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Abstract In this paper, we obtain higher dimensional topo-
logical black hole solutions of Einstein-� gravity in the pres-
ence of a class of nonlinear electrodynamics. First, we calcu-
late the conserved and thermodynamic quantities of (n + 1)-
dimensional asymptotically flat solutions and show that they
satisfy the first law of thermodynamics. Also, we investigate
the stability of these solutions in the (grand) canonical ensem-
ble. Second, we endow a global rotation to the static Ricci-flat
solutions and calculate the conserved quantities of solutions
by using the counterterm method. We obtain a Smarr-type
formula for the mass as a function of the entropy, the angu-
lar momenta and the electric charge, and show that these
quantities satisfy the first law of thermodynamics. Then, we
perform a stability analysis of the rotating solutions both in
the canonical and the grand canonical ensembles.

1 Introduction

Nonlinear field theories are of interest to different branches
of mathematical physics because most physical systems are
inherently nonlinear in the nature. The main reason to con-
sider the nonlinear electrodynamics (NLED) comes from
the fact that these theories are considerably richer than the
Maxwell field and in special case they reduce to the linear
Maxwell theory. Various limitations of the Maxwell theory,
such as description of the self-interaction of virtual electron-
positron pairs [1–3] and the radiation propagation inside spe-
cific materials [4–7], motivate one to consider NLED [8,9].
Besides, NLED improves the basic concept of gravitational
redshift and its dependency of any background magnetic
field as compared to the well-established method introduced
by standard general relativity. In addition, it was recently
shown that NLED objects can remove both of the big bang
and black hole singularities [10–15]. Moreover, from astro-
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physical point of view, one finds that the effects of NLED
become indeed quite important in superstrongly magnetized
compact objects, such as pulsars and particular neutron stars
(also the so-called magnetars and strange quark magnetars)
[16–18].

About 80 years ago Born and Infeld [19,20] introduced an
interesting kind of NLED in order to remove the divergence
of the self-energy of a point-like charge. The first attempt
to couple the NLED with gravity was made by Hoffmann
[21]. After that the effects of Born–Infeld (BI) NLED cou-
pled to the gravitational field have been studied for static
black holes [22–46], rotating black objects [47–53], worm-
holes [54–57] and superconductors [58–63]. Also, BI NLED
has acquired a new impetus, since it naturally arises in the
low-energy limit of the open string theory [64–69]. Recently,
two different BI types of NLED have been introduced, which
can also remove the divergence of the electric field near the
origin. One of them is Soleng NLED which is logarithmic
form [70] and another one was proposed by Hendi with expo-
nential form [71]. The Soleng field, like BI theory, removes
divergency of the electric field, while the theory proposed
by Hendi does not. It is notable to mention that although the
exponential form of NLED does not cancel the divergency
of the electric field but its singularity is much weaker than
that in the Maxwell theory. Black object solutions coupled
to these two nonlinear fields have been studied in literature
(for e.g., see [57,72–74]). The Lagrangian of mentioned BI
type nonlinear theories, for weak nonlinearity, tends to the
following form

L(F) = −F + αF2 + O
(
α2
)

, (1)

where F = Fμν Fμν is the Maxwell invariant, in which
Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic field tensor and
Aμ is the gauge potential. In addition, α denotes nonlinearity
parameter which is small and so the effects of nonlinearity
should be considered as a perturbation (α is proportional to
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the inverse value of nonlinearity parameter in BI-type the-
ories). In this paper, we take into account the Eq. (1) as a
NLED source and investigate the effects of nonlinearity on
the properties of static and rotating black hole/brane solu-
tions.

Here, it is necessary to focus on the basic motivation
of considering the Lagrangian (1). At first, we should note
that, regardless of a constant parameter, most of NLED
Lagrangians reduce to Eq. (1) for the weak nonlinearity.
Eventually, it is worthwhile to mention that although vari-
ous theories of NLED have been created with different prim-
itive motivations, only for the weak nonlinearity [Eq. (1)],
they contain physical and experimental importances. As we
know, using the Maxwell theory in various branches leads to
near accurate or acceptable consequences. So, in transition
from the Maxwell theory to NLED, the logical decision is
to consider the effects of weak nonlinearity variations, not
strong effects. This means that, one can expect to obtain pre-
cise physical results with experimental agreements, provided
one regards the nonlinearity as a correction to the Maxwell
field.

For the reasons mentioned above, there have been pub-
lished some reasonable works by considering Eq. (1) as
an effective Lagrangian of electrodynamics [1–3,8,9,64–
66,75–81]. Heisenberg and Euler have shown that quan-
tum corrections lead to nonlinear properties of vacuum [1–
3,8,9,75]. Also, as we mentioned before, it was proved that
in the low-energy limit of heterotic string theory, a quartic
correction of the Maxwell field strength tensor appears [64–
66,76–81]. So it is natural to consider Eq. (1) as an effective
and suitable Lagrangian of electrodynamics instead of the
Maxwell one.

The outline of our paper is as follows. In the next sec-
tion, we consider the (n + 1)-dimensional topological static
black hole solutions of Einstein gravity in presence of the
mentioned NLED and investigate their properties. In Sect. 3,
we calculate the conserved and thermodynamic quantities of
asymptotically flat black holes, check the first law of ther-
modynamics and investigate the stability of the solutions in
both canonical and grand canonical ensembles. Section 4 is
devoted to introducing the rotating solutions with flat horizon
and computing the conserved and thermodynamic quantities
of the solutions. We also check the first law of thermodynam-
ics and perform the stability analysis of the solutions both
in the canonical and the grand canonical ensembles for the
rotating solutions. We finish our paper with some concluding
remarks.

2 Static topological black hole solutions

The (n +1)-dimensional action of Einstein gravity with neg-
ative cosmological constant and in presence of NLED is

IG = − 1

16π

∫

M
dn+1x

√−g [R − 2� + L(F)]

− 1

8π

∫

∂M
dn x

√−γ� (γ ), (2)

where R is the scalar curvature, � is the cosmological con-
stant which is equal to −n (n − 1) /2l2 for asymptotically
anti-de Sitter (adS) solutions. In this action, L(F) is the
Lagrangian of NLED presented in Eq. (1) and the second
integral is the Gibbons–Hawking surface term which is cho-
sen such that the variational principle will be well defined
[82,83]. In the second integral, γ and � are, respectively, the
trace of induced metric, γi j , and the extrinsic curvature �i j

on the boundary ∂M. Variation of the action (2) with respect
to the metric tensor gμν and the Faraday tensor Fμν , leads to

Gμν + �gμν = 1

2
gμν L(F) − 2LF FμλFλ

ν , (3)

∂μ

(√−gLF Fμν
) = 0, (4)

where Gμν is the Einstein tensor and LF = d L(F)/dF .
Here, we want to obtain the (n + 1)-dimensional topo-

logical static black hole solutions. We take into account the
metric of (n + 1)-dimensional spacetime with the following
form

ds2 = − f (r)dt2 + dr2

g(r)
+ r2d
2

n−1, (5)

where f (r) and g(r) are two arbitrary functions of radial
coordinate which should be determined and

d
2
n−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ2
1 +

n−1∑
i=2

i−1∏
j=1

sin2 θ j dθ2
i k = 1

dθ2
1 + sinh2 θ1

(
dθ2

2 +
n−1∑
i=3

i−1∏
j=2

sin2 θ j dθ2
i

)
k = −1

n−1∑
i=1

dφ2
i k = 0

,

(6)

represents the line element of an (n − 1)-dimensional hyper-
surface with constant curvature (n − 1) (n − 2) k and volume
Vn−1. We should note that the constant k characterizes the
hypersurface and indicates that the boundary of t = constant
and r = constant can be a positive (elliptic), zero (flat) or
negative (hyperbolic) constant curvature hypersurface.

Using Eq. (4) with the following radial gauge potential
ansatz

Aμ = h (r) δ0
μ, (7)

we obtain the following differential equation

E ′(r)+ (n−1)E(r)

r
+4E2(r)

(
(n−1)E(r)

r
+3E ′(r)

)
α

= 0, (8)
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where E(r) = Ftr = h′(r) is the nonzero component of
electromagnetic field and prime denotes the derivative with
respect to r . Solving Eq. (8), one obtains

E(r) =
3
[
qα2r2n+1

(
1 +

√
1 + r2n−2

27αq2

)]2/3 − αr2n

6αrn
[
qα2r2n+1

(
1 +

√
1 + r2n−2

27αq2

)]1/3 , (9)

where q is an integration constant which is related to the
electric charge of the black hole. Now, we use the series
expansion of E(r) for small values of α, and keep the first
two terms to obtain

E(r) = q

rn−1 − 4
( q

rn−1

)3
α + O

(( q

rn−1

)5
α2
)

, (10)

or correspondingly

h(r)= − q

(n − 2) rn−2 + 4q3

(3n − 4) r3n−4 α+O
(
α2
)

. (11)

It is easy to see that the second term in Eqs. (10) and (11)
comes from the nonlinear correction and for vanishing α, one
can reproduce the results of the Maxwell theory. Since we
want to investigate the nonlinearity parameter as a (pertur-
bative) correction, hereafter, we take into account the first
correction term of nonlinearity parameter, α, and ignore α2

and higher power of nonlinearity parameter terms. To obtain
the metric functions f (r) and g(r), one may use the nonzero
components of Eq. (3). Straightforward calculations show
that the nonzero components of Eq. (3) (up to the first order
of α) can be written as

e1 = (n − 1)r f ′(r) + (n − 1)(n − 2) [ f (r) − k]

+2�r2 + 2q2

r2n−4 − 4q4α

r4n−6 + O
(
α2
)

= 0, (12)

e2 = r2 f ′′(r) + 2(n − 2)r f ′(r)

+(n − 2)(n − 3) [ f (r) − k] + 2�r2

− 2q2

r2n−4 + 12q4α

r4n−6 + O
(
α2
)

= 0. (13)

After some calculations, one can show that the solutions of
Eqs. (12) and (13) can be written as

f (r) = k − m

rn−2 − 2�r2

n (n − 1)
+ 2q2

(n − 1) (n − 2) r2n−4

− 4q4

[2 (n − 2) (n + 2) + (n − 3) (n − 4)] r4n−6 α

+O
(
α2
)

, (14)

g(r) = C f (r), (15)

where m is an integration constant which is related to the
mass of the black hole and the last term in Eq. (14) indi-
cates the effect of nonlinearity. Hereafter, we set the constant
C = 1 without loss of generality. It is notable to mention

that, for α = 0, this metric function reduces to Reissner–
Nordström solution, as it should. The asymptotical behavior
of the solution (14) is adS or dS provided � < 0 or � > 0
and the case of asymptotically flat solutions is permitted for
� = 0 and k = 1.

Now we look for the singularities of the solutions. One can
show that the metric (5) with the metric function (14) has an
essential singularity at r = 0 by calculating the Kretschmann
scalar, as

Rμνλκ Rμνλκ = 8�2

n(n + 1)
− 16�q2

n(n + 1)r2n

+
(
n2 − 1

) (
n2 − 2

)
m2

r2n+2

−8
(
2n2 − n − 2

)
mq2

r3n+1

+
(

96�α

n + 1
+ 8

(
8n2 − 12n + 3

)

n − 1

)
q4

nr4n

+32 (n − 1)
(
4n2 − n − 2

)
mαq4

(3n − 1) r5n+1

−32
(
32n2 − 32n + 5

)
αq6

n (3n − 1) r6n
+ O

(
α2
)

.

(16)

From Eq. (16) it is obvious that Kretschmann scalar diverges
at r = 0 and, like the asymptotically adS solutions, it reduces
to 8�2/n(n + 1) for r −→ ∞.

Figures 1, 2, 3 and 4 show that the singularity may be
covered with horizon and, therefore, we can interpret the

Fig. 1 Elliptic horizon solutions f (r) versus r for k = 1, n = 4,
q = 1, � = −1, α = 0.005, and m = 1.1 (solid line), m = 1.2 (bold
line) and m = 1.3 (dashed line); “dotted line is f (r) for the Maxwell
case (α = 0) with m = 1.3”
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Fig. 2 Flat horizon solutions f (r) versus r for k = 0, n = 4 , q = 1,
� = −1, α = 0.02, and m = 0.4 (solid line), m = 0.5 (bold line)
and m = 0.6 (dashed line) ; “dotted line is f (r) for the Maxwell case
(α = 0) with m = 0.6”

Fig. 3 Hyperbolic horizon solutions f (r) versus r for k = −1 , n = 4,
q = 5, � = −1, α = 0.1, and m = 0.1 (solid line), m = 0.7 (bold
line) and m = 1.5 (dashed line); “dotted line is f (r) for the Maxwell
case (α = 0) with m = 1.5”

singularity as a black hole. In addition, these figures confirm
that the nonlinearity parameter not only modify the electro-
magnetic part of solutions, but also the kind of horizons.
For vanishing α, with suitable choice of parameters, metric
function could acquire at most two horizons whereas, for
this nonlinear theory (nonzero α), it is possible to find three
horizons. Figure 4 indicates that the nonlinearity parameter
may considerably affect the existence, location and type of

Fig. 4 Elliptic horizon solutions f (r) versus r for k = 1, n = 4,
q = 1, � = −1, m = 1.2, and α = 0.007 (solid line), α = 0.009 (bold
line) and α = 0.011 (dashed line); “dotted line is f (r) for the Maxwell
case (α = 0) with m = 1.2”

Fig. 5 Carter–Penrose diagram for the asymptotically flat (left figure)
and the asymptotically adS (right figure) black holes when the metric
function has one real positive root (r1) (the same as Schwarzschild black
hole)

horizons. From Figs. 1, 2, 3 and 4 we find that, depending
the values of metric parameters with suitable α, the horizons
of the black hole solutions may be extreme or not.

In order to study the conformal structure of the solutions,
one may use the conformal compactification method to plot
the Carter–Penrose (conformal) diagram (see Figs. 5, 6, 7).
The Carter–Penrose diagrams and also the figures of the met-
ric function (Figs. 1, 2, 3) confirm that, the singularity is
spacelike such as that of Schwarzschild black holes. In other
words, keeping the first order of nonlinearity parameter and
ignoring the higher order of α, the timelike singularity of
the Reissner–Nordström black holes (dotted line in Figs. 1,
2, 3) change to a spacelike singularity. Drawing the Carter–
Penrose diagrams shows that the causal structure of the solu-
tions are asymptotically well behaved.
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Fig. 6 Carter–Penrose diagram for the asymptotically flat (left figure)
and the asymptotically adS (right figure) black holes when the metric
function has two real positive roots (r1 and r2) (second root is an extreme
root)

Fig. 7 Carter–Penrose diagram for the asymptotically flat (left figure)
and the asymptotically adS (right figure) black holes when the metric
function has three real positive roots (r1, r2 and r3)

The temperature may be obtained through the use of reg-
ularity of the solutions at r = r+, yielding

T+ = f ′(r+)

4π
= 1

2π (n − 1)

(
(n − 1) (n − 2) k

2r+
− �r+

− q2

r2n−3+
+ 2q4

r4n−5+
α

)
+ O

(
α2
)

. (17)

The electric potential �, measured at infinity with respect to
the horizon, is defined by [84,85]

� = Aμχμ |r→∞ −Aμχμ |r=r+ , (18)

with the following explicit form

� = q

(n − 2) rn−2+
− 4q3

(3n − 4) r3n−4+
α + O

(
α2
)

. (19)

The last term in the right hand side of Eqs. (17) and (19)
indicates the nonlinearity effect of the mentioned NLED.

3 Thermodynamics of asymptotically flat black hole
(� = 0, k = 1)

At first, we calculate the conserved and thermodynamic
quantities of the black hole for � = 0 and k = 1. Second,
we obtain a Smarr-type formula for the mass as a function
of the entropy and the electric charge of the solutions and
finally check the first law of thermodynamics.

The first quantity which we are going to calculate is the
entropy of the black hole. More than 30 years ago, Bekenstein
argued that the entropy of a black hole in Einstein gravity is
a linear function of the area of its event horizon, which is
the area law [86,87]. Therefore, the entropy per unit volume
Vn−1 of the presented black hole is equal to one-quarter of
the area of the horizon

S = rn−1+
4

. (20)

In order to obtain the electric charge per unit volume Vn−1 of
the black hole, we use the flux of the electric field at infinity,
yielding

Q = q

4π
, (21)

which shows that, this kind of nonlinearity does not change
the electric charge. The Arnowitt–Deser–Misner (ADM)
mass of black hole can be obtained by using the behavior
of the metric at large r . The mass per unit volume Vn−1 of
the black hole is

M = (n − 1) m

16π
, (22)

where we can obtain m from f (r = r+) = 0.
After calculating all of the conserved and thermodynamic

quantities of the black hole solutions, we want to investigate
the first law of thermodynamics. To do this, we obtain the
total mass M as a function of the extensive quantities Q and
S. Using the expression for the entropy, the electric charge
and the mass given in Eqs. (20), (21) and (22), and the fact
that f (r = r+) = 0, one can obtain a Smarr-type formula as

M (S, Q) = (n − 1)ϒn−2

16π
+ 2π Q2

(n − 2)ϒn−2

− 64π3 Q4

(3n − 4) ϒ3n−4 α + O
(
α2
)

, (23)

where ϒ = (4S)1/(n−1).
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Now, we regard the parameters Q and S as a complete set
of extensive parameters and define the intensive parameters
conjugate to them. These quantities are the temperature and
the electric potential

T =
(

∂ M

∂S

)

Q
= n (n − 1) (n − 2) ϒn−2

16πn (n − 1) S
− 2π Q2

S (n − 1) ϒn−2

+ 64π3 Q4

S (n − 1) ϒ3n−4 α+O
(
α2
)

, (24)

�=
(

∂ M

∂ Q

)

S
= 4π Q

(n − 2) ϒn−2 − 256π3 Q3

(3n − 4) ϒ3n−4 α

+O
(
α2
)

. (25)

Using Eqs. (20) and (21), one can show that the Eqs. (24)
and (25) are equal to Eqs. (17) and (19), respectively. Thus,
these quantities satisfy the first law of thermodynamics

dM = T dS + �dQ. (26)

3.1 Stability of the solutions

In what follows, we want to investigate the local stabil-
ity of the charged black hole solutions of Einstein gravity
in the presence of NLED in the canonical and the grand
canonical ensembles. In principle the local stability can
be carried out by finding the determinant of the Hessian
matrix of M(Xi ) with respect to its extensive variables Xi ,
H M

Xi X j
= [

∂2 M/∂ Xi∂ X j
]

[84,85]. In our case the mass M
is a function of the entropy S and the charge Q. The number
of thermodynamic variables depends on the ensemble that
is used. In the canonical ensemble, the positivity of the heat
capacity CQ = T+/

(
∂2 M/∂S2

)
Q is sufficient to ensure the

local stability. Since T+ should be a positive definite quantity
for physical black holes, it is sufficient to check the sign of(
∂2 M/∂S2

)
Q

(
∂2 M

∂S2

)

Q
= − (n − 2)

π (n − 1) rn+
+ 2 (2n − 3) q2

π (n − 1)2 r3n−4+

− 4 (4n − 5) q4

π (n − 1)2 r5n−6+
α + O

(
α2
)

. (27)

Considering Eq. (27), we find that the first and sec-
ond terms are related to the Einstein–Maxwell gravity and
third one is related to the effect of nonlinearity. In order
to find the effects of nonlinearity on the stability of the
solutions, we plot Figs. 8 and 9. These figures show that
there is a lower limit, r+min, for the horizon radius of physi-
cal black holes (positive temperature). In addition, consid-
ering Figs. 8 and 9, one finds large physical black holes
are not stable. In other words, one can obtain asymptoti-
cally flat stable black holes when the horizon radius satisfies

Fig. 8 Asymptotically flat solutions: 10−4 ×
(

∂2 M
∂S2

)
Q

(thin lines) and

T+ (bold lines) versus r+ for n = 4, q = 0.01, α = 10−5 (solid line),
α = 5 × 10−5 (dotted line) and α = 10 × 10−5 (dashed line)

Fig. 9 Asymptotically flat solutions:
(

∂2 M
∂S2

)
Q

(thin lines) and T+
10 (bold

lines) versus r+ for n = 4, α = 10−4, and q = 10 (solid line), q = 10.5
(dotted line) and q = 11 (dashed line)

r+min < r+ < r+max, in which the values of r+min and r+max

depend on n, q and α. Although Fig. 8 shows that decreasing
α leads to increasing r+min (slightly increasing r+max), Fig.
9 indicates that decreasing q leads to decreasing both r+min

and r+max.
In the grand canonical ensemble, after some algebraic

manipulations, we obtain

123



Eur. Phys. J. C (2015) 75 :54 Page 7 of 12 54

H M
S,Q = 1

(n − 1)2

⎧
⎨
⎩−

4
[
(n − 1) (n − 2) − 2q2r4−2n+

]

(n − 2) r2n−2+

+
16q2

[
3 (n − 1) (n − 2)2 r4−4n+ − (7n − 8) q2r8−6n+

]
α

(n − 2) (3n − 4)

+O(α2)

⎫⎬
⎭ , (28)

where the last term is the nonlinearity effect of NLED.
Regardless of the values of n, q and α, we can write

H M
S,Q

∣∣∣
Small r+

= − 16 (7n − 8) q4α

(n − 2) (3n − 4) r6n−8+
< 0, (29)

H M
S,Q

∣∣∣
Large r+

= − 4

(n − 1) r2n−2+
< 0, (30)

which, in agreement with the canonical ensemble, confirm
that the horizon radius of asymptotically flat stable black
holes should satisfy r+min < r+ < r+max.

4 Thermodynamics of asymptotically adS rotating
black branes with flat horizon (k = 0)

Now, we want to endow our spacetime solutions (5) for k = 0
with global rotation parameters. In order to supplement angu-
lar momentum to the spacetime, we perform the following
rotation boost in the t − φi plane

t �−→ �t − aiφi , φi �−→ �φi − ai
l2 t. (31)

Thus the metric of (n + 1)-dimensional asymptotically adS
rotating spacetime with p rotation parameters can be written
as

ds2 = − f (r)

(
�dt −

p∑
i=1

ai dφi

)2

+r2

l4

p∑
i=1

(
ai dt − l2�dφi

)2

+ dr2

f (r)
− r2

l2

p∑
i=1

(
ai dφ j − a j dφi

)2

+ r2
n−1∑

i=p+1

dx2
i , (32)

where � =
√

1 + ∑p
i=1 a2

i / l2. Using Eq. (4), one can show
that the suitable gauge potential can be written as

Aμ = h(r)
(
�δ0

μ − aiδ
i
μ

)
(no sum on i), (33)

where h(r) is the same as that in Eq. (11). Now, we want
to obtain the metric function f (r) for the spacetime (32) by

inserting Eqs. (32) and (33) into (3). After some simplifica-
tions, we find that the nonzero components of the gravita-
tional field equations lead to four different differential equa-
tions e11, e22, e33 and e44 for the unknown function f (r), in
which

e11 = e1 (static case)|k=0, (34)

e33 = e2 (static case)|k=0, (35)

e33 = [
e2 (static case)|k=0

]
(�2 − 1)

−l2 f (r)�2 [e1 (static case)|k=0
]
, (36)

e44 =
√

�2 − 1

{[
e1 (static case)|k=0

] f (r)

2r2

− 1

2l2

[
e2 (static case)|k=0

]}
. (37)

Considering Eqs. (34) and (37), we find that the metric func-
tion (14) with k = 0 satisfies all field equations. Straightfor-
ward calculations confirm that the mentioned rotating space-
time has a curvature singularity at r = 0, which may be
covered with an event horizon. We can obtain the tempera-
ture and the angular velocity of the event horizon by analytic
continuation of the metric function (32) and its regularity at
the horizon r+. One obtains

T+ = T+ (static case)

�

∣∣∣∣
k=0

, (38)

and


i = ai

l2�
. (39)

Considering the fact that χ = ∂t + ∑p
i=1 
i ∂φi is the null

Killing generator of the horizon and using Eq. (18), one can
find the electric potential as

� = �(static case)

�
. (40)

Here, we calculate other conserved and thermodynamic
quantities of the black brane solutions. Like previous sec-
tion and with the same approaches, one can show that the
entropy and the electric charge per unit volume Vn−1 of the
presented black branes are, respectively, given by

S = �rn−1+
4

, (41)

and

Q = q�

4π
. (42)

Now, we should calculate the finite mass. In general, the
action IG , diverges when evaluated on the solutions, as the
Hamiltonian and other associated conserved quantities. To
compute the conserved charges of the asymptotically adS
solutions of Einstein gravity, we use the counterterm method
[88–94]. This method was inspired by the adS/conformal
field theory correspondence and consists in adding suitable

123



54 Page 8 of 12 Eur. Phys. J. C (2015) 75 :54

counterterm Ict to the action IG in order to ensure the finite-
ness of the boundary stress tensor derived by the quasilocal
energy definition [95]. For asymptotically adS solutions of
Einstein gravity with flat boundary, the suitable counterterm
Ict is given by

Ict = − 1

8π

∫

∂M
dn x

√−γ

(
n − 1

l

)
. (43)

Varying the total action (Itot = IG + Ict) with respect to
the induced metric γab, we find the boundary stress-tensor as

T ab = 1

8π

[
�ab −

(
� + n − 1

l

)
γ ab

]
. (44)

Now, we choose a spacelike surface B in ∂M with metric
σi j , and write the boundary metric in ADM form

γμνdxμdxν =−N 2dt2+σi j

(
dϕi +V i dt

) (
dϕ j +V j dt

)
,

(45)

where the coordinates ϕi are the angular variables param-
eterizing the hypersurface of constant r around the origin,
and N and V i are the lapse and shift functions, respectively.
When there is a Killing vector field ξ on the boundary, then
the quasilocal conserved quantities associated with the stress
energy momentum tensor of Eq. (44) can be calculated as

Q (ξ) =
∫

B
dn−2ϕ

√
σ Tabnaξb, (46)

where σ is the determinant of the metric σi j , and na is the
timelike unit normal vector to the boundary B. The conserved
quantities associated to the timelike ξ = ∂t and rotational
ζ = ∂φi Killing vector fields are

M =
∫

B
dn−2ϕ

√
σ Tabnaξb = Vn−1

16π
m
(

n�2 − 1
)

, (47)

Ji =
∫

B
dn−2ϕ

√
σ Tabnaζ b = Vn−1

16π
n�mai , (48)

which are the mass and the angular momentum of the system
enclosed by the boundary B. To check the first law of ther-
modynamics, we obtain the total mass M as a Smarr-type
formula

M (S, J, Q) = (nZ − 1) J

nl
√

Z (Z − 1)
, (49)

where Ji = ∑
i J 2

i and Z = �2 is the positive real root of
the following equation

2��−2

n (n − 1)
+ 16π J�n−2

nl
√

Z (Z − 1)
− 32π2 Q2�2n−4

(n − 1) (n − 2) Z

+ 1024π4 Q4�4n−6

(n − 1) (3n − 4) Z2 α + O
(
α2
)

= 0, (50)

with � =
[√

Z (4S)−1
]1/(n−1)

. It is a matter of straightfor-

ward calculation to show that the conserved and thermody-

namic quantities satisfy the first law of thermodynamics

dM = T dS +
∑

i


i dJi + �dQ. (51)

In other words, the quantities T = (
∂ M
∂S

)
J,Q , 
i =

(
∂ M
∂ Ji

)
S,Q

and � =
(

∂ M
∂ Q

)
J,S

are the same as those calculated in Eqs.

(38), (39) and (40), respectively.

4.1 Stability of the solutions

The final step is devoted to analyzing the local stability of
charged rotating black brane solutions of Einstein gravity in
the presence of NLED. We use the similar theoretical man-
ner as was discussed in the Sect. (3) and investigate thermal
stability in both the canonical and the grand canonical ensem-
bles. In the canonical ensemble, the electric charge and the
angular momenta are fixed parameters, and

(
∂2 M/∂S2

)
J,Q

at constant charge and angular momenta is
(

∂2 M

∂S2

)

J,Q
= C1

C2
+ C3

C4
α + O

(
α2
)

, (52)

C1 = −2
{

n
[
3(n − 2)�2 − n + 3

]
q4r−3n+6+

+2
[
3(n − 2)�2 − n2 + 3

]
�q2r−n+4+

+ (n − 2)
[
(n + 2)�2 − n − 1

]
�2rn+2+

}
,

(53)

C2 = (n − 1)π�2
[
(n − 2)�2 + 1

]

×
[
(n − 2)�r2n+ − nq2r2+

]
, (54)

C3 = −4q4
{

n2
[
(17n2 − 54n + 40)�2

−n(5n − 23) − 20
]

q4r−5n+10+

−2n(n − 2)
[
(13n2 − 50n + 40)�2

−n(n − 19) − 20
]
�q2r−3n+8+

+ (n − 2)2
[
(5n2 − 42n + 40)�2

+n(7n + 11) − 20
]
�2r−n+6+

}
, (55)

C4 = (n − 1)(3n − 4)π�2
[
(n − 2)�2 + 1

]

×
[
(n − 2)�r2n+ − nq2r2+

]2
, (56)

where in the Eq. (52) the first term is related to the Einstein–
Maxwell gravity.

Here, we plot Figs. 10 and 11 to investigate the nonlinear-
ity as well as rotation effects. These figures show that for suit-
able fixed values of the metric parameters, there is an r+min,
in which for r+ > r+min we can obtain physical asymp-
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Fig. 10 Asymptotically adS solutions:
(

∂2 M
∂S2

)
Q,J

(thin lines) and T+
10

(bold lines) versus r+ for n = 4, q = 100, � = 1.1 and � = −1, and
α = 0.001 (solid line), α = 0.02 (dotted line) and α = 0.05 (dashed
line)

Fig. 11 Asymptotically adS solutions:
(

∂2 M
∂S2

)
Q,J

(thin lines) and T+
10

(bold lines) versus r+ for n = 4, q = 100 and � = −1, α = 10−5 with
� = 1.1 (solid line), � = 1.2 (dotted line) and � = 1.3 (dashed line)

totically adS rotating stable black brane solutions. In other
words, we find that, unlike the asymptotically flat solutions,
the asymptotically adS rotating large black brane solutions
are stable. Considering Fig. 11, one may find the rotation

parameter affects on the values of both T+ and
(

∂2 M
∂S2

)
J,Q

.

In the grand canonical ensemble, one can show that the
determinant of the Hessian matrix has the following form

H M
S,Q,J =

64π
(

q2 − �r2n−2+
)

B1

− B2

B1(3n − 4)
[
nq2 − (n − 2)�r2n−2+

]
r2n−2+

α

+O
(
α2
)

, (57)

B1 = l2�6
[
(n − 2) �2 + 1

] [
nq2 − (n − 2)�r2n−2+

]

×r3n−4+ , (58)

B2 = 256πq2
[
3(n − 2)2�2r4n−4+ + 3n(n − 1)q4

−2(n − 2)(3n − 2)�q2r2n−2+
]
, (59)

where in the Eq. (57) the first term is the determinant of
Hessian matrix of Einstein–Maxwell gravity and the last term
indicates the nonlinearity effect. Following the method of
previous section and regardless of the values of n, q, �, �

and α, one finds

H M
S,Q,J

∣∣∣
Small r+

= − 768π(n − 1)q2α

n(3n − 4)l2�6
[
(n − 2)�2 + 1

]
r5n−6+

< 0, (60)

H M
S,Q,J

∣∣∣
Large r+

= 64π

(n − 2)l2�6
[
(n − 2)�2 + 1

]
r3n−4+

> 0, (61)

which are in agreement with results of the canonical ensem-
ble and confirm that large black branes are stable.

In order to analyze the correctness of our discussions
for stability criterion of asymptotically flat and adS black
objects, we should argue for the validity of numerical cal-
culations. Regarding Eq. (10), we find that higher order
terms of electric field can be formed by increasing j in(

q
rn−1+

)(2 j+1)

α j ( j = 0, 1, 2, . . .). Therefore, ignoring the

higher order terms of α makes sense, if increasing j leads to

reasonable decreasing of

(
q

rn−1+

)(2 j+1)

α j . In the following

tables, we consider the numerical calculations of Figs. 8, 9,
10 and 11 (Table 1).

Taking into account the numerical results of the tables,
one can confirm that numerical calculations of stability con-
ditions for both asymptotically flat and adS black objects are
logical.
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Table 1 Left table: asymptotically flat solutions and right table: asymptotically adS solutions

Asymptotically flat solutions Asymptotically adS solutions

Figure 8 Figure 9 Figure 10 Figure 11

q = 0.010 q = 10.00 q = 100 q = 100

α = 10−5 α = 10−5 α = 10−3 α = 10−5

r+ ≈ 0.075 r+ ≈ 2.40 r+ ≈ 4.6 r+ ≈ 4.64
q

r3+
≈ 23.704 q

r3+
≈ 0.72 q

r3+
≈ 1.03 q

r3+
≈ 1.00

(
q

r3+

)3

α ≈ 0.133

(
q

r3+

)3

α ≈ 0.38 × 10−5
(

q
r3+

)3

α ≈ 10−3
(

q
r3+

)3

α ≈ 10−5

(
q

r3+

)5

α2 ≈ 0.75 × 10−3
(

q
r3+

)5

α2 ≈ 0.20 × 10−10
(

q
r3+

)5

α2 ≈ 10−6
(

q
r3+

)5

α2 ≈ 10−10

5 Conclusions

Motivated by the (quartic) string corrections of Maxwell field
strength, at first, we obtained black hole solutions of Einstein-
NLED gravity with various horizon topology and investi-
gated their geometric properties. Then, we fixed � = 0 and
k = 1 to calculate the conserved quantities of the asymptoti-
cally flat black holes. We obtained a Smarr-type formula for
the mass as a function of the entropy and the electric charge
of the solutions and checked the first law of thermodynam-
ics. We studied the stability analysis of the asymptotically
flat black holes both in the canonical and the grand canonical
ensembles and investigated the effects of NLED. We found
that for the fixed values of n, q and α, small and large physical
black holes are not stable. It means that obtained asymptot-
ically flat black holes can be stable when the horizon radius
satisfies r+min < r+ < r+max, in which the values of r+min

and r+max depend on the metric parameters. In addition, we
found that although decreasing the nonlinearity parameter
leads to increasing r+min (slightly increasing r+max), decreas-
ing the charge parameter leads to decreasing both r+min and
r+max.

After that, we considered the horizon-flat solutions and
used a suitable rotation boost to endow angular momentum
to the asymptotically adS spacetime. Using the counterterm
method, we obtained the conserved quantities of the asymp-
totically adS black branes. We also obtained a Smarr-type
formula for the finite mass as a function of the other quan-
tities and showed that they satisfy the first law of thermo-
dynamics. Besides, we performed a stability analysis of the
rotating solutions both in the canonical and the grand canon-
ical ensembles. We showed that there is a lower limit, r+min,
for the physical solutions (positive temperature). Stability
analysis of both ensembles confirmed that, unlike the asymp-
totically flat solutions with spherical horizon, the horizon-flat
asymptotically adS rotating black brane solutions with large

event horizon are stable. In other words, we showed that there
is an r+min for suitable fixed values of the metric parameters,
in which for r+ > r+min, the asymptotically adS rotating
black brane solutions are stable. Moreover, we fixed the val-
ues of n, �, α and q to analyze the rotation’s effect on the
stability conditions. We showed that although � does not
change the location of r+min, it can change the values of the
temperature, the heat capacity and the determinant of Hessian
matrix.

It is notable that due to the negative temperature, the small
black holes/branes are not physical and we should restrict
the horizon radius to r+ > r+min, while (in)stability of large
ones is related to their horizon geometries. In other words,
large black holes (branes) with k = 1 (k = 0) are unstable
(stable).

Finally, it was seen that the nonlinearity part not only
modified electromagnetic part of the solutions, but also the
kind of horizons and thermodynamics properties. In absence
of of correction part, with suitable choices of parameters,
metric function could acquire two horizons whereas, for
this nonlinear theory, it is possible to find three horizons.
This fact has some application regarding anti-evaporation
of black holes/branes. The structure of black hole in pres-
ence of NLED is quite different comparing to the linear
Maxwell theory and its phenomenology is also describing
a more general case. In addition, it is worthwhile to men-
tion that considering the first order effects of NLED changed
the properties of the black objects at small distances. In
other words, this generalization changed timelike singularity
of Reissner–Nordström black holes to spacelike singularity.
Hence, in order to recover the properties of the Reissner–
Nordström black holes, it may be logical to keep terms only
upto quadratic order of α in the series expansions. Besides, it
is notable that one can consider asymptotically adS black
holes with spherical (k = 1) and hyperbolic topologies
(k = −1), to investigate P − V criticality in the extended
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phase space of the solutions by calculating the Gibbs free
energy for various �. These extensions are under examina-
tion.
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