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Abstract 

 

The aim of this study was to investigate an in-vivo tissue response to a biodegradable 

polyesterurethane, specifically the cellular and angiogenic response evoked by varying 

implant architectures in a subcutaneous rabbit implant model.  A synthetic biodegradable 

polyesterurethane was synthesised and processed into three different configurations; a 

non-porous film, a porous mesh and a porous membrane.  Glutaraldehyde cross-linked 

bovine pericardium was used as a control.  Sterile polyesterurethane and control samples 

were implanted subcutaneously in six rabbits, (n=12).  The rabbits were sacrificed at 21 

and 63 days and the implant sites were sectioned and histologically stained using 

haemotoxylin and eosin (H&E), Masson’s trichrome, picosirius red and immunostain 

CD31.  The tissue-implant interface thickness was measured from the H&E slides.  

Stereological techniques were used to quantify the tissue reaction at each time point that 

included volume fraction of inflammatory cells, fibroblasts, fibrocytes, collagen and the 

degree of vascularisation.  Stereological analysis inferred that porous scaffolds with 

regular topography are better tolerated in-vivo compared to non-porous scaffolds, while 

increasing scaffold porosity promotes angiogenesis and cellular infiltration.  The results 

suggest that this biodegradable polyesterurethane is better tolerated in-vivo than the 

control and that structural variants of biodegradable polyesterurethane in-vivo evoke a 

cellular and angiogenic response that is dictated by architecture. 

 

Keywords: polyesterurethane, tissue response, scaffold 
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1.  Introduction 

Synthetic biodegradable polymers are becoming increasingly popular for clinical and 

surgical applications as it is possible to control their mechanical properties and 

degradation rates, depending on the particular application.  Furthermore, these polymers 

may be processed into a variety of porous and non-porous structures, using processes 

such as rapid-prototyping, electrospinning, freeze drying, phase inversion and solvent 

casting 
1,2

.  The degree of tissue infiltration can be controlled by the morphology and 

porosity of the scaffold 
3
.  The porous architecture of the former allows the cells to 

penetrate the structure thus increasing the surface area where they can proliferate. 

 Implant architecture is known to influence the inflammatory and angiogenic 

response in-vivo.  Rough implant architectures have been reported to evoke a greater 

macrophage response and induce greater numbers of giant cells compared to smooth 

implant surfaces 
4-6

.  Electrospun meshes with a fibre diameter less than 10µm were 

shown to be less susceptible to encapsulation compared to meshes with a fibre diameter 

greater than 10µm 
7,8

.  It was also noted that electrospun meshes with an inter-fibre 

distance smaller than 100µm, experience less tissue infiltration and greater encapsulation 

compared to meshes with an inter-fibre distance larger than 100µm 
7,8

. The interstitial 

inter-fibre distance is determinant with regards to the degree of angiogenesis within a 

porous implant, as arterioles have a diameter of 30-500µm 
9
. Furthermore, implant 

architecture affects the degradation rate of biodegradable polymers, since porous 

scaffolds have a larger surface area in contact with fluids than non-porous scaffolds. 

Biodegradable polyesterurethanes have been investigated in-vitro and in-vivo for 

various tissue-engineering applications 
1,3,10-12

.  A slowly degrading polyesterurethane 
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with a crystalline segment of poly((R)-3-hydroxybutyric acid)-diol linked with a 

diisocyanate to an amorphous segment of poly(ε-caprolactone-co-glycolide)-diol has 

been developed 
13

.  The ratio of the soft to hard segments has been based on a predicted 

long-term degradation period having considered preceding data on DegraPol™ which 

indicated the degradation rate and the respective stoichiometric ratios of the crystalline to 

amorphous segments 
11,14,15

. Our earlier study characterised and reported the in-vitro 

behaviour of this polymer with respect to change in mechanical properties, molecular 

weight and cell viability 
13

.  This is the first study to characterise the in-vivo response of 

this specific blend of polyesterurethane. 

 The aim of this study was to investigate the cellular and angiogenic response 

evoked by varying implant architectures in a subcutaneous rabbit implant model at 21 and 

63 days.  In this study, three scaffolds were processed from the same polyesterurethane; a 

non-porous film using solvent casting, an electrospun porous mesh and a porous 

membrane fabricated by a phase inversion method.  The control was bovine pericardium.  

Haemotoxylin and Eosin (H&E) and Masson’s trichrome stains were used to assess the 

tissue response at both time points for all four variants.  Picosirius red stain and polarised 

light microscopy were used to examine collagen orientation around the four implants.  

Immunostain CD31 highlighted endothelial cells to later quantify angiogenesis.  

Stereological techniques quantified the tissue-implant interface thickness, the volume 

fraction of inflammatory cells, fibroblasts, fibrocytes, collagen and degree of 

angiogenesis specific to each scaffold. 
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2.  Materials and methods 

 

2.1 Polymer synthesis 

A biodegradable polyesterurethane polymer with poly(hydroxybutyrate) for the 

crystalline segment and diglycolide and ε-caprolactone for the amorphous segments was 

used in this study 
13

.  The stoichiometric ratio of the crystalline to amorphous segments 

was 1:1.5 respectively.  The crystalline and amorphous segments were cross-linked with 

2, 2, 4-trimethyl hexamethylene diisocyanate (TMDI).  Throughout the synthesis, Fourier 

transform infrared (FTIR) (Bruker Vertex 70, Bruker Optics GmbH, Faellanden, 

Switzerland) measurements were taken at regular intervals to identify the presence of the 

unreacted cross-linker TMDI (-NCO) groups at 2250 cm
-1

.  When the FTIR spectra no 

longer detected the TMDI, the polymer synthesis was considered complete. The polymer 

synthesis was concluded after 120h.  Subsequently, the synthesised polymer was 

precipitated into -70°C methanol to prevent premature hydrolysis.  Following 

precipitation, the polymer was vacuum-filtered to remove excess solvent and later dried 

in a vacuum oven at -10mBar for 72h prior to processing. 

 

2.2 Scaffold manufacture 

2.2.1 Fabrication of film 

A 20% (w/w) polymer solution was prepared in chloroform (Merck KgaA, Germany) 
13

.  

The solution was cast using a 500µm doctor’s blade on a polytetrafluoroethylene-coated 

plate.  The wet films were left under a fume hood to allow solvent evaporation. 
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2.2.2 Fabrication of mesh 

A 27% (w/w) polymer solution was dissolved in chloroform 
13

.  10ml of the solution was 

extracted with a syringe and secured in a syringe pump (Aladdin-220 Programmable 

Syringe Pump, World Precision Instruments, Stevenage, UK).  A cooled cylindrical target 

at -70°C was positioned 200mm away from the needle.  A high voltage supply (Glassman 

Europe Ltd, UK) was attached to the needle.  The target was rotated at 300rpm, the 

syringe flow-rate was 4ml/h, with the high voltage supply 18kV.  The processing time 

was 2.5h.  The processed electrospun mesh was removed from the target and stored in a 

vacuum chamber to remove excess solvent and moisture accumulated during processing. 

 

2.2.3 Fabrication of membrane 

A 15% (w/w) solution was dissolved in 1, 4-dioxane, this concentration determined from 

previous studies, and cast into a wet film using a 500µm doctor’s blade.  This film was 

immersed in containers of methanol and ethanol for five minutes each.  Finally, the glass 

plate and membrane were then transferred to a container of distilled water for five 

minutes.  The immersion of the film in the non-solvents created a porous membrane.  The 

porous membranes were stored in a vacuum chamber to remove excess moisture. 

 

2.2.4 Control 

Glutaraldehyde treated bovine pericardium (Peri-Strip
®
, Biovascular Inc., Saint Paul, 

MN) was used as a control, as this is FDA-approved for reinforcing surgical staples.  This 

biomaterial also has a long degradation rate but must be pre-treated for enhanced 
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mechanical properties and degradation rate. Hence a slowly degrading polyesterurethane 

that requires no pretreatment prior to processing may be an alternative. 

 

2.3 Scaffold sterilisation 

All polymer scaffolds were sterilised with ethylene oxide prior to implantation.  The 

control was supplied sterilised. 

 

2.4 Scaffold characterisation 

Sterilised and nonsterilised polyesterurethane scaffold morphology was examined with 

scanning electron microscopy (SEM).  Scaffolds were sputter coated with gold prior to 

SEM examination (Hitachi Field Emission Scanning Electron Microscope).  Pore size 

and filament diameter of the processed mesh and membrane scaffolds were quantified 

from the SEM images.  Mean film and control thicknesses were determined using a 

micrometer from four random thickness measurements. 

SEM images of the electrospun mesh were exported to an image analysis software 

program (Image Pro
®
 Plus, Media Cybernetics, UK) to obtain Fast Fourier Transform 

(FFT) algorithms.  For every radial angle from the centre of the FFT image, the software 

adds together the intensities of all the points found within one degree. The ratios between 

the total FFT intensities for every angle indicate the ratios at which lines can be found at 

different angles in the original SEM pictures.  The location and intensity of all the points 

in the FFT results were stored in an EXCEL
®
 spreadsheet.  A method for transforming 

FFT visual outputs into numerical data was developed and automated through a custom-

made software.  The following parameters were quantified: fibre orientation, porosity, 
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pore size and pore aspect ratio.  The pore distribution was calculated for pore sizes 

between 10µm and 200µm. 

 

2.5 Subcutaneous implantation 

Six white New Zealand male rabbits weighing between 2.8 and 3.0kg were used in this 

study.  All animals were housed singly and had access to standard pellet diet and water ad 

libitum.  Ethical approval for the procedures was obtained from the Institutional Animal 

Ethics Committee of the National University of Ireland, Galway.  The study was covered 

under a license issued by the Department of Health and Children, Government of Ireland, 

licence reference B100/3316. The rabbits were acclimatised to local environment for one 

week prior to surgery.  

The rabbits were anaesthesised using ketamine (100mg/kg IM) and xylazine 

(5mg/kg IM) (Narketan and Xylapan, Vetoquinol Ltd., UK).  The backs of the 

anaesthesised rabbits were clipped and subsequently cleaned with iodine.  A total of eight 

transverse incisions, four each on either side of the dorsal midline, were made on the back 

of the rabbit. Each incision was separated from the other by at least 5cm. At each incision 

a subcutaneous pocket was made towards the anterior side (neck) of the rabbit. One 

10x10 mm sterile scaffold was secured in each subcutaneous pocket using two stitches 

with a non-absorbable suture (Ethicon™ 4-0 Prolene
®
, Johnson & Johnson Ireland Ltd., 

Dublin), in corners of the scaffold. Following implantation, the incisions were closed 

with an absorbable polyester suture (Ethicon™ 4-0 Vicryl
®
, Johnson & Johnson Ireland 

Ltd., Dublin). 
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The six rabbits were divided into two groups of three each. Each rabbit received 

eight implants and the positioning of the implants on the back of the rabbit was 

randomised and recorded. Four scaffold variants (film, membrane and mesh 

configurations of the polyurethane, and bovine pericardium as control) were investigated 

in this study. The two groups of rabbits were sacrificed at 21 and 63 days with an 

overdose of sodium pentobarbitone. There were a total of six treatments per scaffold 

variant per time point. At the time of sacrifice, the implant sites (overlying skin, implant, 

surrounding tissue and underlying subcutaneous muscle) were retrieved and fixed in 10% 

neutral buffered formalin. 

 

2.6 Histopathology and staining 

The formalin fixed tissues were dehydrated and permeated with paraffin in automatic 

tissue processor (Leica ASP300), blocked (LeicaEG1150H and EG1150C) in paraffin and 

sectioned (Leica RM2235) perpendicular to the skin surface in 5µm sections. The slides 

were stained with haematoxylin & eosin (H&E), Masson’s trichrome (MT), picosirius red 

and immunostain CD31 for subsequent stereological analysis. 

 H&E and MT staining kits (Cat. No. 631200 and 631065 respectively, Clin-Tech 

Ltd., Surrey, UK) were used for H&E and MT staining in accordance to manufacturer 

recommended protocol. For picosirius red staining, paraffin sections were deparaffinised 

twice in xylene, five minutes each, followed by dehydration in 100%, 95% and 70% 

ethanol and running tap water for two minutes each.  The slides were then rinsed in 

distilled water twice, two minutes each and subsequently covered in picosirius red stain 

(Sircol Collagen Assay Dye, Biocolor Ltd., Northern Ireland) for 1h.  Following staining, 
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the slides were washed twice with 0.1M HCl in distilled water, two minutes each.  The 

sections were dehydrated through 70%, 95% and 100% ethanol, cleared in two changes 

of xylene and mounted with dibutyl phthalate xylene (DPX). 

 CD31 is expressed by endothelial cells; hence CD31 labelled cells would detect 

angiogenesis 
19,20

.  Paraffin sections were stained for CD31 using a blood vessel staining 

kit (ECM590, Millipore Ireland, Carrigtwohill, Ireland) according to the protocol 

recommended for the kit, except that the primary antibody used was monoclonal mouse 

anti human CD31 (Dako, Germany) at 1:40 solution in primary dilution buffer. For 

antigen retrieval, microwave processing at 98
o
C for 30 minutes in tris base buffer (10mM 

tris base, 1 mM ethylene diamine tetra acetic acid, 0.05% Tween 20, pH 9.0) was used. 

Mayer’s haematoxylin was used as the counter stain. The immunohistochemical stained 

sections were subsequently dehydrated through 70%, 95% and 100% ethanol, cleared in 

two changes of xylene and mounted with DPX.  

The stained sections were observed under a light microscope fitted with a digital 

camera (Olympus BX51, DP-70 digital camera, Mason Technology, Dublin).  For 

polarised light microscopy, simple polariser-analyser accessories (Olympus U-POT 

simple polariser, U-ANT analyser oriented orthogonal to the polarised beam and 530nm 

filter for bifringence, Mason Technology, Dublin) were used to characterise the picosirius 

red stained collagen fibres, which appeared as red, yellow and green.  Red and yellow 

were denoted collagen type I-like whilst green was denoted collagen type III-like 
16-18

.  

Digital images for stereological analysis were captured using image analysis software 

(Image Pro
®
 Plus, Media Cybernetics, UK). 
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2.7 Quantitative histological analysis 

2.7.1 Stereological analysis 

Stereological quantification of the histopathological images was based on the methods 

described by Garcia et al 
21

.  The extracellular matrix deposition (for tissue composition), 

inflammatory cell distribution in the implant area (cellular composition) and angiogenesis 

were quantified in this study.  The minimal number of fields of view per slide had been 

estimated in a previous pilot study.  Six random representative images were taken on each 

slide at x100 magnification using the imaging analysis software.  A rectangular grid 

containing 108 square grids, each with an area of 1.0x10
-4

mm
2
, was superimposed on 

each image.   

 

2.7.2 Tissue composition 

The volume fraction of extracellular (collagenous) matrix deposition, inflammatory cells 

and angiogenesis was determined from the Masson’s trichrome stained slides.  In the case 

of the mesh, the ratio of tissue infiltration to implant was expressed as a percentage of the 

total sampling area at 21 days and 63 days.  This ratio gave an indirect indication to the 

degree of scaffold degradation from 21 days to 63 days.   

 

2.7.3 Cellular response 

The H&E stained slides were used to identify and quantify the inflammatory cell 

response in the tissue-implant interface and reaction zone by calculating the volume 

fractions of lymphocytes, plasma cells, fibroblasts, fibrocytes and giant cells.  Cells such 

as neutrophils and macrophages were grouped as mononuclear cells. 
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2.7.4 Angiogenesis 

Capillaries provide the means for exchanging blood, oxygen, nutrients and waste 

products to the newly formed tissue.  Hence it is critical to understand the degree of 

angiogenesis occurring within and around the degrading scaffolds.  Angiogenesis was 

quantified from the CD31 stained slides using a cycloid grid 
21

.  Specifically, the 

capillary length density, Lv, capillary surface area density, Sv and radial diffusion 

difference, Rdiff, were measured. 

 

2.8 Statistical analysis 

Statistical analyses were carried out using statistical software (Minitab™, v.13.32).  

Statistical variances between groups were determined by one way analysis of variance 

(ANOVA).  Tukey’s honestly significant difference test was used for post hoc evaluation 

of differences between groups.  A p value of <0.05 was considered to be statistically 

significant.  

 

3.  Results 

 

3.1 Scaffold characterisation 

All polyesterurethane scaffolds morphologies were examined with SEM.  There were no 

morphological differences between sterilised and nonsterilised architectures.   The films 

had a non-porous morphology (Figure 1(a)).  Film thickness was measured to be 

111±9µm.  The porous membrane morphology was also consistent, as per Figure 1(b), 
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with pore size 17±7µm.  SEM examination of the electrospun meshes confirmed a 

homogenous structure, with consistent filament diameter, as seen in Figure 1(c).  Fibre 

diameter was 10±2µm, while the inter-fibre distance was 107±58µm.  The control had a 

thickness of 454 ±42µm. 

 The fibre orientation of the electrospun mesh was seen to be randomly distributed 

(data not shown).  There was no statistical difference between any of the groups.  

Quantitative analysis of the mesh porosity, pore size and pore aspect ratio is shown in 

Table 1.   

 

3.2 Subcutaneous implantation 

All animals made a normal recovery after surgery.  There were no obvious signs of 

degradation, such as scaffold cracking or scaffold disintegration for the three 

polyesterurethane implants at 21 days or 63 days.  Histologically stained cross-sections of 

the film confirmed a non-porous scaffold, as shown in Figure 2(a, b).  The mesh had 

superior pore interconnectivity compared to the membrane and control, as evident from 

Figure 2(c - h).  Furthermore, there were no signs of adverse reaction with the implants 

such as swelling, ulceration, discharge of pus, scarring, tissue necrosis or avascular 

fibrous capsule formation at both 21 days and 63 days.   

From the histological images, there were two layers evident around the film, 

membrane and control implants, as shown in Figure 2(a-f).  The inner layer was a thin 

layer which was densely populated with cell nuclei.  This layer was denoted the tissue-

implant interface.  The tissue-implant interface is the inflammatory response evoked by a 

foreign material when placed in-vivo.  The tissue-implant interface thickness is inversely 
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related to how well an implanted material is tolerated by the host tissue, i.e. the thicker 

the interface the less well tolerated the material.  Over time the tissue-implant interface is 

replaced by granulation tissue.  There was no tissue-implant interface evident around the 

mesh samples, as seen in Figure 2(g, h).  This absence of interface was due to tissue 

infiltration.  An outer layer was evident around all four implants.  This layer was 

considered as the “reaction zone”. 

Using the electronic callipers on the image analysis software (Image Pro
®
 Plus, 

Media Cybernetics, UK), six representative tissue-implant interface thickness 

measurements were taken on each image.  The tissue-implant interface thickness was 

measured for both time points, as shown in Table 2.  At 21 days, the tissue-implant 

interface thickness was maximal for the control and minimal for the mesh.  The interface 

thickness of the control was statistically different (p<0.05) to the three polyesterurethane 

constructs at both time points.  There was no statistical difference between the film and 

membrane values, but the interface thickness at the mesh was statistically lower (p<0.05) 

to these two scaffolds at both time points. 

 

3.3 Quantitative analysis 

3.3.1 Tissue composition 

Tissue-implant interface.  The film, membrane and control samples were surrounded by a 

tissue-implant interface.  There was no tissue-implant interface surrounding the mesh.  

Stereological volume fraction analysis of the extracellular (collagenous) matrix 

deposition, inflammatory cells and angiogenesis is shown in Figure 3(a).  The quantity of 

collagenous tissue detectable within the tissue-implant interface at both time points was 
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negligible for all scaffolds.  There were larger quantities of inflammatory cells present in 

the tissue implant interface around the film and membrane compared to the control at 21 

days.  From 21 days to 63 days, there was an increase in inflammatory cells around the 

film, membrane and control within the tissue-implant interface.  There was no significant 

change in the magnitude of angiogenesis within the tissue-implant interface of the film, 

membrane and control constructs at both 21 days and 63 days. 

Reaction zone.  The volume fractions of extracellular (collagenous) matrix deposition, 

inflammatory cells and angiogenesis within the reaction zone which was present around 

all four implants, are shown in Figure 3(b).  There was an increase in the volume fraction 

of collagenous tissue in the reaction zone around all three polyesterurethane scaffolds, 

significantly in the case of the membrane, (p<0.05).  Conversely, there was a decrease in 

collagenous tissue within the control reaction zone.  At 21 days, there was a significant 

difference between the volume fraction of film and mesh inflammatory cells, (p<0.05), 

while at 63 days, the control had prevalent inflammatory cells out of the four scaffolds.  

There was an increase in the volume fraction of angiogenesis for all four implants from 

21 days to 63 days, although not significant. 

Cellular infiltration into the mesh scaffold was visible at both 21 days and 63 

days.  The volume fraction of the histological response, angiogenesis and implant 

material was quantified, as shown in Figure 3(c).  Within the mesh, there was a decrease 

in the degree of angiogenesis from 21 days to 63 days.  The volume fraction of 

inflammatory cells significantly decreased after 63 days, (p<0.05).  Although not 

significant, there was a decrease in the volume fraction of polymer from 21 days to 63 

days.  No collagenous tissue was detectable within the mesh at either time point. 



16 

Using the polarised light, collagen type I-like (red and yellow) and collagen type 

III-like fibres (green) were seen parallel to the implants, as in Figure 4.  There was no 

collagen present within the film, mesh or membrane at either time point, Figure 4(a-f).  

Conversely, there was both collagen type I-like and collagen type III-like collagen within 

the control at 21 days and 63 days, Figure 4(g, h). 

 

3.3.2 Cellular response  

Tissue-implant interface.  The cellular response within the tissue-implant interface was 

quantified and is shown in Figure 5(a).  There were no discernable giant cells (GC) in the 

interfaces of the film, membrane and control at 21 days, but they were detectable at 63 

days, with a significantly larger amount of giant cells around the membrane, (p<0.05).  

The film, membrane and control scaffold tissue-implant interfaces had decreased amounts 

of lymphocytes (L) from 21 days to 63 days.  This decrease was significant for the film 

and membrane, (p<0.05).  The control interface had greater amounts of lymphocytes at 

63 days compared to the film and membrane.  There was a significant increase in the 

volume fraction of fibroblasts (Fb) in the film, membrane and control tissue-implant 

interface from 21 days to 63 days, (p<0.05).  No fibrocytes (Fc) were present at either 

time point in the tissue-implant interface of the film, membrane and control scaffolds. 

There were plasma cells (P) present at 21 days around the constructs, but the plasma cells 

were not detectable at 63 days.  The volume fraction of mononuclear cells (MN) in the 

film, membrane and control tissue-implant interfaces from 21 days to 63 days decreased; 

significantly in the case of the control, (p<0.05). 



17 

Reaction zone.  The inflammatory cell response within the reaction zone was analysed 

using stereological methods.  The response is illustrated in Figure 5(b).  There were no 

giant cells seen in the reaction zone of the four variants at both time points.  All four 

variants recorded a decrease in the volume fraction of lymphocytes (L) from 21 days to 

63 days.  This decrease was significant for the film, mesh and membrane, (p<0.05).  

Furthermore, the control reaction zone consistently had the largest volume fraction of 

lymphocytes within the reaction zone at both time points.  All four scaffolds had 

increased fibroblasts (Fb) volume fractions from 21 days to 63 days, significantly for the 

film, membrane and control, (p<0.05).  There was an increase in the volume fraction of 

fibrocytes (Fc) for the film, membrane and control from 21 days to 63 days, significantly 

so in the case of the control (p<0.05).  Conversely, there was a decrease in the volume 

fraction of fibrocytes within the mesh reaction zone.  No plasma cells (P) were detectable 

in the reaction zone of all four implants at 63 days, representing a significant decrease 

from 21 days, (p<0.05).  There was a decrease in the volume fraction of other 

mononuclear cells (MN) for all four implants, significantly in the case of the film, mesh 

and control, (p<0.05).  Indeed, there were no mononuclear cells detectable for the film 

and mesh at 63 days.   

The inflammatory cell response within the mesh is quantified in Figure 5(c).  

Giant cells were not present in the 21 days tissue infiltration, but there was a significant 

increase at 63 days, (p<0.05).  The volume fraction of lymphocytes significantly 

decreased from 21 days to 63 days, (p<0.05).  There was a significant decrease in the 

volume fraction of fibroblasts (p<0.05) from 21 days to 63 days, with no detectable 

fibrocytes at either time point.  Plasma cells were not present at 63 days, representing a 



18 

significant decrease from 21 days, (p<0.05).  There was a non-significant decrease in 

other mononuclear cells from 21 days to 63 days.   

 

3.3.3 Angiogenesis 

Immunohistochemistry staining for CD31 detected endothelial cells which inferred 

angiogenesis within the tissue-implant interface and reaction zone of all four implants, as 

in Figure 6.  No endothelial cells were detected within the porous scaffolds except for the 

mesh, Figure 6(c). 

Tissue-implant interface.  There was an increase in the Lv (data not shown) and Sv 

(Figure 7(a)) for the film and membrane from 21 days to 63 days, while these two 

parameters decreased for the control.  The membrane tissue-implant interface had the 

highest Sv at 63 days.  There was a reduction in the Rdiff for the film, mesh and control 

from 21 days to 63 days (Figure 7(b)); significantly so for the film, (p<0.05).  As seen in 

Figure 7(b), Rdiff was maximal for the membrane and minimal for the film at 63 days. 

Reaction zone.  The three polyesterurethane scaffolds had decreased Lv from 21 days to 

63 days, while the control Lv increased by almost a factor of three (p<0.05).  The Sv 

within the reaction zone of the four scaffolds is shown in Figure 8.  The film Sv decreased 

by 3% from 21 days to 63 days while the membrane and mesh Sv decreased by 56% and 

21% respectively.  The control Sv increased from 21 days to 63 days by 3% and was the 

maximal out of the four constructs by 63 days.  There was a significant difference 

between the 63 days film and membrane Sv at 63 days (p<0.05).  The reaction zone Rdiff 

decreased for all four scaffolds from 21 days to 63 days (data not shown).  The membrane 
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had the largest Rdiff at 63 days while the control had the smallest Rdiff.  There were no 

significant differences between groups with regards to Rdiff. 

Within the mesh matrix, there was a 7% increase in both Lv and Sv from 21 days 

to 63 days, while there was a 1% decrease in Rdiff..  None of the changes from 21 days to 

63 days were statistically significant. 

 

4. Discussion 

 

The aim of this study was to investigate the cellular and angiogenic in-vivo response of a 

slowly degrading polyesterurethane in a rabbit subcutaneous model at 21 days and 63 

days.  Three polyesterurethane constructs of different porosity were examined; a non-

porous solvent cast film, a porous electrospun mesh and a porous phase inversion 

membrane.  It was hypothesised that scaffold architecture of biodegradable 

polyesterurethane in-vivo evokes a cellular and angiogenic response that is dictated by 

architecture. 

Two distinct zones were evident around the film, membrane and control at both 

time points.  The inner layer, denoted the tissue-implant interface, was densely populated 

with cell nuclei without much collagenous matter.  The outer layer, designated the 

reaction zone, was more collagenous and interspersed with fibroblasts.  These findings 

concur with Lossing and Hansson who also reported two well-defined layers of a similar 

nature around silicone implants 
22

.  The tissue-implant interface thickness was measured 

at both time points.  Stereological analysis quantified the volume fraction of extracellular 

matrix deposition, inflammatory cells and angiogenesis within the two zones. 
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 The tissue-implant interface is the interfacial region of the inflammatory response 

induced by an implanted biomaterial in-vivo.  The tissue-implant interface thickness 

indicates how well an implanted material is accepted by the host tissue; a large interface 

would suggest an offending biomaterial.  Excessive interface thickness has been 

suggested as the aetiology of implant failures such as loosening of hip replacements 
23,24

, 

blockage of ocular drainage devices for glaucoma 
25

, malfunctioning of biosensors 
26

, 

excessive shrinkage of surgical meshes for hernia repair 
27

 and post-operative difficulty in 

removing intravascular pacing leads 
28

.  In this study, the tissue-implant interface 

thickness was significantly maximal for the bovine pericardium and minimal for the mesh 

at both time points. 

There are two possible explanations as to why the tissue-implant interface 

thickness was larger around the bovine pericardium compared to the three 

polyesterurethane scaffolds, namely biomaterial degradation rate and the by-product of 

degradation.  The polyesterurethane in this study has a degradation rate greater than 12 

months 
13

 while Vaughn and colleagues reported no signs of resorption for bovine 

pericardium in-vivo at 167 days 
29

.  The latter value would postulate that glutaraldehyde 

cross-linked bovine pericardium is a slowly degrading material, similar to the 

polyesterurethane. 

The second possible explanation may be the degradation by-products.  Cross-

linked bovine pericardium has been previously shown to evoke an excessive 

inflammatory response 
30-32

.  Previous in-vitro analysis of this polyesterurethane indicated 

that no cytotoxic residues are present on the mesh or film scaffolds post-processing and 

that both constructs accommodate good cell viability 
13

.  Furthermore, degradation of the 
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monomers within this polyesterurethane, namely hydroxybutyrate, glycolide and ε-

caprolactone, are all removed via systemic circulation; poly(hydroxybutyrate) degrades 

into R-3-hydroxybutyric acid which is a natural component of the blood 
33

, while 

glycolide is removed via renal excretion 
34

, as is ε-caprolactone 
35

. 

Although the film and membrane had similar interface thickness at 21 days, the 

membrane interface thickness increased at 63 days while the film decreased.  The 

irregular surface of the membrane may have caused irritation and inflammation 

subcutaneously while the rabbits were active.  And due to the small pore size of the 

membrane, 17±7µm, cellular infiltration would not be possible.  The lack of cellular 

infiltration into the membrane may also be attributed to poor pore interconnectivity which 

would prevent cellular penetration within the membrane.  Conversely, there was no 

tissue-implant interface present around the mesh.  This could be explained by the mesh 

inter-fibre distance, 107±58µm, and pore size, 78±46µm which would accommodate 

cellular infiltration.  

Within the tissue-implant interface, there was no increase in the volume fraction 

of collagen for the film, with an increase for the membrane.  There was an 18% decrease 

in the volume fraction of collagen around the control.  In the reaction zone, there was an 

increase from 21 days to 63 days in the volume fraction of collagen around all three 

polyesterurethane scaffolds, while there was a 22% decrease in the volume fraction of 

collagen for the control.  Comparing the 63 days reaction zones of the three 

polyesterurethane scaffolds, the membrane had the largest volume fraction of collagen, 

followed by the film and then the mesh.  



22 

Picosirius red staining and polarised light microscopy was used to identify 

collagen fibres around the implants.  Under polarised light, yellow and red are thought to 

signify collagen type I-like fibres, while green suggests collagen type III-like fibres 
16-18

, 

the latter indicating active fibrocytes.  The presence of the type III-like and type I-like 

collagen exemplify the transition of fibrocytes to collagen.  No collagen was observed 

within the film, membrane or mesh scaffolds at either time point which correlates with 

the stereological quantification of the Masson’s trichrome-stained slides.  There was an 

even distribution of type I-like and type III-like collagen fibres around the film, 

membrane and mesh tissue-implant interface at 21 days.  At 63 days, the polarised light 

microscopy images revealed an increase of red and yellow fibres around all implants, 

which suggests maturation from type III-like collagen.    Collagen type I-like and type 

III-like fibres were observed within the control implants at 21 days and 63 days.  This 

was due to the control material, bovine pericardium, being collagen based. 

 Within the tissue-implant interface there was an increase in the volume fraction of 

inflammatory cells for the membrane, film and control from 21 days to 63 days.  Further 

stereological analysis of the inflammatory cells revealed greater quantities of 

mononuclear cells at both time points for the bovine pericardium compared to the film 

and membrane scaffolds.  In addition, there were larger quantities of lymphocytes 

contained within the control tissue-implant interface, compared to the film and 

membrane, at 63 days.  The presence of the sustained macrophage response and larger 

volume fraction of lymphocytes indicate a chronic wound healing response to the bovine 

pericardium. Almost 40% of the inflammatory cells present within the tissue-implant 

interface around the film and membrane were fibroblasts.  This quantity of fibroblasts is 
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encouraging as during the wound healing response, granulation tissue is replaced by 

connective tissue.  Hence, the degrading film and membrane scaffolds will be replaced at 

the same rate with native tissue and without excessive chronic inflammation, as seen with 

the bovine pericardium. 

Stereological analysis indicated greater foreign body giant cells within the porous 

membrane tissue-implant interface compared to the non-porous film or control.  This 

difference indicates that scaffold architecture influences foreign body reaction.  

However, it is not uncommon for foreign body giant cells to form around porous inert 

materials who have an irregular morphology with a pore size less than 20µm 
4,6,36

.  

Tienen et al proffered that if inflammatory cells are unable to penetrate small pores then 

giant cells will accumulate and attempt to phagocytose the material 
37

.   

Quantification of the inflammatory cells indicated that the control reaction zone 

had at least a factor three times more lymphocytes than the film, mesh and membrane.  

The reaction zone in the control had a sustained mononuclear cell presence, which along 

with the lymphocytes, suggest a chronic inflammatory response to the bovine 

pericardium.  There was a significantly greater volume fraction of fibrocytes for the 

control compared to the three polyesterurethane scaffolds at 63 days, (p<0.05).  

Fibrocytes are mature fibroblasts that produce collagen type I, collagen type III and 

fibronectin 
38-40

.  The presence of fibrocytes around an implanted material also suggest 

that the scaffold is isolated from the surrounding tissue 
41-43

. 

The three polyesterurethane scaffolds had similar volume fractions of 

inflammatory cells at 63 days.  The non-porous film also had the greater volume fraction 

of fibroblasts compared to the porous membrane and mesh at 63 days.  This may be due 
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to the non-porous film preventing penetration of fibroblasts, unlike the mesh and 

membrane, whose interconnecting pores provide a network for the fibroblasts to 

penetrate.  There was no significant difference in the volume fraction of fibrocytes 

around the mesh, membrane or film.  However, the non-porous film had a smaller mean 

volume fraction of fibrocytes at 63 days compared to the mesh and membrane.  This 

infers that porous scaffolds are better tolerated in-vivo compared to non-porous scaffolds.  

There were mononuclear cells present within the membrane reaction zone, with 

negligible quantities for the film and mesh.  This sustained chronic inflammatory 

response may be due to the irregular topography of the membrane 
4-6

. 

Examination of the mesh scaffold indicted that there was a 17% decrease in the 

volume fraction of polymer from 21 days to 63 days. In-vitro, the mesh experienced a 

33% decrease in molecular weight for the same time period 
13

.  Although it is not possible 

to directly compare these two values, this difference can be attributed to the different 

degradation mechanisms; hydrolytic in-vitro compared to hydrolytic and enzymatic in-

vivo.  The volume fraction of inflammatory cells within the mesh interstices decreased by 

27% from 21 days to 63 days, with a 129% increase in the volume fraction of fibroblasts 

and a 56% decrease in the volume fraction of mononuclear cells, (p<0.05).  The 

summation of these results denotes that the slowly degrading mesh was well tolerated in-

vivo and replaced by host tissue. 

The third parameter to be quantified was angiogenesis.  Angiogenesis is crucial to 

the long-term integration and success of degrading implants as capillaries provide a 

network for providing blood, oxygen and nutrients to the newly formed tissue. CD31 is  a 

specific glycoprotein expressed by vascular endothelial cells, and so can be used to infer 
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angiogenesis 
19,20

.  Hence slides were stained with CD31 so as to quantify the degree of 

angiogenesis around and within the four implants at 21 days and 63 days.  Analysis of the 

Sv at 63 days within the tissue-implant interface suggests that the polyesterurethane 

scaffolds had superior angiogenesis compared to bovine pericardium.  Possibly the 

excessive inflammatory response from the bovine pericardium would prevent 

angiogenesis whilst concomitantly evoking a chronic wound healing response. 

The non-porous film had a significantly smaller Rdiff, (p<0.05), while the 

membrane had a higher Lv and Sv at 63 days.  An explanation for these results would be 

that the non-porous film prevents penetration of capillaries within the scaffold and so the 

newly formed capillaries would become more densely packed.  Conversely, porous 

scaffolds would encourage greater angiogenesis compared to a non-porous scaffold due 

to the higher surface area per volume. 

Within the reaction zone, all polyesterurethane scaffolds recorded a decrease in Lv 

and Sv.  This was contrary to an increase in Lv and Sv within the bovine pericardium 

reaction zone.  The increase in Lv and Sv for the bovine pericardium may be explained by 

the associated volume fraction increase of fibrocytes, as it has been suggested that 

fibrocytes induce angiogenesis 
38,44

. 

Out of the three polyesterurethane scaffolds at 63 days, the film had a larger 

reaction zone Lv and Sv compared to the membrane and mesh.  Moreover, the mesh had 

the smallest Rdiff out of the three polyesterurethane scaffolds.  These results confirm that 

a porous scaffold is superior to a non-porous scaffold for promoting angiogenesis and that 

increasing scaffold porosity increases vascularisation.  Furthermore, these reported results 

agree with van Tienen and colleagues who compared the tissue ingrowth of two 
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polyesterurethane scaffolds with varying porosity 
45

.  The authors attributed the enhanced 

fibrovascular ingrowth with increasing scaffold porosity. 

Having characterised this slowly degrading polyesterurethane in-vitro and in-vivo, 

future research will include functional studies using this material to determine its overall 

efficacy.  

 

5. Conclusions 

 

This study investigated the in-vivo tissue response to a biodegradable polyesterurethane, 

specifically the cellular and angiogenic response evoked by varying implant architectures 

in a subcutaneous rabbit implant model.  The tissue-implant interface thickness was 

dependent on the scaffold material and morphology, being minimal for the porous mesh 

and maximal for the bovine pericardium.  All of the polyesterurethane scaffolds showed a 

significantly less chronic inflammatory reaction than that seen in the control (p<0.05).  

However, the small pore size of the membrane fostered the accumulation of foreign body 

giant cells.  The mesh was the only scaffold infiltrated with host tissue at both time 

points.  Mature collagen was seen around all implants at 63 days.  Stereological 

quantification indicated that all three polyesterurethane scaffolds had superior 

angiogenesis at both time points compared to the control.  Specifically, increasing 

scaffold porosity promoted superior angiogenesis.  Accordingly, it may be concluded that 

the scaffold architecture of a biodegradable polyesterurethane in-vivo evokes a cellular 

and angiogenic response that is dictated by architecture.   
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Figure Legends 

 

Figure 1 – SEM images of processed polyesterurethane variants (a) solvent cast film (b)  

phase inversion membrane and (c) electrospun mesh  

 

Figure 2 – H&E histological images (original magnification x10) illustrating the tissue 

response elicited by: (a, b) non-porous film, (c, d) porous membrane, (e, f) control and (g, 

h) porous mesh, at 21 days (a, c, e, g) and 63 days (b, d, f, h) in a subcutaneous rabbit 

model.  White arrowheads indicate tissue-implant interface, black arrows indicate 

reaction zone 

 

Figure 3 – (a) Stereological volume fraction analysis of the Masson’s trichrome slides, 

describing the tissue-implant interface for the film, membrane and control, at 21 days and 

63 days (b) Stereological volume fraction analysis of the of the Masson’s trichrome slides 

for reaction zone of the mesh, film, membrane and control, at 21 days and 63 days (c) 

Stereological volume fraction analysis of the 21 days and 63 days tissue infiltration for 

the mesh.  All values expressed as mean ± SD. *, # indicates statistical difference, 

p<0.05, between groups 

 

Figure 4 – Polarised light microscopy images (original magnification x40) of (a, b) film, 

(c, d) membrane, (e, f) mesh and (g, h) control, at 21days (a, c, e, g) and 63 days (b, d, f, 

h) in a subcutaneous rabbit model.  Yellow and red denote collagen type I-like tissue 

whilst green implies collagen type III-like tissue.  Arrows indicate interface tissue-

implant interface 
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Figure 5 – (a) Stereological volume fraction analysis of the 21 days and 63 days 

inflammatory response within the film, membrane and control tissue-implant interface (b) 

Stereological volume fraction analysis of the 21 days and 63 days inflammatory response 

within the mesh, film, membrane and control reaction zone (c) Stereological volume 

fraction analysis of the 21 days and 63 days inflammatory response within the mesh 

matrix.  F = fibroblasts, GC = giant cells, L = lymphocytes, P = plasma cells, MN = 

mononuclear cells.  All values expressed as mean ± SD.  Identical letters indicate 

statistical difference, p<0.05, between groups 

 

Figure 6 – Light microscopy images (original magnification x40) of CD31 

immunostained slides of (a) film, (b) membrane (c) mesh and (d) control at 21d in a 

subcutaneous rabbit model.  Arrows indicate blood vessels as detected by CD31 labelled 

endothelial cells 

 

Figure 7 – (a) Tissue-implant interface surface area density, Sv, of the membrane, film 

and control at 21 and 63 days (b) Tissue-implant interface radial diffusion difference, 

Rdiff, of the membrane, film and control at 21 and 63 days.  All values expressed as mean 

± SD.  * indicates statistical difference, p<0.05, between groups 

 

Figure 8 – Reaction zone surface area density, Sa, of the membrane, film, mesh and 

control at 21 and 63 days.  All values expressed as mean ± SD.  * indicates statistical 

difference, p<0.05, between groups 
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Parameter Value 

Porosity 91.67 ± 3.51% 

Pore size 78.23 ± 45.69µm 

Pore distribution: 

aspect ratio 1.0 

aspect ratio 1.5 

aspect ratio 2.0 

 

0.03 ± 0.01 

0.03 ± 0.01 

0.03 ± 0.00 

 

Table 1 – Electrospun mesh parameters, mean ± SD, quantified using FFT algorithms 

 

Variant 21 days interface 

thickness (μm) 

63 days interface 

thickness (μm) 

Mesh 0
#
 0

#
 

Membrane 9 ± 3 14 ± 5 

Film 9 ± 4 9 ± 3 

Control 14 ± 4* 20 ± 9 

 

Table 2 – Tissue-implant interface thickness, mean ± SD, quantified at 21 and 63 days.  

*, # denotes statistical difference, p<0.05 
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