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Abstract 

 

Activated alloys synthesized by arc-melting were examined as catalysts for improving the 

hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible 

hydrogen storage material. The MgH2-catalyst absorbing materials were prepared by ball milling 

of pure MgH2 with hydrided Zr47Ni53, Zr9Ni11, and other investigated alloys. The nanostructured 

MgH2-intermetallic systems were tested at 250°C and catalyst addition of eutectoid Zr47Ni53 

resulted in the fastest desorption time and highest initial desorption rate. Also, the catalyzed Mg-

hydride with activated Zr9Ni11 and Zr7Ni10 phases showed fast desorption kinetics. Moreover, the 

results demonstrated that the composition of dispersed ZrxNiy catalysts has a strong influence on 

the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. 
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1. Introduction 

 

Improving reversible hydrogen sorption rates of solid-state stores at moderate temperature are of 

great technological importance for the adoption of hydrogen for transportation and stationary 

applications. Among the different metal hydrides types (Fig. 1) developed previously [1], 

magnesium-based hydrides are of particular interest for hydrogen storage due to the high energy 

density they can provide (7.6 H-wt%). From large number of studies available, currently emerges 

a general perspective that optimum sorption hydrogen storage characteristics may be reached 

only in catalytically enhanced systems [1-2].  

Improved sorption characteristics of nanocrystalline MgH2 by doping with transition metals and 

oxides were previously reported. Recent papers by Oelerich et al., Hanada et al. and Skripnyuk et 

al. [3-5] give an overview of catalyzed MgH2 nanocomposites prepared by mechanically milling 

for the hydrogen storage applications. A storage capacity of 6.5wt% after doping MgH2 with 

nanosized-Ni in a temperature range of 150-250ºC was reported by Hanada et al. [5]. Moreover, 

a remarkable improvement in desorption kinetics was also observed by the same group [6] by 

using 1mol.% Nb2O5-doped nanostructured MgH2 at 160°C under helium flow. More recently, 

Kojima et al. [7], reported that nano-Ni/Al2O5/C catalysts composite have significant effect in 

enhancing the sorption kinetics of ball milled MgH2 at 200°C and vacuum condition. 

 

While such catalysts give substantial rise to the sorption rates, further increase in the kinetic and 

thermodynamic properties of nanostructured Mg-hydride could be possible by using new 

activated phases of alloys. The aim of this work is to explore the ability of different binary and 

ternary metal alloys as catalysts to increase the hydrogen sorption properties of nanostructured 
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magnesium hydride.  

 

2. Experimental details 

 

Synthesis of the nanocomposite materials 

The synthesis of the nanocrystalline Mg-based compounds was accomplished by milling a 

mixture of elemental magnesium hydride (98% pure, from Th. Goldschmidt AG), with 

intermetallic alloys powders acting as catalysts. The fraction of catalyst added to MgH2 

represents approximately 10 wt.% in each case. The mixtures were sealed in a 30 mL -hardened 

stainless steel vial set. The vial was vigorously agitated for 20 hours under argon atmosphere. A 

Spex CertiPrep 8000M mixer (Metuchen, NJ) was used for synthesis of sorption nanocomposites. 

Details on this nanoscale grinding method were previously described elsewhere [1]. Oxidation 

and/or hydroxide formation were avoided by storing and handling the samples and starting 

powders in a glove box filled with pure argon. The alloys were prepared by arc-melting the 

metallic mixtures in argon atmosphere on a water cooled copper heart. The intermetallic alloys 

were activated (hydrided) prior to milling by direct reaction with high-pressure hydrogen of 25 

atm at 300 °C in the case of Mg2Ni and at ambient temperature for the other ones. 

The other composites were prepared using a similar approach, except for MgH2-(Zr7Ni10-AX21), 

MgH2-CMgNi3 and MgH2-Zr47Ni53. In the case of MgH2-(Zr7Ni10-AX21) 0.2 mol.%, AX21 

activated carbon was milled with Zr7Ni10 catalyst, and then the resulting catalyst particles were 

milled with pure MgH2 for 20 hours. The super activated carbon used in the experiment is the 

well-known AX-21 (Anderson Development Co.) exhibiting a BET surface area of circa 2800 

m
2
/g and a total pore volume of 1.1 cm

3
/g. To prepare MgH2-CMgNi3 2 mol.% nanocomposite, 
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the ternary compound containing Mg-C-Ni (MgCNi3, non-oxide perovskite) was first 

synthesised by synergic combination of mechanical alloying and isothermal heating, according to 

the procedure reported by Ferretti et al. [8]. 

The chosen composition of the Zr47Ni53 alloy (47wt.% Zr, 53wt.% Ni) corresponds to an 

eutectoid composition solidifying at 1070ºC. The alloy was obtained by arc-melting a pellet 

containing appropriate amounts of ZrH2 (-325 mesh, 99% pure) and Ni powder (3 micron, 99.7% 

pure), previously mixed and compressed at a pressure of 15 tons/cm
2
, under vacuum. The 

resulting alloy button was crushed into pieces before being utilized to prepare the composite. 

One part of these pieces was used in the as-melted condition, while others were annealed 24 

hours at 1000ºC inside an evacuated-quartz capsule. Two samples of composite were obtained: 

either with as-cast or with annealed Zr47Ni53 alloy.  

 

Characterization and cycling 

Changes in thermodynamic and kinetic properties of Mg-hydride nanocomposites were 

determined by carrying out advanced volumetric hydrogen titration and cycling experiments [1]. 

The microstructure was determined by scanning electron microscopy (SEM) using a field 

emission scanning electron microscope Hitachi model S4700.  The X-ray diffraction analysis 

was performed on a Rigaku diffractometer with monochromated Co Kα radiation. Specific 

surface areas of the sample before and after cycling were determined by the Brunauer, Emmett 

and Teller (BET) technique using nitrogen in a Quantachrome micrometric adsorption analyser 

at 77 K. Before analyses, heat treatment in a vacuum (10
-6

 atm) at 300°C was applied for several 

hours.   
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The samples were characterized and cycled at 250°C and 300°C under ultra high purity hydrogen 

absorption pressure of 10 atm and a desorption pressure of 0.25 atm. Instantaneous absorption 

and desorption hydrogen flow rates were measured under the same conditions. The hydrogen 

sorption rates were determined by measuring directly the rates at which hydrogen is added or 

extracted to or from the sorption nanocomposites to maintain a constant pressure. The hydrogen 

sorption rates were monitored by a Brooks’s mass flow rate controller. Before starting every 

absorption/desorption experiment, 200 mg-samples were outgassed for at least 30 min at a 

vacuum pressure of 10
-6

 atm.  

3. Results and discussion 

 

Results of the activation of various ZrxNiy alloys are presented in Fig. 2. Generally, the alloys 

formed stable hydrides at ambient temperature. After activation, ZrNi absorbed nearly 2.50 

H wt.%, while Zr7Ni10 and Zr9Ni11 absorbed about 1.40 H-wt.%. The activation process 

metamorphosed alloys into fine powders. This transformation was beneficial since it generated a 

more homogeneous catalyst particle distribution after milling. Indeed, it was observed that the 

catalytic enhancements were more important when the hydrogenated catalysts were milled with 

MgH2 [1].  

Before starting the desorption and PCT experiments, the Mg-based nanocomposite samples were 

cycled until the desorption rates were stabilized. Dynamic desorption experiments at 250 °C 

were undertaken on MgH2-catalyst sorption materials (Fig. 3a, 3b), and the corresponding 

desorption flow rates were obtained at 250 and 300 °C (Fig. 4a and 4b).  

Desorption kinetic properties calculated from measured curves are listed at Table 1. The 

oscillations observed on the kinetic curves of Fig. 4a were ascribed to the relatively small 



 7

difference between desorption plateau pressures and hydrogen pressure in the reactor. Such 

oscillations were not displayed on the desorption flow rate curves obtained at 300 °C, since the 

pressure variations in the reactor were negligible in comparison to the driving pressure at the 

same temperature. It should also be noted that the kinetic measurements at 250 °C showed a 

better representation of the influence of the various catalysts, since hydrogen diffusivity in the 

sorption material, which increases with temperature, is by far less important at 250 °C than 300 

°C. At high temperatures, high hydrogen diffusivity effectively hides the catalytic effect of the 

alloys. Considering the time at which the hydrogen desorption flow rates became approximately 

nil on the 250 °C curves, important variations of this time occured with different catalysts. 

However, at 300 °C, this time is approximately equal for all catalysts, indicating that 

dehydrogenation at this temperature does not significantly depend on the intermetallic alloys 

catalytic properties.    

Catalytic addition of Zr47Ni53 to MgH2 resulted in the fastest desorption time and highest initial 

desorption rate, which are 11 minutes and 0.71 H-wt.%/min, respectively (Fig. 3a). The 

maximum flow rate of 20.4 cc/min/g measured at 250 °C on MgH2-Zr47Ni53 10 wt.% was also 

the highest among all the samples (Fig. 4a). This result constitutes a significant improvement in 

comparison to that obtained with nanocrystalline MgH2, which desorbed the hydrogen in about 

90 minutes at 300 °C [1]. Annealing the sample increased the desorption time by a small factor, 

reaching 13 minutes, while desorption rate decreased slightly to 0.66 H-wt.%/min. The 

maximum flow rate at 250 °C diminished somewhat to 17.8 cc/min/g when MgH2-Zr47Ni53 10 

wt.% was annealed. The second most efficient catalyst of the set studied in this work was 

Zr9Ni11. 

MgH2-Zr9Ni11 0.2 mol.% nanocomposite desorbed hydrogen in approximately 16 minutes at 250 



 8

°C, its initial desorption rate was 0.52 H-wt.%/min and its maximum flow rate was  

approximately 19.0 cc/min/g at 250 °C. The nanocomposite MgH2- Zr9Ni11 0.2 mol.% takes 5 

minutes more than MgH2-Zr47Ni53 10 wt.% to desorb hydrogen, but the former can absorb 0.5 H-

wt.% more than the latter. The worst discharge time, around 77 minutes, was obtained with 

MgH2-Mg2Ni 2 mol.% nanocomposite. Furthermore, the results show (Fig. 3b) that Zr7Ni10 alloy 

concentration had a strong effect on the desorption characteristics of the composite. Among all 

the samples, the highest and lowest desorbed hydrogen amount measured were respectively 6.01 

H-wt.% and 4.50 H-wt.%. 

Pressure-composition isotherms were also obtained at 250 °C and 300 °C for each of MgH2 

samples added with various catalysts (Fig. 5a and 5b). Table 2 depicts the isothermal sorption 

properties extracted from the PCT curves as displayed in Fig. 5a and 5b. The intermetallics 

significantly increased desorption plateau pressure of MgH2. Since the plateau pressures 

decreased exponentially with diminishing temperature, lifting desorption plateau pressures are 

necessary to obtain a material that desorbs hydrogen at lower temperatures. The relatively high 

plateau pressures at 250 °C and 300°C generated sufficient driving force to allow hydrogen 

desorption, which represents a major improvement with respect to pure MgH2.  

While higher desorption plateau pressures are linked to faster hydrogen discharge, other factors 

such as hydrogen diffusivity in the absorbing nanomaterial influence desorption times. Indeed, 

the MgH2-Zr7Ni10 0.2 mol.% and MgH2-(Zr9Ni11) 0.2 mol.% nanocomposites have nearly equal 

desorption plateau pressures at 250 °C, but the former takes two times more to desorb hydrogen 

than the latter. Moreover, the desorption plateau pressure of MgH2-Mg2Ni 2 mol.% is among the 

highest measured for all the samples, while it desorbs hydrogen completely within the longest 

period of time. This indicates that the catalysts do not only lift desorption plateau pressures, but 
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also have a strong effect on the overall hydrogen desorption kinetics of MgH2 nanocomposites.  

Mg crystallite sizes were estimated by X-ray diffraction experiments (Table 3). It is clear that the 

nature of the catalyst milled with MgH2 had an important influence on Mg grain size. However, 

it is clearly shown that the kinetic enhancements were not solely due to Mg crystal reduction. 

Indeed, the smallest estimated nanocrystallite was obtained for MgH2-ZrNi 1 mol.% 

nanocomposite, but ZrNi ranks among the alloys providing the least kinetic improvements, 

proving that the intermetallic compounds themselves have played a truly intrinsic catalytic role 

in hydrogen desorption. BET specific surface area analyses were undertaken on some of 

catalyzed MgH2 samples. MgH2-Zr9Ni11 0.2 mol.%, which desorbs hydrogen completely 

approximately twice as fast as MgH2 -V 3 at.% - Ti 2 at.%, has a specific surface area of 20.3 

m
2
/g, while the measured value for MgH2 -V 3 at.% - Ti 2 at.% was 12.3 m

2
/g after cycling [9]. 

Fig. 6 and 7 show the X-ray crystal structure and SEM micrographs analysis carried out on 

MgH2-Zr47Ni53 nanomaterial before and after cycling. The pattern after 1000 cycles reveals 

Zirconium peak disappearance; this can be ascribed to Zr nanocrystals amorphization. The 

micrographs reveal that in the ball-milled state the nanocomposite particles have a dense 

structure whereas during the hydrogen absorption and desorption cycling the particles became 

porous with nanopores randomly distributed in the particles (Fig. 7). 

Activated carbon was milled with Zr7Ni10 in order to verify if such addition would result in 

kinetic enhancements. It was believed that carbon would favour a more efficient catalyst particle 

distribution. Moreover, recent studies have demonstrated that co-milling metal hydrides with 

carbon improves hydrogen sorption kinetics [10-16], suggesting that carbon plays a catalytic 

role. Zr7Ni10 was chosen for the experiment, among the ZrxNiy catalysts investigated in this 

work, because this particular composition is easier to activate, thus easier to turn into a fine 
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powdery form. Unfortunately, AX21 addition  had a detrimental effect on the desorption kinetics 

by raising the discharge time from 34 to 45 minutes and decreasing the discharge rate from to 

0.20 to 0.13 H-wt.%/min. Figure 8 shows the X-ray diffraction patterns taken on MgH2-(Zr7Ni10-

AX21) 0.2 mol.% and MgH2-Zr7Ni10 0.2 mol.% after cycling. Mg2Ni peaks are present in both 

curves, but the peak intensity at 2θ = 52.4° is much higher in the pattern of MgH2-(Zr7Ni10-

AX21) 0.2 mol.%. Mg2Ni peaks are also found in the diffraction patterns of every other MgH2-

ZrxNiy catalyst. The other difference between both curves shown in Figure 8, is related to the 

presence of ZrC peaks in the pattern of MgH2-(Zr7Ni10-AX21) 0.2 mol.% suggesting that milling 

carbon structures with ZrxNiy alloys increases the concentration of Mg2Ni in the sample. It is 

believed that the observed kinetic slowdown of MgH2-(Zr7Ni10-AX21) 0.2 mol.% can be 

attributed to such a reduction phenomenon. Following milling and cycling, less catalyst particles 

in ZrxNiy form are present in the sample due to the high reactivity of zirconium with carbon, 

diminishing thus, the catalytic enhancements. 

In order to find alternative intermetallic catalyst systems for improving desorption kinetic of 

nanocrystalline MgH2, preliminary investigations on the catalysis potential featured by ternary 

compounds were carried out. With regard to MgH2-MgCNi3 nanocomposites, the trend of the 

structural and superconductive parameters of the ternary catalyst compounds versus the rate and 

amount of the accumulated hydrogen was never investigated. The X-ray diffraction pattern of the 

milled and heated Mg2NiH4 and AX21 mixture is displayed at Figure 9. This pattern confirms 

the formation of CMgNi3 as well as the presence of traces of Mg2Ni and graphite. The sorption 

results show that the catalytic ad-mixing of CMgNi3 enhanced the discharge performance of 

MgH2 by a factor of two, in comparison to the results obtained with the Mg2Ni-doped MgH2 

hydride. Indeed, MgH2-CMgNi3 nanocomposite desorbed hydrogen with initial flow rate of 0.12 
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H-Wt.%/min at 250 °C while MgH2 -Mg2Ni desorbed hydrogen at lower initial flow rate of 0.05 

H-wt%/min.  

More experimental analysis using various ternary alloy catalysts were also investigated and 

presented on Figures 3a, 5a and 5b. The sorption experiments showed that the catalytic 

behaviours of these alloys and their influence on the dehydrogenation properties of MgH2 

nanocrystals were very different. The Ti0.2Zr0.8Ni alloy revealed to be the most active and 

induced the lowest discharge capacity. 

 

4. Concluding remarks 

 

• Hydrogen unloading results demonstrate that doping nanostructured Mg-hydride with 

activated alloys yields increased desorption kinetics and substantial reduction of 

discharge temperature of MgH2 nanocrystals. 

• Zr9Ni11 and Zr7Ni10 enhance kinetics, but not as much as eutectoid Zr47Ni53 

• The results also establish that, the stoechiometry of ZrxNiy catalysts has a strong 

influence on desorption kinetic properties. Indeed, MgH2-Zr7Ni10 0.2 mol.% desorbs 

hydrogen in about twice the time taken in the case of MgH2-Zr9Ni11 0.2 mol.%.  

• MgH2-Zr47Ni53 nanocomposite exhibits improved sorption and microstructure stability 

during cycling. 

• The Zr7Ni10 catalyzed Mg-hydride ground with activated carbon show a reduction in the 

dehydriding rate, while the CMgNi3 catalyst exhibits increased desorption flow. 
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FIGURE CAPTIONS 

Fig. 1 Pressure-composition isotherms of various types of metal hydrides [1] 

Fig. 2  Activation of ZrxNiy catalysts at 23 °C and 25 atm. 

Fig. 3a  Desorption kinetics of different Mg-nanocomposites at 250°C  

Fig. 3b  Desorption kinetics of selected Mg-nanocomposites at 250°C  

Fig. 4a  Dehydriding rates of different Mg-nanocomposites at 250 °C  

Fig. 4b  Dehydriding rates of different Mg-nanocomposites at 300°C 

Fig. 5a  Pressure-composition isotherms of different Mg-nanocomposites at 250 °C 

Fig. 5b  Pressure-composition isotherms of different Mg-nanocomposites at 300°C 

Fig. 6 X-ray diffraction patterns performed on MgH2-Zr47Ni53 nanocomposite before and after 

cycling. 

Fig. 7  SEM micrographs taken on MgH2-Zr47Ni53 10 wt% nanocomposite (a) before and (b) 

after cycling. 

Fig. 8 X-ray patterns taken on MgH2-(Zr7Ni10-AX21) 0.2 mol.% and MgH2-Zr7Ni10 0.2 mol.%  

after cycling. 
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Fig. 9  X-ray patterns taken after milling AX21 and Mg2NiH4 and heating the mixture. 

 

TABLE CAPTIONS 

Table 1. Desorption kinetic properties of different ball-milled Mg-nanocomposites (initial 

pressure of 1 psia and initial discharge rates calculated between 0 and 5 minutes). 

Table 2. Isothermal sorption properties of various ball-milled Mg-Nanocomposites. 

Table 3. Mg crystallite size of the different ball-milled nanomaterials. 
†
See [9] for details. 
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Desorption dynamics at 250 °C
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a) 

Desorption kinetics at 250 °C
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Table 1 

Sample Initial 

discharge rate 

at 250 °C  

(H-wt. %/min) 

Discharge 

capacity at 

250°C  

(H-wt. %) 

Discharge 

time at 

250 °C 

(min) 

Peak flow 

rate at  

250 °C 

(cc/min/g) 

Peak flow  

rate at 300 

°C 

(cc/min/g) 

MgH2-Mg2Ni  

2 mol.% 

 

0.05 

 

6.01 

 

77 

 

8.5 

 

101.5 

MgH2-TiAl0.1V0.04  

5 mol.% 

0.13 5.77 54 11.1 115.9 

MgH2-ZrNi 

1 mol.% 

0.12 5.90 56 14.2 130.9 

MgH2-CMgNi3 

2 mol.% 

0.12 5.68 55 9.3 107.0 

MgH2-Zr7Ni10  

0.2 mol.% 

0.20 5.91 34 15.7 133.4 

MgH2 –V 3 at.%  

- Ti 2 at.% 

0.31 5.59 32 11.7 153.9 

MgH2-Zr9Ni11 

0.2 mol.% 

0.52 5.88 16 19.0 141.2 

MgH2-Zr47Ni53 10 

wt.% (annealed) 

0.66 5.37 13 17.8 140.9 

MgH2-Zr47Ni53  

10 wt.% 

0.71 5.42 11 20.4 165.6 

MgH2-(Zr7Ni10-

AX21) 

0.2 mol.% 

0.13 5.64 45 N/A N/A 

MgH2-

Zr0.33Cr0.33Ni0.33 

4 mol.% 

0.22 4.96 32 N/A N/A 

MgH2-Ti0.2Zr0.8Ni 

2 mol.% 

0.35 4.50 20 N/A N/A 

MgH2-Ti0.39Ni0.61 

5 mol.% 

0.19 4.86 35 N/A N/A 
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Table 2 
 

Temperature  

(ºC) 

Absorption 

plateau 

pressure 

(atm)  

Desorption 

plateau 

pressure 

(atm) 

 

Maximum 

H. wt (%) 

Absorption 

plateau 

slope  

(d ln(P)/ 

d H/M) 

Desorption 

plateau 

slope  

(d ln(P)/ 

d H/M) 

 

Hysteresis 

(ln (Pabs/Pdes)) 

MgH2-Mg2Ni 2 mol.% 

250 0.65 0.19 6.21 0.97 0.67 1.22 

300 2.53 1.39 6.08 0.67 0.12 0.60 

MgH2-TiAl0.1V0.04 5 mol.% 
250 0.88 0.10 6.09 2.50 0.29 2.15 

300 2.54 1.00 6.00 1.03 1.61 0.93 

MgH2-ZrNi 1 mol.% 
250 0.70 0.16 6.34 1.56 1.92 1.50 

300 2.25 1.16 6.14 0.73 0.67 0.66 

MgH2-CMgNi3 2 mol.% 
250 0.87 0.10 5.69 1.93 1.85 2.18 

300 3.36 1.14 5.64 1.47 0.88 1.08 

MgH2-Zr7Ni10 0.2 mol%  

250 0.64 0.20 5.59 1.2 0.85 1.17 

300 2.31 1.28 5.81 0.63 0.33 0.59 

MgH2 - V 3 at.% - Ti 2 at.% 

250 0.67 0.17 5.60 2.48 1.17 1.38 

300 1.74 1.04 5.88 0.91 1.00 0.52 

MgH2-Zr9Ni11 0.2 mol.% 
250 0.67 0.21 5.95 1.88 1.86 1.16 

300 2.10 1.30 6.03 0.63 0.27 0.48 

MgH2-Zr47Ni53 10 wt.% (annealed) 
250 0.66 0.23 5.75 1.03 0.14 1.05 

300 2.21 1.34 5.65 0.62 0.04 0.50 

MgH2-Zr47Ni53 10 wt.% 

250 0.60 0.25 5.80 2.20 1.64 0.87 

300 2.06 1.28 5.74 0.68 0.05 0.48 

MgH2-(Zr7Ni10-AX21) 0.2 mol.% 

250 0.54 0.17 5.64 1.65 0.76 1.16 

300 2.01 1.29 5.72 0.91 0.26 0.44 

MgH2-Zr0.33Cr0.33Ni0.33 4 mol.% 
250 0.65 0.19 5.31 1.65 0.97 1.24 

300 2.09 1.29 5.36 0.89 0.38 0.49 

MgH2-Ti0.2Zr0.8Ni 2 mol.% 
250 0.48 0.25 4.96 0.31 1.95 0.64 

300 2.26 1.46 5.34 1.44 0.19 0.44 

MgH2-Ti0.39Ni0.61 5 mol.% 
250 0.71 0.17 5.08 2.42 1.95 1.42 

300 2.41 1.32 5.00 1.23 0.30 0.60 
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Table 3 

 

Nanocomposite  

 

Mg crystallite size (nm) 

 

 

MgH2-Mg2Ni 2 mol.% 

 

52 

MgH2-TiAl0.1V0.04 5 mol.% 52 

MgH2-ZrNi 1 mol.% 37 

MgH2-CMgNi3 2 mol.% 49 

MgH2-Zr7Ni10  0.2 mol.% 38 

MgH2  – V 3 at.% - Ti 2 at.% 54
† 

MgH2-Zr9Ni11 0.2 mol.% 43 

MgH2-Zr47Ni53 10 wt.% (annealed) 40 

MgH2-Zr47Ni53 10 wt.% (uncycled) 45 

MgH2-Zr47Ni53 10 wt.%  44 

MgH2-(Zr7Ni10-AX21) 0.2 mol.% 46 

MgH2-Zr0.33Cr0.33Ni0.33 4 mol.% 42 

 

 


