥∥. (6.6)

It is easy to prove that

∫∣∣dφ(z)∣∣∥∥∥(z −H)−1
∥∥∥
∥∥∥(i −H)(z −H)−1

∥∥∥ ≤ C
∫ ∣∣dφ(z)∣∣

|Imz|2
<∞. (6.7)

By Proposition 3.8(b)(i) and (6.7) we finally get, for g ≤ g1,

sup
0<|t|≤1

∥∥adAtϕ(H)
∥∥ <∞. (6.8)

In a similar way we obtain, for g ≤ g1,

sup
0<|t|≤1

∥∥[Aσ
t , ϕ(H)

]∥∥ <∞,

sup
0<|t|≤1

∥∥[Aσt, ϕ(H)
]∥∥ <∞,

sup
0<|t|≤1

∥∥[Aσ
t , ϕ(H

σ)
]∥∥ <∞.

(6.9)

The proof of Theorem 3.7 is the consequence of the following proposition.
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Proposition 6.2. Suppose that the kernels G(α)
�,ε,ε′ satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii). One then

has, for g ≤ g1,

sup
0<|t|≤1

∥∥∥[At, [At,H]](H + i)−1
∥∥∥ <∞,

sup
0<|t|≤1

∥∥∥[Aσ
t ,
[
Aσ
t ,H
]]
(H + i)−1

∥∥∥ <∞,

sup
0<|t|≤1

∥∥∥[Aσt, [Aσt,H]](H + i)−1
∥∥∥ <∞,

sup
0<|t|≤1

∥∥∥[Aσ
t ,
[
Aσ
t ,H

σ
]]
(Hσ + i)−1

∥∥∥ <∞.

(6.10)

Proof. We have, for every ψ ∈ D(H),

[At, [At,H]]ψ =
1
t2
e2itA
(
e−2itAHe2itA − 2e−itAHeitA +H

)
ψ. (6.11)

By (3.56) we get

[At, [At,H0]]ψ =
1
t2
e2itA
(
dΓ
(
w(2) ◦ φ2t − 2w(2) ◦ φt +w(2)

))
ψ, (6.12)

where, for � = 1, 2, 3,

(
w

(2)
� ◦ φ2t

)(
p2
) − 2
(
w

(2)
� ◦ φt

)(
p2
)
+w(2)

�

(
p2
)
=
∣∣φ2t
(
p2
)∣∣ − 2

∣∣φt(p2)∣∣ + ∣∣p2∣∣. (6.13)

We further note that

1
t2
∣∣∣∣φ2t
(
p2
)∣∣ − 2

∣∣φt(p2)∣∣ + ∣∣p2∣∣∣∣ ≤ sup
|s|≤2|t|

∣∣∣∣∣
∂2

∂s2
∣∣φs(p2)∣∣

∣∣∣∣∣,

∂2

∂s2
∣∣φs(p2)∣∣ = ∣∣φs(p2)∣∣ ≤ eΓ|s|

∣∣p2∣∣.
(6.14)

Combining (6.12) with (6.13) and (6.14) we get

∥∥∥[At, [At,H0]](H0 + 1)−1
∥∥∥ ≤ e2Γ|t|,

sup
0<|t|≤1

∥∥∥[At, [At,H0]](H0 + 1)−1
∥∥∥ ≤ e2Γ.

(6.15)
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In a similar way we obtain

sup
0<|t|≤1

∥∥∥[Aσ
t ,
[
Aσ
t ,H0

]]
(H0 + 1)−1

∥∥∥ ≤ Ce2Γ,

sup
0<|t|≤1

∥∥∥[Aσt, [Aσt,H0]](H0 + 1)−1
∥∥∥ ≤ Ce2Γ.

(6.16)

Here C is a positive constant.
Let us now prove that

sup
0<|t|≤1

∥∥∥[At, [At,HI(G)]](H + i)−1
∥∥∥ <∞. (6.17)

By (3.66) and (6.11)we get, for every ψ ∈ D(H),

[At, [At,HI(G)]]ψ

=
∑
α=1,2

∑
�=1,2,3

∑
ε /= ε′

e2itA

t2

(
e−2itAHI

(
G

(α)
�,ε,ε′

)
e2itA − 2e−itAHI

(
G

(α)
�,ε,ε′

)
eitA +HI

(
G

(α)
�,ε,ε′

))
ψ

=
∑
α=1,2

∑
�=1,2,3

∑
ε /= ε′

e2itA

t2

(
HI

(
G

(α)
�,ε,ε′;2t

)
− 2HI

(
G

(α)
�,ε,ε′;t

)
+HI

(
G

(α)
�,ε,ε′;0

))
ψ,

(6.18)

where

G
(α)
�,ε,ε′;t(ξ1, ξ2, ξ3) =

(
Dφt
(
p2
))1/2

G
(α)
�,ε,ε′
(
ξ1;φt
(
p2
)
, s2; ξ3

)

=
(
e−itaG(α)

�,ε,ε′

)
(ξ1, ξ2, ξ3).

(6.19)

Combining (2.53) and (2.54)with (3.26)–(3.28) and (6.18) we get

∥∥[At, [At,HI(G)]]ψ
∥∥ ≤ gK(Gt)

(
Cβη

∥∥(H0 + I)ψ
∥∥ + (Cβη + Bβη

)∥∥ψ∥∥). (6.20)

Here K(Gt) > 0 and

K(Gt)2 =
∑
α=1,2

∑
�=1,2,3

∑
ε /= ε′

1
t2

∥∥∥G(α)
�,ε,ε′;2t − 2G(α)

�,ε,ε′;t +G
(α)
�,ε,ε′

∥∥∥2
L2(Σ1×Σ1×Σ2)

. (6.21)
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We further note that, for 0 < |t| ≤ 1,

K(Gt) ≤ sup
0<|s|≤2

⎛
⎝∑

α=1,2

∑
�=1,2,3

∑
ε /= ε′

∥∥∥∥∥
∂2

∂s2
G

(α)
�,ε,ε′;s

∥∥∥∥∥
2

L2(Σ1×Σ1×Σ2)

⎞
⎠

1/2

. (6.22)

We get

(
∂

∂t
G

(α)
�,ε,ε′;t

)
=

3
2

(
e−itaG(α)

�,ε,ε′

)
+
(
e−ita
(
p2 · ∇p2G

(α)
�,ε,ε′

))
,

(
∂2

∂t2
G

(α)
�,ε,ε′;t

)
=

9
4

(
e−itaG(α)

�,ε,ε′

)
+
7
2

(
e−ita
(
p2 · ∇p2G

(α)
�,ε,ε′

))

+
∑

i,j=1,2,3

e−ita
(
p2,ip2,j∂

2
p2,ip2,jG

(α)
�,ε,ε′

)
.

(6.23)

Recall that e−ita is an one parameter group of unitary operators in L2(Σ1 × Σ1 × Σ2).
Combining Hypothesis 3.1(iii.a) and (iii.b)with (6.20)–(6.23)we finally get

sup
0<|t|≤1

∥∥∥[At, [At,HI(G)]](H0 + 1)−1
∥∥∥ <∞. (6.24)

In view of D(H) = D(H0) the operators H0(H + i)−1 and H(H0 − 1)−1 are bounded and we
obtain

sup
0<|t|≤1

∥∥∥[At, [At,H0]](H + i)−1
∥∥∥ <∞,

sup
0<|t|≤1

∥∥∥[At, [At,HI(G)]](H + i)−1
∥∥∥ <∞.

(6.25)

This yields

sup
0<|t|≤1

∥∥∥[At, [At,H]](H + i)−1
∥∥∥ <∞ (6.26)

for g ≤ g1.
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Let V (p2) denote any of the two C∞-vector fields vσ(p2) and vσ(p2) and let ã denote
the corresponding aσ and aσ operators. We get

(
∂2

∂t2

(
e−iãtG(α)

�,ε,ε′

))
(ξ1, ξ2, ξ3)

=
1
4

(
e−iãt
((

divV
(
p2
))2

G
(α)
�,ε,ε′

))
(ξ1, ξ2, ξ3)

+
1
2

(
e−iãt
((

divV
(
p2
))
V
(
p2
) · ∇p2G

(α)
�,ε,ε′

))
(ξ1, ξ2, ξ3)

+
1
2

⎛
⎝e−iãt

⎛
⎝ 3∑

i,j=1

(
Vi
(
p2
)(
∂2p2,ip2,j Vj

(
p2
)))

G
(α)
�,ε,ε′

⎞
⎠
⎞
⎠(ξ1, ξ2, ξ3)

+
1
2

⎛
⎝e−iãt

⎛
⎝ 3∑

i,j=1

Vi
(
p2
) ∂Vj
∂p2,i

(
p2
) ∂

∂p2,j
G

(α)
�,ε,ε′

⎞
⎠
⎞
⎠(ξ1, ξ2, ξ3)

+
1
2

⎛
⎝e−iãt

⎛
⎝ 3∑

i,j=1

Vi
(
p2
)
Vj
(
p2
) ∂2

∂p2,i∂p2,j
G

(α)
�,ε,ε′

⎞
⎠
⎞
⎠(ξ1, ξ2, ξ3).

(6.27)

Combining the properties of the C∞ fields vσ(p2) and vσ(p2) together with Hypotheses 2.1,
3.1(i) and 3.1(iii) we get, from (6.25) and by mimicking the proof of (6.26),

sup
0<|t|≤1

∥∥∥[Aσ
t ,
[
Aσ
t ,H
]]
(H + i)−1

∥∥∥ <∞,

sup
0<|t|≤1

∥∥∥[Aσt, [Aσt,H]](H + i)−1
∥∥∥ <∞

(6.28)

for g ≤ g1.
Similarly, by mimicking the proof of (6.28), we easily get, for g ≤ g1,

sup
0<|t|≤1

∥∥∥[Aσ
t ,
[
Aσ
t ,H

σ]](Hσ + i)−1
∥∥∥ <∞. (6.29)

This concludes the proof of Proposition 6.2.

We now prove Theorem 3.7.

Proof of Theorem 3.7. In view of [5, Lemma 6.2.3] (see also [4, Proposition 28]), the proof of
Theorem 3.7 will follow from Proposition 6.1 and the following estimates:

sup
0<|t|≤1

∥∥[At,
[
At, ϕ(H)

]]∥∥ <∞, (6.30)
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sup
0<|t|≤1

∥∥[Aσ
t ,
[
Aσ
t , ϕ(H)

]]∥∥ <∞,

sup
0<|t|≤1

∥∥[Aσt,
[
Aσt, ϕ(H)

]]∥∥ <∞,

sup
0<|t|≤1

∥∥[Aσ
t ,
[
Aσ
t , ϕ(H

σ)
]]∥∥ <∞

(6.31)

for every ϕ ∈ C∞
0 ((−∞, m1 − δ/2)) and for g ≤ g1.

Let us prove (6.30). The estimates (6.31) can be proved similarly.
To this end, let φ be an almost analytic extension of ϕ satisfying

∣∣∂zφ(x + iy
)∣∣ ≤ C∣∣y∣∣3,

ϕ(H) =
∫
(z −H)−1dφ(z), dφ(z) = − 1

π

∂

∂z
φ(z)dxdy.

(6.32)

It follows that

[
At

[
At, ϕ(H)

]]

=
∫(

(z −H)−1[At[At,H]](z −H)−1 + 2(z −H)−1[At,H](z −H)−1[At,H](z −H)−1
)
dφ(z).

(6.33)

We note that

∥∥∥(H + i)(H − z)−1
∥∥∥ ≤ C

|Imz| , for z ∈ suppφ. (6.34)

We also have

sup
0<|t|≤1

∥∥∥∥
∫
(z −H)−1[At[At,H]](z −H)−1dφ(z)

∥∥∥∥

≤ sup
0<|t|≤1

∫∥∥∥[At[At,H]](H + i)−1
∥∥∥
∥∥∥(H + i)(z −H)−1

∥∥∥
∣∣dφ(z)∣∣
|Imz|

≤ C sup
0<|t|≤1

∥∥∥[At, [At,H]](H + i)−1
∥∥∥
∫ ∣∣dφ(z)∣∣

|Imz|2
.

(6.35)
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Therefore, combining Proposition 3.8(b)(i) and (6.34) we obtain

sup
0<|t|≤1

∥∥∥∥
∫
dφ(z)(H − z)−1[At,H](H − z)−1[At,H](H − z)−1

∥∥∥∥

= sup
0<|t|≤1

∥∥∥∥
∫
(H− z)−1[At,H](H + i)−1(H + i)(H− z)−1[At,H](H + i)−1(H + i)(H− z)−1

∥∥∥∥dφ(z)

≤ C
(∫ ∣∣dφ(z)∣∣∣∣y∣∣3

)
sup
0<|t|≤1

∥∥∥[At,H](H + i)−1
∥∥∥2 <∞.

(6.36)

Inequality (6.36) together with (6.35) yields (6.30), and H is locally of class C2(A) on
(−∞, m1 − δ/2) for g ≤ g1.

In a similar way it follows fromPropositions 3.8(b), 6.1, and 6.2 thatH is locally of class
C2(Aσ) andC2(Aσ) in (−∞, m1−δ/2) and thatHσ is locally of classC2(Aσ) in (−∞, m1−δ/2),
for g ≤ g1. This ends the proof of Theorem 3.7.

7. Proof of Theorem 3.4

By (3.91),
⋃
n≥1((γ − εγ)

2σn, (γ + εγ)σn)) is a covering by open sets of any compact subset
of (E,m1 − δ] and of the interval (E,m1 − δ] itself. Theorem 3.4(i) and (ii) follow from [6,
Theorems 0.1 and 0.2] and Theorems 3.7 and 3.10 above with gδ = g̃(2)

δ , where g̃(2)
δ is given in

Theorem 3.10. Theorem 3.4(iii) follows from [30, Theorem 25].

Appendix

In this appendix, we will prove Proposition 3.5. We apply the method developed in [3]
because every infrared cutoff Hamiltonian that one considers has a ground state energy
which is a simple eigenvalue.

Let, for n ≥ 0,

Fσn = Fn,

Σn+1
1n = Σ1 ∩

{
p2;σn+1 ≤

∣∣p2∣∣ < σn},

Fn+1�,2,n = Fa
(
L2
(
Σn+1
1n

))
⊗ Fa
(
L2
(
Σn+1
1n

))
,

Fn+1n =
3⊗
�=1

Fn+1�,2,n.

(A.1)

We have

Fn+1 	 Fn ⊗ Fn+1n . (A.2)
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Let Ωn (resp., Ωn+1
n ) be the vacuum state in Fn (resp., in Fn+1n ). We now set

Hn+1
0n = H(1)

0 +H(3)
0 +

3∑
�=1

∑
ε=±

∫
σn+1≤|p2|<σn

w
(2)
� (ξ2)c∗�,ε(ξ2)c�,ε(ξ2)dξ2. (A.3)

The operatorHn+1
0n is a self-adjoint operator in Fn+1n .

Let us denote by Hn
I and Hn+1

In the interaction HI given by (2.23) and (2.24) but
associated with the following kernels:

χ̃σn
(
p2
)
G

(α)
�,ε,ε′(ξ1, ξ2, ξ3), (A.4)

(
χ̃σn+1
(
p2
) − χ̃σn(p2))G(α)

�,ε,ε′(ξ1, ξ2, ξ3), (A.5)

respectively, where χ̃σn+1 is defined by (3.13).
Let for n ≥ 0,

Hn
+ = Hn − En,

H̃n
+ = Hn

+ ⊗ 1n+1n + 1n ⊗Hn+1
0n .

(A.6)

The operatorsHn
+ and H̃n

+ are self-adjoint operators in Fn and Fn+1, respectively. Here 1n and
1n+1n are the identity operators in Fn and Fn+1n , respectively.

Combining (2.53) and (2.54)with (3.26)–(3.28)we obtain for n ≥ 0,

g
∥∥Hn

I ψ
∥∥ ≤ gK(G)

(
Cβη

∥∥H0ψ
∥∥ + Bβη∥∥ψ∥∥) (A.7)

for every ψ ∈ D(Hn
0 ) ⊂ Fn.

It follows from [33, Section V, Theorem 4.11] that

Hn ≥ − gK(G)Bβη
1 − g1K(G)Cβη

≥ − g1K(G)Bβη
1 − g1K(G)Cβη

,

En ≥ − gK(G)Bβη
1 − g1K(G)Cβη

.

(A.8)

We have

(Ωn,HnΩn) = 0. (A.9)

Therefore

En ≤ 0, (A.10)

|En| ≤ gK(G)Bβη
1 − g1K(G)Cβη

. (A.11)
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Let

Kn+1
n (G) = K

(
1σn+1≤|p2|≤2σnG

)
. (A.12)

Combining (2.53) and (2.54)with (3.26) and (A.12) we obtain for n ≥ 0

g
∥∥∥Hn+1

In ψ
∥∥∥ ≤ gKn+1

n (G)
(
Cβη

∥∥∥Hn+1
0 ψ
∥∥∥ + Bβη∥∥ψ∥∥

)
(A.13)

for ψ ∈ D(Hn+1
0 ) ⊂ Fn+1, where we remind thatHn+1

0 = H0|Fσn+1 as defined in (3.24).
We have, for every ψ ∈ D(Hn+1

0 ),

Hn+1
0 ψ = H̃n

+ψ + Enψ − g
(
Hn

I ⊗ 1n+1n

)
ψ, (A.14)

and by (A.7)

g
∥∥∥(Hn

I ⊗ 1n+1n

)
ψ
∥∥∥ ≤ gK(G)

(
Cβη

∥∥∥Hn+1
0 ψ
∥∥∥ + Bβη∥∥ψ∥∥

)
. (A.15)

In view of (A.11) and (A.14) it follows from (A.15) that

g
∥∥∥(Hn

I ⊗ 1n+1n

)
ψ
∥∥∥

≤ gK(G)Cβη

1 − g1K(G)Cβη

∥∥∥H̃n
+ψ
∥∥∥ + gK(G)Bβη

1 − g1K(G)Cβη

(
1 +

gK(G)Bβη
1 − g1K(G)Cβη

)∥∥ψ∥∥.
(A.16)

By (3.29), (A.13), (A.14), and (A.16)we finally get

g
∥∥∥Hn+1

In ψ
∥∥∥ ≤ gKn+1

n (G)
(
C̃βη

∥∥∥H̃n
+ψ
∥∥∥ + B̃βη∥∥ψ∥∥

)
. (A.17)

For n ≥ 0, a straightforward computation yields

Kn+1
n (G) ≤ σnK̃(G) ≤ sup

(
4Λγ

2m1 − δ , 1
)
K̃(G)

σn+1
γ

. (A.18)

Recall that, for n ≥ 0,

σn+1 < m1. (A.19)

By (A.17), (A.18), and (A.19), we get, for ψ ∈ D(H0),

g
∥∥∥Hn+1

In ψ
∥∥∥ ≤ gKn+1

n (G)
(
C̃βη

∥∥∥(H̃n
+ + σn+1

)
ψ
∥∥∥ + (C̃βηm1 + B̃βη

)∥∥ψ∥∥), (A.20)
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and for φ ∈ F,

g

∥∥∥∥Hn+1
In

(
H̃n

+ + σn+1
)−1

φ

∥∥∥∥ ≤ gKn+1
n (G)

(
C̃βη +

m1C̃βη + B̃βη
σn+1

)∥∥φ∥∥

≤ g

γ
sup
(

4Λγ
2m1 − δ , 1

)
K̃(G)

(
2m1C̃βη + B̃βη

)∥∥φ∥∥.
(A.21)

Thus, by (A.21), the operatorHn+1
In (H̃n

+ + σn+1)
−1 is bounded and

g

∥∥∥∥Hn+1
In

(
H̃n

+ + σn+1
)−1∥∥∥∥ ≤ g D̃γ , (A.22)

where D̃ is given by (see (3.32))

D̃ = sup
(

4Λγ
2m1 − δ , 1

)
K̃(G)

(
2m1C̃βη + B̃βη

)
. (A.23)

This yields, for ψ ∈ D(H̃n
+),

g
∥∥∥Hn+1

In ψ
∥∥∥ ≤ g D̃

γ

∥∥∥(H̃n
+ + σn+1

)
ψ
∥∥∥. (A.24)

Hence it follows from [33, Section V, Theorems 4.11 and 4.12] that

g
∣∣∣(Hn+1

In ψ, ψ
)∣∣∣ ≤ g D̃

γ

((
H̃n

+ + σn+1
)
ψ, ψ
)
. (A.25)

Let g(2)
δ > 0 be such that

g
(2)
δ

D̃

γ
< 1, g

(2)
δ

≤ g(1)
δ
. (A.26)

By (A.25) we get, for g ≤ g(2)
δ

,

Hn+1 = H̃n
+ + En + gHn+1

In ≥ En − gD̃

γ
σn+1 +

(
1 − gD̃

γ

)
H̃n

+ . (A.27)

Because (1 − gD̃/γ)H̃n
+ ≥ 0 we get from (A.27)

En+1 ≥ En − gD̃

γ
σn+1, n ≥ 0. (A.28)
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Suppose that ψn ∈ Fn satisfies ‖ψn‖ = 1 and, for ε > 0,

(
ψn,Hnψn

) ≤ En + ε. (A.29)

Let

ψ̃n+1 = ψn ⊗Ωn+1
n ∈ Fn+1. (A.30)

We obtain

En+1 ≤
(
ψ̃n+1,Hn+1ψ̃n+1

)
≤ En + ε + g

(
ψ̃n+1,Hn+1

In ψ̃n+1
)
. (A.31)

By (A.25), (A.29), (A.30), and (A.31)we get, for every ε > 0,

En+1 ≤ En + ε
(
1 +

gD̃

γ

)
+
gD̃

γ
σn+1, (A.32)

where g ≤ g(2)
δ

.
This yields

En+1 ≤ En + gD̃

γ
σn+1, (A.33)

and by (A.28), we obtain

∣∣∣En − En+1
∣∣∣ ≤ gD̃

γ
σn+1. (A.34)

For n = 0, since σ0 = Λ, remind thatH0
0 = Hn=0

0 = Hσ0
0 = H0|FΛ . Thus, the ground state

energy of H0
0 is 0 and it is a simple isolated eigenvalue of H0

0 with Ω0, the vacuum in F0, as
eigenvector. Moreover, since Λ > m1,

inf
(
σ
(
H0

0

)
\ {0}

)
= m1, (A.35)

thus (0, m1) belongs to the resolvent set ofH0
0 .

By Hypothesis 3.1(iv) we have H0 = H0
0 . Hence E0 = {0} is a simple isolated

eigenvalue ofH0 andH0 = H0
+. We finally get

inf
(
σ
(
H0

+

)
− {0}

)
= m1 > m1 − δ

2
= σ1. (A.36)
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We now prove Proposition 3.5 by induction in n ∈ N
∗. Suppose that En is a simple

isolated eigenvalue ofHn such that

inf(σ(Hn
+) \ {0}) ≥

(
1 − 3gD̃

γ

)
σn, n ≥ 1. (A.37)

Since (3.36) gives σn+1 < (1 − 3gD̃/γ)σn for g ≤ g
(2)
δ

, 0 is also a simple isolated eigenvalue of
H̃n

+ such that

inf
(
σ
(
H̃n

+

)
\ {0}

)
≥ σn+1. (A.38)

We must now prove that En+1 is a simple isolated eigenvalue ofHn+1 such that

inf
(
σ
(
Hn+1

+

)
\ {0}

)
≥
(
1 − 3gD̃

γ

)
σn+1. (A.39)

Let

λ(n+1) = sup
ψ∈Fn+1;ψ /= 0

inf
(φ,ψ)=0;φ∈D(Hn+1);‖φ‖=1

(
φ,Hn+1

+ φ
)
. (A.40)

By (A.27) and (A.33), we obtain, in Fn+1,

Hn+1
+ ≥ En − En+1 − gD̃

γ
σn+1 +

(
1 − gD̃

γ

)
H̃n

+

≥
(
1 − gD̃

γ

)
H̃n

+ − 2gD̃
γ

σn+1.

(A.41)

By (A.30), ψ̃n+1 is the unique ground state of H̃n
+ , and by (A.38) and (A.41), we have, for

g ≤ g(2)
δ

,

λ(n+1) ≥ inf
(φ,ψ̃n+1)=0;φ∈D(Hn+1);‖φ‖=1

(
φ,Hn+1

+ φ
)

≥
(
1 − gD̃

γ

)
σn+1 −

2gD̃
γ

σn+1 =

(
1 − 3gD̃

γ

)
σn+1 > 0.

(A.42)

This concludes the proof of Proposition 3.5 by choosing gδ = g
(2)
δ

, if one proves that H1

satisfies Proposition 3.5. By noting that 0 is a simple isolated eigenvalue of H̃0
+ such that

inf(σ(H̃0
+) \ {0}) = σ1, we prove that E1 is indeed an isolated simple eigenvalue of H1 such

that inf(σ(H1
+) \ {0}) ≥ (1 − 3gD̃/γ)σ1 by mimicking the proof given above forHn+1

+ .
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