

data reports

open 👌 access

STRUCTURE REPORTS

CrossMark

Crystal structure of 2-ethylquinazoline-4(3*H*)-thione

Mohammed B. Alshammari,^a Keith Smith,^b Amany S. Hegazy,^b Benson M. Kariuki^b‡ and Gamal A. El-Hiti^c*

^aChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^cCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia. *Correspondence e-mail: gelhiti@ksu.edu.sa

Received 13 July 2014; accepted 17 July 2014

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the title compound, $C_{10}H_{10}N_2S$, all non-H atoms are almost coplanar [maximum deviation = 0.103 (1) Å]. In the crystal, $N-H\cdots S$ interactions form $R_2^2(8)$ rings linking pairs of molecules related by inversion. The molecular pairs are stacked along [100]. A herringbone arrangement of pairs in the [010] direction forms layers parallel to (010).

Keywords: crystal structure; N—H···S interactions; quinazoline-4(3H)thione; hydrogen-bonded dimers; herringbone arrangement.

CCDC reference: 1014729

1. Related literature

For the synthesis of quinazoline-4(3*H*)-thiones, see: Bogert *et al.* (1903); Zoltewicz & Sharpless (1976); Segarra *et al.* (1998); El-Hiti (2004); Ozturk *et al.* (2007); El-Hiti *et al.* (2011).

2. Experimental

2.1. Crystal data C₁₀H₁₀N₂S

 $M_r = 190.26$

a = 5.8231 (3) Å b = 14.3214 (6) Å c = 21.7365 (8) Å $V = 1812.71 (14) \text{ Å}^{3}$	Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 150 K $0.41 \times 0.24 \times 0.15 \text{ mm}$
2.2. Data collection	
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) $T_{min} = 0.780, T_{max} = 1.000$	7795 measured reflections 2240 independent reflections 1973 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

2.3. Refinement

Orthorhombic, Pbca

$R[F^2 > 2\sigma(F^2)] = 0.033$	119 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
2240 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ \AA}^{-3}$

Z = 8

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5804).

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Bogert, M. T., Breneman, H. C. & Hand, W. F. (1903). J. Am. Chem. Soc. 25, 372–380.
- El-Hiti, G. A. (2004). Synthesis, pp. 363-368.
- El-Hiti, G. A., Hussain, A., Hegazy, A. S. & Alotaibi, M. H. (2011). J. Sulfur Chem. 32, 361–395.
- Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278.
- Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Doménech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). *Bioorg. Med. Chem. Lett.* 8, 505–510.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zoltewicz, J. A. & Sharpless, T. W. (1976). J. Org. Chem. 32, 2681-2685.

[‡] Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

supporting information

Acta Cryst. (2014). E70, o953 [doi:10.1107/S160053681401664X]

Crystal structure of 2-ethylquinazoline-4(3H)-thione

Mohammed B. Alshammari, Keith Smith, Amany S. Hegazy, Benson M. Kariuki and Gamal A. El-Hiti

S1. Structural commentary

The 2-ethyl-3*H*-quinazoline-4-thione molecule (Fig 1) is almost planer (apart from the ethyl hydrogens) with the ethyl group being twisted from the quinazoline-4-thione plane by 8.7 (2)°. N—H…S interactions form $R_2^2(8)$ rings to link pairs of molecules related by inversion. The pairs of molecules are stacked parallel to the *a*-axis (Fig 2). Adjacent pairs pack in a herring bone arrangement in the [010] direction to form layers parallel to the (010) plane. 2-(Substituted alkyl)-3*H*-quinazoline-4-thione derivatives can be obtained from double lithiation of 2-alkyl-3*H*-quinazoline-4-thiones followed by reactions with electrophiles, including alkyl iodides, at low temperature in anhydrous THF (El-Hiti, 2004). Also, 3*H*-quinazoline-4-thiones are produced from the corresponding 3*H*-quinazoline-4-ones using phosphorus pentasulfide (Bogert *et al.*, 1903; Ozturk *et al.*, 2007; El-Hiti *et al.*, 2011) or Lawesson's reagent (Segarra *et al.*, 1998). 3*H*-Quinazoline-4-thiones have also been synthesized in one-step from reaction of 2-aminobenzonitriles and thioamides in the presence of hydrogen bromide in various solvents on a steam bath for 1–4 h (Zoltewicz & Sharpless, 1976).

S2. Synthesis and crystallization

2-Ethyl-3*H*-quinazoline-4-thione was obtained in 92% yield from double lithiation of 2-methyl-3*H*-quinazoline-4-thione with *n*-butyllithium at 78 °C in anhydrous THF under nitrogen followed by reaction with iodomethane (El-Hiti, 2004). Crystallization from methanol gave the title compound as yellow crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (El-Hiti, 2004).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions with C—H = 0.95 and 0.98Å and refined in riding mode, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and 1.2Ueq(C) for aromatic H atoms

Figure 1

A molecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

Crystal structure packing showing N-H···S contacts as dotted lines.

2-Ethylquinazoline-4(3H)-thione

Crystal data $C_{10}H_{10}N_2S$ $M_r = 190.26$ Orthorhombic, *Pbca* a = 5.8231 (3) Å b = 14.3214 (6) Å c = 21.7365 (8) Å V = 1812.71 (14) Å³ Z = 8F(000) = 800

 $D_{\rm x} = 1.394 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3617 reflections $\theta = 3.9-29.3^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 150 KPlate, yellow $0.41 \times 0.24 \times 0.15 \text{ mm}$ Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer	7795 measured reflections 2240 independent reflections
Radiation source: SuperNova (Mo) X-ray	1973 reflections with $I > 2\sigma(I)$
Source	$R_{\rm int} = 0.020$
Mirror monochromator	$\theta_{\text{max}} = 29.8^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -6 \rightarrow 7$
Absorption correction: multi-scan	$k = -19 \rightarrow 14$
(CrysAlis PRO; Agilent, 2014)	$l = -23 \rightarrow 29$
$T_{\min} = 0.780, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.033$
$wR(F^2) = 0.087$
<i>S</i> = 1.03
2240 reflections
119 parameters
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.7981P]$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e Å}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7433 (2)	0.57478 (9)	0.62537 (6)	0.0185 (3)	
C2	0.6649 (2)	0.44643 (8)	0.55604 (5)	0.0178 (2)	
C3	0.4705 (2)	0.42557 (8)	0.59550 (5)	0.0177 (3)	
C4	0.4368 (2)	0.48131 (8)	0.64832 (5)	0.0183 (3)	
C5	0.3171 (2)	0.35262 (9)	0.58239 (6)	0.0209 (3)	
H5	0.3379	0.3158	0.5465	0.025*	
C6	0.1366 (2)	0.33425 (9)	0.62146 (6)	0.0236 (3)	
H6	0.0337	0.2845	0.6127	0.028*	
C7	0.1046 (2)	0.38917 (9)	0.67440 (6)	0.0240 (3)	
H7	-0.0197	0.3760	0.7013	0.029*	
C8	0.2513 (2)	0.46175 (9)	0.68761 (6)	0.0218 (3)	
H8	0.2272	0.4987	0.7233	0.026*	
C9	0.8998 (2)	0.65696 (9)	0.63452 (6)	0.0227 (3)	
H9A	0.8734	0.7023	0.6009	0.027*	
H9B	1.0609	0.6354	0.6316	0.027*	
C10	0.8668 (3)	0.70632 (9)	0.69567 (6)	0.0246 (3)	
H10A	0.7058	0.7252	0.7000	0.037*	
H10B	0.9652	0.7618	0.6972	0.037*	
H10C	0.9080	0.6639	0.7293	0.037*	
N1	0.78973 (18)	0.52156 (7)	0.57402 (5)	0.0188 (2)	
H1	0.9086	0.5374	0.5513	0.023*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

NO	0.57((2)(10))	0.55(07(7)	0 ((272 (5)	0.0100(2)
NZ	0.57662 (19)	0.55697(7)	0.662/3(5)	0.0199 (2)
S 1	0.73978 (6)	0.38502 (2)	0.49367 (2)	0.02214 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0210 (6)	0.0177 (6)	0.0169 (6)	0.0022 (5)	-0.0006 (4)	-0.0010 (5)
C2	0.0203 (6)	0.0164 (5)	0.0166 (5)	0.0039 (5)	-0.0026 (5)	0.0008 (4)
C3	0.0194 (6)	0.0171 (6)	0.0167 (5)	0.0027 (5)	-0.0019 (5)	0.0020 (4)
C4	0.0197 (6)	0.0178 (6)	0.0172 (5)	0.0019 (5)	-0.0012 (4)	0.0010 (5)
C5	0.0237 (7)	0.0189 (6)	0.0202 (6)	0.0008 (5)	-0.0032 (5)	-0.0006 (5)
C6	0.0238 (7)	0.0212 (6)	0.0258 (6)	-0.0033 (5)	-0.0029 (5)	0.0012 (5)
C7	0.0213 (7)	0.0264 (7)	0.0244 (6)	-0.0013 (5)	0.0028 (5)	0.0038 (5)
C8	0.0242 (7)	0.0226 (6)	0.0186 (6)	0.0015 (5)	0.0016 (5)	0.0002 (5)
C9	0.0238 (7)	0.0208 (6)	0.0233 (6)	-0.0033 (5)	0.0041 (5)	-0.0040 (5)
C10	0.0292 (7)	0.0233 (6)	0.0214 (6)	-0.0047 (5)	0.0001 (5)	-0.0040 (5)
N1	0.0188 (5)	0.0194 (5)	0.0182 (5)	-0.0003 (4)	0.0030 (4)	-0.0024 (4)
N2	0.0220 (6)	0.0191 (5)	0.0187 (5)	-0.0006 (4)	0.0015 (4)	-0.0012 (4)
S1	0.0244 (2)	0.02191 (18)	0.02011 (17)	0.00029 (12)	0.00293 (12)	-0.00599 (12)

Geometric parameters (Å, °)

C1—N2	1.2908 (16)	C6—C7	1.4061 (19)
C1—N1	1.3784 (16)	С6—Н6	0.9500
C1—C9	1.5017 (18)	C7—C8	1.3757 (19)
C2—N1	1.3560 (16)	С7—Н7	0.9500
С2—С3	1.4514 (17)	C8—H8	0.9500
C2—S1	1.6737 (12)	C9—C10	1.5177 (17)
C3—C5	1.4038 (18)	С9—Н9А	0.9900
C3—C4	1.4119 (16)	С9—Н9В	0.9900
C4—N2	1.3910 (16)	C10—H10A	0.9800
C4—C8	1.4054 (18)	C10—H10B	0.9800
C5—C6	1.3766 (19)	C10—H10C	0.9800
С5—Н5	0.9500	N1—H1	0.8800
N2-C1-N1	123.21 (12)	С6—С7—Н7	119.6
N2—C1—C9	121.86 (11)	C7—C8—C4	120.08 (12)
N1—C1—C9	114.92 (11)	C7—C8—H8	120.0
N1-C2-C3	114.27 (11)	C4—C8—H8	120.0
N1-C2-S1	120.71 (10)	C1—C9—C10	113.84 (11)
C3—C2—S1	125.01 (10)	C1—C9—H9A	108.8
C5—C3—C4	119.83 (12)	С10—С9—Н9А	108.8
C5—C3—C2	121.97 (11)	C1—C9—H9B	108.8
C4—C3—C2	118.19 (11)	С10—С9—Н9В	108.8
N2—C4—C8	117.93 (11)	H9A—C9—H9B	107.7
N2-C4-C3	122.83 (11)	C9—C10—H10A	109.5
C8—C4—C3	119.22 (12)	C9—C10—H10B	109.5
C6—C5—C3	120.19 (12)	H10A—C10—H10B	109.5

supporting information

С6—С5—Н5	119.9	C9—C10—H10C	109.5
С3—С5—Н5	119.9	H10A—C10—H10C	109.5
C5—C6—C7	119.94 (12)	H10B—C10—H10C	109.5
С5—С6—Н6	120.0	C2—N1—C1	124.53 (11)
С7—С6—Н6	120.0	C2—N1—H1	117.7
C8—C7—C6	120.73 (13)	C1—N1—H1	117.7
С8—С7—Н7	119.6	C1—N2—C4	116.89 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1…S1 ⁱ	0.88	2.53	3.3854 (11)	166

Symmetry code: (i) -x+2, -y+1, -z+1.