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CONDITIONALLY EXTERNALLY BAYESIAN POOLING
OPERATORS IN CHAIN GRAPHS

´ 1BY ALVARO E. FARIA, JR. AND JIM Q. SMITH

University of Warwick

We address the multivariate version of French’s group decision prob-
lem where the m members of a group, who are jointly responsible for the
decisions they should make, wish to combine their beliefs about the
possible values of n random variables into the group consensus probabil-
ity distribution. We shall assume the group has agreed on the structure of
associations of variables in a problem, as might be represented by a

Ž .commonly agreed partially complete chain graph PCG we define in the
paper. However, the members diverge about the actual conditional proba-
bility distributions for the variables in the common PCG. The combination
algorithm we suggest they adopt is one which demands, at least on
learning information which is common to the members and which pre-
serves the originally agreed PCG structure, that the pools of conditional

Ž .distributions associated with the PCG are externally Bayesian EB . We
Ž .propose a characterization for such conditionally EB CEB poolings which

is more general and flexible than the characterization proposed by Genest,
McConway and Schervish. In particular, such a generalization allows the
weights attributed to the joint probability assessments of different indi-
viduals in the pool to differ across the distinct components of each joint
density. We show that the group’s commitment to being CEB on chain
elements can be accomplished by the group being EB on the whole PCG
when the group also agrees to perform the conditional poolings in an
ordering compatible with evidence propagation in the graph.

1. Introduction. Bayesian statistical theory is a coherent normative
methodology for the individual. However, groups of individuals are left in
difficulty since no concept equivalent to the classical notion of objectivity is
available to them. Consequently, methods arising either from the axiomatic

w Ž .xor the Bayesian modelling approaches Winkler 1986 have been developed
to attempt to deal with this problem.

We adopt here the axiomatic approach to the aggregation of beliefs where
the group is assumed to choose certain ‘‘desirable’’ and ‘‘reasonable’’ condi-
tions that the aggregating formula should obey and which at the end charac-
terize its form. Early important works in this area are those of Madansky
Ž . Ž .1964, 1978 , who proposed the external Bayesianity property see Section 2
as a Bayesian prescription for group belief consensus. Later, Bacharach
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Ž . Ž .1972, 1975 introduced the logarithmic opinion pool LogOp as well as some
Ž .work on the implication axioms have on pooling rules. Genest 1984 and

Ž .Genest, McConway and Schervish 1986 characterized the LogOps as the
Ž .only pools being EB. Also, McConway 1981 showed the linear opinion pool

Ž . Ž .LinOP of Stone 1961 as the only type which satisfied an axiom called the
Ž .marginalization property. The reader should refer to Genest and Zidek 1986

for an excellent survey and annotated bibliography on the axiomatic ap-
proaches.

Other important results in the area are the impossibility theorems ob-
Ž . Ž .tained by Bacharach 1975 , Dalkey 1972, 1975 and Lehrer and Wagner

Ž .1983 , among others. In general, those impossibility results mean that no
pooling rule for preferences or beliefs works sensibly well in all situations.
Combining rules general enough to satisfy certain ‘‘desirable’’ axioms, on the
other hand, can fail to be democratic. More closely related to our work,

Ž .Genest and Wagner 1984 proved that only dictatorships could accommodate
w Ž . xboth the likelihood principle see 3 in Section 2 and the independence

Ž . w Ž .xpreservation property IPP Laddaga 1977 . Basically, the IPP demands the
pooling on joint quantities to equal the product of the poolings marginally in

Žeach quantity in the same spirit of the statistical independence for probabil-
.ity functions , whenever the individuals preserve the quantities’ indepen-

dence on their subjective assessments.
Since the arrival of these results, there have been two lines of work which

attempt to circumvent the impossibility theorems. One line has attempted to
w Ž .xweaken group behavioral assumptions e.g., Pill 1971 in the hope that the

wimpossibility results would vanish. This has had little success Winkler
Ž .x1968 . The other line, to which this paper is a contribution, has looked at
weakening the insistence on universal applicability. Here, our assumption
that the group agrees that a specific belief network is valid and is examined
only in the light of experiments which do not destroy its structure, prevents
some of the impossibility results. In particular, the above-mentioned impossi-

Ž . w Ž .xbility of Genest and Wagner 1984 is circumvented Faria 1996 . Despite
the restrictions imposed on our problem and thus on the pooling operators
discussed here, they are of a general enough class to be useful in certain
practical situations. For instance, it is easy to devise situations where a
common belief net would be an obvious assumption. Moreover, the side
condition of the decomposability of the common belief net is not critical since
a nondecomposable net can always be made decomposable, as we shall see.

The class of decomposable graphical models introduced by Lauritzen,
Ž .Speed and Vijayan 1984 is the one which, under certain restrictions on the

Žform of input data, retains its structure coded in terms of conditional
.independence statements after data has been observed. This fact is used

extensively to create quick algorithms for calculating posterior distributions
w Ž .in high-dimensional problems e.g., Dawid 1992 , Jensen, Jensen and Dittmer

Ž . Ž .x1994 and Smith and Papamichail 1996 . However, here we use this same
property to define classes of combination rules which are, in a partial sense,
externally Bayesian.



A. E. FARIA, JR. AND J. Q. SMITH1742

In this text we concentrate on generalizing the external Bayesianity
property so that on the one hand it is suitable for the analysis of multivariate
structures, and on the other it allows the group to learn about the combina-
tion’s vector of weights. This responds, at least in part, to some of the

w Ž .xcriticisms Lindley 1985 about the inflexibility of the weights on the
w Ž .xwell-discussed logarithmic pool Genest and Zidek 1986 which usually are

not allowed to vary with the members’ individual expertise. Some examples
on how the weights can be updated based on the individuals’ relative exper-

Ž .tise on causal variables are given in Faria and Smith 1994, 1996 and in
Ž .Faria 1996 . In fact, the weights should be chosen on the basis of the

common information that the members of the group have about their own
specialities and expertises. A group which cannot or is not prepared to agree
about the members’ relative expertise may prefer to adopt a class of combina-
tion rules which sequentially adapts the weights based on each experts
relative predictive performances, as done, for example, by Smith and Makov’s
Ž . w Ž .1978 quasi-Bayes approach see, e.g., Faria and Souza 1995 and Faria
Ž .x1996 . Other methods on appropriate updating of weights can be found, for

Ž . Ž .example, in Bates and Granger 1969 , in Mendel and Sheridan 1987 , in
Ž . Ž .Bayarri and DeGroot 1988 , in DeGroot and Mortera 1991 and in Cooke

Ž . Ž .1991 . Also, Cooke 1991 comments on the main problems in developing a
theory of weights. Although developed for linear pools, there is in principle no
reason why sequential methods should not be adapted to be employed for
time series in our generalized logarithmic pools where the weights can be

w Ž . xfunctions of past data see Faria 1996 for comments on this .
The externally Bayesian group has some advantages. For instance, Raiffa

Ž .1968 illustrated how the relevance over the order in which the pooling and
updating are done can lead to subjects trying to increase their influence on
the consensus by insisting that their opinions be computed before the out-

Ž .come of an experiment is known. If a group is externally Bayesian EB , then
Ž .all such argument would be pointless. Also, as Genest 1984 points out, if

such a pool can be agreed, then it has great practical advantages. For
example, its members need not meet again after data has been observed.
However, the main reasons we have chosen the external Bayesianity criterion
on which to base this methodology is twofold. First, because conditional

Ž .independence CI statements are at the heart of all belief networks, the types
of multiplicative pools which result from external Bayesianity tend to pre-

Ž .serve the CI structures which relate to chain graph CG associations,
w Ž .xwhereas other pools, like the linear opinion pools McConway 1981 do not.

Second, using a loosened form of the external Bayesianity criterion with a CG
structure allows a generalization of the modified logarithmic opinion pool
Ž . Ž .modified LogOp of Genest, McConway and Schervish 1986 that answers
some of the criticisms of its use.

The structure of the paper is as follows. In Section 2 we review the
external Bayesianity property and its logarithmic characterization through
pooling operators. In Section 3 we define partially complete chain graphs
Ž .PCG’s and state the conditions under which their structure is preserved
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after sampling. A definition of conditional external Bayesianity together with
its characterization are proposed in Section 4. In Section 5 we show how CEB
poolings in chain elements can characterize an EB pooling on the PCG. The
discussion of the results and the plausibility of our assumptions are shown in
Section 6. The Appendices contain the proofs of some of the stated theorems.

Ž .2. The EB logarithmic opinion pool. Let V, m be a measure space.
w .Let D be the class of all m-measurable functions f : V ª 0, ` f ) 0, m a.e.

such that Hf dm s 1. A pooling operator T : Dm ª D is that one which maps a
Ž . Ž .vector of functions f , . . . , f , where f g D for all i s 1, . . . , m , into a1 m i

single function also in D.
Ž .Madansky 1964, 1978 characterized the EB pooling operators as those

synthesizing the diverging individual opinions f , . . . , f into a group opin-1 m
Ž .ion expressed by a single density f s T f , . . . , f that must satisfy1 m

lf lf lT f , . . . , fŽ .1 m 1 m
1 T , . . . , s , m-a.e.,Ž . ž /Hlf dm Hlf dm HlT f , . . . , f dmŽ .1 m 1 m

Ž . Ž .where l: V ª 0, ` is the group’s common likelihood for f , . . . , f such that1 m
0 - Hlf dm - `, i s 1, . . . , m.i

Ž .Genest, McConway and Schervish 1986 proved that the following modi-
fied logarithmic opinion pool is, under certain regularity conditions discussed

Ž .later, the most general EB logarithmic pool satisfying condition 1 above:

gŁm f w i
is1 i

2 T f , . . . , f s , m-a.e.,Ž . Ž .1 m m w iHgŁ f dmis1 i

w .where g: Vª 0, ` g)0, m a.e. is an arbitrary bounded function on V and
Ž .w , i s 1, . . . , m, are arbitrary weights not necessarily nonnegative addingi

up to 1. The w ’s are experts’ opinions weights in the combination and musti
be suitably chosen to reflect relative expertise. They should possibly be

welicited by the experts based on their common knowledge set see, e.g.,
Ž .xGeanokoplos 1992 of their own relative predictive capabilities.

Ž .One of the above-mentioned regularity conditions on V, m is that for an
Ž .m Ž .existing Lebesgue measurable function P: V = 0, ` ª 0, ` , the pooling

operator T : Dm ª D is such that

P x , f x , . . . , f xŽ . Ž .1 m
3 T f , . . . , f x s , m-a.e.Ž . Ž . Ž .1 m HP ?, f , . . . , f dmŽ .1 m

This condition is called a likelihood principle in the sense that it restricts the
likelihood of the combined density T at a particular point x in V to depend,
except for a normalizing constant, on the x and on the individual densities f ,i
i s 1, . . . , m, assigned to x only through their values at x, and not upon
other points and densities of the points which might have occurred but did

Ž .not. The likelihood principle represented by 3 is a strong and rather
arbitrary requirement particularly in the case where T is a multivariate

w Ž .xdensity e.g., Faria and Smith 1994, 1996 . In the generalization of EB and
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Ž .CEB pools we make in Section 4, we require 3 to hold when applied to
marginal and conditioned variables related to individual nodes in a graphical
representation structure.

Ž .Another assumption made here is that the underlying space V, m can be
partitioned into at least four nonnegligible sets. In this case such a measure
space is called quaternary. This therefore includes the case where m is

Ž .Lebesgue and many but not all cases where m is a counting measure.
Ž .McConway 1978 proved that in the case where V is countable and m is a
Ž . Ž .counting-type purely atomic measure then the formulas of the type 2

Ž .would be the only ones to qualify as EB if 3 holds. In the case where V is
Žpurely continuous excluding thus the case where the sample space is count-

. Ž .able , Genest 1984 showed that the only nondictatorship externally Bayesian
Ž .pooling operator satisfying 3 applied to a P that is not indexed by x, that is,

Ž .Ž . w Ž . Ž .x Ž .T f , . . . , f x s P f x , . . . , f x rHP f , . . . , f dm, m-a.e., is1 m 1 m 1 m
Ž . Ž .Bacharach’s 1972 logarithmic opinion pool LogOp :

Łm f w i
is1 i

4 T f , . . . , f s , m-a.e.,Ž . Ž .1 m m w iHŁ f dmis1 i

where w G 0, i s 1, . . . , m, are arbitrary constants such that Ým w s 1.i is1 i
Unfortunately, as currently developed, EB pools have serious drawbacks.

Ž .Perhaps the most obvious one is that, as Lindley 1985 points out, it appears
Ž .perverse that the weights w s w , . . . , w must be common knowledge to1 m

the group a priori. Surely as evidence appears which sheds light on the
relative expertise of its members, the group should agree to adapt its weights

w Ž .xto favor the better forecasters e.g., Faria and Smith 1994, 1996 . It should
be natural that, given the members’ commonly held information about their
specialities, relative expertise and predictive capabilities, the weights associ-
ated with some variables be allowed to depend on the value of other variables
in the problem. As we mentioned in the Introduction, our methodology allows

Ž .for this see also Section 4 . First, we shall introduce the conditions under
which the class of the special chain graphs we adopt, the PCG’s, have their
structures preserved posterior to the input of observed data.

3. The preservation of PCG structures. In this section we define a
Žuseful subclass of graphical models, the PCG’s partially complete chain

.graphs , and an associated family of likelihood functions. Provided the mem-
bers of the group are able to agree on a causal ordering of the variables and

Ž .on a dependence structure between them, as embodied in a chain graph CG ,
Žthen a class of combination rules much richer than but containing a special

. Ž .case of the EB combination rules given in 2 can be obtained. The way this
is achieved is by demanding a weakened form of external Bayesianity to hold
only when the agreed likelihood does not destroy the conditional indepen-

Ž .dence CI structure on the variables represented by the group’s agreed PCG.
Ž .The properties about the set of uncertain measurements X s X , . . . , X1 n

Ž .stated below are assumed to be common knowledge CK to all members of
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the group. In fact, there are two basic required conditions about the beliefs of
the group’s members. The first is that all members agree on the association
structure on X such that the following holds.

Ž .PROPERTY 3.1. i The vector X can be represented as an ordered list of
subvectors X , . . . , X , where it is CK to all members of a group G that,1 n
for j s 1, . . . , n, the random vector X receives a directed association fromj
Ž . Ž . Ž .or more loosely is caused by p X , where p X is a subvector ofj j
Ž .X , X , . . . , X , henceforth called the group parent set of the chain ele-1 2 jy1
ment X .j

Ž .ii It is CK to the group G that X is conditionally independent of thej
Ž . Ž . Ž .elements in X , . . . , X which are not in p X , given its parent set p X ,1 jy1 j j

Ž .that is, in the usual notation of Dawid 1979 ,

<X @ X , . . . , X _ p X p X , j s 1, . . . , n.� 4Ž . Ž . Ž .j 1 jy1 j j

Assuming that all members have a common dominating measure we can
then assert that the ith member of the group can write his joint density over

Ž .X, f x , in the formi

n

f x s f x N p x , i s 1, . . . , m,Ž . Ž .Łi i j j j
js1

Ž . Ž .where x and p x are defined above for j s 2, . . . , n and p x s B. Hence-j j 1
w Ž .xforth we shall impose the usual positivity condition that f x N p x ) 0i j j j

Ž .for each value of p x at all values of x in this space, which is common toj j
all members of the group.

Ž . Ž .The association structure described by i and ii above defines a class of
multivariate structures which are a subclass of graphical models called chain

Ž .graph CG models. Briefly, a CG is a graph which does not contain any
Ž .directed cycles and whose set of nodes vertices can be partitioned into

numbered subvectors. These subvectors form a dependence chain such that
all associations between nodes within the same subvector are undirected
Ž .forming the chain elements of the CG and all associations between compo-
nents of distinct subvectors are directed. A directed edge from the component
of a lower labelled vector points to a component of a higher labelled vector.

wThe literature on these models is extensive e.g., Wermuth and Lauritzen
Ž . Ž . Ž .x1990 , Frydenberg 1990 and Lauritzen 1996 .

w Ž .The PCG’s are defined as follows see Faria and Smith 1994 or Faria
Ž . x1996 for an example .

Ž . pŽ .DEFINITION 3.2 PCG . A chain graph GG X with nodes labelled by its
chain elements X , . . . , X is called a partially complete chain graph if, for1 n

Ž .each j s 1, . . . , n, all the components of the subvector chain element X ofj
pŽ .GG X are connected together to form a complete undirected subgraph. A

directed edge connects X g X to Y g X if and only if X is a subvector ofi j i
Ž . Ž .p X , where p X is the parent set of X .j j j
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The PCG’s are ones which, by judicious changes of definition, can be
Ž . wrepresented by influence diagrams IDs on vectors of variables e.g., Smith

Ž . Ž .x1989 and Queen and Smith 1993 . The ID induced by the PCG defined
above consists of the statements of Property 3.1 together with a directed
graph whose n nodes are labelled X , . . . , X and where X is connected by1 n i

Ž .an edge to X if and only if X is a subvector of p X .j i j
p dŽ . pŽ .We shall call a PCG decomposable, GG X , if the ID induced by GG X is

Ž .decomposable, that is, when for some k k s 1, . . . , n , X , X are bothi j
Ž . Ž .subvectors of p X , i / j, then either X is a subvector of p X or X is ak i j j

Ž .subvector of p X .i
Decomposable models are very common in statistics. They include the

Ž . Ž .cases when a all variables are independent of one another, b they are all
Ž .dependent on one another and c they form a Markov chain. They also

winclude most hierarchical models like the dynamic linear model West and
Ž .xHarrison 1989 . If a model is not originally decomposable it can be made so

wby ignoring certain stated conditional independencies see Lauritzen and
Ž . xSpiegelhalter 1988 for an example of how to do this .

Ž .The moral graph obtained from a CG GG X is the undirected graph
mŽ .GG X with the same set of nodes X but with any pair of nodes being joined

m Ž .together by an undirected edge in GG if and only if i they were already
Ž . Ž .joined in GG by either a directed or an undirected edge or ii they both were

parents of nodes in the same chain element. Thus, the moral graph of a
directed acyclic graph is built up by joining with undirected edges all nodes
that have a common child and by replacing all directed edges by undirected

w Ž .xones see, e.g., Lauritzen and Speigelhalter 1988 .
pŽ .Since the components of the chain elements X of a PCG GG X form aj

complete undirected graph, any new information about a set of such compo-
nents is informative about all the other components of that chain element
and no CI assumption is destroyed within that chain element.

In order to generalize external Bayesianity, it is also necessary to intro-
duce a second condition, which will act on the class of likelihoods for models

pŽ .defined on a PCG GG X . In a general setting, these likelihoods, which we
shall call cutting, are those which can be only informative about one chain

Ž .element X andror its parents p X in the group’s common PCG.j j

Ž . Ž .DEFINITION 3.3 Cutting likelihood . Say that l x N z is in the class of
pŽ . Ž p.cutting likelihoods related to a PCG GG X N Z , henceforth denoted by LL GG ,

if it is a likelihood function which could have resulted from a sample
Ž . Ž .Z s Z , . . . , Z whose density g z N x can be written in the following form:1 n

g z N x s g z N x g z N x , p x , zŽ .Ž . Ž .1 1 1 2 2 2 2 1

ny1= ??? g z N x , p x , z ,Ž .n n n n

5Ž .

Ž . p Ž .where x s x , . . . , x are values of the components of X in GG , p x are1 n j
pŽ . k Ž .fixed values of the parents of X in GG X and z s z , z , . . . , z , forj 1 2 k

k Ž .k G 1, are the observed values of Z s Z , . . . , Z .1 k



CONDITIONALLY EXTERNALLY BAYESIAN GRAPHS 1747

p Ž p.If GG is complete, then L GG is the class of all likelihoods. So we only
constrain our class of likelihoods when there is some substantive agreement
between the members about some lack of association between certain sets of

pŽ .variables given another. In the case when GG X is not complete, there is an
Ž . Ž .ordering of X to X , . . . , X such that X can be thought loosely of as1 n i
Ž . Ž .being caused by p X , a subvector of X , X , . . . , X , i s 2, . . . , n. Wheni 1 2 iy1

Ž . Ž pŽ .xl x N z g LL GG X N Z we assume that we have taken an observation Z
Ž .which, possibly after some transformation, can be represented as Z , . . . , Z ,1 n

where Z is dependent on X only through X and the values of its directi i
Ž .causes p X . The most extreme case is when X , . . . , X are independent. Ini 1 n

this case a cutting likelihood is one which separates in each of these vari-
pŽ .ables. In the case of noncomplete PCG’s, the ID induced from GG X must be

decomposable otherwise original relevances may not be valid anymore after
sampling, as we shall see.

Now, the second mentioned condition the group is required to obey regard-
ing the likelihoods obtained from sampling over a decomposable PCG is the
following:

PROPERTY 3.4. External Bayesianity holds only with respect to incoming
p dŽ .information Z , about the chain elements X of a decomposable PCG GG X ,j j

Ž . Ž .for which the value of the ancestral set a z s z , . . . , z is alreadyj 1 jy1
w j Ž .xknown, and whose likelihood l x N z , p x , j s 1, . . . , n, is a component ofj j j

Ž . p dŽ .a cutting likelihood l x N z related to GG X .

Ž .In particular, the form 5 prevents a variable X in a decomposable PCG,k
p d Ž . wGG , not belonging to the parent set p X of X which is associated with thej j

Ž .xindex of the product component g in 5 , to condition the observation z inj j
w Ž . jy1 xg z N x , p x , z . In other words, no direct associations between X fj j j j k
Ž . p dŽ .p X and Z are allowed in GG X N Z . This, in its turn, avoids thej j

p dŽ .introduction of any new association in the moral graph of GG X N Z not
p dŽ . p doriginally present in GG X . Therefore, no CI is lost in GG according to

Ž .Pearl’s 1988 d-separation theorem.
The class of cutting likelihoods is a very natural one to consider in the

context of PCG’s, for CG’s GG p whose induced ID is decomposable, GG p d. This
is because, provided Property 3.4 is satisfied by the group, the class is
determined by those data sets which, for each member, are guaranteed to
preserve the CI structure implicit in GG p d after data assimilation. Thus it is
simply information which does not destroy the association structure agreed
by members of the group. Now we present the formal statement and proof of
this result.

Ž .THEOREM 3.5. a If Property 3.4 is satisfied by the group G for likelihood
Ž .functions l x N z related to the variables of a PCG whose induced ID is

p dŽ . p dŽ .decomposable, GG X , then for each member of G, GG X N Z is a CG of that
member ’s joint density of X N Z.

Ž . p dŽ .b If Property 3.4 is not satisfied, then, for some member of G, GG X N Z
may not be the CG of X N Z.
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Ž . Ž . ŽPROOF. a First we draw the ID II X, Z whose nodes are Z , . . . ,1
. Ž . p dŽ .Z , X , . . . , X . The ID of X , . . . , X , II X , is the one induced by GG X . An 1 n 1 n

Ž . Ž .node Y is a parent of Z , j s 1, . . . , n, if either i Y s X or Y g p X orj j j
Ž .ii Y s Z , k s 1, . . . , j y 1.k

Ž .Now use Pearl’s 1988 d-separation theorem. New edges inducing the
marriage of parents of Z , j s 1, . . . , n, can only occur between a Z node andj

p dŽ .an X node. This is because GG X, Z has an induced decomposable ID
Ž . w Ž . xwithin II X, Z , and the subgraph on subvectors of p X , X is complete. Itj j

Ž . Ž .follows that all new paths in II X, Z between nodes on the subgraph II X
Ž . � 4of II X, Z induced by the marriage of parents are blocked by Z , . . . , Z .1 n

Also, there will be no unblocked new path linking X nodes which were not
linked in the original association structure. This is because the value of the

Ž .ancestral set a Z is assumed to be already known when Z is observed.j j
Ž .Therefore if a CI statement is implied in II X on X, then it is also implied

Ž .on II X, Z .
Ž . Ž . Ž p d .b If l x N z f LL GG , then for some index j, j s 1, . . . , n, there exists a

Z such that the parents of Z will have an edge induced to X afterj j j
moralization. Marrying the parents of the conditioning Z will now producej
an unblocked path between another node X , k s 1, . . . , j, not connected tok

Ž .X in II X , and X . So, whereas all members agreed a priori that X @ X Nj j k
Ž .p X , after observing Z this can no longer be deduced. Ij j

4. Characterization of conditionally externally Bayesian pooling
operators. Suppose that the m members of a group have agreed on the

p dŽ .structure of a decomposable PCG GG X relating n random vectors X s
Ž .X , . . . , X in a certain problem. Let A be the event that the parent nodes1 n j

Ž . � Ž . Ž .4of X , p X , have fixed values X , that is, A s p X s p x for j sj j j j j j
1, . . . , n. Despite believing the common PCG, GG p d, each member has its
own particular opinion about the parameters of his conditional densities

Ž .f X N A associated with the graph structure. For technical reasons wei j j j
shall assume that f ) 0 for i s 1, . . . , m and j s 1, . . . , n. The membersi j

Ž .agree to follow the external Bayesianity axiom, satisfying thus 1 applied to
for sets of conditional densities. Hence, according to the probability break-
down in CG’s, external Bayesianity on X N A is required for all possiblej j

Ž .values of the X , j s 1, . . . , n. Unlike in 1 , the likelihood over which wej
demand external Bayesianity to hold for these conditional densities is re-

Ž p d .stricted to the family LL GG of cutting likelihoods defined in Section 3. Thus
we demand that Property 3.4 is satisfied. Particularly, this means that
external Bayesianity is required only for new information that might come
from a designed experiment whose design points are the parents or causes of
that variable.

We can now define the conditional external Bayesianity property which
Ž .will characterize conditionally externally Bayesian CEB pooling operators

representing combined probability density functions associated with a PCG.

Ž .DEFINITION 4.1 Conditional external Bayesianity . Say a group G obeys
Ž .the conditional external Bayesianity property if the joint density f x of the
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p dŽ .variables in its common decomposable PCG GG X is combined in the
following way. For each component X of X and each set A of possiblej j

Ž . Ž .values of the parents p X of X , each of the conditional densities f x N Aj j j j j
Ž .is pooled to preserve the external Bayesianity property j s 1, . . . , n with

Ž j.respect to the component l x N A , z of the common cutting likelihoodj j j
Ž . p dŽ .l x N z associated with GG X .

In terms of obtaining a characterization of conditional external Bayesian-
ity through a class of pooling operators, we propose, in line with Madansky
Ž . Ž .1964, 1978 and Genest McConway and Schervish 1986 , that a CEB pooling

pŽ .operator T associated with a PCG GG X is one which is EB on appropriatej
conditional distributions and only for data that respect an ordering of that
conditioning, X N A , j s 1, . . . , n, implicit in that chain when Property 3.4 isj j
satisfied.

w Ž . U Ž .x Ž U .Define a measure space V A , m A , hereafter denoted V , m , withj j j j j j
V being the product space of spaces related to components of X and mU

j j j
Ž .being the product reference measure associated with the r j -dimensional

w Ž .x mvector X in V see, e.g., Rudin 1986 . Let T : D ª D be a CEB poolingj j j j j
U w .operator, where D is the class of all m -measurable functions f : V ª 0, `j j i j j

Ž U .with f ) 0 m -a.e. such that H ??? Hf dm ??? dm s 1 for all i, j andi j j i j 1 j r Ž j. j
Ž .r j . The m ’s are measures associated with components of X . If such ak j j

Ž .pooling operator satisfies the following multivariate conditional version of 3 :

T f , . . . , f x N AŽ . Ž .j 1 j m j j j

P x N A , f x N A , . . . , f x N AŽ . Ž .j j j 1 j j j m j j j Us , m -a.e.,jH ??? HP ?, f , . . . , f dm ??? dmj 1 j m j 1 j r Ž j. j

6Ž .

Ž .m Ž .for each j s 1, . . . , n, where P : V = 0, ` ª 0, ` is some arbitraryj j
Ž .Lebesgue measurable function; then T s T , . . . , T is said to satisfy the1 n

PCG GG p d likelihood principle. This condition has the same interpretation as
Ž .condition 3 but for X conditioned on A ; that is, except for a normalizationj j

factor which does not depend on X , the density of the consensus at X N A isj j j
Ž .required to depend only on X and its fixed parents p X as well as on thej j

individual densities at the actual value of the unseen quantities given its
parents, but not upon the densities of the values which might have obtained
but did not.

Ž .Similar to Madansky’s condition 1 for EB pooling operators, the CEB
wpooling operator T is required to satisfy the following condition see Fariaj

Ž . Ž .xand Smith 1994 and Faria 1996 :

l f l fj 1 j j m j
T , . . . ,j H ??? Hl f dm ??? dm H ??? Hl f dm ??? dmj 1 j 1 j r Ž j. j j m j 1 j r Ž j. j

l T f , . . . , fŽ .j j 1 j m js
H ??? Hl T f , . . . , f dm ??? dmŽ .j j 1 j m j 1 j r Ž j. j

7Ž .

with mU-a.e. for j s 1, . . . , n where the likelihood l is a component ofj j
Ž p d .l g LL GG .
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Ž U .Assuming the underlying measure space V , m of each vector X inj j j
p dŽ . ŽGG X can be partitioned into at least four nonnegligible sets that includes

.the continuous and most of the countable cases , it is straightforward to
extend the characterization theorem of Genest, McConway and Schervish
Ž .1986 for such an operator in the following way.

Ž . Ž U .THEOREM 4.2 Conditional modified LogOp . Let V , m be the quater-j j
mŽ .nary measure space. Let f x N A : D ª D be a CEB pooling opera-j j j j j

tor representing the m individuals combined conditional density for the
Ž .r j -dimensional random vector X , j s 1, . . . , n, given its parents in a PCGj
pŽ .GG X . If

f x N A s T f , . . . , f x N A ,Ž . Ž . Ž .j j j j 1 j m j j j

Ž . m Uj s 1, . . . , n, where for all f i s 1, . . . , m in D and for an existing m =i j j j
Ž .m Ž . mLebesgue measurable function P : V = 0, ` ª 0, ` , T : D ª D satisfiesj j j j j

Ž .6 , then f takes the formj

f x N AŽ .j j j

Ž .w Ai j jmp Ł f x N AŽ .j is1 i j j j Us , m -a.e.,jŽ .w Ai j jmH ??? Hp Ł f x N A dm ??? dmŽ .j is1 i j j j 1 j r Ž j. j

8Ž .

w .where p : V ª 0, ` P )0, m a.e. are essentially bounded functions andj j j
Ž . m Ž .w A are weights such that Ý w A s 1 holds for each index j si j j is1 i j j

1, . . . , n, and A are the variables whose values are commonly known by thej
group when the combination rule is applied. Furthermore, the weights are
nonnegative unless V is finite or there does not exist a countably infinitej

Ž U .partition of V , m into nonnegligible sets.j j

The proof of this theorem is straightforward by a slight adaptation of
Ž .Theorem 4.4 in Genest, McConway and Schervish 1986 individually for each

p Ž U .node in GG associated with the underlying measure space V , m , butj j
conditioned on X N A , j s 1, . . . , n. The proof together with some intermedi-j j
ate results is given in Appendix A.

Ž .The w A are the weights that should be a measure of i’s expertisei j j
associated with the vector X . They can be possibly a function of otherj
components in X .j

It is rather difficult to give an interpretation to p in the context of ourj
group decision problem. However, it is reasonable in the majority of problems
to require that T preserves the group’s unanimity. This leads us to setting pj j

Ž .equal 1. Note that in this case condition 6 can be restricted to

P A , f x N A , . . . , f x N AŽ . Ž .j j 1 j j j m j j j UT f , . . . , f x N A s , m -a.e.,Ž . Ž .j 1 j m j j j jH ??? HP ?, f , . . . , f dm ??? dmj 1 j m j 1 j r Ž j. j

thus not allowing T to depend on x directly.j j
The following corollary can be stated, with the proof being easily obtained

from Theorem 4.2.
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Ž . Ž U .COROLLARY 4.3 Conditional LogOp . Let V , m be a quaternary mea-j j
sure space and let T : Dm ª D be a CEB pooling operator which preservesj j j
unanimity. If there exists a mU = Lebesgue measurable function P : V =j j j
Ž .m Ž . Ž .0, ` ª 0, ` such that T satisfies 6 for all vectors of conditional opinionsj
Ž . mf , . . . , f g D , then T is a logarithmic opinion pool, that is,1 j m j j j

T f , . . . , f x N AŽ . Ž .j 1 j m j j j

Ž .w Ai j jmŁ f x N AŽ .is1 i j j j Us , m -a.e.,jŽ .w Ai j jmH ??? HŁ f x N A dm ??? dmŽ .is1 i j j j 1 j r Ž j. j

9Ž .

for some arbitrary weights w , i s 1, . . . , m, j s 1, . . . , n, possibly functionsi j
Ž .of A the commonly known past when the densities of X are combinedj j

Ž .adding up to 1. Moreover, the weights w A are nonnegative unless V isi j j j
Ž U .finite or there does not exist a countable partition of V , m into nonnegligi-j j

ble sets.

5. CEB poolings appearing EB. We have already shown in Section 3
that in order to ensure that the CEB rules are well defined, the common PCG

pŽ .GG X must be decomposable. Note that the CEB rules are not based on
pooling operators since their arguments are not necessarily just the values of
the joint densities in those pools.

Ž . Ž p d .The question now is, when l x N z g LL GG , in what sense, if any, are the
CEB poolings on chain elements EB on the whole PCG GG p d?

p dŽ .Certainly, when data Z about X in GG X is observed, that evidence
must be propagated through the PCG. Therefore, all the conditional poolings
Ž .w Žny1.xT f , . . . , f x N x on the chain elements X and its predecessors onj 1 j m j j j
p dŽ . ŽGG X , that is, X , . . . , X , must be updated to omitting the members’s1 jy1

. w Ž jy1. xdensities T x N x , z for j s 1, . . . , n.j j
Suppose we demand that the group agrees to update those conditional

densities in a backwards sequence. Thus assume that the group agrees to
update X N X Žny1. first, X N X Žny2. second and so on to X .n ny1 1

˜Let f be the group’s combined joint density which takes the individual
w Žny1. x Ž .posterior densities on X N X , Z , pools them, uses the derived agreedn

Žny1. w Žny2. xdensity of Z N X to obtain individual densities of X N X , Z , poolny1
these and so on down to the density of X . Also, let f be the group’s combined1
joint density which pools the individual prior densities of X N X Žny1., forms an

w Žny1. x Žny1.group’s posterior density of X N X , Z and a density of Z N X , usesn
this agreed density of Z N X Žny1. and the pool of the prior densities on

Žny2. w Žny2. xX N X to obtain the posterior density X N X , Z and so onny1 ny1
Ž̃ . Ž .down to the pooling of X . Thus, the question is when does f x N z s f x N z ?1

The answer is provided by the following theorem.

THEOREM 5.1. Suppose that Property 3.4 is satisfied by the group G for a
p dŽ .PCG GG X . Also assume that the vector of weights w of the conditionalj

LogOps used to combine the beliefs of the members of G on chain elements X j
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p dŽ . Ž .of GG X is a function only of variables in p x for all j s 1, . . . , n. Then,j
p dŽ .for the whole graph GG X N Z ,

f̃ x N z s f x N z ,Ž . Ž .
˜where the conditional LogOps components of f or f are backwards sequentially

updated.

See Appendix B for the proof of this theorem.
Note that the above result guarantees that the original PCG structure is

preserved after new information is incorporated into the model and that
there is agreement on how the graph is updated, although the updating is
only strictly EB when the corresponding graph is completely disconnected.

6. Discussion. Complete CG’s are always decomposable and make no
statements about CI being probabilistically valid for all situations. Therefore,
for complete CG’s, Theorem 5.1 implies that all CEB rules are sequentially

Ž .EB in the sense defined in the previous section to general likelihoods. Each
ordering of variables in a complete induced ID gives a different class of
sequentially EB pool, so with n variables there are n! different classes
defined by different CG’s. Consequently, the collection of such sequentially
EB pools is extremely rich, a fact obscured by the insistence that a pooling

w Ž .should be an operator on a joint density see Faria and Smith 1996 ,
xExample 2.2 . On the other hand, for CG’s representing unconditional inde-

pendence between all the variables, Theorem 5.1 implies that the joint
pooling on the whole CG is EB to cutting likelihoods. In this case, the
agreement on the sequential backwards performing of conditional pools need
not be made.

The CEB pools are not formed as pooling operators on joint densities on all
the variables of a system. They act as components of pooling operators on
conditional densities. The argument that a pooling should be a pooling
operator on a joint density appears to us to be weak, since relative expertise
on particular variables should be allowed.

This multiplicity in the complete case is, in one sense, a problem, since we
need to choose which CEB pool to use. But this will largely be determined by
the time or causal order in which the random variables are observed. We
need this ordering to fix the weights w associated with the jth variables Xj j
since w is allowed only to depend on the parents of X . In the complete case,j j
Ž . � 4p X s X , . . . , X , and, for all possible pools to operate in the class ofj 1 jy1

CEB pools associated with this graph, X , . . . , X will not need to be known1 jy1
w Ž . Ž .xbefore the pooling takes place Faria 1996 and Faria and Smith 1996 .

When the induced ID is not decomposable, assimilation of data tends to
destroy that agreed structure. It is natural therefore to work only with
information in the ID which is not destroyed by assimilation of new informa-
tion.

On the other hand, an agreed nondecomposable ID II can always be made
decomposable by marrying parents and adding directed edges until it is

w Ž .xdecomposable Lauritzen and Spiegelhalter 1988 . By using this derived ID
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II d as a basis for the CEB pools instead of II, some information might be lost
because there may be CI statements supplied by II but not by II d. Rather we
claim that it is only sensible to formulate explicitly the pooling on those
agreed conditional independencies which can reasonably be assumed to be
preserved after simple types of sampling. Otherwise, the combination ob-

w Ž .tained a posteriori would not even be defined see Faria and Smith 1996 ,
xExample 2.1 .

One legitimate question that might be asked is: why use CG’s whose
induced ID’s are not complete? Because an ID is always acyclic there will
always be a complete dimensional graph which has it as a subgraph and so is

Ž .a valid ID description of the problem. Furthermore, the CEB pools which
are associated with complete graphs have the advantage that they are
sequentially EB with respect to all likelihoods. On the other hand, CEB pools
related to incomplete graphs are only sequentially EB to data which gives
rise to a certain structure of likelihood. There are four answers to this
question:

1. Simplicity. If the type of information you expect to receive will automati-
cally preserve CI structure, it seems perverse to demand methods of
combining densities which exhibit individual’s dependence structures they
will never believe.

2. Preservation of symmetry. Suppose two random variables X , X in thei j
random vector X are agreed to exhibit CI and are symmetric in the sense
that there is no clear order of causality or association between them. Thus,
to introduce such an association into the pooling algorithms seems to be
artificial and undesirable.

3. Fixing a frame. In a given problem, experts will agree on a set of random
vectors X , . . . , X on which they will pool their opinions. However, in1 n
most circumstances, each expert will have beliefs about other variables
X*, agreed as independent of X. Implicitly in any pooling, they will ignore
the disparity between their beliefs about X*. Similarly, at a future time, if
asked to combine their beliefs about X*, they will choose to ignore the
disparity in their beliefs about X. But to do this implies the use of a CEB
rule which explicitly demands in its associated CG that X @ X*. Thus, if
we do not allow incomplete cases, in different and independent forecasting
problems about X and X*, then we would need to prioritize X and X*.

4. External Bayesianity. The sparser the CG, the more informative it is in
terms of CI statements and the closer to being EB the group is in the joint
combination.

APPENDIX A

Proof of Theorem 4.2. The proof of Theorem 4.2 needs intermediate
results that we state here as other theorems. Basically, the proof itself is split
up to include all possible configurations of the underlying measure spaces,

Ž U .that is, the cases in which V , m does not contain any atoms, or is purelyj j
atomic, or contains atoms but is not purely atomic. Some of these intermedi-
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ate theorems themselves need other results and concepts. The complete proof
together with the proofs of all related lemmas and theorems can be found in

Ž . Ž .Faria and Smith 1994 or in Faria 1996 .
We begin Section A.1 with two characterization theorems of the condi-

Ž U .tional modified LogOp. Theorem A.1 covers the case in which V , m is notj j
Ž .purely atomic and condition 6 holds for the functions P , j s 1, . . . , n.j

Ž . Ž U .Theorem A.2 characterizes 8 for the case in which V , m contains at leastj j
three atoms but is not purely atomic. Those two theorems are then used in
Section A.2 to prove Theorem 4.2.

A.1. Some characterization theorems for the conditional modified LogOp.

Ž U .THEOREM A.1. Assume that V , m is not purely atomic and that N isj j
mthe complement set of the atoms. Let f : D ª D, j s 1, . . . , n, be externallyj

Ž . UBayesian. Assume that 6 holds for m = Lebesgue measurable functions P :j j
Ž .m Ž .V = 0, ` ª 0, ` , j s 1, . . . , n. Thenj

Ž .w Ai j jmp x N A Ł f x N AŽ . Ž .j j j is1 i j j j
f f , . . . , f x N A s ,Ž . Ž .j 1 j m j j j H ??? HP ?, f , . . . , f dm ??? dm10 Ž .Ž . j 1 j m j 1 j r Ž j. j

mU-a .e. on N ,j

Ž . m Ž .where w A G 0 and Ý w A s 1, j s 1, . . . , n.i j j is1 i j j

Ž . Ž .See Faria and Smith 1994 or Faria 1996 for a complete proof of this
theorem which is a straightforward generalization of Lemma 4.3 in Genest,

Ž .McConway and Schervish 1986 .

Ž U .THEOREM A.2. Let V , m be a quaternary measure space that containsj j
mat least two atoms, and let f : D ª D be a CEB pooling operator. Supposej

U Ž .m Ž .there exist m = Lebesgue measurable functions P : V = 0, ` ª 0, `j j j
Ž .such that 6 holds for all conditional densities f g D, i s 1, . . . , m andi j

j s 1, . . . , n, associated with a PCG GG p. Then there exist, for each vector of
Ž . Ž .atoms X N A in V , j s 1, . . . , n, constant terms v A , . . . , v A suchj j j 1 j j m j j

that
Ž .v Ai j jmp x N A Ł f x N AŽ . Ž .j j j is1 i j j j

11 f f , . . . , f x N A s .Ž . Ž . Ž .j 1 j m j j j m v ŽA .i j jH ??? Hp Ł f dm ??? dmj is1 i j 1 j r Ž j. j

Ž . wPROOF. Lemma B.8 in Faria and Smith 1994 a generalization of Lemma
Ž .x4.2 in Genest, McConway and Schervish 1986 proves that, for the hypothe-

Ž . 2ses above, there exist, for each pair of vectors of atoms X N A , Y N D in V ,j j j j j
Ž . Ž .constant terms v A , D , . . . , v A , D such that, for all functions1 j j j m j j j

g , . . . , g ) 0 in D, we have for each j that1 j m j
m

v ŽA , D .i j j jQ x N A , y N D g , . . . , g s Q x N A , y N D 1 g ,Ž . Ž .Ž . Ž . Łj j j j j 1 j m j j j j j j i j
is1
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Ž .m Ž .where Q : 0, ` ª 0, ` are Lebesgue measurable functions and 1 sj
Ž .1, . . . , 1 is m-dimensional. So, if for all j we fix the vector of atoms

U Ž .y N D g V and choose 0 - « - 1rm y N D , then we can define for allj j j j j j j
atoms x N A g V the functionsj j j

yv ŽA , D .j j jP x N A s Q x N A , y N D 1 P y N D , « « ,Ž .Ž . Ž .j j j j j j j j j j j j

Ž . Ž . m Ž .where « s « , . . . , « and v A , D s Ý v A , D . Thus, for all thej j j j j j is1 i j j j
atoms x N A , we have thatj j

m
v ŽA .i j jP x N A , g , . . . , g s p x N A gŽ . Ž .Łj j j 1 j m j j j j i j

is1
U Ž . Ž .for all 0 - g , . . . , g - 1rm x N A . This implies that, for all j, 11 holds.1 j m j j j j

I

We are now in position to prove Theorem 4.2.

Ž U .A.2. The proof of Theorem 4.2. If V , m contains no atoms at all thenj j
the proof is immediate from Theorem A.1.

Ž U . Ž . Ž .If V , m is purely atomic, then 8 is easily obtained from 11 withj j
Ž . Ž .w A s v A for all i s 1, . . . , m and j s 1, . . . , n. Moreover, from the facti j j i j j

that f is CEB, it is easy to verify that the weights must sum to 1 for each j,j
m Ž .that is, Ý w A s 1.is1 i j j

Ž U .If V , m has atoms but is not purely atomic, we use Theorem A.1 toj j
Ž U .obtain the result on the set N, the complement of the atoms set of V , m .j j

Ž1. Ž1. Ž2. Ž2. Ž .Consider the atoms x N A , x N A , . . . in V and let P g , . . . , gj j j j j k j 1 j m j
Ž Žk . Žk . .denote P x N A , g , . . . , g for all g , i s 1, . . . , m, j s 1, . . . , n, suchj j j 1 j m j i j

U Ž Žk . Žk .. Ž .that 0 - g - 1rm x N A . From 7 in the definition of CEB for a PCGi j j j j
GG p d we have for each j that

l x N A P x N A , f x N A , . . . , f x N AŽ . Ž . Ž .j j j j j j 1 j j j m j j j s constant,
12 P x N A , h x N A , . . . , h x N AŽ . Ž . Ž .j j j 1 j j j m j j j

mU-a .e.,j

whenever h A l f for all i and j.i j j i j
Ž . Ž .From 10 , we have that for x N A on N the left-hand side of 12 equalsj j

Łm tw i jŽA j., where t s H ??? Hl f dm ??? dm for all i and j.is1 i j i j j i j 1 j r Ž j. j

Fix t , . . . , t , pick a single vector of atoms x Žk . N AŽk . in V and let « be1 j m j j j j j
U Ž Žk . Žk ..small enough such that 0 - « rt - 1rm x N A for each i and j. Then,j i j j j j

Ž Žk . Žk .. U Ž Žk . Žk ..set s s f x N A s « and s s h x N A s « rt for each i and j.i j i j j j j i j i j j j j i j
Žq . Žq . Ž Žq . Žq .. U Ž Žq . Žq ..For another vector x N A , set u s f x N A and u s h x N A .j j i j i j j j i j i j j j

U Ž .Now, choose four sets in V for each j, say, B , with 0 - m B - ` forj v j j v j
U Ž . U Ž . U Ž .v s 1, 2, 3 and m B ) 0, such that s m B q u m B - 1 andj 4 j i j j 1 j i j j 2 j

U U Ž . U U Ž . � Žk . Žk .4s m B q u m B - 1 for all i and j. Make B s x N A andi j j 1 j i j j 2 j 1 j j j

� Žq . 4 Ž X X .B s x N A and construct densities f , . . . , f and likelihoods l for2 j j 1 j m j j
X Ž Žk . Žk .. X Ž Žq . Žq .. X Ž Žk .these densities such that f x N A s s , f x N A s u , h x Ni j j j i j i j j j i j i j j

Žk .. U X Ž Žq . Žq .. U X X XA s s and h x N A s u , where h s l f rH ??? Hl f dm ??? dmj i j i j j j i j i j j i j j i j 1 j m j
Ž .for all i and j .
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U Ž . U Ž . U Ž .Denote g s s m B q u m B . Observe that s m B qi j i j j 1 j i j j 2 j i j j 1 j
U Ž . w U U Ž . U U Ž .xu m B s t s m B q u m B - t for all i and j, and thus 0 -i j j 2 j i j i j j 1 j i j j 2 j i j

� 4g - min t , 1 for each i and j. Also choose l ) 0 and j - ` such thati j i j j j

y1
l - min 1 y g t y g : i s 1, . . . , nŽ .½ 5j i j i j i j

y1G max 1 y g t y g : i s 1, . . . , n - j .Ž .½ 5i j i j i j j

Fixing an arbitrary density z g D we can define, for all i and j,j

t y g y l 1 y gŽ .i j i j j i jXf s s II B q u II B q II BŽ . Ž . Ž .i j i j 1 j i j 2 j 4 jUm B j y lŽ . Ž .j 3 j j j

j 1 y g y t y gŽ . Ž .j i j i j i jq z II B ,Ž .j 4 jR j y lŽ .j j j

Ž . Ž .where R s H ??? HII B z dm ??? dm ) 0 and II B is the indicator ofj 4 j j 1 j r Ž j. j
X X Ž Žk . Žk ..the set B. Note that H ??? Hf dm ??? dm s 1 and f x N A s s ,i j 1 j r Ž j., j i j j j i j

X Ž Žq . Žq ..f x N A s u for all i and j. Finally, consider the likelihoodsi j j j i j

l s II B q II B q j B q l II B .Ž . Ž . Ž . Ž .j 1 j 2 j j 3 j j 4 j

Ž .Using the fact that 12 also holds on all of V , we havej

mP « , . . . , «Ž . Žk .k j j j w ŽA .i j js tŁ i jP « rt , . . . , « rtŽ . is1k j j 1 j j m j

for each j and an arbitrary k. This means that, for all g , . . . , g strictly1 j m j
U Ž Žk . Žk ..between 0 and 1rm x N A ,j j j

m
Žk .y1 w ŽA .i j jP g , . . . , g s P « , . . . , « « g .Ž . Ž . Łk j 1 j m j k j j j j i j

is1

Ž Žk . Žk .. Ž . y1 Ž .Let P x N A s P « , . . . , « « and 8 is proved.j j j k j j j j
Although the weights can possibly vary with A , they are constant relativej

to x N A for fixed values of A , j s 1, . . . , n. Also, they must be nonnegativej j j
if mU is not purely atomic or if it is purely atomic but V includes a countablyj j
infinite number of atoms. In this latter case, we can easily construct densities
f , . . . , f which will make the integrals1 j m j

m
w ŽA .i j j??? p f dm ??? dmŁH H j i j 1 j r Ž j. j

is1

infinite unless all the weights are nonnegative. However, these integrals are
always finite when V is finite and mU is a counting-type measure. Thej j
weights can take negative values in this case. Furthermore, p must bej
essentially bounded, or else there exist f such that the above integrals arej
infinite when all the f are equal to f for each j, according to Hewitt andi j j

wŽ . xStromberg 1965 , Theorem 20.15 .



CONDITIONALLY EXTERNALLY BAYESIAN GRAPHS 1757

APPENDIX B

PROOF OF THEOREM 5.1. Here we use the convention that a function will
explicitly depend only on the values of its arguments. For simplicity, the

Ž .argument of w , that is p x , will be omitted in this proof.i j k
First, observe that there is a proportionality constant for each k s 1, . . . , n,
w Ž . k x m w i kw Ž . k x Ž .h p x , z s 1rH ??? HŁ f x N p x , z dx ??? dx , r k beingk k is1 i j k k 1k r Žk .k

the dimension of the vector element X , such thatk
m

k w ki kf̃ x N p x , z s h p x , z f x N p x , z ,Ž . Ž . Ž .Łk k k k k ik k k
is1

k Ž . k kwhere Z s Z , . . . , Z . Also, if information Z about X is observed then1 k
Ž . kthe density of X , . . . , X given X remains unchanged.kq1 n

We begin the proof by showing that, under the conditions of the theorem,
� Ž . n4 nthe density of X N p X , Z does not depend on when Z is incorporated.n n

Notice that Zn s Z.
Ž . w Ž . ny1 xSince g z N x is a function of x only through g z N x , p x , z , wen n n n n

can write that
n nf x N p x , z s h p x , zŽ . Ž .n n n n

=

w inny1m f x N p x g z N p x , x , zŽ . Ž .in n n n n n n
,Ł nh p x , zŽ .is1 in n

where throughout we let

nh p x , z s ??? f x N p xŽ . Ž .H Hin n in n n

ny1=g z N x , p x , z dx ??? dxŽ .n n n n 1n r Žn.n

for i s 1, . . . , m. Noting that Ým w s 1, this can be arranged asis1 in

nh p x , zŽ .n nnf̃ x N p x , z sŽ .n n n m w ninŁ h p x , ZŽ .is1 in n

=
m

w ny1inf x N p x g z N x , p x , zŽ . Ž .Ł in n n n n n n
is1

n ns V p x , z f x N p x , z ,Ž . Ž .n n n n n

where
n nh p x , z v p x , zŽ . Ž .n n n nnV p x , z sŽ .n n m w ninŁ h p x , zŽ .is1 in n

and where
nv p x , zŽ .n n

1
s .m w ny1inH ??? HŁ f x N p x g z N x , p x , z dx ??? dxŽ . Ž .is1 in n n n n n n 1n r Žn.n
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˜Now we know that f and f must integrate to 1 over x for all values ofn n n
Ž . n w Ž . n xp x and z . It follows therefore that V p x , z is identically 1 and son n n

n n˜13 f x N p x , z s f x N p x , zŽ . Ž . Ž .n n n n n n

as required for each node of the ID induced by GG p d.
After having shown that whether the combination is done before or after

� Ž . n4observing Z does not affect the conditional density of X N p X , Z , wen n
Ž . nnext consider the updating of X N p X given Z . First note that tony1 ny1

ny1 Ž .update the distribution of X , and hence of X N p X , in the light ofny1 ny1
Zn, we need to calculate the density g Ž1. of z n given x ny1. We can then
simply use Bayes’ rule as above and since the likelihood of Z is cutting, from
the usual probability calculus we can write that

Ž1. n ny1g z N x s g z N x g z N x , p x , zŽ .Ž .1 1 1 2 2 2 2 1

ny2 ny1 ny1= ??? g z N x , p x , z g z N x , z ,Ž . ˜ Ž .ny1 ny1 ny1 ny1 n n

where

ny1 ny1 ny1g z N x , z s ??? g z N x , p x , zŽ .˜ Ž . H Hn n n n n n

= f x N p x dx ??? dx .Ž .n n n 1n r Žn.n

˜ Ž .Note that f above is unambiguously defined since f s f by 13 andn n n
m

w inf x N p x s h p x f x N p x .Ž . Ž . Ž .Łn n n n in n n
is1

Ž .Now, provided that w is a function of x only of terms in p x , it is clearin n
n Ž .that g is a function of z and p x only. So we can write that˜n n

ny1 ny1 ny1g z N x , z s g z N p x , z ,Ž .˜ ˜Ž .n n n n n

p dŽ .where g is a function of its arguments only. Also, since GG X has a˜n
decomposable induced ID, it will exhibit the running intersection property
w Ž .xLauritzen and Speigelhalter 1988 . This states that there will exist an

Ž . Ž . Ž . � Ž .4 Ž .index j n say such that p x : x , p x with j n s 1, . . . , n y 1.n jŽn. jŽn.
So g can be further simplified into˜

ny1 ny1 ny1g z N x , z s g z N x , p x , z .Ž .˜ ˜Ž .n n n n jŽn. jŽn.

Hence
Ž1. n ny1 Ž1. Ž1. Ž1. Ž1. Ž1.g z N x s g z N x g z N x , z1 1 1 2 2 2 1

Ž1. Ž1. Ž1. , ny2= ??? g z N x , p x , z ,Ž .ny1 ny1 ny1 ny1

where
Ž1. Ž1. Ž1. , jy1 Ž1. Ž1. , jy1g z N x , p x , z s g z N x , p x , z ,Ž . Ž .j j j j j j j j

Ž1. Ž .and z s z for k / j n , k s 1, . . . , n y 1 andk k

Ž1. Ž1. jŽn.y1g z N x , p x , zŽ .jŽn. jŽn. jŽn. jŽn.

jŽn.y1 ny1s g z N x , p x , z g z N x , p x , z .Ž . Ž .˜jŽn. jŽn. jŽn. jŽn. n n jŽn. jŽn.
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Ž1.Ž ny1.It follows that g z N x is a likelihood function which is cutting on
x Ž1. s x ny1 since the only changed term is the likelihood arising as if from

Ž1. Ž .two conditionally independent observations z s z , z .j jŽn. n
� Ž . 4Now consider the density of X N p X , Z . The argument leading tony1 ny1

Ž . Ž1. Ž1.13 can be applied with n y 1 replacing n, g replaced by g and x by x
to give us that

ny1 ny1˜f x N p x , z s f x N p x , z .Ž . Ž .ny1 ny1 ny1 ny1 ny1

Ž .Since the induced ID is decomposable, we can find an index j n y 1 such
Ž . � Ž .4that p x : x , p x . We can therefore use an argumentny1 jŽny1. jŽny1.

exactly analogous to the one above, replacing x Ž1. by x Ž2. s x ny2 s
Ž . Ž . Ž . Ž1. Ž1. Ž2.x , . . . , x , n y 1 by n y 2 , g by g and g by g , where1 ny2

Ž2. ny1 ny2 Ž2. Ž2. Ž2. Ž2. Ž2. , ny3g z N x s g z N x ??? g z N x , p x , zŽ .1 1 1 ny2 ny2 ny2 ny2

with
Ž2. Ž2. Ž2. , jy1 Ž2. Ž2. , jy1g z N x , p x , z s g z N x , p x , zŽ . Ž .j j j j j j j j

Ž2. Ž1. Ž .and z s z for j / j n y 1 , j s 1, . . . , n y 2. Also,j j

Ž2. Ž2. Ž2. , jŽny1.y1g z N x , p x , zŽ .jŽny1. jŽny1. jŽny1. jŽny1.

Ž1. jŽny1.y1s g z N x , p x , zŽ .jŽny1. jŽny1. jŽny1. jŽny1.

= Ž1. Ž1. Ž2. , jŽny1.g z N p x , zŽ .ny1 ny1 jŽny1.

and we have that

ny2 ny1˜f x N p x , z s f x N p x , z .Ž . Ž .ny2 ny2 ny2 ny2 ny2 ny2

It should now be clear that we can proceed inductively backwards through
k ˜w Ž . x wthe indices k, starting from k s n to prove that f x N p x , z s f x Nk k k k k

kŽ . xp x , z for k s 1, . . . , n. However, since the density of f is uniquelyk
˜determined by the product of f and f by the product of conditional densitiesk

f̃ , k s 1, . . . , n, we have then proved thatk

˜f x N z s f x N z ,Ž . Ž .
p dŽ .that is, a sequential external Bayesianity holds for GG X N Z . I
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