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1 Introduction
Consider the Dirichlet problem

−y′′ + q(x)y = λρ(x)y 0 ≤ x ≤ π (1:1)

y(0) = 0, y(π) = 0 (1:2)

where q(x) is a non-negative real function belonging to L1[0, π], l is a spectral para-

meter, and r(x) is of the form

ρ(x) =
{

1; 0 ≤ x ≤ a < π

−1; a < x ≤ π .
(1:3)

In [1], the author studied the asymptotic formulas of the eigenvalues, and eigenfunc-

tions of problem (1.1)-(1.2) and proved that the eigenfunctions are orthogonal with

weight function r(x). In [2], the author also studied the eigenfunction expansion of the

problem(1.1)-(1.2). The calculation of the trace formula for the eigenvalues of the pro-

blem(1.1)-(1.2) is to appear. We mention here the basic definition and results from [1]

that are needed in the progress of this work. Let �(x, l), ψ(x, l) be the solutions of the

problem (1.1)-(1.2) with the boundary conditions � (0, l) = 0, �’(0, l) = 1, ψ(π, l) = 0,

ψ’(π, l) = 1 and let W(l) = �(x, l)ψ’(x, l) - ψ(x, l)�’(x, l) be the Wronskian of the

two linearly independent solutions �(x, l), ψ(x, l). It is known that W is independent
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of x so that for x = a let W(l) = Ψ(l), the eigenvalues of (1.1)-(1.2) coincide with the

roots of the equation Ψ(l) = 0, which are simple. It is easy to see that the roots of

Ψ(l) = 0 are simple. The function

R (x, ξ ,λ) =
1

�(λ)

{
ϕ(x,λ)ψ(ξ ,λ) , x ≤ ξ

ϕ(x,λ)ψ(x,λ) , ξ ≤ x
(1:4)

is called the Green’s function of the Dirichlet problem (1.1)-(1.2). This function satis-

fies for l = lk the relation

R (x, ξ ,λ) =
1

λ − λk

ϕ(x,λk)ψ(x,λk)
ak

+ R1(x, ξ ,λ) (1:5)

where lk are the eigenvalues of the Dirichlet problem (1.1)-(1.2) and ak ≠ 0, where

ak =
∫ π

0 ρ(x)ϕ2(x,λ)dx are the normalization numbers of the eigenfunctions of the

same problem (1.1)-(1.2). We consider now the Dirichlet problem (1.1)-(1.2) in the

simple form of q(x) ≡ 0. For q(x) = 0, the Dirichlet problem (1.1)-(1.2) takes the form

−y′′ = λρ(x)y 0 ≤ x ≤ π

y(0) = 0, y(π) = 0.
(1:6)

Let the eigenfunctions of the problem (1.6) be characterized by the index “o,” i.e., �o
(x, l) and ψo(x, l) are the solutions of the problem (1.6) in cases of r(x) = 1 and r(x)
= -1, respectively, where

ϕo(x,λ) = sin sx
s 0 ≤ x ≤ π

ψo(x,λ) =
sinh s(π−x)

s a ≤ x ≤ π
(1:7)

From (1.7), we notice that �o(x, l) ψo(x, l) are defined on parts of the interval [0, π],

and these formulas must be extended to all intervals [0, π] to enable us to study the

Green’s function R(x, ξ, l) in case of q(x) ≡ 0. The following lemma study this

extension

Lemma 1.1 The solutions �o(x, l) and ψo(x, l) have the following asymptotic formu-

las

ϕo(x,λ) =
{ sin sx

s ; 0 ≤ x ≤ a
− sin sa

s cosh s(x − a) − cos sa
s sinh s(x − a); a < x ≤ π .

(1:8)

ϕo(x,λ) =

{
− sinh s(π−a)

s cos s(x − a−) cosh s(π−a)
s sin s(x − a); 0 ≤ x ≤ a

sinh s(π−x)
s ; a < x ≤ π .

(1:9)

Proof: The fundamental system of solutions of the equation -y″ = s2y, (0 ≤ x ≤ a) is

y1(x, s) = sin sx, y2(x, s) = cos sx. Similarly, the fundamental system of the equation y″

= s2y, (a <x ≤ π) is z1(x, s) = sinh s(π - x), z2(x, s) = cosh s(π - x). So that the solutions

�o(x, l) and ψo(x, l), over [0, π], can be written in the forms

ϕo(x,λ) =
{ sin sa

s ; 0 ≤ x ≤ a
c1z1(x, s) + czz2(x, s); a < x ≤ π .

(1:10)
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ϕo(x,λ) =
{
c3y1(x, s) + c4z2(x, s); 0 ≤ x ≤ a
sinh s(π−x)

s ; a < x ≤ π .
(1:11)

The constants ci,i = 1, 2, 3, 4 are calculated from the continuity of �o(x, l) and ψo(x,

l) together with their first derivatives at the point x = a, from which it can be easily

seen that

c1 = − sin sa
s sinh s(π − a) − cos sa

s cosh s(π − a)

c2 = sin sa
s cosh s(π − a) + cos sa

s sinh s(π − a),
(1:12)

Substituting (1.12) into (1.10), we get (1.8). In a similar way, we calculate the con-

stants c3, c4 where

c3 = sinh s(π−a)
s sin sa − cosh s(π−a)

s cos sa

c4 = sinh s(π−a)
s cos sa − cosh s(π−a)

s sin sa.
(1:13)

Substituting (1.12) and (1.13) into (1.10) and (1.11), respectively, we get the required

relations (1.8) and (1.9)

2 The function R(x, ξ, l) and the equiconvergence
The Green’s function plays an important role in studying the equiconvergence theo-

rem, so that, in addition to R(x, ξ, l), we must study the corresponding Green’s func-

tion for q(x) ≡ 0. Let Ro(x, ξ, l) be the Green’s function of problem (1.6), which is

defined by

Ro(x, ξ ,λ) =
−1

�o(λ)

{
ϕo(x,λ)ψo(ξ ,λ)x ≤ ξ

ϕo(ξ ,λ)ψo(x,λ)ξ ≤ x.
(2:1)

where the function

�o(λ) =
− sin sa

s
cosh s(π − a) − cos sa

s
sinh s(π − a) (2:2)

satisfies the following inequality on Γn, which is defined by (2.21)

∣∣�o(λ)
∣∣ ≥ C

e|Im s|a+|Re s|(π−a)

|s| . (2:3)

Following [2], we state some basic asymptotic relations that are useful in the discus-

sion. The solutions �(x, l) and ψ(x, l) of the Dirichlet problem (1.1)-(1.2) have the fol-

lowing asymptotic formula

ϕ(x,λ) =

⎧⎪⎪⎨
⎪⎪⎩

sin sx
s +O

(
e|Im s|x

|s2|
)
; 0 ≤ x ≤ a

β(x)
sβ(a)

[
sin sa cosh s(a − x) − cos sa sinh s(a − x)

]
+O

(
e|Im s|a+|Re s|(a−x)

|s2|
)
, a < x ≤ π .

(2:4)

ψ(x,λ) =

⎧⎪⎪⎨
⎪⎪⎩

α(x)
s α(a) [cos s(x − a) sinh s(π − a) − sin s(x − a) cosh s(π − a)]

+O
(
e|Im s|(x−a)+|Re s|(x−a)

|s2|
)
, 0 ≤ x ≤ a

sinh s(π−x)
s +O

(
e|Re s|(π−a)

|s2|
)
; a ≤ x ≤ π .

(2:5)
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where

α(x) =
1
2

x∫
0

q(t)dt, β(x) =
1
2

x∫
0

q(t)dt, λ = s2. (2:6)

As we introduce in (1.4), the function R(x, ξ, l) is the Green’s function of the pro-

blem (1.1)-(1.2), and Ro(x, ξ, l) is the corresponding Green’s function of the problem

(1.6). In the following lemma, we prove an important asymptotic relation for the

Green’s function

Lemma 2.2 For q(x) Î L1(0, π) and by the help of the asymptotic formulas (2.4), (2.5)

for �(x, l) and ψ(x, l), respectively, the Green’s function R(x, ξ, l) satisfies the relation

R (x, ξ ,λ) = Ro (x, ξ ,λ) + r (x, ξ ,λ) (2:7)

where r(x, ξ, l), l Î Γn, n ® ∞, satisfies

r(x, ξ ,λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

©
(
e−|Im s||x−ξ |

|s2|
)
, x, ξ ∈ [0, a]

©
(
e−|Re s||x−ξ |

|s2|
)
, x, ξ ∈ [a,π]

©
(
e−|Im s|(x−a)−|Re s|(a−ξ )

|s2|
)
, 0 ≤ x ≤ a < ξ ≤ π

©
(
e−|Im s|(ξ−a)−|Re s|(a−ξ )

|s2|
)
, 0 ≤ ξ ≤ a < x ≤ π

(2:8)

Proof: From (2.4) and (2.5), the function

�(λ) = ϕ(a,λ)ψ ′(a,λ) − ϕ′(a,λ)ψ(a,λ)

takes the form

�(λ) = �o(λ) + ©
(
e|Im s|a+|Re s|(π−a)

|s2|
)
, (2:9)

or

�(λ) = �o(λ)
[
1 + ©

(
1
|s|

)]
. (2:10)

The function Ψo(l) is given by (2.2). for x ≤ ξ, we discuss three possible cases:

(i) 0 ≤ x ≤ ξ ≤ a (ii) a ≤ x ≤ ξ ≤ π (iii) 0 ≤ x ≤ a ≤ ξ ≤ π.

The case (i) 0 ≤ x ≤ ξ ≤ a

From (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) = 1
�(λ)ϕ(x,λ)ψ(ξ ,λ)

= 1
�(λ)

[
ϕo (x,λ)ψo(ξ ,λ) + ©

(
e|Im s|(a−ξ )+|Re s|(π−a)

|s|3
)]

.

Using (2.9), (2.10), and (2.3), we have

R(x, ξ ,λ) = 1
�o(λ)

[
ϕo(x,λ)ψo(ξ ,λ) + ©

(
e|Im s|(x−ξ )

|s|2
)]

.

So that from (2.1), for 0 ≤ x ≤ ξ ≤ a, we have

R (x, ξ ,λ) = Ro (x, ξ ,λ) + ©
(
e|Im s|(x−ξ )

|s|2
)

(2:11)

The case (ii) a ≤ x ≤ ξ ≤ π.

El-Raheem and Nasser Boundary Value Problems 2011, 2011:45
http://www.boundaryvalueproblems.com/content/2011/1/45

Page 4 of 11



Again, from (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) = 1
�(λ)ϕ(x,λ)ψ(ξ ,λ)

= 1
�(λ)

[
ϕo(x,λ)ψo(ξ ,λ) + ©

(
e|Im s|a+|Re s|(π−a+x−ξ )

|s|3
)]

Using (2.9), (2.10), and (2.3), we have

R(x, ξ ,λ) = 1
�o(λ)

[
ϕo(x,λ)ψo(ξ ,λ) + ©

(
e|Re s|(x−ξ )

|s|2
)]

So that from (2.1), for a ≤ x ≤ ξ ≤ π, we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e|Re s|(x−ξ )

|s|2
)

(2:12)

The case (iii) 0 ≤ x ≤ a ≤ ξ ≤ π.

From (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) = 1
�(λ)ϕ(x,λ)�(ξ ,λ)

= 1
�(λ)

[
ϕo(x,λ)ψo(x,λ)ψo(ξ ,λ) + ©

(
e|Im s|x+|Re s|(π−ξ )

|s|3
)]

Using (2.9), (2.10), and (2.3), we have

R(x, ξ ,λ) =
1

ψo(λ)

[
ϕo(x,λ)ψo(ξ ,λ) + ©

(
e|Im s|(x−a)+|Re s|(a−ξ)

|s|2
)]

.

So that from (2.1), for a ≤ x ≤ ξ ≤ π, we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e|Im s|(x−a)+|Re s|(a−ξ)

|s|2
)

(2:13)

The asymptotic formulas of R(x, ξ, l) in case of ξ ≤ x remains to be evaluated and

this, in turn, consists of three cases

(i*) 0 ≤ ξ ≤ x ≤ a (ii*) a ≤ ξ ≤ x ≤ π (iii*) 0 ≤ ξ ≤ a ≤ x ≤ π.

The case (i*) 0 ≤ ξ ≤ x ≤ a from (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) = 1
�(λ)ϕ(ξ ,λ)�(x,λ)

= 1
�(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Im s|(a−ξ−x)+|Re s|(π−a)

|s|3
)]

Using (2.9), (2.10), and (2.3), we have

R(x, ξ ,λ) =
1

ψo(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Im s|(ξ−x)

|s|2
)]

So that from (2.1), for a ≤ ξ ≤ x ≤ a, we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e|Im s|(ξ−x)

|s|2
)

(2:14)
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The case (ii*) a ≤ ξ ≤ x ≤ π from (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) =
1

ψ(λ)
ϕ(ξ ,λ)ψ(x,λ)

=
1

ψ(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Im s|a+|Re s|(π−x+ξ−a)

|s|3
)]

Using (2.9), (2.10), and (2.3), we have

R (x, ξ ,λ) =
1

�o(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Re s|(ξ−x)

|s|2
)]

So that from (2.1), for a ≤ ξ ≤ x ≤ π, we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e|Re s|(ξ−x)

|s|2
)

(2:15)

The case (iii*) 0 ≤ ξ ≤ x ≤ a ≤ x ≤ π from (1.4) and using (2.4) and (2.5), we have

R(x, ξ ,λ) =
1

ψ(λ)
ϕ(ξ ,λ)ψ(x,λ)

=
1

ψ(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Im s|ξ+|Re s|(π−x)

|s|3
)]

Using (2.9), (2.10), and (2.3), we have

R(x, ξ ,λ) =
1

ψo(λ)

[
ϕo(ξ ,λ)ψo(x,λ) + ©

(
e|Im s|(ξ−a)+|Re s|(a−x)

|s|2
)]

So that from (2.1), for a ≤ ξ ≤ x ≤ a, we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e|Im s|(ξ−a)+|Re s|(a−x)

|s|2
)

(2:16)

Now from (2.11) and (2.14), we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e−|Im s|(x−ξ)

|s|2
)
, x, ξ ∈ [0, a] (2:17)

also, from (2.12) and (2.15), we have

R(x, ξ ,λ) = Ro(x, ξ ,λ) + ©
(
e−|Re s|(x−ξ)

|s|2
)
, x, ξ ∈ [0,π]. (2:18)

As a result of the last discussion from (2.13), (2.16), (2.17), and (2.18), we deduce

that R(x, ξ, l) obeys the asymptotic relation

R(x, ξ ,λ) = Ro(x, ξ ,λ) + r(x, ξ ,λ)
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where

r(x, ξ ,λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

©
(
e−|Im s||x−ξ |

|s2|
)
, x, ξ ∈ [0, a]

©
(
e−|Re s||x−ξ |

|s2|
)
, x, ξ ∈ [a,π]

©
(
e−|Im s|(x−a)−|Re s|(a−ξ )

|s2|
)
, 0 ≤ x ≤ a < ξ ≤ π

©
(
e−|Im s|(ξ−a)−|Re s|(a−ξ )

|s2|
)
, 0 ≤ ξ ≤ a < x ≤ π

(2:19)

We remind here that the main purpose of this paper is to prove the equiconvergence

of the eigenfunction expansion of the Dirichlet problem (1.1)-(1.2). We introduce the

following notations, let Δn,f(x) denotes the nth partial sum

�n,f (x) =
n∑

k=0

ϕ(x,λ+
n)

a+k

π∫
0

ρ(ξ)f (ξ)ϕ(ξ ,λ+
k )dξ+

n∑
k=0

ϕ(x,λ+
n)

a+k

π∫
0

ρ(ξ)f (ξ)ϕ(ξ ,λ+
k )dξ . (2:20)

where, from [1], a±
k �= 0 . It should be noted here, from [2], that as n ® ∞, the series

(2.20) converges uniformly to a function f(x) Î L2(0, π, r(x)). Let also �
(o)
n,f be the cor-

responding nth partial sum as (2.20), for the Dirichlet problem (1.1)-(1.2) in case of q

(x) ≡ 0. The equiconvergence of the eigenfunction expansion means that the difference∣∣∣�n,f (x) − �
(o)
n,f (x)

∣∣∣ uniformly converges to zero as n ® ∞, x Î [0, π]. In the following

theorem, we prove the equiconvergence theorem of the expansions∣∣∣�n,f (x) and �
(o)
n,f (x)

∣∣∣ . This means that the two expansions have the same condition of

convergence. Following [1], the contour Γn is defined by

�n =
{
|Re s| ≤ π

a

(
n − 1

4

)
+

π

2a
, |Im s| ≤ π

π − a

(
n − 1

4

)
+

π

2(π − a)

}
.(2:21)

Denote by �+
n the upper half of the contour Γn, Ims ≥ 0, and let Ln be the contour,

in l-domain, formed from �+
n by the mapping l = s2. From (1.4), it is obvious that the

poles of R(x, ξ, l) are the roots of the function Ψ(s), which is the spectrum of the pro-

blem (1.1)-(1.2).

Theorem 2.1 Under the validity of lemma 1.1 and lemma 2.2, the following relation

of equiconvergence holds true

lim
n→∞ sup

0≤x≤π

∣∣∣�n,f (x) − �
(o)
n,f (x)

∣∣∣ = 0. (2:22)

Proof: Multiply both sides of (2.7) by r(ξ) f (ξ) and then integrating from 0 to π, we

have

π∫
0

R(x, ξ ,λ)ρ(ξ)f (ξ)dξ =

π∫
0

Ro(x, ξ ,λ)ρ(ξ)f (ξ)dξ+

π∫
0

r(x, ξ ,λ)ρ(ξ)f (ξ)dξ

where f(x) Î L2[0, π, r(x)]. We multiply the last equation by 1
2π i and then integrating

over the contour Ln in the l-domain, we have
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1
2π i

∮
Ln

⎧⎨
⎩

π∫
0

R(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭ dλ

=
1
2π i

∮
Ln

⎧⎨
⎩

π∫
0

R(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭ dλ +

1
2π i

∮
Ln

⎧⎨
⎩

π∫
0

r(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭ dλ.

(2:23)

From equation (1.5), we have the following

Resλ=λ±
k

R(x, ξ ,λ) =
ϕ(x,λ±

k )ϕ(ξ ,λ
±
k )

a±
k

(2:24)

Applying Cauchy residues formula to the first integral of (2.23) and using (2.24), we

have

1
2π i

∮
Ln

⎧⎨
⎩

π∫
0

R(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭ dλ =

n∑
k=0

Resλ=λ±
k

⎧⎨
⎩

π∫
0

R(x, ξ ,λ±
k )ρ(ξ)f (ξ)dξ

⎫⎬
⎭

=
n∑

k=0

ϕ(x,λ+
n)

a+k

π∫
0

ρ(ξ)f (ξ)ϕ(ξ ,λ+
k )dξ+

n∑
k=0

ϕ(x,λ+
n)

a+k

π∫
0

ρ(ξ)f (ξ)ϕ(ξ ,λ+
k )dξ . = �n,f (x)

(2:25)

Similarly, we carry out the same procedure to the second integral of (2.23) and we

get an expression analogous to (2.25)

1
2π i

∮
Ln

⎧⎨
⎩

π∫
.

Ro(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭ dλ = �

(o)
n,f (x). (2:26)

So that from (2.25), (2.26), and (2.23), we get

�n,f (x) − �
(o)
n,f (x) =

1
2π i

∮
Ln

⎧⎨
⎩

π∫
0

r(x, ξ ,λ)ρ(ξ)f (ξ)dξ

⎫⎬
⎭dλ,

from which it follows that

∣∣∣�n,f (x) − �
(o)
n,f (x)

∣∣∣ ≤ 1
2π

∮
Ln

⎧⎨
⎩

π∫
0

∣∣r(x, ξ ,λ)∣∣ ∣∣f (ξ)∣∣dξ

⎫⎬
⎭d |λ| . (2:27)

The last Equation (2.27) is an essential relation in the proof of the theorem, because

the theorem is established if we prove that 1
2π

∮
Ln

{∫ π

0

∣∣r(x, ξ ,λ)∣∣ ∣∣f (ξ)∣∣ dξ}
d |λ| tends

to zero uniformly, x Î [0, π]. We use the same technique as in [3] We have

∮
Ln

⎧⎨
⎩

π∫
0

∣∣r(x, ξ ,λ)∣∣ ∣∣f (ξ)∣∣dξ

⎫⎬
⎭∣∣dλ

∣∣
∮
Ln

⎧⎨
⎩

π∫
0

∣∣r(x, ξ ,λ)∣∣ ∣∣f (ξ)∣∣dξ

⎫⎬
⎭∣∣dλ

∣∣ + ∮
Ln

⎧⎨
⎩

π∫
0

∣∣r(x, ξ ,λ)∣∣ ∣∣f (ξ)∣∣dξ

⎫⎬
⎭∣∣dλ

∣∣

≤ M1

∮
Ln

⎧⎨
⎩

a∫
0

e|Im λ||x−ξ |

|s|2
∣∣f (ξ)∣∣dξ

⎫⎬
⎭

∣∣dλ
∣∣ +M2

∮
Ln

⎧⎨
⎩

a∫
0

e|Im λ|(a−x)−|Re λ|(ξ−a)

|s|2
∣∣f (ξ)∣∣dξ

⎫⎬
⎭

∣∣dλ
∣∣

(2:28)
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where M1 and M2 are constants.

We treat now the integral
∫ a
0 in (2.30). Let δ > 0 be a sufficiently small number and

let l = s2, so that, for x, ξ Î [0, a], we have

∮
Ln

⎧⎨
⎩

q∫
0

e − |Im λ| |x − ξ |
|s|2

∣∣f (ξ)dξ ∣∣
⎫⎬
⎭ |dλ|

=
∫
�+
n

∣∣ds∣∣
|s|

⎧⎪⎨
⎪⎩

∫
|x−ξ |≤δ

e−|Im λ||x−ξ | ∣∣f (ξ)∣∣ dξ+ ∫
|x−ξ |≤δ

e−|Im λ||x−ξ | ∣∣f (ξ)∣∣ dξ
⎫⎪⎬
⎪⎭

≤
∫
�+
n

∣∣ds∣∣
|s|

∫
|x−ξ |≤δ

∣∣f (ξ)∣∣ dξ+
π∫

0

∣∣f (ξ)∣∣ dξ ∫
�+
n

e
−|Im λ|δ |ds||s|

≤ 4
∫

|x−ξ |≤δ

∣∣f (ξ)∣∣ dξ +

π∫
0

∣∣f (ξ)∣∣ dξ
[

2

δ(n − 1
4)

+ 2e−δ(n− 1
4 )

]
.

(2:29)

This means that

M1

∮
Ln

⎧⎨
⎩

a∫
0

e−|Im λ||x−ξ |

|s|2
∣∣f (ξ)∣∣ dξ

⎫⎬
⎭ |dλ| ≤ C1

∫
|x−ξ |≤δ

∣∣f (ξ)∣∣ dξ +
C2

δn
+ C3e

−δn (2:30)

where C1, C2, and C3 are independent of x, n and δ. In a similar way, we estimate the

second integral
∫ π

a in (2.30) in the form

M2

∮
Ln

⎧⎨
⎩

π∫
0

e−|Im λ|(a−x)− |Re λ| (ξ − a)

|s|2
∣∣f (ξ)∣∣ dξ

⎫⎬
⎭ |dλ| . ≤ C∗

1

∫
|x−ξ |≤δ

∣∣f (ξ)∣∣ dξ +
C∗
2

δn
+ C∗

3e
−δn (2:31)

where C∗
1,C

∗
2 , and C∗

3 are independent of x, n, and δ. Substituting (2.30) and (2.31)

into (2.28) and using (2.29), we have

∣∣∣�n,f (x) − �
(o)
n,f (x)

∣∣∣ ≤ A
∫

|x−ξ |≤δ

∣∣f (ξ)∣∣ dξ +
B

δn
+ Ce−δn

(2:32)

where A,B, and C are constants independent of x, n, and δ. We apply now the prop-

erty of absolute continuity of Lesbuge integral to the function f(x) Î L1[0, π].

∀ � > 0, ∃ δ > 0 is sufficiently small such that ∫|x-ξ|≤δ |f(ξ)|dξ ≤ �, where � is indepen-

dent of x (the set {ξ : |x - ξ| ≤ δ} is measurable). Fixing δ in (2.32), there exists N such

that for all n > N, 1
δn < ε and e-δn < �, so that (2.32) takes the form

∣∣∣�n,f (x) − �
(o)
n,f (x)

∣∣∣ ≤ (A + B + C) ε, n > N. (2:33)

Since � is sufficiently small as we please, it follows that
∣∣∣�n,f (x) − �

(o)
n,f (x)

∣∣∣ → 0 as

n ® ∞, uniformly with respect to x Î [0, π], which completes the proof.
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3 The conclusion and comments
It should be noted here that, the theorem of equiconvergence of the eigenfunction

expansion is one of interesting analytical problem that arising in the field of spectral

analysis of differential operators, see [4-6]. In [3], the author studied the equiconver-

gence theorem of the problem

−y′′ + q(x)y = μρ(x)y 0 ≤ x ≤ π (3:34)

y′(0) − hy(0) = 0,

y′(π) +Hy(π) = 0
(3:35)

There are many differences between problems (3.34)-(3.35) and the present one

(1.1)-(1.2), and the differences are as follows:

1- The boundary conditions of (3.35) is separated boundary conditions, whereas (1.2)

is the Dirichlet-Dirichlet condition

2- The eigenfunctions of (3.34)-(3.35) is given by

ϕ(x,μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos λx +O
(
e|Im λ|x

|λ|
)
, 0 ≤ x ≤ a

cos λa cosh λ(a − x) + sin λa sinh λ(a − x)

+O

(
e|Im λ|a+|Re λ(x−a)|

|λ|

)
, a < x ≤ π ,

(3:36)

and

ϕ(x,μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos λ(π − a) cos λ(a − x) + sinh λ(π − a) sin λ(a − x)

+O

(
e|Im λ|(a−x)+|Re λ|(π−x)

|λ|

)
, 0 ≤ x ≤ a

cos λ(π − a) +O
(
e|Im λ|x

|λ|
)
, a < x ≤ π

(3:37)

3- The contour of integration is of the form

�n =
{
λ : |Re λ| ≤ π

a

(
n +

1
4

)
+

π

2a
, |Im λ| ≤ π

π − a

(
n +

1
4

)
+

π

2(π − a)

}
. (3:38)

4- The remainder function r(x, ξ, l) admits the following inequality for l Î Γn, n ®
∞.

r(x, ξ ,μ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O
(
e−|Im λ||x−ξ |

|λ2|
)

, for x, ξ ∈ [0, a]

O
(
e−|Re λ||x−ξ |

|λ2|
)

, for x, ξ ∈ [0,π]

O
(
e−|Im λ|(a−ξ )−|Re λ|(ξ−a)

|λ2|
)

, for 0 ≤ x ≤ a < ξ ≤ π

O
(
e−|Im λ|(a−ξ )−|Re λ|(x−a)

|λ2|
)
, for 0 ≤ ξ ≤ a < x ≤ π .

(3:39)

Although there are four differences between the two problems, we find that the

proof of the equiconvergence formula
∣∣∣�n,f (x) − �

(o)
n,f (x)

∣∣∣ → 0 as n ® ∞ is similar. So

as long as the proof of the equiconvergence relation is carried out by means of the

contour integration, we obtain the uniform convergence of the series (2.20)
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