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Abstract: Magnesium oxychloride (MOC) cement is a type of non-hydraulic cement with 

yellowish color in nature and low alkalinity exhibiting many other properties superior to the 

Ordinary Portland Cement (OPC). In this study, light-weight wood-MOC cement composite 

building products, with sawdust and/or perlite as aggregate, were made through extrusion. 

Physical, nailing and mechanical properties of these composites were investigated. It was found 

that the specific dry densities of the wood-MOC cement composites were close 1.0 and they 

were nailable like hard natural wood. Their flexural strength decreased as temperature increased. 

By replacing 50% sawdust in weight by perlite, the composite exhibited less die swell and higher 

temperature resistant performance. 
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1. Introduction 

Magnesium oxychloride (MOC) cement, also known as Sorel cement, is a type of non-

hydraulic cement. As an air-dried magnesia-based cementitious material, MOC cement was 

developed shortly after the invention of Portland cement [1]. It is formed by mixing magnesium 

oxide (MgO) powder with magnesium chloride (MgCl2) solution. MOC cement has many 
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properties superior to the Ordinary Portland Cement (OPC) including: lower carbon emission, 

higher fire resistance, higher abrasion resistance, higher temperature resistance, lower thermal 

conductivity, lower shrinkage or creep and better durability [2]. MOC cement sets and hardens 

much quicker than the OPC making it ideal for rapidly repairing infrastructure, such as highway 

and airport runway. The lower alkalinity of MOC cement makes it good when using with glass 

fibers without the aging problem which is very common when glass fibers are mixed with OPC. 

MOC cement is also good for mixing with wood particles and sawdust to make wood-like 

composites and building products. One of the greatest advantages of these composites is that 

MOC cement has yellowish color in nature which is very close to the color of many natural 

woods. In wood-OPC composites, the lignin compounds and adverse chemicals in woods may 

retard the hydration of OPC, resulting in the wood-OPC composites having very low early 

strength. MOC cement, on the other hand, can largely reduce this problem, resulting in a perfect 

match between wood and cement for composites for building industry and residential 

applications, such as window and door frames, door panels, sidings, partition walls etc. 

Light-burnt MgO, one of the raw materials required for making MOC cement, is 

normally obtained by calcinations of magnesite (MgCO3) at a temperature of around 750 oC, 

which is much lower than 1400 oC, the temperature, needed for calcinations of cement clinker. 

The quality or reactivity of the formed MgO powder is largely affected by its thermal history (i.e., 

calcination temperature and duration) and particle size. This in turn affects both the reaction rate 

and the properties of the reacted products of MOC cement. The hydration of MOC cement takes 

place in a through-solution reaction with four main reaction phases being 

2Mg(OH)2.MgCl2.4H2O (phase 2), 3Mg(OH)2.MgCl2.8H2O (phase 3), 5Mg(OH)2.MgCl2.8H2O 

(phase 5), and 9Mg(OH)2.MgCl2.5H2O (phase 9) [3]. It has been found that Phases 3 and 5 can 
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exist at ambient temperature while Phases 2 and 9 are only stable at temperature above 100 oC 

[4]. Recently, the hydration, microstructure, and physical and mechanical properties of MOC 

cement and the reactivity of MgO in MOC cement have been thoroughly studied [5-8]. 

Extrusion is an advanced material processing technique that can be used to produce high 

performance fiber-reinforced cement-based composite building materials and products. In 

extrusion, semi-solid dough-like fresh cement mixture, normally reinforced by short discrete 

fibers, is forced through a die of desired cross section using either an auger or a ram. During this 

process, the fresh mixture is subjected to high compression and high shear, which densifies the 

cement matrix, improves the fiber-matrix bond, and aligns fibers in the direction of extrusion [9-

11]. As a result, the mechanical performance and durability of the composites are superior to cast 

composites with similar mix proportions. As a material processing technology, extrusion has 

many superior properties as compared to other material processing technique in manufacturing 

building products, which include mass production with low cost, environmental friendly, low 

energy and water consumption, and better quality control of final products. This technique has 

gradually drawn research and industrial interests due to the increasing awareness of carbon 

emission, energy and water consumption. Recently, the European Commission has funded a 2.7 

million Euro project – Nanotechnology Enhanced Extruded Fiber Reinforced Foam Cement 

Based Environmental Friendly Sandwich Material for Building Application (FIBCEM), through 

the 7th Framework Programme to an inter-European Union (EU) consortium with 10 partners 

from 5 EU member state countries in which the first author was appointed as the Scientific 

Coordinator. The FIBCEM project aims at exploring a low-energy extrusion technology, to 

replace traditional fiber-cement techniques such as the Hatschek process which was invented 

more than 100 years ago and is still the main material processing technique in fiber-cement 
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building material industry, for manufacturing cement-based building products like roof tiles and 

sidings to reduce labor and material costs, energy and water consumption, and carbon emission. 

Hatschek process for producing cement-based materials and products consumes much energy 

and water which is not sustainable while extrusion is more promising in energy and water saving 

[reference]. 

 

2. Materials and testing 

2.1. Materials and mix formulations 

In this study, light-burnt MgO powders, supplied as an industry raw material from Ji’nan, 

China, were used as one of the raw materials for making MOC cement, which had a purity of 

96%. Another raw material for making MOC cement was MgCl2 crystals, which was also 

industrial-grade chemicals with the purity of 98% from Israel. The chemical compositions of the 

light-burnt MgO powders are shown in Table 1 while the microstructure of MgO powders under 

Scan Electronic Microscope (SEM) is shown in Fig. 1. Sawdust, which was obtained from a 

wood workshop as residuals when cutting natural and/or recycled wood, was used as aggregates. 

The sawdust was incorporated into the wood-MOC cement composites without any special 

pretreatment. Perlite was also used to partially replace sawdust as aggregate, which was obtained 

from the same source as those used elsewhere [12] for making light-weight fire-resistant wall 

panels through extrusion technique. Perlite is a kind of light-weight cellular filler formed by 

heating the crushed natural volcanic mineral. The chemical compositions of perlite are also 

shown in Table 1. When this kind of glassy aggregate is mixed with OPC, it can undergo either 

alkali silica or pozzolanic reactions in wet environment [13]. The lower alkalinity of MOC 

cement, on the other hand, can largely reduce this adverse possible alkali silica reaction in MOC 
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cement. In total, two light-weight wood-MOC cement composite materials were made and 

extruded using sawdust and/or perlite as aggregate. The mix formulations of these two composite 

materials are shown in Table 2. PVA and glass fibres are two types of fibres used to reinforce 

cement composites. PVA fibres are able to enhance ductility of cement composites but they have 

relatively lower strength, modulus of elasticity and ignition point compared with glass fibres. On 

the other hand, glass fibres are brittle and deteriorate quickly in the alkali environment of 

Portland cement. Magnesium Oxychloride (MOC) cement has lower alkalinity than PC so 

potentially glass fibres are able to be used in MOC cement composites to improve their strength 

and stiffness as well as their resistance to high temperature and/or fire. Therefore, it may 

demonstrate great advantage by hybrid usage of PVA and glass fibres in MOC cement 

composites. So in this study, a hybrid usage of PVA and glass fibres was adopted to reinforce the 

wood-MOC cement composites. The physical and mechanical properties of short discrete 

polyvinyl acetate (PVA) fibers and glass fibers mixed in the wood-MOC cement composites are 

shown in Table 3. It should be noted that glass fibres used for this study was not bundled rather 

they were separated. For each composite, two types of full-scale building products, i.e., door 

frame and door panel, were made through a single screw arguer extruder (as shown in Fig. 2a). 

 

2.2. Preparation of fresh mixture and extrusion 

To make MOC cement and prepare fresh wood-MOC cement mixture for extrusion, 

MgCl2 crystals were dissolved into water to prepare a solution with the concentration of 25%. 

Then rheology enhancing admixtures, Polymer Polyacrylamide (PAM) and Carboxymethyl 

Hydroxypropyl Cellulose (CMC), were dissolved into the MgCl2 solution one day before 

preparing the mixture for extrusion. To increase the dissolving of the high molecular weight 
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rheology enhancing admixtures, PAM and CMC, in the MgCl2 solution, water bath curing 

method was adopted in which the container with the MgCl2 solution, PAM and CMC, was put in 

water bath with the temperature of around 60 oC for a couple of hours. Finally a transparent gel 

was reached. To prepare the fresh mixture suitable for extrusion, first, 2/3 MgO powder was 

mixed with around 2/3 sawdust and/or perlite in dry state for around 3 minutes. Then around 2/3 

MgCl2 solution, with the rheology enhancing admixtures, and 2/3 water were added into the 

mixture for another 3 minutes mixing with a higher speed. Then the remaining 1/3 MgO powder, 

1/3 sawdust and/or perlite and 1/3 MgCl2 solution were added into the mixture for another 3 

minutes high speed mixing. Finally the remaining 1/3 water was gradually added into the fresh 

composite for another 2-3 minutes mixing till dough-like fresh mixture was reached. The fresh 

mixture was then fed into the hopper of the single-screw extruder (see Fig. 2a) to make the 

desired building products, i.e., door frame and door panel. 

The door panel was extruded through a stainless steel die (see Fig. 2b) with the cross-

section of 300 mm in width and 20 mm in thick, giving a nominal thickness of 20 mm for the 

products. The die land is around 150 mm in length along the extrusion direction. However, due 

to die swell, i.e., the extrudate expanded after being pushed out of the die, the actual thickness of 

the door panel varied which was greater than the nominal value, 20 mm. The inner geometries of 

the cross-section of the die used for extruding door frame is shown in Fig. 2c which also gives 

the sizes of the cross-section of the extruded door frame. The door-frame die land length is 420 

mm along the extrusion direction, which is much longer than that of the door-panel die. Thus the 

fresh wood-MOC cement mixture was subjected to longer and stronger shearing and 

compressing in the door-frame die. Consequently, it was found that the die swell of the extruded 
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door frames was much less than that of the door panels, giving the actual sizes of the extruded 

door frames very close to those expected (as shown in Fig. 2c). 

 

2.3. Curing and sample cutting 

Right after the fresh mixture was extruded out of die, it was placed under plastic sheet at 

normal laboratory environment with the temperature of around 20 oC and relative humidity of 

around 60% for 1 day. Then the extrudate was moved to a steam curing chamber with the 

temperature of 60 oC and relatively humidity of around 60% for 3 days. The hardened extrudate 

was then moved out of the steaming curing chamber and dried at normal laboratory environment 

for 1 day. Some of the hardened door frames made by extrusion are shown in Fig. 4. Some 

extruded door panels were cut into plate samples with 250 mm in length and 75 or 50 mm in 

width in a wood workshop using a cutter for wood. These plate samples were cut along either the 

extrusion (longitudinal) direction or the transverse direction (see Fig. 4 for illustrating where the 

plate samples were cut from an extruded door panel). The extruded door panel had a width of 

300 mm, which was cut into 3 plate samples with the width of 75 mm each plus 1 plate sample 

with the width of 50 mm along the extrusion (longitudinal) direction. Along the transverse 

direction, plate samples were also cut with 250 mm in length and 75 or 50 mm in width. These 

plate samples were used for investigating physical properties and flexural strength of the 

extruded wood-MOC cement composites along the longitudinal and the transverse directions 

with and without being subjected to high temperature treatment. As aforementioned, MOC 

cement demonstrates many properties superior to PC such as better performance in resisting high 

temperature and higher fire resistance. But obviously wood particles have very low resistance to 

high temperature. Therefore, one of the purposes of this study is to investigate the performance 
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of wood-MOC cement composites after high temperature treatment. Physical and mechanical 

properties of MOC cement composites with and without high temperature treatment were 

investigated and compared to assess the performance of wood-MOC cement composite in 

resisting high temperature. It was found that the hardened wood-MOC cement composites made 

by extrusion could be easily cut just like hard natural wood. 

 

3. Results and Discussion 

3.1. Bulk density and die swell ratio 

As aforementioned, the nominal thickness of the extruded door panel is 20 mm while the 

actual thickness was greater than this value due to the die swell. In this study, the actual 

thickness was measured at three positions (as illustrated in Fig. 5) from each plate sample with 

the average value taken as its actual thickness, which was also used for calculating its bulk 

density and flexural strength. The die swell ratio is then obtained for each plate sample as: 

  %100
20

20)mmin(ThicknessActualRatioSwellDie ×
−

=    (1) 

In addition, the dry bulk density of each plate sample was calculated by dividing its weight by its 

actual volume. These results are shown in Tables 4 and 5, respectively, in which Table 4 gives 

the average thickness, bulk density and die swell ratio of plate samples made of Composite 1 

with sawdust solely as aggregate and Table 5 those of Composite 2 with sawdust and perlite as 

aggregate. It can be see that both composites possess a density very close to that of water with 

Composite 2 demonstrating a slightly higher value than Composite 1. The die-swell ratio are 

comparable along the longitudinal and the transverse directions for both composites. Compared 

with Composite 1 in which only sawdust was incorporated as aggregate, Composite 2 in which 

50% sawdust was replaced by perlite exhibited much smaller die-swell ratio, i.e., less than 50% 
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of that of Composite 1. This may be ascribed to the smaller particle size of perlite which filled in 

the gap among sawdust and wood particles with relatively larger size in the composite, resulting 

in a denser microstructure. However, the bulk density of Composite 2 was only slightly greater 

than that of Composite 1, indicating that partially replacing sawdust by perlite does not increase 

bulk density significantly but it can largely reduce the die swell of extruded wood-MOC cement 

building products to improve its volume stability which is very desirable. 

 

3.2. Nailing ability 

Nailing ability is an important performance for wood-cement composites. Methodology has been 

proposed for evaluating nailing performance of cement-based composite materials [14-15]. It has 

been concluded that a cement-based composite with good nailing ability should be easy to nail, 

have a high resistance to cracking, and to be able to hold the nail after it penetrates into the 

composite [15]. In this study, nails used in residential construction for wood were punched into 

the hardened extruded wood-MOC cement door panel and door frame using a hammer by hand 

to assess the nailing ability of the hardened wood-MOC cement composites. No quantitative 

analysis of nailing ability of the extruded wood-MOC cement composites was conducted. Rather, 

the nailing ability of these composites was evaluated qualitatively by naked eyes against the 

three criteria proposed by Kuder et al. [15]. Pictures of the hardened wood-MOC cement 

composites with nails punched in were shown in Fig. 6a. It can be seen that no cracking was 

found on the surface of the wood-MOC cement door panel and door frame around the nails. Thus 

it can be concluded that the dried wood-MOC cement composites were nailable. It is reasonably 

expected that that the nailability would be even better with a nail gun test due to much higher 

impact velocity. In addition, the hardened wood-MOC cement door panels and door frames were 
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nailed together and a full-scale door (as shown in Figs. 6b and c in which Composite 1 was used) 

was made of these extruded products at the workshop. It was found that the hardened wood-

MOC cement composites made by extrusion could be easily cut. Again, no cracking was found 

near the nailing connections in the door made by the extruded light-weight wood-MOC cement 

composites, which further proved that the extruded wood-MOC cement composites were nailable. 

 

3.3. Weight loss and appearance after high temperature treatment 

After the extruded door panels were cut into plates with 250mm in length and 75 or 50 mm in 

width along the extrusion (longitudinal) direction and/or the transverse direction, some plate 

samples were moved into an electrical oven to subject to high temperature treatment. These 

samples were heated from room temperature at around 20oC to the temperature of either 250 oC 

or 500 oC at the rate of 3 oC/minute. After reaching the targeted temperature, the samples were 

remained in the oven for one hour. Then, the oven was turned off and the samples were still kept 

inside for another three hours, which was found long enough for the air temperature of the oven 

reducing down to room temperature. The plate samples were then taken out of the oven. Their 

weights were measured immediately and the weight loss ratio was calculated. The results are 

shown in Figs. 7 and 8, respectively, for Composites 1 and 2, respectively. Their appearance was 

examined as shown in Figs. 9 and 10 right after they were taken out of the oven. The samples 

were further cured at ambient temperature for 24 hours in the laboratory prior to measure their 

flexural strength. It can be seen from Figs. 7 and 8 that weigh loss ratio of Composite 1, with 

sawdust as aggregate, is greater than that of Composite 2, with 50% sawdust replaced by perlite, 

after being subjected to 250 oC, suggesting that sawdust contains more moisture than perlite. It 

was also found that Composite 1 cannot sustain temperature as high as 500 oC so that their 
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performance, including water loss and flexural strength, at 500 oC were not investigated in this 

study. For Composite 2, the weight loss ratio can be as high as 45% after being subjected to 500 

oC. As far as appearance, the color of Composite 1, with sawdust as aggregate, changed from 

yellow to light dark (as shown in Fig. 9a) while that of Composite 2 did not change much (see 

Fig. 9b), remaining white, the color of perlite, after being subjected to 250 oC. When the oven 

temperature further increased to 500 oC, the color of Composite 2 turned even whiter (as shown 

in Fig. 10) indicating that most sawdust may have been burnt. Thus, it can be concluded that 

partially replacing sawdust by perlite could increase the high-temperature resistant performance 

of wood-MOC cement composites.  

 

3.4. Flexural strength 

All door panel plate samples, including those with and without high temperature treatment, were 

subjected to four-point bending test with the span of 225 mm conforming to ASTM C-1341 

using a MTS material test system under the stroke rate of 0.4 mm/min to obtain their flexural 

strength. In total, there were four sets of experimental results, i.e., those for Composite 1 along 

the extrusion direction and along the transverse direction, respectively, as shown in Fig. 11; and 

those for Composite 2 along the extrusion direction and along the transverse direction, 

respectively, as shown in Fig. 12. It can be seen from both figures that the flexural strength of the 

extruded wood-MOC cement composites decreased as the temperature increased. Composite 1 

had higher flexural strength than Composite 2 in both the longitudinal and the transverse 

directions at room temperature, which may be ascribed to that there were more tiny wood fibers 

in sawdust in Composite 1 compared to Composite 2 which strengthened it together with the 

PVA and glass fibers. In Composite 2, 50% sawdust was replaced by perlite. Thus less wood 
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fibers were in it. However, as temperature increased to 250 oC, the residual flexural strength of 

Composite 1 was lower than that of Composite 2 along both the longitudinal and the transverse 

directions, indicating that perlite had better fire resistance performance which protected the wood 

fibers in sawdust and the PVA and glass fibers to be less damaged in Composite 2, resulting in a 

higher flexural strength. In terms of the flexural strengths of the extruded composites along the 

longitudinal and the transverse directions, in general there was not much difference which may 

be because that the longitudinal and the transverse sizes of the door-panel die were comparable 

and fiber alignment in the near square flow field in the die was not significant, so that the 

flexural strengths along the longitudinal and the transverse directions were comparable. 

 

4. Conclusions 

In this study, light-weight wood-MOC cement composites were developed and building products, 

full-scale door frame, door panel and door, made of these composites were extruded. The 

physical, nailing and mechanical properties of these composites, with sawdust and/or perlite as 

aggregate, were investigated with and/or without being subjected to high temperature treatment. 

The following conclusions can be drawn: 

(1) The wood-MOC cement composites made by extrusion were light weighted and their dry 

density were very close to that of water; 

(2) Replacing 50% sawdust by perlite as aggregate can largely reduce the die swell and 

improve volume stability of the composites made by extrusion without increasing their 

bulk density much; 
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(3) Due to large volume of light-weight aggregates, sawdust and perlite, incorporated into the 

composites, the hardened wood-MOC cement composites were nailable like hard natural 

wood which is very desirable for residential applications; 

(4) The weight loss ratios of the extruded wood-MOC cement composites increased as the 

temperature increased. The extruded wood-MOC cement composite, with 50% sawdust 

replaced by perlite as aggregate, exhibited much better high temperature-resistance 

performance; and 

(5) The flexural strength of the extruded wood-MOC cement composites decreased as 

temperature increased along both the longitudinal and transverse directions. By replacing 

50% sawdust with perlite as aggregate, the composite exhibited higher flexural strength, 

thus better high temperature resistant performance, after being subjected high 

temperature treatment. 
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Tables 

 
Table 1 Chemical compositions of light-burnt MgO and perlite (% in weight) 

 CaO SiO2 Al2O3 Fe2O3 TiO2 K2O Na2O MgO TiO SO3 

MgO 1.4 0.8 0 0.8 0 0 0 96.6 0 0.1 

Perlite 0.76 72.9 12.9 0.53 0.05 5.30 2.57 0.16 0.05 0 
 

 16 



Table 2 Mix proportions for door frames and door panels (all values are in weight in g) 
Composite MgO Sawdust Perlite MgCl2 

solution1 
MgSO4 PVA 

fiber 
Glass 
Fiber 

Water2 Other 
solution 

1 3000 1500 0 3000 300 60 120 2150 450 
2 3000 750 750 3000 300 60 120 2150 450 

1 The MgCl2 solution had the concentration of 25% (in weight of MgCl2) with 120 g 
Carboxymethyl Hydroxypropyl Cellulose (CMC) powder and 60 g Polymer Polyacrylamide 
(PAM) powder dissolved in both used as rheology enhancing admixture. 
2 Water added into the fresh composites consisted of two parts: (1) 1400 g PAM solution with 
the concentration of 3% (in weight of PAM powder); and (2) 750 g pure water. 

 17 



Table 3 Properties of short polyvinyl alcohol (PVA) fiber and glass fiber 

Fiber Density 
(g/cm3) 

Tensile 
strength 
(MPa) 

Elastic 
modulus 
(GPa) 

Length 
(mm) 

Diameter 
(µm) 

Aspect 
ratio 

PVA fiber 1.30 1,500 36 6 14 430 
Glass fiber 2.53 3,600 70 12 8 1,500 
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Table 4 Average thickness, density and die-swell ratio of wood-MOC cement Composite 1 

Direction1 Average 
thickness 
(mm) 

Density 
(Kg/m3) 

Die-
swell 
ratio (%) 

Direction1 Average 
thickness 
(mm) 

Density 
(Kg/m3) 

Die-
swell 
ratio (%) 

L 21.275 1080 6.37 T 23.375 1031 16.88 
L 22.675 1075 13.38 T 21.750 1014 8.75 
L 22.750 1083 13.75 T 21.700 1020 8.50 
L 22.550 1090 12.75 T 22.200 1040 11.00 
L 22.500 1107 12.50 T 22.375 1039 11.88 
L 22.375 1087 11.88 T 22.425 1043 12.13 
L 22.775 1044 13.88     
L 21.550 1021 7.75     
L 21.075 1073 5.38     

Average 22.169 1073 10.85 Average 22.304 1031 11.52 
1 L means longitudinal direction and T transverse direction. 

 19 



Table 5 Average thickness, density and die-swell ratio of wood-MOC cement Composite 2 

Direction1 Average 
thickness 
(mm) 

Density 
(Kg/m3) 

Die-
swell 
ratio (%) 

Direction1 Average 
thickness 
(mm) 

Density 
(Kg/m3) 

Die-
swell 
ratio (%) 

L 21.425 1038 7.13 T 20.675 1099 3.38 
L 21.125 1149 5.63 T 20.350 1130 1.75 
L 21.725 1107 8.63 T 21.100 1188 5.50 
L 21.000 1221 5.00 T 21.350 1201 6.75 
L 20.625 1199 3.13 T 21.250 1209 6.25 
L 20.150 1204 0.75 T 21.900 1210 9.50 
L 21.050 982 5.25 T 21.075 1013 5.38 
L 21.000 1003 5.00 T 21.300 1016 6.50 
L 20.825 1026 4.13 T 21.250 996 6.25 

Average 20.992 1103 4.96 Average 21.14 1118 5.70 
1 L means longitudinal direction and T transverse direction. 
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Figures 

 

 
Fig. 1 Microstructure of the light-burnt MgO powder under SEM 
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(a) (b) 
 

 
     (c) 
Fig. 2 The extruder and dies: (a) the single-screw extruder; (b) the door-panel die; and (c) the 
inner geometries of the door-frame die (all dimensions are in mm) 
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Fig. 3 Extruded door frames (note: in the right three door frames, MOC was partially replaced by 
fly ash, resulting in dark color, which are not investigated in this study) 
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Fig. 4 Illustration for where door plate samples were cut from extruded door panel (all 
dimensions in mm) 
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Fig. 5 Illustration for where the thickness of plate samples was measured (all dimensions are in 
mm) 
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 (a)     (b)     (c) 
 
Fig. 6 Nailing performance of the extruded wood-MOC cement composites: (a) door frame with 
a nail punched in; (b) door made of the composite; and (c) a corner of the door with frames 
connected by angle steel and nails 
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Fig. 7 Weight loss of Composite 1 along (a) the longitudinal; and (b) the transverse directions 
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Fig. 8 Weight loss of Composite 2 along (a) the longitudinal; and (b) the transverse directions 
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   (a)     (b) 
Fig. 9 Appearance of plate samples after being subjected to 250 oC: (a) Composite 1; and (b) 
Composite 2  
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Fig. 10 Appearance of plate samples after being subjected to 500 oC (Composite 2) 
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Fig. 11 Flexural strength of Composite 1 along (a) the longitudinal; and (b) the transverse 
directions 
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Fig. 12 Flexural strength of Composite 2 along (a) the longitudinal; and (b) the transverse 
directions 
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