CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 March 2017
Accepted 19 April 2017

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; 8-hydroxyjulolidine; julolidine; hydrogen bonding.

CCDC reference: 1533792

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and DFT study of 8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9carbaldehyde

Md. Serajul Haque Faizi, ${ }^{\text {a }}$ Necmi Dege ${ }^{\text {b }}$ and Maria L. Malysheva ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Oman,
${ }^{\mathbf{b}}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine. *Correspondence e-mail: maria_malysheva@mail.univ.kiev.ua

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$, the fused non-aromatic rings of the julolidine moiety adopt envelope conformations. The hydroxy group forms an intramolecular hydrogen bond to the aldehyde O atom, generating an $S(6)$ ring motif. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to stabilize the crystal structure. Density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.

1. Chemical context

Julolidine is chemically an aniline derivative with two N-alkyl substituents forming rings back to the aromatic ring; the fused rings lock the nitrogen lone-pair of electrons into conjugation with the aromatic ring leading to unusual reactivity. The presence of the julolidine ring system in some molecules makes them useful for chromogenic naked-eye detection of copper, zinc, iron and aluminium ions as well as fluoride ions (Wang et al., 2013; Choi et al., 2015; Kim et al., 2015; Jo et al., 2015). Julolidine dyes exhibit excited-state intramolecular proton transfer (Nano et al., 2015). Compounds containing lulolidine rings are also used as fluorescent probes for the measurement of cell-membrane viscosity. Julolidine-based materials are also used as red emitters in OLEDs when linked to dicyanomethylpyran modules (Lee, et al., 2012). The julolidine unit plays an important role as it has strong electronicdonating properties for chelating (Nano, et al., 2013). Julolidine malononitrile acts as a 'push-pull' molecule with large hyperpolarizability and is used as a model system for understanding the non-linear optical properties of molecules (Mennucci et al., 2009).

There are many reports in the literature on julolidine-based Schiff bases and their applications as sensors for metal ions (Park et al., 2014; Lee et al., 2014; Kim et al., 2016). The present work is a part of an ongoing structural study of Schiff bases based on the julolidine ring system (Faizi et al., 2016, 2017). We report here the crystal structure and DFT computational calculation of the title julolidine compound (I). The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state.

2. Structural commentary

The molecular structure of the title compound (I) is shown in Fig. 1. The π-conjugated system is nearly planar, with a $2.5(1)^{\circ}$ twist between the aromatic and aldehyde groups. The julolidine ring system comprises three fused rings and one locked nitrogen atom. The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 3-\mathrm{O} 2$ bond lengths are of 1.231 (3) and 1.345 (3) \AA, respectively, indicate double- and single-bond character for these bonds. The two fused nonaromatic rings of the julolidine moiety adopt slightly distorted envelope conformations with atoms C9 and C12 displaced from the plane through the remaining ring atoms by 0.654 (2) and 0.648 (2) \AA, respectively. The intramolecular $\mathrm{O} 2-$ $\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bond forms an $S(6)$ ring motif (Fig. 1 and Table 1) between the phenol and aldehyde groups. Such an intramolecular hydrogen bond is common in salicylaldehyde derivatives, and the metrical parameters are comparable to those for related structures such as hydroxybenzaldehyde (Kirchner et al., 2011).

Figure 1
The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown as a dashed line (see Table 1).

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.89	$2.621(2)$	148
$\mathrm{C} 9-\mathrm{H} 9 A \cdots 2^{\mathrm{i}}$	0.97	2.50	$3.324(3)$	143
$\mathrm{C} 9-\mathrm{H} 9 B \cdots 1^{\mathrm{ii}}$	0.97	2.55	$3.438(3)$	152
$\mathrm{O}_{2}-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.89	$2.621(2)$	148
$\mathrm{C} 9-\mathrm{H} 9 A \cdots 2^{\mathrm{i}}$	0.97	2.50	$3.324(3)$	143
$\mathrm{C}_{1}-\mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.55	$3.438(3)$	152

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z+1$.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming an $A-B--A-B-A-B$ arrangement through the inversion centre and propagating along the c-axis direction (see Fig. 2 and Table 1). There are no other significant intermolecular contacts present in the molecule.

4. DFT study

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993; Lee et al., 1988) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). From these results we can conclude that basis set $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ is well suited in its approach to the experimental data.

The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole julolidine ring to the salicylaldehyde ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 3. The molecular orbital of HOMO

Figure 2
A view of the $A-B-A-B-A-B$ arrangement in the crystal structure of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included. The packing structure exhibits $R_{2}^{2}(16)$ and $R_{4}^{4}(10)$ graphset motifs.

Table 2
Comparison of selected geometric data for (I) ($\AA,{ }^{\circ}$) from calculated (DFT) and X-ray data.

Bonds	X-ray	B3LYP/6-311G(d,p)
C1-O1	$1.231(3)$	1.231
C3-O2	$1.345(3)$	1.345
C1-C2	$1.431(3)$	1.431
N1-C5	$1.381(2)$	1.381
O1-C1-C2	$126.2(2)$	126.22
C1-C2-C3	$121.34(18)$	120.25
C11-N1-C10	$116.83(15)$	116.81

contain both σ and π character whereas HOMO- 1 is dominated by π-orbital density. The LUMO is mainly composed of σ density while LUMO +1 has both σ and π electronic density. The HOMO-LUMO gap was found to be 0.154 a.u. and the frontier molecular orbital energies, $E_{\text {Номо }}$ and $E_{\text {LUMO }}$ were f -0.19624 and -0.04201 a.u., respectively.

HOMO

HOMO-1

Figure 3
Electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels for (I).

Table 3
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$
M_{r}	217.26
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$8.546(3), 9.137(3), 13.662(4)$
$\beta\left({ }^{\circ}\right)$	$95.984(6)$
$V\left(\AA^{3}\right)$	$1061.0(6)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
Crystal size (mm)	$0.18 \times 0.15 \times 0.11$
Data collection	Bruker SMART CCD area
Diffractometer	detector
	Multi-scan $(S A D A B S$; Sheldrick,
Absorption correction	$2004)$
	$0.985,0.991$
$T_{\text {min }}, T_{\text {max }}$	$5787,2083,1530$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.026
$R_{\text {int }}$	0.617
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.066,0.231,1.11$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2083
No. of reflections	145
No. of parameters	H -atom parameters constrained
H -atom treatment	$0.64,-0.27$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: SMART and SAINT (Bruker, 2003), SHELXTL and SHELXL97 (Sheldrick, 2008).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) gave 121 hits for the julolidine moiety. Of these, six have an OH group in position 8 , and four also have a $\mathrm{C}=\mathrm{N}$ group in position 1 . The very similar compound $2-[(2,3,6,7$-tetrahydro- $1 \mathrm{H}, 5 \mathrm{H}$ benzo[$i j]$-quinolizin-9-yl)methylene]propanedinitrile (II) reported by Liang et al. (2009) has the aldehydic group in (I) replaced by dicyanovinyl groups and the hydroxy group replaced by hydrogen. The N1-C5 bond length [1.381 (2) Å] in the title compound is longer than in (II) $[1.365$ (3) \AA] due to conjugation with dicyanovinyl group. In the julolidine-1,6dione compound reported by Wu et al. (2007), the N atom of the julolidine moiety lies approximately in the plane of the benzene ring with a deviation of 0.023 (2) \AA, similar to that in title compound $[0.043$ (2) \AA], as might be expected for the maximum conjugation normally found for N -atom substituents on benzene rings.

6. Crystallization

2,3,6,7-Tetrahydro-8-hydroxy- $1 H, 5 H$-benzo[ij]quinolizine-9carboxaldehyde was purchased from Sigma Aldrich and crystallized by slow evaporation of methanol solution over a period of 2-3 days to yield quality crystal suitable for X-ray data collection.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located from difference-Fourier maps but in the final cycles of refinement they were included in calculated positions and treated as riding atoms: $\mathrm{O}-\mathrm{H}=0.84 \AA, \mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Acknowledgements

The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.

References

Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. \& Kim, C. (2015). RSC Adv. 5, 86463-86472.
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. \& Golenya, I. A. (2017). Acta Cryst. E73, 38-40.
Faizi, M. S. H., Ali, A. \& Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. \& Kim, C. (2015). New J. Chem. 39, 2580-2587.
Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. \& Kim, C. (2016). Dyes Pigments, 129, 43-53.
Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. \& Kim, C. (2015). RSC Adv. 5, 11229-11239.
Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. \& Desiraju, G. R. (2011). Acta Cryst. C67, o387-o390.

Lee, K. H., Kim, Y. K. \& Yoon, S. S. (2012). Bull. Korean Chem. Soc. 33, 3433-3436.
Lee, C., Yang, W. \& Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.
Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. \& Kim, C. (2014). Dalton Trans. 43, 6650-6659.

Liang, M., Yennawar, H. \& Maroncelli, M. (2009). Acta Cryst. E65, o1687.
Mennucci, B., Cappelli, C., Guido, C. A., Cammi, R. \& Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009-3020.

Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. \& Ziessel, R. (2015). Chem. Commun. 51, 3351-3354.
Nano, A., Ziessel, R., Stachelek, P. \& Harriman, A. (2013). Chem. Eur. J. 19, 13528-13537.
Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. \& Kim, C. (2014). Tetrahedron, 70, 7429-7438.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, L., Li, H. \& Cao, D. (2013). Sens. Actuators B Chem. 181, 749755.

Wu, W.-B., Wang, M.-L., Ye, H.-Y. \& Sun, Y.-M. (2007). Acta Cryst. E63, o4699.

supporting information

Acta Cryst. (2017). E73, 791-794 [https://doi.org/10.1107/S2056989017005886]

Crystal structure and DFT study of 8-hydroxy-1,2,3,5,6,7-hexahydro-pyrido[3,2,1-ij]quinoline-9-carbaldehyde

Md. Serajul Haque Faizi, Necmi Dege and Maria L. Malysheva

Computing details

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

8-Hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-carbaldehyde

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$
$M_{r}=217.26$
Monoclinic, $P 2_{1} / c$
$a=8.546$ (3) \AA
$b=9.137(3) \AA$
$c=13.662$ (4) \AA
$\beta=95.984(6)^{\circ}$
$V=1061.0(6) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area detector diffractometer
Radiation source: sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.985, T_{\text {max }}=0.991$
$F(000)=464$
$D_{\mathrm{x}}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1494 reflections
$\theta=2.4-28.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colorless
$0.18 \times 0.15 \times 0.11 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.231$
$S=1.11$
2083 reflections
145 parameters
0 restraints

5787 measured reflections
2083 independent reflections
1530 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-8 \rightarrow 11$
$l=-16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1465 P)^{2}+0.0857 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O2	$0.73084(18)$	$0.25645(16)$	$0.53899(11)$	$0.0398(5)$
H2	0.691533	0.226583	0.587471	0.060^{*}
O1	$0.58740(18)$	$0.27075(18)$	$0.69921(11)$	$0.0460(5)$
N1	$0.83012(18)$	$0.7058(2)$	$0.37861(11)$	$0.0288(5)$
C5	$0.7743(2)$	$0.6300(2)$	$0.45521(12)$	$0.0242(5)$
C4	$0.7801(2)$	$0.4768(2)$	$0.45803(13)$	$0.0269(5)$
C6	$0.7080(2)$	$0.7115(2)$	$0.53120(14)$	$0.0277(5)$
C2	$0.6517(2)$	$0.4816(2)$	$0.60979(14)$	$0.0282(5)$
C7	$0.6468(2)$	$0.6333(2)$	$0.60434(14)$	$0.0282(5)$
H7	0.599815	0.684412	0.652391	0.034^{*}
C3	$0.7204(2)$	$0.4032(2)$	$0.53505(14)$	$0.0282(5)$
C10	$0.8409(2)$	$0.8646(2)$	$0.37928(14)$	$0.0333(6)$
H10A	0.840281	0.899757	0.312243	0.040^{*}
H10B	0.939673	0.893952	0.415420	0.040^{*}
C11	$0.9103(2)$	$0.6288(2)$	$0.30450(15)$	$0.0330(6)$
H11A	1.020944	0.618318	0.327631	0.040^{*}
H11B	0.902214	0.685601	0.244223	0.040^{*}
C13	$0.8464(2)$	$0.3888(2)$	$0.37783(14)$	$0.0336(6)$
H13A	0.786287	0.299427	0.365792	0.040^{*}
H13B	0.954748	0.362366	0.398627	0.040^{*}
C8	$0.7061(3)$	$0.8758(2)$	$0.52940(15)$	$0.0359(6)$
H8A	0.797720	0.912690	0.569753	0.043^{*}
H8B	0.613101	0.910814	0.557226	0.043^{*}
C1	$0.5867(2)$	$0.4043(3)$	$0.68718(15)$	$0.0358(6)$
H1	0.539410	0.460267	0.732734	0.043^{*}
C12	$0.8388(2)$	$0.4791(2)$	$0.28373(14)$	$0.0330(6)$
H12A	0.895351	0.428934	0.235680	0.040^{*}
H12B	0.730055	0.489689	0.256334	0.040^{*}
C9	$0.7061(3)$	$0.9339(2)$	$0.42599(15)$	$0.0389(6)$
H9A	0.718103	1.039438	0.427433	0.047^{*}
H9B	0.607130	0.910495	0.387813	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0514(11)$	$0.0255(10)$	$0.0406(9)$	$-0.0001(6)$	$-0.0050(7)$	$0.0021(6)$
O1	$0.0469(11)$	$0.0421(11)$	$0.0470(10)$	$-0.0075(7)$	$-0.0054(7)$	$0.0141(7)$
N1	$0.0304(9)$	$0.0301(11)$	$0.0264(9)$	$-0.0015(7)$	$0.0044(7)$	$-0.0016(6)$
C5	$0.0233(10)$	$0.0269(13)$	$0.0217(10)$	$-0.0009(7)$	$-0.0011(8)$	$-0.0033(7)$

C4	$0.0289(12)$	$0.0273(12)$	$0.0233(11)$	$0.0013(7)$	$-0.0034(8)$	$-0.0030(7)$
C6	$0.0278(11)$	$0.0275(12)$	$0.0270(10)$	$0.0021(8)$	$-0.0007(8)$	$-0.0016(8)$
C2	$0.0263(11)$	$0.0314(13)$	$0.0256(11)$	$-0.0007(8)$	$-0.0041(8)$	$0.0020(8)$
C7	$0.0289(11)$	$0.0307(13)$	$0.0244(10)$	$0.0010(8)$	$-0.0005(8)$	$-0.0043(8)$
C3	$0.0286(12)$	$0.0220(11)$	$0.0319(12)$	$0.0005(7)$	$-0.0069(9)$	$-0.0005(8)$
C10	$0.0408(13)$	$0.0294(13)$	$0.0298(11)$	$-0.0084(8)$	$0.0032(9)$	$0.0002(8)$
C11	$0.0290(11)$	$0.0437(14)$	$0.0264(11)$	$0.0013(9)$	$0.0036(8)$	$-0.0040(9)$
C13	$0.0372(13)$	$0.0295(13)$	$0.0332(12)$	$0.0069(8)$	$-0.0002(9)$	$-0.0071(8)$
C8	$0.0484(14)$	$0.0272(13)$	$0.0323(12)$	$0.0008(9)$	$0.0050(9)$	$-0.0049(8)$
C1	$0.0291(12)$	$0.0411(14)$	$0.0353(12)$	$-0.0037(9)$	$-0.0051(9)$	$0.0087(9)$
C12	$0.0329(12)$	$0.0389(13)$	$0.0265(11)$	$0.0085(9)$	$0.0001(8)$	$-0.0099(8)$
C9	$0.0543(14)$	$0.0252(12)$	$0.0368(12)$	$-0.0019(9)$	$0.0028(10)$	$-0.0026(9)$

Geometric parameters (A, ${ }^{\circ}$)

O2-C3	$1.345(3)$	C10-H10A	0.9700
O2-H2	0.8200	C10-H10B	0.9700
O1-C1	$1.231(3)$	C11-C12	$1.512(3)$
N1-C5	$1.381(2)$	C11-H11A	0.9700
N1-C10	$1.454(3)$	C11-H11B	0.9700
N1-C11	$1.461(2)$	C13-C12	$1.523(3)$
C5-C4	$1.401(3)$	C13-H13A	0.9700
C5-C6	$1.441(3)$	C13-H13B	0.9700
C4-C3	$1.390(3)$	C8-C9	$1.509(3)$
C4-C13	$1.516(3)$	C8-H8A	0.9700
C6-C7	$1.376(3)$	C8-H8B	0.9700
C6-C8	$1.502(3)$	C1-H1	0.9300
C2-C7	$1.389(3)$	C12-H12A	0.9700
C2-C3	$1.423(3)$	C12-H12B	0.9700
C2-C1	$1.431(3)$	C9-H9A	0.9700
C7-H7	0.9300	C9-H9B	0.9700
C10-C9	$1.513(3)$		
C3-O2-H2	109.5	N1-C11-H11B	109.5
C5-N1-C10	$121.51(16)$	C12-C11-H11B	109.5
C5-N1-C11	$120.49(19)$	H11A-C11-H11B	108.1
C10-N1-C11	$116.83(15)$	C4-C13-C12	$109.65(17)$
N1-C5-C4	$120.54(16)$	C4-C13-H13A	109.7
N1-C5-C6	$118.7(2)$	C12-C13-H13A	109.7
C4-C5-C6	$120.79(17)$	C4-C13-H13B	109.7
C3-C4-C5	$119.32(17)$	C12-C13-H13B	109.7
C3-C4-C13	$119.00(19)$	H13A-C13-H13B	108.2
C5-C4-C13	$121.66(17)$	C6-C8-C9	$111.45(16)$
C7-C6-C5	$117.6(2)$	C6-C8-H8A	109.3
C7-C6-C8	$121.81(17)$	C9-C8-H8A	109.3
C5-C6-C8	$120.62(17)$	C6-C8-H8B	109.3
C7-C2-C3	$118.46(18)$	C9-C8-H8B	109.3
C7-C2-C1	$121.34(18)$	H8A-C8-H8B	108.0

supporting information

C3-C2-C1	120.2 (2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	126.2 (2)
C6-C7- 22	123.07 (18)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	116.9
C6-C7-H7	118.5	C2-C1-H1	116.9
C2-C7-H7	118.5	C11-C12-C13	110.52 (16)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	119.02 (17)	C11-C12-H12A	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	120.24 (18)	C13-C12-H12A	109.5
C4-C3-C2	120.7 (2)	C11-C12-H12B	109.5
N1-C10-C9	111.68 (16)	C13-C12-H12B	109.5
N1-C10-H10A	109.3	H12A-C12-H12B	108.1
C9-C10-H10A	109.3	C8-C9-C10	108.80 (19)
N1-C10-H10B	109.3	C8-C9-H9A	109.9
C9-C10-H10B	109.3	C10-C9-H9A	109.9
H10A-C10-H10B	107.9	C8-C9-H9B	109.9
N1-C11-C12	110.87 (16)	C10-C9-H9B	109.9
N1-C11-H11A	109.5	H9A-C9-H9B	108.3
C12-C11-H11A	109.5		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.89	$2.621(2)$	148
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots 2^{2}$	0.97	2.50	$3.324(3)$	143
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.97	2.55	$3.438(3)$	152
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.89	$2.621(2)$	148
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.97	2.50	$3.324(3)$	143
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.55	$3.438(3)$	152

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z+1$.

