
Open Research Online
The Open University’s repository of research publications
and other research outputs

The Automatic Assessment of Multiple Artefacts: An
Investigation into Design Diagrams and Their
Implementations
Thesis
How to cite:

Hayes, Alan Michael (2014). The Automatic Assessment of Multiple Artefacts: An Investigation into Design
Diagrams and Their Implementations. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2014 Alan Hayes

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/20667122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

The Automatic Assessment of Multiple Artefacts: An
Investigation into Design Diagrams and Their Implementations

Alan Michael Hayes B.A. (hons), M.Sc.

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor
of Philosophy in Computer Science

Department of Computing

Faculty of Mathematics, Computing and Technology

The Open University

December 2013

i

Abstract
As the Higher Education sector has moved towards student-centred learning so

too has the growth in electronic support for learning. E-assessment has been a

part of this growth as increasingly assessment and its feedback is seen as an

integral part of the students’ learning process. Mature e-assessment systems

exist, particularly where answers to questions are restricted to a prescribed list of

alternatives. However, for free response artefacts, where there is a limited

restriction placed on answers to questions, automated assessment systems are

embryonic.

 This dissertation presents an investigation into the automated assessment of free

response artefacts. Design diagrams and their accompanying source code

implementations are examples of free response artefacts. A case study is

developed that investigates how to automatically generate formative feedback for

a design diagram by utilizing its accompanying implementation. The dissertation

presents a two-staged solution, initially analysing the design diagram in isolation

before comparing it with the implementation. A framework for this approach has

been developed and tested using a tool applied to coursework submitted by

undergraduate computer science students.

 The tool was evaluated by comparing the formative feedback comments

generated by the tool with those produced by a team of computer science

educators. Evaluation was undertaken via two Likert questionnaires, one

completed by students and one completed by a team of computer scientists. The

results presented are favourable, with the majority of comments produced by the

tool being seen to be as least as good as those generated by the computer

science educators.

ii

Author’s Declaration
All of the work presented in this dissertation describes original contributions of the

author (exceptions noted on the Acknowledgements page). Some of the material

in this dissertation has been published previously in the following papers:

Hayes A., Thomas P., Smith N., Waugh K. 2007 A Framework for the

Automated Assessment of Consistency Between Code and Design. In

Proceedings of Informatics Education Conference 11, Thessaloniki, Greece

November 2007.

Hayes A. 2007 The Development of An Automated Assessment Framework

[online]. In Assessment in Wales: Practice which Works: a snapshot of

assessment practice in Wales. Available from

http://www.heacademy.ac.uk/resources/detail/resource_database/casestudie

s/welsh_case_studies_index

Hayes A., Thomas P., Smith N., Waugh K., 2007, An Investigation into the

Automated Assessment of the Design-Code Interface. Proceedings of the 12th

Annual Conference on Innovation and Technology in Computer Science

Education. Poster Presentation ITiCSE2007, University of Dundee, July 2007.

Hayes, A., Thomas, P., Smith, N., Waugh, K., 2007. A Developmental

Framework for Computer-based Automated Assessment. Technical Report,

The Open University, Ref 2006/07, ISSN 1744-1986, April 2007.

iii

Acknowledgements

I would like to thank the following:

My family: Jayne, Anne-Marie and Jacob for their support and understanding.

My supervisors: Pete Thomas, Neil Smith and Kevin Waugh, for their patience,

support, feedback, advice and encouragement. They were invaluable in helping

me to keep going.

The Open University for the flexibility in enabling me to juggle the demands of

part-time study with the commitments of a family and a full-time job.

The academic colleagues from the Computer Science Education Community who

engaged with the evaluation phase of this research. These were:

Allan Blair - London South Bank University,

Derek Paddon – University of Bath,

Chris Sturley – Plymouth University,

Vicki Bush – University of Gloucestershire,

Claire Willis – University of Bath,

Wendy Ivins – Cardiff University,

Ann Latham – Wolverhampton University,

Christopher Tubb – University of Wales, Newport,

Torbjorn Dahl – University of Wales Newport,

Martin Stanton – Manchester Metropolitan University,

Eric Llewellyn – University of Wales, Newport,

Marianna Lilley – University of Hertfordshire.

iv

Contents

Abstract .. i
Author’s Declaration ... i
Acknowledgements .. iii
Chapter 1. Introduction .. 1

1.1 Motivation and Educational Context .. 1

1.2 Classification of Automated Assessment Tools .. 4

1.3 Automated Assessment of Diagrams .. 4

1.4 Defining and Evaluating Good Quality Feedback .. 4

1.5 Multiple Artefacts: the Generic Case for Diagram Comparison 4

1.7 Summary and Roadmap for the remainder of the Dissertation 5

Chapter 2. E-assessment and Diagrams ... 7

2.1 Introduction .. 7

2.2 E-assessment a Definition, its Growth and Perceived Benefits. 7

2.3 Conceptual Categories for E-assessment Systems 11

2.4 Diagrams and their Assessment .. 18

2.4.1 Challenges of an Automated Diagram Assessment System 18

2.4.2 Challenge1: Student Production and Submission of Diagrams 19

2.4.3 Challenge 2: Model Answers and Marking Schemes 21

2.4.4 Challenge 3: Methods for Diagram Comparison 24

2.4.4.1 Labels .. 25

2.4.4.2 Model Differencing ... 27

2.4.5 Challenge 4: Handling of Errors Contained in Diagrams 31

2.4.6 Challenge 5: Feedback Generation ... 34

2.5 Methods for Evaluating the Effectiveness of Automated Assessment
Systems .. 35

2.6 Scoping a Framework for this Research .. 39

2.7 Summary and Conclusion ... 40

Chapter 3. A framework for formative assessment .. 42

3.1 Educational Context ... 42

3.2 An Example of a Typical Student Submission .. 43

3.3 Comparing Artefacts – The Generic Case .. 47

3.4 Models for the Assessment Framework ... 50

3.4.1 Inferred Structures and Generating Feedback 52

3.4.2 Framework Support for Tutor Input ... 54

3.4.3 The Model Adopted for the Remainder of this Research 55

3.5 Reverse Engineering and Support for Feedback .. 56

3.6 Multiple Artefacts and Transformations .. 57

3.6.1 Transforming artefacts into the domain of an automated framework . 60

3.7 Summary ... 61

Chapter 4. Development of the Formative Assessment Tool 63

4.1 High Level System View .. 63

4.2 Inferred Artefacts through Forward and Reverse Engineering 64

4.3 Describing an Artefact’s Features.. 67

4.4 A Heuristic for Comparing Artefacts and Feedback Generation 76

4.5 Searching for Typical Errors .. 81

4.6 An example ... 83

4.7 Summary ... 90

v

Chapter 5. Evaluation Methodology ... 93

5.1 Introduction ... 93

5.2 Overview of the Evaluation Process ... 93

5.3 Student Submission Data ... 95

5.4 Phase 1 Generating Feedback Data based on the Student Submission 96

5.5 Testing for Consistency within the Team of Expert Markers........................ 98

5.6 Design of the Evaluative Questionnaires ... 99

5.6.1 Questionnaire Used with the Evaluators .. 99

5.6.2 Questionnaire Used with the Student Body 102

5.7 Phase 2 Ensuring Consistency between Evaluators 102

5.8 The Allocation and Evaluation of Comments by the Evaluative Team 103

5.9 Evaluation by the Student Body ... 106

5.10Summary .. 106

Chapter 6. Results ... 108

6.1 Introduction ... 108

6.2 Consistency in the Marking Team and the Collation of Human-Generated
Feedback Comments ... 108

6.3 Consistency within the Team When Evaluating Feedback Comments 114

6.4 An evaluation of Tool -Generated Comments Compared with Human-
Generated. ... 121

6.5 Evaluation by the Student Body ... 132

6.6 Summary and Conclusions of the Results. ... 137

Chapter 7. Conclusion and Future Work ... 140

7.1 Introduction ... 140

7.2 Contributions ... 140

7.2.1 Classification of Automated Assessment Tools 141

7.2.2 Automated Assessment of Diagrams .. 141

7.2.3 Defining and Evaluating Good Quality Feedback 142

7.2.4 Multiple Artefacts: the Generic Case for Diagram Comparison 142

7.2.5 The Development of an Automated Assessment Tool 143

7.3 Reflection upon Comparing Artefacts and Generating Feedback 143

7.4 Reflection Upon the Evaluative Method ... 145

7.5 Reflection from Academic Participators .. 146

7.6 Future Work .. 147

7.6.1 Support for the Tutor to Enter Feedback Comments 147

7.6.2 Concise vs. Complete Feedback .. 147

7.6.3 Identifying Weaknesses in the Student Submission 147

7.6.4 Syntactically Incorrect Artefacts .. 148

7.6.5 Triangulating Between Artefacts ... 148

7.6.6 Analysing Free-form Labels .. 148

7.6.7 Tagging Artefacts ... 148

7.6.8 Follow-Up Survey with the Evaluators .. 149

7.7 Conclusion .. 149

References.. 150

Appendix A ... 160

Appendix B ... 164

Appendix C ... 182

Appendix D ... 198

Appendix E ... 202

Appendix F .. 209

Appendix G ... 212

vi

Table of Figures

Figure 2.0 The relationship between Computer Aided Learning,

Computer Based Learning, Computer Aided Assessment and
Computer Based Assessment (Higgins and Bligh 2006)

13
Figure 2.1 A diagram to illustrate the range of conceptual categories

applicable to systems that attempt to automate the
assessment of diagrams

20
Figure 2.2 Bolloju et al.’s (2006) Tool for Error Classification 48
Figure 2.3 Thomasson et al.’s (2006) Tool for Error Classification 49
Figure 3.1 Design Diagram As Submitted by the Student 66

Figure 3.2 An extract of the implementation as submitted by the student 67
Figure 3.3 Expected Design Taken from a Tutor Supplied Mark Sheet 68
Figure 3.4 Diagram to show how two artefacts view the same construct

from differing perspectives
70

Figure 3.5 Diagram to illustrate the concepts of constructs and multiple
artefacts applied to the case where a comparison is being
made between a student design diagram and a design
diagram produced by the tutor.

72

Figure 3.6 A diagram depicting the relationships contained within the
student diagram and that supplied by the tutor

73

Figure 3.7 Initial Context of an Automated Feedback System 74

Figure 3.8 A system that marks the design and the code disjunctively 74
Figure 3.9 Forward Engineer the Design to produce the inferred code

structure
76

Figure 3.10 A model comparing the student code with the inferred code
structure

76

Figure 3.11 Reverse engineer the code to produce the inferred design
structure

77

Figure 3.12 A method that focuses upon comparing the student design
with the inferred design structure

77

Figure 3.13 Triangulate the Assessment of the student submission with
both the inferred code structure and inferred design structure

78

Figure 3.14 A model that generates feedback on consistency between the
student submitted design and implementation in addition to
feedback upon the design features requested by the tutor

79

Figure 3.15 Diagram to illustrate the concepts of components and multiple
artefacts (as illustrated in Figure 3.4) applied to the case
where a comparison is being made between a student design
diagram and student submitted code

84
Figure 3.16 Diagram to illustrate mapping of a student diagram into the

program co-domain
85

Figure 3.17 the image set of a domain transformation f (generating no
errors) and f’ (generating additional errors)

86

Figure 3.18 A diagram to illustrate how two linked artefacts could be
compared by transforming them into the domain of the
framework

87

vii

Table of Figures continued

Figure 4.1 Overview Diagram of the Developed Assessment Tool 91
Figure 4.2 Forward Engineering: from Code to Diagram 93
Figure 4.3 Reverse Engineering: from Diagram to Code 93
Figure 4.4 Diagram to Illustrate the Developed Tagging Grammar 97

Figure 4.5 Table to illustrate how the tagging convention adopted
supports typical student errors identified in the literature

99

Figure 4.6 A Student-submitted UML Design Diagram 102
Figure 4.7 The Resultant Tagged Student Diagram 104
Figure 4.8 Table to illustrate how the matching score for class attributes

is calculated
107

Figure 4.9 Table to illustrate how the matching score for the names of

the class methods is determined

108

Figure 4.10 Diagram to Illustrate the Feedback Table when comparing
two artefacts

109

Figure 4.11 Flow chart of the Heuristic to Analyse a Diagram in Isolation 111
Figure 4.12 Table to show the feedback generated by the tool when

analysing the student diagram
112

Figure 4.13 A Submitted Student Design Diagram 114
Figure 4.14 The Diagram inferred from submitted source code 115
Figure 4.15 The Feedback generated by the Tool following an analysis

of the submitted student design diagram (Figure 4.12) and
source code (Figure 4.13).

117

Figure 4.16 A pseudo-code description of how the tool generates
feedback

118

Figure 5.1 Diagram to illustrate the process of comparing tool-
generated comments with those that were human-
generated.

129

Figure 5.2 A table to indicate the allocation of tool and team based
comments to members of the evaluative team

131

Figure 5.3 A table to indicate the allocation of tool tool and team based
comments to members of the evaluative team.

144

Figure 6.1 Table to show how the data was modelled to generate the
AC1 coefficient for Inter-rater reliability. 9 raters , 3 cases
(assignments) and 5 categories (grades A to E).

152

Figure 6.2 Table to show the Ztest results for the percentage grades
received for three, randomly chosen, student submissions

153

Figure 6.3 Table of the raw Likert data returns for the three common
scripts

156

Figure 6.4 Table to illustrate the questionnaire returns used to evaluate
the extent of inter-rater consistency within the evaluative
team.

158

Figure 6.5 Gwet’s (2010) AC2 Inter-rater reliability coefficient for the 3
common scripts

160

Figure 6.6 Median Likert Scores per Evaluator for each of the 14
statements contained in the Evaluation Questionnaire.

163

viii

Table of Figures continued

Figure 6.7 Modal Likert scores per evaluator for each of the 14

statements contained in the evaluation questionnaire
165

Figure 6.8 Median and mode Likert scores for all evaluators for each of
the 14 statements

166

Figure 6.9 A table showing the median Likert Score for both human and
tool-generated comments.

166

Figure 6.10 Sign test results comparing medians for tool-generated
comments with those that were human generated

167

Figure 6.11 Results utilising the Mann-Whitney U test. 168

Figure 6.12 A breakdown of the median Likert scores for the quality
criterion

170

Figure 6.13 A breakdown of the median Likert scores for the relevance
criterion

171

Figure 6.14 A breakdown of the median Likert scores for the coverage
criterion

172

Figure 6.15 Student evaluation of the tool-generated comments 177

Figure

AppE1

Distribution of Subjects by Rater and Response Category 262

Tables

Table 2.0 Higgin’s and Bligh’s (2006) mapping of Brown et al.’s (1996)
pedagogic criteria to CBA.

15

Table 2.1 Bibliographical Databases searched, search terms used and
number of articles returned (August 2013).

21

Table 2.2 Examples of Existing Diagram assessment Systems and
Their Mapping onto Three Conceptual Categories.

23

Table 6.0 Mapping of percentage marks to alpha grades. 150
Table 7.0 The Differences between tool and human generated

comments.
191

Page 1

Chapter 1. Introduction

This dissertation addresses the problem of how to automatically generate high

quality formative feedback for freeform design diagrams. It defines what

constitutes good quality feedback and presents a novel and robust method for its

evaluation. It documents a framework for the computer assisted assessment

(CAA) of design diagrams. It identifies those core concepts and components that

such a framework needs to encompass. It describes how a design diagram’s

source code implementation can be used to aid its assessment. It presents a

method for generating formative feedback that utilises both the implementation

and typical errors contained in diagrams produced by novice designers. An

assessment tool is presented which implements the principles enshrined within the

framework and applies them to work submitted by undergraduate students

studying computer science and computing-related programmes of study. It

highlights how the design/implementation context is one example of the generic

case where feedback is generated for two related artefacts. The dissertation

generalises throughout by presenting and defining terms for multiple artefacts and

their assessment. It demonstrates the automated generation of formative feedback

based upon an analysis of the two artefacts.

1.1 Motivation and Educational Context

The Higher Education (HE) Landscape in the UK is changing. Students are

growing in number. From academic session 2002/03 to 2011/12 the total number

of HE students (part-time and full-time) in UK Higher Education Institutions (HEIs)

grew from 2,131,110 to 2,496,645. For the sciences, the rise for the same period

was from 868,700 to 1,485,770 with 76,590 students studying undergraduate

Page 2

computer science programmes in 2011/12. (Higher Education Statistics Agency,

http://www.hesa.ac.uk).

Students pay for their tuition, with fees first being introduced in 1998/99 (initially

£1000 with subsequent inflationary rises to £1,250). Variable fees of £3000 were

introduced in 2006/07 (England and Northern Ireland) and 2007/08 (Wales) and a

cap of £3250 was introduced in 2009/10. For HEIs in England, this cap was

increased to £9,000 for new 2012/13 entrants (Bolton, 2012). Beer (2011) predicts

that the market culture introduced by fees will lead to a marked increase in the

level of student demand and expectation.

Students are entering University with a much more informed voice, primarily due to

the advent of the National Student Survey (NSS). The survey asks final year

undergraduate students to evaluate their learning experience (National Student

Survey, 2012). It has been undertaken in UK Higher Education Institutions

annually since its launch in 2005. The results of the survey are made public via the

UNISTATS website (http://unistats.direct.gov.uk). The results have highlighted that

students are less positive about assessment and feedback on their assignments

than other aspects of their learning experience (Wiliams et al. 2008; Boud and

Molloy 2012). Consequently, Higher Education Institutions are being criticised

more for inadequacies in their feedback than for any other aspect of their provision

(Boud and Molloy 2012). In the 2005 survey, for example, the lowest scoring

items within the ‘assessment and feedback’ section were statement 7 ‘Feedback

on my work has been prompt’ and statement 9 ‘Feedback on my work has helped

me clarify things I did not understand’ (Williams et al. 2008 citing Surridge 2006).

In exploring assessment and feedback issues raised in the NSS, Williams et al.

Page 3

(2008) identify pockets of good practice across the sector. These include the

provision of feedback that is prompt, timely and occurs in a range of formats.

The demographic profile of students is also changing. This is contributed to by

HEIs being required to produce access agreements approved by the Office For

Fair Access (OFFA). These agreements are mandatory for HEIs wishing to charge

full tuition fees and are designed to ensure that everyone with the potential to

benefit from higher education has an equal opportunity to do so, regardless of

background, age, ethnicity, disability or gender (OFFA, http://www.offa.org.uk).

The resultant diverse cohort of students poses challenges for university teachers

(Laurillard, 2012). Furthermore, recent generations of students have been referred

to as ‘Digital Natives’ or the ‘Net Generation’ meaning that they have grown up

with computers, social networking and the internet and have a natural aptitude and

skillset with information technology (Jones et. al. 2010). Prensky (2001) made the

distinction between students who had grown up with technology (digital natives)

and older educators who had not (digital immigrants), postulating that today’s

students are no longer the people our education system was designed to teach.

Jones et. al. (2010) reported that the vast majority of students in their study (first

year undergraduate students at 5 Universities in England) made extensive use of

mobile technologies and computing facilities for access to course materials and

resources.

This growth in the number of diverse, digitally-literate, survey-informed, fee-paying

students has been responded to in several ways by the HE sector. One example is

the adoption of technology to support both educators in their teaching and

students in their learning. Technological support occurs in many ways ranging

from the provision of access to on-line learning material, the submission of

Page 4

coursework assignments, plagiarism detection and assessment. Technology is

enabling both students and educators to do more. However, it needs to deliver

systems that are scalable (to meet volume) and flexible (to meet diverse needs

and expectations).

Educators need to master new technologies as they are shaping what is learnt by

changing how it is learnt (Laurillard, 2012). The Open University’s UK-based

platform for Massive Open On-Line Courses (MOOCS) is an example of how the

sector is using technology to adapt to the changing student needs and

expectation. The Open University consider their platform to be “… the next chapter

in the story of British Higher Education” (Parr, 2012).

One area of recent technological growth to support student learning is that of e-

assessment (Joy et al. 2002, Terzis and Economides 2011). E-assessment offers

the potential to enable educators to manage the growing number of students whilst

meeting the needs of remote and mobile learners and addressing the area of

assessment and feedback highlighted as a student concern by the NSS returns.

However, technology to enhance assessment is embryonic (Whitelock and Watt,

2007) and ideas about its pedagogic impact are still in their infancy (Conole and

Warburton 2005). Practical-based disciplines, such as computer science, require

subject-specific learning support tools (Lass et al. 2003) particularly in the

provision of multiple types of feedback (Iahad and Dafoulas 2004a).

Good quality formative feedback needs to be consistent, accurate, useful and

timely. Feedback should positively reinforce good practice in addition to identifying

where further learning is required. Feedback that emphasises mistakes and

inadequacies has a negative effect upon student retention and engagement

(Baker and Zuvela 2012). However, human educators can’t agree on precisely

Page 5

what constitutes good quality formative feedback comments (Yorke 2003). This

poses a challenge for its evaluation.

Automated assessment systems can accept either free-form or fixed responses

(Culwin 1998). Fixed response systems prescribe a limited range of responses

available to the user, for example a multiple choice test. Free response systems

allow the user much more latitude in what they submit. Examples of free form

items include essays, source code and design diagrams.

Undergraduate computer science students studying software engineering explore

a wide-range of techniques, tools, methodologies, design diagrams and

implementation languages (Sommerville 2007). They will frequently be asked to

produce these artefacts as a part of their assessment. Free form diagrams are

particularly challenging for automated assessment systems. They may contain

errors or extraneous data (Smith et al. 2004, Thomas et al. 2005) and their

semantics are often semi-formally prescribed. Diagrams do not restrict students to

a limited range of fixed responses that, for example, multiple-choice systems do

i.e. their content is free-form as the student has not been curtailed to producing a

diagram from a prescribed list of pre-determined solutions. Consequently, there

can be many different but correct diagrams for the same assignment specification.

The research question, therefore, for this dissertation is that given the changing

nature of Higher Education, how can we automatically generate high quality

feedback for student design task submissions?

Page 6

In addressing this question, this research makes the following contributions:

• It defines criteria for categorising automated assessment tools.

• It presents a method for automating the assessment of design diagrams by

utilising both their implementations and established work that has identified

known errors made by novice designers.

• It provides a definition for what constitutes high quality formative feedback

and presents a novel and robust method for its evaluation.

• It presents the generic case by defining terms for multiple artefacts and

their assessment.

• It documents an automated assessment tool that generates quality

formative feedback.

1.2 Classification of Automated Assessment Tools

This dissertation identifies some of the core characteristics of tools that automate

assessment. It proposes a categorisation of such systems according to three

characteristics: the type of student submission (fixed or free form), the type of

feedback generated (summative mark or formative comments) and the extent of

the automation (semi or fully automated).

1.3 Automated Assessment of Diagrams

This dissertation presents a novel means to automating the formative assessment

of student design diagrams. A blended approach is presented that initially

searches for typical errors in the student design diagram before comparing it with

its implementation. Several potential methods emerge from this approach and

these are investigated.

Page 7

1.4 Defining and Evaluating Good Quality Feedback

This dissertation proposes three broad criteria against which formative feedback

comments can be evaluated: quality, relevance and coverage. Additionally, it

presents a novel and robust method for evaluating automatically generated

formative feedback. The method involves a comparison with feedback generated

by a team of expert markers. It addresses variations in human markers when

assessing student work and evaluating formative feedback.

1.5 Multiple Artefacts: the Generic Case for Diagram Comparison

Comparing a design diagram with its accompanying implementation is one

example of the generic case of two artefacts referring to the same referent. These

artefacts represent different, but complementary, views of a solution. Other

examples include a text-based requirement specification and its formal

mathematical notation or an architectural design and its building specification. In

the design/implementation context, the design (in diagrammatic format) is viewed

as prescribing the structure and function contained within the implementation,

whilst the implementation (source code) is viewed as implementing the design

whilst adhering to its specified structure and function.

This research generalises throughout by presenting and defining terms for multiple

artefacts and their assessment. A method for describing an artefact’s constituent

features and a heuristic for their comparison is presented.

1.6 The Development of an Automated Assessment Tool

The approach is validated through the development of a proof-of-concept tool that

automatically generates formative feedback comments based upon a comparison

of two artefacts. It has been applied to student submitted assignments collated

over several years from two Higher Education institutions. The submissions

consist of a design diagram and its accompanying implementation. A grammar has

Page 8

been implemented that describes the artefacts and their constituent features. The

tool generates feedback that positively reinforces good practice whilst identifying

where further learning is needed.

1.7 Summary and Roadmap for the remainder of the Dissertation

In summary, automating feedback is challenging and is one example of how

technology can be used to meet the changing profile and expectation of UK higher

education students. Students are growing in number, digitally literate and are

accustomed to remote and mobile access to learning. Freeform diagrams are

particularly challenging for automated assessment systems as they may contain

errors or extraneous data and their semantics are often semi-formally prescribed.

They do not restrict students to a limited range of fixed responses. The research

question addressed by this dissertation is:

Given the changing nature of Higher Education, how can we automatically

generate high quality feedback for student design task submissions in the form of

diagrams?

The remainder of this dissertation is structured as follows:

Chapter 2 reviews the literature from which the research question was refined and

developed. It identifies that the assessment of a design diagram and its

accompanying implementation has not, to my knowledge, been addressed by

existing automated diagram assessment tools.

Chapter 3 recognises that a design diagram and its accompanying implementation

is one instance of a generic case where two artefacts represent different means of

expressing a solution to a problem. It provides a framework for how artefacts can

be analysed and formative feedback generated.

Page 9

Chapter 4 reports upon the development of a proof-of-concept tool that takes the

multiple artefact concept discussed in chapter 3 and applies it to the example case

where the artefacts are represented by a design diagram and its accompanying

implementation.

Chapter 5 reports upon how the feedback generated by the developed tool was

evaluated. It documents how the evaluation was undertaken by both students and

computer science educators.

Chapter 6 reports upon the results of applying the tool to a corpus of student work.

Chapter 7 reports upon the conclusions of the research and the identification of

future work.

Page 10

Page 11

Chapter 2. E-assessment and Diagrams

2.1 Introduction

This chapter focuses on E-assessment and highlights its limited application to

diagrams. In particular, for diagrams produced by undergraduate computer

science students, we know of no systems that automate the assessment of both a

design diagram and its accompanying implementation. Design diagrams and their

implementations are examples of free-form artefacts. Automating their assessment

is challenging. Automatically generating formative feedback for multiple free-form

artefacts is new and brings together several different fields and is the focus for this

research project. This chapter positions the research within these fields.

This chapter presents the motivating educational context. It discusses the general

principles of e-assessment providing definitions for fixed, free-form summative and

formative assessment (section 2.2). It proposes a method for categorising

automated assessment systems (section 2.3). It provides an overview of existing

automated diagram assessment systems and from this identifies five core

challenges that such systems address (section 2.4). It provides an overview of

how existing systems have been evaluated and discusses work that has analysed

and identified common errors contained in design diagrams (section 2.5). It

concludes by scoping how the remainder of this research will progress and how it

has been informed by the literature (section 2.6).

2.2 E-assessment a Definition, its Growth and Perceived Benefits.

This section defines what an e-assessment system is. It discusses how the

electronic tools contained in such systems support both the assessment of student

work and the administrative processes surrounding such assessment. It outlines

Page 12

how recent growth in the adoption of e-assessment by the HE sector has

stimulated the development of technological supportive tools and pedagogic

models that incorporate their use.

The Joint Information Systems Committee’s (JISC) report on Effective Practice

with E-Assessment (2007) defines e-assessment to be

“.. the end-to-end electronic assessment processes where ICT is used for the

presentation of assessment activity, and the recording of responses. This includes

the end-to-end assessment process from the perspective of learners, tutors,

learning establishment, awarding bodies and regulators, and the general public.”

(Effective Practice with E-assessment, JISC 2007)

E-assessment encompasses the application of information and communications

technology (ICT) to support activities undertaken to assess student-submitted

work. The extent of the application has led to a plethora of terminology which

surrounds the use of ICT in Higher Education (Bull and Danson, 2004). The

number and types of processes that are automated can be used to differentiate

between the terms Computer Assisted Learning (CAL), Computer Based Learning

(CBL), Computer Assisted Assessment (CAA) and Computer Based Assessment

(CBA), as illustrated in Figure 2.0 below (Higgins and Bligh, 2006).

Page 13

Figure 2.0: The relationship between Computer Aided Learning,
Computer Based Learning, Computer Aided Assessment and
Computer Based Assessment (Higgins and Bligh 2006)

The focus of both CAA and CBA includes, but is not restricted to, the application

of ICT to the marking and grading of student work. The extent that electronic

support extends beyond that for marking differentiates between the two. CAA is

the application of computer technologies specifically to the assessment process

(Bull and Danson, 2004) whilst CBA has a broader application of ICT which

extends to “…delivery of materials for teaching and assessment, the input of

solutions by the students, an automated assessment process and the delivery

of feedback, all achieved through an integrated, coherent, online system.”

(Higgins and Bligh, 2006).

The use of e-assessment in the Higher Education sector has recently expanded

(Joy et al. 2002; Terzis and Economides 2011). Its emergence has contributed

to the adoption of student-centred approaches to learning and teaching with the

tutor acting as a facilitator of learning (Iahad et al. 2004b). The benefits of e-

assessment can be divided into two groups: practical and pedagogical. Practical

CAL

CBL

CBA

CAA

M
o

re
 s

p
e

c
ia

lis
e
d

More specialised

Focus on Assessment
but may also involve
delivery of course

Focus on delivery of
course material to
learners

Automation of
some stages
within lifecycle

Automation
of full
lifecycle

Page 14

benefits include supporting the delivery, marking and analysis of assignments

and examinations, plagiarism detection, the recording of achievement through

the construction of on-line portfolios and the transfer of assessment information

over distributed networks (Bull and Danson 2004, Tselonis 2008). The practical

advantages of CBA over traditional forms of assessment include engendering a

fairness and consistency across the marking of a cohort’s submission

(Tsintsifas 2002), test security, cost and time reduction, speed of results,

automatic record keeping and support for distance learning (Prados et al. 2011).

Tsintsifas (2002) identified three important pedagogic characteristics of an

automated diagram assessment system:

• Repeatable; when a student exercise is submitted to the marking

system with the same inputs, it will always receive the same mark.

• Consistent; the state of the marking system is the same both before

and after marking a student’s exercise.

• Reliable; when the student exercise is submitted it is guaranteed that

a mark will be produced for the student.

Tsintsifas (2002)

Higgins and Bligh (2006) looked at the pedagogic benefits of CBA by

considering how it met Brown et al.’s (1996) 10 pedagogic criteria for measuring

the quality of assessment (Table 2.0). They concluded that in 7 of the 10 criteria

CBA is “likely to present a distinct pedagogic advantage over traditional

assessment.” Higgins and Bligh (2006).

Page 15

Brown et al.’s (1996)
pedagogic criteria

Higgins and Bligh’s (2006) consideration for
the criteria’s application to CBA

Valid Will measure specified coursework aspects
assuming good initial assessment design.

Reliable The same assessment process will run for each
submission; consistency is absolute

Fair Design-dependent: CBA has no inherent
advantages

Equitable The same assessment process will run for each
submission; discrimination is non-existent

Formative CBA provides a good opportunity to run
assessment frequently throughout the learning
process, and to provide multiple submissions
with full feedback each time

Timely CBA provides a good opportunity to run
assessment frequently throughout the learning
process

Incremental Design-dependent: CBA has no inherent
advantages

Redeemable CBA is suited to allowing multiple submissions
should the designer wish this

Demanding Design-dependent: CBA has no inherent
advantages

Efficient Considerable time and other resource savings to
be made; originally a motivator for CBA’s
development.

Table 2.0 Higgins and Bligh’s(2006) mapping of Brown et al.’s (1996)
pedagogic criteria to CBA

The effective development of CBA depends upon it being accepted by the

students with ease of use and perceived playfulness having a direct effect upon

its take-up (Terzis and Economides 2011). Additionally, the level at which the

student is studying impacts on the type and nature of ICT-based assessment

tools that can be adopted. Bloom’s original taxonomy (1956) classifies learning

into six cognitive levels (knowledge, comprehension, application, analysis,

synthesis and evaluation). The taxonomy represents an increasing level of

learning abstraction and difficulty ranging from memory recall (knowledge)

through to making critically informed judgements (evaluation). Most web-based

Page 16

CAA/CAL tools tend to focus upon the knowledge and comprehension levels

within the taxonomy resulting in systems that pattern-match user input against a

tutor-supplied expected solution (Joy et al. 2002). Lilley et al. (2004) noted that

in the context of Computer Based Testing (CBT) it is generally the same set of

preset questions that is presented to all participating students irrespective of the

potentially mixed ability of the student cohort. They identified the issue of high

performing students being presented with one or more questions below their

level of ability and conversely low performing students being presented with

questions that are above their level of ability. This resulted in high performing

students quickly losing interest and an increase in guess work from low

performing students.

Both Joy et al. (2002) and Lilley et al. (2004) reported the development of

systems that attempt to target the level of questions being asked to the level of

ability of the student. Both select questions to be asked based upon the results

of the student’s response to previous questions. Lilley et al. (2004) claim their

Computer Adaptive Testing (CAT) technique is at least as useful as traditional

CBT-based alternatives

To summarise, e-assessment embraces many aspects of the traditional

assessment process including the development and provision of electronic tools

that support assessment administration and the marking and grading of student

assignments and examinations. The use of e-assessment systems has grown

within the HE sector, stimulating the emergence of technological tools to

support assessment processes and pedagogic models that adopt these tools.

Further work is needed in both of these areas. The focus of this research is

upon the development of a CAA system.

Page 17

2.3 Conceptual Categories for E-assessment Systems

This section proposes a means of categorising systems that automate the

marking of a student submission. Categorisation is helpful as it enables the

organization and eases the communication of existing systems and their needs.

Systems that automate the marking of a student submission can be categorised

in several ways. This section proposes a means of categorisation in accordance

with three characteristics. These are: the type of feedback they generate, the

type of input data they respond to and the extent to which the assessment is

automated. This section provides an overview of each of these conceptual

categories and concludes by illustrating how they can be applied to a sample of

existing automated assessment systems.

The Joint Information Systems Committee’s report on effective Practice with E-

assessment (2007) identifies three stages at which e-assessment provides

learning support. The stages are diagnostic, formative and summative.

Diagnostic assessment assesses the student’s knowledge prior to enrolment on

a programme of study. Formative assessment is defined as providing

developmental feedback to a student on current understanding and skills.

Summative assessment is defined as being the final assessment of a student’s

achievement. Dafoulas (2005) defines summative assessment as measuring

what the student has learnt and formative assessment as supporting the

student to learn.

Systems that automate the assessment of diagrams generate formative or

summative feedback (or both). Automated assessment systems attempt to

emulate feedback that is similar to that of a human marker for both the

Page 18

summative and formative case. They often provide support for the input from

the tutor, typically in the form of a tutor-produced model solution, against which

a comparison with the student submission can be made. This research focuses

upon the development and evaluation of an automated assessment system that

produces formative feedback.

The second proposed conceptual category is the type of input data the system

responds to, either free-form or fixed responses (Culwin 1998). Fixed response

systems prescribe a limited range of responses available to the user, for

example a multiple choice test. Free response systems allow the user much

more latitude in what they submit. Examples of free form items include essays,

source code and design diagrams.

Questions requiring free response answers are considered to require deeper

cognitive processing (Jordan 2011). Prados et al. (2011) observe that most of

the current CBA systems only assess fixed-response questions and Culwin

(1998) acknowledges that the assessment of free responses is much more

difficult than fixed. Jackson (2000), Daly and Waldron (1999), Joy and Luck

(1998) and Joy et al. (2005) are examples of the automated assessment of free

response source code. The Open University’s OpenMark system supports the

automated assessment of free text in addition to a range of fixed-form question

types including multiple-choice, multiple-response, drag-and-drop and hotspot

(Jordan 2011).

Diagrams can be considered to be either free form or fixed form items.

Diagrams contain drawn elements, their connections, adornments and

identifying labels. A significant aspect of free formness is the labels as these are

Page 19

an essential part of the recognition of the drawn elements. Fixed response

diagrams are created within an environment that significantly constrains the text

that a label can contain or what can be drawn. A typical context would be a

student selecting and dragging diagrammatic elements or labels from a

prescribed list and dropping them into specific areas of a given diagram. Free

form diagrams are created with little (partially free) or no (fully free) constraint

on what the student can draw. An analogy would be that of requiring a student

to produce text. Adding a word, taken from a given list, to a sentence is a fixed

response as it provides little choice whereas asking the student to produce a

sentence is a free form response (with significant scope for choice). The

majority of currently available systems only provide fixed response (Thomas et

al. 2012). Tselonis and Sargeant (2007) acknowledge that fully automating the

assessment of free-form diagrams is a very difficult task.

The focus of this research project is upon free form diagrams. For a student

studying the field of computer science this would typically be that of a Unified

Modelling Language (UML) class diagram or an Entity Relationship Diagram

(ERD) - (Jayal and Shepperd 2009; Higgins and Bligh 2006; Tselonis et al.

2005).

The third conceptual category is the extent to which the assessment is

automated. The extent to which a system automates the process of assessing

diagrams can be divided into two main categories: those that attempt to fully

automate the assessment process and those that adopt a semi-automated

approach. Fully automated systems take as input the student submission and

produce feedback by analysing it. Whether summative or formative, the system

automatically produces the feedback. Semi-automated systems also take as

input a student submission but they produce guidance, as a consequence of

Page 20

analysing the input, that helps the tutor decide upon what feedback should be

given to the students. Tselonis et al. (2005) describe this semi-automated

approach as being human-computer collaborative. Their approach is to provide

a human-marker with information to aid the marking process. It is the human-

marker, not the automated system, which determines the students’ grades.

The research presented in this dissertation focuses upon fully automated

diagram assessment systems.

Hence, factors to be taken into consideration when categorising the marking

support of an e-assessment system include:

• Whether the system requires a free or fixed response from the student

• Whether the system generates formative or summative feedback (or both)

• Whether the system fully or semi-automates the assessment generated

These categories are illustrated in the diagram in Figure 2.1 below.

Figure 2.1: A diagram to illustrate the range of conceptual categories
applicable to systems that attempt to automate the
assessment of diagrams.

Formative

Summative

Automated Semi- Automated

Free Response

Fixed Response

Page 21

Five bibliographical databases were searched to identify existing diagram

assessment systems. The databases, the search terms used and the number of

articles returned are presented in Table 2.1. Table 2.2 maps some existing

systems onto the conceptual categories identified in Figure 2.1.

 ACM Digital

Library
IEEXplore The Collection of

Computer
Science
Bibliographies

Web of
Science

Google
Scholar

e-assessment
of software
systems for
diagram-based
coursework

2 96 0 0 14

“e-
assessment”
AND
“diagrams”

9 2 7 2 4

“automated
assessment”
AND
“diagrams”

38 5 3 4 1

“Computer
Based
Assessment”
AND
“Diagrams”

6 1 1 2 0

“Computer
Aided
Assessment”
AND
“Diagrams”

14 1 0 1 0

“Computer
Based
Assessment”

44 23 81 285 689

“Computer
Aided
Assessment”

26 24 61 110 680

Table 2.1 Bibliographical Databases searched, search terms used and
number of articles returned (August 2013).

Of the systems that produce formative feedback Soler et al.’s (2010) feedback

focussed upon the number and naming of diagram components, Ali et al.’s

(2007a) upon the number of diagram components, Higgins and Bligh (2006)

reported challenges of over-lengthy feedback comments, Higgins et al.’s (2009)

feedback consisted of a numeric grade, Suraweera and Mitrovic (2002) offered

hints on how the submission could be modified to produce the correct solution and

Page 22

Hoggarth and Lockyer (1998) provided a list of deviances from a tutor-supplied

model solution.

Soler et al. (2010) and Stone et al. (2009) avoid the problem of free-form labels by

requiring, respectively, the student to use specific labels contained within the

problem statement or importing noun-phrases from the problem statement into the

diagram editor being used by the student. Consequently, both these systems have

been categorised as being fixed form systems.

Most systems compare the student diagram with one or more model solutions.

However, where a question allows the student a great deal of freedom it becomes

difficult to enumerate all possible solutions. In an attempt to overcome this

problem, Striewe and Goedicke (2011) use a set of matching rules to specify the

elements that should appear in a student’s diagram and those that should not. It is

up to the instructor to construct the rules for each specific problem. This means

that the instructor must identify the errors that are present in a given set of student

diagrams prior to automatic marking. Another difficulty with this approach is that a

rule which specifies that a particular label should appear must list the acceptable

synonyms for that label which is not practicable with unconstrained free-text

labels.

Page 23

 Automated Semi-Automated

 Formative Summative Formative Summative

 Fixed Free Fixed Free Fixed Free Fixed Free

 AFFi AFFr ASuFi ASuFr SFFi SFFr SSuFi SSuFr

1 Open University
DEAP
(2004-2013)

2 Nottingham
DatSys
(2002)

3 Nottingham
Higgins et al.
(2009)

4 Tselonis
Manchester
ABC

5 Loughborough
Batmaz and
Hinde
(2006-2007)

6 Malaysia
UCDA
(2007)

7 Spain
ACME-DB
(2010)

8 Nottingham
Higgins and
Bligh (2006)

9 Kermit
Canterbury
New Zealand
(2002)

10 Hogarth and
Lockyear
Teeside (1998)

11 Loughborough
Stone, Batmaz
and Hinde
(2009)

12 Essen,Germany
(2011)
Striewe and
Goedicke

13 Hayes
(2013)

Table 2.2 Examples of Existing Diagram Assessment Systems and their
Mapping onto Three Conceptual Categories

Page 24

Key

1 Thomas (2004), Thomas et al.
(2005, 2006, 2007, 2008, 2012,
2013) Diagram Electronic
Assessment Project (DEAP)
Open University

2 Tsintsifas (2002) – DatSys,
University of Nottingham

3 Higgins et al. (2009)
CourseMaster, University of
Nottingham

4 Tselonis et al. (2005) – Assess by
Computer (ABC), University of
Manchester

5 Batmaz and Hinde (2006; 2007)
– Loughborough University

6 Ali et al. (2007a) – UML Class
Diagram Assessor (UCDA),
University Malaysia Terengganu.

7 Soler et al. (2010) – ACME-DB,
University of Girona, Spain.

8 Higgins and Bligh (2006)
CourseMarker, University of
Nottingham

9 Suraweera and Mitrovic (2002)
KERMIT – Canterbury (New
Zealand)

10 Hoggarth and Lockyer (1998) –
University of Teeside

11 Stone, Batmaz and Hinde
University of Loughborough
 (2009)

12 Striewe and Goedicke (2011)
University of Duisburg-Essen,
Germany

AFFi Automated, Formative, Fixed response
AFFr Automated, Formative, Free response
ASuFi Automated, Summative, Fixed response
ASuFr Automated, Summative, Free response
SFFi Semi-Automated, Formative, Fixed

response
SFFr Semi-Automated, Formative, Free

response

SSuFi Semi-Automated, Summative, Fixed
response

SSuFr Semi-Automated, Summative, Free
response

Suraweera and Mirtovic (2004) describe a knowledge-based entity-relationship

modelling tutor that uses constraint-based modelling to model domain

knowledge. The domain, ERDs, is described by a set of constraints which is

capable of recognising correctly formed ERDs (syntax). Each constraint

specifies a fundamental property of a domain that must be satisfied by any

Page 25

correct solution. The system contains a model solution for each of its problems,

which is compared against the student’s solution according to the system’s

knowledge base. The domain knowledge of KERMIT is represented as a set

constraints used for testing the student’s solution for syntax errors and

comparing it to the ideal solution. Currently KERMIT’s knowledge base consists

of 92 constraints. It is well known that knowledge acquisition is a very slow,

labour intensive and time consuming process. The problem of free-form labels

is avoided by forcing the student to highlight the word or phrase that is modelled

by each object in the ER diagram. There has to be a different set of constraints

for each domain.

None of the above systems address the assessment of a design diagram and

its accompanying implementation. Most generate feedback utilising input from

the tutor (semi-automated) or via a comparison between the student diagram

and a model solution provided by the tutor (fully automated). However, whilst

using a model solution enables a summative judgement on the student diagram

to be made, it does not offer formative support as the student’s learning moves

from high to low levels of abstraction. A system that automatically generates

formative feedback based upon a comparison between the student’s design and

its implementation will support the student as he/she moves through the

abstraction layers. The development of such a system is the focus of this

research project.

To summarise, there are several approaches that can be taken to automating

the assessment of student submissions. This section has identified three

characteristics that can be used to classify them. These are the scope of the

automation (semi or fully automated), the type of feedback generated

(formative, summative or both) and the type of input that is supported (free or

Page 26

fixed form). Examples of existing diagram assessment systems have been

classified using these characteristics.

The research presented in this dissertation investigates the development of a

framework that supports the characteristics of fully automated assessment

taking as its input free form diagrams with their accompanying implementations

and generating formative feedback.

2.4 Diagrams and their Assessment

Analysing student produced diagrams can be an invaluable means of assessing

knowledge (Tselonis 2008). Using diagrams as a teaching tool can aid a student’s

learning and comprehension (Butcher and Kintsch 2004). Despite this, only a few

e-assessment systems support the assessment of free form diagrams (Tselonis

2008; Prados 2011, Thomas et al. 2012) . This section discusses the challenges

associated with automating the assessment of diagrams. The focus is on those

diagrams that illustrate relationships between objects. Maps and sketches, for

example, are outside the scope of this research. A review of the literature is

presented and is structured around the identification of five core challenges.

Section 2.4.1 defines what these challenges are and sections 2.4.2 to 2.4.6

discuss the salient issues of each challenge.

2.4.1 Challenges of an Automated Diagram Assessment System

This section discusses the five core challenges that are pertinent to automating

the assessment of student submitted diagrams. The challenges are to develop

appropriate mechanisms by which:

1. students can draw and submit diagrams using an electronic tool;

2. a tutor can supply a marking scheme and/or model solution(s) against which

the student submission will be judged;

Page 27

3. a student diagram is compared with a model solution/marking scheme.

4. issues of extraneous or erroneous data contained in the student diagram can

be addressed;

5. feedback is given to a student based upon the diagram submitted.

Sections 2.4.2 to 2.4.6 below elaborate upon each of these challenges.

2.4.2 Challenge1: Student Production and Submission of Diagrams

This section distinguishes between the electronic support provided for the

student to draw diagrams and the format used to represent them. Drawing

support provided by existing diagram assessment systems is discussed as is

the extent to which the resultant diagrams can be considered to be free form or

fixed form. The importance of providing support for drawing both the individual

components of a diagram and the links between each component is highlighted.

The requirement of an automated assessment system to be able to identify both

the components and their respective links is discussed.

When considering electronic support for assessing the student diagram there

are two significant perspectives to consider. The first is that of the student and

the second is that of the automated assessment system. The student needs

support to be able to draw a diagram that uses domain-specific symbols and

semantics. The automated assessment system requires the diagram to be in a

form and format that facilitates an automatic analysis and assessment. Thomas

(2004) recognised the distinction between the need to consider how a diagram

should be represented for grading purposes and the mechanism for how a

diagram should be graded.

It is not necessarily the case that the electronic format of the diagram produced

by the student lends itself easily to being processed by the automated

assessment system. Ali et al. (2007b) illustrate the issues involved in extracting

Page 28

appropriate information from Rationale Rose files prior to automatic

assessment. The work of Fan and Tanimoto (2007) is notable in that it has a

minimal set of drawing primitives in an attempt to make both the students’ and

instructors’ tasks easier. However, in doing so they have limited the expressive

power of their system and cannot (yet) support a wide range of diagram types.

Consequently, the development of an automated assessment system needs to

balance the diagrammatic production requirements of the student with the

analytical and processing requirements of the automated assessment system.

Typically, automated assessment systems require diagrams to have been

produced from a finite set of graphical symbols. Such symbols have a semantic

meaning associated with them that can be defined by the pedagogic context

under which they are being produced. Moreover, the diagrams being drawn are

underpinned by a methodology which typically contains rules for how these

components can be linked together. The links themselves are also graphical

symbols contained in the diagram. Such diagrams are common place in

computer science and the automation of their assessment can be challenging

(Jayal and Shepperd 2009). The symbols typically come from a specific

development paradigm such as UML class diagrams or ERD diagrams.

Diagrams are drawn using a tool that is either an integral component of the

assessment system or the system specifies the type and range of drawing tool

output that it supports. The extent to which a drawing tool enforces the rules of

the underpinning methodology can be used to determine the degree to which an

automated marking system can be considered to be either fixed or free form.

For example, students producing diagrams using a CASE tool will normally

have been forced to comply with rules contained within the underlying

methodology. In this context, whilst the student is free to identify and draw

Page 29

individual components (free form) the CASE tool adopted will curtail the extent

to which the student can connect components through enforcing the rules of the

underpinning methodology (fixed form). Tools that do not enforce syntactic

correctness in their diagrams allow for freedom of expression, and many errors,

and provide the opportunity to give feedback on a wider range of

misunderstandings (Smith et al. 2013).

An example of a system that offers support for diagram production that goes

beyond the methodological support delivered by a typical CASE tool is the

Datsys system developed by Tsintsifas (2002). This provides a tool, referred to

as Diadolos, which allows the assessor to define the fundamental graphical

components to be used in the assessment. It also allows the specification of

constraints that determine how such components can be connected. The

students’ diagrams are restricted to using these components under the

specified constraints. The disadvantage of this approach is the tutor’s initial time

and investment in setting up the symbols and their connection constraints. The

advantage is that it offers the flexibility for the tutor to vary the symbols and

methodologies (for example across cohorts and years) without the need to

acquire and configure a completely new tool/CASE environment. It also enables

the tutor to restrict what can be drawn to those parts of the underpinning

methodology currently being taught or to the particular learning outcomes that

the development of the diagram is intended to assess.

Balancing between fixed and free response systems can also be found in

Thomas (2004). In this study students produced a diagram when undertaking

an on-line examination. Students were asked to submit diagrams which had

been produced using an electronic tool. Submission of the students’ work

Page 30

involved sending the electronic diagram over the internet to an automated

marking tool which graded the students’ work. The drawing tool used was

developed in-house and supported elementary components of boxes and links.

Whilst the students were able to combine boxes and links in a free-form manner

they were restricted to using only those graphical components supplied and

supported by the tool. The analysis within the marking tool was restricted to

consider only those graphical components. This offers similar pedagogic

benefits as those outlined by Tsintsifas (2002). Both these systems, in placing a

limited restriction upon how these components could be linked together, lend

themselves significantly more towards the free form than fixed form category.

An approach to taking true free-form diagrams from the student can be found in

Lank et al. (2000). They report upon a technique for recognising UML

components from hand-drawn diagrams. Their system requires the diagrams to

be produced on-line and in real-time using either a single or networked suite of

smartboards. It works by building up a temporal-picture associated with the

production of the diagram. The system tests for intersecting lines and the order

in which they were produced to build up a picture of the individual diagrammatic

components. Each component identified is then sent to a UML-specific

recogniser where the individual diagrammatic components are recognised and

classified. The disadvantage to this approach is that there is no means for a

tutor to restrict what can be drawn to a finite number of UML-specific symbols.

This makes automating their assessment more challenging. It also means that

the students do not benefit from a tool that supports and enforces adherence to

the underpinning methodology being taught. The ability to identify UML-specific

symbols has the potential to aid assessment when, for example, searching for

errors contained in the student diagram.

Page 31

To summarise, a distinction can be made between the tools available for the

student to draw a diagram and the format of the diagram that is submitted.

Tools to support drawing enable the student to produce diagrams from a fixed

set of pre-defined components. These components are derived from the

underpinning pedagogic context and methodology being taught. Some systems

allow the tutor to specify what these components are and the rules for how they

can be connected. Conversely, others specify the components and rules in

accordance with an underlying methodology. There are semantic meanings

associated with the components contained within the diagram. An automated

assessment system needs to consider how to represent a diagram that

facilitates the identification of the diagram’s constituent components.

2.4.3 Challenge 2: Model Answers and Marking Schemes

This section discusses the role that a tutor-supplied marking scheme and/or

model answer plays in the automated assessment of a student submission.

In this research a model answer is defined to be a tutor supplied diagram that

represents a solution to a problem that has been set in an assignment brief. A

marking scheme is defined to be a prescription of how marks are to be allocated

to individual diagrammatic components or to the holistic structure and format of

the diagram submitted by the student. A marking tool is a software program that

uses the model answer and marking scheme to automatically asses a student-

submitted diagram. The output of the tool is formative or summative (or both)

feedback.

Page 32

It is difficult to produce a model answer and a marking scheme that can be used

to automatically assess a diagram. This is because, for any given problem,

there potentially exists several different, but equally correct or partially correct,

diagram-based solutions (Soler et al. 2010). Consequently, for the same

assignment, students could submit different but equally correct solutions. The

problem is exacerbated when the student submission contains errors or

extraneous components. For fixed response systems a marking scheme can be

used to guide a marking tool to simply search for text in the student submission

that matches that contained in a model solution. Free response diagrams are

more complex and marking schemes for them need to be more detailed and go

beyond symbol recognition (Tsintsifas 2002).

There are at least three approaches that existing systems have adopted in

addressing this problem. The first involves the tutor producing a set of rules

specifying those elements that must appear in the students’ diagram and those

that should not. The second involves building a database of alternative model

solutions and the third involves the tutor producing a single model solution. The

latter two approaches require the marking tool to contain a heuristic to search

for matches between diagram components - the first requiring the heuristic to

match against a list of possible correct solutions and the second requiring the

heuristic to match with a single model solution.

Systems that provide alternative model solutions differ in their approach.

Examples include: attempting to identify the maximum number of anticipated

features that would be common to all submitted diagrams (Higgins and Bligh

2006), the tutor supplying alternative model solutions to sub-components of the

model diagram (Tselonis and Sargeant 2007), undertaking a comparison with a

set of alternative diagrams if a match could not be found with an initial model

Page 33

solution (Suraweera and Motrovic 2002) and building a database of correct

solutions as each student submission is marked (Prados et al. 2011).

The differences in these approaches can in part be attributed to the context and

type of diagram assessment system being developed. Higgins and Bligh’s

(2006) system searched for a maximum number of features identified in a

marking scheme. The features were those anticipated to be common to all

student diagrams. They recognised that future developments for their system

would need to incorporate a mechanism to support the marking of submissions

from a student cohort where diagrams could be distinct, different and yet

equally correct.

Tselonis and Sargeant‘s (2007) Gree system aimed to produce domain-specific

feedback from a diagram whose internal representation was non domain-

specific. They address the issue of multiple, correct diagrams through the tutor

specifying alternative solutions to sub-components of the model answer. They

present an example of a model solution for a UML class diagram containing 8

different sets of fully correct answers. Their marking algorithm involves

representing all possible combinations of solutions in a tree-based data

structure and a matching heuristic that parses each component and searches

for a match with the student solution.

Suraweera and Motrovic (2002)’s Kermit system was designed to aid tutors in

the teaching of Entity Relationship Modelling. The implementation of their

system uses domain specific knowledge to produce a set of alternative ways of

specifying similar ER structures. Their system works by comparing the student

diagram with a model solution and when an exact match between entities is not

found it attempts to find a match against this list of alternative, but equivalent,

structures.

Page 34

Prados et al.’s (2011) ACME system adopts a human collaborative approach.

Initially there is no model solution. As the tutor marks each student submission

it is stored in a database with corresponding feedback and labelled as being

either correct or incorrect. Further submissions are initially compared with those

stored. If a match is not found – the tutor marks it and it is stored in the

database. If a match is found the feedback is retrieved and presented to the

student.

One approach to creating a marking scheme is through directing a set of

marking tools to search for specific features in a submission and return a mark if

they find it (Tsintsifas 2002). The overall mark is the weighted sum of the

marking tool responses. Higgins et al. (2009) developed a tool, Ariadne, to

produce domain-specific marking tools in four specific areas: Logic Design,

Flow Charts, Object Oriented Design and Entity Relationship Diagrams. They

attempted to construct a generic marking tool that can be re-used for all future

diagram domains. They concluded that tools to support marking need to be

constructed each time a new diagram domain is to be assessed. They noted

that this development process can be both lengthy and involved.

Thomas et al. (2007) have three steps in their marking method. The first is to

undertake a comparison between diagrammatic components contained in the

student diagram with those contained in the model diagram. The second is to

calculate a similarity measure for each pair of matched components and the

third is to compute a mark for the student diagram based on the similarity

measures. A match is determined primarily by searching for similarities between

the names of the components and their relationships.

To summarise, marking schemes and model answers are used to provide

guidance when assessing a student diagram. In fixed response systems this will

typically take the form of a list of items that are expected to be contained in the

Page 35

student submission. Free form diagrams require more detailed configuration.

The development of tools to support a given diagram domain can be both

lengthy and involved. One of the challenges of producing a marking scheme is

that there are several different diagrams that the student could produce all of

which represent a correct or partially correct solution. One mechanism adopted

by existing diagram assessment systems that address this issue is through the

provision of multiple marking schemes.

2.4.4 Challenge 3: Methods for Diagram Comparison

This section discusses mechanisms for automatically comparing diagrams. This

typically occurs in automated diagram assessment systems when a comparison

is made between a student diagram and one supplied by the tutor as a model

solution. This section discusses existing systems, the data structures that have

been used to store such diagrams and the heuristics followed that undertake a

comparison. This section will show that the field of model differencing has

synergies with the automated assessment of student diagrams.

Automatically comparing free-from diagrams is difficult. Diagrams being

compared could either match exactly, be significantly different or be ‘similar’.

Defining what ‘similar’ means and producing appropriate feedback for different

levels of similarity is challenging. The problem is exacerbated when dealing with

imprecise diagrams that are either malformed, have features that are missing or

extraneous (Smith et al. 2004). Imprecise diagrams frequently occur in student

submissions (Smith et al. 2004). Furthermore, components of the diagram very

often contain text-based labels. Such labels are unbounded and present the

problems of synonyms, homonyms, misspellings and abbreviations (Jayal and

Sheppard, 2009). They raise significant challenges relating to the fields of

Page 36

artificial intelligence and natural language processing (NLP) in attempting to

derive meaning from human input. However, in an educational context,

imprecise student diagrams, although only partially correct, still require

feedback (summative, formative or both) to be generated that is of benefit to the

student.

Thomas (2004) identified three core questions that a diagram comparison

system needs to address:

• how to internally represent the diagrams of both the student submission

and the model diagram supplied by the tutor.

• what model or heuristic do you follow in order to undertake a

comparison between the two diagrams.

• how to generate meaningful feedback (summative or formative) as a

consequence of undertaking the comparison.

Approaches taken to address these questions differ from system to system.

Methods to internally represent diagrams include adopting graph-based data

structures, with the nodes and edges representing the entities and relationships

respectively (Tselonis 2005), and those that consider the entities and

relationships as separate minimal meaningful units (MMU) (Smith el al. 2004

and Thomas et al. 2005).

Methods for comparing a student diagram with one produced by a tutor can be

grouped into those that compare individual diagrammatic components or those

that search for patterns in the student submission. For example, in assessing

ERD-diagrams, Tselonis et al. (2005) compared vertices on the graph

generated from the model solution with those derived from the student

submission, calculating a matching score for each vertex. In considering a

Page 37

diagram to consist of a number of MMUs, Smith et al. (2010) and Thomas et al.

(2012) enabled both a comparison of entities and the relationship that connects

them, reflecting both in the resultant matching score. They report a good

correlation between marks produced by their system and those generated by

the academic tutors.

Examples of identifying patterns in the student submission can be found in

Thomas et al. (2006) and Batmaz and Hinde (2006). A pattern describes the

general shape of a diagram and allows the user (human or machine) to fill in

details and hence specialise the diagram (Thomas et al. 2006). Batmaz and

Hinde’s (2006) semi-automated approach analyses each student-submitted

database diagram and identifies sub-diagrams that are common to two or more.

Semi-automation derives from their proposition that an academic tutor need

only mark a sub-diagram once. Their tool, having identified the sub-diagrams in

each submission, then utilises the manual marking from the academic tutor to

attribute the same mark for all students whose submission contains the

identified sub-diagram.

2.4.4.1 Labels

The majority of components contained in a student diagram will contain some form

of text-based labelling. This is true for both the components themselves and any

diagrammatic representation that attempts to link them together. One source of a

potential comparison between a student diagram and a model solution is to

compare the labels produced by the student to identify the individual diagrammatic

components and their linkages. However, due to the free-form nature of text

labels, identification of diagrammatic components within the student diagram by

comparing labels contained in the student diagram with those contained in the

model solution is challenging. This is because the names of entities and their

relationships used by the tutor is not necessarily the same as the names used by

Page 38

the student. Additionally, labels used to identify a class tend to be more succinct

than the longer labels associated with relationships or use cases. The imprecise

nature of labels are not elements of natural language. Consequentially they are

challenging for NLP techniques to determine whether two labels are similar – have

the same meaning/semantics. However, due to imprecision, ad hoc methods have

to be used.

 In comparing results from their Gree system, Tselonis and Sargeant (2007)

attribute the difference in marks generated by their system and a human marker

as being caused by insufficient label matching. The challenges posed by labels

produced by students include their verboseness, the label containing defects such

as misspellings, abbreviations and a different lexical structure (e.g. embedded

punctuation) and students using a range of strings to indicate the same intent

(Tselonis et al. 2005; Thomas et al. 2009; Higgins et al. 2009). Additionally,

student labels potentially contain synonyms (e.g. module and unit) and homonyms

(e.g. manager and clerk are hyponyms of employee).

The free-text nature of labels presents a significant challenge for systems that

automate diagram assessment (Jayal and Shepperd 2009). Such challenges can

be addressed through the development of a free-text similarity system (Tselonis et

al. 2005; Tselonis 2008, Thomas et al. 2009 and Jayal and Shepperd 2009). Much

of the intended meaning of a diagram is contained within the labels that the

students produce and their absence makes a diagram difficult to understand and

consequently to assess (Jayal and Shepperd, 2009).

Jayal and Shepperd (2009) report that 160 UML diagrams produced by their

students contained 2013 labels with a mean of 12.58 labels per submission and

Page 39

each label having a mean of 3.06 words. Their analysis indicates, even for simple

diagrammatic tasks, as the number of submitted diagrams grows so too does the

number of labels and synonyms of correct labels. They conclude that

“….. the problem of labels is substantial and cannot be easily avoided for the e-

assessment of at least some classes of diagram.” (Jayal and Shepperd, 2009)

There is a need for better algorithms to undertake a semantic analysis between

labels that are contained in the student diagram and those that are contained in

the model solution (Jayal and Shepperd, 2009). The technique of edit-distance

alone is not adequate as the more open-ended, or subjective a question is, the

more difficult the task of specifying in advance every acceptable alternative string

becomes (Tselonis 2008).

Thomas et al. (2009) incorporated edit-distance in their technique to determine the

similarity between two labels, one from a student diagram and one from a model

solution. Their approach incorporates the use of Porter’s (1997) stemming

algorithm to identify words that are different but can be deemed to be equivalent

(e.g., presenting, presented, presentation all have the same stem – “present”).

This is complemented with producing a domain-specific dictionary of synonyms in

addition to calculating a similarity metric based on edit-distance to address

misspelling in labels. They applied their technique to labels contained in 394

student diagrams. They report that students chose labels for entities from names

that were contained in the assignment brief whilst labels chosen for relationships

were more diverse and hence more complex to match.

Page 40

2.4.4.2 Model Differencing

A comparison needs to identify features that are similar in the two diagrams and

those that are erroneous or missing. There is work in the field of model

differencing that is related and applicable to this issue. The field has arisen from

research work undertaken to address the problem of how to maintain large-scale

software systems when they are subjected to evolutionary or developmental

change. The two major components of a difference tool are an algorithm that

computes the difference between the two models and a mechanism to display the

differences identified (Schmidt and Gloetzner 2008). Differencing analyses and

compares the semantics of the models’ features. Differences in their layout are

considered ‘irrelevant’ (Ohst et al. 2003b).

Few algorithms and tools for computing differences between models exist (Treude

et al. 2007). Those that do initially search for correspondences, typically by visiting

each feature in the first model, conducting a search in the second and identifying

that which is most similar (Chawatha et al. 1996, Chawatha and Garcia-Molina

1997 and Wang et al. 2003). Features of the model for which a match cannot be

found are considered to be consequences of incremental changes made between

the first and second models (Treude et al. 2007). The focus of feedback to the

designer centres upon the collation, management and communication of a large

volume of change data that represents the result of iterative incremental changes

made to a system’s design. Colour representations are often used (Wenzel 2008,

Kelte et al. 2005, Ohst et al. 2003a and Chawathe et al. 1996) to highlight

differences between the models being compared and as a means of managing the

volume of changes being reported.

Page 41

Differencing tools vary in the specific data structures adopted to represent a

diagram’s constituent features and the relationships between them. It is these data

structures that are analysed and processed by the tool when searching for

matches between two diagrams. Such representations include the adoption of

structured trees (Chawathe et al. 1996), unstructured trees (Wang et al. 2003 and

Chawathe and Garcia-Molina 1997) and a hybrid tree structure (Kelte et al. 2005

and Treude et al. 2007) that include ‘graph-like cross references’ (Kelte et al.

2005). Similar graph-based representations, where the nodes of the graph

represent the constituent components of the diagram and the edges represent the

relationships between them, were used in systems developed by Ohst et al.

(2003b), Xing and Stroulia (2005) and Uhrig (2008).

Differencing techniques have been applied to UML models (Kelte et al. 2005,

Egyed 2007a and Xing and Stroulia 2005). Both the SiDiff tool of Kelte et al.

(2005) and the UMLDiff tool of Xing and Stroulia (2005) represent the diagrams in

a graphical data structure with the nodes representing the entities within the

diagram (e.g. the classes) and the edges of the graph representing the

relationships between the nodes. They differ, however, in their requirements for

how the diagrams are represented as input into the differencing tool. SDiff requires

an XMI (Object Management Group 2007) description of the diagram and maps

this onto its internal data structure. UML diff takes as its input two Java source

code files and reverse engineers them into two separate diagrams, mapping these

onto its internal data structure.

The approach adopted by Egyed (2007a) takes a different approach by modelling

the impact of changes made to UML models. Impact is monitored through the

establishment of a set of consistency rules that a valid UML model is required to

Page 42

adhere to. An example of such a rule is that the name of a message being sent

must match the name of a method in the receiving class. Incremental change that

modifies either the sending message or receiving method that subsequently

violates this rule would signal to the designer that an inconsistency has been

introduced into the system as the design has been modified. A change in design

that does not violate the rule would signal that the changes have led to a

consistent design. The method adopts a semi-automated approach to resolving

inconsistencies identified. It is left to the designer to decide what course of action

to take once the method has identified an inconsistency. Egyed (2007a) presents

34 such consistency rules applied to 48 UML models, concluding that a tool

cannot repair inconsistencies automatically but can report on all inconsistencies

that arise as a consequence of a design change. The tool developed to support

the specification of such rules and the identification of inconsistencies is reported

in Egyed (2007b).

SiDiff adopts a two-stage pre-processing of the diagrams before the difference

algorithm can be applied. The first stage translates the diagrams into an XMI

format. The second stage takes these descriptions of the diagrams and maps

them onto the internal data structures required for the difference algorithm to

undertake a comparison. The difference algorithm operates in a bottom-up fashion

starting with undertaking a comparison of the leaves within the diagrams being

compared. A top-down analysis is invoked for those components for which the

bottom-up approach could not produce a match.

Xing and Stroulia (2005) match components by comparing the type of the entity

(e.g. comparing a class with a class), the entities name and the types of

Page 43

relationships it has with other entities. They consider the name of an entity to be a

safe indicator for the identification of a match arguing that

“….. it is indeed a rare phenomenon that an entity is removed and a new entity

with the same name but different behaviour is added to the system.”

Xing and Stroulia (2005).

As a consequence a core threshold upon which a match is determined focuses

upon the name of the entities being compared. They recognise however that a

new version of a system might have renamed an existing entity from a previous

version. In this context their algorithm utilises the number and types of

relationships between entities to identify a match. Hence, their algorithm for

comparing entities consists of two components. The first is a method for

comparing the names of the two entities. The second is a method for determining

how similar the entities are by looking at the how they relate to other entities within

the diagram.

The field of model differencing is founded in the context of incremental changes

being made to large-scale systems. The development of such systems mostly

takes place in teams (Kelte et al. 2005) and leads to the production of large-

models that exist in many versions (Treude et al. 2007). The need for tools and

utilities that calculate the differences between models arises from the need to

undertake a version control of such systems (Treude et al. 2007, Schmidt and

Gloetzner 2008 and Kelte et al. 2005). Consequently, some assumptions in model

differencing hamper its application to analysing a student submission and

providing formative feedback.

Page 44

The first is the assumption that the two diagrams being compared are essentially

correct. Thomasson et al. (2006), Smith et al. (2004), Thomas et al. (2005) and

Bolloju and Leung (2006) note the presence of errors when considering diagrams

produced by undergraduate students. They note that such features typify a student

submission of a design diagram. Consequently, an assumption cannot be made

that the two diagrams being compared are correct.

The second is that there is a strong similarity between the diagrams being

compared as the two diagrams represent an evolution of the same system. This is

not necessarily the case when comparing a student diagram with a tutor-supplied

model solution. Higgins and Bligh (2006) note the problem of considering several

distinct diagrams each one potentially representing a different but correct solution.

The assumption that the two diagrams represent an evolution of the same system

cannot be made.

The third relates to the feedback generated to the designer. In the field of model

differencing, feedback is used to indicate where the differences lie between two

diagrams. The challenge is in managing the volume of changes made and how

such changes can be visualised in a manner that is useful for the design team

(Wenzel 2008, Ohst et al. 2003a and Ohst et al. 2003b). In the educational

context, feedback is concerned with helping a student to learn and needs to be

embedded firmly in pedagogical principles. The feedback is used to develop an

individual rather than manage the evolution of a system.

In conclusion, there are many similarities between the fields of automating the

assessment of diagrams and model differencing. Both require a comparison of

diagrams to be undertaken. An assessment system typically undertakes a

Page 45

comparison between a diagram submitted by the student and a diagram that

represents a model solution that has been developed by the tutor. Model

differencing is concerned with maintaining large-scale software systems when

they are subject to developmental or evolutionary change. Both distinguish

between the data structures adopted to represent the diagram and the heuristic

to undertake a component by component comparison. Despite the similarities,

these different contexts make a direct porting of existing difference tools to the

field of assessment challenging. However, there are many principles in model

differencing that can be applied to automated assessment. These include

representing the components and linkages contained in a diagram with an XML

tagging structure, the use of data structures that represent a diagram in a

manner that facilitates both the ease of traversal and the ease of comparison

and the use of reverse engineering techniques to diagrammatically represent

the design structure inherent in a diagram’s implementation. The challenges of

labels that adorn the components of a diagram have been highlighted. Labels

are challenging primarily because it is the tutor who specifies the labels in the

model solution and the student for the submission. The variability of label

names are less of a concern for the field of model differencing as the diagrams

being compared represent incremental evolutionary changes undertaken by the

same development team and the naming of components consequently remains

stable between each evolutionary iteration. The same can be argued for the

case where the comparison is between a diagram submitted by the student and

a diagram that represents the design components inherent in the accompanying

implementation. This is because it is the student who determines the names of

the components contained in both the diagram and the accompanying

implementation.

Page 46

2.4.5 Challenge 4: Handling of Errors Contained in Diagrams

This section discusses the types of errors that could potentially be contained

within a student diagram. Existing work analysing the typical types of errors

contained in work produced by students studying object oriented design and

computer programming is discussed. Developments in classifying defects

contained in software systems are presented. The ‘inconsistent’ defect classifier

is highlighted as recognising that defects occur at the interface between a

design and its implementation. The section concludes by proposing a blended

approach to assessment automation. This consists of initially searching for

typical errors that may be contained in the student diagram followed by

analysing the interface between the design diagram and its associated

implementation

Software systems, whether produced in an industrial or educational setting, will

contain defects. Kelly and Shepard (2001) note that IBM’s Orthogonal Defect

Classification Scheme (ODC) for software systems contain qualifiers for defects

that are “extraneous”, “missing” or “incorrect”. They also report upon the

addition of a defect type referred to as “relationship” defining this as being

“problems related to associations among procedures, data structures and

objects”. They propose extending the IBM ODC defect qualifiers to include an

“inconsistent” qualifier to address the case where it is difficult to determine

whether or not a detected defect is an issue with the design or with the code.

This extension suggests that there is potential merit in investigating the

provision of feedback to students based upon the consistency in structure

between that specified by the design (in diagrammatic format) and that

contained in the implementation (source code).

Page 47

Consequently, an automated assessment system must be able to cope with

errors that are contained in the student submission. Smith et al. (2004) and

Thomas et al. (2005) defined imprecise diagrams to be those which contain

either malformed, extraneous or missing features. They note that such features

typify a student submission of a design diagram. Tselonis et al. (2005) noted

that real data can be messy indicating that student diagrams sometimes are

comprised of several disconnected graphs.

Students studying the field of object orientation find producing design diagrams

challenging (Bolloju and Leung 2006, Thomasson et al. 2006). Misconceptions

they exhibit include viewing objects as data variable or database records,

restricting an object’s methods exclusively for data access and assuming that a

class can only be used to create a single instance (Holland et al. 1997)

Bolloju and Leung (2006) undertook an analysis of errors contained in UML

designs produced by novice designers. They focussed upon the four UML

design components of use case diagrams, use case descriptions, class

diagrams and sequence diagrams. They grouped, using Lindland et al.’s (1994)

quality framework, design errors into three different quality categories: syntactic,

semantic and pragmatic. For UML class diagrams these groupings and error

classifications are summarised in Figure 2.2 below.

Page 48

 Error Description

S
y
n

ta
c
tic

Missing Cardinality

details of

association

Association relationship has been

identified but it contains no cardinality

details

Incorrect Naming of

Class

An inappropriate name has been used

for a class

Incorrect Naming of

Association

An inappropriate name has been used to

describe the association between

classes

 S
e

m
a
n

tic

Wrong Cardinality Association relationship has been

identified but it contains incorrect

cardinality details

Wrong location of

Attributes

Correct attributes have been identified

but are attributed to the wrong class

Wrong location of

operations

Correct methods have been identified but

are attributed to the wrong class

Use of aggregation

instead of

association

Classes have been correctly identified as

being related but an incorrect relationship

has been identified (in this case it is

aggregation being indicated instead of

the expected association)

P
ra

g
m

a
tic

Insufficient

distinction amongst

subclasses

The class hierarchy produced is not

sufficiently granular to match the

expected requirements

Presence of

derived or

redundant attribute

Extraneous attributes contained in class

Figure 2.2: Bolloju et al.’s (2006) Tool for Error Classification

Furthermore, Thomasson et al. (2006) reported upon a study of object oriented

design diagrams produced by students new to programming. Their study

focused upon errors contained in UML diagrams. They produced five

classifications for student errors. These are listed and described in the Figure

2.3 below:-

Page 49

Error Description

Non-referenced

Classes

The student produces a design that contains a class

in isolation that is not linked to any other components

in the system.

References to non-

existent classes

The student makes reference to a class that has not

been defined in the design (e.g. an attribute of one

class is defined as an instantiation of a class that

does not exist)

Single Attribute

Misrepresentation

This is defined as either:-

The student defines one of the attributes for class A

that really should be an attribute of class B.

Or

The student defines an attribute of class B to be an

instance of a predefined language type (e.g. String)

when it should be an instance of a class defined

within the student’s design.

Multiple Attribute

Misrepresentation

The student defines multiple attributes for class A

that really should be attributes of other class(es).

Multiple Object

Misrepresentation

This is defined as the case where multiple objects of

the same type are contained within the design when

a collection (e.g. list) should be used.

Figure 2.3 : Thomasson et al.’s (2006) Tool for Error Classification

Thomasson et al. (2006) observed that the most common student error is the

non-referenced-class. They hypothesised that this is due to the student

recognising that the class is needed but struggles with how to integrate it with

other classes contained in the design.

Whilst Bolloju and Leung (2006) usefully group design errors into syntactic,

semantic and pragmatic groups they do not address issues of non-referenced

classes contained in the approach adopted by Thomasson et al. (2006).

Conversely, Thomasson et al. (2006) are not as detailed in their approach to

Page 50

classifying errors associated with the relationship between classes. Additionally,

the schemes of both Bolloju and Leung (2006) and Thomasson et al. (2006) do

not fully address the case where a student design contains one or more

extraneous classes.

Few systems that automate the assessment of diagrams consider the

implication of errors contained in the student diagram propagating into the

implementation. This coupled with existing work in analysing typical errors

made by novice designers and undergraduate programmers leads to the

possibility of developing a blended approach to assessing the student

submission. Such an approach would involve two phases. The first phase would

search for errors in the student design diagram informed by a bank of typical

errors. The second would undertake a consistency comparison between the

design diagram and its implementation. Both phases would offer the opportunity

of providing formative feedback to the student and holistically could provide

enhanced feedback in comparison to that generated when only one phase is

undertaken in isolation.

2.4.6 Challenge 5: Feedback Generation

This section discusses the approach taken by existing systems to the

generation of feedback. The distinction is made between those systems that

generate feedback that is formative and those that attempt to generate a grade

that is similar to that of a human marker. Semi and fully automated systems are

discussed and techniques for utilising assessment to aid students in their

learning are highlighted.

The automated assessment of free-form diagrams can help to facilitate a

student’s learning particularly when an iterative process is adopted with the

Page 51

student receiving cumulative formative feedback through the repeated

submission of coursework (Higgins et al. 2009). Existing systems differ in the

approach taken to iterative feedback. Some systems attempt to support

students in their learning by enabling multiple submissions of the same

coursework (Soler et al. 2010, Suraweera and Motrovic 2002) whilst some

provide a set of separate formative exercises designed to prepare the student

for a summative examination (Higgins et al, 2009).

Iteratively receiving formative feedback enables the student to reflect upon the

errors contained in the diagram and undertake further directed learning. Some

systems capitalise upon this iterative approach by offering feedback that

provides the solution to (some) of the errors identified (Soler et al. 2010 and

Suraweera and Motrovic 2002). For example, Suraweera and Motrovic (2002)

Kermit system divides the student errors into syntactic and semantic categories.

For both categories, the system produces five levels of feedback based upon a

comparison of the student diagram with a set of alternative model solutions.

These levels are, correct, hint, detailed hint, all errors and solution. The first

level (correct) indicates to the student whether or not the submission is correct.

Hint and Detailed Hint both provide feedback to the student and differ in the

level at which this is pitched with the former offering more generic feedback and

the latter focussing upon specific details. The all errors level produces a list of

hints on all errors detected by the system whilst a complete model solution is

displayed at the solution level. When the student first submits an assignment

the level of feedback is set at correct. The system supports Higgins et al.’s

(2009) notion that such formative systems can support an iterative process to

learning as Kermit increases the level of feedback given to the student with

each iterative submission until the level of Detailed Hint is reached.

Page 52

Systems that adopt a semi-automated approach to formative feedback

generation can be grouped into two categories: those that require input solely

from the tutor (Tselonis et al. 2005) and those that require input from both the

tutor and the student who submitted the diagram (Hoggarth and Lockyer 1998

and Ali et al. 2007a). Tutor input is derived from the marking scheme and

academic interpretation of the assessment information generated by the tool.

For example, Tselonis et al.’s (2005) semi-automated system for the

assessment of ER-diagrams compares a student’s ERD diagram with a model

solution that has been supplied by the tutor. The feedback generated is

intended to provide assessment support for the academic tutor. Matches

between the student diagram and the model solution are presented to the tutor

in a colour-coded graphical format. The tutor analyses and interprets this output

and uses it to manually provide feedback to the student.

Assessment tools that require student input prompt the student to indicate

which components in their solution relate to those contained in the tutor’s

marking scheme. For example, Ali et al. (2007a), present the student with a list

of symbols contained in their UML diagram and those contained in the model

solution. The student is then invited to indicate which components on their

diagram match with those on the model answer. The system then generates a

list of feedback that describes the differences between the two diagrams.

Hoggarth and Lockyer’s (1998) system operates similalrly by comparing the

student’s diagram with a solution diagram provided by the tutor. Impreciseness

in the student submission is addressed through manual intervention from the

student. The student is presented with a list of components contained within

their diagram and a list of components contained within the model solution. The

student is required to interactively map and match the two sets of components.

Page 53

Once the diagram comparison has been completed the system generates

feedback based upon the differences between the two diagrams. The feedback

is formative and no attempt is made to mark or summatively assess the

submission. The feedback generated reports upon mismatches in symbol the

types of components used, how components are connected and the addition or

omission of any components when compared with the model solution.

To summarise, this section has presented an overview of existing systems and

their respective approaches to the provision of feedback. The focus has been

on systems that generate feedback that is formative. Approaches that

encourage an iterative interaction between the assessment tool and the student

have been highlighted. The differences in feedback generated between fully

and semi-automated assessment systems have been identified.

2.5 Methods for Evaluating the Effectiveness of Automated Assessment
Systems

This section reviews the field of the automated assessment of student diagrams

and discusses how the developers of such systems have undertaken an

evaluation of their results. The potential roles that both students and academic

practitioners can play in evaluating the feedback generated by such systems is

discussed. The applicability of these techniques to this particular research project

is identified.

There are two perspectives to consider when evaluating the grading and feedback

produced by an automated diagram assessment tool. The first is that of the

student and the second is that of the academic tutor. The student’s perspective is

primarily concerned with evaluating the educational experience encountered whilst

engaging with the tool. The academic tutor’s primary perspective is concerned with

Page 54

evaluating the accuracy of the grades and feedback that has been automatically

generated.

Tuning the assessment tools is generally a form of supervised learning

(Yannakoudakis et al. 2011) where human-generated marks are given for each

sample. The submitted diagrams are divided into development and testing sets.

The development set is examined during the development of the tool. The

evaluation set is kept unexamined until the final evaluation of the tool. Evaluation

consists of undertaking a comparison between the summative marks generated by

the tool and those generated by the human marker(s). Statistical techniques used

to test for significant differences or strong correlations between grades generated

by the tool and those generated by the human marker(s) include calculating the

Pearson correlation coefficient (Waugh et al. 2004 and Tselonis 2008) and Gwet’s

(2010) AC1 statistic (Tselonis 2008 and Thomas et al. 2008). The outcome of this

analysis can be seen to have informed the developers on the maturity and

development needs of their respective systems. For example, Tselonis et al.

(2005) undertook a simple comparison between human and tool generated marks.

They reported, for their developing system, a reasonable correlation but concluded

that it was not sufficiently correlated to warrant using their systems for fully

automated marking until further development had taken place. A further example

can be found in Waugh et al. (2004). They compared summative grades

generated by their tool with those generated by four independent markers. They

calculated the mean and standard deviation based upon diagrams submitted by 13

volunteers. Their analysis concluded that their tool performed very similarly to the

human markers.

Page 55

The use of human marker(s) in the evaluation of an automated assessment tool

poses the question of variability in the grades generated by the individual human

markers. The method adopted by Thomas et al. (2007) addresses this issue. Their

context was that of comparing summative marks generated by an automated

assessment system with those generated by human markers. A bank of 591

student diagrams, produced in an examination, were used in the evaluation. Of

these, 197 diagrams were used to support the development of their system and

394 were used to form an evaluative set. They used a group of academics to mark

the exam papers (including the diagrams). Each marker marked a subset of the

papers. They recognised the possibility of variability in the summative grades

generated by this group and dealt with this by undertaking a further moderating

marking exercise with an independent marking team. They evaluated the marks

generated by the tool by comparing them with the respective moderated marks.

They viewed the moderated human marks as the gold standard in which every

moderated mark is absolutely correct. The automatic marker's marks are

compared with the gold standard. They also compared the moderated mark with

the original human marks and found the automatic marker was a better match with

the moderated marks than the original human marks. In applying their automated

marking system to the evaluative set, they reported that 91% of all automated

grades came within 0.5 of the moderated mark but noted that this dropped to 83%

when inheritance-type relationships were present in the student submission.

Further refinement of their system (Thomas et al. 2012) improved this result to

99.7% and 97.4% for two corpora of data with the worst performance for both

being only one mark difference.

Developers of automated diagram assessment tools that generate formative

feedback typically evaluate their system by utilising the student body usually

Page 56

through the use of a student evaluation questionnaire (Suraweera and Mitrovic

2002, Higgins and Bligh 2006, Tselonis 2008 and Higgins et al. 2009). Features of

the formative feedback that students are typically asked to evaluate include its

usefulness and the support it provided for their learning. Quantification of the

extent of student engagement with the tool can be seen to have been determined

by calculating the number of iterative submissions made (Higgins and Bligh 2006,

Higgins et al. 2009 and Tselonis 2008).

Suraweera and Mitrovic (2002) evaluated their Kermit system via a questionnaire

of students using a 5 point Likert (Likert, 1932) scale. The questionnaire asked

about the students’ experience of using the tool and the quality of feedback it

generated. Furthermore, pre and post tests were used to evaluate the students’

knowledge both before and after using the tool. They divided the students into two

groups. One group used the Kermit system whilst the other (control group) used a

tool referred to as ER tutor. ER tutor was a cut-down version of Kermit which did

not provide any student feedback except for the complete solution. The pre-test

result indicated that there was no significant difference in knowledge between the

two groups prior to using the tool. The results of the post-test concluded that those

students who had used Kermit had statistically gained more knowledge than those

who had used ER tutor – the conclusion being that Kermit, with its staged

approach to formative assessment, had made a positive impact upon the students’

learning.

Higgins et al. (2009) also evaluated their tool through asking the students to

undertake an evaluation questionnaire using a 5 point Likert scale. The students

were asked to agree or disagree with a series of statements. The series of

statements included:

Page 57

• The System is easy to use.

• The feedback that I received for my submission motivated me to

research further.

• I made improvements to my solutions as a result of the feedback that I

received.

• The feedback was relevant to my solution.

• The diagram exercises were a good use of my time.

Similar to Suraweera and Mitrovic (2002) they also measured the knowledge of

the students both before and after using the tool. They analysed results for two

assignments – the second requiring a more complex diagram than the first. For

both assignments they calculated the mean score for the cohort on the first

submission (pre-use) and compared this to the mean score for the final

submission (post-use and having received iterative formative feedback). 92% of

their students used the tool. For the first assignment they report a mean number

of iterative submissions as 5 per student with the cohort’s initial submission

averaging a mark of 49.2% and the final averaging a mark of 75.1%. For the

second assignment they report a mean number of iterations per student as 9

with 50.7% and 70.1% as the cohort’s average mark for the initial and final

submission respectively.

Tselonis (2008) asked students to evaluate their tool by undertaking a survey. The

survey asked :-

• How many times did you use the hint mechanism.

• How clearly was the feedback presented.

• How helpful was the feedback received.

• What would you suggest to make the feedback mechanism better.

Page 58

They undertook a correlation analysis for the number of times feedback was asked

for compared to the final mark generated and a comparison between the students’

estimation of the number of feedback requests made and the actual number.

The literature discussed above identifies two evaluative perspectives. The first is

that of the integrity and accuracy of the assessment and the second is the efficacy

of the learning experience. Academic tutors are used in the evaluation of the

former and students are used for latter. The approach to the evaluation of the

research in this dissertation is to adopt both the student and the academic tutor’s

perspective. Formative feedback comments generated by applying a developed

automated diagram assessment tool to an evaluative set of student diagrams was

collated. A set of independent human marker(s) was employed to generate a

further set of formative feedback comments for each student diagram. A group of

academic tutors was employed to evaluate both sets of comments. The method of

evaluation was through the use of a questionnaire. A statistical analysis was

undertaken to test for significant differences and/or correlation between the

evaluative scores generated for the two sets of comments. In order to evaluate the

students’ perspectives a further survey was undertaken. This took the form of

presenting the student body with feedback generated by the automated

assessment tool and asking the students to undertake an evaluation similar to

approach adopted by Tselonis (2008) and Higgins et al. (2009). Details of the

evaluation methodology are presented in Chapter 5.

To summarise, this section has presented a review of how developers of existing

systems have evaluated their results. The role that both students and members of

the academic community can play in evaluation and their contribution to this

research project has been highlighted. Most systems reported in the literature

deal exclusively with feedback and do not provide a summative mark and there

Page 59

are very few attempts at providing evidence about the accuracy of the output from

automatic marking systems. Evaluation of existing systems seem to have asked

students whether the feedback was useful and have avoided the question of

whether the feedback was correct.

2.6 Scoping a Framework for this Research

This section identifies the framework and direction for the remainder of this

research project. This has been determined through an analysis of the literature

and the subsequent discussion in the sections above.

Section 2.3 presented a review of the literature in the field of the assessment of

student diagrams. The review has shown that existing systems are embryonic and

deficient. The reasons for this include the free-form nature of diagrams, the

possibility of many different but correct diagrammatic solutions to a given problem

and the maturity of the underpinning technological and pedagogic models.

Furthermore, marking and feedback are based upon the comparison of two

diagrams and the existence of student errors and free-form labels alone make an

accurate comparison very difficult. The literature review has not identified any

attempts at using a design diagram and its accompanying implementation to

produce feedback. Formative feedback at the interface between design and

implementation will be of benefit as the student’s learning moves from high to low

levels of abstraction. This is challenging as errors contained in the student

diagram may propagate into the implementation and the implementation phase

itself could introduce new errors. However, one potential benefit is that the

approach removes the need for a tutor-supplied model answer. Effectively, the

model answer is replaced by the student’s implementation of the diagram. As the

student has both authored the implementation and drawn the design diagram the

problems associated with naming and labelling are potentially reduced. The

Page 60

absence of a tutor-supplied marking scheme will restrict the tool from producing a

summative grade. However, the objective of the approach will be to provide

formative feedback as the student moves between the design and implementation

phases of system development. Students find this challenging, particularly when

using object oriented methods. The research presented in this dissertation

investigates the efficacy of such an approach. The research focus therefore is one

of how to assess and generate feedback to the student based upon a comparison

of a design diagram and its source code implementation.

Section 2.4.4.2 reviewed the literature in the field of model differencing. The

section highlighted many obstacles facing the direct integration of existing

differencing tools into the development of an automated assessment tool. There

are, however, several principles within this field that are potentially applicable to

the research contained in this dissertation. The approach adopted by Kelte et al.

(2005) of using XML to describe diagram components can be applied to the

student design diagram, its implementation and a tutor-supplied model solution.

The need to represent the diagrammatic components in an internal data structure

that facilitates a difference comparison to be made is also a principle that can be

transferred as can the approach to computing differences summarised by Treude

et al. (2007). Xing and Stroulia’s (2005) technique of capturing the structure

contained in source code through the adoption of a reverse engineering process

can also be transferred.

However, the suitability of reverse engineering for the pedagogic context of this

research project proved to be challenging and is discussed further in chapter 4.

Furthermore, the exchange of documents between different tools was identified as

a practical problem associated with the development of the SiDiff framework

developed by Kelte et al. (2005). They cite this problem as being attributable to

Page 61

different tools using different methods when mapping diagram elements onto XML

elements.

Section 2.5 presented an overview of how existing diagram assessment systems

have been evaluated. The research presented in this dissertation has been

evaluated by both students and a team of expert markers. Evaluation focused

upon the formative feedback comments generated by the tool. The evaluative

method is reported upon further in Chapter 5.

To summarise, the aim of this research is to investigate the feasibility of applying

and extending the principles and concepts of e-assessment and the assessment

of diagrams to that of analysing and generating formative feedback for a design

diagram and its accompanying implementation. The two main components of this

research are the development of a proof of concept assessment tool and the

method to evaluate the formative comments it generates. They will be informed by

and build upon the principles identified and discussed in the sections above.

2.7 Summary and Conclusion

This section has addressed issues surrounding e-assessment and the automatic

assessment of diagrams. An overview of the principles behind e-assessment has

been discussed. The distinctions between formative vs. summative, automated vs.

semi-automated and free vs. fixed response systems have been highlighted. A

review of the field of the automated assessment of diagrams was presented and

this was centred on the identification of five key challenges. These were the

support for drawing a diagram, support for including a marking scheme, a

mechanism to compare diagrams, an ability to handle errors contained in the

diagram and a mechanism to provide feedback to the student. The embryonic and

challenging nature of the field of automating the assessment of diagrams has been

discussed. Synergies and differences between comparing diagrams for

Page 62

assessment purposes and comparison techniques from the field of model

differencing have been identified.

The question of what are the implications for an e-assessment system when errors

contained in the student diagram propagate into the implementation has been

posed. This question has been highlighted as one which contains merit for further

investigation as, whilst existing work considers the automated assessment of both

the design (Thomas et al. (2005)) and code (Blumenstein (2004)) as distinct

entities, no systems have been found that address the assessment of the

consistency between the two. This has been identified as the main focus for this

research. In particular this research will investigate the feasibility of applying and

extending the emerging techniques identified in this chapter to the context of a free

form design (in diagrammatic format) and its accompanying implementation

(source code). The scope will be one of fully automating the generation of

formative feedback. In doing so this research needs to address the questions of

how diagrams are to be represented for grading and feedback purposes, how such

representations are to be analysed in order to produce feedback that is formative

and how this feedback is presented to the student.

To facilitate this research an experimental tool will be developed. This tool will

serve to facilitate the expansion, experimentation and evaluation of the methods

and techniques discussed in this chapter. It will also serve to provide a mechanism

to determine the effectiveness of these techniques as applied to this context. Their

effectiveness will be evaluated by applying the tool to a bank of undergraduate

student submissions and collating the formative feedback generated. A survey of

both the student cohort and members of the computer science education

community will be undertaken as a means of evaluating both the appropriateness

and effectiveness of the collated feedback.

Page 63

Chapter 3. A framework for formative assessment

The previous chapter discussed e-assessment and its application to automating

the assessment of diagrams. It posed the question of how could e-assessment

be applied to the case where a student submits both a design diagram and an

accompanying implementation. It recognised that errors contained in the student

diagram may propagate into the implementation and also the implementation

itself could introduce new errors which were not originally expressed in the

design diagram. Examples of free-form diagrams and their accompanying

source code include UML class diagrams with their Java implementation, Entity

Relationship Diagrams with their SQL implementation and SSADM data flow

diagrams with their COBOL implementation.

This design/implementation context is one instance of the generic case where

two artefacts represent different ways of expressing a solution to the same

problem. Other examples include a requirements specification and a system

design diagram, a text-based requirements specification and its mathematical

representation, and an architectural design and its building specification. This

chapter presents a framework that shows how related artefacts can be

assessed together automatically to generate formative feedback. It discusses

transforming an artefact from one domain to another as artefacts are easier to

compare when they are described using a common syntax and semantics The

framework focuses on the consistency between the two artefacts. The

framework is illustrated by applying it to a design/implementation assessment

task, using genuine, authentic coursework submissions from undergraduate

Computing/Computer Science students. The research presented in this chapter

has been published (Hayes 2007, Hayes et al. 2007a, Hayes et al. 2007b).

Page 64

Section 3.1 of this chapter elaborates upon the educational context within which

the framework has been developed. It scopes the content and context under

which the students have submitted their coursework. Section 3.2 provides an

example of a typical student submission and discusses its implications for the

development of an automated formative assessment framework. Section 3.3

defines the generic case of comparing two artefacts. Section 3.4 presents a

suite of conceptual models for an assessment framework. It concludes by

presenting the model that was adopted for the remainder of this research.

Section 3.5 presents an overview of reverse and forward engineering concepts

in recognition that they constitute a part of the models discussed in section 3.4.

Section 3.6 discusses transforming an artefact from one domain to another.

3.1 Educational Context

The motivation for this research is to automate the provision of formative

feedback provided to undergraduate students studying object orientation as a

component of their honours degree in Computing/Computer Science. Students

are taught to use the waterfall development model (Sommerville 2007) and

hence produce a design before implementation issues are considered. One

benefit of this approach is that it enables the student to see the connection

between the design, the program and the software development process. Liew

(2005) extends this concept to include deliverables for additional stages of the

requirements design, architecture design and test plans. The benefits claimed of

adopting the waterfall model at the early stages of a course include the students

being better prepared for modules that occur later on in the curriculum and a

richer software development content in their final year dissertations.

Page 65

Object-orientation is taught using an object-last approach (Hu 2004). Initially,

students are introduced to fundamental imperative programming constructs.

Objects are introduced subsequently with the initial focus upon object-based

(class and objects) followed by object oriented constructs of inheritance,

polymorphism and aggregation.

 The assessment task requires the student to produce two artefacts: a design

diagram and its associated implementation. It requires adherence to the

software development lifecycle (Sommerville 2007) and the artefacts to be

consistent. They are consistent when the design (in diagrammatic format)

prescribes the structure and function contained in the implementation, and the

implementation (source code) realises the design whilst adhering to its specified

structure and function. Consistency is important as it enables the student to

demonstrate the application of good practice and an engineering approach to

the development of a software product.

The assignment deliverables from the student consist of a design (UML class

diagram) and an implementation (Java source code). Design diagrams and

source code implementations are examples of free-form items (as defined in

Chapter 2). The learning outcome being assessed is the ability to design and

implement objects. The assessment focuses upon three elements of these

deliverables. These are the design diagram, the source code and the

consistency between them.

3.2 An Example of a Typical Student Submission

An example of a typical second year Computing undergraduate submission is

illustrated below. The intended learning outcome being assessed is the

student’s ability to design and implement objects. The example contains two

related artefacts:

Page 66

1) the design diagram submitted by the student (Figure 3.1)

2) the accompanying implementation submitted by the student (Figure 3.2)

Figure 3.1 Design Diagram As Submitted by the Student

Researcher

name : String[]
number: String[]
Address : String []
telephone : String[]
salary: double

Int get_salary ()

Lecturer

Performance:float

set_performance()
set_pay()
int get_salary()

Administrator

Pay: int

set_pay()
int get_salary()

Page 67

public class Class1
{

 // Constructors
 public Class1() { }

 // Methods
 public static void main(String[] args) throws Exception { }
}

class Researcher
 {

 // Fields
 protected double salary;
 protected String name;
 protected String number;
 protected String address;
 protected String telephone;

 // Constructors
 public Researcher() { }
 public Researcher(String na, String no, String add, String tel) { }

 // Methods
 public void setNumber(String no) { }
 public void setName(String na) { }
 public void setAddress(String add) { }
 public void setTelephone(String tel) { }
 public String getNumber() { return null;}
 public String getName() { return null;}
 public double getSalary() { return 0.0;}
}

class Administrator extends Researcher
{

 // Fields
 protected int pay;

 // Constructors
 public Administrator() { }
 public Administrator(int p) { }

 // Methods
 public void setPay(int p) { }
 public double getSalary() { return 0.0;}
}

class Lecturer extends Administrator
 {

 // Fields
 private double performance;

 // Constructors
 public Lecturer() { }
 public Lecturer(double per) { }

 // Methods
 public void setPerformance(double per) { }
 public void setPay(int p) { }
 public double getSalary() { return 0.0;}
}

Figure 3.2: An extract of the implementation as submitted by the student

The main routine is defined
as a separate class

Researcher is defined as
the parent class

Name and
Number of
functions and
return types is
different from the
design

Administrator inherits
from Researcher

Lecturer Inherits
from Administrator

Page 68

Comparing the design diagram in Figure 3.1 with the source code in Figure 3.2

raises a number of issues. There is a reasonable level of consistency between

the two artefacts. The number, name and relationships between the classes

match those in the design. There are some discrepancies between the number

and name of some of the methods and attributes of the classes identified. This

will not always be the case for other student submissions.

Figure 3.3 contains a third artefact, the expected design diagram taken from a

tutor-supplied mark sheet.

Figure 3.3 Expected Design Taken from a Tutor Supplied Mark Sheet

Comparing the tutor’s design diagram (Figure 3.3) with the student’s (Figure 3.1)

raises further issues. The student has correctly identified three of the four

required classes in addition to the inheritance relationship, although the

hierarchy itself is not what was expected.

Employee

name : String[]
employee_number: String[]
Address : String []
phone_number : String[]
yearly_salary: int

int calculate_monthly_payment()

Administrator

num_of_overtime_hours : int
amount_per_hour: int

int calculate_monthly_payment()

Lecturer

num_consultancy_hours : int
amount_per_hour : int
annual_performance_pay: Int

int calculate_monthly_payment()

Researcher

int calculate_monthly_payment()

Page 69

All three artefacts represent different views of a solution to the problem

contained in the assignment brief. In order for this to take place there needs to

be a mechanism within the framework that:

1) identifies the features within the artefacts that are being compared (in

this example it is the classes and their relationships);

2) traverses, analyses and compares structures and features contained

within the artefacts.

3) specifies the feedback to be generated when consistency and/or

inconsistencies are identified;

The problem is complex because the student diagram may contain errors. Some

of these errors will propagate into the implementation. The implementation itself

could introduce new errors. A student may produce a diagram that is

topologically correct but uses symbols and notation different from that expected.

This poses questions such as whether the student understand the relationship

and just used the incorrect linkage notation or have they misunderstood what

the relationship means? The diagrams could be submitted partially complete.

Sub-parts of the diagram could be correct and others not. A system that

automatically generates formative feedback will need to address all these

issues. It will need to go beyond the mechanism of component and symbol

recognition as there is a need to consider and contextualise the semantics that

each symbol represents.

In summary, this section has presented an example of three related artefacts : a

design diagram from a tutor, one from a student and a student-produced

accompanying implementation. It has highlighted that the same construct, in this

case an assignment brief, can lead to many different representations of a

Page 70

solution. It has identified some of the challenges that multiple artefacts present

to automatically generating formative feedback.

3.3 Comparing Artefacts – The Generic Case

The design/implementation context is one instance of the generic case where

two artefacts provide different views of the same referent. The purpose of this

section is to introduce definitions for the generic case of artefacts and the

concepts that arise in their comparison.

At the top level, a construct is a fundamental component from which several

distinct descriptions can be produced. For example, an assignment brief is a

construct from which a student describes a solution using a variety of

abstractions and notations.

An artefact is a description of some construct. For instance, a UML class

diagram and its Java implementation are both artefacts that partially describe a

running computer system (construct). Artefacts are well formed if they conform

to a defined set of rules, for example, the code is a runnable Java program and

the diagram conforms to the UML class diagramming rules.

Figure 3.4 illustrates the relationship between two artefacts and a construct.

Figure 3.4: Diagram to show how two artefacts view the same construct
from differing perspectives

Artefact 1 Artefact 2

Construct

Page 71

The features of an artefact are the ideas, abstractions and constructions

contained in its description. Features in a diagram are represented as boxes,

lines, directed arrows and labels. For instance, the features of a UML class

diagram are the classes and their relationships. Features in source code are

identified using language-specific key words. For instance, the features

contained in a java implementation are identified by the keywords class, extends

and new.

A set of artefacts is consistent when all of their features agree i.e. for each

feature in one artefact there is a one-to-one mapping onto a feature in the other.

For instance, a UML class diagram and a fragment of Java source code contain

the same set of classes and the same set of relationships.

A set of artefacts is partially consistent if some but not all of their features agree.

A set of artefacts is completely inconsistent if none of their features agree.

For partially consistent artefact sets, the consistent features of an artefact are

the features implied by both artefacts and the superfluous features of an artefact

are the features of that artefact alone.

The consistency differences of the artefact set is the union of the superfluous

features and the consistency similarities is the union of the consistent features.

(Later in the dissertation it will be shown that the consistency similarities and

differences between a design and implementation form a good basis for

generating formative feedback).

An example of applying these definitions is presented below. The artefacts are

represented by two diagrams: one produced by the tutor (TD) and one by the

student (SD). Both describe their features using the UML diagram type, syntax

and semantics. Figure 3.5 below illustrates the example. The construct itself is

represented by the assignment brief.

Page 72

Figure 3.5: Diagram to illustrate the concepts of constructs and
multiple artefacts applied to the case where a
comparison is being made between a student design
diagram and a design diagram produced by the tutor.

The assignment brief contains many features that a tutor expects to appear in a

student solution. The two artefacts, SD and TD, represent two views of the

requirements of the assignment brief. The consistent features are those

contained in both SD and TD. The superfluous features of TD (those features

not appearing in SD) represent omissions from the student submission and

those superfluous features in SD that do not appear in TD are erroneous

features. These three distinct areas are illustrated in Figure 3.6. For the

feedback to be holistic, a comparison of TD with SD needs to report upon the

features contained in all three.

Both the consistent and superfluous features can be analysed to provide

formative feedback. Feedback upon the consistent features reinforces the

positive aspects of the submission whilst the two sets of superfluous features

can be used to inform the student where there are perceived problems with what

has been submitted. In this example the problems are associated with

inconsistencies between the tutor’s model solution and the student submission.

Student Design
Diagram

Tutor Design
Diagram

Assignment brief

Page 73

Figure 3.6: A diagram depicting the relationships contained within the

student diagram and that supplied by the tutor

3.4 Models for the Assessment Framework

This section presents an overview of several high-level techniques for how a

framework could analyse and feed back upon the student submission. No

attempt is made, at this stage, to consider the internal operational detail of the

techniques presented. The focus, instead, is to consider the inputs that such

techniques might require and to identify and discuss the operational challenges

that each technique presents. The relative merit of each technique is presented.

The section concludes with the identification of the technique that was adopted

for the implementation phase of the remainder of this research.

The context of the approach taken is illustrated in Figure 3.7 below. The student

submission consists of two separate artefacts: a design diagram and an

implementation.

TD - tutor
design

SD- student design

Consistent Features
of SD and TD

Omissions from
the student
submission

Erroneous
features

Page 74

Figure 3.7: Initial Context of an Automated Feedback System

If the two artefacts were treated as disjunctive, non-related deliverables it would

be possible to divide the automated feedback system into two distinct

components, one focusing on the design and one on the implementation (Figure

3.8).

Figure 3.8: A system that marks the design and the code disjunctively

Tutor
supplied
code with
mark
scheme

Student
design

Tutor
supplied
design
with mark
scheme

Student
code

Feedback
for design

Feedback on
code

Analysis
of

design

Analysis
of code

Student
design

Student
code

Automated
feedback
system

Tutor
supplied
design with
mark
scheme

Tutor
supplied
code with
mark
scheme

Feedback
on design

Feedback
on code

Page 75

However, such an approach does not lend itself to focusing upon the interface

between the code and the design. When considering feedback for consistency

there needs to be a mechanism to link the structure of the student code to that

of the accompanying design. This applies to the cases when the design and

implementation are submitted together, the submission date is different for each

deliverable (to allow for feedback to be given on the design before the student

embarks upon the implementation) or when the design and implementation

assignments are contained within two separately delivered modules (integrative

assignment). In all cases, the student is required to produce more than just a

design and a separate implementation. The two artefacts need to be consistent

as together they represent a solution to the same problem.

3.4.1 Inferred Structures and Generating Feedback

There are several models that emerge for the framework. This section discusses

three. Each offers a different perspective upon the student submission and

consequently a different input into feedback generation. The models are

illustrated (Figures 3.9 to 3.14 inclusive) using the following notation:

The first method requires, using an appropriate tool, forward engineering the

student’s diagram to produce an idealised structure for the submitted code

(Figure 3.9). In this context, forward engineering aids the comparison by

Data processing

Input/Output data

Internally generated data – not exported

Page 76

identifying the features contained in the diagram artefact and representing them

using the syntax and notation of the code artefact. A comparison could then take

place between the student’s code and that inferred from the design (Figure

3.10). This is referred to as a code-centric method. The superfluous and

consistent features identified in the comparison could be used to generate

feedback.

Figure 3.9: Forward Engineer the Design to produce the inferred code
structure

Figure 3.10: A model comparing the student code with the inferred code
structure.

Similarly, the second method requires, with an appropriate tool, reverse

engineering the student code (Figure 3.11) to produce an idealised structure for

the design diagram. A comparison could then take place between the student’s

design and that inferred from the code (Figure 3.12). This is referred to as a

design-centric method.

Compare
code Student

code

Inferred code
structure

Forward
engineer

Student
design

Inferred code
structure

Student
code

Code-centric feedback upon
consistency between the student
code and the inferred code
structure

Page 77

Figure 3.11: Reverse engineer the code to produce the inferred design

structure

Figure 3.12: A method that focuses upon comparing the student design
with the inferred design structure

An implementation of the framework could adopt either one of the design or

code-centric methods. Feedback would be generated from the consistent and

superfluous features identified. It is possible to imagine a tool that would

implement both methods. Ideally, the results from the code and design-centric

approaches would be the same. This third method is one that would triangulate

between the outputs of the first and the second (Figure 3.13).

Compare
designs Student

design

Inferred
design

structure

Student
design

Student
code

Reverse
engineer

Inferred design
structure

Design-centric feedback upon
consistency between the student
design and the inferred design
structure

Page 78

Figure 3.13: Triangulate the Assessment of the student submission with
both the inferred code structure and inferred design
structure

Triangulation offers the benefit of confirming that errors in the student

submission have been identified by both the design and code-centric

approaches. It also offers the potential of reporting upon any errors that may

have been missed by one method but identified in the other.

3.4.2 Framework Support for Tutor Input

The methods presented in section 3.4.1 focused exclusively upon consistency in

the student submission. However, a tutor may wish to provide additional

feedback to the student. For example, the tutor might wish to feedback upon the

quality of the design, its accompanying implementation or both in addition to

those issues surrounding consistency. In this case, the tutor would need to

specify the specific design or implementation features to be looked for and fed

back upon. This enhancement, applied to the design-centric method, is

illustrated in Figure 3.14.

Triangulate

Student
code

Inferred code
structure

Student
design

Inferred design
structure

Feedback upon consistency
between the submitted

design and its
implementation

Page 79

Figure 3.14: A model that generates feedback on consistency between the

student submitted design and implementation in addition to
feedback upon the design features requested by the tutor

3.4.3 The Model Adopted for the Remainder of this Research

To further this research a proof-of-concept tool was developed. This tool served

to facilitate the expansion, experimentation and evaluation of the methods and

techniques discussed above. The tool adopted the method illustrated in Figure

3.14 above. Specifically, this consists of:

1. searching the student design diagram in isolation for errors typically made

by novice designers and generating feedback on their presence/absence.

This is treated as default tutor guidance for the tool as discussed above;

2. reverse engineering the student code to produce an inferred design

diagram;

3. comparing the inferred diagram with that submitted by the student and

generating feedback upon their consistency.

The design-centric approach was adopted as it requires a comparison of two

diagrams (one submitted by the student and one inferred from the source code).

This presented the opportunity to investigate how existing diagram assessment

techniques could be extended and applied to the multiple artefact context.

Automated
feedback
system

Student
design

Inferred design

structure

Tutor supplied
guidance on

design
features to be
fed back upon

Feedback on consistency
between code, design coupled
with feedback guided by tutor

input

Page 80

Additionally, research undertaken identified the existence of many round-trip

engineering tools that offered the potential of extracting a design structure from

the submitted source code (reverse engineering). Tutor supplied guidance took

the form of specifying that the tool search for typical errors found in novice

student design diagrams as articulated in Bollujo and Leung (2006) and

Thomasson et al (2006). This is discussed further in Chapter 4 where an

implementation of the framework is presented.

3.5 Reverse Engineering and Support for Feedback

The previous section signalled the intention to develop an automated feedback

tool that followed the design-centric model as illustrated in Figure 3.14. This

requires reverse engineering the submitted source code to produce an inferred

design. This is a significant challenge as the student submission potentially

contains errors and/or erroneous data. How reverse engineering techniques

resolve such ambiguities in the context of assessing the student submission is

an issue that needed to be addressed. Therefore, this section presents a

definition of reverse engineering and highlights how it can be used to infer a

design from source code and discusses how feedback can be generated by

comparing the inferred design with the original design diagram.

Page 81

Chikofsky and Cross (1990) define reverse engineering as the process of

analysing a subject system to:

a) identify the system’s components and their interrelationships

and

b) create representations of the system in another form or at a higher

level of abstraction.

Tilley (2000) indicates that there are three canonical activities that characterise

reverse engineering. These are data gathering, knowledge management and

information exploration. Data gathering is concerned with parsing (static

analysis) or running (dynamic analysis) the source code that is being reverse

engineered. Knowledge management is concerned with creating domain models

that represent and reason about the constructs and elements contained within

the source code. Information exploration involves navigating, traversing and

analysing the models produced. Tilley (2000) argues that it is information

exploration that increases the understanding of the source code.

A review of the literature reveals that there are many examples of how reverse

and forward engineering can be used to infer structures between design

diagrams and source code. Examples include the engineering of Java byte-code

to UML diagrams (Cooper et al. 2004), OMT diagrams to C++ source code

(Antoniol et al 2000), Java source code to UML diagrams (Alphonce and Martin

2005) and C++ source code to UML diagrams (Matzko et al. 2002). Examples of

producing a diagram from the source code by extracting static relationships can

be found in Cooper et al. (2004) and Matzko et al. (2002).

The literature also reveals examples of feedback being generated by comparing

a given and inferred design. Examples include feedback to professional

developers (Cooper et al. 2004) and feedback to novices in a pedagogic context

(Alphonce and Ventura, 2005). Cooper et al. (2004) automatically compared

Page 82

their diagrams with those generated by a CASE tools to identify the differences

between the design and implementation. A limitation of their technique is that

they did not attempt to resolve automatically the differences identified. It required

human intervention through structured code review to undertake any resolution.

Alphonce and Ventura (2003) presented a tool that enabled a user to draw UML

class diagrams from which Java source code was generated. It also generated

UML diagrams from a given Java source. Alphonce and Martin (2005) made it

compatible with Eclipse (Eclipse Foundation 2006). They used it in the teaching

of introductory object-oriented programming and claimed benefits for both the

tutor and the student. The benefit for the tutor was in obtaining an accurate

design diagram from the student’s submitted source code. However, they

required the results to be analysed manually. They argued that doing this would

“…make it significantly more likely that a student’s design grade will actually

reflect the quality of their design.” (Alphonce and Martin 2005). The benefit for

the student was to be able to traverse between the source code and design

views of their submission.

Consequently, Alphonce and Martin (2005) recognised the need to provide

feedback to the student on issues at the design-code interface. Their tool

supported the ability for the student to be able to traverse between the source

code and design views of the submission. However, the approach is not

automated and the focus of the feedback is to enable the student to iterate

through the design and code views of their development.

This section has presented a brief overview of examples taken from the

literature of the application of reverse and forward engineering techniques.

Whilst many examples exist, few focus on the goal of producing formative

Page 83

feedback in a pedagogic context. There remains the need to investigate whether

or not existing case tools are robust and appropriate enough to handle errors

and erroneous data in the student submission. The problem of how to generate

formative feedback from a comparison between the inferred structures also

remains to be addressed. Chapter 4 will elaborate further on these issues and

will discuss the findings of applying Borland’s JBuilder Enterprise (a

commercially available round-trip engineering tool) to this pedagogic context.

3.6 Multiple Artefacts and Transformations

This section discusses the issue of transforming an artefact from one domain to

another. We wish to do this because it is easier to compare the artefacts’

features when they are described using a common syntax and semantics.

Examples include

• Forward engineering an artefact from the UML class diagram domain to

produce inferred source code.

• Reverse engineering an artefact from the Java source code domain to

produce an inferred diagram.

• Transforming both the design and inferred diagrams into a domain

required by a tool that will automatically compare them.

Figure 3.15 provides an illustrative example of where two artefacts describe their

respective features using notations with different syntax and semantics.

Page 84

Figure 3.15: Diagram to illustrate the concepts of components and
multiple artefacts (as illustrated in Figure 3.4) applied to the
case where a comparison is being made between a student
design diagram and student submitted code

When the two artefacts being compared originate from different domains a direct

comparison cannot be made because they have different forms of syntax and

semantics to represent their respective features e.g. a student diagram (SD)

expressing its features using the syntax and semantics of the UML class

diagram, and its implementation (SC) using the syntax and semantics of the

Java programming language.

It would be possible to perform a comparison between SD and SC if either one

could be transformed into the domain of the other. There are potentially many

possible ways of doing this. The sections above have illustrated how forward

and reverse engineering techniques could be used to perform the

transformation. The example below discusses the issues surrounding a

transformation from the diagram domain D to the Java domain J. The

underpinning pedagogic context is that of a student exploring the connection

between the design, the code and the software development process. Feedback

upon how these artefacts compare will aid the student in his/her learning. The

Student Design
Diagram (SD)

Student Source
Code (SC)

Assignment brief

Page 85

artefact is described in the syntax and semantics of the UML class diagram. The

transformation produces an artefact described in the Java programming

language syntax and semantics. This requires applying a transformation

mapping, f, to the features contained in the design diagram to produce

corresponding features contained in the Java program domain. This is illustrated

in Figure 3.16 below:

Figure 3.16: Diagram to illustrate mapping of a student diagram into the

program co-domain

We can define f to be a mapping that takes a student diagram (described using

the UML class diagramming, syntax and semantics) to produce an inferred

student program (using the java syntax and semantics). The mapping f takes

each feature in SD and for each creates one new feature in the image set SDc .

We assume that f is one-to-one, onto and that no additional features are added.

Having transformed the student diagram into domain J we can then undertake a

meaningful comparison as outlined above as both artefacts now describe

features using the same syntax and semantics.

In an ideal world, transformation f would not lose or add anything i.e. no extra

features are introduced and none are lost during the transformation. In reality the

Student UML class diagram

SD

 Inferred Java Program

SDc

f

f

Page 86

transformation function, f, may lose some of the features contained in SD or may

add some extraneous data. This is illustrated in Figure 3.17 below.

Figure 3.17 : the image set of a domain transformation f (generating no

errors) and f’ (generating additional errors)

When comparing the inferred code (SD
c’) with the code submitted by the student

there is a need to distinguish between erroneous features contained in the

student’s original submission and those that may have been generated by the

transformation process.

3.6.1 Transforming artefacts into the domain of an automated
framework

This section discusses how the framework can compare artefacts independently

of the representations used to describe them. The two representations could

each be mapped to a third representation. For example, it might be possible to

map both a design diagram (represented using the UML class diagram syntax

and semantics) with an inferred diagram (using the same syntax and semantics)

into XML, and this is what has been pursued in this research. The required

Student UML class diagram

SD

Inferred Java Program with
Extraneous features

SD
c

f

f’

f

f’

SD
c’

Page 87

transformations can be undertaken in the same fashion as discussed above.

Figure 3.18 below illustrates this approach.

Figure 3.18 : A diagram to illustrate how two linked artefacts could be
compared by transforming them into the domain of the

framework.

Artefacts B and C are being automatically compared. This could represent, for

example, comparing a design diagram with an inferred diagram, source code

with inferred source code or an architectural design with a building specification.

Each of these three artefact sets describe their features using different

representations. Ideally, an implementation of the framework would be

independent to any domain-specific representation. The mappings, f and g,

transform the features contained in artefacts B and C respectively into the

domain required by the automated framework.

Transforming artefacts in this fashion leads to the development of an automated

framework that is not dependent upon the syntax and semantics of the artefacts

being compared. This offers the advantage of a single implementation of the

framework being able to process artefacts from a wide-range of domains.

B

B
a

C

C
a

Feedback

Automated
Feedback
System

f g

Page 88

3.7 Summary

This chapter introduced the concept of multiple artefacts. Definitions for a

construct, an artefact and its features were presented. Comparing artefacts

identifies consistent and superfluous features from which formative feedback

can be generated. These concepts were applied to the design/implementation

context. The student submission has been scoped to that of a UML class

diagram and an accompanying Java source code implementation. Several

models for an assessment framework were discussed. Code-centric, design-

centric and triangulation models were presented. Reverse and forward

engineering techniques were proposed as a means of identifying one artefact’s

features and transforming them into the domain of another. The issue of a

transformation creating errors in the resultant artefact has been identified and

discussed. The advantages of artefacts describing their features using a tool-

specified language and syntax has been highlighted. The design-centric model,

blended with searching for typical undergraduate diagram errors, has been

signalled as the basis for the development of a proof-of-concept development

tool. The development of this tool is discussed in Chapter 4. Chapter 4 will report

upon an experiment undertaken to apply reverse/forward engineering tools to

this pedagogic context. It presents a heuristic developed for the comparison of

two artefacts and identifies how this can be used to automatically generate

formative feedback.

Page 89

Chapter 4. Development of the Formative Assessment Tool

The previous chapter presented a framework for the automatic generation of

formative feedback. It introduced the concept of the student submission

consisting of multiple artefacts. This chapter presents an application of the

framework. A formative assessment tool is presented.

The aim of developing the tool was to facilitate the expansion, application,

experimentation and evaluation of the multiple artefact concepts discussed in

the previous chapter. The tool automatically generates formative feedback

based upon an analysis of the student submission.

The submission serves as an illustrative example of the multiple artefact

context. It consists of two artefacts – a UML design diagram and an

accompanying Java implementation. This chapter presents the mechanism

adopted to describe the features contained in both artefacts and the heuristic

developed to analyse these descriptions.

Section 4.1 provides a high level overview of the developed tool. Section 4.2

discusses the application of forward and reverse engineering techniques to the

submitted artefacts. Section 4.3 defines the grammar structure developed to

describe the artefacts’ features. Section 4.4 presents the heuristic developed to

compare the artefacts and generate formative feedback. Section 4.5 discusses

the mechanism adopted to search for typical errors made by undergraduate

students. Section 4.6 presents an example of two artefacts submitted by a

student and the feedback generated by the tool.

Page 90

4.1 High Level System View

This section provides an overview of the developed assessment tool and the

context under which it operates. The educational goal is to provide formative

feedback as the student’s learning moves from high to low levels of abstraction.

There is no restriction placed upon the number of times that a student can

submit their work to the tool: the rationale being that it provides formative

support to aid learning rather than a summative judgement on what has been

learnt.

Figure 4.1 contains a flow chart that illustrates the main system components.

The process takes the student submission as input, analyses it and produces

formative feedback. The input consists of two artefacts: a student submitted

diagram and its accompanying implementation. Initially, the two artefacts are

transformed into a format that the tool can recognise. This translation is referred

to as tagging and is currently undertaken manually. The split between the

manual and automated parts of the process are considered further in section

4.2. The result of tagging a student design diagram is referred to as a tagged

diagram. Similarly, the result of tagging an implementation is referred to as a

tagged implementation. Analysis of the artefacts takes place in two stages. The

first compares them and the second looks for design errors contained in the

tagged diagram. Formative feedback is produced at the end of each stage. The

remaining sections in this chapter provide further details on these system

components.

Page 91

Figure 4.1 Overview Diagram of the Developed Assessment Tool

End

Transform the Diagram and the
Implementation into the XML domain

Compare the Tagged Diagram with the
Tagged Implementation

Start

Generate formative
feedback

Tagged diagram Tagged implementation

Analyse the Tagged Diagram Informed by
typical Student Design Errors

Generate formative
feedback

Get student diagram and implementation

Automated Manual

Page 92

4.2 Inferred Artefacts through Forward and Reverse Engineering

An experiment was undertaken to see the extent to which existing reverse and

forward engineering tools could provide the basis for both producing inferred

artefacts (as defined in chapter 3) and for describing an artefact’s features. The

resultant inferred artefacts were analysed to ensure that the originals’ features

were being preserved and that no erroneous or extraneous features had been

added.

The assessment tool provides feedback upon the student submission. In our

example, the students produced their UML diagrams using ArgoUML (Tigris,

2006), an open source CASE tool. They produced their Java source code using

an IDE tool; either Eclipse (Eclipse Foundation, 2006) or JBuilder (Borland,

2008). An experiment was undertaken to investigate the round trip capabilities

of these tools. The aim was to investigate their suitability for producing inferred

artefacts and automating their description. A small Java program (using

JBuilder) and a UML class diagram (using ArgoUML) was devised for testing

purposes. This test program and its associated diagram contained features that

would be typical of that expected from a student submission. The diagram and

program comprised of a class inheritance hierarchy based around the concept

of an employee and an additional class containing a main routine that interfaced

with it. The main routine implemented a container relationship through the

creation of a list of employees. Both tools supported the import and export of

data through the XML Metadata Interchange (XMI) protocol (Object

Management Group, 2007). The experiment consisted of forward engineering

the UML diagram to produce source code (Figure 4.2) and reverse engineering

the source code to produce a design diagram (Figure 4.3).

Page 93

Inputs Design Diagram in Argo UML
Outputs Java Source Code
Intermediate output XMi representation of the design, Design diagram in

JBuilder format

Figure 4.2 Forward Engineering: from Code to Diagram

Inputs Java Source Code
Outputs Design Diagram in ArgoUML
Intermediate output Design diagram in JBuilder format, XMi representation of

the design,

Figure 4.3 Reverse Engineering: from Diagram to Code

The experiment raised some issues about the utilisation of these tools to

produce inferred artefacts.

Forward engineering the design diagram successfully produced skeletal code

for each class contained in the original diagram. The class names, attributes,

methods and their parameters (with the exception of the constructors) were

preserved in the process. It also preserved the inheritance hierarchy. However,

the constructors of the child classes, the container relationship and its

associated cardinality data were lost and not reflected in the inferred code.

Java
Source
Code
using

JBuilder

Produce
Diagram
in
JBuilder

Export
diagram
in XMI
format

Import
XMI file

into Argo
UML

Diagram
in

ArgoUML
Tool

Export
to XMI
format

Import
into

JBuilder

Generate
diagram

Java
Source
Code in
JBuilder

ArgoUML
Design
Diagram

Page 94

Reverse Engineering the source code produced a diagram that preserved the

number, name, methods, parameters and attributes of the classes. It also

preserved the inheritance hierarchy. However, parameters into the constructors

of the child classes and the container relationship were lost and not reflected in

the diagram.

Hence, both reverse and forward engineering preserved the inheritance

hierarchy and the signature of each class (though note the exception of

parameters in class constructors). However, both processes failed to model the

interaction (i.e. a container relationship). Further experimentation traced the

problem to that of scoping for dynamically created objects. The XMI was not

capturing the relationships embedded in the source code when the method of

one class instantiated and created an object from another class.

An examination of the literature revealed that the problem of automatically

reverse engineering a program’s dynamic behaviour is a topic of ongoing

research (Merdes and Dorsch 2006). This is particularly challenging for object

oriented programs as the gulf between static specification and run-time

behaviour is particularly wide (De Pauw et al. 1994). Features such as dynamic-

binding and polymorphism pose limitations to static analysis (Lienhard et al.

2007). Hence, tools that analyse source code provide satisfactory results for

static diagrams but their suitability for the dynamic behaviour of an application is

limited (Merdes and Dorsch, 2006).

This was a disappointing find and problematic for developing the feedback tool.

The static models produced by both reverse and forward engineering could

have formed the basis upon which a semi-automated approach to generating

feedback could have been developed. This would have required manually

modifying the models to reflect the submission’s dynamic behaviour. This semi-

Page 95

automated approach was rejected as the resultant process would be too

dependent upon the format and nuances of the models produced by the round-

trip tools. Additionally, the pedagogic context was that of dynamically creating

and manipulating objects. Hence, the tools used by the students could not be

used to describe and infer artefacts from their submission. Consideration was

given to finding or developing alternative tools. This was rejected as it would

restrict the choice of tools that a tutor could ask the students to use.

Consideration was also given to providing the students guidance on how to

produce source code that circumvented this issue. However, the tool was meant

to feed back to students on what they had done. It was considered to be

pedagogically inappropriate to insist on a particular way of coding to ensure that

the relationships were being picked up by the round trip process.

Hence, using round-trip engineering tools to infer and describe artefacts proved

to be problematic. In retrospect, it would have been possible to remove the need

for a round-trip tool and automate the description of the diagram and its source

code as individual, separate entities. However, the focus of the research was

upon comparison aspects of the tool and the evaluation of the feedback

generated. Consequently, in order to progress the research, inferred artefacts

were described by hand and produced through a manual analysis of the student

submission.

4.3 Describing an Artefact’s Features

Tagging is the mechanism by which an artefact’s features are described in a

format that the tool can recognise. It enables the tool to read and analyse the

artefacts.

The eXtensible Markup Language (XML) was chosen as the language used to

tag the artefacts because:-

Page 96

• It is a standard developed and recognised by the world wide web

consortium (http://www.w3.org).

• It enables the developer to describe and specify information with user-

defined, meaningful labels.

• It supports the flexible, description and encapsulation of complex nested

data structures. Thomas et al [2005] recognised that the imprecise nature

of student diagrams necessitated a method for describing a diagram that

was flexible and extendable.

• It provides an effective method for transferring data between systems.

• Open source Java routines are publicly available to developers to support

the parsing of documents that contain data that has been described using

XML.

A grammar was developed to tag the artefacts contained in the student

submission. The grammar is bespoke and specific to our illustrative example.

The application of the tool to other contexts and examples will require the

development of an alternative grammar. However, the grammar is sufficiently

generic to be applicable to most contexts that contain classes, objects and the

relationships between them. In representing an artefact in a manner that

facilitates such an extraction, tagging addresses the question of how to

represent both a diagram and its implementation in a manner that enables the

automation of a comparison to take place.

In this illustrative example the constituent features are:

• classes (including their names and their method and attribute

signatures).

• relationships between these objects (including the type of relationship,

associated direction and cardinality).

Page 97

Artefacts from other contexts will contain different sets of features. However, the

principle of adopting a tagging mechanism as a means of describing an

artefact’s features is one that can be applied to most multiple artefact contexts.

The tagging grammar developed is illustrated in Figure 4.4 below.

Figure 4.4 Diagram to Illustrate the Developed Tagging Grammar

The student submission had to be described in a manner that enabled

1. A comparison to be made between artefacts.

2. Typical errors made by students to be searched for and, if found, fed

back upon.

Artefact

Structure
Description

Class Description
Relationship
Description

Source of
Artefact

Relationship
Count

Class Count

Class Name

Number, Name and
Signature of
Methods

Number, Name and
Signature of
Attributes

Type of class

Link to Related
Classes

Relationship Name

Confirmation that the
relationship connects
two classes (boolean)

Reference to the
classes that the
relationship connects

Start and end
Cardinality

Page 98

 Figure 4.5 illustrates those components of the tagging system that have been

designed to specifically support the identification of typical design errors. It

illustrates how the tagging grammar has been informed by the work of:

1. Thomasson et al. (2006) and Bolloju and Leung (2006) who identified a

range of typical errors found in design diagrams produced by novice

developers.

2. Tselonis et al. (2005) who identified a set of metrics that can describe

diagrams in a manner that supports the matching of two diagrams

Page 99

Figure 4.5 Table to illustrate how the tagging convention adopted
supports typical student errors identified in the literature

(continued overleaf)

Feature Source Tag Comment

Missing
Cardinality
Details

Bolloju and Leung
(2006)

<relationship> This tag identifies the
relationship/association and its
cardinality between the two classes

Incorrect
Naming of
Class

Bolloju and Leung
(2006)

<class> This tag contains a field that identifies
the name of the class.

Incorrect
Naming of
Association

Bolloju and Leung
(2006)

<relationship> This tag identifies the type of
relationship that is being used to link
two classes.

Wrong
Cardinality

Bolloju and Leung
(2006)

<relationship> This tag identifies the
relationship/association and its
cardinality between the two classes

Wrong
Association

Bolloju and Leung
(2006)

<relationship> This tag identifies the
relationship/association between two
classes. It facilitates a check being
made upon the two classes that have
been linked and the type of
relationship associated with the link.

Wrong
location of
attributes

Bolloju and Leung
(2006)

<class>

<attribute>

This tag contains fields that name the
attributes of the class. Feedback upon
this type of error can be generated
through searching each class tag and
comparing the name of the attributes
with that being sought.

Wrong
location of
operations

Bolloju and Leung
(2006)

<class>

<method>

This tag contains fields that name the
methods. Feedback upon this type of
error can be generated through
searching each class tag and
comparing the name of the methods
with that being sought.

Presence of
derived or
redundant
attribute

Bolloju and Leung
(2006)

<class>

<attribute>

This tag contains fields that name
each attribute and provides the total
number of attributes.

Not all
classes have
been
identified

Thomasson et al.
(2006)

<structureDescri
ption>

In their study 1 out of 180 students
only managed to identify all 7 of the
expected classes. Hence, this tag
contains a “class count” field.

Page 100

Figure 4.5 Table to illustrate how the tagging convention adopted
supports typical student errors identified in the literature

The tagging grammar divides an artefact into three main sections. These are:

1. A high level description of the artefact and its structure.

2. A description of the classes contained in the artefact.

3. A description of the relationships contained in the artefact.

Non
referenced
Class

Thomasson et
al. (2006)

<class>
<relationship
>

59.9% of student submissions in their study
exhibited this feature. A non-referenced
class can be identified from the class tag (it
is neither a parent nor a child) and the
relationship tag (it does not appear at either
end of a connector).

Reference to
non-existing
class

Thomasson et
al. (2006)

<class>
<relationship
>

28.3% of the student submissions in their
study exhibited this feature.

Single
Attribute
Misrepresentat
ion

Thomasson et
al. (2006)

<class>
<attribute>

32.2% of the student submission in their
study exhibited this feature. This is
subsumed in Bolloju and Leung’s [2006]
‘wrong location of attribute’.

Multiple
Attribute
Misrepresentat
ion

Thomasson et
al. (2006)

<class> Instead of identifying a separate class the
student has identified the methods and
attributes as components of another class.
The class tag identifies the name and
number of both attributes and methods.

Number of
Incident
Connectors
(relationships)
and their types

Tselonis et al.
(2005)

<structureDe
scription>
<relationship
>

The number and types of relationships
contained in the diagram can be
determined from these tags

Component
Type

Tselonis et al.
(2005)

<class>
<relationship
>
<structureDe
scription>

The number and type of components
contained in the diagram can be
determined from these tags.

Adjacent
Components

Tselonis et al.
(2005)

<class> The number of components that each class
is connected to is stored as a field within
this tag.

Labels Tselonis et al.
(2005)

<class>
<relationship
>

Both these tags contain fields for a
label/name.

Page 101

The high level structure description consists of:

• The source of the artefact (design diagram or implementation).

• The number of classes contained in the artefact.

• The number of relationships contained in the artefact.

The description of each class contained in the artefact consists of:

• The name of the class.

• The number of methods and the name and signature of each method.

• The number of attributes and the name and signature of each attribute.

• The type of the class (parent, child, container, containee) and a reference

to the respective related class(es).

The description of each relationship in the artefact consists of:

• The name of the relationship (inheritance, aggregation, dependency,

association).

• A reference to the classes that the relationship connects.

• A confirmation that the relationship connects one class to another.

• A reference to the start and end cardinality of the relationship.

An example of a student design diagram, its tagged representation and a BNF

grammar of the complete XML tagging grammar can be found in Figures 4.6,

4.7 and Appendix A respectively.

This section has presented the grammar developed for using XML to describe

an artefact’s features. It has highlighted how its development was informed by

work in the literature on the identification of typical errors that students make in

producing design diagrams. It noted that the grammar is bespoke to the

Page 102

illustrative example. Two generic principles have been identified. The first was

the need to transform the artefacts into a syntax understood by the tool. The

second was the need to develop a grammar to enable the tool to analyse the

features contained in the artefact.

Figure 4.6 A Student-submitted UML Design Diagram

Page 103

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<AML>
<comment>
Structure Diagram for sample New-07-08-02
Date Created 7th July 2009
Structure Created from student-submitted diagram

</comment><StructureDescription source = "student diagram" ClassCount = "4"
RelationshipCount = "3" />

<class id = "1" name = "Worker" attributeCount = "6" methodCount = "13" IsParent = "Yes"
childCount = "3" IsChild = "No" ParentCount = "0" IsContainer = "No" ContaineeCount = "0"
IsContainee = "No" ContainerCount ="0" AdjacentComponents = "3" AdjacentRef = "2 3 4" >

<attribute id = "att1.1" name = "employeeNumber" type = "int" />
<attribute id = "att1.2" name = "employeeType" type = "String" />
<attribute id = "att1.3" name = "firstName" type = "String" />
<attribute id = "att1.4" name = "lastName" type = "String" />
<attribute id = "att1.5" name = "address" type = "String" />
<attribute id = "att1.6" name = "telephoneNumber" type = "String" />

<method id = "meth1.1" name = "getEmployeeNumber" />
<method id = "meth1.2" name = "getEmployeeType" />
<method id = "meth1.3" name = "getEmployeeFirstName" />
<method id = "meth1.4" name = "getEmployeeLastName" />
<method id = "meth1.5" name = "getEmployeeFirstName" />
<method id = "meth1.6" name = "getEmployeeAddress" />
<method id = "meth1.7" name = "getEmployeeTelephoneNumber" />
<method id = "meth1.8" name = "setEmployeeNumber" />
<method id = "meth1.9" name = "setEmployeeType" />
<method id = "meth1.10" name = "setEmployeeFirstName" />
<method id = "meth1.11" name = "setEmployeeLastName" />
<method id = "meth1.12" name = "setEmployeeAddress" />
<method id = "meth1.13" name = "setEmployeeTelephoneNumber" />
<child id = "child1.1" ClassId = "2" />
<child id = "child1.2" ClassId = "3" />
<child id = "child1.3" ClassId = "4" />
</class>

<class id = "2" name = "Researcher" attributeCount = "5" methodCount = "10" IsParent = "No"
childCount = "0" IsChild = "Yes" ParentCount = "1" IsContainer= "No" ContaineeCount ="0"
IsContainee = "No" ContainerCount ="0" AdjacentComponents = "1" AdjacentRef = "1" >

<attribute id = "att2.1" name = "annualSalary" type = "UserDefinedType" />
<attribute id = "att2.2" name = "consultancyHours" type = "int" />
<attribute id = "att2.3" name = "consultancyPay" type = "int" />
<attribute id = "att2.4" name = "performancePayAnnual" type = "int" />
<attribute id = "att2.5" name = "performancePayMonth" type = "int" />

<method id = "meth2.1" name = "getAnnualSalary" />
<method id = "meth2.2" name = "getConsultancyHours" />
<method id = "meth2.3" name = "getConsultancyPay" />
<method id = "meth2.4" name = "getPerformancePayAnnual" />
<method id = "meth2.5" name = "getPerformancePayMonth" />
<method id = "meth2.6" name = "setAnnualSalary" />
<method id = "meth2.7" name = "setConsultancyHours" />
<method id = "meth2.8" name = "setConsultancyPay" />
<method id = "meth2.9" name = "setPerformancePayAnnual" />
<method id = "meth2.10" name = "setPerformancePayMonth" />

<parent id = "parent2.1" ClassId = "1" />
</class>

Page 104

<class id= "3" name = "Fundraiser" attributeCount = "1" methodCount = "2" IsParent = "No"
childCount= "0" IsChild = "Yes" ParentCount = "1" IsContainer = "No" ContaineeCount = "0"
IsContainee = "No" ContainerCount = "0" AdjacentComponents = "1" AdjacentRef = "1" >

<attribute id = "att3.1" name = "annualSalary" type = "int" />

<method id = "meth3.1" name = "getAnnualSalary" />
<method id = "meth3.2" name = "setAnnualSalary" />

<parent id = "parent3.1" ClassId = "1" />

</class>

<class id= "4" name = "Administrator" attributeCount = "3" methodCount = "6" IsParent = "No"
childCount= "0" IsChild = "Yes" ParentCount = "1" IsContainer = "No" ContaineeCount = "0"
IsContainee = "No" ContainerCount = "0" AdjacentComponents = "1" AdjacentRef = "1" >

<attribute id = "att4.1" name = "annualSalary" type = "int" />
<attribute id = "att4.2" name = "overtime" type = "int" />
<attribute id = "att4.3" name = "overtimePay" type = "int" />

<method id = "meth4.1" name = "getAnnualSalary" />
<method id = "meth4.2" name = "getOvertime" />
<method id = "meth4.3" name = "getOvertimePay" />
<method id = "meth4.4" name = "setAnnualSalary" />
<method id = "meth4.5" name = "setOvertime" />
<method id = "meth4.6" name = "setOvertimePay" />

<parent id = "parent4.1" ClassId = "1" />
</class>

<relationship id = "rel1" name = "inheritance" nondangling = "BothEndsConnected" startclassid =
"1" startcardinaility = "none" endclassid = "2" endcardinality = "none" />

<relationship id = "rel2" name = "inheritance" nondangling = "BothEndsConnected" startclassid=
"1" startcardinality = "none" endclassid = "3" endcardinality = "none" />

<relationship id = "rel3" name = "inheritance" nondangling = "BothEndsConnected" startclassid=
"1" startcardinality = "none" endclassid = "4" endcardinality = "none" />

</AML>

Figure 4.7 The Resultant Tagged Student Diagram

4.4 A Heuristic for Comparing Artefacts and Feedback Generation

This section describes the heuristic developed to compare two artefacts and

generate formative feedback. The underpinning pedagogic aim is to feed back to

the student upon their submitted design and implementation. The rationale for

doing so is that the student can reflect upon their adherence to the software

development lifecycle and their understanding of the relationship between design

and implementation abstractions. The feedback consists of positive reinforcement

in addition to identifying where mistakes have been made and further learning is

Page 105

needed. Feedback is generated at two levels: holistic and specific. Holistic

feedback reports the total number of features in the artefacts and the number for

which a match could/could not be found. Specific feedback contains details on

their comparison.

The approach adopted is to initially compare the two submitted artefacts and

identify their consistent and superfluous features (terms defined in chapter 3).

Consistent features are positively reinforced. Guidance for further learning is

provided for the superfluous features. This approach poses several challenges

including:

• How do you compare the artefacts and identify the consistent and

superfluous features?

• What criteria do you use to determine consistent and superfluous features?

• How do you produce feedback that is pertinent to the student’s context from

a generic heuristic that compares features contained in artefacts?

The heuristic consists of visiting each feature of one artefact and comparing it with

all features of the other. The output of the comparison is a matching score and a

list of feedback comments for each pair of features. The matching score is a metric

used to indicate the extent to which the features match. A high score indicates a

strong match; a low score indicates little similarity. The list of feedback comments

are generated during the calculation of the matching score and provide detail of

why it is that a feature pair has produced a high/low matching score. Feedback for

high scores takes the form of positive reinforcement and for low scores directs the

student towards further learning. Feedback for scores that are neither high nor low

contain a balance of developmental and reinforcing comments. This balance is

determined by the calculated score.

Page 106

The matching score is a calculated metric describing how well the features of the

two artefacts compare. The score ranges from 0 (representing no match) to 10 (full

match). Its calculation is based on a comparison between the artefacts’ features.

In this example, these features are the classes and the relationships between

them. The matching score for two classes is determined by comparing their

signatures. The signature consists of the class name, its attributes and its

methods. It is calculated by the following formula:

MatchingScore = (ScoreOnClassNames + (ScoreOnMethods + ScoreOnAttributes)/2) /2

 where

• the ScoreOnClassNames metric is a value that ranges from 0 to 10. If the

two names match exactly the metric is 10.

• The ScoreOnAttributes and ScoreOnMethods metrics are values that range

from 0 to 10. Each is calculated as a function of the name and number

being the same for both classes.

A higher weighting is allocated to the class names as it is a particularly strong

identifier given that the student has named the class in both the diagram and

implementation. This would not necessarily be the case when a comparison is

being made with a class name coming from a tutor-supplied solution and one

that came from the student submission. At the point of calculating the score,

feedback comments are generated and stored in a table. Positive reinforcement

is stored for high scoring constituent parts whilst lower scores store

developmental feedback. For example, a comparison might result in a high

score on the class methods but a low score on attributes. Feedback would be

that the interface between classes is understood (reinforcement) but that more

work needs to be undertaken in modelling an object’s data (developmental).

Figure 4.8 and 4.9 below illustrates how the matching score is determined for

comparing the methods contained in each class. The tool currently has the

Page 107

tolerance values, feedback comments and resultant matching scores embedded

within it. Tutor modification of these parameters would be possible through a

tool that enabled change of the parameters detailed in Appendix B.

Test Val Feedback Matching Score

The number of methods in class 1 is
equal to the number of methods in
class 2

AND

The number of the methods in class
1 >0 and the number of methods in
class 2 >0

These two classes have the
same number of methods.

methodCountScore
=10

The number of methods in class 1 is
equal to the number of methods in
class 2 +- methodCountTolerance

AND

The number of the methods in class
1 >0 and the number of methods in
class 2 >0

These two classes differ slightly
in the number of methods that
each contains.

methodCountScore
= 5

The number of methods in class1 is
different to the number of methods in
class 2 (outside the
methodCountTolerance)

AND

The number of the methods in class
1 >0 and the number of methods in
class 2 >0

There is a significant difference
in the number of methods
specified for each class.

methodCountScore =
0

The number of methods in class1 is
zero

OR

The number of methods in class2 is
zero

One of your classes does not
contain any methods. This
suggests that you probably need
to revisit your notes on how you
identify the methods of a class

methodCountScore =
0

The number of methods in class1 is
zero

OR

The number of methods in class2 is
zero

Neither of these two classes
contain any methods. This
suggests that you probably need
to revisit your notes on how you
identify the methods of a class.

methodCountScore =
0

Figure 4.8. Table to illustrate how the matching score for the number of
methods contained in a class is determined

Page 108

Test Val Feedback Matching Score

The number of methods in class 1 is
equal to the number of methods in
class 2

AND

The names of the methods in class 1
are equal to the names of the
methods in class2

There is a good match for both
the method name and number
for these two classes.

methodNameScore
=10

The number of methods in class 1 is
equal to the number of methods in
class 2 +- methodCountTolerance

AND

The names of the methods in class 1
are equal to the names of the
methods in class2 +-
methodCountTolerance

These two classes match well in
their methods both on name and
number with only minor
differences between the two.

methodNameScore
= 7

The number of methods in class1 is
different to the number of methods in
class 2 (outside the
methodCountTolerance)

AND

All the names of the methods in class
1 are equal to the names of a subset
of the methods in class 2 (where the
number of methods in class 1 is less
than the number in class2)

Some of the methods match well
in these two classes but a
significant number don’t. You
probably need to visit your notes
on analysis and design and look
again at how you identify the
methods of a class.

methodNameScore =
5

The number of methods that match in
name and number are less than the
tolerance

The methods described in these
two classes suggest that you
think these are very different
entities. You need to revisit your
notes on identifying and
implementing objects.

methodNameScore =
0

Figure 4.9. Table to illustrate how the matching score for the names of the

class methods is determined

The methodCountTolerance is set to a value of 2. This value was chosen as too

high a value could result in a (false-positive) high matching score.

The formula for calculating the overall score on methods is:

ScoreOnMethods = (methodCountScore + methodNameScore)/2

The formula for calculating the overall score on attributes is similarly calculated

and is detailed in the user handbook (Appendix B).

Page 109

Figure 4.10 illustrates the data structure used by the tool to store the calculated

matching scores and feedback comments. It is referred to as a feedback table. In

this example both artefacts contain a (differing) number of class features.

Artefact1

Artefact 2

Class 1 Class 2 Class T

Class 1 MatchData11 MatchData12 MatchData1T

Class 2 MatchData21 MatchData22 MatchData2T

Class S MatchDataS1 MatchDataS2 MatchDataST

Class S

Class 1

Score On Class Names

Score On Attributes

Score On Methods

Overall Matching Score

The Classes Match with each other
(boolean)

List of Feedback Comments

Figure 4.10 Diagram to Illustrate the Feedback Table when comparing two

artefacts

The rows of the table are indexed by the number of classes in the first artefact and

the columns by the number in the second. Each element of the table stores the

data for the classes being compared, a matching score and a list of feedback

comments. The list is populated during the comparison.

Minimal stemming was used when comparing names. This reason for this was

that, in our example, both artefacts are being produced by the same student. The

student has decided what to call the features contained in both the code and

Page 110

diagram artefacts. If our example involved comparing a student diagram with one

produced by a tutor then a more sophisticated stemming, or similar, technique

such as that advocated by Thomas et al. (2009) or Jayal and Shepperd (2009)

would need to be deployed.

Once all class pairs have been compared they are revisited. A class from one

artefact could have matched well with several different classes from the other. The

next step is to identify the best match for each pair. This is done by identifying the

pair with the highest matching score. A threshold value is set for the score

(currently set at 7 from a maximum of 10). Two classes are considered to have

matched only if their score exceeds this value. Feedback is generated by iterating

through the list of comments for the class pair contained in the feedback table.

This feedback could be developmental, reinforcing or a combination of both as it

will have been determined at the point at which the comparison was made.

Classes from either artefact which fall below the threshold are those for which a

match could not be found. These are reported and developmental comments are

fed back to the student. A similar approach is taken to compare the relationships

contained in the artefacts.

4.5 Searching for Typical Errors

In addition to comparing artefacts the developed tool supports the generation of

feedback through an analysis of a single artefact. In our example, analysis of the

student diagram in isolation was restricted to searching for a subset of typical

errors made by students when developing design diagrams. Specifically, two

common errors (Thomasson et al. (2006) and Thomas et al. (2007)) made at the

design stage were searched for:

• Classes in the diagram are not related to any other components

(isolated/extraneous).

Page 111

• Relationships contained in the diagram do not connect two classes

(dangling).

An expanded list of errors could have been produced from the literature or

alternatively produced locally by a tutor. In either case the heuristic would need

enhancing. However, for the context of this illustrative example the list was

restricted to that indicated above. A flow chart describing the heuristic developed

is presented in Figure 4.11.

Figure 4.11 Flow chart of the Heuristic to Analyse a Diagram in Isolation

Start

Get Tagged Diagram

Search for Isolated
Classes

Search for
Dangling

Relationships

Store Search
results in feedback

table

Store search
results in feedback

table

End

Page 112

The feedback generated is illustrated in Figure 4.12. It shows the list of

errors/conditions the heuristic searched for and the feedback, supplied by the

tutor, if the errors/conditions were found.

Condition Feedback

Diagram Contains Isolated Classes At least one class in your design
diagram is shown not to be related to
any others.

You need to do some further reading
on how a program that consists of
message passing objects works.

Diagram Does Not Contain Isolated
Classes

Your diagram does not contain any
isolated classes. Well done.

This shows that you understand that a
program works through objects being
related to each other.

All relationships in the Diagram are
appropriately connected

All of the relationships that you have
identified have a start class and an
end class.

This is good as it shows that you have
understood that relationships are used
to connect the classes contained in
your diagram.

Diagram Contains one or more
Dangling Relationships

You have drawn a relationship that
does not connect two classes.

You need to revisit how you identify
and represent relationships between
objects.

Diagram Does not Contain Any
Relationships

Your design diagram does not contain
any relationships.

You need to revisit your understanding
of object orientation and how objects
are related to each other.

Figure 4.12 Table to show the feedback generated by the tool when

analysing the student diagram

Page 113

Whilst the feedback generated is context specific to our illustrative example the

general principle here is that a mechanism is required to:

1) identify the conditions upon which feedback needs to be generated.

2) specify the feedback to be given to the student when these conditions are

met.

4.6 An example

An illustrative example is presented below based on a student design diagram

(Figure 4.13), a diagram inferred from the student code (Figure 4.14) and the

feedback generated by the heuristic (Figure 4.15). The tool generates nine

feedback comments. Comments 1 and 2 are produced by searching for tutor

specified errors as discussed in section 4.5, comments 3 to 5 constitute holistic

feedback and 6 – 9 specific feedback as discussed in section 4.4.

Page 114

Figure 4.13 A Submitted Student Design Diagram

Page 115

Figure 4.14 The Diagram inferred from submitted source code.

Page 116

Feedback Ref Feedback 28

Comment 1 Your diagram does not contain any isolated classes. Well done.

This shows that you understand that a program works through objects
being related to each other

Comment 2 All of the relationships that you have identified have a start class and an
end class.

This is good as it shows that you have understood that relationships are
used to connect the classes contained in your diagram.

Comment 3 The structure contained in your diagram is topologically close to that
contained in your implementation.

This means that there is a good match between your design diagram
and your implementation.

Comment 4 The number of Classes in your Design Diagram is 4 and in your
implementation you have 5 (9 in total)

There are 4 classes that match well when comparing your design with
your implementation (8 from 9)

There is 1 class for which a match could not be found

Comment 5 The number of Relationships in your Design Diagram is 3 and in your
implementation you have 4 (7 in total)

There are 3 relationships that match well when comparing your design
diagram with your implementation (6 from 7)

There is 1 relationship (from 7) for which a match could not be found

Comment 6 Class Worker from your program is a close match to Class Worker from
your design

The names of these two classes match well

Both classes contain the same number of attributes

The attributes in these two classes match well on both name and
number

These two classes have the same number of methods

Class Fundraiser from your program is a close match to Class
Fundraiser from your design

The names of these two classes match well

Both classes contain the same number of attributes

The attributes in these two classes match well on both name and
number

These two classes differ slightly in the number of methods that each
contains

Page 117

Class Researcher from your program is a close match to Class
Researcher from your design

The names of these two classes match well

Both classes contain the same number of attributes

The attributes in these two classes match well on both name and
number

These two classes differ slightly in the number of methods that each
contains

Class Administrator from your program is a close match to Class
Administrator from your design

The names of these two classes match well

Both classes contain the same number of attributes

The attributes in these two classes match well on both name and
number

These two classes differ slightly in the number of methods that each
contains

Comment 7 Your implementation contains a class called charSystem which is
sufficiently different from all those contained in your design diagram to
suggest that there is a mis-match between what you have designed and
what you have implemented

Comment 8 You have shown that you understand how to implement the relationships
that you have identified in your design. Well done

You have shown this through :-

Your design and program both relating class Worker and class
Fundraiser with a inheritance relationship

Your design and program both relating class Worker and class
Researcher with a inheritance relationship

Your design and program both relating class Worker and class
Administrator with a inheritance relationship

Comment 9 The aggregation relationship in your program that connects class
charSystem with class Worker

Could not be matched with any relationship in your design.

You need to think about how your design matches your implementation
for all classes and objects contained in your system

Figure 4.15 The Feedback generated by the tool following an analysis of the
submitted student design diagram (Figure 4.12) and source code
(Figure 4.14).

Page 118

Figure 4.16 below presents a pseudo-code description of how the tool generates

the feedback illustrated in Figure 4.15.

1. Upload_artefacts;

2. Decode_artefacts_into_internal_java_based_data_structures;

3. search_student_diagram_artefact_for_typical_novice_errors;

4. generate_feedback_on_structure;

5. For each feature in artefact 1

6. For each feature in artefact 2

7. compare_features;

8. compute_matching_ score_and_access_score_related_feedback_comment;

9. store_matching_score_and_feedback_for _the_artefact_pair;

10. End inner_loop;

11. End outer_loop;

12. For each feature in artefact 1

13. Identify_the_feature_in_artefact2_with_the_highest_matching_score;

14. If (highest_maching_score >= threshold)

15. set_matching_boolean_flag_to_true_for_ this_feature_pair;

16. increment_count_for_number_of_matching_features;

17. else

18. set_matching_boolean_flag_to_false_for_this_feature_pair;

19. end if;

20. end loop;

21. output_holistic_feedback;

22. output_detailed_feedback_on_matching_features;

23. output_detailed_feedback_on_nonmatching_features;

Figure 4.16 A pseudo-code description of how the tool generates feedback

A user manual for the tool has been provided in Appendix B. This provides further

detail upon the feedback comments, the test conditions under which they are

generated and the details of how the matching scores for the artefact’s features

have been calculated. Below is a line-by-line description of the pseudo-code

illustrated in Figure 4.16.

Page 119

Line 1

The tool requires as input two artefacts described using the grammar defined in

Figure 4.4.

Line 2

This routine utilises imported Java routines (McLaughlin 2001) to use the

Document Object Model (www.w3.org/DOM/) to extract the features described in

the two artefacts. The result is to populate two internal tool-specific lists: a list of

features contained in artefact 1 and a separate list for artefact 2. In our worked

example this relates to the student design diagram and its implementation

respectively.

Line 3

This routine accesses the features contained in the student diagram and searches

for common diagrammatic errors as described in Figures 4.11 and 4.12

respectively. It generates feedback based upon the presence/absence of these

errors. In Figure 4.15 of our worked example, this relates to feedback comments 1

and 2 respectively.

Line 4

This routine provides feedback as a result of comparing the structure of the two

artefacts . In Figure 4.15 of our worked example, this relates to feedback comment

3. The table below indicates the test condition and the feedback generated.

Page 120

Test Val Feedback Comment

classCount1 == classCount2

&&

relCount1 == relCount2

The structure contained in your diagram is

topologically equivalent to that contained in

your code.

This means that there is a strong match

between your design diagram and your

implementation.

diff(classCount1, classCount2) <=

classCountTolerance

&&

diff(relCount1, relCount2)<=relCountTolerance

The structure contained in your diagram is

topologically close to that contained in your

code.

This means that there is a good match between

your design diagram and your implementation.

diff(classCount1, classCount2) +

diff(relCount1, relCount2)

>

(classCountTolerance + relCountTolerance)

There are significant differences in the

structure of your design diagram when

compared to your code.

You need to do some more reading on the

software development lifecycle and the

relationship between design and

implementation.

Key

classCount1 = number of class features contained in artefact 1.

classCount2 = number of class features contained in artefact 2.

relCount1 = number of relationship features contained in artefact 1.

relCount2 = number of relationship features contained in artefact 2.

classCountTolerance = 1

relCountTolerance = 1

Lines 7 to 9

These routines compare the signature of two features, one described in artefact 1

and the other in artefact 2. A matching score is calculated as described in section

4.4. Figure 4.8 and 4.9 illustrates the feedback generated for each score. These

feedback comments are pre-determined and uploaded at run time. Consequently

should a tutor wish to change comments or apply the tool to a different context

he/she would need to provide an alternative set of comments for the features and

their matching scores.

The routine on line 9 stores the relevant scores and feedback comments in a

feedback table as detailed in Figure 4.10.

Page 121

These routines generate feature-specific feedback comments. In Figure 4.15 of

our worked example, these are feedback comments 6 to 9.

Line 12-20

These routines identify the highest matching score for the features contained in

each artefact pair. If this score is greater than or equal to a threshold value

(currently set to a value of 7 from a maximum score of 10) then the artefact pair

are considered a match and the boolean match_found flag for this feature pair is

set to true. If the highest matching score for the artefact pair is less than the

threshold, the flag is set to false.

Line 21

This routine produces the holistic comments 4 and 5 in Figure 4.15. The routine

uses the number of matching artefacts found (Line 16) and the flag set for each

matching feature pair (Line 18) to provide feedback on the total number of features

contained in each artefact and how many matching features were detected.

Line 22

This routine accesses the matching_boolean_flag for each artefact pair (the value

of this flag is set on line 9). Where the flag is true, the routine accesses the stored

feedback strings (these were determined and set by the routine on line 9) and

outputs them to the student’s feedback file. In Figure 4.15 of our worked example,

these are feedback comments 6 and 8.

Page 122

Line 23

This routine identifies those features from both artefacts for which a match has not

been found. The routine names the features and outputs a predefined feedback

comment to the student’s feedback file. In Figure 4.15 of our worked example,

these are feedback comments 7 and 9.

4.7 Summary

This chapter has presented the development of an automated feedback tool

applicable to a two-artefact submission (a diagram and some Java source code).

The tool was illustrated by applying it to a specific example.

A heuristic was presented that identified the similarity between features contained

in two artefacts. Generating formative feedback based upon similarity is

challenging as there are aspects of the student submission that match well and

those which are erroneous. What is needed is the generation of positive

reinforcement for those features that match well and developmental feedback for

those that do not. The solution presented measures the similarity between

features by calculating a matching score. The higher the score the greater the

similarity between the features. The method of linking different feedback

comments to a specific (range) of matching scores provides the means for

discriminating between developmental and reinforcing feedback. It offers several

benefits including:

• It enables a blend of reinforcing and developmental feedback to be

generated for the student submission.

• In principle it enables a distinction to be made between the generation of

context-specific feedback and a generic heuristic that compares features

contained in artefacts.

Page 123

The chapter identified several generic principles that emerged from the example

presented:

• There is a need to transform all the artefacts into a single format (a

representation having a defined syntax) recognised by the tool.

• A tagging mechanism is required to perform the transformation.

• A grammar is required to describe an artefact’s features.

Capturing the dynamic behaviour embedded within the submission proved to be

more challenging than originally anticipated. The decision to manually tag the

submission was taken to expedite this research. How to capture dynamic

behaviour embedded in the student submission in a format that enables the

automation of formative feedback is an item of further work discussed in chapter 7.

The next chapter discusses the evaluation of the feedback tool. This involved

applying the tool to a sample of student submissions. Evaluation of the feedback

generated was undertaken by both a group of students and members of the

computer science education community.

Page 124

Page 125

Chapter 5. Evaluation Methodology

5.1 Introduction

The previous chapters have discussed how automating the assessment of

diagrams could be extended to the case where a student submits a design

diagram with an accompanying implementation. They describe the development of

a proof-of-concept tool that takes the student submission as input and

automatically generates formative feedback. This chapter details how the

effectiveness of this approach has been evaluated. Evaluation has focused upon

the formative assessment feedback provided by this approach and this chapter

discusses the methodology adopted for the evaluation. Diagrams, with their

implementations, were collated and divided into two sets: one reserved for

experimentation and development of the tool and the other reserved exclusively

for evaluation. Both the student voice and a set of human markers, taken from

members of the computer science education community, were included in the

evaluation process via questionnaires. The chapter examines the issue of

variability between individual markers and discusses the steps taken in the design

of the evaluation to mediate against this.

Section 5.2 provides an overview of the experimental approach taken. Section 5.3

discusses the data collated and how it was divided into experimental and

evaluative sets. Section 5.4 discusses how a set of both summative grades and

formative comments were generated from the evaluative data set by a team of

human markers. Section 5.5 discusses how variations in the marking by individual

markers were considered. Section 5.6 discusses the design and development of

the two questionnaires that were used in the evaluation of the formative comments

generated by the tool. It describes how the first questionnaire was used to

Page 126

undertake a comparison between human-generated comments and those

generated by the tool and how the second was used to solicit student input into the

evaluation. Section 5.7 discusses how variations in the evaluation of feedback

comments by individual evaluators were considered whilst section 5.8 discusses

how the first questionnaire returns were analysed to evaluate the feedback

comments generated by the tool. Section 5.9 discusses how the second

questionnaire was used to gain the students’ evaluation of the tool-generated

feedback.

5.2 Overview of the Evaluation Process

This section provides an overview of the evaluation process adopted in the

evaluation of this research with later sections providing the detail.

The focus of the experimentation is to evaluate the effectiveness of the

automatically generated formative feedback comments. This is complicated

because humans often do not agree on what constitutes good marking or what

constitutes good feedback (Yorke, 2003). Therefore, it was decided to compare

automatically-generated feedback against human-generated feedback. If the

automatically-generated feedback was at least as good as the human-generated

feedback, it can be said that the tool generates appropriate and adequate

feedback.

Page 127

There were two main phases in the evaluation. Phase 1 collected feedback

comments from both the tool and a team of expert markers. Phase 2 evaluated the

tool’s comments. In particular:

Phase 1 consisted of:

1. The collection of a corpus of suitable student submissions.

2. The collection of feedback on the submissions generated by both the

automatic process and several human expert markers.

and phase 2 consisted of:

1. The evaluation of the feedback by human domain experts to determine its

quality.

2. The evaluation of the feedback by students based upon the work that they

submitted.

Figure 5.1 provides a summary of all the steps in the approach. The approach is

thorough but complex. It is scalable in both number and complexity of the student

submission. However, it is reliant on the evaluators having the time both to mark

the student submission and to evaluate the feedback comments. Identifying, and

soliciting the co-operation of, the human expert markers needed to make this time

commitment manageable will be a challenge if the scale were to be increased.

Experiments of this nature found in the literature are often based on small student

samples (one or possibly two cohorts) and a small number of markers. This

experiment is large by comparison. The timescales were manageable for the

majority of the evaluators.

Evaluating the feedback required a comparison between tool and human

generated comments and consequently three experiments to take place:-

• An experiment to test for significant differences between summative grades

generated by a team of markers.

Page 128

• An experiment to test for significant differences between members of a

team of evaluators who had rated formative feedback comments.

• An experiment to test for significant differences in the evaluative ratings for

the tool-generated comments when compared to those that were human-

generated.

The sections below discuss these experiments and Appendix E presents the detail

of the statistical methods deployed.

Page 129

Figure 5.1 Diagram to illustrate the process of comparing tool-generated

comments with those that were human-generated.

Collect student coursework submissions.
(section 5.3).

Divide the submissions into 2 groups:
one for experimentation and one for
evaluation. (section 5.3).

Develop a Tool Using
experimental group.
(chapter 4).

Ask a team of markers to grade the
student submissions in the evaluative
group and produce feedback comments.
(section 5.4).

Use the summative grades for the 3 sets
of comments to identify any significant
differences in the grades. (section 5.5).

Collate feedback comments, having
removed those that came from the
marker(s) who produced the significantly
different grade(s) (section 5.7).

Get the developed tool to analyse
the submissions in the evaluative
group and collate the formative
feedback comments.(section 5.7).

Experimental
group

Evaluative
group

Distribute the same 3 sets of tool-generated comments to each
evaluator and use their evaluations to identify significant differences
between team members. (section 5.7).

Remove the returns from the significantly different evaluators and use
the remainder to compare the evaluations for the tool-based comments
with those for the human-generated (section 5.8).

Distribute a random sample of tool- and human-generated comments to
each team member and ask for each set to be evaluated. (section 5.8).

Ask a sample of students to evaluate the tool-generated comments.
(section 5.9).

Evaluative
group

Include 3 sets of comments that are the
same for all markers. (section 5.4).

Page 130

5.3 Student Submission Data

This section presents an overview of the data that has been collated in order to

evaluate the tool. The division of the data into two sets, one for experimentation

and one for evaluation is discussed.

Six data sets consisting of student submissions were collated over four years and

two Higher Education Institutions. Each student submission consisted of a design

diagram and its accompanying implementation. Appendix C (part 3) provides an

example assignment brief. All briefs used in this research were authentic and real

assignments i.e. they have been used in the assessment of the undergraduates’

understanding of object orientation. Consequently, they have been subject to

external examiner moderation as is common-place in UK HEIs’ quality assurance

procedures (Quality Assurance Agency for Higher Education, 2011). Whilst the

scenario within the briefs changed across the four years (e.g. a class hierarchy of

employees vs. a class hierarchy of shapes), the briefs themselves were consistent

in that they required the student to design and implement a system based upon a

class hierarchy, a container relationship and polymorphic message passing. The

tagging grammar in Appendix A places no restriction upon the number of classes

or relationships contained in an artefact and hence, within the confines of the

object oriented context, the tool is scalable for more complex assignment briefs.

The submission data was randomly divided into test and development sets (see

the table below). The development set was used to develop the tool and was not

used in the evaluation. Figure 5.2 illustrates the initial use of a small number of

student submissions to inform the tool’s development with the number rising as the

tool matured. This time-line reflects the evolutionary development of the tool and

the need to ensure that sufficient submissions were left to undertake the planned

evaluation.

Page 131

The test set was not examined prior to its use in this evaluation. 168 student

submissions were reserved for the test set. This number was determined by two

factors. The first was that it needed to be a multiple of 12 as this was the number

of experts who had agreed to participate in the evaluation (see section 5.4 below).

The second was that there needed to be sufficient to send a sample of scripts to

each expert.

Institution Academic

Session

No. of Student

Submissions

No. used for

development

No.

reserved

for

evaluation

Institution A 2006-07 29 5 24

Institution A 2007-08 30 6 24

Institution A 2008-09 29 5 24

Institution B 2008-09 80 32 48

Institution B 2009-10(sem1) 23 11 12

Institution B 2009-10 (sem2) 59 23 36

Figure 5.2: The division of student submissions into developmental and
evaluation sets.

5.4 Phase 1 Generating Feedback Data based on the Student Submission

Experts in the computer science education community were used in the evaluation

of this research. Each expert marker was asked to mark a group of student

submissions that were randomly allocated from the evaluative set. The expert

markers were asked to produce both a summative grade and a set of formative

feedback comments based upon the student submission.

Page 132

Twelve human expert markers (academic staff members at 9 different UK HEIs)

were recruited to grade and to provide feedback on the student submissions. The

number of experts needed to be sufficient in order to avoid bias from one

individual or from one part of the HEI sector. Twelve were chosen to achieve a

broad range of views whilst keeping the number of people involved in the

evaluation manageable. They were chosen to ensure representation from both the

research-led (pre-92) and teaching-led (post-92 former polytechnics and Colleges

of Higher Education) sectors. Grading used a pre-defined marking scheme to

produce a summative percentage grade. The markers were instructed to write

comments as they would normally provide to a student to reinforce and support

the student’s learning. No restriction was placed upon the number of comments

that they could generate. After discussion with the team, each marker was given

ten student submissions to mark. The feedback from the markers indicated that

this was the greatest number we could expect them to return considering that they

were employed full-time, their time on this project was additional and voluntary and

this was the first of two evaluation activities that the team would be asked to

participate in.

The main rationale for adopting this approach was that it provided a bank of

feedback comments, generated by human experts, which could be used to

compare against those comments generated by the tool. A secondary benefit was

that, in marking a subset of the student work, the team became familiar with the

context of the student submission and gained experience in generating feedback

that they felt was both appropriate and which would usefully inform the student

upon his/her learning. This familiarisation was important as the second phase of

the evaluation asked them to compare and evaluate comments that were

generated by both the tool and the other expert markers. Three members of the

Page 133

marking team withdrew from the process citing pressures of work as the reason.

The remaining nine members remained for the duration of the research project.

Of the 10 submissions sent to each marker, 3 were common to all markers and 7

were unique and distinct. The rationale for this choice was that having all markers

grade the same (sub) set of student work enabled a check to take place for

marking consistency within the team. The 3 common student scripts were chosen

randomly from the evaluative set. Those remaining in the evaluative set were

formed into groups with 7 student scripts allocated to each group. Each member of

the evaluative team was then randomly allocated a group. The rationale for this

was that a team member was allocated a set of student work from one year and

from one institution. This minimised the number of assignment specifications that

they needed to familiarise themselves with. Adopting this approach generated a

summative grade and a set of feedback comments for 66 student scripts.

In summary, this section has discussed how a team of expert markers was used to

generate a bank of both formative feedback comments and summative percentage

grades as a consequence of marking the student submissions. The method and

rationale used to randomly allocate student submissions to members of the team

has been discussed. A (sub) set of assignments were chosen to be marked by all

members of the team for the purpose of verification.

5.5 Testing for Consistency within the Team of Expert Markers

When assessing student work there can be variability in both the grades and

formative comments generated by individual markers. There was a need to

remove the comments from any team member who was viewing the student

submission (statistically) significantly different to the others. Two statistical tests

were undertaken to test for significant differences in the summative grades

Page 134

produced by each marker. Section 1 of Appendix E provides the detail for both.

As all markers returned their grades as a percentage mark, the first involved

calculating the (population) mean mark and the standard deviation for each of the

3 marked common scripts. The following null hypothesis was postulated:-

H0: For this assignment, the mark generated by this individual team member is not

significantly different to the marks generated by the marking team.

And the alternative hypothesis was:

Ha: For this assignment, the mark generated by this individual team member is

significantly different to the marks generated by the marking team.

As the population mean and standard deviation were known a two-sided, 95%

confidence Z test was undertaken to test the null hypothesis (Diamond and Jeffries

2001).

The second test undertaken, advocated by Gwet (2010), was complementary to

the method described above. The test takes advantage of the fact that all nine

members of the team graded the same student submissions. They did so utilising

a marking scheme that contains assessment grade criteria. This criteria specifies

the features of the student submission required for the award of a grade A

(excellent) through to E (fail). In this circumstance, Gwet (2010) advocates the

use of the AC1 coefficient. This involves evaluating the extent to which two raters

(expert markers) agree when they have analysed data and classified it into several

non-overlapping categories. In this case, the raters classified the same 3 student

scripts into the non-overlapping grades of A through to E. The AC1 coefficient

was calculated and was used to measure the strength of agreement between the

respective team members. The formative comments from two team members were

Page 135

removed from the remainder of the evaluation as their grades were not statistically

in agreement with the rest of the team.

The rationale for adopting two tests was that the Z test is one that is mature and

established and thus offered the potential of a comparison to be made with other

work. The AC1 coefficient is relatively new and consequently does not offer the

same comparison potential but does however focus specifically on inter-rater

reliability.

Upon completion of this process a set of formative feedback comments had been

produced, generated by a consistent set of reviewers and based upon an analysis

of the student work. Each new bank of comments could now be viewed holistically

as if they were derived from a single population. They constituted a suite of

representative formative feedback comments against which tool-generated

comments could be compared.

5.6 Design of the Evaluative Questionnaires

Likert scales are widely used for measuring attitudes, opinions and preferences

(Goeb et al. 2007). A typical example of such use that is now commonplace in the

field of Higher Education in the United Kingdom is the National Student Survey.

This survey presents final year undergraduate students with 22 statements. Each

statement addresses aspects of the undergraduate educational experience.

Participating students are asked to respond (positively or negatively) to each

statement using a 5-point Likert scale.

The evaluation of this research centres on collating and evaluating informed

opinion. Consequently, an integral component of the evaluation of this research is

the adoption and use of a Likert scale. However, there are some statistical

challenges associated with such an adoption. These include the following:

Page 136

• The number of points on the scale.

• The format of the scale.

• Whether or not a mid-point should be included on the scale.

• Interpretation of Likert data

Appendix D discusses these challenges in detail and the rationale for adopting a

5-point Likert scale (and by implication the inclusion of a mid-point) with named

points (strongly agree, agree, neutral, disagree, strongly disagree) and choosing

the median and mode for describing and interpreting Likert data.

5.6.1 Questionnaire Used with the Evaluators

This section presents the questionnaire that was used to survey the team of

evaluators with regard to evaluating the formative feedback comments generated

by the tool. The three categories of quality, relevance and coverage that the team

were invited to rate the comments against are introduced and defined. The Likert

scale adopted in the evaluation is specified.

The team of evaluators were presented with a set of comments and asked to rate

them. The comments came from a sample that included both those that were

generated by the team of expert markers and those that were generated by the

tool. This meant identifying suitable criteria against which the comments would be

rated. This is a substantial problem because, for example, giving students detailed

and comprehensive feedback may not be a good policy as a long list of issues that

need to be addressed may not always be read and acted upon. There is a need to

strike a balance between issues that represent a misunderstanding of the main

learning outcomes being assessed and those that are relatively minor or

tangential to the aims of the assignment brief.

Fourteen evaluative statements were designed against which evaluators would be

asked to rate the comments. The statements were derived from considering three

broad criteria of :

Page 137

• Quality

• Relevance

• Coverage

Quality is concerned with the extent to which the comments adequately described

the item being fed back upon and the extent to which it provided support to the

students for their learning.

Relevance is concerned with, for the student submission as a whole, the priority

given to feeding back on one particular issue at the expense or even omission of

another. For example, it is possible to imagine that good quality feedback that is

focused in one area of the submission is at the expense of generating feedback of

a similar quality in another. The issue of relevancy applies when this second area

relates to a fundamental error in the student submission or is crucial to supporting

the student’s learning.

Coverage is concerned with ensuring that feedback comments are generated

across the spectrum of all issues of relevance contained in the student

submission.

Each team member was presented with 14 evaluative statements. The team

member was asked to judge the feedback comments against these statements

utilising a Likert scale. The Likert scale adopted was a 5-point named scale for all

three sets of statements. Five-point was chosen because of its reliability over

scales with fewer points (McKelvie 1978). It also contained a mid-point to minimise

results that may be misleading (Matel and Jacoby 1972). The same five point

scale was used for all statements to ensure consistency of responses by the team

(Norvell 1977). The names of the scale were similar to those observed by Goeb et

al. (2007) as being common-place for such scales:

Page 138

• Strongly Agree

• Agree

• Neither Agree nor Disagree

• Disagree

• Strongly Disagree

The 14 statements that each team member was asked to consider for each set of

feedback comments they were asked to review were:-

Quality

1) The majority of comments contained in this set are clear.

2) The majority of comments contained in this set are concise.

3) The set of comments provide sufficient detail in order for a student to know

what concept or issue is being fed back upon.

4) The set of comments contained in this set provide sufficient detail in order

for a student to know what further work they need to undertake.

5) The set of comments will help the student with his/her learning.

Relevance

6) The comments contained in this set are relevant for this type of

assignment brief and the associated indicative learning outcomes.

7) The comments contained in this set address important areas of strength

found in the student submission that is considered to be of significance.

8) The comments contained in this set address important areas of weakness

found in the student submission that is considered to be of significance.

9) It is clear which concepts the comments in this set are addressing.

10) The comments in this set will help the student with his/her learning.

Page 139

Coverage

11) This set of comments, when viewed in its entirety, fully encapsulates all

pertinent feedback needed for the student to recognise where there are

areas of strength in the submission.

12) This set of comments, when viewed in its entirety, fully encapsulates all

pertinent feedback needed for the student to recognise where there are

areas of weakness in the submission and where further learning is

required.

13) This set of comments would provide a useful enhancement to the type of

comments that I gave during stage 1 of this evaluation.

14) This set of comments would have been sufficient to replace the type of

comments that I gave during stage 1 of this evaluation.

Each question was designed to be as unambiguous as possible, covering a single

idea, in an attempt to ensure consistent interpretation across all members of the

evaluative team. The questions were comprehensively reviewed by a group of

academic colleagues and a set of guidance notes were produced and sent to each

member of the team (see Appendix C).

This section presented the questionnaire that was used to survey the team of

evaluators with regard to evaluating the tool- and human-generated formative

feedback comments. The 14 statements that the team were asked to rate the

comments against were introduced and their grouping into the three categories of

quality, relevance and coverage was highlighted. The questionnaire that was sent

to the team of evaluators was discussed and the Likert scale adopted in the

evaluation was specified. Appendix C presents the questionnaire together with the

explanatory notes given to the team of evaluators.

Page 140

5.6.2 Questionnaire Used with the Student Body

This section presents the questionnaire that was used to solicit the student view in

the evaluation of this research.

Each student was presented with a set of feedback statements that had been

generated by the tool as a consequence of analysing the work submitted. The

work consisted of a design diagram and an accompanying implementation. The

students were asked to rate the feedback comments generated by the tool against

a set of statements utilising the same 5-point Likert scale used with the evaluators.

The statements were informed by the literature discussed in Chapter 2 relating to

the use of the student body to evaluate tools that had been developed to automate

the assessment of diagrams. Consequently, the following questionnaire was used

and was derived from an amalgamation of those used by Higgins et al. (2009) and

Tselonis (2008).

• The feedback presented to me is helpful.

• The feedback presented to me is clear.

• The feedback presented to me is relevant to my solution.

• It is clear to me what concept the feedback is addressing.

• The feedback presented to me will help me to improve my solution.

• I will use this feedback to research further into this topic area.

• The feedback has helped me identify the strengths of my submission.

• The feedback has helped me identify the weaknesses contained in my

submission.

• The feedback represents a useful enhancement to that which I received from

my tutor.

• The feedback I received is sufficient enough for it to replace that which I

received from my tutor.

Page 141

5.7 Phase 2 Ensuring Consistency between Evaluators

Returning to the evaluators’ experiment, phase 1 produced a set of summative

grades and feedback comments from a (randomly chosen) sample of 66 student

scripts. These were generated by the team of 9 expert markers. The summative

grades from (randomly chosen) three of these scripts were used to check that the

expert markers were consistent with each other in their marking. The remaining 63

sets were collated into a bank. Those comments generated by the tool were also

collated and stored in a separate bank. Both banks were used in phase 2 of the

evaluation.

Phase 2 consisted of distributing the feedback comments among the evaluators

for review. Evaluation was conducted by asking each evaluator to complete the

questionnaire for each set of comments received. This section describes how the

comments were distributed among the evaluators and the statistical analysis

undertaken to ensure that the evaluators were viewing the formative comments

consistently between each other. Section 5.8 discusses the distribution and those

tests taken in order to compare ratings given to the tool-based comments with

those for the comments generated by the team of expert markers.

It is not necessarily the case that an individual expert marker who marked the

student scripts significantly differently from the rest of the team would also have

reviewed formative feedback comments differently (and vice versa). Hence, there

needed to be a test in phase 2 to ensure consistency within the team when

evaluating feedback comments. Consequently, the tool was applied to three

(randomly chosen) student submissions and the feedback generated was collated.

Each team member was sent all three sets of feedback to evaluate and asked to

complete the questionnaire.

Gwet‘s (2010]) AC2 coefficient was used to analyse the inter-rater reliability

between the evaluators. The AC2 coefficient is an extension to AC1 to address

Page 142

data that is ordinal. Likert data is ordinal and hence, for this phase of the

evaluation, the AC2 coefficient was preferable to AC1. Section 2 of Appendix E

discusses the AC2 coefficient in detail.

There was consistency in the team when rating feedback comments against 13 of

the 14 questionnaire statements. Hence, it was these 13 statements that were

used to compare ratings between tool- and human-generated comments. There

was no consensus for statement 2 (the issue of conciseness) and hence this was

not used in the comparison.

In summary, this section has discussed the steps taken to militate against

significant differences in the individual members of the reviewing team when rating

formative feedback comments. It described how the comments generated by the

tool for 3 randomly chosen scripts were utilised to do this. It described the

rationale for choosing the statistical technique undertaken to test for significant

differences between individual members of the team of evaluators.

5.8 The Allocation and Evaluation of Comments by the Evaluative Team

The 63 sets of comments generated by the expert markers were used in the

evaluation of the tool. This section describes the distribution of comments to

members of the team of evaluators and the statistical tests employed to compare

the feedback comments generated by the tool with those generated by the team of

expert markers.

Phase 2 consisted of asking a team of evaluators to evaluate a sample of

comments. The sample was randomly generated from both banks of comments

ensuring that:

Page 143

1. No member of the evaluative team was asked to evaluate comments that

they themselves had generated.

2. Each member of the team was asked to evaluate a (sub)set of comments

generated by the tool in addition to a (sub)set of comments generated by

the evaluative team.

3. The evaluative team were were not told which comments had been

produced by the tool and which had been generated by the team.

Each team member’s evaluation was undertaken separately and independently to

the other members. Each member was sent 10 sets of comments to evaluate.

Each member was asked to complete 10 questionnaires, one for each of the 10

sets of comments.

Figure 5.3 shows how comments from both banks of comments were (randomly)

distributed amongst the 9 team members. It also shows how each team member

was sent the same 3 sets of comments to enable a statistical test to be undertaken

to check for variations between individual team members as discussed in section

5.7 above.

The completed questionnaires were used in the evaluation of the tool-generated

comments. For each of the 13 statements in the questionnaire, the returns from

the evaluators produced 32 Likert scores for tool-generated comments and 31 for

those that were human-generated. Consequently, for each statement, it was

possible to calculate the population median Likert score and to consider the 32

Likert scores for the tool-generated comments to be a sample taken from a

population of 63 scores in total.

Page 144

Evaluator
reference

No. of sets of
comments taken
from the tool bank

No. of sets of
comments taken from
the team bank

No of sets of
comments that were
common to all
markers

Marker2 4 3 3

Marker3 3 4 3

Marker4 4 3 3

Marker5 3 4 3

Marker6 4 3 3

Marker7 3 4 3

Marker8 4 3 3

Marker9 3 4 3

Marker10 4 3 3

Figure 5.3: A table to indicate the allocation of tool and team based
comments to members of the evaluative team.

Two statistical tests were performed to compare the evaluations of the human-

and tool-generated comments. These were a sign test and a Mann-Whitney U test.

They were chosen because:

• They are standard non-parametric tests suitable for the ordinal nature of

Likert data.

• Being standard tests they enable a comparison to be made with existing or

future surveys in this field.

• Each test analyses the data differently. For example, the sign test

compares the median of a sample with the population median whereas

Mann Whitney tests for differences between two different groups. Applying

Page 145

the two tests provides a richer description of the data and the inferences

that can be drawn.

Both tests considered whether or not there was any statistically significant

difference between the Likert scores generated for the tool and human-generated

comments. The tests were applied to each one of the 13 statements in the

questionnaire.

The non-parametric one-sample sign test was used to compare the median Likert

score for the tool-generated comments with the median Likert score for the

population. The null hypothesis for the test was

H0 – The Likert scores for the tool-generated comments are distributed such that

half of them lie above the population median.

And the alternative hypothesis was

Ha – The Likert scores for the tool-generated comments are distributed such that

half of them do not lie above the population median.

A two-sided Mann-Whitney U test was used to test if the distribution of Likert

scores for the tool-generated and human-generated comments were the same.

The null hypothesis was

H0 – There is no difference in the distribution of Likert scores between the tool-

and human-generated comments.

And the alternative hypothesis was

Ha – There is a difference in the distribution of Likerts scores between the tool- and

human-generated comments.

Where a statistically significant difference was detected there was a need to

describe the direction of the difference (i.e. were the tool-generated comments

rated higher than human-generated or vice-versa). The direction was determined

Page 146

by analysing the median score for each group. This approach is advocated by

Pallant (2007). An alternative method would have been to conduct a one-sided

test with the alternative hypothesis being that the tool-generated tools had lower

scores than those that were human-generated.

In summary this section described how a team of evaluators were sent a random

allocation of feedback comments to evaluate. Each allocation consisted of both

tool- and human-generated comments. Evaluation took place through the use of a

questionnaire. Two statistical tests were made on the returns. Each test

compared the evaluations of the tool-generated comments with those that were

human-generated. The results of the tests are analysed in the next chapter.

5.9 Evaluation by the Student Body

Feedback produced by the tool will ultimately be read by the student. Hence, the

students’ view was sought on whether the tool’s comments would be helpful with

their learning. This section describes how the student view was sought and

collated. It describes how a questionnaire was used to rate the feedback that was

generated by the tool as a consequence of analysing the coursework that the

students submitted.

Semester 2 of academic session 2010-11 saw 30 students submit a UML design

diagram with an accompanying implementation. The tool was applied to a subset

of this submission and the formative feedback comments generated were collated.

The students were asked to complete the evaluation questionnaire as discussed in

section 5.6.2. They were completed in class via an Electronic Voting System

(EVS). This offered the advantage of a timely collation of evaluations whilst

maintaining student anonymity. The completed questionnaires were collated and

an analysis of the results is presented in Chapter 6.

Page 147

5.10 Summary

Student submissions were gathered over four years. An evaluative team marked

them producing a summative grade and a set of feedback comments. Comments

were discarded from team members whose summative grades were significantly

different. The remaining comments were combined with those produced by the

tool and the team were asked to evaluate them. No team member was asked to

evaluate their own comments. Team members were not told which were tool and

which were the human-generated comments.

Evaluation was performed via completing a questionnaire. The questionnaire

contained 14 statements against which comments were evaluated on a 5-point

Likert scale. The 14 statements focused on the categories of quality, coverage and

relevance. Returns from members whose evaluations were significantly different to

the rest of the team were discarded.

Three statistical experiments were conducted. The first used a Z test and the AC1

coefficient to test for significant differences in summative grades. The second used

the AC2 coefficient to test for significant differences within the team in evaluating

feedback comments. The third used a sign test and a Mann-Whitney U test to

compare tool- with human-generated comments.

A further questionnaire was used to obtain the students’ view of the tool-generated

comments. It consisted of 10 statements against which the comments were

evaluated using a 5-point Likert scale. The questionnaire was conducted in-class

using an Electronic Voting System.

The results of this experimentation are analysed and reported upon in Chapter 6.

Page 148

Page 149

Chapter 6. Results

6.1 Introduction

The previous chapters have discussed the development of a proof-of-concept

assessment tool that automatically generated formative feedback based upon an

analysis of a design diagram and its accompanying implementation. The

methodology adopted to evaluate the feedback generated by the tool was

presented. This chapter presents the results of the evaluation. It is structured in

four sections. The first three focus upon an evaluation undertaken by members of

the academic subject community, whilst the fourth focuses upon the student

evaluation. In particular, Section 6.2 presents the results obtained in an

experiment to test if human markers were grading the student work comparably.

Section 6.3 presents the results obtained in an experiment to test if the team of

human evaluators were rating formative feedback comments comparably.

Sections 6.4 and 6.5 present the evaluators’ and students’ respective evaluation of

the tool-generated feedback comments. The final section provides a conclusion

and summary of the analysis of these results and a reflection upon the evaluative

process.

6.2 Consistency in the Marking Team and the Collation of Human-
Generated Feedback Comments

Of the twelve members of the academic community who agreed to participate in

this research three members withdrew (markers 1, 11 and 12) in the early stages

citing pressures at work. The remaining nine members engaged with the research

project through to completion. Each member was sent a randomly allocated set of

7 distinct student submissions taken from the evaluative set. Additionally each

member was sent the same three student submissions also taken randomly from

the evaluative set (labelled ass17, 79 and 182). Members were asked to generate

Page 150

a summative percentage mark and a set of formative feedback comments for each

student submission that they received. This section focuses upon the summative

mark for the three common student submissions,

The summative mark received for each script was a percentage grade. This grade

was used to test whether or not each member was viewing the student submission

similarly. The three common scripts all scored very highly, making them less

useful for discrimination between markers. One marker omitted to return a grade

for one submission. Two statistical tests were undertaken: Gwet’s (2010) multiple

rater AC1 coefficient for inter-rater reliability and a Z test applied to each member

of the marking team.

The AC1 coefficient is a statistical measure of how raters agree when they

categorise items. In order to generate an AC1 coefficient for the (percentage)

grades received they were tabulated into the following alpha grades:-

Percentage Mark Alpha Grade

70%<=mark<=100% A

60% <= mark< 70% B

50% <= mark< 60% C

40% <= mark< 50% D

0% <= mark< 40% E

Table 6.0 Mapping of Percentage Marks to Alpha Grades

The result of this classification is shown in Figure 6.1. The AC1 coefficient for this

data is 0.84. Gwet (2010) notes that there are several existing benchmarks from

which the strength of agreement between raters can be made. The benchmarking

result for these coefficients indicates that the strength of agreement between

Page 151

raters is “substantial” to “almost perfect” (Landis and Koch (1977)), “excellent”

(Fleiss (1981)) and “good” to “very good” Altman (1991).

However, further analysis of the original percentage marks showed a variation

within the ‘A’ alpha grade category (for example, 75% to 95% in ass182). A Ztest,

was therefore undertaken on the summative marks returned for each of the

student submissions. The results are tabulated on the table in Figure 6.2. Taking a

Z-score that lies outside the range of -1.96 to 1.96 (95% confidence interval) as

significant, marker 8 for assignment 17 and marker 3 for assignment 79 viewed

the student submission significantly differently to the rest of the markers (a further

ANOVA test, reported in appendix F, was undertaken identifying the same

markers as being inconsistent). Consequently, the returns from these two markers,

both grades and formative feedback comments, were removed from the remainder

of the evaluation. This meant that the set of human-generated comments that

formed the evaluative set for the remainder of the evaluation came from the

markers 2,4,5,6,7,9 and 10. The AC1 test did not pick up on the two erratic

markers because the differences in percentage marks were primarily subsumed

within a large (70%<= mark<=100%) alpha grade. In retrospect, a finer granularity

within the ‘A’ alpha grade category (for example A-, A, A+) could have been

adopted. However, this would not have reflected current grading practice within

the marking team and hence adopting a finer granularity was rejected.

In summary, Gwet’s (2010) AC1 coefficient indicated that when viewing the returns

holistically there was a very good correlation within the marking team. However, a

Z test showed that two markers were viewing some assignments significantly

differently to the others. Consequently, their formative comments were removed

from the remaining stages of the evaluation.

Page 152

AC1 -Coefficient

 A B C D E Omissions* Total

ass 17 9 0 0 0 0 0 9

ass 79 7 1 0 0 0 1 9

ass 182 8 1 0 0 0 0 9

Average 8 1 0 0 0 0

Inter-rater Reliability Coefficients, and Associated Standard
Errors – excluding the omissions* category

Method Coefficient

Inference/Subjects

 StdErr 95% C.I.

 Gwet's AC1 0.836671 0.084911 0.471 to 1

* Omissions refers to the case where one marker failed to return a summative mark for one of the assignments

Figure 6.1 Table to show how the data was modelled to generate the AC1 coefficient for Inter-rater reliability. 9 raters , 3 cases (assignments) and 5
categories (grades A to E).

Page 153

Ref
Ass 17
%

Ass79
%

Ass182
%

Marker
Average
%

Zscore
Ass 17

include
comments
based on
Ass17

Zscore
Ass79

include
comment
s based
on Ass79

Zscore
Ass 182

include
comments
based on
Ass 182

Include
comments
based on all
three
assignments

Marker 1 NA

Marker 2 79 82 85 82.00 -0.70 Y 0.08 y 0.05 Y y

marker 3 75 60 75 70.00 -1.51 Y -2.21 n -1.07 Y n

marker 4 82 86 91 86.33 -0.09 Y 0.50 y 0.72 Y y

marker 5 82
 No
return 68 75.00 -0.09 Y

No
return na -1.85 Y y

marker 6 80 73 81 78.00 -0.50 Y -0.86 y -0.40 Y y

marker 7 84 92 93 89.67 0.32 Y 1.12 y 0.94 Y y

marker 8 94 89 94 92.33 2.35 N 0.80 y 1.06 Y n

marker 9 85 82 79 82.00 0.52 Y 0.08 y -0.62 Y y

marker 10 81 86 95 87.33 -0.29 Y 0.50 y 1.17 Y y

Marker 11 NA

Marker 12 NA

Assignment
Mean 82.44 81.25 84.56
Assignment
POP STD
DEV 4.92 9.63 8.95

Zscore sum 0.00 0.00 0.00

Figure 6.2 Table to show the Ztest results for the percentage grades received for three, randomly chosen, student submissions

Page 154

6.3 Consistency within the Team When Evaluating Feedback Comments

This section addresses the issue of ensuring that the team of evaluators were

consistent when rating formative feedback comments. Three sets of tool-

generated feedback comments (labelled feedback64, feedback65 and

feedback66), taken from the evaluative set, were sent to each team member.

Each member was asked to complete a questionnaire for each set of comments.

The questions and the design and form of the questionnaire were described in

Chapter 5, Section 5.6.1. The raw data is presented in Figure 6.3 and the

tabulated results are presented in Figure 6.4.

Page 155

Q1 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 6 3

feedback 66 0 0 0 8 1

Q2 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 1 3 0 4 1

feedback 65 1 3 0 3 2

feedback 66 1 3 1 2 2

Q3 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 7 2

feedback 66 0 0 0 7 2

Q4 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 7 2

feedback 65 0 0 0 7 2

feedback 66 0 1 0 7 1

Q5 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 5 4

feedback 66 0 0 0 7 2

Q6 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 5 4

feedback 66 0 0 0 7 2

Q7 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 4 5

feedback 66 0 0 1 2 6

Page 156

Q8 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 5 4

feedback 65 0 0 0 4 5

feedback 66 0 1 0 3 5

Q9 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 5 4

feedback 66 0 0 0 6 3

Q10 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 6 3

feedback 65 0 0 0 5 4

feedback 66 0 0 0 5 4

Q11 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 1 0 6 2

feedback 65 0 0 1 5 3

feedback 66 0 1 1 5 2

Q12 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 1 4 4

feedback 65 0 0 1 4 4

feedback 66 0 1 1 3 4

Q13 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 0 4 5

feedback 65 0 0 0 5 4

feedback 66 0 0 0 4 5

Q14 inter-rater analysis

 Strongly
Disagree

Disagree Neither Agree nor
Disagree

Agree Strongly
agree

feedback 64 0 0 3 2 4

feedback 65 0 0 3 2 4

feedback 66 0 1 3 1 4

Figure 6.3 Table of the raw Likert data returns for the three common scripts

Page 157

0
1
2
3
4
5
6
7
8

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E

v
a
lu

a
to

rs

Likert Score

Q3 The set of comments provide
sufficient detail in order for a student to
know what concept or issue is being fed
back upon

0
1
2
3
4
5
6
7
8

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q4 The set of comments provide sufficient
detail in order for a student to know what
further work they need to undertake

0
1
2
3
4
5
6
7
8

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q5 The set of comments will help the
student with his/her learning

0

2

4

6

8

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q6 The comments contained in this set are
relevant for this type of assignment brief
and the associated indicative learning
outcomes

0
1
2
3
4
5
6
7

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q7 The comments contained in this set
address important areas of strength
found in the student submission that is
considered to be of significance

0

1

2

3

4

5

6

Strongly
Disagree

Disagree Neither
Agree nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q8 The comments contained in this set
address important areas of weakness found
in the student submission that is considered
to be of significance

Page 158

0

1

2

3

4

5

6

7

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q9 It is clear which concepts the
comments in this set are addressing

0

1

2

3

4

5

6

7

Strongly
Disagree

Disagree Neither
Agree nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q10 The comments in this set wil help the
student improve his/her solution

0

1

2

3

4

5

6

7

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q11 This set of comments, when viewed
in its entirity, fully encapsulates all
pertinent feedback needed for the
student to recognise where there are
areas of strength in the submission

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q12 This set of comments, when viewed in
its entirity, fully encapsulates all pertinent
feedback needed for the student to
recognise where there are areas of
weakness in the submission and where
further learning is required

0

1

2

3

4

5

6

Strongly
Disagree

Disagree Neither
Agree

nor
Disagree

Agree Strongly
agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q13 This set of commentswould
provide a useful enhancement to the
type of comments that I gave during
stage 1 of this evaluation

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Strongly
Disagree

Neither Agree
nor Disagree

Strongly agree

N
o

.
o

f
E
v
a
lu

a
to

rs

Likert Score

Q14 This set of comments would have
been sufficient to replace the type of
comments that I gave during stage 1 of
this evaluation

Likert Scores for Feedback Comments Contained in Feedback64

Likert Scores for Feedback Comments Contained in Feedback65

Likert Scores for Feedback Comments Contained in Feedback66

Figure 6.4 Table to illustrate the questionnaire returns used to evaluate the
extent of inter-rater consistency within the evaluative team.

Page 159

An analysis of this data shows that the evaluators uniformly ‘agreed’ or ‘strongly

agreed’ with 7 of the 14 statements contained in the questionnaire (statements

1,3,5,6,9,10 and 13). This increases to 8 from 14 if the neutral ‘neither agree nor

disagree’ response is included (statement 7). Gwet’s (2010) AC2 inter-rater

reliability coefficient for multiple raters is tabulated for each statement contained in

the questionnaire in Figure 6.5. This indicates that, with the exception of statement

2, consistency within the team was “almost perfect” (statements 1,3,4,5,6,7,8,9,10)

or “substantial” (statements 11,12,13,14) – (Landis and Koch scale -1977).

On the criterion of quality (statements 1,2,3,4,5) and relevance (statements

6,7,8,9,10) evaluators rated the comments consistently, with the majority of the

returns confined to the agree/strongly agree ratings. The consistency of the

evaluators, whilst being “substantial”, was not as strong for the statements

associated with the criterion of coverage. Evaluators were clearly challenged when

asked to consider whether or not the comments they were evaluating could

replace the type of comments they themselves produced (statement 14). This

statement produced the most returns in the neutral neither agree nor disagree

category.

Page 160

 Gwet AC2 Agreement
Benchmark

(Landis and
Koch - 1977)

Q1 0.96 Almost Perfect

Q2 0.19 Slight

Q3 0.96 Almost Perfect

Q4 0.93 Almost Perfect

Q5 0.95 Almost Perfect

Q6 0.95 Almost Perfect

Q7 0.91 Almost Perfect

Q8 0.87 Almost Perfect

Q9 0.94 Almost Perfect

Q10 0.93 Almost Perfect

Q11 0.73 Substantial

Q12 0.78 Substantial

Q13 0.78 Substantial

Q14 0.66 Substantial

Figure 6.5 Gwet’s (2010) AC2 Inter-rater reliability coefficient for the 3

common scripts
The issue of conciseness (statement 2) was the statement for which there was the

most disagreement within the evaluators with the data being spread across the full

spectrum of ‘strongly disagree’ to ‘strongly agree’ categories. Of the 27 returns (9

evaluators, 3 sets of comments evaluated by each evaluator) 14 evaluators

‘agreed’ or ‘strongly agreed’ with the statement “The comments contained in this

set are concise” whilst 12 ‘disagreed’ or ‘strongly disagreed’ (one return was

neutral). This has implications for interpreting the evaluation of comments

generated by the tool on the conciseness criterion. If the evaluators could not

agree upon rating a feedback comment then it is not sound to infer anything

conclusive about their view on this criterion for the comments generated by the

tool. This is reflected upon further in chapter 7.

Page 161

In conclusion, there was consistency in the team when rating feedback comments

for 13 of the 14 questionnaire statements. Hence, it was these 13 statements that

were used to compare ratings between tool- and human-generated comments.

There was no consensus for statement 2 (the issue of conciseness) and hence

this was not used in the comparison.

6.4 An evaluation of Tool -Generated Comments Compared with Human-
Generated.

The previous section concluded that members of the evaluative team were viewing

and rating formative comments very similarly. This section focuses upon the

comparison between feedback comments generated by the tool with those

generated by the team of expert markers. Nine evaluators were sent seven distinct

sets of comments. Each set contained a random allocation of both human- and

tool-generated comments. Each set consisted of either 4 tool-generated and 3

human-generated sets of comments or vice-versa. This resulted in 63

questionnaire returns of which 31 evaluated formative comments that were human

generated and 32 that were tool generated. This section presents the results and

an analysis of these returns. The previous chapter discussed the ordinal nature of

Likert data and the inappropriateness of using the mean Likert score in this

context. Hence, the results are presented using median and mode Likert scores.

Figure 6.6 below shows the median Likert scores returned by each evaluator for all

the statements contained in the questionnaire. The medians for the human and

tool generated comments were calculated separately. Figure 6.7 shows a similar

tabulation based upon the modal Likert scores. Where the data resulted in two

(bimodal) or more (multimodal) modes, a value of zero was prescribed (example

Question 5 and 6 for marker 2).

Page 162

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 2 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 3 Evaluation of Feedback
Comments

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 4 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 5 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 6 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 7 Evaluation of Feedback
Comments

Page 163

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 8 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 9 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 10 Evaluation of Feedback
Comments

Median Likert Scores for Human Generated Comments

Median Likert Scores for Tool Generated Comments

Figure 6.6 Median Likert Scores per Evaluator for each of the 14 statements
contained in the Evaluation Questionnaire.

Page 164

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 3 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 4 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 5 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 6 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 7 Evaluation of Feedback
Comments

Page 165

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 8 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 9 Evaluation of Feedback
Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ik

e
rt

 S
c
o

re

Question

Marker 10 Evaluation of
Feedback Comments

Mode Likert Scores for Human Generated Comments

Mode Likert Scores for Tool Generated Comments

Figure 6.7 Modal Likert scores per evaluator for each of the 14 statements

contained in the evaluation questionnaire

The Likert scores from each evaluator were collated for each statement in the

questionnaire. The medians for the human and tool generated comments were

calculated. The result is illustrated in Figure 6.8 and Figure 6.9 presents a

summary of the raw data. An analysis of these figures shows that the comments

generated by the tool are rated consistently equal to or higher than those that were

Page 166

human-generated. This is the case for all of the 13 statements (note statement 2

cannot be considered in this analysis).

All Markers: Evaluation of Feedback Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Question

L
ik

e
rt

 S
c

o
re

Median Likert Score for Human
Generated Comments

Median Likert Score for Tool
Generated Comments

All Markers: Evaluation of Feedback Comments

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Question

L
ik

e
rt

 S
c

o
re

Mode Likert Score for Human
Generated Comments

Mode Likert Score for Tool
Generated Comments

Figure 6.8 Median and mode Likert scores for all evaluators for each of the
14 statements

 N Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

median
human

31 4 4 3 2 3 4 2 4 3 3 2 2 3 2

median
tool

32 4.5 4 4 4 4 4 4 5 4 4 4 4 4 4

Figure 6.9: A table showing the median Likert Score for both human and
tool-generated comments.

Two statistical tests were applied to these results to determine if these differences

were statistically significant. These were a sign test and a Mann-Whitney U test.

Figures 6.10. and 6.11 tabulate these results respectively. The null hypothesis for

the sign test was:

H0 : The Likert scores for the tool-generated comments are distributed such that

half the scores lie above the population median.

The sign test results show that, for all questions with the exception of question11,

there is no significant difference in Likert scores for the tool-generated comments.

The test shows that for question 11, encapsulation of all pertinent feedback, the

Likert scores for the tool-based comments are significantly higher than those that

were human-generated. The sign test leads to the conclusion that the tool-

generated comments were perceived to be at least as good as those that were

human-generated and , for question 11, better.

Page 167

The null hypothesis for the Mann-Whitney U test was:

H0 : The distribution of Likert scores is the same across the human-generated

comments as it is for the tool-based comments.

The SPSS (IBM 2010) tool for statistical analysis was used to conduct the Mann-

Whitney U test. It revealed that there is a statistically significant difference in the

distribution of Likert scores across the human-generated comments compared to

tool-based comments. The direction of the difference is illustrated in Figure 6.9

and revealed that the Likert scores for the tool generated comments are

significantly higher than for those that were human-generated (Appendix G

provides further analysis, including a one sided (upper and lower) test). The Mann-

Whitney U test produced an observational significance value of p=0.000 for

thirteen of the fourteen questions. The test leads to the conclusion that the tool-

generated comments were perceived to be better than those that were human-

generated.

Pop
size

Pop
Median

Number of Likert
scores for the tool-
generated
comments that are
greater than the
population Median

Sample
Size

Proportion of
observations
above the
median
Pm Z conclusion

Q1 63 4 16 32 0.5 0 Accept H0

Q2 63 4

Q3 63 4 14 32 0.4375 -0.70711 Accept H0

Q4 63 4 12 32 0.375 -1.41421 Accept H0

Q5 63 4 14 32 0.4375 -0.70711 Accept H0

Q6 63 4 12 32 0.375 -1.41421 Accept H0

Q7 63 4 14 32 0.4375 -0.70711 Accept H0

Q8 63 4 17 32 0.53125 0.353553 Accept H0

Q9 63 4 14 32 0.4375 -0.70711 Accept H0

Q10 63 4 13 32 0.40625 -1.06066 Accept H0

Q11 63 3 26 32 0.8125 3.535534 Reject H0

Q12 63 4 12 32 0.375 -1.41421 Accept H0

Q13 63 4 13 32 0.40625 -1.06066 Accept H0

Q14 63 3 20 32 0.625 1.414214 Accept H0

Figure 6.10 Sign test results comparing medians for tool-generated

comments with those that were human generated.

Page 168

Test Statistics

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Mann-Whitney U 224.000 325.500 183.000 164.000 214.500 243.500 101.500

Asymp. Sig. (2-tailed) .000 .013 .000 .000 .000 .000 .000

Exact Sig. (2-tailed) .000 .013 .000 .000 .000 .000 .000

Exact Sig. (1-tailed) .000 .007 .000 .000 .000 .000 .000

 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Mann-Whitney U 183.000 151.000 199.000 54.000 100.000 100.000 86.500

Asymp. Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000

Exact Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000

Exact Sig. (1-tailed) .000 .000 .000 .000 .000 .000 .000

Mann-Whitney U-test : Hypothesis Test Summary

Null Hypothesis Significance Decision

The distribution of Q1 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q2 is the same across the
categories of human and tool generated comments

.013 Reject the null hypothesis

The distribution of Q3 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q4 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q5 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q6 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q7 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q8 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q9 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q10 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q11 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q12 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q13 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

The distribution of Q14 is the same across the
categories of human and tool generated comments

.000 Reject the null hypothesis

Asymptotic significances are displayed. The significance level is .05.

Alpha is 0.05 and the CI level is 95%.

Figure 6.11 Results utilising the Mann-Whitney U test.

Page 169

Figures 6.12, 6.13 and 6.14 illustrate the median and modal returns for all

evaluators against the criteria of quality, relevance and coverage respectively.

The criterion of coverage is the one where there is the most difference between

the human- and tool-generated comments. The response to statement 14 “this set

of comments would have been sufficient to replace the type of comments that I

gave during stage 1 of this evaluation” is interesting as it contradicts a strong view

expressed within the student evaluation (a point that will be picked up in the next

section where student evaluation is discussed). The evaluators disagreed with this

statement when viewing comments that were human-generated but

‘agreed’/’strongly agreed’ when evaluating those that were tool-based. The

evaluators’ comments also offer an insight into how the evaluators themselves felt

about the feedback comments that they generated after reflecting upon those

generated by the tool, their judgement being that the tool-based comments were at

least as good as those that they had produced themselves. This is expanded upon

in chapter 7.

On the criterion of quality, removing responses for question 2 which related to

conciseness, the tool performs favourably when compared to the human markers.

On the criterion of both relevance and coverage the tool performs well in

comparison with the human markers. All evaluators rated the tool’s comments as

higher or equal to those generated by a human.

Page 170

Statement Median Likert
Score for
Human
Generated
Comments

Median Likert
Score for Tool
Generated
Comments

Mode
Likert
Score for
Human
Generated
Comments

Mode
Likert
Score for
Tool
Generated
Comments

Q1. The comments
contained in this set
are clear.

Agree (4) Agree/Strongly
Agree (4.5)

Agree

(4)

Strongly
agree

(5)

Q3. The set of
comments provide
sufficient detail in
order for a student to
know what concept or
issue is being fed
back upon.

Neither Agree
Nor Disagree

(3)

Agree

(4)

Disagree

(2)

Agree

(4)

Q4 The set of
comments provide
sufficient detail in
order for a student to
know what further
work they need to
undertake.

Disagree

(2)

Agree

(4)

Disagree

(2)

Agree

(4)

Q5 The Set of
comments will help
the student with
his/her learning

Neither Agree
Nor Disagree

(3)

Agree

(4)

Agree

(4)

Agree

(4)

Figure 6.12 A breakdown of the median Likert scores for the quality

criterion

Page 171

Statement Median Likert
Score for
Human
Generated
Comments

Median Likert
Score for Tool
Generated
Comments

Mode
Likert
Score for
Human
Generated
Comments

Mode
Likert
Score for
Tool
Generated
Comments

Q6 The comments
contained in this set
are relevant for this
type of assignment
brief and the
associated indicative
learning outcomes.

Agree

(4)

Agree

(4)

Agree

(4)

Agree

(4)

Q7 The comments
contained in this set
address important
areas of strength
found in the student’s
submission that is
considered to be of
significance.

Disagree

(2)

Agree

(4)

Strongly
Disagree
(1)

Agree

 (4)

Q8 The comments
contained in this set
address important
areas of weakness
found in the student’s
submission that is
considered to be of
significance.

Agree

(4)

Strongly
Agree (5)

Agree

(4)

Strongly
Agree

(5)

Q9 It is clear which
concepts the
comments in this set
are addressing.

Neither Agree
Nor Disagree

(3)

Agree

(4)

Agree

(4)

Agree

(4)

Q10 The comments in
this set will help the
student improve
his/her solution.

Neither Agree
Nor Disagree

(3)

Agree

(4)

Agree

(4)

Agree

(4)

Figure 6.13 A breakdown of the median Likert scores for the relevance
criterion

Page 172

Statement Median Likert
Score for
Human
Generated
Comments

Median Likert
Score for Tool
Generated
Comments

Mode
Likert
Score for
Human
Generated
Comments

Mode
Likert
Score for
Tool
Generated
Comments

Q11 This set of
comments, when
viewed in its entirety,
fully encapsulates all
pertinent feedback
needed for the student
to recognise where
there are areas of
strength in the student
submission.

Disagree

(2)

Agree

(4)

Strongly
Disagree
(1)

Agree

(4)

Q12 This set of
comments, when
viewed in its entirety,
fully encapsulates all
pertinent feedback
needed for the student
to recognise where
there are areas of
weakness in the
student submission.

Disagree

(2)

Agree

(4)

Disagree
(2)

Agree

(4)

Q13 This set of
comments would
provide a useful
enhancement to the
type of comments that
I gave during stage 1
of this evaluation.

Neither Agree
Nor Disagree

(3)

Agree

(4)

Neither
Agree Nor
Disagree

(3)

Agree

(4)

Q14 This set of
comments would have
been sufficient to
replace the type of
comments that I gave
during stage 1 of this
evaluation.

Disagree (2) Agree (4) Disagree
(2)

Strongly
Agree (5)

Figure 6.14 A breakdown of the median Likert scores for the coverage

criterion

Page 173

6.5 Evaluation by the Student Body

The previous sections presented an evaluation of the tool’s formative comments

by a team of evaluators. This section presents a student evaluation.

The evaluation took place in a tutorial session with 30 students. They were

presented with feedback comments generated by the tool from a sample of the

cohort’s coursework. The questionnaire was completed via an Electronic Voting

System (EVS). This provided an evaluation that was timely whilst preserving

student anonymity. A student cannot be identified from the collated electronic

response. Figure 6.16 tabulates the results for each of the 11 statements

contained in the questionnaire.

Statement 1 is a null statement and was presented to the students as a means of

ensuring that the EVS system was working correctly and that the students were

able to interact with it.

The first notable difference between the students’ and evaluators’ returns is that

the students utilized the full range of Likert ratings more than the evaluators. One

explanation for this could be that each undergraduate in the cohort, engaging with

the subject for the first time, will be at differing stages in their learning and

understanding of the topic area being assessed. Consequently, the same set of

feedback comments could have a resonance with some students and less so for

others. Conversely, each member of the evaluative team had a significant amount

of experience both in the topic area and in teaching/assessment experience.

Hence, for this context, it might be reasonable to expect the evaluators’ returns to

migrate towards a significant consensus.

The students either ‘agreed’ or ‘strongly agreed’ with statements stating that the

comments were helpful (statement 2, 50%), clear (statement 3, 43%) relevant

(statement 4, 47%) and that the feedback was clear on the concepts being

Page 174

addressed (statement 5, 57%). Whilst 57% of students ‘agreed’ or ‘strongly

agreed’ that the feedback would help the student to improve the solution

(statement 6) they were less convinced that it would lead them to undertake

further research into the topic area (statement 7, 38% disagreed or strongly

disagreed). One explanation for this could be the use of the term ‘research’. The

students were year 2 undergraduates and perhaps this term was being

contextualised against research contained in the development of a dissertation

project as opposed to finding out more about the topic area being assessed. The

students indicated that the tool performs better in identifying the strengths

(statement 8, 57%) of the submission than the weaknesses (statement 9, 31%).

Statements 10 and 11 asked the students to consider the possibility of replacing

feedback from a human (tutor) with that generated by the tool. Whilst 62% of the

students agreed or strongly agreed that the tool’s feedback would enhance that

produced by the tutor (statement 10) 66% disagreed or strongly disagreed that the

tool’s feedback could replace that from a human in its entirety. Despite a positive

response to the feedback generated by the tool this points to an underlying distrust

in its appropriateness when applied, in isolation, to their personal formative

assessment. In contradiction, the team of evaluators indicated that the tools’

comments were sufficient to replace those that were human-generated.

Page 175

1.) When I go out for a curry I order (multiple
choice)

 Responses

 (percent) (count)

Something mild
and creamy 33.33% 10

Something hot
and spicy 43.33% 13

A vegetarian
option 3.33% 1

Tandoori Mixed
Grill 10% 3

I don’t like curry 10% 3

 Totals 100% 30

10%
10%

3.30%

43.30%

33.30%

Something mild and creamy

Something hot and spicy

A vegetarian option

Tandoori Mixed Grill

I don’t like curry

2.) The feedback presented to me is helpful
(multiple choice)

 Responses

 (percent) (count)

Strongly Agree 20% 6

Agree 30% 9

Neither agree
nor Disagree 26.67% 8

Disagree 13.33% 4

Strongly
Disagree 10% 3

 Totals 100% 30

10%
13.30%

26.70% 30%

20%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

3.) The Feedback Presented to Me is Clear
(multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10% 3

Agree 33.33% 10

Neither agree
nor Disagree 23.33% 7

Disagree 23.33% 7

Strongly
Disagree 10% 3

 Totals 100% 30

10%

23.30%

23.30%

33.30%

10%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

4.) The feedback presented to me is Relevant
to my Solution (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 3.33% 1

Agree 43.33% 13

Neither agree
nor Disagree 23.33% 7

Disagree 16.67% 5

Strongly
Disagree 13.33% 4

 Totals 100% 30

13.30%

16.70%

23.30%

43.30%

3.30%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

Page 176

5.) It is clear to me what concepts the
feedback is addressing (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 20% 6

Agree 36.67% 11

Neither agree
nor Disagree 20% 6

Disagree 13.33% 4

Strongly
Disagree 10% 3

 Totals 100% 30

10%
13.30%

20%
36.70%

20%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

6.) The feedback presented to me will help me
to improve my solution (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10% 3

Agree 46.67% 14

Neither agree
nor Disagree 26.67% 8

Disagree 6.67% 2

Strongly
Disagree 10% 3

 Totals 100% 30

10%6.70%

26.70% 46.70%

10%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

7.) I will use this feedback to research further
into this topic area (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10.34% 3

Agree 13.79% 4

Neither agree
nor Disagree 37.93% 11

Disagree 20.69% 6

Strongly
Disagree 17.24% 5

 Totals 100% 29

17.20%

20.70%

37.90%

13.80%
10.30%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

8.) The feedback has helped me identify the
Strengths of My Submission (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10% 3

Agree 46.67% 14

Neither agree
nor Disagree 30% 9

Disagree 6.67% 2

Strongly
Disagree 6.67% 2

 Totals 100% 30

6.70%6.70%

30%
46.70%

10%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

Page 177

9.) The feedback has helped me identify the
weaknesses contained in my submission
(multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10.34% 3

Agree 31.03% 9

Neither agree
nor Disagree 24.14% 7

Disagree 27.59% 8

Strongly
Disagree 6.90% 2

 Totals 100% 29

6.90%

27.60%

24.10%

31%

10.30%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

10.) The feedback represents a useful
enhancement to that which I received from my
tutor (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 24.14% 7

Agree 37.93% 11

Neither agree
nor Disagree 6.90% 2

Disagree 17.24% 5

Strongly
Disagree 13.79% 4

 Totals 100% 29

13.80%

17.20%

6.90%
37.90%

24.10%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

11.) The feedback I received is sufficient
enough for it to replace that which I received
from my tutor (multiple choice)

 Responses

 (percent) (count)

Strongly Agree 10.34% 3

Agree 10.34% 3

Neither agree
nor Disagree 13.79% 4

Disagree 24.14% 7

Strongly
Disagree 41.38% 12

 Totals 100% 29

41.40%

24.10%

13.80%

10.30%
10.30%

Strongly Agree Agree

Neither agree nor Disagree Disagree

Strongly Disagree

Figure 6.15 Student evaluation of the tool-generated comments

6.6 Summary and Conclusions of the Results.

This chapter described several phases in the evaluation of this research. The first

was to collect a sample of human-generated comments and remove those that

came from a marker who was seeing the student submission significantly

differently to the rest of the team. The second was to conduct an experiment to

ensure comparability between the team of evaluators. The third was to conduct an

experiment to compare the tool-generated with human-generated comments. The

fourth was to conduct a student evaluation of the tool-generated comments.

Page 178

Summative grades from a common set of student work showed two markers to be

grading significantly different to the rest of the team. Consequently their feedback

comments were removed from the remainder of the evaluation. A Z test identified

the two markers. The AC1 statistic failed to identify them as the variation in

percentage grades fell within a single (‘A’) alpha grade (<=70% mark <=100%).

The AC2 statistic indicated that all members of the team were rating a common set

of formative comments consistently for 13 of the 14 questionnaire statements.

Hence, these 13 statements were used to compare ratings between the tool and

human-generated comments.

The results from the team of evaluators indicate that the comments generated by

the tool are at least as good as those generated by the marking team. This is true

for the three criteria of quality, relevance and coverage. No conclusion can made

regarding the tool’s relative performance on the issue of conciseness as there was

not a uniform consensus upon this from the evaluative team. The student body

rated the tool-generated comments favourably, though they noted that the tool did

better at reinforcing strengths in the submission than identifying weaknesses. The

students felt that the tool-generated comments would complement that received by

their tutor but indicated a lack of confidence in the tool being able to replace the

tutor’s comments in their entirety. This was not the view held by members of the

evaluative team who felt that they could replace the human-generated comments.

This issue will be reflected upon later in Chapter 7.

Surveying the students and a team of expert markers ensured that the views of

both key stakeholders were included in the evaluation. The logistics of using a

team of expert markers was challenging. The two phases of marking the student

work followed by evaluating a set of feedback comments required a significant

time commitment from the markers. This included the time taken to undertake the

Page 179

marking and evaluation in addition to maintaining a commitment to the project in

between both phases.

In conclusion, the evaluation indicates that the formative comments generated by

the tool are at least as good as those generated by a human marker and represent

a positive enhancement to the feedback that the students received from their tutor.

Page 180

Page 181

Chapter 7. Conclusion and Future Work

7.1 Introduction

The work presented in this dissertation addressed the following research question:

Given the changing nature of Higher Education, how can we automatically

generate high quality feedback for student design task submissions in the form

of diagrams.

The question was informed by a review of the literature which identified that:

• the profile of students in Higher Education is changing. Students are better

informed, digitally literate and have high expectations regarding their

feedback, assessment and support for mobile and remote learning (chapter

1, section 1.1).

• One response to the changing student profile from HEIs is through the use

of technology to support learning, teaching and assessment (chapter1,

section 1.1).

• Using technology to automate assessment is challenging. The approach

taken by existing systems can be characterised by the type of input they

accept (free or fixed form), the extent of the automation (fully or semi-

automated), and the type of feedback (formative or summative) generated

(chapter 2, section 2.3).

• Diagrams are free form items and are difficult to automatically assess

(chapter 2, section 2.4.4). The presence of errors and free-form labels

exacerbate this difficulty (chapter 2, section 2.4.4.1). Design diagrams and

their implementations are examples of coursework submissions from

undergraduate computer science students (chapter 1, section 1.1).

Page 182

• The interface between a design diagram and its implementation is an area

of potential inconsistency in the development of computer systems (chapter

2, section 2.4.5).

• The field of model differencing has synergies with automated systems that

compare diagrams (chapter 2, section 2.4.4.2).

• Evaluation of existing systems utilise input from tutors, students or both

(chapter 2, section 2.5).

The review identified the question of how a student-produced implementation

could be used in the automatic assessment of a design diagram to produce

formative feedback.

7.2 Contributions

This dissertation has addressed the more general problem of how to automatically

generate high quality feedback from paired artefacts with the same referent. It

defined such artefacts and their constituent features (chapter 3, section 3.3). It

applied the paired artefacts approach to the design/implementation context using

an assessment tool applied to a set of student submitted coursework. Each

coursework consisted of two artefacts: a design diagram and its accompanying

implementation. The tool generates formative feedback based upon the features

contained in the artefacts. Features are labelled as being either consistent,

superfluous or missing. Feedback positively reinforces consistent features whilst

superfluous and missing features are reported as errors.

The dissertation also developed a method for evaluating formative feedback

comments. Comments were evaluated by both the students and a team of expert

markers. The experts compared human-generated with tool-generated feedback

comments produced by the assessment tool while the students evaluated

Page 183

feedback generated by the tool from an analysis of their submission. The

evaluation showed that the feedback from the tool was widely regarded as good, if

not better, than that produced by the human markers.

Consequently, the research contained in this dissertation makes the following

significant contributions:

• It defines criteria for categorising automated assessment tools.

• It presents a method for automating the assessment of design diagrams by

utilising both their implementations and established work that has identified

known errors made by novice designers.

• It provides a definition of high quality formative feedback and presents a

novel and robust method for its evaluation.

• It presents the generic case by defining terms for multiple artefacts and

their assessment.

• It describes an automated assessment tool that generates formative

feedback.

7.2.1 Classification of Automated Assessment Tools

The dissertation has identified the core characteristics of tools that automate

assessment (chapter 2, section 2.3). This is helpful when considering their

adoption as many differ in their approach and the type of feedback generated. A

categorisation of such systems was developed using three characteristics: the

type of student submission (free or fixed form), the extent of the automation (fully

or semi-automated) and the type of feedback generated (formative or summative).

Automated assessment tools identified in the literature review were categorised

according to these characteristics.

Page 184

7.2.2 Automated Assessment of Diagrams

The dissertation has identified five challenges for the automated assessment of

diagrams: the support for a student to draw and submit a diagram, the support for

a tutor to submit a marking scheme, a mechanism to compare a student diagram

with a model solution, a mechanism to cope with extraneous/erroneous data and a

mechanism to provide feedback to the student (chapter 2, section 2.4.1).

The dissertation has presented a method for automating the formative assessment

of student diagrams. The method adopts a blended approach through initially

searching for typical errors in the student design before comparing the diagram

with its implementation. One benefit of this approach is that it removes the need

for a tutor-supplied model answer. Feedback on the comparison offers the student

formative support when the development of their solution moves from high to low

levels of abstraction. Two potential mechanisms for the comparison have been

presented: design-centric and code-centric. The limitations of model differencing,

reverse and forward engineering to compare artefacts have been highlighted. This

is useful to those who wish to develop the mechanisms further.

7.2.3 Defining and Evaluating Good Quality Feedback

This dissertation has presented an approach to evaluating formative feedback that

is both novel and easily transferable to other contexts. It required the development

of two Likert-based questionnaires: one completed by a team of evaluators and

one by a group of students. The evaluators were members of the computer

science academic community. This enabled the perspective of both the suppliers

and receivers of feedback to contribute to the evaluation.

Definitions for the quality, relevance and coverage of formative feedback

comments were defined (chapter 5, section 5.6.1). From this, fourteen evaluative

statements have been derived and formed the questionnaire completed by the

evaluators.

Page 185

Tool-generated feedback was compared with human-generated feedback because

there are no metrics for objective measures of feedback quality. A bank of student

coursework submissions was collated over several years. The bank was divided

into two groups: one used for the development of the tool and one used for its

evaluation (chapter 5, section 5.3). Dividing the submissions in this fashion

ensured that, during evaluation, the tool had not previously seen the student

submissions. It also ensured that the development of the assessment heuristic

contained in the tool had not been informed by a student submission that was

being used in the tool’s evaluation.

A random sample of human and tool-generated comments was sent to a team of

evaluators who completed the Likert-based evaluative questionnaire. A

comparison between human- and tool- generated comments was conducted which

concluded that, on the criteria of quality, relevance and coverage the tool performs

well in comparison with the human markers. On the criteria of relevance and

coverage all evaluators rated the tool’s comments as higher or equal to those

generated by an expert human (chapter 6, section 6.4).

The questionnaire used with the students focused upon how the feedback

comments helped them with their learning. The tool’s feedback was received

favourably by the students with most students either agreeing or strongly agreeing

that it was helpful, clear, relevant and would help them improve their solution

(chapter 6, section 6.5).

7.2.4 Multiple Artefacts: the Generic Case for Diagram Comparison

A novel framework has been developed for the generic case of comparing

artefacts. An artefact has been defined as a set of features. Definitions have been

provided for consistent and superfluous features (chapter 3, section 3.3).

Consistent features have been used for positive reinforcement and superfluous

features for where more learning is required. Comparing two artefacts requires

Page 186

visiting each feature contained in the first artefact and comparing it with each

feature in the second artefact. The results of the comparison produce a set of

formative feedback comments for each artefact pair. The multiple artefacts

approach contributes a new perspective to existing automated diagram

assessment systems.

7.2.5 The Development of an Automated Assessment Tool

The efficacy of the multiple artefact framework has been demonstrated through a

tool that provides a proof-of-concept implementation (chapter 4). The tool was

applied to a set of student-submitted artefacts. It compared two artefacts and

identified a set of differences and a set of similarities. When the two artefacts

represent a design diagram and its accompanying implementation the differences

represent errors in the submission. These errors have either been introduced by

the implementation (extraneous) or are those features contained in the design that

have not been implemented (omissions). The tool generated formative feedback

for these features in addition to positively reinforcing the consistency similarities.

7.3 Reflection upon Comparing Artefacts and Generating Feedback

There are a number of places within the diagram comparison and feedback

generation process which, in retrospect, might be improved. This section

examines the comparison and feedback generation process and suggests where

improvements to the process might be appropriate.

Comparing artefacts first requires describing their consistent and superfluous

features (in XML). The XML grammar developed is sufficiently robust to describe

the artefacts contained in both the developmental and evaluative data sets. It is

also flexible enough to facilitate both a comparison and an analysis of an artefact

Page 187

in isolation. However, using a CASE tool to automate the artefact’s description

proved challenging, particularly when one artefact represented a design diagram’s

implementation. Consequently, the artefacts’ description was undertaken

manually. This was a laborious process.

Reverse engineering the design diagram’s implementation did, however, extract

many of its static features, describing them using XML. In retrospect, these

descriptions could have been used as a first step followed by manually describing

the implementation’s dynamic features. This semi-automated approach to

describing an artefact’s features would have potentially reduced the description

time.

Comparing two artefacts requires visiting each feature of one artefact and

comparing it with all features of the other. The output is a matching score and a list

of feedback comments for each feature pair. Guidance on where further learning is

needed is generated for low scoring feature-pairs and positive reinforcement for

those with high scores. Mid-scoring pairs represent a partial match. Generating

appropriate feedback for mid-scoring pairs is challenging. The lower the score the

less likely the pair match. A threshold matching score is set below which the

features are considered not to match. This approach generates feedback that has

been evaluated positively by both the students and the human evaluators.

However, feedback from the students indicated that the tool performed better at

reinforcing strengths than identifying weaknesses.

This feedback from the students suggests that more work is required in two areas.

The first is the comments embedded within the tool that are generated when errors

are detected. Further contextualising the comments as to why a feature-pair was

Page 188

considered not to match would address the students’ concern. However, there is a

tension here relating to a generic approach to artefact comparison and generating

contextualised and specific feedback. Further exploration of this issue would

usefully inform the future development of the approach. For example, by refining

the mechanism by which a tutor specifies both the features to be compared and

the comments to be generated. A second approach is to undertake a review of the

matching process and, in particular, the scoring mechanisms and thresholds at

which artefacts are considered not to match. Further tuning of these parameters

based upon the results of applying them to a comprehensive data set would

provide further insight into the matching algorithm and the conditions under which

artefacts are considered not to match.

Blending feedback on specific errors in the diagram with information about how the

design diagram compares to its accompanying implementation generated

positively reinforcing feedback in addition to identifying where further learning was

needed. The student evaluation indicated that the feedback had helped them with

their learning whilst the evaluators indicated that it was sufficient to replace the

feedback they had provided when marking the submissions. However, whilst the

students felt that tool-generated comments would complement those given by a

human tutor they were not confident in human-generated comments being entirely

replaced by those that were tool-generated.

The students feeling the feedback was not sufficient to replace that of the tutor

could suggest a possible mistrust of automated feedback. The tool’s tendency to

emphasise strengths over errors might contribute to this mistrust or at least cause

the students to reflect upon its effectiveness. A follow-up survey with the students

would be helpful to investigate further what precisely underpinned this concern.

Page 189

The pedagogic context of the tool is that of providing formative support for the

student as he/she moves from high (design) to low (implementation) levels of

abstraction. The approach adopted offers the advantage of not needing a tutor-

supplied marking scheme as the feedback generated is via a comparison between

the student’s diagram and the student’s implementation. The feedback focuses

upon the consistency between them. This is beneficial as novice students can find

moving between levels of abstraction challenging. However, a disadvantage is

that the approach does not provide feedback upon whether or not the student’s

submission is correct and meets the expectation of the assignment brief. The need

to triangulate between a marking scheme, the student design and the

accompanying implementation has been identified as an area of future work.

7.4 Reflection Upon the Evaluative Method

There are a number of places within the evaluative process which, in retrospect,

might be improved. This section examines the evaluative process and suggests

where improvements to the process might be made.

The feedback from the automated assessment tool was evaluated by comparing

the comments it produces with those produced by expert human markers. The

evaluation was based on three criteria: relevance, quality and coverage. For all

three criteria, the conclusion was that the tool generated comments were

perceived to be better than those that were human generated. However, the result

was less pronounced with the coverage criterion than for relevance and quality.

Within the coverage criterion, a question about conciseness led to most

disagreement within the evaluators, with their responses being spread across the

full spectrum of the Likert scale from strongly disagree to strongly agree

categories. It would be useful to understand why this apparent discrepancy in the

results occurred.

Page 190

A possible reason for this anomaly might be found in the nature of the comments

generated by the tool. Most evaluators agreed or strongly agreed that the tool

generated comments were clear, helpful and relevant and there was substantial

agreement that the tool generated comments encapsulated all feedback pertinent

to both the strengths and weaknesses of the submissions. However, the number

of tool-generated comments tended to be greater than those provided by the

human markers and some tool-based comments were more verbose than the

majority of human generated comments. These factors may have influenced the

evaluators in how they interpreted the meaning of conciseness. If the evaluation

method were to be repeated, greater care should be taken to ensure that a shared

understanding of conciseness was achieved.

The evaluative method took great care to ensure that there was consistency within

the team for both marking and evaluation. It was felt important to ensure that team

members were marking consistently. To do this, all markers were asked to mark a

small, common set of submissions and those who viewed them significantly

differently to the rest of the team had their comments removed from the remainder

of the evaluation. Was this a sensible approach? Differences of opinion are to be

expected and removing some of the data not only reduces the amount of data on

which to base conclusions but it might lead to skewed data and a higher

agreement between human generated comments and tool generated comments.

Therefore, seeking an alternative method of ensuring marking consistency would

be helpful. For example, the markers, having marked the sample set could be

brought together to discuss their marking and to identify any differences and come

to a shared understanding of how to interpret the marking scheme. However, as

Page 191

the markers were geographically spread over a wide area and time and resources

were limited, meant that this approach was not feasible and the method described

above was adopted instead.

Asking the evaluators to rate a common set of feedback comments also identified

those questions for which there was little agreement between evaluators. Those

questions were removed from the data upon which the evaluation was based.

Once again, it would be helpful to identify the reasons for the disagreement and

attempt to reduce the extent to which this happened and bringing people together

to discuss the questions prior to the main evaluation might reduce the effect of this

issue.

Finally, the comments sent to the evaluators deliberately did not distinguish human

generated comments from tool based comments in an attempt to avoid bias either

towards the human comments or the tool comments. However, the tool based

comments were both qualitatively and quantitatively different from the human

generated comments (see Table 7.0) and the evaluators may have been able to

distinguish between the two classes and, inadvertently or otherwise, introduce bias

into their evaluation.

Characteristic Human comments Tool Comments

Number of comments small Large
Comprehensive no Yes
Order of feedback random Consistent
Use of vocabulary diverse Limited

Table 7.0 The differences between human and tool generated comments

In retrospect, a re-ordering of the comments generated by the tool coupled with a

proactive approach to adopting a wider vocabulary (but delivering the same

meaning) might help.

Page 192

However, if the evaluators did differentiate between tool generated and human

generated comments, it is not known what effect this had on the evaluation. A

follow-up survey of evaluators could help identify how, if at all, this issue

influenced the evaluation.

7.5 Reflection from Academic Participators

Engagement with this research led members of the team of evaluators to reflect

upon the type of feedback they themselves gave in the context of their

professional practice. Below are quotes from three different members of the team

illustrating this point. These quotes were not solicited, they were included in the

covering letter which accompanied their completed evaluations.

“I have found this a very interesting exercise to be involved in and I feel sure

it has helped me to improve my own assessment skills. It has definitely

clarified the difference between "assessment" comments (how you did it) and

"improvement" comments (how you could do it better).”

“It was interesting to see the tool-generated feedback – I thought it was useful

in general.”

“It has been interesting to see the comments generated by your assessment

tool. Contrasting these with colleagues’ comments really highlights the

problems we have as academics in providing good quality feedback to help

student learning given the time pressures. “

The first comment illustrates a team member reflecting upon their own approach to

formative assessment. The tool’s output has helped to clarify the distinction

between feedback and feed forward. The third comment refers to time pressures

Page 193

for producing good quality feedback. The tool offers the potential to reduce this

time as, once configured, it can be uniformly applied to the cohort’s submission.

7.6 Future Work

Whilst this work has made several significant contributions, there are several ways

it can be taken forward.

7.6.1 Support for the Tutor to Enter Feedback Comments

The tool does not create the feedback comments; it generates them by selecting

from a predetermined list. The choice of which comments to select is made by the

tool when comparing the features of one artefact with those of another. Different

comments are chosen according to whether the match is strong, intermediate or

weak. Further development is needed on the mechanism by which a tutor

specifies both the features to be compared and the comment list related to the

strength of their match. This could be through the development of a program that

aids the tutor in linking the artefact’s features and the feedback to be generated for

a range of matching scores. The tutor would run this program once at the start of

the assessment as a means of configuring the tool. Alternatively, work could be

undertaken in exploring whether natural language techniques could be used to

automatically generate feedback comments based upon the features found.

7.6.2 Concise vs. Complete Feedback

There was disagreement between the evaluators upon what constitutes concise

feedback (Chapter 6, Section 6.3). A follow-up investigation with the evaluators on

the trade-off between completeness and conciseness of the feedback generated

would usefully inform the future development of the tool. This could be via a

questionnaire, a workshop or through establishing a discussion forum. If there

were a mechanism to rank the errors, feedback could be generated for those that

were top-ranking.

Page 194

7.6.3 Identifying Weaknesses in the Student Submission

Student feedback (Chapter 6, Section 6.5) indicated that the tool performs better

at reinforcing strengths in the submission than identifying weaknesses. A review of

the tool’s approach to collating and reporting feedback on weaknesses would

usefully inform the future development of the tool. This could be via a follow-up

discussion with the students to identify the type and form of feedback they felt

would have helped them during their learning.

7.6.4 Syntactically Incorrect Artefacts

Whilst the tool is tolerant of syntax errors, there is an inherent assumption in the

tool that both the diagrams and source code are syntactically correct. Further

research is needed on how to generate feedback where one or both artefacts are

syntactically incorrect. One approach would be to pre-process the artefacts with a

domain-specific syntax checking tool. For the design/implementation context this

could be through the adoption of a lexical analyser, compiler or CASE tool and the

feedback generated would focus upon why the artefact is syntactically incorrect

and what needs to be done to correct it.

7.6.5 Triangulating Between Artefacts

The developed assessment tool compared two artefacts – a diagram and its

implementation. The pedagogic context is that of providing formative support for

the student as the learning moves from high to low-levels of abstraction. The

advantage of the approach is that it removes the need for a tutor-supplied mark

sheet. However, triangulating between the student submission and a further

artefact representing a tutor-supplied mark sheet, for example, would be a useful

enhancement to the tool. There are three comparisons that could be made. This

would offer the potential of generating additional formative feedback that is

focused upon how the artefacts meet the expectation of the tutor as expressed in

the mark sheet.

Page 195

7.6.6 Analysing Free-form Labels

In the design/implementation context, the labels for the features contained in both

artefacts are determined by the student. This reduces the complexity of label

matching and consequently minimal stemming was adopted by the illustrative tool.

However, comparing artefacts produced by different authors, for example, the

inclusion of a tutor-supplied marking scheme would require a more sophisticated

approach to label matching such as that advocated by Thomas et al. (2009).

7.6.7 Tagging Artefacts

The tagging of the student submission is a long and laborious task and relates to

the limitation of forward and reverse engineering tools, generally. Further

investigation is needed into the adoption of reverse and forward engineering tools

to automate the description of an artefact’s features. This would involve either the

development of a tool that analysed the run-time behaviour of the implementation

or a sophisticated tool that statically analysed the source code and extracted from

it how and where objects were being dynamically created. Alternatively, it may be

fruitful to investigate the feasibility of adopting a hybrid approach where the tools

are used to describe an artefact’s static features and the dynamic behaviour is

described manually. This should make the tagging process less laborious.

7.6.8 Follow-Up Survey with the Evaluators

Feedback comments from two markers were removed from the evaluation as they

were viewing the student submission differently (statistically significant) to the

remainder of the marking team. There may be merit in revisiting these comments

and discussing them with the markers in order to inform future developments of

the tool.

Page 196

7.7 Conclusion

This dissertation has identified an important gap in the literature. No existing

systems utilise an accompanying implementation when automatically generating

formative feedback for a design diagram. The implementation provides an insight

into the student’s learning as his/her solution moves from high to low levels of

abstraction. It provides a different perspective on the diagram that can usefully

inform its assessment. Utilising a diagram’s accompanying implementation,

therefore, represents a new contribution to the development of systems that

automate the e-assessment of diagrams.

The design/implementation context is one example of the generic case where two

artefacts represent different ways of expressing a solution to the same problem.

The multiple artefact concepts and definitions presented in this dissertation were

used to develop an assessment framework. An illustrative assessment tool was

implemented and applied to a set of student submissions. The feedback generated

by the tool was compared with that generated by a set of human evaluators. The

method of evaluation was substantial needing to both test for consistency within

the evaluative team and to compare human with tool-generated comments. The

evaluation method itself is a novel contribution to the field of e-assessment.

Analysis of the evaluators’ returns concluded that tool-generated formative

feedback comments were rated consistently equal to or higher than those that

were human-generated. This was the case for 13 questions distributed across the

criteria of quality, relevance and coverage. This suggests that there is merit in the

multiple artefact concepts developed in this dissertation. It also suggests that there

is merit in the methodology developed for evaluating formative feedback

comments. However, there is scope for extension and improvement. Suggestions

on where to put future effort have been put forward.

Page 197

References

[1] Adams, K., 2003. Use of Questionmark Assessment Software to Improve

Learning and Teaching. Proceedings of the Sixth International Conference on

Computer Based Learning in Science (CBLIS), 5-10 July 2003 Cyprus.

University of Cyprus, Nicosia, Cyprus, pp. 206-214.

[2] Ali, N., Shukur, Z., and Idris S., 2007a. A Design of an Assessment System

for UML Class Diagram. Proceedings of the Fifth International Conference on

Computational Science and Applications, 26-29 August 2007, Kuala Lumpar,

Malaysia. IEEE Computer Society pp. 539-544.

[3] Ali, N., Shukur, Z., and Idris S., 2007b. Assessment System for UML Class

Diagram Using Notations Extraction. Computer Science Department,

University Malaysia, Malaysia. IJCSNS International Journal of Computer

Science and Network Security, VOL. 7 No. 8.

[4] Alphonce, C., and Ventura, P., 2003. QuickUML: A Tool to Support Iterative

Design and Code Development. Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages,

and applications OOPSLA '03, 26-30 October 2003, Anaheim, California

USA. New York: ACM Press pp. 80-81.

[5] Alphonce, C., and Martin, B., 2005. Green: a pedagogically customizable

round-tripping UML class diagram Eclipse plug-in. Proceedings of the 2005

OOPSLA workshop on Eclipse technology eXchange eclipse '05, 16-17

October 2005, San Diego California, USA. New York USA: ACM Press pp.

115-119.

Page 198

[6] Anderson, L., and Krathwohl, D., 2001. A Taxonomy for Learning, Teaching

and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives,

Longman Publishing, Addison Wesley Longman Inc.

[7] Antoniol, G., Caprile, B., Potrich, A., and Tomella, P., 2000. Design-code

Traceability for Object-Oriented Systems. Annals of Software Engineering,

Vol 9, Issue 1-4, pp.35-58.

[8] Baker, D., and Zuvela, D., 2012. Feedforward Strategies in the First Year

Experience of On-line and Distributed Learning Environments. Assessment

and Evaluation in Higher Education, pp.1-11.

[9] Batmaz, F., and Hinde, C., 2006. A Diagram Drawing Tool for Semi-

Automatic Assessment of Conceptual Diagrams. Proceedings of the 10th

International Conference on Computer Assisted Assessment, 4-5 July 2006,

Loughborough. Loughborough: Loughborough University,

http://hdl.handle.net/2134/4536.

[10] Batmaz F., and Hinde C., 2007 A Web-Based Semi-Automatic Assessment

Tool for Conceptual Database Diagrams. Proceedings of the 6th International

Conference on Web-Based Education, March 14-16 2007, Chaminox,

France. ACTA Press: Anaheim, California USA, Vol 2, pp. 427-432.

[11] Beer D. 2011 – [viewed 02-02-13]. At the Heart of the Higher Education

Debate: Expectation Inflation: as Demands Rise, Ability to Meet them

Declines [online]. Times Higher Education. Available from

http://www.timeshighereducation.co.uk.

[12] Bloom, B., 1956. In Taxonomy of Educational Objectives: the Classification of

Educational Goals, London, Longman 1956.

Page 199

[13] Bolloju, N., and Leung, F., 2006. Assisting Novice Analysts in Developing

Quality Conceptual Models with UML. Communications of the ACM Volume

49 No. 7, July 2006. New York USA: ACM Press, pp108-112.

[14] Bolton, P. 2012 [viewed 02-02-2013]. Tuition Fee Statistics: House of

Commons Library, Standard Note SN/SG/917 [online]. Available from

http://www.parliamnet.co.uk/briefing-papers/SN00917.pdf.

[15] Borland 2008 Code Gear JBuilder 2008 Professional, Eclipse-based Java

IDE, Borland.

[16] Boud, D., and Molloy, E., 2012. Rethinking Models of Feedback for Learning:

the challenge of Design. Assessment and Evaluation in Higher Education,

Volume 0 Issue 0, pp.1-15.

[17] Brown, S., Race, P., and Smith, B., 1996. 500 Tips on Assessment. London:

Kogan, ISBN 0749419415.

[18] Bull, J., and Danson, M., 2004. Computer Aided Assessment (CAA).

Learning and Teaching Support Network Generic Centre Assessment Series.

ISBN 1-904190-53-7.

[19] Butcher, K., and Kintsch, W., 2004. Learning with Diagrams: Effects on

Inferences and the Integration of Information. Proceedings of Diagrammatic

Representation and Inference, Third International Conference, Diagrams

2004. 22-24 March 2004. Springer-Verlag, pp. 337-340.

[20] Chawathe, S., Rajaraman, A., Garcia-Molina, H., and Widom, J.. 1996.

Change Detection in Hierarchically Structured Information. Proceedings of

the 1996 ACM SIGMOD international conference on Management of Data,

June 4-6 1996, Montreal Quebec Canada. New York USA: ACM Press, pp.

493-504.

Page 200

[21] Chawathe, S., and Garcia-Molina, H., 1997. Meaningful Change Detection in

Structured Data. Proceedings of the 1997 ACM SIGMOD international

conference on Management of Data, May 13-15 1997, Tucson Arizona USA.

New York USA: ACM Press, pp. 26-37.

[22] Chikofsky, E., and Cross, I., 1990. Reverse Engineering and Design

Recovery: A Taxonomy. IEEE Software, Vol 7, Issue 1, pp.13-17.

[23] Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales.

Educational and Psychological Measurement, Vol 20, pp. 37-46.

[24] Conole, G., and Warburton, B., 2005. A review of Computer–Assisted

Assessment. Alt-J, Research in Learning Technology. Vol 13, No. 1, March

2005, pp. 17-31.

[25] Cooper, D., Khoo, B., Von Konsky, B., and Robey, M., 2004. Java

Implementation Verification Using Reverse Engineering. Proceedings of the

27th Australasian conference on Computer Science - Volume 26 ACSC '04,

January 2004, Dunedin New Zealand. Darlinghurst, Australia: Australian

Computer Society Inc. pp. 203-211.

[26] Culwin, F., 1998. Web Hosted Assessment – Possibilities and Policy. ACM

SIGCSE Bulletin , Proceedings of the 6th annual conference on the teaching

of computing and the 3rd annual conference on Integrating technology into

computer science education: Changing the delivery of computer science

education (ITiCSE '98), 18-21 August 1998, Dublin Ireland. New York USA:

ACM pp. 55-58.

[27] Cummins, R., A., and Gullone, E., 2000. Why we should not use 5-point

Likert scales: The case for subjective quality of life measurement.

Proceedings of the Second International Conference of Quality of Life in

Cities. 2000 Singapore. Singapore: National University of Singapore. pp74-

93.

Page 201

[28] Dafoulas, G., 2005. The role of Feedback in Online Learning Communities.

Proceedings of the Fifth IEEE International Conference on Advanced

Learning Technologies (ICALT’05). 5-8 July 2005, Kaohsiung, Taiwan.

Washington DC USA: IEEE Computer Society, pp. 827-831.

[29] Daly, C., and Waldron, J., 2004. Assessing the Assessment of Programming

Ability. Proceedings of the 35th SIGCSE technical symposium on Computer

science education SIGCSE '04. 3-7 March 2004, Norfolk Virginia USA. New

York USA: ACM Press, pp 210-213.

[30] De Pauw, W., Kimelman, D., and Vlissides, J., 1994. Modelling object-

oriented Program Execution. Proceedings of the 8th European Conference

on Object Oriented Programming, ECOOP ’94, 4-8 July 1994, Bologna, Italy.

Springer pp. 163-182.

[31] Diamond, I., and Jeffries, J., 2001. Beginning Statistics: An Introduction for

Social Scientists. London: Sage Publications Ltd., ISBN 0 7619 6061 9.

[32] Dixon, P. N., Bobo, M., and Stevick, R. A., 1984. Response differences and

preferences for all category-defined and end-defined Likert formats.

Educational and Psychological Measurement, 44, pp. 61-66.

[33] Eclipse Foundation 2006 Eclipse, open source Integrated Development

Environment [online] Available at http://www.eclipse.org [Accessed 2006]

[34] Egyed, A., 2007a. Fixing Inconsistencies in UML Design Models.

Proceedings of the 29th International Conference on Software Engineering

(ICSE’07), May 20-27 2007, Minneapolis. IEEE Computer Society, pp. 292-

301.

[35] Egyed, A., 2007b. UML/Analyzer: A tool for the Instant Consistency Checking

of UML Models, Proceedings of the 29th International Conference on

Page 202

Software Engineering ICSE’07, May 20-27 2007, Minneapolis. IEEE

Computer Society, pp. 793-796.

[36] Fan S., Tanimoto S. 2007. A framework for automated design assessment in

online learning. Proceedings if the 7th IEEE International Conference on

Advanced Learning Technologies (ICALT 2007), IEEE Computer Society,

Niigata, Japan, pp 51-53.

[37] Frigon, N., and Mathews, D., 1997. Practical Guide to Experimental Design.

John Wiley and Sons Ltd., ISBN 0-471-13919-X.

[38] Goeb, R., McCollin, C., and Ramalhoto, M., 2007. Ordinal Methodology in the

Analysis of Likert Scales. International Journal of Methodology, Quality and

Quantity, 41, pp. 601-626.

[39] Gwet, K.L., 2010. Handbook of Inter-Rater Reliability. 2nd ed. Advanced

Analytics, LLC, ISBN 978-0-9708062-2-2.

[40] Haley, D., 2008. Applying Latent Semantic Analysis to Computer Assisted

Assessment in the Computer Science Domain: A Framework, A Tool and an

Evaluation. Thesis (P.hd). The Open University.

[41] Haley, D., Thomas, P., Petre, M., and De Roeck, A., 2008. Using a New

Inter-rater Reliability Statistic. Technical Report No 2008/15, The Open

University, 27th August 2008, ISSN 1744-1986.

[42] Harvey, J., (Ed) 1998. Evaluation Cookbook. Learning Technology

Dissemination Initiative, Institute for Computer Based Learning, Herriot-Watt

University, Edinburgh, ISBN 0 9528731 6 8, URL: http://www.icbl.hw.ac.uk/ltdi.

[43] Hayes, A., 2007. The Development of An Automated Assessment

Framework. Assessment in Wales: Practice that Works [online]. Available at

http://www.heacademy.ac.uk/resources/detail/resource_database/casestudie

s/welsh_case_studies_index (Accessed December 2007).

Page 203

[44] Hayes, A., Thomas, P., Smith, N., and Waugh, K., 2007a. A Framework for

the Automated Assessment of Consistency Between Code and Design.

Proceedings of Informatics Education Conference II. 29-30 November 2007,

Thessaloniki, Greece. Thessaloniki: South East European Research Centre,

pp. 370-378.

[45] Hayes A., Thomas P., Smith N., Waugh K. 2007b An Investigation into the

Automated Assessment of the Design-Code Interface. Proceedings of the

12th Annual Conference on Innovation and Technology in Computer Science

Education (ITiCSE 2007). University of Dundee, 25-27 June 2007. New York

USA: ACM Press pp. 324-324.

[46] Higgins, C.A., and Bligh, B., 2006. Formative Computer Based Assessment

in Diagram Based Domains. Proceedings of the11th annual SIGCSE

conference on Innovation and Technology in Computer Science Education

(ITiCSE’06). 26-28 June 2006, Bologna. New York USA: ACM Press pp. 98-

102.

[47] Higgins, C.A., Bligh, B., Symeonidis, P., and Tsintsifas, A., 2009. Authoring

diagram-based CBA with CourseMarker. Computers and Education, Vol 52

Issue 4, pp. 749-761.

[48] Hoggarth, G., and Lockyer, M.. 1998. An Automated Student Diagram

Assessment System. Proceedings of the 3rd annual SIGCSE conference on

Innovation and Technology in Computer Science Education (ITiCSE’98), 18-

21 August 1998, Dublin Ireland. New York USA: ACM Press pp. 122-124.

[49] Holland, S., Griffiths, R., and Woodman, M., 1997. Avoiding Object

Misconceptions. In Miller J., E (Ed.), ACM SIGCSE Bulletin, Proceedings of

the twenty-eighth SIGCSE technical symposium on Computer science

education SIGCSE '97, Volume 29 Issue 1, March 1997.

Page 204

[50] Hu, C., 2004. Rethinking of Teaching Objects First. Education and

Information Technologies, Volume 9 Issue 3, September 2004. Kluwer

Academic Publishers pp. 209-218.

[51] Iahad, N., and Dafoulas, G., 2004a. The Role of Feedback in Interactive

Learning Systems: A comparative Analysis of Computer-Aided Assessment

for Theoretical and Practical Courses. Proceedings of the IEEE International

Conference on Advanced Learning Technologies (ICALT ’04). 30 August - 1

September 2004, Joensuu Finland. Washington DC USA: IEEE Computer

Society, pp. 535-539.

[52] Iahad, N., Dafoulas, G., Milankovic-Atkinson, M., and Murphy, A., 2004b. E-

Learning in Developing Countries: Suggesting a Methodology for Enabling

Computer–Aided Assessment. Proceedings of the IEEE International

Conference on Advanced Learning Technologies (ICALT ’04). 30 August - 1

September 2004, Joensuu Finland. Washington DC USA: IEEE Computer

Society, pp. 983-987.

[53] IBM Centre for Software Engineering, Details of ODC, [Online]

http://www.research.ibm.com/softeng/ODC/DETODC.HTM (Accessed 14th December

2007)

[54] IBM 2010. SPSS Statitistics version 19.0. Available at Centre for Software

Engineering, Details of ODC,

[WWW]http://www.research.ibm.com/softeng/ODC/DETODC.HTM (14th December 2007).

[55] IEEE Computer Society and the Association of Computing Machinery The

Joint Task Force on Computing Curricula 2001 Computing Curricula 2001

Computer Science. In ACM Journal of Educational Resources in Computing

Vol. 1, No.3, December 2001.

[56] Jackson, D., 2000. A semi-automated Approach to On-line Assessment.

Proceedings of the 5th Annual SIGCSE/SIGCUE Conference on Innovation

Page 205

and Technology in Computer Science Education. 11-13 July 200, Helsinki,

Finland.New York USA: ACM Press pp. 164-167.

[57] Jayal, A., and Shepperd, M., 2009. The Problem of Labels in E-Assessment

of Diagrams. ACM Journal on Educational Resources in Computing, Vol 6,

No. 4, Article 12.

[58] Joint Information Systems Committee (JISC). Effective Practice with e-

Assessment, 2007.

[59] Jones C., Ramanau R., Cross S. and Healing G. 2010. Net Generation or

Digital Natives: Is there a Distinct New Generation Entering University?

Journal of Computers and Education, Vol 54, Issues 3, April 2010. Elsevier,

pp 722-732.

[60] Jordan, S., 2011. Using Interactive Computer-based Assessment to Support

Beginning Distance Learners of Science. Open Learning: The Journal of

Open, Distance and e-Learning, 26:2, pp 147-164.

[61] Joy, M., Luck, M., 1998. Effective Electronic Marking for On-line Assessment.

In Proceedings of the 3rd annual SIGCSE conference on Innovation and

Technology in Computer Science Education (ITiCSE’98). 18-21 August 1998,

Dublin Ireland. New York USA: ACM Press pp. 134-138.

[62] Joy, M., Muzykantskii, B., Rawles, S., and Evans, M., 2002. An Infrastructure

for Web-Based Computer-Assisted Learning. ACM Journal of Educational

Resources, Vol 2, No. 4, pp. 1-19.

[63] Joy, M., Griffiths, N., and Boyatt, R., 2005. The Boss Online Submission and

Assessment System. Journal on educational Resources in Computing (Jeric),

Volume 5, Issue 3, September 2005, article 2.

[64] Kelly, D., and Shepard, T., 2001. A Case Study in the Use of Defect

Classification in Inspections. Proceedings of the 2001 conference of the

Page 206

Centre for Advanced Studies on Collaborative research CASCON '01. 5-7

November 2001, Toronto, Ontario, Canada. IBM Press, page 7.

[65] Kelte, U., Wehren, J., and Niere, 2005. A Generic Difference Algorithm for

UML Models. Proceedings of the Software Engineering 2005, Lecture Notes

in Informatics (LNI), Essen Germany, March , 2005, GI, Vol.64 pp 105-116.

[66] Landis, J., R., and Koch, G., 1977. The Measurement of Observer

Agreement for Categorical Data. Biometrics, 33, 159-174.

[67] Lank, E., Thorley, J., and Chen, S., 2000. An Interactive System for

Recognising Hand Drawn UML Diagrams. Proceedings of the 2000

conference of the Centre for Advanced Studies on Collaborative Research.

13-16 November 2000, Mississauga, Ontario, Canada. IBM page 7.

[68] Lass, R., Cera C., Bomberger, N., Char, B., Popyack, J., Hermann, N. and

Zoski P., 2003. Tools and Techniques for Large Scale Grading using Web-

based Off-The-Shelf Software. Proceedings of the 8th annual SIGCSE

conference on Innovation and Technology in computer Science Education

(ITiCSE’03) 30 June – 1 July 2003, Thessaloniki Greece. New York USA:

ACM Press pp. 168-172.

[69] Laurillard D. 2012 Teaching as a Design Space: Building Pedagogical

Patterns for Learning and Technology. Routledge.

[70] Lewis, J., 2000. Myths about Object-Orientation and its Pedagogy.

Proceedings of the thirty-first SIGCSE technical symposium on Computer

science education SIGCSE '00. 8-12 March 2000, Austin Texas USA. New

York USA: ACM Press pp. 245-249.

[71] Lienhard, A., Ducasse, S., and Girba, T., 2007. Object Flow Analysis –

Taking an Object-Centric View on Dynamic Analysis. Proceedings of the

2007 international conference on Dynamic languages: in conjunction with the

Page 207

15th International Smalltalk Joint Conference 2007 (ICDL ’07). 21-31 August

2007, Lugano, Switzerland. New York USA: ACM Press pp. 121-140.

[72] Liew, C., 2005. Teaching Software Development Skills Early in the

Curriculum Through Software Engineering. Proceedings of the 10th annual

SIGCSE conference on Innovation and technology in computer science

education ITiCSE '05. 27-29 June 2005, Univerisdada Nova de Lisboa,

Monte da Caparica, Portugal. New York USA: ACM Press pp. 133-137.

[73] Likert R. 1932 A Technique for Measuring Attitudes. Archives of Psychology,

140, pp. 1-55.

[74] Lilley, M., Barker, T., and Britton, C., 2004. The Development and Evaluation

of a Software Prototype for Computer Adaptive Testing. Computers and

Education, Volume 43, Issue 1-2, pp. 109-123.

[75] Lindland, O., Sindre, G., Brasethvick, T., and Sovberg, A., 1994.

Understanding Quality in Conceptual Modelling. IEEE Software, Volume 11,

Issue 2, pp. 42-49.

[76] Lissitz, R.W., and Green, S.,B., 1975. Effect of the number of scale points on

reliability: A Monte Carlo Approach. Journal of Applied Psychology, 60, pp.

10-13.

[77] Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas., Hanks, B.,

Hitchner L., Luxton-Reilly A., Sanders, K., Schulte, C., and Whalley, J.,

2006. Research Perspectives on the Objects-Early Debate. Proceedings of

the 11th annual SIGCSE conference on Innovation and Technology in

Computer Science Education (ITiCSE’06). 26-28 June 2006, University of

Bologna, Italy. New York USA: ACM Press pp 146-165.

[78] Matzko, S., Clarke, P., Gibbs, T., Malloy, B., Power, J., Monahan, R., 2002.

Reveal: A Tool to Reverse Engineer Class Diagrams. Proceedings of the

Page 208

Fortieth International Conference on Tools Pacific: Objects for internet,

mobile and embedded applications CRPIT '02, February 2002, Sydney

Australia. Darlinghurst, Australia: Australian Computer Society, Inc., pp. 13 –

21.

[79] McKelvie, S.J., 1978. Graphic rating scale – How many Categories? British

Journal of Psychology, Volume (69), pp. 185-202.

[80] McLaughlin, B., 2001. Java and XML. 2nd Ed. United States of America:

O’Reilly. ISBN: 0596-00197-5.

[81] Merdes, M., and Dorsch, D., 2006. Experiences with the Development of a

Reverse Engineering Tool for UML Sequence Diagrams: A Case Study in

Modern Java Development. Proceedings of the 4th International Symposium

on Principles and Practice of Programming in Java (PPPJ 2006), 30 August –

1 September 2006, Mannheim, Germany. New York USA: ACM Press, pp.

125 – 134.

[82] National Student Survey 2012. Available at: http://www.thestudentsurvey.com/

(accessed 27th August 2012).

[83] Object Management Group 2007 MOF 2.0/XMi Mapping v2.1.1[online]

Available at http://www.omg.org/spec/XMI/2.1.1 (accessed 11th November 2008).

[84] Ohst, D., Welle, M., and Kelte, U., 2003a. Difference Tools for Analysis and

Design Documents. Proceedings of the International Conference on Software

Maintenance (ICSM’03). 22-26 September 2003, Portland Oregon USA.

Washington D.C. USA: IEEE Computer Society, pp.13-22.

[85] Ohst, D., Welle, M., and Kelte, U., 2003b. Differences Between Versions of

UML Diagrams. Proceedings of the European Software Engineering

Conference and ACM SIGSOFT Symposium on the Foundations of Software

Page 209

Engineering. (ESEC/FSE 2003). 1-5 September 2003, Helsinki Finland. New

York USA: ACM Press, pp. 227-236.

[86] Pallant, J., 2007. SPSS Survival Manual. Open University Press, McGraw

Hill, ISBN-10: 0 335 22366 4 (pb).

[87] Parr, C. 2012 [viewed 02-02-2013] At the Heart of the Higher Education

Debate: Open University Launched British Mooc Platform to Rival US

[online]. Times Higher Education. Available from

http://www.timeshighereducation.co.uk/422137.arcticle.

[88] Porter, M.F., 1997. An Algorithm for Suffix Stripping. Readings in Information

Retrieval, Morgan Kaufmann Publishers Inc., pp. 313-316.

[89] Prados, F., Soler, J., Boada, I., and Poch, J., 2011. An Automatic Correction

Tool That Can Learn. Proceedings of Frontiers in Education Conference

(FIE), 12-15 October 2011, South Dakota USA. Washington DC USA: IEEE

computer Society ppF1D-1-1-F1D-5.

[90] Prensky, M.P., 2001. Digital Natives, Digital Immigrants. On the Horizon.

NCB University Press, Vol (9), No. 5, October 2001.

[91] Quality Assurance Agency for Higher Education, 2011 – [viewed 27/12/2013].

UK Quality Code for Higher Education Chapter B7:External Examining

[online]. Available from

http://www.qaa.ac.uk/Publications/InformationandGuidance/Pages/quality-

code-B7.aspx

[92] Schmidt, M., and Gloetzner, T., 2008. Constructing Difference Tools for

Models Using the SiDiff Framework. Proceedings of the International

Conference on Software Engineering (ICSE ’08), 10-18 May 2008, Leipzig

Germany. New Your, USA: ACM Press, pp. 947-948.

Page 210

[93] Smith, N., Thomas, P., and Waugh K., 2013. Automatic Grading of free-form

diagrams with Label Hypernymy. Proceedings of Learning and Teachibg in

Computing and Engineering (LaTICE, 2013). 21-24 March 2013, Macau.

IEEE Computer Society , pp136-142.

[94] Smith, N., Thomas, P., and Waugh, K., 2004. Interpreting Imprecise

Diagrams. Proceedings of the Third International Conference in Theory and

Applications of Diagrams. 22-24 March 2004, Cambridge, UK. Springer

Lecture Notes in Computer Science, pp. 239-241.

[95] Smith, N., Thomas, P., and Waugh, K., 2010. Diagram Interpretation and e-

Learning Systems. In: A.K., Goel, M., Jamnik, and N.H,. Narayanan eds.

Proceedings of the 6th International Conference on Diagrammatic

Representation and Inference (Diagrams ’10). 9-11 August 2010, Portland

Oregon USA. Diagrams 2010, LNAI,. Berlin Heidelberg: Springer-Verlag,

pp.331-333.

[96] Soler, J., Boada I., Prados F., Poch J., and Fabregat R. 2010. A web-based

e-learning tool for UML Diagrams. In Education Engineering (EDUCON),

2010, IEEE, pp. 973-979.

[97] Sommerville, I., 2007. Software Engineering. Edition 8. Addison-Wesley.

[98] Stone, R., Batmaz, F., and Hinde, C., 2009. Drawing and Marking Graph

Diagrams. Italics, Volume 8 Issue 2, June 2009, pp. 45-52.

[99] Stone, R.G., Batmaz, F., and Rickards, T., 2010. A Multi-Touch ER Diagram

Editor to Capture Students’ Design Rationale. Proceedings of the World

Congress on Engineering and Computer Science (WCECS 2010) 20-22

October 2010, San Francisco, USA. International Association of

Engineers,pp. 252-256.

Page 211

[100] Striewe, M., Goedicke, M. 2011. Automated Checks on UML Diagrams.

Proccedings of the 16th annual joint conference on Innovation and

Technology in Computer Science Education (ITiCSE 2011) Darmstadt,

Germany, June 27-29, 2011, pp 38-42.

[101] Suraweera, P., and Motrovic, A., 2004. An Intelligent Tutoring System for

Entity Relationship Modelling. International Journal of Artificial Intelligence in

Education, 14 (3-4) pp 375-417.

[102] Suraweera, P., and Motrovic, A., 2002. KERMIT: A Constraint-Based Tutor

for Database Modelling. Proceedings of the 6th International Conference on

Intelligent Tutoring (ITS 2002).2-7 June 2002, Biarritz France and San

Sebastian Spain. London: Springer-Verlag, pp. 377-387.

[103] Surridge, P., 2006. The National Student Survey, 2006: Findings. Bristol

HEFCE. Available at www.hefce.ac.uk/pubs/rdreports/2006/rd22_06 [accessed 6th

February 2012].

[104] Terzis, V., and Economides, A., 2011. The Acceptance and Use of Computer

Based Assessment. Computers & Education, Volume 56, Issue 4, May 2011,

pp. 1032-1044.

[105] Thomas, P., 2004. Drawing Diagrams in an Online Examination.

Proceedings of the 8th CAA Conference. Loughborough: Loughborough

University http://hdl.handle.net/2134/1967.

[106] Thomas, P., Waugh, K., and Smith, N., 2005. Experiments in the Automated

Marking of ER-Diagrams. Proceedings of 10th Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE 2005).

27-29 June Monte de Caparica Portugal. New York USA: ACM Press pp.

158-162.

Page 212

[107] Thomas, P., Waugh, K., and Smith, N., 2006. Using Patterns in the

Automatic Marking of ER-Diagrams. Proceedings of the 11th annual SIGCSE

conference on Innovation and Technology in Computer Science Education

(ITiCSE’06), 26-28 June 2006, Bologna, Italy. New York USA: ACM Press

pp. 83-87.

[108] Thomas, P., 2007. Diagram Exerciser: A Tool for Learning Data Modelling.

Proceedings of the 12th annual SIGCSE conference on Innovation and

Technology in Computer Science Education (ITiCSE’07), June 2007.

http://mcs.open.ac.uk/Diagrams/Publications/ITiCSE_2007.pdf (accessed 30/01/11).

[109] Thomas, P., Smith, N. and Waugh, K. 2007. Computer Assisted Assessment

of Diagrams. Proceedings of the 12th annual SIGCSE conference on

Innovation and Technology in Computer Science Education (ITiCSE’07), 25-

27 June 2007, Dundee Scotland. New York USA: ACM Press pp. 68-72.

[110] Thomas, P., Smith, N., and Waugh, K., 2008. Automatically Assessing

Graph-based Diagrams. Learning, Media and Technology, Vol.33, No.3, pp.

249-267.

[111] Thomas, P., Smith, N., and Waugh, K., 2009. The Role of Labels in the

Automated Assessment of Graph-based Diagrams. Proceedings of 23rd ICDE

World Conference on Open and Distance Learning. 7-10 June 2009,

Maastricht, Holland.

[112] Thomas, P., Waugh, K., and Smith, N., 2012 Automatically Assessing Free-

form Diagrams in E-assessment Systems. HEA STEM conference, 12-13

April 2012, Imperial College, London.

[113] Thomasson, B., Ratcliffe, M., and Thomas, L., 2006. Identifying Novice

Difficulties in Object Oriented Design. Proceedings of the 11th annual

SIGCSE conference on Innovation and Technology in Computer Science

Page 213

Education (ITiCSE ’06). 26-28 June 2006, Bologna, Italy. New York USA:

ACM Press pp. 28-32.

[114] Tigris (2006) ArgoUMLv0.22: Open Source Software Engineering Tool

[online] Available at http://argouml.tigris.org [Accessed 2006]

[115] Tilley, S., 2000. The Canonical Activities of Reverse Engineering. Annals of

Software Engineering, Volume 9 Issue 1-4, pp. 249-271.

[116] Treude, C., Berlik, S., Wenzel, S., and Kelte, U., 2007. Difference

Computation of Large Models. Proceedings of the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT

symposium on the foundations of software engineering. 3-7 September

Dubrovnik Croatia. New York USA: ACM Press pp. 295-304.

[117] Tselonis, C., Sargeant, J., and McGee, M., 2005. Diagram Matching for

Human-Computer Collaborative Assessment. Proceedings of the 9th

International Conference on Computer Assisted Assessment. July 2005.

Loughborough: Loughborough University.

[118] Tselonis, C., and Sargeant, J., 2007. Domain-specific formative feedback

through domain-independent diagram matching. In: Khandia, F. (ed.).

Proceedings of 11th CAA International Computer Assisted Assessment

Conference. 10-11 July 2007, Loughborough. Loughborough: Lougborough

University, pp. 403-420.

[119] Tselonis, C., 2008. Matching Constructed Answers for E-Assessment. Ph.D.

Thesis. University of Manchester, Faculty of Engineering and Physical

Sciences.

[120] Tsintsifas, A., 2002. A Framework for the Computer Based Assessment of

Diagram Based Coursework. Ph.D. Thesis. University of Nottingham, School

of Computer Science and Information Technology. .

Page 214

[121] Uhrig, S., 2008. Matching Class Diagrams: With Estimated Costs Towards

the Exact Solution. Proceedings of the 2008 international workshop on

comparison and versioning of software models (CSVM’08). 10-18 May 2008,

Leipzig Germany. New York USA: ACM Press pp. 7-12.

[122] Wang, Y., Dewitt, D., and Cai, J., 2003. XDiff: An effective change detection

algorithm for XML documents. Proceedings of the 19th International

Conference on Data Engineering. 5-8 March 2003, Bangalore India. IEEE,

pp. 519-530.

[123] Waugh, K., Thomas, P., and Smith, N., 2004. Toward the Automated

Assessment of Entity-Relationship Diagrams. Proceedings of the 2nd LTSN-

ICS Teaching, Learning and Assessment in Databases Workshop (TLAD).

5th July 2004.Edinburgh, Scotland.

[124] Wenzel, S., 2008. Scalable Visualisation of Model Differences. Proceedings

of the 2008 international workshop on Comparison and versioning of

software models (CSVM’08), 10-18 May 2008, Leipzig Germany. New York

USA: ACM Press, pp. 41-46.

[125] Whitelock. D., and Watt, S., 2007. E-assessment: How can we support tutors

with their marking of electronically submitted Assignments? Ad-Lib, Journal

for Continuing Liberal Adult Education. (32), pp. 7-8.

[126] Williams, J., Kane, D., Sagu, S. and Smith, E., 2008. Exploring the National

Student Survey: Assessment and Feedback Issues. York, The Higher

Education Academy.

[127] Xing, Z., and Stroulia, E., 2005. UMLDiff: An Algorithm for Object-Oriented

Design Differencing. Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering (ASE’05). 7-11 November

2005, Long Beach California USA. New York USA: ACM Press pp. 54-65.

Page 215

[128] Yannakoudakis, H., Briscoe, T., and Medlock, B., 2011. A new Dataset and

Method for Automatically Grading ESOL texts. Proceedings of the 49th

Annual Meeting of the Association of Computational Linguistics: Human

Language Technologies (HLT ’11). June 19-24 2011 Portland, Oregon USA.

Association for Computational Linguistics, pp. 180-189.

[129] Yorke, M., 2003. Formative Assessment in Higher Education: Moves Toward

Theory and the Enhancement of Pedagogic Practice. Higher Education. 45:

pp. 477-501.

[130] Zhu, H., and Zhou, M., 2003. Methodology First and Language Second: A

Way to Teach Object-Oriented Programming. Companion of the 18th annual

ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications (OOPSLA '03). 26-30 October 2003, Anaheim

California USA. New York USA: ACM Press pp. 140-147.

Page 216

Page 217

Appendix A

An EBNF grammar for the XML description of an Artefact’s Features

Page 218

Appendix A
EBNF representation of the tagging grammar adopted
Note on notation

{ } denotes repetition
[] denotes optionality

History
22

nd
 May 2009 – Created

29
th

 June 2009 – Modified to include IsContainer and IsContainee in ClassTypeDef
and to include definitions for ClassIsContainer and ClassIsContainee
29

th
 June 2009 – Modified to include contained typedef

30
th

 June 2009 – convention specified for the tagging of inheritance, aggregation
and dependency relationships
30

th
 June 2009 – added “not defined” to the primitive type specifier

2
nd

 July 2009 – added “char” to the primitive type specifier
6

th
 July 2009 – added “setdynamically” to the cardinality descriptor

10
th

 July 2009 – added tags for “package” and “interface”
10

th
 July 2009 – added optional label feature to the relationship schema

10
th

 July 2009 – added the inclusion of an optional package count and interface
descriptor count to StructureDescriptionSchema
13

th
 July 2009 – added “UserDefined” to the PrimitiveType schema

13
th

 July 2009 – added ”InterfaceName” to the AdjacentRef schema
13

th
 July 2009 – added “InterfaceID” as an optional component of MethodDef

Convention

Inheritance Relationship – label starts at parent and ends at child irrespective of
arrow direction
Aggregation Relationship – label starts at container and ends at containee
irrespective of arrow direction
Dependency Relationship – label follows the direction of the arrow ie starts at the
tail end ends at the arrow head

TaggedArtefact ::= XMLVersionDescriptor, [Comment], StartGrammarTag,

StructureDescriptionSchema, {[ClassSchema]} , {[RelationshipSchema]},
{[PackageDescriptor]}, {[InterfaceSchema]} , EndGrammarTag;

XMLVersionDescriptor ::= “<?xml version=”, ‘ “ ‘, "1.0", ‘ “ ‘, “encoding=”, ‘ “ ’, “UTF-8”, ‘ " ’ ,
“standalone=”, ‘ " ‘, “yes", ‘ “ ‘, “?>”;

StartGrammarTag ::= “<AML>”;

EndGrammarTag ::= “</AML>”;

Comment ::= “<comment”, {[String]}, “/comment>”;

ClassSchema ::= ClassStartTag , ClassTypeDef , [{[AttributeTypeDef]} ,

{[MethodTypeDef]} , {[ChildTypeDef]} , {[ParentTypeDef]},
{[ContaineeTypeDef]}, {[ContainedTypedef]}] , ClassEndTag;

ClassTypeDef ::= “id =” , ‘ ” ’ , ClassID , ‘ ” ’ , “name =” , ‘ “ ‘ , ClassName , ‘ “ ‘, “attributeCount

=” , ‘ ” ’ ,ClassAttributeCount, ‘ ” ’ , “methodCount =” , ‘ ” ’ ,
ClassMethodCount , ‘ ” ’ , “IsParent =” , ‘ ” ’ , ClassIsParent, ‘ ” ’ , “childCount
=” , ‘ ” ’ , NumberOfChildren, ‘ ” ’ , “IsChild =” , ‘ ” ’ ,ClassIsChild , ‘ ” ’ ,
“ParentCount =” , ‘ ” ’ , NumberOfParents, ‘ ” ’ , “IsContainer=” , ‘ ” ‘ ,
ClassIsContainer, ‘ “ ‘, “IsContainee=” , ‘ “ ‘, ClassIsContainee, ‘ “ ‘,
“AdjacentComponents =” , ‘ ” ’ , AdjacentCount, ‘ ” ’ , {[“AdjacentRef =”,
AdjacentRef]}, “>” ;

ClassStartTag ::= “<class”
ClassEndTag ::= “</class>”
ClassID ::= Number ;
ClassName ::= String;
ClassAttributeCount ::= Number;
ClassMethodCount ::= Number;
ClassIsParent ::= Boolean;

Page 219

NumberOfChildren ::= Number;
ClassIsChild ::= Boolean;
NumberOfParents ::= Number;
AdjacentCount ::= Number;
ClassIsContainer := Boolean;
ClassIsContainee := Boolean;
AdjacentRef ::= ClassID | InterfaceName ;

AttributeTypeDef ::= ”<attribute ” , “id =” , ‘ ” ’, AttributeID , ‘ “ ‘, “name =” , ‘ “ ‘ , AttributeName ,

‘ “ ‘ , “type =” , ‘ ” ’ , AttributeType , ‘ ” ’ ,“/>” ;
AttributeID ::= “att” , ClassID, “.” , Number ;
AttributeName ::= String;
AttributeType ::= PrimitiveType| UserDefinedType;
PrimitiveType ::= “int” | “char” | “double” | “real” | “String” | “char” |“NotDefined” | ”UserDefined”;
UserDefinedType ::= String ;
MethodTypeDef ::= “<method” , “id =” , ‘ ” ’ , MethodID, ‘ ” ’ , “name =” , ‘ “ ‘ ,MethodName, ‘ “ ‘

, “/>” ;
MethodID ::= “meth” , ClassID | InterfaceID, “.” , Number ;
MethodName ::= String;

ChildTypeDef ::= “<child”, “id =” , ‘ ” ’ , ChildID , ‘ ” ’ , “class id =”, ‘ ” ’ , ClassID, ‘ ” ’ , “/>” ;
ChildID ::= “child” , ClassID, “.” ,Number ;

ParentTypeDef ::= “<parent”, “id =” , ‘ ” ’ , ParentID , ‘ ” ’ , “class id =”, ‘ ” ’ , ClassID, ‘ ” ’ , “/>” ;
ParentID ::= “parent” , ClassID, “.” , Number ;

ContaineeTypeDef ::= “<containee”, “id =” , ‘ ” ’ , ContaineeID , ‘ ” ’ , “class id =”, ‘ ” ’ , ClassID,
‘ ” ’ , “/>” ;
ContaineeID ::= “containee” , ClassID, “.” ,Number ;

ContainerTypeDef ::= “<container”, “ id =” , ‘ ” ’ , ContainerID , ‘ ” ’ , “class id =”, ‘ ” ’ , ClassID, ‘
” ’ , “/>” ;
ContainerID ::= “container” , ClassID, “.” , Number ;

RelationshipSchema ::= RelationshipStartTag , “id =” , ‘ “ ‘ , RelationshipID , ‘ “ ‘ ,

“name =” , ‘ “ ‘ ,RelationshipName , ‘ “ ‘ ,“nondangling =” , ‘ “ ‘ ,
DanglingDescriptor, ‘ “ ‘ “startclassid =” , ‘ “ ‘ , StartClassDescriptor , ‘ “ ‘
,“startcardinality =”, ‘ “ ‘ ,CardinalityDescriptor , ‘ “ ‘ ,“endclassid =” , ‘ “ ‘
, EndClassDescriptor , ‘ “ ‘ , “endcardinality =” , ‘ “ ‘
,CardianlityDescriptor , ‘ “ ‘ , [“label =” , RelationshipLabel] ,
RelationshipEndTag ;

RelationshipStartTag ::= “<relationship”
RelationshipEndTag ::= “/>”
RelationshipID ::= “rel” , Number;
RelationshipName ::= “inheritance” | “aggregation” | “association” | “dependency” ;
DanglingDescriptor ::= “BothEndsConnected” | “OneEndNotConnected” |
“BothEndsNotConnected” ;
StartClassDescriptor ::= “none” | ClassID | PackageID | InterfaceID;
CardinalityDescriptor ::= “none” | “setdynamically” | Number;
EndClassDescriptor ::= “none” | ClassID;
RelationshipLabel ::= String;

StructureDescriptionSchema ::= StructureStartTag, “source =” , DiagramSource, “class count
=”, ‘ ” ’, Number, ‘ “ ‘, “relationship count =” , ‘ “ ‘ , Number ‘ “ ‘, [“package descriptor count =”, ‘ ”
’, Number. ‘ “ ‘], [“interface descriptor count = “, ‘ “ ‘, Number ‘ “ ‘] StructureEndTag;
StructureStartTag ::= “<StructureDescription”;
StructureEndTag ::= ”/>”;
DiagramSource ::= “student diagram” | “student code” | “tutor model solution”;

PackageDescriptor ::= “< package id =” , ‘ ” ’ , Package ID , ‘ ” ’ , “name =”, ‘ ” ’ ,
PackageName, ‘ ” ’ , “/package>”
PackageID ::= “package ” , Number ;

Page 220

PackageName ::= String;

InterfaceSchema ::= InterfaceStartTag, InterfaceDescriptor, {[MethodTypeDef]},
InterfaceEndTag;
InterfaceStartTag ::= “< interface”
InterfaceDescriptor ::= “id=”, ‘ ” ’ , InterfaceID , ‘ ” ’ , “name =”, ‘ ” ’ , InterfaceName, ‘ ” ’, “>” ;
InterfaceID ::= “interface” , Number ;
InterfaceEndTag ::= “</>”;
InterfaceName ::= String;

Boolean ::= “Yes” | “No” ;
Number ::= {Digit} ;
Digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9” ;
String ::= ‘ ” ’ , {Character} , ‘ ” ‘ ;
Character ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” | “h” | “I” | “j” | “k” | “l” | “m” | “n” | “o” | “p” | “q” | “r” | “s”
| “t” | “u” | “v” | “w” | “x” | “y” | “z” | “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” |
“N”| “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | Digit ;

Page 221

Appendix B

User Manual and Summary of Feedback Statements

Page 222

CompareArtefacts

A tool to generate formative feedback

USER MANUAL

October 2013

Page 223

Introduction

This document constitutes the user guide for an automated feedback tool. It defines

the educational context under which the tool operates and provides guidance upon

the inputs and outputs of the tool.

Educational Context

The tool is aimed at providing learning support for undergraduate computing

students who are studying an object oriented approach to developing software

systems. It is designed to provide students with learning support as they move from

the high levels of abstraction needed to design a software system to the lower levels

required for its implementation. The tool takes as its input two artefacts:

• a UML design diagram.

• its accompanying Java implementation.

The tool does not generate a summative grade - its focus is upon generating

formative feedback based upon an analysis of the two artefacts. The formative

feedback generated takes two forms.

1. Feedback upon the UML class diagram and whether or not it contains errors

2. Feedback upon how the UML design diagram compares with its java

implementation

Students using the tool can submit their artefacts as frequently as they feel is useful

– the goal of the tool being to provide them with learning support as they develop

their system.

Page 224

Input Requirements

The name of the tool is CompareArtefacts.jar. The tool requires two files as input:-

• StructureDescriptionfromCode.xml

• Structure DescriptionfromDiagram.xml

The files provide the tool with an xml description of the artefacts upon which the

student is seeking formative feedback. They are required to be stored locally on the

student’s C drive in the following local directory:

• C:\\Users\\CompareArtefacts\\Data

The tool requires the artefacts to be described using a fixed, tool-specific, xml-

based grammar. The format for this grammar is appended to the end of this manual.

A tool to automate the artefacts’ description is under development. Currently, the xml

description of the artefacts needs to be produced manually.

Output of the Tool

 The formative feedback produced by the tool is output to a text file. The file is called

• FormativeFeedback.txt

This is stored in the directory

• C:\\Users\\CompareArtefacts\\Data

The tool generates four types of feedback:

1. General feedback on the design diagram.

Page 225

Feedback focuses upon the detection of isolated classes and dangling relationships.

2. General feedback on comparing your design diagram with your

implementation.

Feedback focuses upon the number of class and the relationships between them.

3. Detailed feedback on classes drawn in the diagram that match those

contained in your program.

Feedback focuses upon the signature of the classes contained in both diagrams.

4. Detailed feedback on classes contained in the diagram that do not match with

those contained in the program.

Feedback focuses upon the signature of the classes contained in both artefacts.

5. Detailed feedback on relationships drawn in the diagram that match with

those contained in the program.

Feedback focuses upon the type of relationship that connects the classes.

6. Detailed feedback on relationships drawn in the diagram that do not match

with those contained in the program.

Feedback focuses upon the type of relationship that connects the classes.

Page 226

Stored Comments, Tolerances, Matching Scores and Test Criteria

Page 227

Feedback on known, typical errors made by novice developers.
Typical Error Test Condition Feedback

Diagram contains classes that are isolated (i.e. not
connected to any other entity in the diagram)

noOfClasses >= 1 && IsolatedClassFound ==
TRUE

"At least one class in your design diagram is
shown not to be related to any others. "
"You need to do some further reading on how a
programme that consists of message passing
objects works."

 noOfClasses >= 1 && IsolatedClassFound ==
FALSE

"Your diagram does not contain any isolated
classes. Well done."
"This shows that you understand that a program
works through objects being related to each
other");

 noOfClasses == 0

“Your design diagram does not contain any
classes.”
“You need to revisit your understanding of object
orientation and data encapsulation."

Diagram contains relationships that do not connect
two classes (i.e. dangling at one or both ends)

noOfREls >=1 &&
DanglingRelationshipFound == TRUE

“You have drawn a relationship that does not
connect two classes. "
"You need to revisit how you identify and represent
relationships between objects."

 noOfRels >=1 && DanglingRelationshipFound ==
FALSE

“All of the relationships that you have identified
have a start class and an end class
"This is good as it shows that you have understood
that relationships are used to connect the classes
contained in your diagram."

 noOfRels == 0 “Your design diagram does not contain any
relationships."
"You need to revisit your understanding of object
orientation and how objects are related to each
other."

Page 228

Holistic Feedback on Matching Features
Feature Test Val Feedback
Class None – this feedback is always

generated when two artefacts
are compared.

"The number Of Classes in your Design Diagram is
<classCountInStudentDiag> and in your implementation you have
<classCountInStudentCode> (<totalClassCountInBothDiagrams > in total)”

 noOfClassMatches > 1 "There are <noOfClassMatches> classes that match well when comparing
your design with your implementation (<noOfClassMatches> from
<totalClassCountInBothDiagrams> ”

 noOfClassMatches = 1 "There is 1 class that matches well when comparing your design with your
implementation"

 noOfNonMatchingClasses > 1 "There are <noOfNonMatchingClasses> (from
<totalClassCountInBothDiagrams>) for which a match could not be found "

 noOfNonMatchingClasses = 1 "There is 1 class for which a match could not be found "

Relationship None – this feedback is always

generated when two artefacts
are compared.

“The number Of Relationships in your Design Diagram is
<relationshipCountInStudentDiag> and in your implementation you have
<relationshipCountInStudentCode> (<totalRelCountInBothDiagrams> in total)."

 noOfRelMatches >1 "There are <noOfRelMatches> relationships that match well when comparing
your design diagram with your implementation (<noOfRelMatches> from
<totalRelCountInBothDiagrams>)."

 noOfRelMatches = 1 "There is 1 relationship that matches well when comparing your design with
your implementation (<noOfRelMatches> from
<totalRelCountInBothDiagrams>).”

 noOfNonMatchingRelationships
> 1

"There are <noOfNonMatchingRelationships> (from
<totalRelCountInBothDiagrams>) for which a match could not be found. "

 noOfNonMatchingRelationships
= 1

"There is 1 relationship (from <totalRelCountInBothDiagrams>) for which a
match could not be found. "

Page 229

Detailed Feedback - Class Signature : Name

Feature Signature Test Val Feedback Score
Class ClassName Class1Name == Class2Name “The names of these two classes match well.” ClassNameScore

= 10
 Class1Name != Class2Name “A significant difference has been detected in the

names of these classes.”
ClassNameScore
= 0

Page 230

Detailed Feedback - Class Signature : Attribute

Feature Signature Test Val Feedback Score
Class ClassAttribute noOfAttributesInClass1 ==

noOfAttributesInClass2
"Both classes contain the same number of
attributes."

attributeCountScore
= 10

 diff (noOfAttributesInClass1,
noOfAttributesInClass2) <=3

“These two classes differ in the number of
attributes that each contains."

attributeCountScore
= 5

 diff (noOfAttributesInClass1,
noOfAttributesInClass2) >4

“There is a significant difference in the number of
attributes that these classes contain.”

attributeCountScore
= 0

 attributeCountofClass1 == 0
|| attributeCountofClass1 == 0

One of these classes contain no attributes: You
probably need to revisit your notes on analysis
and design and look again at how you allocate
data components to a class"

attributeCountScore
= 0

 attributeCountofClass1 == 0
&& attributeCountofClass1 == 0

"These two classes do not have any attributes:
You probably need to revisit your notes on
analysis and design and look again at how you
identify the data components of a class."

attributeCountScore
= 0

 (both classes have the same
number of attributes and each
class contains identical attribute
names)

attributeCountOfClass1 ==
attributeCountOfClass2 &&
numberOfSimilarAttributes ==
attributeCountOfClass1

“The attributes in these two classes match well
on both name and number.”

attributeNameScore
= 10

Page 231

Feature Signature Test Val Feedback Score
 (both classes contains within a

tolerance (set at 2) the same
number of identical attribute
names)

numberOfSimilarAttributes >=
attributeCountOfClass1 -
attributeNameTolerance &&
numberOfSimilarAttributes >=
attributeCountOfClass2 -
attributeNameTolerance

“There is a good match in the attributes of these
two classes with only minor differences between
the two.”

attributeNameScore
=7

 (all methods in one class have
matched with those of another
but there are a different number
of methods in each class)

numberOfSimilarAttributes ==
smallestOf
(attributeCountOfClass1,
attributeCountOfClass2)

"Some attributes match well in these two classes
but a significant number don't. You probably
need to revisit your notes on analysis and design
and look again at how you allocate data
components to a class."

attributeNameScore
=5

 None of the above test
conditions

“The attributes contained in these two classes
are significantly different.”

attributeNameScore
=0

Page 232

Detailed Feedback - Class Signature : Method
Feature Signature Test Val Feedback Score
Class ClassMethod both classes have the same

number of methods and each
class contains identical method
names

methodCountOfClass1 ==
methodCountOfClass2 &&
numberOfSimilarMethods ==
methodCountOfClass1

"There is a good match in both the method name
and number for these two classes."

methodNameScore
= 10

 both classes contains within a
tolerance (value of 2) the same
number of identical method
names

numberOfSimilarMethods >=
methodCountOfClass1 -
methodNameTolerance
&&
numberOfSimilarMethods >=
methodCountOfClass2 –
methodNameTolerance

"These two classes match well in their methods
both on name and number with only minor
differences between the two."

methodNameScore
= 7

 all methods in one class have
matched with those of another
but there are a different number
of methods in each class

“Some of the methods match well in these two
classes but a significant number don't. You
probably need to revisit your notes on analysis
and design and look again at how you identify the
methods of a class."

methodNameScore
= 5

Page 233

Feature Signature Test Val Feedback Score
numberOfSimilarMethods ==
smallestOf
(methodCountOfClass1,
methodCountOfClass2)

Class ClassMethod None of the above tests have
been satisfied

"The methods described in these two classes
suggests that you think these are very different
entities. You need to revisit your notes on
identifying and implementing objects. "

methodNameScore
= 0

Class ClassMethod methodCountClass1 ==

methodCountClass2
"These two classes have the same number of
methods."

methodCountScore
=10

 Diff(methodCountClass1,
methodCountClass2) <= 3

"These two classes differ slightly in the number of
methods that each contains."

methodCountScore
=5

 Diff(methodCountClass1,
methodCountClass2) > 3

"There is a significant difference in the number of
methods specified for each class."

methodCountScore
= 0

 methodCountClass1 == 0
||methodCountClass2 == 0

“One of your classes does not contain any
methods. This suggests that you probably need to
revisit your notes on how you identify the methods
of a class. "

methodCountScore
= 0

 methodCountClass1 == 0 &&
methodCountClass2 == 0

“Neither of these two classes contain any
methods. This suggests that you probably need to
revisit your notes on how you identify the methods
of a class.”

methodCountScore
= 0

Page 234

Matching Score For Classes

overallScore = (classNameScore + (methodScore +attributeScore)/2)/2

attributeScore = (attributeCountScore + attributeNameScore)/2

methodScore = (methodCountScore + methodNameScore)/2

Page 235

Detailed Feedback – Relationship Signature : Type of Relationship

Feature Signature Test Val Feedback Score
Relationship Type Rel1Name == Rel2Name No feedback comment – test

contributes to the score
scoreOnRelationshipType
= 10

 Rel1Name != Rel Rel2Name No feedback comment – test
contributes to the score

scoreOnRelationshipType
= 0

Page 236

Detailed Feedback – Relationship Signature : Connecting Classes
Feature Signature Test Val Feedback Score
Relationship Connecting

Classes
(the two relationships connect the same classes)

class1StartName.equals(class2StartName) &&
class1EndName.equals(class2EndName)

"Your design and program
both relating class
<class1StartName> and
class <class1EndName>
with a <rel1Name>
relationship."

scoreOnConnectedClasses
= 10

 class1StartName.equals(class2StartName) &&
(class1EndName.equals(class2EndName)==false)

"You need to think about how
you have identified the
<rel1Name> relationship as
in your program
<class1StartName> is
related to <class1EndName>
whilst in your design it is
related to
<class2EndName>."

scoreOnConnectedClasses
= 5

 class1StartName.equals(class2StartName)) ==
false &&
class1EndName.equals(class2EndName)

"You need to think about how
you have identified the
<rel1Name> relationship as
in your program
<class1StartName> is
related to <class1EndName>
whilst in your design it is
connected to
<class2EndName> ."

scoreOnConnectedClasses
= 5

 (this case relates to reverse direction of arrows) “You need to think about how scoreOnConnectedClasses

Page 237

Feature Signature Test Val Feedback Score

class1StartName.equals(class2EndName)&&
class1EndName.equals(class2StartName)

you represent the
<rel1Name> as you have
changed the meaning of the
relationship between class
<class1StartName> and
class <class1EndName> in
your program compared to
that contained in your
design.”

= 6

 (both relationships connect at least one common
class but polarity is reversed)

class1StartName.equals(class2EndName)||
class1EndName.equals(class2StartName)

"You have a partial
implementation of the
relationships between
<class1StartName> ,
<class1EndName> and
<class2StartName> ,
<class2EndName> .”

scoreOnConnectedClasses
= 3

 None of the above satisfied. These relationships are not
related.

scoreOnConnectedClasses
= 0

Page 238

Detailed Feedback – Relationship Signature : Cardinality
Feature Signature Test Val Feedback Score
Relationship Cardinality (startCardRel1 == startCardRel2 &&

endCardRel1== endCardRel2) = TRUE
"The cardinalities of the "
+rel1Name +" match well in
both your design and your
programme."

scoreOnCardinality =
10

 (startCardRel1 == startCardRel2 &&
endCardRel1== endCardRel2) = FALSE

“You need to think about
cardinalities and what they
mean as they have changed
from what you state in to your
design and what you actually
implemented in your program.”

scoreOnCardinality = 0

Matching Score for Relationships

overallScore = (scoreOnRelationshipType + (scoreOnConnectedClasses + scoreOnCardinality)/2)/2

Page 239

Feedback On Matching/Non-Matching Feature Pairs

Feature Test Val Feedback
Class matchFoundforClass1andClass2

== TRUE
“Class <nameClass1> from your program is a close match to Class
<nameClass2> from your design."

 matchFoundforClass1andClass2
== FALSE

“Your implementation contains a class called <nameClass1> which is
sufficiently different from all those contained in your design diagram to suggest
that there is a mis-match between what you have designed and what you have
implemented."

Relationship numOfRelsInDIag1 >0 &&
numOfRelsInDiag2 >0 &&
matchFoundforRel1AndRel2 ==
TRUE

"You have shown that you understand how to implement the relationships that
you have identified in your design. Well done"
“You have shown this through :- "

 numOfRelsInDIag1 >0 &&
numOfRelsInDiag2 >0 &&
matchFoundforRel1andRel2 ==
FALSE

“The <rel1Name> relationship in your program that connects class
<class1Name> with class <class2Name> could not be matched with any
relationship in your design. You need to think about how your design matches
your implementation for all classes and objects contained in your system."

 numOfRelsInDiag == 0 &&
numOfRelsInImplementation ==
0

“Cannot compare the relationships in your submission as both your design and
your implementation do not contain any.”

 numOfRelsInImplementation ==0
&& numOfRelsInDiag >0

“Cannot compare the relationships in your design diagram and your
implementation as your implementation does not contain any.”

 numOfRelsInDiag == 0 &&
numOfRelsInImplementation >0

“Cannot compare the relationships in your design diagram and your
implementation as your design does not contain any."

Page 240

Page 241

Appendix C

Advice Given and the Questionnaire used with the Team of Expert Markers

and the Team of Evaluators

Page 242

Appendix C part 1 Covering Letter to the team of expert Markers

Alan Hayes
Director of Teaching
Department of Computer Science
University of Bath
BA2 7AY

16th November 2010

Dear

Thank you for agreeing to help with this research – it is greatly appreciated. The
broad theme of this research is in the area of automated assessment. I have
developed a tool that analyses a student submission and provides formative
feedback to the student as a consequence of this analysis. The submission
consists of a design diagram (UML) and a source code implementation (java).I
now need to evaluate the effectiveness of the comments generated by this tool
and it is this stage that I am asking for your help. I want to compare and evaluate
the comments generated by my tool with those generated by a set of academic
colleagues.

The evaluation will take place in two phases. Phase 1 involves the collection of
typical expert marker comments which will be used for developing the tool and is
not explicitly related to its evaluation. It will involve you looking at a number of
(anonymised) student submissions and ask you to provide the written formative
feedback that you would ideally have given to the students to help them with their
learning. Phase 2 involves evaluating the formative feedback comments generated
by my assessment tool. More details on the first phase are provided below in
addition to an indicative timescale. Details on the second phase will follow nearer
the time.

I hope all is clear but if not, please get back to me.

Many thanks once again for your support.

Regards

Alan

Page 243

Indicative Timescales

Activity Completion Date

Phase 1

Guidance and student
assignments sent to colleagues

November 17th 2010

Formative Comments returned to
Alan

December 23rd 2010

Phase 2

Comments sent to colleagues for
evaluation

January 28th 2011

Evaluations returned to Alan

February 18th 2011

Phase 1 – Providing Formative Feedback Comments

Please find attached the following:-

1) A set of assignment briefs
2) A set of marking schemes
3) 10 assignment submissions where each submission consists of a

student design diagram and its accompanying source code
implementation. Note that the student assignments have been allocated
to you on a random basis. Hence the numbering of the student
submissions are not necessarily in a consecutive order.

4) 10 forms for recording your evaluative comments.

The students have submitted their assignment as a component of an introductory
undergraduate unit/module in software development. They are asked to produce
a UML diagram based upon their analysis of a given scenario. They are also
required to implement their design. For many students it will be their first
experience of developing systems using object oriented methods. Consequently,
they will be making the typical mistakes of novice developers. It is important that
the students are not only supported in developing a strong understanding of object
oriented concepts but that they also understand the software development process
and in particular the link between a design and its implementation.

For each submission in your pack please supply the feedback comments you
would provide to a student in order to reinforce/support their learning. Please
provide as many comments as you normally would do given the novice nature of
the students’ backgrounds. If possible please restrict each individual comment to
one idea or concept – probably of no more than a single sentence.

Page 244

Please record your comments on the attached form. Note the form will
accommodate 6 comments – please do not treat this as an upper or lower limit on
the number of comments you can provide. You should provide the number of
comments that you would do normally. If you would normally provide more than 6
comments please add these to the end of the form.

Please note that the form also contains an entry to record a percentage grade. In
marking the student submission please can you utilise the marking scheme to
determine an overall mark. This will not be used in the formal evaluation of the
tool but will provide a useful context on the comments that you generate. For
example, feedback comments on a piece of work with a low percentage grade will
be very different to those with high percentage grades.

Checklist

1) You have been sent 10 pieces of student work. Please mark all 10
(ideally) or at least 5 (minimum).

2) Please record your marks and comments on a separate form for each
piece of student work.

3) One piece of work consists of a design diagram (UML) and an
accompanying implementation (java). Please look at both components
when marking.

4) You have been sent an assignment brief and a marking scheme. Please
can you refer to these when marking the submission

5) Please provide those feedback comments that you would normally
provide to the student on the sheet provided. The focus is upon
formative feedback – ie those comments that you feel will help the
students in their learning.

6) Please note the form will accommodate 6 comments but this is neither
an upper nor a lower bound – please use an extra sheet if you need to.

7) Please can you also provide an overall summative grade for the student
work in the form of a percentage mark.

8) Please can you return the completed mark sheet to me either by hard
copy:-

Alan Hayes
Director of Teaching,
Department of Computer Science,
University of Bath,
Bath BA2 7AY.

Or electronically to

a.hayes@bath.ac.uk

Page 245

Appendix C part 2 Form for Recording Marks and Comments from the team

of expert markers

Assignment Ref

Marker

Summative
Mark

(please refer to marking scheme for criteria)

Comparing Diagram with Model Solution /50

Comparing Diagram with Source Code /50

Total /100

Comment 1

Comment 2

Comment 3

Comment 4

Comment 5

Comment 6

Page 246

Appendix C – part 3 An example Assignment Brief

Software Development 2 (G106190)

Assignment Title: Practical Task

Submission: On or before Friday 12th January 2007

Report to be submitted to the school office as per school policy.

The completed application should be demonstrated to the
lecturer prior to the due date as well as being submitted on CD
with the report.

Note that the submission date is Friday of revision week for
semester one exams. It is your responsibility to properly manage
your time so that completion of the assignment doesn’t have any
influence on your revision.

Learning Outcomes Tested:

• Demonstrate a good understanding of object concepts such as
encapsulation, abstraction, inheritance and polymorphism

• Discuss the properties of software object systems

• Create class definitions that model real world systems

• Create robust software which employs object concepts and techniques

• Use an object oriented programming language to achieve a stated task.

The Scenario
A university employs three different kinds of employee: - lecturers, administrators
and researchers. The University is looking to automate its accounts department
so that employee's details can be stored and manipulated more efficiently. The
new system must be able to store the name, address, telephone number and
employee number of each person employed. In addition, the system must also
provide a facility that calculates the monthly payment due to each person. All
employees are paid on a monthly basis but the method of calculation differs from
category to category. Researchers are paid a basic annual salary of £10,000 per
year with no additional bonuses and no overtime payments. Administrators are
paid a basic annual salary of £15,000 per year and from time-to-time are expected
to work overtime for which they are paid £10 for each extra hour worked.
Lecturers are paid a basic annual salary of £20,000. They are not expected to
work overtime but do receive two additional types of payment: - consultancy and
performance related pay. Each hour worked as consultancy for the University is
paid at a rate of £20 per hour. Performance related pay is a fixed amount of
money awarded to a lecturer each year. This amount is divided into twelve equal
instalments and the lecture receives one instalment per month in his/her pay
packet.

Page 247

Caveat
All salaries and methods of payment outlined in the above scenario are entirely
fictitious. The author, at the time of writing this assignment, had no prior
knowledge of Newport University’s pay structure for all grades of employees. Any
resemblance to the actual pay scheme used by Newport is entirely coincidental.

Scope of Your Assignment
You are required to implement and report upon a solution to the above scenario.
Your solution should use object oriented techniques wherever appropriate. You
should perform an OO analysis/design using the UML methodology. The scope of
your analysis should incorporate the identification of all objects in the system
including their attributes and methods. For each object identified you should
provide an appropriate object interface diagram. You should also graphically
represent any relationships between the objects that you have identified.

Having completed your analysis and design you are required to provide an
implementation written in the Java programming language. Your program should
contain the class specification for each of the objects that you identified. For this
assignment you can assume that the university employs 20 lecturers, 10
researchers and 10 administrators. You need not concern yourself with storing
your data to disk. The main focus of your implementation should concentrate
upon manipulating a list (or array/vector) of university employees. This should
include the calculation and reporting of the salary to be paid to each employee for
this particular month. Your calculation of salary should be based upon the concept
of polymorphism.

Deliverables
There will be three deliverables for this project. Two of these deliverables are
required to be submitted electronically and one in hard copy/report format. The
two electronic submissions are:-

1. The design of your system in UML created using the community edition of
Poseidon

2. The java source code

The report is a non-electronic submission and should be handed in to the student
office and receipted in the normal way. Marks are distributed as indicated by the
mark sheet below. You should note that the two electronic submissions will be
used to check for consistency between your design and its implementation and
that marks have been allocated for this. Electronic submission should be made
on CD which accompanies the report for archiving and moderation purposes.

The Report
Your report should detail the work you have done in order to produce your solution
to the scenario. Your report should contain the following sections:-

Introduction
The specification of this assignment has been made deliberately vague and
ambiguous. Your introduction should set the scope of the report and state the
assumptions that you have during your implementation.

Page 248

Analysis and Design

This section should document the analysis and design phase of your
implementation.

Implementation

This section should contain a print-out of your well-comment, highly modularised
and structured source code.

Testing

This section should provide details of the testing that you have performed in order
to validate the integrity of your system. It should include testing on an object-by-
object basis as well as the final integrated system.

Critical Appraisal

Object technology claims to improve maintenance and re-use of software systems.
You should discuss the appropriateness of this claim citing examples, where
appropriate, taken from your own implementation.

Group work

There is no scope for group work within this assignment. All work must be carried
out on an individual basis.

Hints and suggestions:
• Check with the tutor if you have any queries.

• Do not neglect the report in a coding effort or vice versa.

• Time spent thinking about the problem is NOT wasted.

• Check learning outcomes and grading criteria before during and on
completion of the assignment. Do not submit until you are sure you have
met them.

Plagiarism and unfair practice
It is dishonest not to acknowledge the work of other people and you open yourself
up to the accusation of plagiarism. The text of this assignment must be in your
own words (not even a sentence or phrase should be taken from another source
unless this source is referenced and the phrase placed in quotes).

For more information in respect of plagiarism please refer to the University
Assessment Regulations at the following web address:

http://quality.newport.ac.uk

The tutor may decide to submit your assignment to automate plagiarism checks.

Page 249

Grading Criteria
The overall Mark and Grade for the Assignment will be awarded as follows:

% mark Grade Criteria
70%<=mark<=100% A A working application is demonstrated which clearly shows that

good programming practice has been followed. The report
documents a comprehensive design process with consideration
of usability, reuse and maintenance and the requirements of the
assignment as listed above. This design corresponds with the
demonstrated application. The report is professionally
presented, clear and shows an excellent understanding of the
concepts and practices required.

60% <= mark< 70% B A working application is demonstrated which clearly shows good
consideration of reuse, maintenance and usability issues and
corresponds well with the design and analysis presented in the
report. The report documents this comprehensive design
process and is presented clearly and demonstrates a good
understanding of the concepts and practices employed in
development of the application.

50% <= mark< 60% C A working application is complemented by a comprehensive
report which shows that the design was performed with some
care; the design and implementation correspond closely. Some
consideration of usability and reuse issues are demonstrated.
The report demonstrates some understanding of the concepts
required for completion of the assignment.

40% <= mark< 50% D Mainly working application (minor elements may be troubled),
complemented by a report that shows that an analysis and
design process has been followed. Implementation will match
the design produced. Report covers the requirements as listed
in the main assignment text and demonstrates a passable
understanding of appropriate object concepts.

0% <= mark< 40% E Report shows erroneous design process, or an application fails
to work or design work carried out but doesn’t match code, or
other major problem is present.

1 The Poseidon UML tool is available as a free to use (for non commercial purposes) UML CASE tool available from
Gentleware (http://www.gentleware.com)

Page 250

 Appendix C – part 4 Covering Letter for the Team of Evaluators

Alan Hayes
Director of Teaching
Department of Computer Science
University of Bath
BA2 7AY

26th April 2011

Dear

Thank you for agreeing to help with this research and for returning your mark
sheets and comments – it is greatly appreciated. I thought that it would be timely
to remind you about the main objectives of this research. The broad theme is in
the area of automated assessment. I have developed a tool that analyses a
student submission and provides formative feedback to the student as a
consequence of this analysis. The submission consists of a design diagram (UML)
and a source code implementation (java). I am now in the process of evaluating
the effectiveness of the comments generated by this tool and it is this stage that I
am asking for your help. I want to compare and evaluate the comments generated
by my tool with those generated by a set of academic colleagues.

The evaluation takes place in two phases. Phase 1 is now completed and involved
the collection of typical expert marker feedback comments. It involved you looking
at a number of (anonymised) student submissions and asked you to provide the
written formative feedback that you would ideally have given to the students to
help them with their learning. The project is now entering Phase 2 and involves
you evaluating the formative feedback comments generated by my assessment
tool. More details on this second phase are provided below in addition to an
indicative timescale.

I hope all is clear but if not, please get back to me.

Many thanks once again for your support.

Regards

Alan

Page 251

Indicative Timescales

Activity Completion Date

Phase 2

Comments sent to colleagues for
evaluation

April 26th 2011

Evaluations returned to Alan

May 27th 2011

Phase 2 – Evaluating Formative Feedback Comments

Please find attached the following:-

5) 10 sets of formative feedback comments.
6) 10 questionnaire forms for recording your evaluation of each set of

comments.

The 10 sets of feedback comments have been generated through an analysis of
student submitted coursework. Some of the sets will have been generated by one
member of the marking team whilst some sets will have been generated by my
marking tool. You have been randomly allocated a mixture of both human
generated and tool generated comments.

 The students submitted their coursework as a component of an introductory
undergraduate unit/module in software development. They were asked to produce
a UML diagram based upon their analysis of a given scenario. They were also
required to implement their design. For many students it will have been their first
experience of developing systems using object oriented methods. Consequently,
they will have made the typical mistakes of novice developers. It is important that
the students are not only supported in developing a strong understanding of object
oriented concepts but that they also understand the software development process
and in particular the link between a design and its implementation.

For each of the 10 sets of formative feedback comments please complete an
evaluative questionnaire. The questionnaire consists of 14 statements and you are
asked to consider how each of the 14 statements applies to each of the 10 sets of
formative feedback comments. When considering a set of comments please read
the set in its entirety before considering the applicability of the 14 statements.

Checklist

9) You have been sent 10 sets of formative feedback comments.
10) You have been sent 10 evaluative questionnaire forms.
11) Please complete one questionnaire per comment set.
12) Please can you return the completed mark sheet to me either by hard

copy:-

Page 252

Alan Hayes
Director of Teaching,
Department of Computer Science,
University of Bath,
Bath BA2 7AY.

Or electronically to

a.hayes@bath.ac.uk

Page 253

Appendix C – part 5 Questionnaire Used by the Evaluative Team to Evaluate
Formative Feedback Comments

Evaluation of Formative Feedback Comments

You have been sent 10 sets of formative feedback comments produced as a
consequence of grading 10 separate student coursework submissions. Each
submission consisted of a student design diagram (UML) and an associated
implementation (java source code). The assignment brief was similar to that which
you looked at during phase 1. The learning outcomes being assessed were:-

• Demonstrate a good understanding of object concepts such as
encapsulation, abstraction, inheritance and polymorphism.

• Create class definitions that model real world systems.

• Create robust software which employs object concepts and techniques.

• Use an object oriented programming language to achieve a stated task.

Below is a set of 14 statements and an associated 5-point Likert scale. Please
consider how each of the 14 statements applies to each of the 10 sets of formative
feedback comments. When considering a set of comments please read the set in
its entirety before considering the applicability of the 14 statements.

Page 254

Comment Set Reference :

Comment Strongly
Agree

Agree Neither
Agree
nor
Disagree

Disagree Strongly
Disagree

Criterion of Quality

1. The comments contained in
this set are clear.

2. The comments contained in
this set are concise.

3. The set of comments
provide sufficient detail in
order for a student to know
what concept or issue is
being fed back upon.

4. The set of comments
provide sufficient detail in
order for a student to know
what further work they
need to undertake.

5. The set of comments will
help the student with his/her
learning

Criterion of Relevance

6. The comments contained in
this set are relevant for
this type of assignment
brief and the associated
indicative learning
outcomes.

7. The comments contained in
this set address important
areas of strength found in
the student submission
that is considered to be of
significance.

8. The comments contained in
this set address important
areas of weakness found
in the student submission
that is considered to be of
significance.

9. It is clear which concepts
the comments in this set
are addressing.

10. The comments in this set
will help the student
improve his/her solution.

Page 255

Criterion of Coverage

11. This set of comments,
when viewed in its
entirety, fully encapsulates
all pertinent feedback
needed for the student to
recognise where there are
areas of strength in the
submission.

12. This set of comments,
when viewed in its
entirety, fully encapsulates
all pertinent feedback
needed for the student to
recognise where there are
areas of weakness in the
submission and where
further learning is
required.

13. This set of comments
would provide a useful
enhancement to the type
of comments that I gave
during stage 1 of this
evaluation.

14. This set of comments
would have been sufficient
to replace the type of
comments that I gave
during stage 1 of this
evaluation.

Page 256

Page 257

Appendix D

Design of the Evaluative Questionnaires

Page 258

Adopting a Likert scale for questionnaires poses many questions. These include:

• The number of points on the scale.

• The format of the scale.

• Whether or not a mid-point should be included on the scale.

• Interpretation of Likert data

This appendix discusses these issues in detail and the rationale for adopting a 5-

point Likert scale (and by implication the inclusion of a mid-point) with named

points (strongly agree, agree, neutral, disagree, strongly disagree).The median

and mode were chosen for describing and interpreting the returns in recognition of

the ordinal nature of Likert data.

1 The Number of Points on the Scale
This section discusses issues that were taken into consideration regarding the

number of points to be adopted in the Likert scale. It makes a distinction between

the sensitivity of the scale and the reliability of the resultant data.

The purpose of the scale is to allow a respondent to express both the direction of

an opinion (for example agreeing either positively or negatively with a given

statement) and an indication of the strength of agreement/disagreement with the

presented statement (for example strongly agreeing or agreeing). The number of

points on the scale enables the respondent to indicate the strength of

agreement/disagreement. Cummins and Gullone (2000) report that the empirical

literature on Likert scales supports the view that as the number of points on the

scale increase, so too does the sensitivity of the scale. However, they make a

distinction between the sensitivity of the scale and the reliability of the resultant

data. They report upon the work of Lissittz and Green (1975) which found that the

reliability of the scale increased from the adoption of a 2-point to a 5-point scale

and note the work of McKelvie (1978) which found no differences in inter-rater

Page 259

reliability between 5, 7 and 11 point scales. However, care must be taken when

presenting respondents with more than one Likert scale. Guy and Norvell (1977)

report that when respondents are presented with more than one Likert scale, a

change in the number of points on the scales (in their case it was a 4-point scale

without a neutral point and a 5-point scale which included one) can make a

significant difference to the way a person responds.

Thus, there is a trade-off between the number of points and the reliability of the

resultant data. The literature suggests that a 5 point scale is the minimum number

of points required to avoid the scale itself inducing unreliable data from the

respondents.

2 The Format of the Scale
This section discusses those issues that were taken into consideration regarding

the naming of the points on the Likert scale. The respective benefits of naming all

points on the scale as opposed to just the end-points are highlighted.

There are at least two types of format to consider when adopting a Likert scale.

The first is where all points on the scale are named and defined and the second is

where only the end-points are named. The adoption of the former is particularly

challenging when larger scales are adopted and consequently represent a

potential hindrance to the adoption of larger scales. Cummins and Gullone (2000)

concluded that the “addition of category names to Likert scales not only detracts

from the interval nature of the scale but also makes it difficult to generate

expanded choice formats.” Dixon et al. (1984) addressed the question of whether

or not the format adopted had an influence upon the resultant data. They reported

the results of applying both types of formats to 121 participants. They concluded

that there was no significant difference in the data generated and that participants

did not indicate a preference for either type of format. Goeb et al. (2007) note that,

Page 260

for a 5-point Likert scale, grades are usually named with strongly agree, agree,

neutral, disagree. strongly disagree

In summary this section discussed those issues that were taken into consideration

regarding the naming of the points on the Likert scale. The respective benefits of

naming all points on the scale or just the end-points were highlighted. The naming

convention for 5-point Likert scales was introduced. The questionnaires adopted

for this research were 5-point Likert scales with named points of strongly agree,

agree, neither agree nor disagree, disagree, strongly disagree.

3 The Inclusion of a Mid-point in the Likert Scale
This section discusses the issue of the adoption of a mid-point in a Likert scale.

The provision of a mid-point enables the respondent to submit a neutral response

to a given statement in both direction and strength. Matel and Jacoby (1972)

summarise the dilemma of whether or not to include such a mid-point. Their

argument against non inclusion is that it provides the respondent with “too easy

and attractive an escape for respondents who are disinclined to express a definite

view.” Their argument for inclusion is that in forcing respondents into an agree or

disagree format it is likely to cause difficulty for many respondents. Furthermore

they argue that it is also likely to produce results that are “... less realistic and

more misleading than is true when an intermediate reply is provided for.” They

note however, that as the number of points on the scale increase the use of the

mid-point by the respondent decreases. They note the importance of this result in

designing the construction of a Likert scale. Their advice is that if the researcher

wishes to minimise the respondents usage of the mid-point then either an even-

number scale should be used or an odd-numbered scale that contains many

points.

Page 261

In summary, this section has discussed those issues that are pertinent to whether

or not to include a mid point in a Likert scale. The inclusion of a mid-point in order

to produce results that are more realistic and less misleading has been

highlighted. Therefore it was decided to include a mid-point in the Likert

questionnaires used in this research.

4 Interpretation of Likert Data
This section discusses those issues that are pertinent to the interpretation of data

that has been collated via a questionnaire that has adopted the Likert scale. The

issue of ordinality of the scale and its implications for the range of statistical tests

that can be conducted on resultant data is discussed.

There is no common standard accepted by the scientific community for the correct

interpretation and analysis of data measured using a Likert scale (Goeb et al.

2007). However, both Harvey (1998) and Goeb et al. (2007) advocate that from a

methodological perspective data collected through the adoption of a Likert scale

should be considered to be ordinal, the former arguing that this is the case

because it cannot be assumed that the respondent interprets that the difference on

the scale between agreeing and strongly agreeing is the same as that between

agreeing and being undecided.

For data returned through a Likert scale Harvey et al. (1998) advocate the median

or mode should be adopted (and not the mean). They recommend that the mode

should be used when describing the data and that the median should be used

when calculating inferences. They also advocate the use of the median and the

adoption of non-parametric methods to investigate differences between

comparable groups. Frigon and Mathews (1997) reported that such methods are

frequently used when the “standard assumptions of classical statistics are known

not to be met”. Diamond and Jeffries (2001) noted in particular that non-parametric

Page 262

methods should be used when the data being analysed does not conform to the

central limit theorem.

In summary, this section has discussed the ordinal nature of the Likert scale and

its implications for undertaking an analysis of its resultant data. The literature

advocates the use of the median and the adoption of non parametric techniques

when analysing inferences within the data set and this advice was followed in this

research.

Page 263

Appendix E

Overview of the Statistical Tests Deployed

Page 264

This appendix discusses the statistical techniques adopted in the evaluation of this

research. Section 1 discusses the use of a Z-test and Gwet’s AC1 coefficient when

applied to the summative grades returned by the team of markers. Section .2

discusses the use of Gwet’s AC2 statistic in the context of analysing Likert data

that was returned in the evaluation questionnaires. Section .3 discusses the use

of the non parametric sign and Mann-Whitney U tests to compare the

questionnaire returns for the tool-generated comments with those that were

human-generated.

The aim of the evaluation process was to undertake a comparison between tool

and human generated comments. This process required three experiments to take

place:-

• An experiment to test for significant differences between summative grades

generated by a team of markers.

• An experiment to test for significant differences between members of a

team of evaluators who had rated formative feedback comments.

• An experiment to test for significant differences in the evaluative ratings for

the tool-generated comment when compared to those that were human-

generated.

The statistical tests adopted for each of these three cases are outlined in the

sections below.

1Significant differences between Summative Grades.

Two statistical tests were deployed to test for significant differences in the

summative grades produced by the marking team. The tests involved the

calculation of a Z score and Gwet’s (2010) AC1 coefficient.

The calculation of the Z score is described in (Diamond and Jeffries 2001) as

follows:

Page 265

 Z= (observation – mean)/standard deviation.

Its calculation requires that the population mean and standard deviation are

known. In the context of this experiment these were known. Hence, it was possible

to calculate a Z score for each assignment that each marker had graded. In the

context of this research , the observation is the assignment grade (percentage)

produced by the individual marker whilst the mean and standard deviation is

calculated from all the grades (percentage) for that assignment.

Having produced the Z score a Z-test was undertaken. Critical values for a two-

sided 95% confidence interval are -1.96 and 1.96.

Gwet’s (2010) AC1 coefficient measures the extent to which multiple raters agree

when they have analysed data and classified it into several non-overlapping

categories. Haley et al. (2008) report upon the emergence of AC1 as an inter-

rater statistic to replace the established Cohen’s (1960) Kappa statistic. They

report concerns over the accuracy of Kappa. In particular, Hayley et al. (2008)

report upon an instance where

“raters agreed by as much as 97% but the Kappa statistic was close to zero,

indicating no correspondence” Haley et al. (2008).

Additionally, Gwet (2010) reports upon the Kappa coefficient being “unstable”

attributing this to an inadequate approach to compensating for the probability of

chance agreements between raters. Haley (2008) presents an overview of the

AC1 statistic as applied to the simpler case of two raters. This is paraphrased in

the section below.

Figure AppE1 contains an example table that shows how two raters classified data

into the two categories of “1” and “2”. Entry A in the table represents the number of

times that both raters gave a “1”. Entry B is the number of times raterA gave a “2”

Page 266

and raterB gave a “1”. A1 is the total number of times that raterA gave a “1” and

B2 is the total number of times that raterB gave a “2”. N is the total number of

observations.

Rater B

Rater A

1 2 Total

1 A B B1=A+B

2 C D B2=C+D

Total A1=A+C A2=B+D N

Figure AppE1 Distribution of Subjects by Rater and Response Category

The probability that the two raters are in accord is known as the probability of

agreement, pa, (Gwet 2010) and can be calculated by the formula

pa = (A + D)/N

Cohen (1960) recognised that the probability of agreement between the two raters

needs to be adjusted to take into account the possibility of the two raters agreeing

on a classification merely by chance. Gwet (2010]) refers to this as the probability

of the ‘expected chance agreement rate, pe . The calculation of pe for Kappa is

given by:

pe = (A1/N x B1 /N) + (A2 / N x B2 /N)

Cohen’s (1960) Kappa coefficient, k, is subsequently defined as

K= (pa – pe) / (1- pe)

It is the consideration of pe that Gwet (2010) argues is the cause for the instability

in the Kappa statistic.

The AC1 statistic is given by the following equation

Page 267

AC1 = (pa - pe1) / (1- pe1)

where

pe1 = 2p1 (1-p1) and p1 = ((A1+B1)/2) / N

and

AC1 = the first order agreement coefficient

pe1 = the chance agreement probability

p1 = the approximate chance that a rater classifies a subject into category 1

A1 = the number of times a rater A classifies a subject into category 1

B1 = the number of times a rater B classifies a subject into category 1

A = the number of times both raters classify a subject into category 1

D= the number of times both raters classify a subject into category 2

pa = the overall probability of agreement

The formula for calculating the AC1 for he generalised case (more than 2 raters) is

given by

AC1 = (pa - pe2) / (1- pe2)

Where

Pa =
n

1
 ∑

=

N

i 1

{ ∑
=

Q

q 1

(riq (riq -1)/ r(r-1) }

and

pe2 =
1

1

−Q
 ∑

=

−

Q

q

qq

1

)1(ππ

and

Πq = ∑
=

n

i r

r

n

iq

1

1

pa = the overall probability of agreement

Page 268

pe2 = the chance agreement probability

riq = the number of raters who classified the ith object into the qth category. The

index i ranges from 1 to n and q ranges from 1 to Q.

n = the number of objects rated

Q = the number of categories in the rating scale

r = the total number of raters

Πq = the probability that a rater classifies an object into category q.

A Worked Example of Kappa vs. AC1

Haley (2008) provides an example of how skewed data can result in an unreliable

Kappa statistic. The example data used was

Rater
B

Rater A Total Rater
B

Rater A Total

1 2 1 2

1 45 5 50 1 90 5 95

2 5 45 50 2 5 0 5

Total 50 50 100 Total 95 5 100

The table on left shows a balanced distribution of ratings whereas the table on the

left shows a skewed distribution with both raters utilising the “1” category

significantly more than “2”. Haley calculates both the Kappa and AC1 coefficients,

tabulated below.

 Balanced Distribution Skewed Distribution

Kappa 0.8 -0.05

AC1 0.8 0.89

Intuitively, the raters in the skewed distribution are in agreement and yet the

Kappa coefficient is reporting the opposite. Consequently, the AC1 statistic was

chosen in preference to Kappa as being appropriate for detecting significant

differences in the summative marks returned by the marking team.

Page 269

2 Significant Differences between Evaluators

Formative feedback comments were evaluated by a team of evaluators utilising a

Likert 5 point scale. Likert data is ordinal as it cannot be assumed that the

difference between “strongly agree” and “agree” is the same as “agree” and

“neither agree nor disagree”. Gwet (2010) acknowledges that the AC1 statistic is

inappropriate for evaluating the extent of agreement amongst raters for ordinal

data. He proposes an extension to AC1, called AC2. The extension assigns a

weight to each pair of scores. When there is full agreement (i.e. all raters classify

data into the same category) the weighting adopted is 1. The magnitude of the

weights associated with disagreements decreases as the gap between the scores

increases (Gwet 2010). Gwet (2010) provides the following formula for the

weighting function:

Wkl = 1 – (xk –xl)
2 / (

qlqk

MAX

≤≤≤≤ 1;1
 (xk –xl)

2)

where

xk and xl = the interval scores for category k and l respectively

Wkl = the weighting to be applied to category K and l respectively

 The formula for the AC2 statistic for two raters is provided by Gwet (2010) as

AC2 = (pa1 - pe2) / (1- pe2)

where

pa1 = ∑∑
= =

q

k

q

l1 1

 pkl

and

pe2 =
)1(

1

−qq
 ∑∑

= =

q

k

q

l1 1

 wkl (1 – q Πk Πl)

Page 270

and

pa1 = weighted probability of agreement

pe2 = weighted chance agreement probability

q = number of categories

Πk = the probability that a rater classifies an object into category k.

The generalised formula for the AC2 statistic for multiple raters is provided by

Gwet (2010) as

AC2 = (pa2 - pe2) / (1- pe2)

where

pa2 =
)1(

1

−rnr
 [))1((

1 1

−∑ ∑
= =

ikikkk

q

k

n

i

rrw + ∑∑ ∑
≠ =lk

n

ilikkl rrw
11

)(]

and

pe2 =
)1(

1

−qq
 ∑∑

= =

q

k

q

l1 1

 wkl (1 – q Πk Πl)

and

pa2 = weighted probability of agreement

pe2 = weighted chance agreement probability

q = number of categories

Πk = the probability that a rater classifies an object into category

r = the number of raters

n= the number of subjects being categorized.

3 Comparing Tool-Generated with Human-Generated Comments

Diamond and Jeffries (2001) report that a non-parametric one-sample sign test

can be used when comparing the median of a sample with the population median

and for when the data does not follow a normal distribution. The principle behind

Page 271

this test is in recognising that if the median of the population were calculated half

of the observations will lie above the median and half below it. If there was no

evidence that the sample was no different to the population it would be expected

that about half of the observations in the sample would lie above the population

median and half below it. If the sample is genuinely different to the population, the

proportion of observations above the population median would be markedly

greater or lower than 0.5. (Diamond and Jeffries 2001). The technique involves

calculating the proportion of the sample whose values lies above the population

median, pm, as follows for the sample under test:

pm =
tionnThePopularOfScoresITotalNumbe

ionMedianthePopulatampleAboveoresIntheSNumberofSc

A Z test statistic can then be calculated via the formula

Z = pm – Πm






 Π−Π

Π

n

mm

m

)1(

p - m

Where

pm = proportion of the sample that lies above the population median

Πm = the proportion of the population that lies above the population median (by

definition this is 0.5)

The null hypothesis is

H0 = the sample comes from a population with half the observations above the

population median.

The alternative hypothesis is

Ha = the sample does not come from a population with half the observations above

the population median.

Critical values for a two-sided 95% confidence interval are -1.96 and 1.96.

Page 272

The Mann-Whitney U technique is used to test for differences between two

independent groups (Pallant 2007). Its use is advocated by Harvey (1998) when

comparing the medians of the two groups. In the case of this research we had a

set of Likert scores for human-generated comment and a set of Liker scores for

those that were tool-generated. The technique involves ranking the two groups

and then evaluating whether the ranks differ significantly (Pallant 2007). Ranking

involves initially collating the two groups together and producing one ordered list,

starting with the smallest Likert score and finishing with the highest. This list is

then ranked starting with a rank value of 1 and incrementing until the list is

exhausted. Where the likert scores are the same value and have the same rank an

average of the rank values is taken. The method involves generating two U values,

one for each group. The U value is calculated via the following formula:

U1 = n1 n2 +
2

)1(11 +nn
 - R1

U2 = n1 n2 +
2

)1(22 +nn
 - R2

Where

n1 = the number of scores in group 1

n2 = the number of scores in group 2

R1 = the sum of the Ranks for group 1

R2 = the sum of the Ranks for group 2

The Null hypothesis is given by

H0 = There is no difference in the distribution of scores for both groups

Ha = There is a difference in the distribution of scores for both groups

Ucritical ,the test value for the 95% confidence interval, varies according to the size

of the respective groups. The null hypothesis is rejected if the smallest value of U1

or U2 is less than Ucritical .

Page 273

4 Statistical Packages Deployed

This appendix has discussed the statistical techniques deployed during the

evaluation of the tool-generated comments. The calculation of the statistical

coefficients used in this evaluation was undertaken via two separate software

packages. Gwet’s AC1 and AC2 coefficients were calculated using the agreestat

tool. This is a tool made available in June 2011 by Gwet and accessible from

http://www.agreestat.com. The Mann-Witney U coefficients were calculated by

IBM’s SPSS tool (version 19). The Z-score was produced manually via an Excel

spreadsheet.

Page 274

Page 275

Appendix F

ANOVA test results for the percentage grades received for three, randomly
chosen, student submissions.

Page 276

This appendix presents an ANOVA analysis of the percentage grades received for

three, randomly chosen student submissions. The analysis was undertaken using

the data analysis package contained within Microsoft Excel 2010. Three tables,

one per submission, present the results of undertaking an Anova:single factor

analysis (alpha=0.1). The null hypothesis is:

H0 = The summative grade from an individual marker is from the same population

as that received from all markers.

The analysis produces a test statistic Fstat which is compared with Fcritical. The

null hypothesis is rejected when F is greater than Fcritical. As can be seen from

below this happens for markers 8 and 3 (assignments 17 and 79 respectively).

Hence, the conclusion is that markers 8 and 3 have viewed the student

submission differently from the rest of the markers and consequently their

formative comments were removed from the remainder of the research. This is

consistent with the Z test results presented in the main body of the thesis (chapter

6).

Results for Assignment 17

Ref Ass 17 F-stat p-value F-critical

Include

Comments Based

on Ass 17

Marker 2 79 0.39 0.55 3.46 Y

Marker 3 75 1.83 0.21 3.46 Y

Marker 4 82 0.01 0.94 3.46 Y

Marker 5 82 0.01 0.94 3.46 Y

Marker 6 80 0.20 0.67 3.46 Y

Marker 7 84 0.08 0.78 3.46 Y

Marker 8 94 4.41 0.07 3.46 N

Marker 9 85 0.22 0.65 3.46 Y

Marker 10 81 0.07 0.80 3.46 Y

Page 277

Results for Assignment 79

Ref Ass79 F-stat p-value F-critical

Include

Comments Based

on Ass 79

Marker 2 82 0.00 0.95 3.59 Y

Marker 3 60 3.79 0.09 3.59 N

Marker 4 86 0.19 0.68 3.59 Y

Marker 5

no

return n.a.

Marker 6 73 0.57 0.47 3.59 Y

Marker 7 92 0.97 0.36 3.59 Y

Marker 8 89 0.50 0.50 3.59 Y

Marker 9 82 0.00 0.95 3.59 Y

Marker 10 86 0.19 0.68 3.59 Y

Results for Assignment 182

Ref

Ass

182 F-stat p-value F-critical

Include

Comments Based

on Ass 182

Marker 2 85 0.00 0.97 3.46 Y

Marker 3 75 0.91 0.37 3.46 Y

Marker 4 91 0.42 0.54 3.46 Y

Marker 5 68 2.74 0.14 3.46 Y

Marker 6 81 0.13 0.73 3.46 Y

Marker 7 93 0.71 0.42 3.46 Y

Marker 8 94 0.89 0.37 3.46 Y

Marker 9 79 0.31 0.59 3.46 Y

Marker 10 95 1.09 0.33 3.46 Y

Page 278

Page 279

Appendix G

Mann Witney U test results for Likert ratings received for human- and tool-

generated formative feedback comments.

Page 280

The tables below present the results of using a Mann Witney U test to compare

Likert grades for human-generated formative assessment comments with those

that were tool generated. The tool used to undertake this analysis was StatsDirect

(http://www.statsdirect.com accessed 02/01/2013). The tables present the output

of one sided (upper and lower) and two sided tests.

The null hypothesis is:

H0: The distribution of Likert scores is the same across the human-generated

comments as it is for the tool-based comments.

The likert scaling used was:

Likert Scoring

5 Strongly Agree

4 Agree

3 Neither Agree nor

Disagree

2 Disagree

1 Strongly Disagree

The results show that the null hypothesis is rejected and that tool-generated

comments are ranked higher than human-generated.

Page 281

Mann-Whitney U test

Observations (x) in Q1 human = 31 median = 4 rank sum = 720
Observations (y) in Q1 tool = 32 median = 4.5
U = 224 U' = 768

Normalised statistic = -4.092119 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -1 to 0

Mann-Whitney U test

Observations (x) in Q2 human = 31 median = 4 rank sum = 1162.5
Observations (y) in Q2 tool = 32 median = 4
U = 666.5 U' = 325.5

Normalised statistic = 2.471769 (adjusted for ties)
Lower side P = 0.9933 (H1: x tends to be less than y)

Upper side P = 0.0067 (H1: x tends to be greater than y)

Two sided P = 0.0134 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = 1
CI = 0 to 1

Mann-Whitney U test

Observations (x) in Q3 human = 31 median = 3 rank sum = 679
Observations (y) in Q3 tool = 32 median = 4
U = 183 U' = 809

Normalised statistic = -4.625287 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q4 human = 31 median = 2 rank sum = 660
Observations (y) in Q4 tool = 32 median = 4
U = 164 U' = 828

Normalised statistic = -4.796196 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -2

Page 282

CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q5 human = 31 median = 3 rank sum = 710.5
Observations (y) in Q5 tool = 32 median = 4
U = 214.5 U' = 777.5

Normalised statistic = -4.125512 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q6 human = 31 median = 4 rank sum = 739.5
Observations (y) in Q6 tool = 32 median = 4
U = 243.5 U' = 748.5

Normalised statistic = -3.766679 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P = 0.0002 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -1 to 0

Mann-Whitney U test

Observations (x) in Q7 human = 31 median = 2 rank sum = 597.5
Observations (y) in Q7 tool = 32 median = 4
U = 101.5 U' = 890.5

Normalised statistic = -5.654318 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -2
CI = -3 to -1

Mann-Whitney U test

Observations (x) in Q8 human = 31 median = 4 rank sum = 679
Observations (y) in Q8 tool = 32 median = 5
U = 183 U' = 809

Normalised statistic = -4.594558 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

Page 283

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q9 human = 31 median = 3 rank sum = 647
Observations (y) in Q9 tool = 32 median = 4
U = 151 U' = 841

Normalised statistic = -5.140455 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q10 human = 31 median = 3 rank sum = 695
Observations (y) in Q10 tool = 32 median = 4
U = 199 U' = 793

Normalised statistic = -4.369207 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -1
CI = -2 to -1
Mann-Whitney U test

Observations (x) in Q11 human = 31 median = 2 rank sum = 550
Observations (y) in Q11 tool = 32 median = 4
U = 54 U' = 938

Normalised statistic = -6.265161 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -2
CI = -3 to -2

Mann-Whitney U test

Observations (x) in Q12 human = 31 median = 2 rank sum = 596
Observations (y) in Q12 tool = 32 median = 4
U = 100 U' = 892

Normalised statistic = -5.632564 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

Page 284

95% confidence interval for difference between medians or means:
K = 354 median difference = -2
CI = -3 to -2

Mann-Whitney U test

Observations (x) in Q13 human = 31 median = 3 rank sum = 596
Observations (y) in Q13 tool = 32 median = 4
U = 100 U' = 892

Normalised statistic = -5.637128 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -2
CI = -2 to -1

Mann-Whitney U test

Observations (x) in Q14 human = 31 median = 2 rank sum = 582.5
Observations (y) in Q14 tool = 32 median = 4
U = 86.5 U' = 905.5

Normalised statistic = -5.772615 (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)

Upper side P > 0.9999 (H1: x tends to be greater than y)

Two sided P < 0.0001 (H1: x tends to be distributed differently to y)

95% confidence interval for difference between medians or means:
K = 354 median difference = -2
CI = -3 to -1

