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Homology modeling is a computational methodology to assign a 3-D structure to a target 
protein when experimental data are not available. The methodology uses another protein 
with a known structure that shares some sequence identity with the target as a template. 
The crudest approach is to thread the target protein backbone atoms over the backbone 
atoms of the template protein, but necessary refinement methods are needed to produce 
realistic models. In this mini-review anchored within the scope of drug design, we show 
the validity of using homology models of proteins in the discovery of binders for 
potential therapeutic targets. We also report several different approaches to homology 
model refinement, going from very simple to the most elaborate. Results show that 
refinement approaches are system dependent and that more elaborate methodologies do 
not always correlate with better performances from built homology models. 
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INTRODUCTION 

Structure-based methods are very important for several areas of computational chemistry, such as drug 
design, assignment of unknown protein functions, studies of reaction mechanisms, etc. 

Recently, we have witnessed an explosive growth in the number of available protein sequences due to 
the advance in genomics. However, this vast amount of information was not accompanied by the 
experimental determination of proteins’ 3-D structure; therefore, computational modeling methods are 
useful tools when experimental information is lacking. Having the structure of a protein, either 
experimental or modeled, has enormous significance in order to understand its function and interaction 
with substrate and drugs, and interactions with other proteins. The most frequently used computational 
method to assign the 3-D structure of proteins is homology modeling (sometimes referred to as 
comparative modeling). Homology modeling predicts the 3-D structure of a protein for which only the 
sequence is known (called target protein) using another protein with a known structure (called template). 
Target and template proteins must share some sequence identity (generally >30%) for the method to be 
effective. After proper alignment of sequences, the target protein backbone atoms are placed in identical 
positions to those of the template protein backbone atoms, and subsequent efforts place side chain atoms, 
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remove clashes, and eventually minimize the energy of the modeled target protein. There has been a 
considerable effort put into creation of realistic homology models of proteins and it has been extensively 
discussed in the literature[1,2,3]. As Critical Assessment of protein Structure Prediction (CASP) 
experiments show, there is still much room for improvement[4,5].  

In spite of inaccuracies of homology models, it has been shown that they can be used successfully in 
structure-based drug discovery. A rapid increase in the use of homology models for structure-based drug 
discovery (Fig. 1) has been seen in recent years, and this review attempts to summarize advances in the 
field. We will restrict our attention to the docking of small molecules into homology models, but even 
with this restriction, the areas of application still cover a broad range of systems (see Table 1 in 
Supplementary Material) and approaches. Docking is a well-established tool of structure-based drug 
design that tries to predict if a ligand (generally a small molecule) will bind to a receptor (generally a 
protein) and form a stable complex. Molecular docking has been extensively reviewed elsewhere[6,7,8]. 

 
FIGURE 1. A crude estimate of publications that reports docking into homology models 
(excluding protein-protein docking). The figure was generated after searching PubMed 
using the keywords “docking” and “homology”, and analyzing the hits. 

After a hypothetical 3-D homology model is built, it may still contain inaccuracies and errors that 
may interfere with ligand placement inside the binding site. In this regard, optimization of the binding site 
with (or without) the binder can be roughly divided into several categories[9]: (1) use without further 
optimization or with simple optimization to remove clashes, (2) use several alternative receptor structures 
(an ensemble) for docking, (3) ligand-directed optimization of binding pocket, (4) partial optimization 
and, (5) molecular dynamics (MD) or related approaches. In the next section, we discuss the usefulness of 
homology models by comparing the results with those obtained using experimental structures. In the 
following section, we will describe some recent applications that use different approaches to homology 
model refinement and look into the relevant applications. 
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VALIDATION OF HOMOLOGY MODEL USE 

Even though we will see later that homology models can be used for drug discovery successfully, the 
comparison between the performances of homology models vs. experimental 3-D structures is an 
interesting issue. In several papers, it was shown that homology models in virtual screenings generally 
perform somewhat worse compared to the target proteins, but they are still able to enrich the screening 
results. 

Validation Based on Enrichment Analysis 

In an extensive study, McGovern and Shoichet analyzed how results of virtual screenings are dependent 
on the accuracy of the binding site that decreases when going from crystal structure to homology 
models[10]. Results of screenings of compound databases were compared for the holo (ligand-bound), 
apo, and homology-modeled structures of ten different enzyme-binding sites. Their results suggested that 
the performance of the docking calculation is affected by the particular representation of the receptor used 
in the screening, and that the holo structure is the one most likely to yield the best discrimination between 
known ligands and decoy molecules, but important exceptions to this rule also emerge from this study. 
Although each of the holo, apo, and modeled conformations led to enrichment of known ligands in all 
systems, the enrichment did not always rise to a level judged to be sufficient to justify the effort of a 
docking screen. In this context, enrichment means the ratio of the number of known binders picked using 
a certain method over the number of known binders expected to be picked by random selection. If a 20-
fold enrichment of known ligands is taken as a rough guideline for what might be enough to justify a 
docking screen, the holo conformation of the enzyme met this criterion in eight of ten cases, whereas the 
apo conformation met this criterion in only two cases, and the modeled conformation in three. 

In the study by Diller and Li[11], homology models of six kinases were built to see if they could 
distinguish between known inhibitors and decoy compounds when combined with high-throughput 
docking. For comparison, four X-ray structures were also included in this analysis. In five of the six 
cases, the models were able to select the inhibitors five times over random. In the sixth case, the 
homology model was unable to distinguish between inhibitors and decoy compounds. In this case, a 
model built with an alternate template was able to distinguish inhibitors from decoy at a rate comparable 
to the other five models. The performance of homology models was comparable to X-ray structures and, 
in one case, perceptibly quite better. One of the conclusions regards the importance of template choice 
used for building of homology models and also the choice of X-ray structures to be used in screening 
(when they are available).  

Oshiro et al. compared enrichments of virtual screenings with known binders by docking into CDK2 
and factor VIIa homologs[12]. When the sequence identity between model and template near the binding 
site area was greater than approximately 50%, roughly five times more active compounds were identified 
than would be found randomly. This performance was comparable to docking to crystal structures. 

Schapira et al. constructed a model of the inactive conformation of human retinoic acid receptor-α 
(RARα) by using information derived from antagonist-bound estrogen receptor-α and applied a computer-
based virtual screening algorithm to identify antagonists[13]. Screening was performed against a database 
of known ligands and also against a large commercially available compound database, which led them to 
discover novel agonists and antagonists. To discover why some known ligands were missed, a docking 
simulation was carried out with a full atom representation of the receptor, with a Monte Carlo energy 
minimization of the complex, with both flexible-ligand and flexible-receptor side chains. The 
conformation of several receptor side chains was modified during the docking simulation to accommodate 
the size of the ligand, and this solution would not have been found with rigid side chains. The optimized 
receptor structure was used for screening, and the updated structure totally eliminated the presence of 
both false positives and false negatives (all RAR ligands and only RAR ligands were selected). 
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Kairys et al. analyzed performance of virtual screenings into homology models of carboxypeptidase 
A, factor Xa, PPARα, CDK2, and acetylcholinesterase, and compared the data with screenings against the 
X-ray structures of the targets[14]. A central result of their research was that docking into homology 
models frequently yields enrichments of known binders as good as docking into the actual target protein. 
Interestingly, however, standard measures of the similarity (% of sequence identity, Z-score, E-score) 
between template and target protein showed little correlation with the effectiveness of the screening 
calculations for the built homology models, and docking to the template itself sometimes can be as 
successful as docking into the corresponding homology model. Treating side chains as mobile produced 
modest improvement in the results. 

Validation Based on Structural Analysis 

While previously analyzed studies demonstrated the capability of homology models to enrich the virtual 
screening results, it is of interest to analyze how homology models refined using different methods differ 
from the experimentally determined structure, and how these differences influence docking results. The 
papers analyzed below were emblematic because, in all the cases mentioned, comparison was enabled by 
the availability of the crystal structure in the middle or the end of the studies. 

Marhefka et al. modeled human androgen receptor (hAR), which was refined using unrestrained 
multiple MD simulations in explicit solvent[15]. The obtained structure was compared with the 
experimental hAR structure because the latter was published during the research. Main chain atoms differ 
by 1.2 Å RMSD between the model and the crystal structure. The H-bonding patterns are different 
between the X-ray and MD structures, which can be explained by differences in bound ligands. In 
addition, an unoccupied pocket is observed in the crystal structure. Nevertheless, the quality of the model 
was enough so that analysis of amino acid mutations within the hAR-binding pocket that affect ligand 
binding was consistent with these models. Marhefka et al. also noted that the MD-processed structure was 
superior to structures obtained using less-sophisticated homology modeling procedures.  

Wang et al. constructed homology models, refined using molecular dynamics, of four human class I 
histone deacetylase HDAC isoforms[16]. The comparison between the models and X-ray structures of 
HDAC8 that became available during their study showed excellent agreement, which validated their 
approach. The RMSD between the backbone atoms of the model and crystal structure was 2.07 Å. The 
largest differences between the two were mainly in one of the loops, and in flexibility of the entrance into 
an internal cavity that was seen in crystal structure and also during the time scale of the MD simulation, 
although this flexibility was not taken into account in the final configuration of the model. 

Virtual screening of a database of drugs against a SARS-associated coronavirus (SARS-CoV), 3C-
like proteinase (3CLpro) model yielded a cinanserine hit that turned out to be active against SARS-CoV 
and related human coronavirus 229E[17]. The homology model was optimized using energy 
minimization[18]. The crystal structure of SARS-CoV 3CLpro appeared during the study and, hence, could 
be used for verification. The RMSD between homology model and X-ray structure was 3.11 Å, while 
RMSD of the binding pocket was only 0.18 Å. The docking simulations and binding affinity calculations 
were repeated with the ten best compounds from homology model screening. Calculations with the real 
structure were in good agreement with the data obtained using the model. Earlier, a comparison was also 
made between virtual screening of 73 various proteinase inhibitors against the SARS-CoV model and its 
template, the main proteinase of the transmissible gastroenteritis virus[18]. Most molecules bind to the 
two structures in a similar way, and the correlation factor R between their DOCK scores is 0.65. The 
RMSD of the binding pocket atoms between the template and the model was 0.18 Å, and overall Cα atom 
RMSD was 0.34 Å. 

Because of the availability of an X-ray structure during the final stage of the study, virtual screening 
was performed for both the homology model and crystal structure of human 11β-hydroxysteroid 
dehydrogenase (11βHSD1)[19]. The homology model was energy minimized with cofactor included 
(cofactor was taken from another template). In a similar way, coordinates of a known inhibitor were 
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included from a third template. RMSD between the final model and real structure was below 2 Å (the 
authors did not specify what atoms were used to compute that figure). Binding modes between the binders 
docked into both structures were relatively close. Moreover, the correlation between the binding affinities 
computed using GlideScore of same ligands docked into both structures had correlation coefficient R = 
0.69. Correlation factor R between binding affinities of binders predicted from virtual screening was 
similar, 0.71. Thus, the binding modes predicted from docking into the homology model and X-ray 
structure were both structurally and energetically similar. It is worthwhile to note that the reported 
correlation coefficient is good even when compared to typical correlation coefficients between computed 
and experimental binding affinities for docking into the real crystal structures[20,21]. 

The basic conclusions from these papers show that homology models in most cases can give a 
reasonable enrichment of the binders during the virtual screening, and also can give reasonable binding 
modes and energies. 

APPROACHES TO REFINEMENT OF HOMOLOGY MODELS 

In this section, we report different approaches to homology model refinement and highlight some of the 
most interesting applications. 

Use of Homology Models Without Further Optimization or With Simple Energy 
Optimization 

In this subsection, we will consider cases where the built homology models were used without a 
subsequent use of MD. Of course, some optimizations may still be necessary, such as optimization of 
loop and insertion/deletion regions. It should be mentioned that there is a capability of some homology 
building programs to optimize the side chains in the presence of a binder, to avoid clashes and improve 
hydrogen binding networks, and to use constraints during model building. Quality of the model depends 
on a correct sequence alignment. Also, the results may depend on the sophistication of program that was 
used to build the homology models. Nevertheless, some examples in the literature show significant 
success of this relatively simple approach.  

Kemp et al.[22] computed the correlation between the experimental IC50 and docked scores for 33 
compounds docked into a model of Cytochrome P450 2D6, and the computed regression coefficient was 
r2 = 0.61. The method allowed identification of several novel inhibitors. 

Arienti et al.[23] used a homology model of DNA damage control kinase chk2 to facilitate 
optimization of a novel series of inhibitors discovered via high-throughput screening. Their research led 
to a highly potent 2-arylbenzimidazole (IC50 15 nM). Structure-activity relationship was found to be 
remarkably consistent with the docking into homology models. 

Hillisch et al. investigated two isoforms of estrogen receptors (ER) α and β[24]. The binding pocket 
of the energy-minimized model of the ligand-binding domain of ERβ differs to that of ERα by two amino 
acids. This allowed researchers to design highly selective agonists of ERα and ERβ using structure-based 
drug design. These studies led to insights about the physiological roles of the two isoforms. 

Interestingly, researchers at Novartis were able to discover potent inhibitors of CDK1 based on 
analysis of binding mode to a homologous CDK2 of known nonselective CDK1 and CDK2 inhibitors, 
and mined the company's compound database for the designed scaffold[25]. This was possible because 
they took notice of the conservation of ligand-binding residues in the ATP-binding pocket between CDK1 
and CDK2. 

Sometimes, docking is performed by superimposition of the coordinates or translation of small 
molecules present in the crystal structure of the template or homologous protein. Warhurst built a 
homology model of Plasmodium falciparum DHFR[26]. The drug molecules were taken from existing 
PDB structures as scaffolds, changed to obtain derivatives, and optimized inside the binding site using 
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molecular mechanics MM+ force field. Implications for drug resistance were discussed and some 
directions for further drug development were proposed based on the observations. 

A model of rabbit organic cation transporter OCT2, which is responsible for renal secretion of 
cationic drugs, was built from templates that shared <15% with the target, using energy minimization[27]. 
The model confirmed mutagenesis studies and, in addition, researchers found a significant correlation (r2 

= 0.82) between the IC50 values for inhibition of tetraethylammonium transport by 14 different 
compounds and their calculated Kd values for binding to the homology model. 

Using a blind-docking (no predefined binding site) study of a known binder against an energy-
minimized homology model of DNase γ, Sunaga et al.[28] discovered an alternative binding site, the 
DNA trapping site. After screening of a ligand database into the trapping site of the model and 
experimental test of the best hits, they obtained a good correlation between predicted ΔG of docking into 
the DNA trapping site and experimental IC50 (R = 0.8055). There was no correlation between ΔG and IC50 
for the active site (R = 0.0346), which indicated that the investigated binders bind to the trapping site. 

Using an Ensemble of Protein Structures 

Using an ensemble of protein structures can be useful when there are several alternative receptor 
structures. In simple cases, docking could be independently or sequentially performed against a few 
structures, for example, agonist- and antagonist-bound receptor structure, or to alternative homology 
models.  

The FlexE method, developed by Claussen et al., uses an ensemble of several structure variants of a 
protein for docking[29]. FlexE is based on a united protein description generated from the superimposed 
structures of the ensemble. For varying parts of the protein, discrete alternative conformations are 
explicitly taken into account, which can be combinatorially joined to create new valid protein structures. 
FlexE yielded better results compared to using simply merged lists of docking hits into several receptor 
variants. In the case of aldose reductase, where the ensemble consisted of one homology model and two 
X-ray structures, they showed that if just one rigid conformation was used, some inhibitors could be 
missed. 

Schafferhans and Klebe developed a procedure, DRAGHOME[30], which combines information 
from homology modeling with ligand data used by and derived from 3-D quantitative structure-activity 
relationships (QSAR). The binding site of a model-built protein is analyzed in terms of putative ligand 
interaction sites and translated via Gaussian functions into a functional binding-site description 
represented by physicochemical properties. Ligands to be docked onto these binding-site representations 
are similarly translated into a description based on Gaussian functions. Using DRAGHOME, thrombin 
inhibitors were docked onto models of thrombin generated using serine protease templates with 28–40% 
sequence identity. Each model consisted of an ensemble of ten or more structures. The procedure yielded 
ligand-binding modes with an average RMS deviation of 1.4 Å, where mostly the near-native solutions 
ranked best. 

Ligand-Directed Optimization of the Binding Pocket 

In many cases, the docking of a ligand to a binding pocket is, solely, the direct target of the virtual 
screening studies. Hence, it could be enough to optimize the shape of the binding pocket so that the 
binding modes of one or several ligands are correctly represented. Moreover, conventional optimizations 
including MD, cannot correct alignment errors or reproduce helical shifts and distortions, or correctly 
model long irregular loops[31]. Hence, model refinement requires incorporation of additional 
information, including mutagenesis information or knowledge/hypothesis about the binding mode of a 
ligand. Similar to mutagenesis in spirit is a structure-based screening method using NMR data[32]. In this 
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method, one looks at the appearance/disappearance of NMR interaction signals when different ligands are 
bound, and this information can be combined with structural studies. 

Ligand presence can be taken into account via side chain rotamers. In an extensive study by Rockey 
and Elcock[33], for seven protein kinase inhibitors, relative binding affinities with a panel of ~20 protein 
kinases were computed and compared with experimental data. When building homology models, no 
attempt was made to model insertions relative to crystal structure, and the residues outside of catalytic 
(ATP-binding domain) were omitted. The side chains were optimized using SCWRL[34] in the presence 
of the ligand. Their ligand-receptor affinity computation program SCR was able to give an excellent 
reproduction of the experimental trends and, importantly, was capable of identifying the targets of 
inhibitors even when they belonged to different kinase families. For the previous test, it was assumed that 
inhibitors dock in the same orientation for all kinases. It also turned out that results became worse if the 
ligands were docked independently and then scored. Relaxation of the inhibitor and receptor complex in 
solvent using GROMACS[35] did not improve the results. These results were explained by the fact that 
using fixed orientation of ligands across all kinases better highlighted identical interactions between 
ligand and receptor. Finally, three inhibitors were screened against a set of 493 kinases and the list of 
predicted binding receptors was enriched with true experimental targets. 

A good example of guiding by bound-ligand approach is a study by Johnson et al. of anti-Shigella 
flexneri Y monoclonal antibody (mAb) SYA/J6[36]. A diverse library of protein models was created and 
then screened by docking with ligands of known conformation. A significant correlation was observed 
between the docked ligand energies and correctness of conformation for the hypervariable loop SDR H3, 
as well as orientation of VH and VL domains with respect to each other. This means that the more accurate 
protein models formed higher-quality docked complexes and the quality of the fit could be used to select 
the best models. 

Bissantz et al. performed a study of screening against several G-protein coupled receptors 
(GPCRs)[37]. After a 3-D structure of protein was built, antagonist or agonist molecules were positioned 
inside the binding pocket and energy minimized. The homology models were used to screen 3-D 
databases using three different docking programs (Dock, FlexX, Gold) in combination with various 
scoring functions. The built models enabled them to retrieve known antagonists from ligand databases. To 
generate receptor models better suited for agonist screening, they developed a knowledge- and 
pharmacophore-based modeling procedure that might partly simulate the conformational changes 
occurring in the active site during receptor activation. The same group later developed a GPCRmod 
package aimed at the high-throughput modeling of GPCRs, built a library of 277 GPCR targets, and used 
inverse screening (one molecule is docked against many receptors) to validate their models by recovering 
the receptor of a selective GPCR antagonist as well as the receptors of a promiscuous antagonist among 
top scorers [38]. The structures were refined using energy minimization. 

Ashton et al. reviewed different approaches to virtual screening of GPCRs[39]. In a case study, they 
were able to retrieve 50% of the binders in the first 10% of a compound database screened against 
vasopressin V1a receptor using a procedure similar to that used by Bissantz et al.[37]  

Klebe’s group developed the MOBILE approach[40], which combines receptor-ensemble and ligand-
directed optimization approaches. In a first step, ligands are docked into an averaged ensemble of crude 
homology models of the target protein. In the next step, improved homology models are generated, 
considering explicitly the previously placed ligands by defining restraints between protein and ligand 
atoms. These restraints are expressed in terms of knowledge-based, distance-dependent pair potentials, 
which were compiled from crystallographically determined protein-ligand complexes. Subsequently, the 
most favorable models are selected by ranking the interactions between the ligands and the generated 
pockets using these potentials. Final models are obtained by selecting the best-ranked, side-chain 
conformers from various models, followed by an energy optimization of the entire complex. The 
approach was applied on factor Xa and aldose reductase homology models. Including ligand information 
in the homology model yielded structures better suited for structure-based drug design. The MOBILE 
approach was applied to a neurokinin-1 receptor belonging to the GPCR family[41]. For the construction 
of the NK1 receptor, antagonist CP-96345 was used to restrain the modeling. The quality of the obtained 
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model was validated by probing its ability to accommodate additional known NK1 antagonists from 
structurally diverse classes. On the basis of the generated model and on the analysis of known NK1 
antagonists, a pharmacophore model was deduced, which subsequently guided the 2-D and 3-D database 
search. As a following step, the remaining hits were docked into the modeled binding pocket of the NK1 
receptor. Finally, seven compounds were selected for biochemical testing, among which one showed 
affinity in the submicromolar range. 

Evers et al. used a modified, ligand-directed MOBILE approach to generate a model of α1A 
receptor[42]. Notably, there is no sequence identity in the binding site between the template bovine 
rhodopsin and the target. After a hierarchical virtual screening procedure guided by 2-D filters and 3-D 
pharmacophore models, ca. 23,000 selected compounds were docked into the model using GOLD[43] and 
scored with PMF[44]. From 80 top-ranked diverse compounds, 37 compounds had Ki values better than 
10 μM, and the most active bound with Ki = 1.4 nM. 

In a recent application that used the MOBILE approach, Evers et al. built homology models of several 
biogenic, amine-binding GPCRs (α1A, 5HT2A, D2, and M1 receptors) and compared performance of 
QSAR and docking-based virtual screening approaches when retrieving known antagonists from virtual 
libraries[45]. They found that the QSAR techniques (ligand-based pharmacophore, Feature-Tree, 2-D 
QSAR) provided better enrichment factors compared to molecular docking. However, they also point out 
that it is unclear how much docking results would improve if better-quality structures were used for 
docking. In addition, docking is most valuable in cases where either limited or no ligand information is 
available, or for discovering of novel ligand classes/binding modes. 

Partially Optimized Structures 

Takami and coworkers built a homology model of Rho kinase based on protein kinase A (cAPK)[46]. The 
side chains were kept as close as possible to the template. After building the model, energy minimization 
was performed, keeping backbone atoms fixed, except for the modeled loops. Based on hits of high-
throughput screening against the homology model, a synthetically feasible virtual library was designed. 
With the aid of docking simulation, possible active structures as well as possible inactive structures from 
the virtual library were synthesized and submitted for biological assessments. The obtained results proved 
that their model was a reliable one. 

In a study by Gessner et al.[47], human EAG1 and EAG2 potassium channel models were energy 
minimized using weak constraints on protein backbone because minimization was performed in the 
absence of solvent. After the ligands were placed in the binding site so that they have minimal steric 
clashes, the docked complexes were further energy minimized in two modes: keeping the protein rigid 
(rigid docking) or allowing for some conformational readjustment with positional restraints on all protein 
atoms (semiflexible docking). Only with the semiflexible docking approach were they able to explain 
qualitatively the molecular mechanisms underlying the differences in efficiency of channel blocking by 
clofilium, quinidine, and tetrabutylammonium. 

Full Optimization of Ligand and Receptor using MD or Related Procedures 

The approach that applies MD for refinement of the homology model is presently the most used. The 
consensus procedure is building the homology model, refining the structure using MD, especially for the 
systems with low identity between the target and template, such as GPCRs, and subsequently validating 
the structure. As noted above, the MD approach sometimes can fail, for example, to correct alignment 
errors or reproduce helical shifts, or model long irregular loops[31]; hence, an approach that uses 
additional information, such as mutagenesis studies, is needed. 

Several examples emphasize the advantage of the MD-optimized structure over simple energy 
optimization. It was mentioned earlier that Marhefka et al. found that the MD-optimized model of human 
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androgen receptor was superior to a simple optimization-refined structure[15]. In a work by von Langen 
et al.[48], a glucocorticoid receptor, ligand-binding domain was built with an energy-optimization 
refinement, and docking of several steroids into its binding site yielded the wrong binding affinity rank 
for cortisol with respect to other steroids because of an incorrect hydrogen-bonding pattern. Averaged 
structures were generated for 4 nsec MD simulations with each complex. The scoring with the Molecular 
Mechanics Poisson-Boltzmann Surface Area (MM/PBSA)[49] method allowed them to discriminate 
correctly between strongly and weakly bound compounds. FlexX[50] also correctly identified cortisol as 
the ligand with the highest binding affinity. The authors note that even docking cortisol into a structure 
optimized using a different ligand is better than the initial unrefined model. 

Zabell et al. built a homology model of human low-molecular-weight protein tyrosine phosphatase 
isoform B (HCPTP-B)[51]. A comparison of the two isoform structures indicated the possibility of 
developing isoform-specific inhibitors of HCPTP. MD simulations with CHARMM[52] have been used 
to study the binding modes of the known adenine effector and phosphate in the active site of both 
isoforms. This analysis led to the design of the initial lead compound based on an azaindole ring moiety. 
The simulation studies highlighted the need for a phosphonate group on the indole and provided insight 
into inhibitor-binding modes. Compounds with varying degrees of structural similarity to the azaindole 
were synthesized and tested for inhibition with each isoform. Two compounds were experimentally found 
to have submillimolar inhibition.  

Sterol 14α-demethylase (CYP51) is the only CYP family in the cytochrome P450 gene superfamily 
found in both eukaryotes and prokaryotes[53]. Fungal CYP51 is one of the known major targets of azole 
antifungal agents. Therapeutic side effects of these antifungals are based on interactions of the azoles with 
the human analogue enzyme. The study by Rupp et al. describes a comparison of homology models of 
human and Candida albicans CYP51, constructed from Mycobacterium tuberculosis CYP51 X-ray 
structure[54]. The binding mode of the azole ketoconazole is investigated using MD simulations with the 
GROMACS force field. The usage of special parameters for the iron-azole complex binding is necessary 
to obtain the correct complex geometry in the active site of the enzyme models. Based on the MD 
simulations, it was possible to explain the enantioselectivity of the human enzyme and also to predict the 
binding mode of the isomers of ketoconazole in the active site of the fungal model. 

Moran et al. separately built two nucleotide-binding domain dimeric subunits of cystic fibrosis 
transmembrane conductance regulator (CFTR)[55]. In order to remove clashes between the subunits, the 
MD was used to equilibrate the dimer at 300 K. The ATP molecules from the template were included in 
the optimization. The correlation between the experimental apparent dissociation constant of the 
activators and the computed dissociation-free energy was used to determine the putative binding site. Out 
of three activator binding site candidates, site 2, which had Pearson correlation coefficient r = 0.83, 
appeared to be the likely binding site. The other sites had very poor correlations of –0.07 and –0.46.  

Bjelic and Åqvist used a combination of homology modeling, automated docking searches, and 
MD/reaction-free energy profile simulations to predict the structure of P. falciparum histoaspartic 
protease, conformation of bound substrate, catalytic mechanism, and rate of the peptide cleavage 
reaction[56]. They found that the computational tools are sufficiently reliable, both for identifying 
substrate binding modes and for distinguishing between different possible reaction mechanisms. Their 
calculated catalytic rate constant of about 0.1 sec–1 for a hexapeptide substrate derived from the R chain 
of human hemoglobin is in excellent agreement with experimental kinetic data for a similar peptide 
fragment. 

Avery’s research group performed screenings against several homology models to improve 
selectivity. Virtual screening of the ChemBridge database of compounds was performed against models 
of malarial cysteine proteases falcipain-2 and falcipain-3. A total of 24 diverse inhibitors were identified, 
of which 12 compounds appeared to be dual inhibitors of falcipain-2 and falcipain-3. Four compounds 
showed inhibition of both the malarial cysteine proteases as well as Leishmania donovani cysteine 
protease[57]. The models of falcipains were refined and validated by docking of known inhibitors and 
applying MD simulation[58,59]. 
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Muegge and Enyedy performed docking into a ErbB2 kinase model refined using MD simulation[60]. 
After screening of a database, 144 compounds were chosen for biological testing, ten of them showed 
inhibitory activity against ErbB2, and one compound appeared to be a selective and potent irreversible 
inhibitor with IC50 1.5 μM, which was unexpected since screening focused on noncovalently bound 
inhibitors. 

Schapira et al. performed compound library screening against several nuclear receptors, including a 
computer model of glucocorticoid receptor (GR), and the three known GR agonists were found among the 
top 1% best compounds[61]. The 3-D model of the GR ligand-binding domain used for screening was 
built by homology to the crystal structure of the androgen receptor, a template sharing 53.8% sequence 
identity. The target sequence was aligned on the 3-D template, and the energy of the system was 
minimized by a Monte Carlo simulation through a series of random global moves and local gradient 
minimizations in the internal coordinates space. A single rotameric state was used for screening.  

MD can be applied to the receptor structure and optimized prior to docking. In the docking studies, 
this receptor structure can be treated as rigid. Alternatively, receptor flexibility could be taken into 
account during docking. Carlson and McCammon[62] analyzed an approach where an ensemble of 
structures resulting from simulation is used for docking, implicitly including receptor flexibility. Sine et 
al. built a homology model of acetylcholine receptor (AChR)–binding domain, belonging to a superfamily 
of pentameric ligand-gated ion channels[63]. An ensemble of 1000 frames from MD simulation was used 
for docking. A similar procedure was also applied to the template for validation. The resulting ligand 
orientations were clustered into groups. The distinctly different docked orientations for d-tubocurarine 
and metocurine were confirmed using mutagenesis results 

Moran et al. used MD on a complex receptor system consisting of a homology model of CLC-0 Cl– 
channel, phospholipid bilayer, and a shell of water[64]. During MD simulations, a constant force was 
applied to a channel-blocking molecule, p-chlorophenoxyacetic acid (CPA), pushing it forward to the 
center of the channel. This allowed them to outline a possible intrachannel pathway of CPA, and to 
describe qualitatively the binding sites and energy barriers along this pathway. The obtained results were 
consistent with experimental data. 

CONCLUSIONS 

In spite of the boom in experimental determination of protein structures, only about 7500 different 
structures have been solved, and we saw a rapid increase in the use of homology models for structure-
based exploration of protein properties. We can find many examples that show the validity of using 
homology models for structure-based drug design. The models are able to enrich screening results with 
known binders, predict correct binding geometries and affinities, as well as give insight into functional 
mechanisms of proteins. However, the number of experimentally determined 3-D structures of proteins is 
low to provide meaningful templates to build models for the whole protein universe. Depending on the 
similarity between the template and the target, a variety of methods can be used to optimize the model. If 
the degree of similarity between the target and template is relatively high, simple refinement methods 
could be sufficient. MD simulation is probably the most advanced method available for model refinement, 
especially if the identity is low, can largely take into account receptor flexibility and advances in force 
fields, and parameterization and computer algorithms will allow us to construct reliable models with 
sequence identities just above 20% in the near future. But, we will certainly need to incorporate data from 
other sources to supplement the structural data available if we want build homology models below this 
threshold. It will be done more frequently with data coming from mutagenesis, ligand binding, 
thermodynamics, and functional and metabolic studies. This will become an ordinary part of the 
homology building protocol (probably becoming an automated procedure), presumably via structural or 
energetic constraints during the model building and refinement steps. We can expect that protein folding, 
docking of the binder, and homology model refinement, including the use of molecular dynamics, 
eventually will be integrated into an efficient procedure. 
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