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Abstract
Let D be a nonempty closed convex subset of an arbitrary uniformly smooth real
Banach space E, and T : D → D be a generalized Lipschitz�-hemi-contractive
mapping with q ∈ F(T ) �= ∅. Let {an}, {bn}, {cn}, {dn} be four real sequences in [0, 1] and
satisfy the conditions (i) an,bn,dn → 0 as n → ∞ and cn = o(an); (ii)

∑∞
n=0 an =∞. For

some x0 ∈ D, let {un}, {vn} be any bounded sequences in D, and {xn} be an Ishikawa
iterative sequence with errors defined by (1.1). Then (1.1) converges strongly to the
fixed point q of T . A related result deals with the operator equations for a generalized
Lipschitz and �-quasi-accretive mapping.
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1 Introduction and preliminary
Let E be a real Banach space and E* be its dual space. The normalized duality mapping
J : E → E* is defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that
(i) If E is a smooth Banach space, then the mapping J is single-valued;
(ii) J(αx) = αJ(x) for all x ∈ E and α ∈ �;
(iii) If E is a uniformly smooth Banach space, then the mapping J is uniformly

continuous on any bounded subset of E. We denote the single-valued normalized
duality mapping by j.

Definition . ([]) Let D be a nonempty closed convex subset of E, T :D →D be a map-
ping.
() T is called strongly pseudocontractive if there is a constant k ∈ (, ) such that for all

x, y ∈D,

〈
Tx – Ty, j(x – y)

〉 ≤ k‖x – y‖;
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() T is called φ-strongly pseudocontractive if for all x, y ∈D, there exist j(x–y) ∈ J(x–y)
and a strictly increasing continuous function φ : [, +∞) → [, +∞) with φ() =  such
that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – φ
(‖x – y‖)‖x – y‖;

() T is called �-pseudocontractive if for all x, y ∈ D, there exist j(x – y) ∈ J(x – y) and a
strictly increasing continuous function � : [, +∞)→ [, +∞) with �() =  such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ –�
(‖x – y‖).

It is obvious that �-pseudocontractive mappings not only include φ-strongly pseudo-
contractive mappings, but also strongly pseudocontractive mappings.

Definition . ([]) Let T :D→ D be a mapping and F(T) = {x ∈D : Tx = x} �= ∅.
() T is called φ-strongly-hemi-pseudocontractive if for all x ∈ D, q ∈ F(T), there exist

j(x–q) ∈ J(x–q) and a strictly increasing continuous function φ : [, +∞)→ [, +∞) with
φ() =  such that

〈
Tx – Tq, j(x – q)

〉 ≤ ‖x – q‖ – φ
(‖x – q‖)‖x – q‖.

() T is called �-hemi-pseudocontractive if for all x ∈ D, q ∈ F(T), there exist j(x –
q) ∈ J(x – q) and the strictly increasing continuous function � : [, +∞) → [, +∞) with
�() =  such that

〈
Tx – Tq, j(x – q)

〉 ≤ ‖x – q‖ –�
(‖x – q‖).

Closely related to the class of pseudocontractive-typemappings are those of accretive type.

Definition . ([]) Let N(T) = {x ∈ E : Tx = } �= ∅. The mapping T : E → E is called
strongly quasi-accretive if for all x ∈ E, x* ∈ N(T), there exist j(x – x*) ∈ J(x – x*) and a
constant k ∈ (, ) such that 〈Tx–Tx*, j(x– x*)〉 ≥ k‖x– x*‖; T is called φ-strongly quasi-
accretive if for all x ∈ E, x* ∈ N(T), there exist j(x – x*) ∈ J(x – x*) and a strictly increasing
continuous function φ : [, +∞) → [, +∞) with φ() =  such that 〈Tx – Tx*, j(x – x*)〉 ≥
φ(‖x – x*‖)‖x – x*‖; T is called �-quasi-accretive if for all x ∈ E, x* ∈ N(T), there exist
j(x – x*) ∈ J(x – x*) and a strictly increasing continuous function � : [, +∞) → [, +∞)
with �() =  such that 〈Tx – Tx*, j(x – x*)〉 ≥ �(‖x – x*‖).

Definition . ([]) For arbitrary given x ∈D, the Ishikawa iterative process with errors
{xn}∞n= is defined by

⎧⎨
⎩
yn = ( – bn – dn)xn + bnTxn + dnvn, n ≥ ,

xn+ = ( – an – cn)xn + anTyn + cnun, n≥ ,
(.)

where {un}, {vn} are any bounded sequences in D; {an}, {bn}, {cn}, {dn} are four real se-
quences in [, ] and satisfy an + cn ≤ , bn + dn ≤ , for all n ≥ . If bn = dn = , then the
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sequence {xn} defined by

xn+ = ( – an – cn)xn + anTxn + cnun, n≥  (.)

is called the Mann iterative process with errors.

Definition . ([, ]) Amapping T :D→D is called generalized Lipschitz if there exists
a constant L >  such that ‖Tx – Ty‖ ≤ L( + ‖x – y‖), ∀x, y ∈D.

The aim of this paper is to prove the convergent results of the above Ishikawa and
Mann iterations with errors for generalized Lipschitz �-hemi-contractive mappings in
uniformly smooth real Banach spaces. For this, we need the following lemmas.

Lemma . ([]) Let E be a uniformly smooth real Banach space, and let J : E → E* be a
normalized duality mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
(.)

for all x, y ∈ E.

Lemma . ([]) Let {ρn}∞n= be a nonnegative sequence which satisfies the following in-
equality:

ρn+ ≤ ( – λn)ρn + σn, n≥ , (.)

where λn ∈ [, ] with
∑∞

n= λn = ∞, σn = o(λn). Then ρn →  as n→ ∞.

2 Main results
Theorem. Let E be an arbitrary uniformly smooth real Banach space,D be a nonempty
closed convex subset of E, and T : D → D be a generalized Lipschitz �-hemi-contractive
mapping with q ∈ F(T) �= ∅. Let {an}, {bn}, {cn}, {dn} be four real sequences in [, ] and
satisfy the conditions (i) an,bn,dn →  as n → ∞ and cn = o(an); (ii)

∑∞
n= an = ∞. For

some x ∈D, let {un}, {vn} be any bounded sequences in D, and {xn} be an Ishikawa iterative
sequence with errors defined by (.). Then (.) converges strongly to the unique fixed point
q of T .

Proof Since T :D →D is a generalized Lipschitz �-hemi-contractive mapping, there ex-
ists a strictly increasing continuous function � : [, +∞) → [, +∞) with �() =  such
that

〈
Tx – Tq, J(x – q)

〉 ≤ ‖x – q‖ –�
(‖x – q‖),

i.e.,

–
〈
x – Tx, J(x – q)

〉 ≤ –�
(‖x – q‖),

and

‖Tx – Ty‖ ≤ L
(
 + ‖x – y‖),

for any x, y ∈D and q ∈ F(T).
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Step . There exists x ∈D and x �= Tx such that r = ‖x –Tx‖·‖x –q‖ ∈ R(�) (range
of �). Indeed, if �(r) → +∞ as r → +∞, then r ∈ R(�); if sup{�(r) : r ∈ [, +∞)} = r <
+∞ with r < r, then for q ∈ D, there exists a sequence {wn} in D such that wn → q as
n → ∞ with wn �= q. Furthermore, we obtain that {wn – Twn} is bounded. Hence, there
exists a natural number n such that ‖wn–Twn‖ ·‖wn–q‖ < r

 for n≥ n, thenwe redefine
x = wn and ‖x – Tx‖ · ‖x – q‖ ∈ R(�).
Step . For any n ≥ , {xn} is bounded. Set R = �–(r), then from Definition .(), we

obtain that ‖x – q‖ ≤ R. Denote B = {x ∈ D : ‖x – q‖ ≤ R}, B = {x ∈ D : ‖x – q‖ ≤ R}.
Since T is generalized Lipschitz, so T is bounded. We may defineM = supx∈B{‖Tx– q‖ +
}+ supn{‖un –q‖}+ supn{‖vn –q‖}. Next, we want to prove that xn ∈ B. If n = , then x ∈
B. Now, assume that it holds for some n, i.e., xn ∈ B. We prove that xn+ ∈ B. Suppose it
is not the case, then ‖xn+ – q‖ > R. Since J is uniformly continuous on a bounded subset
of E, then for ε =

�( R )
L(+R) , there exists δ >  such that ‖Jx – Jy‖ < ε when ‖x – y‖ < δ,

∀x, y ∈ B. Now, denote

τ = min

{
,

R
[L( + R) + R +M]

,
R

[L( + R) + R +M]
,

δ

[L( + R) + R +M]
,
�(R )
R ,

�(R )
L( + R)

,
�(R )
MR

}
.

Owing to an,bn, cn,dn →  as n → ∞, without loss of generality, assume that  ≤
an,bn, cn,dn ≤ τ for any n≥ . Since cn = o(an), denote cn < anτ. So, we have

‖Txn – q‖
≤ L

(
 + ‖xn – q‖)

≤ L( + R), (.)

‖yn – q‖
≤ ( – bn – dn)‖xn – q‖ + bn‖Txn – q‖ + dn‖vn – q‖
≤ R + bnL

(
 + ‖xn – q‖) + dnM

≤ R + bnL( + R) + dnM

≤ R + τ
[
L( + R) +M

]
≤ R, (.)

‖Tyn – q‖
≤ L

(
 + ‖yn – q‖)

≤ L( + R), (.)

‖xn – Txn‖
≤ L + ( + L)‖xn – q‖
≤ L + ( + L)R, (.)
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and

∥∥(xn – q) – (yn – q)
∥∥

≤ bn‖xn – Txn‖ + dn
[‖vn – q‖ + ‖xn – q‖]

≤ bn
[
L + ( + L)R

]
+ dn(M + R)

≤ τ
[
L( + R) + R +M

]
≤ τ

[
L( + R) + R +M

]

≤ δ


< δ; (.)

‖xn – q‖
≥ ‖xn+ – q‖ – an‖Tyn – xn‖ – cn‖un – xn‖
≥ ‖xn+ – q‖ – an

[‖Tyn – q‖ + ‖xn – q‖] – cn
[‖xn – q‖ + ‖un – q‖]

≥ R – an
[
L( + R) + R

]
– cn(R +M)

≥ R – τ
[
L( + R) +M + R

]

≥ R –
R


=
R

, (.)

‖yn – q‖
≥ ‖xn – q‖ – bn‖Txn – xn‖ – dn‖xn – vn‖
≥ ‖xn – q‖ – bn

[
L + ( + L)R

]
– dn

[‖xn – q‖ + ‖vn – q‖]
≥ ‖xn – q‖ – bn

[
L + ( + L)R

]
– dn(R +M)

≥ ‖xn – q‖ – τ
[
L + ( + L)R +M

]

>
R

–
R

=
R

, (.)

‖xn+ – q‖
≤ ( – an – cn)‖xn – q‖ + an‖Tyn – q‖ + cn‖un – q‖
≤ R + τ

[
L( + R) +M

]
≤ R, (.)

∥∥(xn+ – q) – (xn – q)
∥∥

≤ an‖Tyn – xn‖ + cn‖un – xn‖
≤ an

[‖Tyn – q‖ + ‖xn – q‖] + cn
[‖un – q‖ + ‖xn – q‖]

≤ an
[
L( + R) + R

]
+ cn(M + R)

≤ τ
[
L( + R) + R +M

]

≤ δ


< δ. (.)
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Therefore,

∥∥J(xn – q) – J(yn – q)
∥∥ < ε;∥∥J(xn+ – q) – J(xn – q)

∥∥ < ε.

Using Lemma . and the above formulas, we obtain

‖xn+ – q‖

≤ ( – an – cn)‖xn – q‖ + an
〈
Tyn – q, J(xn+ – q)

〉
+ cn

〈
un – q, J(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an

〈
Tyn – q, J(xn+ – q) – J(xn – q)

〉
+ an

〈
Tyn – q, J(xn – q) – J(yn – q)

〉
+ an

〈
Tyn – q, J(yn – q)

〉
+ cn

〈
un – q, J(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an‖Tyn – q‖ · ∥∥J(xn+ – q) – J(xn – q)

∥∥
+ an‖Tyn – q‖ · ∥∥J(xn – q) – J(yn – q)

∥∥
+ an

[‖yn – q‖ –�
(‖yn – q‖)] + cn‖un – q‖ · ‖xn+ – q‖

≤ ( – an)R + anL( + R)ε + an
[‖yn – q‖ –�

(‖yn – q‖)] + cnMR, (.)

and

‖yn – q‖

≤ ( – bn – dn)‖xn – q‖ + bn
〈
Txn – q, J(yn – q)

〉
+ dn

〈
vn – q, J(yn – q)

〉
≤ ‖xn – q‖ + bn

〈
Txn – q, J(yn – q) – J(xn – q)

〉
+ bn

〈
Txn – q, J(xn – q)

〉
+ dn‖vn – q‖ · ‖yn – q‖

≤ ‖xn – q‖ + bn‖Txn – q‖ · ∥∥J(yn – q) – J(xn – q)
∥∥

+ bn
[‖xn – q‖ –�

(‖xn – q‖)] + dn‖vn – q‖ · ‖yn – q‖
≤ R + bnL( + R)ε + bnR + dnMR. (.)

Substitute (.) into (.)

‖xn+ – q‖

≤ ( – an)R + anL( + R)ε + an
[
R + bnL( + R)ε

+ bnR + dnMR
]
– an�

(‖yn – q‖) + cnMR

≤ R + anR
 + anL( + R)ε + an

[
bnL( + R)ε

+ bnR + dnMR
]
– an�

(
R


)
+ cnMR

http://www.fixedpointtheoryandapplications.com/content/2012/1/206
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= R + an
[
an

R + L( + R)ε + bnL( + R)ε

+ bnR + dnMR +
cnMR
an

]
– an�

(
R


)

≤ R + an
[

�(R )


–�

(
R


)]

≤ R –�

(
R


)
an

≤ R, (.)

this is a contradiction. Thus, xn+ ∈ B, i.e., {xn} is a bounded sequence. So, {yn}, {Tyn},
{Txn} are all bounded sequences.
Step .Wewant to prove ‖xn–q‖ →  as n→ ∞. SetM =max{supn ‖xn–q‖, supn ‖yn–

q‖, supn ‖Txn – q‖, supn ‖Tyn – q‖, supn ‖un – q‖, supn ‖vn – q‖}.
By (.), (.), we have

‖xn+ – q‖

≤ ( – an)‖xn – q‖ + an‖Tyn – q‖ · ∥∥J(xn+ – q) – J(xn – q)
∥∥

+ an‖Tyn – q‖ · ∥∥J(xn – q) – J(yn – q)
∥∥

+ an
[‖yn – q‖ –�

(‖yn – q‖)] + cn‖un – q‖ · ‖xn+ – q‖
≤ ( – an)‖xn – q‖ + anMAn + anMBn

+ an
[‖yn – q‖ –�

(‖yn – q‖)] + cnM
 , (.)

and

‖yn – q‖

≤ ‖xn – q‖ + bn‖Txn – q‖ · ∥∥J(yn – q) – J(xn – q)
∥∥

+ bn
[‖xn – q‖ –�

(‖xn – q‖)] + dn‖vn – q‖ · ‖yn – q‖
≤ ‖xn – q‖ + MBn + bnM

 + dnM
 , (.)

where An = ‖J(xn+ – q) – J(xn – q)‖, Bn = ‖J(xn – q) – J(yn – q)‖ and An,Bn →  as n → ∞.
Taking (.) into (.),

‖xn+ – q‖

≤ ‖xn – q‖ + anM

 + anMAn + anMBn

+ an
[
MBn + bnM

 + dnM
 –�

(‖yn – q‖)] + cnM


≤ ‖xn – q‖ + an
[
an

M

 +MAn + MBn + bnM


+ dnM
 +

cnM


an
–�

(‖yn – q‖)
]

≤ ‖xn – q‖ + an
[
Cn –�

(‖yn – q‖)], (.)

where Cn = an
 M


 +MAn + MBn + bnM

 + dnM
 +

cnM


an →  as n→ ∞.

http://www.fixedpointtheoryandapplications.com/content/2012/1/206
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Set infn≥
�(‖yn–q‖)
+‖xn+–q‖ = λ, then λ = . If it is not the case, we assume that λ > . Let  < γ <

min{,λ}, then �(‖yn–q‖)
+‖xn+–q‖ ≥ γ , i.e., �(‖yn – q‖) ≥ γ + γ ‖xn+ – q‖ ≥ γ ‖xn+ – q‖. Thus,

from (.) it follows that

‖xn+ – q‖

≤ ‖xn – q‖ + an
(
Cn – γ ‖xn+ – q‖). (.)

This implies that

‖xn+ – q‖

≤ 
 + anγ

‖xn – q‖ + anCn

 + anγ

=
(
 –

anγ
 + anγ

)
‖xn – q‖ + anCn

 + anγ
. (.)

Let ρn = ‖xn – q‖, λn = anγ

+anγ
, σn = anCn

+anγ
. Then we get that

ρn+ ≤ ( – λn)ρn + σn.

Applying Lemma ., we get that ρn →  as n → ∞. This is a contradiction and so λ = .
Therefore, there exists an infinite subsequence such that �(‖yni–q‖)

+‖xni+–q‖
→  as i→ ∞. Since

 ≤ �(‖yni–q‖)
+M


≤ �(‖yni–q‖)

+‖xni+–q‖
, then �(‖yni – q‖) →  as i → ∞. In view of the strictly in-

creasing continuity of�, we have ‖yni –q‖ →  as i→ ∞. Hence, ‖xni –q‖ →  as i → ∞.
Next, we want to prove ‖xn – q‖ →  as n → ∞. Let ∀ε ∈ (, ), there exists ni such that
‖xni –q‖ < ε, an, cn < ε

M
, bn,dn < ε

M
,Cn < �(ε)

 , for any ni,n ≥ ni . First, wewant to prove
‖xni+ – q‖ < ε. Suppose it is not the case, then ‖xni+ – q‖ ≥ ε. Using (.), we may get the
following estimates:

‖xni – q‖
≥ ‖xni+ – q‖ – ani‖Tyni – xni‖ – cni‖uni – xni‖
> ε – ani

[‖Tyni – q‖ + ‖xni – q‖] – cni
[‖uni – q‖ + ‖xni – q‖]

≥ ε – aniM – cniM

≥ ε – aniM – cniM

>
ε


, (.)

‖yni – q‖
≥ ‖xni – q‖ – bni‖Txni – xni‖ – dni‖vni – xni‖
>

ε


– bni

[‖Txni – q‖ + ‖xni – q‖] – dni
[‖vni – q‖ + ‖xni – q‖]

≥ ε


– bniM – dniM

≥ ε


. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/206
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Since � is strictly increasing, then (.) leads to �(‖yni – q‖) ≥ �( ε
 ). From (.), we

have

‖xni+ – q‖

≤ ‖xni – q‖ + ani
[
Cni –�

(‖yni – q‖)]

< ε + ani

[


�

(
ε



)
–�

(
ε



)]

≤ ε –�

(
ε



)
ani

≤ ε, (.)

which is a contradiction. Hence, ‖xni+ –q‖ < ε. Suppose that ‖xni+m–q‖ < ε holds. Repeat-
ing the above course, we can easily prove that ‖xni+m+ – q‖ < ε holds. Therefore, for any
m, we obtain that ‖xni+m – q‖ < ε, which means ‖xn – q‖ →  as n → ∞. This completes
the proof. �

Theorem . Let E be an arbitrary uniformly smooth real Banach space, and T : E → E
be a generalized Lipschitz �-quasi-accretive mapping with N(T) �= ∅. Let {an}, {bn}, {cn},
{dn} be four real sequences in [, ] and satisfy the conditions (i) an,bn,dn →  as n → ∞
and cn = o(an); (ii)

∑∞
n= an = ∞. For some x ∈ D, let {un}, {vn} be any bounded sequences

in E, and {xn} be an Ishikawa iterative sequence with errors defined by

⎧⎨
⎩
yn = ( – bn – dn)xn + bnSxn + dnvn, n≥ ,

xn+ = ( – an – cn)xn + anSyn + cnun, n≥ ,
(.)

where S : E → E is defined by Sx = x – Tx for any x ∈ E. Then {xn} converges strongly to the
unique solution of the equation Tx =  (or the unique fixed point of S).

Proof Since T is a generalized Lipschitz and �-quasi-accretive mapping, it follows that

‖Tx – Ty‖ ≤ L
(
 + ‖x – y‖),

i.e.,

‖Sx – Sy‖ ≤ L
(
 + ‖x – y‖), L =  + L;

〈
Tx – Tq, J(x – q)

〉 ≥ �
(‖x – q‖),

i.e.,

〈
Sx – Sq, J(x – q)

〉 ≤ ‖x – q‖ –�
(‖x – q‖),

for all x, y ∈ E, q ∈N(T). The rest of the proof is the same as that of Theorem .. �

Corollary . Let E be an arbitrary uniformly smooth real Banach space,Dbe a nonempty
closed convex subset of E, and T : D → D be a generalized Lipschitz �-hemi-contractive

http://www.fixedpointtheoryandapplications.com/content/2012/1/206
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mapping with q ∈ F(T) �= ∅. Let {an}, {cn} be two real sequences in [, ] and satisfy the
conditions (i) an →  as n→ ∞ and cn = o(an); (ii)

∑∞
n= an = ∞. For some x ∈D, let {un}

be any bounded sequence in D, and {xn} be theMann iterative sequence with errors defined
by (.). Then (.) converges strongly to the unique fixed point q of T .

Corollary . Let E be an arbitrary uniformly smooth real Banach space, and T : E → E
be a generalized Lipschitz �-quasi-accretive mapping with N(T) �= ∅. Let {an}, {dn} be two
real sequences in [, ] and satisfy the conditions (i) an →  as n → ∞ and cn = o(an);
(ii)

∑∞
n= an = ∞. For some x ∈ D, let {un} be any bounded sequence in E, and {xn} be the

Mann iterative sequence with errors defined by

xn+ = ( – an – cn)xn + anSxn + cnun, n≥ , (.)

where S : E → E is defined by Sx = x – Tx for any x ∈ E. Then {xn} converges strongly to the
unique solution of the equation Tx =  (or the unique fixed point of S).

Remark . It is mentioned that in , Chidume and Chidume [] proved the approx-
imative theorem for zeros of generalized Lipschitz generalized �-quasi-accretive oper-
ators. This result provided significant improvements of some recent important results.
Their result is as follows.

Theorem CC ([, Theorem .]) Let E be a uniformly smooth real Banach space and
A : E → E be a mapping with N(A) �= ∅. Suppose A is a generalized Lipschitz �-quasi-
accretive mapping. Let {an}, {bn} and {cn} be real sequences in [, ] satisfying the following
conditions: (i) an +bn + cn = ; (ii)

∑∞
n=(bn + cn) = ∞; (iii)

∑∞
n= cn <∞; (iv) limn→∞ bn = .

Let {xn} be generated iteratively from arbitrary x ∈ E by

xn+ = anxn + bnSxn + cnun, n≥ , (.)

where S : E → E is defined by Sx := f + x – Ax, ∀x ∈ E and {un} is an arbitrary bounded
sequence in E. Then, there exists γ ∈ � such that if bn + cn ≤ γ, ∀n≥ , the sequence {xn}
converges strongly to the unique solution of the equation Au = .

However, there exists a gap in the proof process of above Theorem CC. Here, cn =
min{ ε

β
, 
σ �( ε

 )αn} (αn = bn + cn) does not hold in line  of Claim  on page , i.e., cn ≤

σ �( ε

 )αn is a wrong case. For instance, set the iteration parameters: an = –bn–cn, where
{bn} : b = 

 , bn = 
n , n ≥ ; {cn} : 

 ,

 ,


 ,


 ,


 , . . . ,


 ,


 ,


 , . . . ,


 ,


 ,


 , . . . ,


 ,


 ,


 , . . . ,


 ,


 ,


 , . . . . Then

∑∞
n= cn < +∞, but cn �= o(bn + cn). Therefore, the proof of

above Theorem CC is not reasonable. Up to now, we do not know the validity of Theo-
rem CC. This will be an open question left for the readers!
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