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Abstract. In this paper, we investigate the control of 2D flexible structures by vibration confinement and the regulation of their
energy flow along prespecified spatial paths. A discretized-model-based feedback strategy, aiming at confining and suppressing
simultaneously the vibration, is proposed. It is assumed that the structure consists of parts that are sensitive to vibrations.
The control design introduces a new pseudo-modal matrix derived from the computed eigenvectors of the discretized model.
Simulations are presented to show the efficacy of the proposed control law. A parametric study is carried out to examine the effects
of the different control parameters on the simultaneous confinement and suppression of vibrations. In addition, we conducted a
set of simulations to investigate the flow control of vibrational energy during the confinement-suppression process. We found
that the energy flow can be regulated via a set of control parameters for different confinement configurations.
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1. Introduction

Flexible structures can undergo vibratory motion that results from an initial energy distribution, persistent excita-
tion, or both. The vibrations can reach unwanted structural resonances, and thus, damage the sensitive parts of the
structure. Methods of vibration control may be grouped into three main categories: reduction at the source, isolation
of the sensitive equipment or reduction of the response[1]. The reduction of the response can be achieved by altering
the natural frequencies of the system to avoid potential resonances and introducing energy dissipation mechanisms.

The idea of vibration confinement originated from the concept of mode localization, which occurs mainly in
slightly-perturbed periodic structures. Hodges [2] discussed the possibility of using structural irregularities for
vibration confinement. Vakakis [3] investigated passive spatial confinement of impulsive responses. Allaei [4]
compared passive confinement similar to the mode localization phenomenon and conventional control techniques.
The use of passive methods presents two limitations: they are effective only for high frequencies and cannot be
applied to strongly-modified structures.

Active confinement methods are based on feedback techniques to achieve eigenstructure assignment for the purpose
of vibration suppression. Many algorithms were proposed to assign arbitrary eigenvalues and eigenvectors to flexible
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structures via feedback. Fahmy and O’Reilly [5] examined the eigensystem alteration of linear multivariable systems.
Kautsy et al. [6] proposed a robust pole assignment technique using linear state feedback. Robust eigenstructure
assignment for flexible structures was investigated by Juang et al. [7]. Maghami et al. [8,9] included dissipativity
constraints for the eigensystem assignment using output feedback. Shelley and Clark [10] used singular value
decomposition to develop an eigenvector scaling algorithm. Only few eigenstructure assignment algorithms were
applied to the problem of vibration confinement.

Song and Jayasuriya [11] developed an algorithm for eigenvector assignment where the specification of special
mode shapes was shown to alter the distribution of the vibrational energy. Shaw and Jayasuriya [12] and Clark
and Shelley [13] analyzed active mode localization in distributed-parameter systems by altering their eigenstructure.
The robustness and margin stability of such techniques depend highly on the dynamic model and actuator-sensor
placement considerations. Preumont [14] showed that the use of collocated actuators and sensors guarantees the
asymptotic stability of a wide class of single-input single-output control systems. In fact, for lightly-damped
structures, collocated actuator and sensor pairs lead to alternating poles and zeros near the imaginary axis on the left
half s-plane even if the system parameters are subject to large perturbations.

Meyer and Collet [15] proposed a control design to achieve vibration isolation. The relative displacement and
transmitted force between the sensitive element and its disturbing support are employed as feedback signals. The
simplicity of the proposed control law enables optimization of the different design parameters. Other studies
investigated means to maintain the vibrational energy near the excitations points and to prevent it from propagating
to the sensitive parts [16]. Choura and Yigit [17] developed a control strategy for the confinement of vibrations in
flexible structures. This strategy is based on applying distributed feedback to continuous structures. Feedback forces
are used to alter the original mode shapes and to convert them to exponentially-decaying functions of the space
variable. As a consequence, parts of the structure reach their equilibrium at faster rates at the expense of slowing
down convergence of the remaining parts to zero. Choura and Yigit [18] proposed also a similar method based on
FEM reduced-order systems.

To the best of our knowledge, no research studies have investigated the confinement of vibrations and the flow
control of vibrational energy in flexible structures. In fact, the majority of studies on vibration confinement addressed
its efficiency on elementary structures, such as bars and beams. In this paper, we propose a design strategy for the
confinement and flow control of vibrations in 2D flexible structures. Special interest is given to controlling the flow
of vibrational energy and isolating the sensitive parts of the structure. The controller design is based on discrete-
point actuators and uses a pseudo-modal matrix for vibration confinement. The reduced-order system is obtained
using the Harmonic Quadrature Method (HQM) [19–22]. This latter was shown to yield accurate results with less
computational cost as opposed to other classical discretization techniques. We also propose that the pseudo-modal
matrix be determined using the eigenvectors associated with the HQM-discretized model. Simulations are carried
out in order to investigate the effects of different design parameters on the confinement of vibrations. The use of
the resulting pseudo-modal matrix is contrasted to classical pseudo-modal matrices. Another set of simulations is
conducted to demonstrate the possibility of controlling the flow of vibrational energy.

2. Model discretization of 2D flexible structures

The proposed active confinement strategy is based on the use of point force actuators. As a result, a discretization
technique is needed for order reduction of the system dynamics.

2.1. Modeling flexural vibrations of 2D structures

In this study, we consider the class of 2D flexible structures described by the following linear partial differential
equation and set of boundary conditions:

M
[
∂2w
∂t2 (P, t)

]
+ C [∂w∂t (P, t)]+ K [w(P, t)] = f(P, t) + d(P, t)

Bi [w(P, t)] = 0 i = 1, 2, · · · , p
(1)
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where M , C and K are the linear mass, damping and stiffness differential operators. The independent variable t is
time, P is a point of the spatial domain D, and for every point on the boundary S, B i is a set of linear differential
operators characterizing the boundary conditions, and f is a distributed feedback force. It is assumed that the
structure vibrates under the influence of an external disturbance d(P, t) and that the distributed load f(P, t) is the
essential mechanism for vibration confinement and suppression.

In this study, we adopt HQM for discretizing the class of 2D structures described by Eq. (1). In the literature,
HQM has been proved to yield better results with less computational cost than the Finite Element Method [20]. The
basic idea of HQM is that the derivative of a function, with respect to the space variable at a given sampling point,
is approximated as a weighted linear sum of the values of the function at the sampling points in the domain of that
variable. In case of 2D problems, this can be characterized by the following relation:

∂(r+s)g

∂ξr∂ηs
|(ξi,ηj) = A(ξ,r)G

[
A(η,s)

]T
(2)

where G = [g(ξi, ηj)](Nξ×Nη), A
(ξ,r) =

[
A

(ξ,r)
ij

]
(Nξ×Nξ)

and A(η,s) =
[
A

(η,s)
ij

]
(Nη×Nη)

. Nξ and Nη represent the

numbers of grid points along the ξ and η directions, respectively. The expression of the HQM weighting coefficients
can be found in [19] (A(ξ,0) and A(η,0) are equal to the identity matrix).

The resulting HQM-discretized system can be written in the following form:

MẌ + CẊ + KX = Bctrf + Bdisd (3)

where M , C and K are respectively the inertia, damping and stiffness matrices, B crt and Bdis are the input
distribution matrices associated with the control and disturbance signals, and X = [X i,j ] is a matrix representing the
structure deflection at the grid points. In order to recast the system into the conventional form where X is a vector,
we use the fact that for A ∈ Mm,n, B ∈ Mp,q and X ∈ Mn,p we have [23]:

vec(AXB) = (BT ⊗A)vec(X) (4)

where vec(X) is the vector-function of the rectangular matrix X formed by stacking its columns into one vector,
and ⊗ denotes the Kronecker product.

2.2. Bending of plates

Without loss of generality, this paper considers a plate undergoing flexural vibration, as an example of 2D
structures, to illustrate the proposed control design for confining its vibratory motion and regulating its energy flow.
According to the classical plate theory, the flexural vibrations of a rectangular plate can be described by the following
nondimensional partial differential equation:

h3

6L3
x

(
∂4v∗

∂ξ4
+ 2r2 ∂4v∗

∂ξ2∂η2
+ r4 ∂

4v∗

∂η4

)
+

∂2v∗

∂τ2
=

h2Lx
6D

(
nu∑
k=1

fk (τ) δ (ξ − ξk) δ (η − ηk)

)
(5)

where ξ = x
Lx

, η = y
Ly

, v∗ = v
h , τ =

√
6D
ρLxh4

t, r = Lx

Ly
and D = Eh3

12(1−ν2) . Lx and Ly are the plate sides, h is the

thickness, ρ is the material density, E is the modulus of elasticity, ν is the Poisson’s ratio, and fk (k = 1, 2, . . . , nu)
are the amplitudes of the nu discrete actuators. Applying the HQM to Eq. (5) yields the following discretized plate
dynamics:

h3

6L3
x

[(
INη ⊗ A(ξ,4)

)
+ 2r2

(
A(η,2) ⊗A(ξ,2)

)
+ r4

(
A(η, 4) ⊗ INξ

)]
vec (V )

+(INη ⊗ INξ
)vec

(
V̈
)

=
h2Lx
6D

(INη ⊗B)vec (F ) (6)

where V = [Vij = v∗(ξi, ηj)], V̈ =
[
V̈ij = ∂2v∗(ξi,ηj)

∂τ2

]
and F = [Fk = fk(τ)]. INξ

and INη denote the identity

matrices of size Nξ ×Nξ and Nη ×Nη, respectively. Equation (6) can be rewritten as:
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MẌ + KX = Bctrf (7)

where X = vec (V ), Ẍ = vec
(
V̈
)

and f = vec (F ).
Next, we present a control strategy for 2D structures by the confinement of vibrations. The proposed design

uses HQM to determine the actuator locations and compute a pseudo-modal matrix, a key parameter for vibration
confinement.

3. Proposed active controller for the confinement of vibrations

The proposed control strategy addresses two important design issues:

1. Is it possible to isolate sensitive parts of a 2D structure subject to external and/or internal excitations?
2. Can the flow path(s) of the confined vibratory motion within the structure be controlled? If yes, then what would

be the most convenient flow path(s) for accelerating the vibration confinement with less input amplitudes?

In order to answer the above concerns, let the discretized system, described by Eq. (8), be decomposed into two
subsystems: the first one includes all sensitive parts in addition to at least one neighboring nonsensitive part and the
second includes the remaining parts. A sensitive part is characterized by amplitude of vibration that must be kept
low as compared to that of a nonsensitive part. The decomposed system is described by:[

MppMpr
Mrp Mrr

] [
Ẍp
Ẍr

]
+
[
Kpp Kpr
Krp Krr

] [
Xp
Xr

]
=
[

Ipp 0pk
0(n−p)p B(n−p)k

] [
fp
fk

]
(8)

where p and r are the orders of the first and second subsystems, respectively, with p + r = n and p + k = n u. fp
and fk are the sets of control inputs associated with the first and second subsystems, respectively. The key role of
this decomposition is to decouple the first subsystem from the second one. The main advantage of this control over
classical feedback control is the possibility of imposing separate convergence rates on the sensitive and nonsensitive
parts. In fact, this becomes possible through the use of the feedback inputs f p and fk. The main task of fp is to
redistribute and suppress the vibrational energy in the first subsystem. The second feedback input f k acts mainly as
a stabilizer for the second subsystem. Reducing the number of actuators is equivalent to minimizing the size of f k
provided that the second subsystem remains stable. Next, the design of each of these input vectors is described.

3.1. Design of fp

The synthesis of fp requires the use of p actuators, where p corresponds to the dimension of the first subsystem.
The control fp allows the designer to put more emphasis on the sensitive parts by accelerating their convergence
rates. In order to decouple the Xp dynamics from that of Xr, fp is proposed to be given by:

fp (t) = MprẌr + KprXr −MppẌp − CppẊp −KppXp (9)

Substituting Eq. (9) into Eq. (8) yields:(
Mpp + Mpp

)
Ẍp + CppẊp +

(
Kpp + Kpp

)
Xp = 0 (10)

Feedback is primarily used to alter the eigenstructure of the first subsystem with the aim of suppressing and confining
the structural vibrations. Without loss of generality, such vibrations are assumed to result from external disturbances.
The emphasis here is on designing stabilizing feedback matrices M̄pp, C̄pp and K̄pp that confine and eliminate the
vibratory motion of the structure.

Let Xp = Qλp, where Q is the pseudo-modal matrix and λp is the vector of modal amplitudes associated with
the first subsystem. Thus, Eq. (10) becomes:

λ̈p + Γλ̇p + Λλp = 0 (11)

where Γ and Λ are diagonal matrices defined as:

Γ = diag {2ζ1ω1, 2ζ2ω2, · · · , 2ζnωn} = Q−1
(
Mpp + M̄pp

)−1
C̄ppQ (12)
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Λ = diag
{
ω2

1 , ω
2
2 , · · · , ω2

n

}
= Q−1

(
Mpp + M̄pp

)−1 (
Kpp + K̄pp

)
Q (13)

The coefficients ζi and ωi (i = 1, 2, . . . , p) are the damping ratios and natural frequencies associated with the
controlled structure. The matrices Q, Γ and Λ are considered to be the design parameters for the synthesis of the
control law. In particular, the matrix Q is the main tool for the confinement of the vibrational energy in regions of the
system domain. The choice of its rows decides the way the vibrational energy is reallocated in the system domain.
The masses or nodes, which have to experience lower energy levels, must have the elements of their corresponding
rows small. The form of Q proposed in [24] is given by

QC =




1 1 · · · 1 1
β1 β1 · · · β1 s2,pβ1

β2 β2 · · · s3,p−1β2 s3,pβ2

...
...

...
...

...
βp−2 βp−2 · · · sp−1,p−1βp−2 sp−1,pβp−2

βp−1 sp,2βp−1 · · · sp,p−1βp−1 sp,pβp−1




(14)

where the coefficients si,j are defined by:

si,j =
{

(−1)p+1 if (i + j) is even
(−1)p if (i + j) is odd

These are introduced to maintain a pattern of sign changes associated with the columns of Q C , and the scalars βi set
the level of vibrational energy at each node.

In this study, we propose a new form of the pseudo-modal matrix QN constructed with the aid of the HQM-
estimated modal matrix denoted by W . The proposed pseudo-modal matrix is given by:

QN =




β1,1
W1,1
ω11

β1,2
W1,2
ω12

· · · β1,p−1
W1,p−1
ω1(p−1)

β1,p
W1,p

ω1p

β2,1
W2,1
ω11

β2,2
W2,2
ω12

· · · β2,p−1
W2,p−1
ω1(p−1)

β2,p
W2,p

ω1p

β3,1
W3,1
ω11

β3,2
W3,2
ω12

· · · β3,p−1
W3,p−1
ω1(p−1)

β3,p
W3,p

ω1p

...
...

...
...

...
βp−1,1

Wp−1,1
ω11

βp−1,2
Wp−1,2
ω12

· · · βp−1,p−1
Wp−1,p−1
ω1(p−1)

βp−1,p
Wp−1,p

ω1p

βp,1
Wp,1
ω11

βp,2
Wp,2
ω12

· · · βp,p−1
Wp,p−1
ω1(p−1)

βp,p
Wp,p

ω1n




(15)

Although it can be used for 2D structures, the pseudo-modal matrix Q = QC proposed in [24] was originally
constructed for 1D structures. The proposed pseudo-modal matrix QN relies on a more faithful representation of the
eigensystem of the HQM-discretized structure. In addition, the β i,j coefficients, which define the way the vibrational
energy is reallocated in the structure, can be separately specified at a given node associated with one of the mode
shapes. This property allows more flexibility for both the vibration confinement and the control of energy flow. The
advantages of the proposed form of the pseudo-modal matrix, as contrasted to Q C , are addressed in the simulation
study, provided later.

A closed-form expression for the displacement vector Xp can be derived from Eq. (11). It is given by:

Xp (t) = QN

[
H1(t)Q−1

N Xp (0) + H2(t)Q−1
N Ẋp (0)

]
(16)

where H1(t) and H2(t) are time-varying diagonal matrices whose elements are given by:

(H1)ii(t) = e−ξiωit

(
cos
(
ωi

√
1 − ξ2

i t

)
+

ξi√
1 − ξ2

i

sin
(
ωi

√
1 − ξ2

i t

))
(17)

(H2)ii(t) = e−ξiωit

(
1

ωi
√

1 − ξ2
i

sin
(
ωi

√
1 − ξ2

i t

))
(18)

Notice that the reallocation of the vibrational energy is ensured by QN and the damping rate is regulated through
the damping terms ξiωi (i = 1, 2, · · · , p).
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3.2. Design of fk

The main reason behind the use of the input fk is to ensure closed-loop stability of the second subsystem. As it is
clear from the decomposition of the system dynamics, the feedback input f k does not influence the first subsystem.
The stability of the second subsystem using fk is based on the following dynamics:

MrrẌr + KrrXr = Brkfk (19)

Using the state vector x =
[
Xr
Ẋr

]
, Eq. (19) can be expressed in the following state space form:

ẋ =
[

0rr Irr
−M−1

rr Krr 0rr

]
x +

[
0rk

M−1
rr Brk

]
fk (20)

It is required that the actuators be placed appropriately such that the second subsystem is controllable. The feedback
input fk can be expressed in the form

fk = − [K1 K2

]
x (21)

where the matrices K1 and K2 are determined by pole placement or linear quadratic regulation methods. Integrating
the expressions of the feedback inputs fp and fk in the original system, we obtain:[

Mpp 0pr
MrpMrr

] [
Ẍp
Ẍr

]
+
[
Cpp 0pr
0rp BrkK2

] [
Ẋp
Ẋr

]
+
[
Kpp 0pr
Krp Krr + BrkK1

] [
Xp
Xr

]
=
[
0p
0r

]
(22)

Note that if the design parameters QN , Γ and Λ are specified, the relations between the feedback gain matrices M̄pp,
C̄pp and K̄pp can be determined from Eq. (12) and Eq. (13). They are given by:

C̄pp =
(
Mpp + M̄pp

)
QNΓQ−1

N (23)

K̄pp = −Kpp +
(
Mpp + M̄pp

)
QNΛQ−1

N (24)

Here, it should be emphasized that there are infinitely many sets of M̄pp, C̄pp and K̄pp matrices, all of which lead
to the same structural response [25]. Therefore, the sign of these matrices can be controlled by proper choice of
QN , Γ and Λ. Inspection of Eqs (10) and (22) depicts that the control laws are constructed from knowledge of the
displacement, velocity and acceleration vectors. Solving Eq. (10) for Ẍp and then substituting the result into Eq. (9)
yields a control law fp that can be made of a linear combination of the displacement and velocity vectors only.
However, the implementation of the proposed control law needs the full observation of the displacement, velocity and
acceleration vectors. In practice, the simultaneous measurements of the primal (displacement and velocity) and dual
(acceleration) variables are impossible, as stated by the Heisenberg uncertainty principle. Thus, the implementation
of such system requires the estimation of some of these variables using signal filters or estimation techniques.

In case of a full set of actuators, the implementation of the proposed confinement strategy assumes the use of
collocated actuators and sensors. The choice of where to place these devices depends heavily on the assignment of
the sensitive and nonsensitive parts of the structure. For a reduced number of actuators, the proposed strategy implies
a full state measurement. The spatial region, which gathers the sensitive parts and one neighboring nonsensitive part,
necessitates collocated actuator-sensors pairs. Whereas the region, which encloses the remainder of the nonsensitive
parts, requires more sensors than actuators, and thus, the problem of spillover is likely to occur.

4. Simulation study

The main objective of the presented simulations is to demonstrate the ability of the proposed control strategy to
confine the vibratory motion in 2D structures. The effects of the different design parameters, namely the matrices
Λ, Γ and QN on the structural performance, are investigated. In addition, comparing the confinement performances
using the pseudo-modal matrices QC and QN is worth investigating. Also, both cases of collocated (full set of
actuators) and uncollocated (reduced set of actuators) actuator-sensor pairs are discussed. A simulation study is
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Fig. 1. Chebyshev-Gauss-Lobatto 9 × 9 grid.

carried out to examine the flow of the vibrational energy during the control process. All simulations are conducted
on a square plate subjected to impact-type excitations applied to the sensitive parts. Chebyshev-Gauss-Lobatto
sampling points are used for the ξ and η directions. These points are determined from

δi =
1
2

[
1 − cos

(
π

2i− 1
Nδ − 1

)]
i = 1, 2, . . . , Nδ ; δ = ξ, η (25)

4.1. Full Set of Actuators (FSA)

We consider a simply supported plate such that Lx = Ly = 1m, h = 5 × 10−3m, ρ = 2730 kg m−3,
E = 7 × 1010 N m2 and ν = 0.33. A 9 × 9 grid is used to discretize the structure (see Figure 1). The sensitive
region of the plate is represented in gray.

The present configuration implies the use of collocated actuators and sensors. The HQM solution of the corre-

sponding eigenvalue problem agrees well with the exact solution given by ω ij =
√

h2E
12ρ(1−υ2) ((

iπ
Lx

)2 + ( jπLy
)2). Let

the plate be initially deflected such that:
X42 X51 X60

X41 X50 X59

X40 X49 X58



∣∣∣∣∣∣
τ=0

=


1 1 1

1 1.5 1
1 1 1


 (26)

and zero everywhere else. In addition, the initial velocity at each grid point is taken zero. All damping coefficients
are set to 0.3 and the natural frequencies of the original structure are unaltered after feedback.

The βij coefficients associated with the sensitive nodes are set to 0.01, whereas those associated with the
nonsensitive region are set to 1. Figure 2 displays the resulting plate time responses at selected nodes using the
pseudo-modal matricesQC and QN . It can be clearly seen that the proposed control yields confinement of vibrations
in both cases. However, we notice that the use of QN leads to faster suppression of vibrations of the sensitive
elements and to smoother time response at all nodes. Another important design objective is to reduce the input
energy. In order to gain insight into the control energy needed for the simultaneous confinement and suppression,
we suggest the use of the following input norm

‖u (t)‖2 =
∥∥∥MẌ + CẊ + KX

∥∥∥
2

=

√√√√ nu∑
i=1

ui (t)
2 (27)
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Fig. 2. Plate responses at selected nodes using both forms of Q.

Figure 3-a displays the time histories of the input norms associated with the two forms of the pseudo-modal matrix.
We observe that the feedback input needed using QN requires much smaller amplitudes. Similar observations can
be made for different damping ratios (see Fig. 3-b and 3-c, which correspond to ζ i = 0.1 and ζi = 0.5, respectively).

In order to investigate the effect of altering the natural frequencies associated with the controlled structure, we set
these frequencies to 10 and 20 times less than those of the uncontrolled structure. The resulting responses for both
forms of Q are displayed in Fig. 4. As expected, reducing the plate natural frequencies leads to slower dynamics,
and thus, the proposed control strategy allows the specification of the level of confinement and its rate.

As stated previously, the βij coefficients, with values from 0 to 1, play a key role in confining the vibrations,
and thus, redistributing the energy within the structure. Lowering the value of β ij results in the reduction of the
amplitude of vibration at the ith node associated with the j th mode. This can be easily seen in Fig. 5 where the
amplitude of vibration at node 32 is shown for β32,j = 0.1, β32,j = 0.05 and β32,j = 0.01.

In what follows, the damping coefficients ζi are all set to 0.3, while the natural frequencies of the structure are
kept unaltered.

4.2. Reduced Set of Actuators (RSA)

For the purpose of comparing the plate response to using a full set of actuators with that using a reduced set
of actuators, we consider the plate shown in Fig. 6. The structure is assumed to be initially disturbed such that
X40(0) = 1 and the remaining nodal initial displacements and velocities are zeros. It is also assumed that the plate
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consists of two subsystems: S1 = {30, 31, 32, 39, 40, 41, 48, 49, 50}grouping the sensitive nodes and S2 containing
the remaining parts of the structure. The subdivision of the structure into two subsystems allows the reduction of the
number of actuators for cost-effectiveness purposes.

In order to compare both cases, we examine the resulting displacements of the initially-perturbed node 40 and
selected sensitive nodes.

Figure 7 shows clearly that the confinement performance in both cases is satisfactory. The use of a reduced
number of actuators yields the desired simultaneous confinement and suppression of vibrations, while the use of a
full set of actuators results in slightly better suppression. The feedback inputs needed to achieve the confinement
and suppression of vibrations in each case are displayed in Fig. 8. Although they are different, we note that both
feedback inputs are comparable. It is clear that using a reduced set of actuators (10 actuators instead of 25) achieves
acceptable suppression of vibrations.
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4.3. Control of the vibrational energy flow

Here, we show that it is possible to specify paths for vibration confinement by setting different values for β ij of the
pseudo-modal matrix QN . As mentioned previously, the values of the β ij coefficients are set from 0 to 1, depending
on how sensitive the nodes are. A value close to 0 corresponds to a very sensitive node, whereas 1 corresponds to a
nonsensitive node. In order to demonstrate this, we consider a plate subjected to an impact such that Ẋ39(0) = 0.005
and the remaining nodal initial displacements and velocities are zeros. We assume two different confinement paths:

– Case 1: the vibrational energy flows to the right side of the plate along a straight line (Fig. 9-a)
– Case 2: the vibrational energy flows through one of the plate’s diagonals (Fig. 9-b)

The corresponding sets of the βij coefficients are as shown in Fig. 9-a and 9-b. We note that the excited node
belongs to the desired energy path in the first case whereas it does not in the second case. The 3D representations
of the corresponding time responses of the plate are displayed in Figs 10 and 11. These simulations show that the
desired simultaneous confinement and control of the vibrational energy flow are achieved in both cases.



F. Landolsi et al. / Control of 2D flexible structures by confinement of vibrations and regulation of their energy flow 223

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

−1

0

1

2

3

4

x 10
−3

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3
node 40 node 41

node 49 node 50

FSA

RSA

FSA

RSA

FSA

RSA

FSA

RSA

Fig. 7. Plate responses at selected nodes using the FSA and the RSA strategies.

The present simulations show clearly the feasibility of controlling the flow path of the confined energy. Neverthe-
less, it is of interest to identify the set of paths that best confine the vibratory motion. This can be defined as follows:
for a given set of sensitive parts, what is the set of paths that best confine the vibrational energy with the lowest cost
possible of supplied input energy?

To illustrate such concept, we consider the confinement configurations represented in Fig. 12. We then compare
the input norm needed for these different confinement configurations. In fact, as illustrated by Fig. 13, the second
case (flow along both diagonals of the plate) leads to a reduction of 40% of the input feedback required in the first
case. It can be concluded that larger total lengths of the energy path(s) yield smaller magnitudes of the control efforts
and faster energy decays.

5. Conclusions

In this paper, the vibration confinement and energy flow control of 2D flexible structures were studied. We
proposed an HQM discretized-model-based feedback strategy, aiming at confining and suppressing simultaneously
the vibrations. A new pseudo-modal matrix, derived from the computed eigenvectors of the HQM-discretized model,
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was introduced to enhance the confinement of vibrations and its suppression. Simulations were presented to show
the efficacy of the proposed control law and the effects of its parameters on the simultaneous confinement and
suppression of vibrations. In addition, we conducted a set of simulations to investigate the flow control of vibrational
energy during the confinement-suppression process. We found that the energy flow can be regulated via a set of
control parameters for different confinement configurations. We concluded that longer energy paths yield smaller
magnitude of the control efforts and faster energy decay. Confining the vibratory motion and regulating its flow
within the structure for the purpose of energy harvesting constitute the focal interest of the authors’ future research.
For this, there is a need for developing mathematical expressions for the energy flow of vibration for such regulation.
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