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Abstract
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1 Introduction andmain results
Let (Sn, g) be the standard sphere of dimension n, n ≥  and K be a positive function
on Sn. The classical Nirenberg problem is the following: can one change the originalmetric
g conformally into a new metric g̃ with prescribed scalar curvature equal to K for n ≥
 (prescribed Gaussian curvature for n = ). This problem is equivalent to solving the
following nonlinear elliptic equations:

–�g(u) +  = Keu on S, ()

Lg(u) = Ku
n+
n– on Sn,n≥ , ()

where Lg := –cn�g + Rg be the conformal Laplacian, �g is the Laplace-Beltrami operator,
cn =  n–

n– and Rg is the scalar curvature associated to the metric g .
Recently, several studies have been performed for classical elliptic equations similar to

() and () but with the fractional conformal Laplacians instead of the Laplacian. This op-
erator is introduced first in [] where Graham, Jenne, Mason, and Sparling constructed a
sequence of conformally covariant elliptic operators Pg

k , on Riemannian manifolds (M, g)
for all positive integers k if n is odd, and for k ∈ {, . . . ,n/} if n is even. Moreover, Pg

 is
the well-known conformal Laplacian Lg used in (), and Pg

 is the well-known Paneitz op-
erator. Up to positive constants Pg

 () is the scalar curvature Rg associated to g and Pg
() is

the Q-curvature. Prescribing scalar curvature and Q-curvature problems on Sn was stud-
ied extensively in last years, see for example [–]; see also [–], and the references
therein.
In [], Chang and Gonzalez generalize the above construction, using the works of

Graham-Zworski [] and Caffarelli-Silvestre [] for factional Laplacian on the Euclidean
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space Rn, to define conformally invariant operators Pg
σ of non-integer order σ . These lead

naturally to a fractional-order curvatureRg := Pg
σ (), whichwill be called here σ -curvature.

For the σ -curvatures on general manifolds we refer to [, , ], and references therein.
Corresponding to the Yamabe problem, fractional Yamabe problems for σ -curvatures are
studied in [, ], and [] and fractional Yamabe flows on Sn are studied in [].
In this paper, we restrict our attention to the case σ = 

 . As in the Nirenberg problem
associated to Pg

 and Pg
, the question of prescribing 

 -curvature can be formulated as
a Nirenberg-type problem involving the square root of the Laplacian as follows: given a
positive function K defined on (Sn, g), we ask whether there exists a metric g̃ conformally
equivalent to g such that the 

 -curvature is equal to K . This problem can be expressed as
finding the solution of the following nonlinear equation with critical exponent,

P 

u = cnKu

n+
n– , u > , on Sn, ()

where

P 

=

�(B + )
�(B)

, B =

√
–�g +

(
n – 


)

,

cn = P 

(), � is the gamma function and �g is the Laplace-Beltrami operator on (Sn, g).

The operator P 

can be seen more concretely on Rn using stereographic projection. The

stereographic projection from Sn \N to Rn is the inverse of F : Rn → Sn \N defined by

F(x) =
(

x
 + |x| ,

|x| – 
|x| + 

)
,

where N is the north pole of Sn. Then, for all f ∈ C∞(Sn), we have

(
P 


(f )

) ◦ F =
(


 + |x|

) –(n+)


(–�)/
((


 + |x|

) n+

(f ◦ F)

)
, ()

where (–�)/ is the fractional Laplacian operator (see, e.g., p. of []).
A sufficient condition was found recently in [] for the two dimensional sphere, it is an

Euler-Hopf-type criterium, namely the authors proved the following existence result.

Theorem . [] Let K be a positive function satisfying the following (nd) condition:
(nd): Assume that K is a smooth function on S having only non-degenerate critical

points with

�K(y) �=  whenever ∇K(y) = .

Let

K =
{
y ∈ S,∇K(y) = 

}
and K+ =

{
y ∈K, –�K(y) > 

}
.

If

(R)
∑
y∈K+

(–)–ind(K ,y) �= ,

then () has at least one solution. Here, ind(K , y) is the Morse index of K at y.
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A natural question which arises when looking to the above result is what happens if the
total sum in (R) is equal to , but a partial one is not. Under which condition can one use
this partial sum to derive an existence result?Our aim in the first part of this paper is to give
a partial answer to this question and to prove new existence criterium which generalizes
the index-count formula in (R) and recover the previous existence result obtained in [].
To state our result, we set the following notations. We order the K(y), y ∈K. Without loss
of generality, we assume that the elements of K are y, y, . . . , yl with

K(y) ≥ K(y) ≥ · · · ≥ K(yl).

Let k be an index, ≤ k ≤ l. We say that k ∈ (A) if it satisfies the following:

(A) If there exists an index j > k such that yj ∈K+, we have


K(yj)

>


K(yk)
+


K(y)

.

Now, we are ready to state our first main result.

Theorem . Let K be a positive function on S and satisfying (nd) condition. If

Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣ �= ,

then () has at least one solution.Moreover, for generic K we have

�S ≥ Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣,

where S denotes the set of solutions of ().

Observe that the index l ∈ (A). It follows that the abovementioned result (Theorem .)
is a corollary of our theorem. Actually, we will give in Remark . a situation where The-
orem . does not give a result, while by Theorem ., we derive the existence of many
solutions.
Second, we consider the case n ≥  and K close to a constant, i.e. K of the from K =

Kε =  + εK, where K ∈ C(Sn) and |ε| small. In order to state our result, we need the
following assumption. We say that an integer k ∈ (A) if it satisfies the following:

(A) For any y ∈Kε
+, we have n – ind(Kε , y) �= k + .

We shall prove the following result.

Theorem . Assume that Kε is a Morse function on Sn, n ≥  and satisfying (nd) condi-
tion. If,

Max
k∈(A)

∣∣∣∣ – ∑
y∈Kε

+

n–ind(Kε ,y)≤k

(–)n–ind(Kε ,y)
∣∣∣∣ �= ,

then, for |ε| sufficiently small, there exists a solution to the problem ().
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Observe that n ∈ (A). We therefore have the following corollary.

Corollary . Let Kε be a Morse function with (nd) condition. If

∑
y∈Kε

+

(–)n–ind(Kε ,y) �= ,

then for |ε| sufficiently small, () has at least one solution.

The rest of this paper is organized as follows: we first recall some known facts about
the variational structure of problem () and the associated critical points at infinity. In
Section , we give the proofs of our main results and in Section , we give a more general
result for σ ∈ (, ) and  ≤ n <  + σ .

2 Preliminary results
2.1 The variational structure
First, we recall that u ∈H 

 (Sn) is a solution of () if the identity

∫
Sn
P 


uϕ dx = cn

∫
Sn
Ku

n+
n– ϕ dx, ()

holds for all ϕ ∈H 
 (Sn), where H 

 (Sn) denotes the closure of C∞(Sn) under the norm

‖u‖
H


 (Sn)

=
(∫

Sn
P 


uu

)/

. ()

Observe also that for u ∈ H 
 (Sn), we have un+

n– ∈ L n
n+ (Sn) ↪→ H– 

 (Sn). We associate to
problem (), the functional

I(u) =



∫
Sn
uP 


u –

n – 
n

∫
Sn
Ku

n
n– , ()

defined in H 
 (Sn).

Motivated by the work of Caffarelli and Silvestre [], several authors have considered
an equivalent definition of the operator P 


by means of an auxiliary variable; see []

(see also [–], and []). In fact, we realize problem (), through a localization method
introduced by Caffarelli and Silvestre on the Euclidean spaceRn, through which () is con-
nected to a degenerate elliptic differential equation in one dimension higher by a Dirichlet
to Neumann map. This provides a good variational structure to the problem. By studying
this problem with classical local techniques, we establish existence of positive solutions.
Here the Sobolev trace embedding comes into play, and its critical exponent ∗ = n

n– .
Namely, let Dn = Sn × [,∞). Given u ∈ H 

 (Sn), we define its harmonic extension U =
Eσ (u) to Dn as the solution to the problem

{
–�U =  in Dn,
U = u on Sn × {t = }. ()

http://www.boundaryvalueproblems.com/content/2014/1/187
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The extension belongs to the space H(Dn) defined as the completion of C∞(Dn) with
the norm

‖U‖H(Dn) =
(∫

Dn

|∇U| dxdt
)/

. ()

Observe that this extension is an isometry in the sense that

‖U‖H(Dn) = ‖u‖
H


 (Sn)

, ∀u ∈H


(
Sn

)
. ()

Moreover, for any ϕ ∈H(Dn), we have the following trace inequality:

‖ϕ‖H(Dn) ≥
∥∥ϕ(·, )∥∥

H

 (Sn)

. ()

The relevance of the extension function U = Eσ (u) is that it is related to the fractional
Laplacian of the original function u through the formula

– lim
t→+

∂U
∂t

(x, t) = P 

u(x). ()

Thus, we can reformulate () as follows:

{
–�U(x, t) =  and U >  in Dn,
– limt→+

∂U
∂t (x, t) = KU

n+
n– (x, ) on Sn × {}. ()

The functional associated to () is given by

I(U) =



∫
Dn

|∇U| dxdt – n – 
n

∫
Sn
KU

n
n– dx, ()

defined in H(Dn).
Notice that critical points of I in H(Dn) correspond to critical points of I in H 

 (Sn).
That is, if U = Eσ (u) satisfies (), then u will be a solution of problem ().
Let also define the functional

J(U) =
‖U‖H(Dn)

(
∫
Sn KU

n
n– dx) n–n

, ()

defined on 
 the unit sphere of H(Dn). We set, 
+ = {U ∈ 
/U ≥ }. Problem () will
be reduced to finding the critical points of J subjected to the constraint U ∈ 
+. The ex-
ponent n

n– is critical for the Sobolev trace embedding H(Dn) → Lq(Sn). This embedding
being continuous and not compact, the functional J does not satisfy the Palais-Smale con-
dition, which leads to the failure of the standard critical point theory. This means that
there exist sequences along which J is bounded, its gradient goes to zero and which do not
converge. The analysis of sequences failing PS condition can be analyzed along the ideas
introduced in [] and []. In order to describe such a characterization in our case, we
need to introduce some notations.

http://www.boundaryvalueproblems.com/content/2014/1/187
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For a ∈ ∂Rn+
+ and λ > , define the function:

δ̃a,λ(x) = c̄
λ

n–


(( + λxn+) + λ|x′ – a′|) n–
,

where x ∈ Rn+
+ , and c̄ is chosen such that δ̃a,λ satisfies the following equation:

{
�U =  and U >  in Rn+

+ ,
– ∂U

∂xn+
=U n+

n– on ∂Rn+
+ .

Set

δa,λ = i–(δ̃a,λ),

where i is an isometry fromH(Dn) toD,(Rn+
+ ); the completion ofC∞

c (Rn+
+ ), with respect

to the Dirichlet norm.
For ε >  and p ∈N∗, we define

V (p, ε) =

⎧⎪⎨
⎪⎩
U ∈ 
 s.t. ∃a, . . . ,ap ∈ Sn,∃α, . . . ,αp >  and
∃λ, . . . ,λp > ε– with ‖U –

∑p
i= αiδai ,λi‖ < ε, εij < ε,∀i �= j, and

|J(U) n
n– α


n–
i K(ai) – | < ε,∀i, j = , . . . ,p,

where

εij =
(

λi

λj
+

λj

λi
+ λiλj|ai – aj|

) –n

.

If U is a function in V (p, ε), one can find an optimal representation, following the ideas
introduced in [], namely we have:

Lemma . For any p ∈ N∗, there is εp >  such that if ε ≤ εp and U ∈ V (p, ε), then the
minimization problem

min

{∥∥∥∥∥U –
p∑
i=

αiδ(ai ,λi)

∥∥∥∥∥,αi > ,λi > ,ai ∈ Sn
}
,

has a unique solution (ᾱ, λ̄, ā). Thus, we can write U as follows:

U =
p∑
i=

αiδ(ai ,λi) + v,

where v belongs to H(Dn) and satisfies the following condition:

(V): 〈v,ϕi〉 =  for i = , . . . ,p, and ϕi = δi, ∂δi/∂λi, ∂δi/∂ai, where δi = δai ,λi and 〈·, ·〉 denote
the scalar product defined on H(Dn) by

〈U ,V 〉 =
∫
Dn

∇U∇V dxdt.

http://www.boundaryvalueproblems.com/content/2014/1/187
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The failure of the Palais-Smale condition can be characterized taking into account the
uniqueness result of the corresponding problem at infinity; see e.g. Li-Zhu [] following
the ideas introduced in [, ] as follows.

Proposition . Assume that () has no solution and let (Uk) ⊂ 
+ be a sequence sat-
isfying J(Uk) → c, a positive number and ∂J(Uk) → . Then there exist an integer p ≥ ,
a positive sequence (εk)k (εk → ) and an extracted subsequence of (Uk), again denoted Uk

such that Uk ∈ V (p, εk).

Following Bahri [, ], we set the following definition and notation.

Definition . A critical point at infinity of J on 
+ is a limit of a flow line U(s) of the
equation:{

∂U
∂s = –J(U),
U() =U,

such that U(s) remains in V (p, ε(s)) for s ≥ s.
Using Lemma ., U(s) can be written as

U(s) =
p∑
i=

αi(s)δ(ai(s),λi(s)) + v(s).

Denoting ai := lims→∞ ai(s) and αi = lims→∞ αi(s), we denote by

(a, . . . ,ap)∞ or
p∑
i=

αiδ(ai ,∞)

such a critical point at infinity.

The following propositions characterize the critical points at infinity of the associated
variational problem.

Proposition . Assume that n = . Under the (nd) condition, the only critical points at
infinity of the functional J are:

(y)∞ :=


K(y) 
δ̃(y,∞), y ∈K+.

Such a critical point at infinity has a Morse index equal to i(y)∞ :=  – ind(K , y). Its level is
c∞(y) := S̃ 

K (y)


, where S̃ is the best constant of Sobolev.

Proof See Corollary . of []. �

Arguing as in [], we have the following.

Proposition . Assume that n ≥  and assume that J has no critical point in 
+. Then
the only critical points at infinity of J in V (, ε) are

(y)∞ :=


K(y) n–n
δ̃(y,∞), y ∈K+.

http://www.boundaryvalueproblems.com/content/2014/1/187
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TheMorse index of (y)∞ is equal to i(y)∞ := n– ind(K , y). Its level is c∞(y) := S̃n 
K (y)

n–
n
.Here

S̃n is the best constant of Sobolev.

2.2 The unstable manifolds of critical points at infinity
At the beginning of this subsection, we give some basic definitions with will allow us to
describe the unstable manifolds of the critical points at infinity in V (, ε).

Definition . Let K : Sn → R be a C Morse function and let K the set of critical points
of K . If y ∈ K, let Ws(y) designate its stable manifold and Wu(y) designate its unstable
manifold. We have

dimWu(y) = ind(K , y) and dimWs(y) = n – ind(K , y).

It is convenient to specify that the notations of stable or unstable manifolds, of flow
lines, all are relative to the C vector field (–∂K), with respect to the standard Riemannian
structure on Sn. Recall the following generic hypothesis:
All stable and unstable manifolds intersect transversely and all such intersections are

smooth regularly embedded submanifolds of Sn.

Definition . Let y, z ∈K. z is said to be dominated by y, if

Wu(y)∩Ws(z) �= ∅,

then there exists (at least) a flow line of (–∂K) descending from y to z. Using the dimension
argument and the fact that both of Wu(y) and Ws(z) are invariant under the action of the
flow generated by (–∂K), it is easy to see that

ifWu(y)∩Ws(z) �= ∅, then ind(K , y) ≥ ind(K , z) + . ()

Definition . Let y ∈ K+ = {y ∈ K, –�K(y) > }. In V (, ε), the unstable manifold at in-
finity W∞

u (y)∞ for the critical point at infinity (y)∞, along the flow lines of –∂J is defined
and identified by the unstable manifold W̃u(y) of the critical point y of the function 

K ,
along the flow lines of –∂( 

K ) multiplied by a factor corresponding to the concentration λ.
Precisely in V (, ε), theW∞

u (y)∞ have the following description:

W∞
u (y)∞ ∩V (, ε) =

{

S̃n

δ̃(a,λ),a ∈ W̃u(y)
}
,

where λ is a fixed constant large enough.

Remark . Observe that W̃u(y) correspond to Ws(y), the stable manifold of the critical
point y along the flow lines of (–∂K). Therefore it is easy to see that ifW∞

u (y)∞ ⊂ V (, ε),
thenW∞

u (y)∞ behaves asWs(y).

The following lemma gives a sufficient condition to ensure that W∞
u (y)∞ is included in

V (, ε).

http://www.boundaryvalueproblems.com/content/2014/1/187
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Lemma . Let y ∈K+. If

Ws(y)∩Wu(z) = ∅,∀z ∈K \K+, then W∞
u (y)∞ diffeomorphic to Ws(y).

Proof It follows from []. The idea is that a flow line in W∞
u (y)∞ cannot go out from

V (, ε) unless the concentration point a(s) of the flow line nearby a critical point z of K
with –�K(z) <  (see proof of Proposition . of []), therefore it is the case when the
critical point y is dominated by z ∈K \K+. Hence under the condition of the lemma such
a situation cannot occur, it follows that every flow line inW∞

u (y)∞ is indeed in V (, ε) and
we then conclude to the result of the lemma using Remark .. �

3 Proof of results
This section is devoted to the proofs of the main results of this paper. Our proofs uses
algebraic topological arguments and the tools of the theory of critical points at infinity;
see []. In our case, the space of variation is contractible and has no topology. However,
due to the non-compactness of the problem, there are critical points at infinity whose
topological contribution can be computed; see []. The main idea is to use the difference
of topology of the critical points at infinity between the level sets of the associated Euler-
Lagrange functional J , and the main issue is under our conditions on K , there remains
some difference of topology which is not due to the critical points at infinity but due to
the existence of solution of ().

3.1 Proof of Theorem 1.2
We denote by y, y, . . . , yl the elements of K. We order the K(yi)’s, yi ∈K. Without loss of
generality, we assume that

K(y) ≥ K(y) ≥ · · · ≥ K(yl).

Recall that, see Proposition ., the critical points at infinity are in one to one correspon-
dence with the elements yi of the sets K+. Like a usual critical point, it is associated to a
critical point at infinity (yi)∞, stable and unstable manifolds,W∞

s (yi)∞ andW∞
u (yi)∞. Let

 ≤ k ≤ l be an index such that

Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣

is achieved. Let

c =


K(y)
+


K(yk )

.

Since k satisfies (A), we can find ε >  satisfying the following:
For any j > k such that yj ∈K+, we have

c∞(yj) =


K(yj)
> c + ε.

http://www.boundaryvalueproblems.com/content/2014/1/187
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Therefore the only critical points at infinity under the level c + ε are:

(yj)∞, yj ∈K+ such that  ≤ j ≤ k.

Let

X∞
k :=

⋃
yj∈K+,≤j≤k

W∞
u (yj)∞.

Given c ∈ R, we set

Jc :=
{
u ∈ 
+, J(u) ≤ c

}
.

We claim that

X∞
k is contractible in Jc+ε . ()

Indeed, let

Xk :=
⋃

yj∈K+,≤j≤k

Ws(yj),

where Ws(yj) is the stable manifold of yj along the flow lines of (–∂K). Observe that for
any y ∈K+, we have ind(K , y) =  or , thus from (), y cannot be dominated through the
flow lines of (–∂K) only by critical points y′ of K such that ind(K , y′) = , thus it satisfies
–�K(y′) > . Therefore we obtain

Ws(y)∩Wu(z) = ∅, ∀z ∈K \K+.

Using now Lemma ., we derive that

X∞
k is diffeomorphic to Xk .

More precisely,

X∞
k =

{

S̃

δ̃(x,λ),x ∈ Xk

}
,

where λ is a fixed constant large enough and S̃ is the best constant of Sobolev.
Now, let

U : [, ]×X∞
k → 
+,

(
t,


S̃

δ̃(x,λ)

)
→

t
H(y)

δ̃(y,λ) +
(–t)
K (x) δ̃(x,λ)

‖ t
K (y)

δ̃(y,λ) +
(–t)
K (x) δ̃(x,λ)‖

,

U is continuous and satisfiesU(, 
S̃

δ̃(x,λ)) = 
S̃

δ̃(x,λ) ∈ X∞
k , andU(, δ̃(x,λ)) = 

S̃
δ̃(y,λ), a fixed

point of X∞
k . Furthermore, arguing as in [], we derive that

J
(
U

(
t,


S̃

δ̃(x,λ)

))
≤ S̃

(


K(y)
+


K(x)

) 
 (
 + o(x,λ)

)

http://www.boundaryvalueproblems.com/content/2014/1/187
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for each (t, 
S̃

δ̃(x,λ)) ∈ [, ] × X∞
k . Here o(x,λ) tends to zero when λ tends to +∞. Taking

λ large enough, since ∀x ∈ Xk we have K(x)≥ K(yk ), we get

J
(
U

(
t,


S̃

δ̃(x,λ)

))
≤ c + ε, ∀

(
t,


S̃

δ̃(x,λ)

)
∈ [, ]×X∞

k .

Therefore the contractionU is performedunder the level c +ε andX∞
k is then contractible

in Jc+ε . Hence claim () follows. Let

θ
(
X∞
k

)
:=U

(
[, ]×X∞

k

)
.

Now, we use the gradient flow of (–∂J) to deform θ (X∞
k ). Since θ (X∞

k ) ⊂ Jc+ε and the only
critical points at infinity of J in Jc+ε are (yj)∞,  ≤ j ≤ k, by using a deformation lemma,
see Proposition . and Theorem . of [], we get

θ
(
X∞
k

) � X∞
k ∪

⋃
w<θ (X∞

k
)

Wu(w), ()

where w is a solution of () dominated by θ (X∞
k ). Here � denotes retracts by deformation.

Now observe that it follows from the above deformation retract that problem () has
necessarily a solution. Otherwise it follows from () that

θ
(
X∞
k

) � X∞
k . ()

LetM be a cw complex in dimension k, it is well known (see []) that the Euler-Poincaré
characteristic ofM, χ (M) is given by the following:

χ (M) =
k∑

r=

(–)rn(r), ()

where n(r) is the number of cells of dimension r in M. We apply this to our situation. By
construction X∞

k is a finite cw complex, where the cells of dimension an integer r in X∞
k

are given by the unstablemanifolds of the critical points at infinity (y)∞ such that i(y)∞ = r.
According to (), we derive that

χ
(
X∞
k

)
=

∑
yj∈K+,≤j≤k

(–)i(yj)∞ .

From another part, it is easy to see that χ (θ (X∞
k )) = , since θ (X∞

k ) is a contractible set.
Thus, we derive from (), taking the Euler characteristic of both sides that

 =
∑

yj∈K+,≤j≤k

(–)i(yj)∞ .

Such an equality contradicts the assumption of Theorem ..
Now, for generic K , it follows from the Sard-Smale theorem that all solutions of () are

non-degenerate solutions; see []. We apply the Euler-Poincaré characteristic argument,

http://www.boundaryvalueproblems.com/content/2014/1/187
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we derive from () that

 =
∑

yj∈K+,≤j≤k

(–)i(yj)∞ +
∑

w<θ (X∞
k

)

(–)i(w),

where i(w) denotes the Morse index of the solution w. It follows then that
∣∣∣∣ – ∑

yj∈K+,≤j≤k

(–)i(yj)∞
∣∣∣∣ ≤ �S,

where S denotes the set of solutions of ().

Remark . Here, we want to consider some situation where the result of [] does not
give solution to problem (), but using Theorem . we derive that problem () admits
a solution. For this, let K : S → R be a C positive Morse function satisfying the (nd)
condition such thatK+ is reduced to  points y, y and y withK(y)≥ K(y) ≥ K(y). y is
the absolute maximum of K , so ind(K , y) = . Assume also that ind(K , y) �= ind(K , y) ∈
{, } and


K(y)

>


K(y)
+


K(y)

.

It is easy to see that

∑
y∈K+

(–)ind(K ,y) = .

However, we have

Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣

=
∣∣∣∣ – ∑

yj∈K+

≤j≤

(–)ind(K ,yj)
∣∣∣∣ �= ,

so by Theorem . we derive the existence of a solution of problem ().

3.2 Proof of Theorem 1.3
Let ε ∈ R, Kε =  + εK and Jε be the associated variational problem. So, for u ∈ 
+, we
have

Jε(u) =
‖ u ‖

(
∫
Sn Kε|u| n

n– dσg )
n–
n
.

Let us observe that in the case of the unit ball, in view of uniqueness result of Li and Zhu
[], a solution of () cannot be achieved as a minimum of Jε , unless for ε = . In this case,
the functional J possesses a n-dimensional manifold Z of critical points, given by

Z =
{
δ̃(a,λ),a ∈ Sn,λ > 

}
.
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Let S̃n be the best constant of Sobolev associated to the Sobolev trace embedding
H(Sn) ↪→ L n

n– (Sn), it is easy to see that for every δ̃(a,λ) ∈ Z, we have

J(δ̃(a,λ)) = S̃n = inf
u∈
+

J(u).

Given a,b ∈ R, we set

Jaε =
{
u ∈ 
+, Jε(u) ≤ a

}

and

Jaεb =
{
u ∈ 
+,b ≤ Jε(u) ≤ a

}
.

We have the following lemma.

Lemma . Let η > , for |ε| sufficiently small, we have

JS̃n+η
ε ⊂ J S̃n+η ⊂ J S̃n+ηε .

Proof Let u ∈ 
+, we have

Jε(u) =


(
∫
Sn |u| n

n– dx + ε
∫
Sn K|u| n

n– dx) n–n

= J(u)


( + ε(
∫
Sn |u| n

n– dx)–
∫
Sn K|u| n

n– dx) n–n
.

Using the fact that K is bounded on Sn, we derive that

Jε(u) = J(u)
(
 +O(ε)

)
,

where O(ε) is independent of u, tends to zero when ε tends to zero. Hence the lemma
follows. �

Now let (y, . . . , yq)∞ a critical point at infinity of q-masses. It is easy to see that the level
of Jε at (y, . . . , yq)∞ goes to q̃Sn, when ε tends to zero. Since

cε∞(y, . . . , yq)∞ = S̃n

( q∑
i=


Kε(yi)

n–


) 
n

.

Now, let η = S̃n
 , we can therefore assume that |ε| is so small that all the critical points at

infinity of Jε of two masses or more are above the level S̃n + η, and the critical points at
infinity of one mass are below S̃n + η. Therefore,

the functional Jε has no critical points at infinity in J S̃n+η
ε(̃Sn+η). ()

http://www.boundaryvalueproblems.com/content/2014/1/187
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Arguing by contradiction and assume that () has no solution. It follows from () that

J S̃n+ηε � J S̃n+η
ε , ()

where � denotes retracts by deformation. Using Lemma ., we derive that

J S̃n+η � J S̃n+η
ε . ()

Now we claim that

J S̃n+η
ε is a contractible set. ()

Indeed, from (), it is sufficient to prove that J S̃n+η contractible set.
Let uo ∈ J S̃n+η , we solve

{
∂u
∂s = –∂J(u),
u() = uo.

Let u(s,u) be the solution for s > . Using the results of [], concerning the Yamabe func-
tional on Sn, which is similar to our function J, we know that the Palais-Smale condition
is satisfied for the above differential equation, up to s = +∞. When s tends to +∞, u(s,u)
converges to a single mass in Z, thus

J S̃n+η � Z.

We drive then that J S̃n+η is contractible since Z is a contractible set. Hence our claim
follows.
Now let k be the integer where the

max
k∈(A)

∣∣∣∣ – ∑
y∈K+,i(y)∞≤k

(–)i(y)∞
∣∣∣∣

is achieved. Here i(y)∞ = n –  – ind(K , y) is the Morse index of (y)∞. Let

X∞
k =

⋃
y∈K+,i(y)∞≤k

W∞
u (y)∞. ()

X∞
k is a stratified set of dimension at most k in J S̃n+η

ε , without loss of generality we can
assume that X∞

k is of dimension k. Observe that X∞
k is contractible in J S̃n+η

ε , since J S̃n+η
ε is

a contractible set. More precisely there exists

h : [, ]×X∞
k → J S̃n+η

ε ,

(t,u) → h(t,u),
()

where h(,u) = u, h is continuous and h(,u) = ũ a fixed point in J S̃n+η
ε .

Let θ (X∞
k ) = h([, ] × X∞

k ). θ (X∞
k ) is a contractible stratified set of dimension k + .

Now, we use the gradient flow of (–∂J) to deform θ (X∞
k ). By transversally arguments we
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can assume that the deformation avoids all critical points at infinity having their Morse
indices greater or equal to k + . Using the fact that θ (X∞

k )⊂ J S̃n+η
ε , we get

θ
(
X∞
k

) �
⋃

y∈K+,i(y)∞≤k+

W∞
u (y)∞.

Since k satisfying (A), there are no critical point at infinity (y)∞, y ∈ K+ of index k + ,
we therefore have

θ
(
X∞
k

) � X∞
k . ()

Thus, we derive from (), taking the Euler characteristic of both sides that

 =
∑

y∈K+,i(y)∞≤k

(–)i(y)∞ .

Such equality contradicts the assumption of Theorem .. This completes the proof of
Theorem ..

4 A general existence result
In the last part of this paper, we give a generalization of Theorem .. Namely instead of
assuming that σ = 

 and n = , we assume that σ ∈ (, ) and  ≤ n < +σ . Following the
same scheme as Theorem ., we state here an existence result to the following problem:

Pσu = cn,σKu
n+σ
n–σ , u > , on Sn, ()

where

Pσ =
�(B + 

 + σ )
�(B + 

 – σ )
, B =

√
–�g +

(
n – 


)

,

cn,σ = Pσ (), � is the gamma function and �g is the Laplace-Beltrami operator on (Sn, g).
We are now ready to state the following existence result.

Theorem . Let K ∈ C(Sn), be a positive function satisfying (nd) condition with  ≤ n <
 + σ and σ ∈ (, ). If

Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣ �= ,

then () has at least one solution. Here, K+ = {y ∈ Sn,∇K(y) = ,–�K(y) > }. Moreover,
for generic K we have

�S ≥ Max
k∈(A)

∣∣∣∣ – ∑
yj∈K+

≤j≤k

(–)ind(K ,yj)
∣∣∣∣,

where S denotes the set of solutions of ().
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Proof The proof goes along with the proof of Theorem ., therefore we will only sketch
the differences. Keeping the notation of the proof of Theorem . and regarding the expan-
sion of the functional J , we observe that the strong interaction of the bubbles in dimensions
n <  + σ forces all blow up points to be single. Thus, the only critical points at infinity
associated to problem () correspond to

(y)∞ :=


K(y) n–σn
δ(y,∞), y ∈K+.

The Morse index of such critical point at infinity (y)∞ is: i(y)∞ = n – ind(K , y). Now the
remainder of the proof is identical to the proof of Theorem .. �
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