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 I 

Abstract 

With the current scenario of development of antennas in the wireless communication field, the 

need of compact multiband, multifunctional and cost effective antenna is on the rise. The objective 

of this thesis is to present fixed and reconfigurable techniques and methods for small and slim 

multiband antennas, which are applicable to serve modern small and slime wireless, mobile and 

cognitive radio applications.        

In the fixed designs, independent control of the operating frequencies is investigated to enhance 

the antennas capabilities and to give the designer an additional level of freedom to design the 

antenna for other bands easily without altering the shape or the size of the antenna. In addition, for 

mobile phone antenna, the effect of user’s hand and mobile phone housing are studied to be with 

minimum effect.  

Although fixed multiband antennas can widely be used in many different systems or devices, they 

lack flexibility to accommodate new services compared with reconfigurable antennas. A 

reconfigurable antenna can be considered as one of the key advances for future wireless 

communication transceivers. The advantage of using a reconfigurable antenna is to operate in 

multiband where the total antenna volume can be reused and therefore the overall size can be 

reduced. Moreover, the future of cell phones and other personal mobile devices require compact 

multiband antennas and smart antennas with reconfigurable features.  

Two different types of frequency reconfigurability are investigated in this thesis: switchable and 

tunable. In the switchable reconfigurability, PIN diodes have been used so the antenna’s operating 

frequencies can hop between different services whereas varactor diode with variable capacitance 

allow the antenna’s operating frequencies to be fine-tuned over the operating bands. With this in 

mind, firstly, a switchable compact and slim antenna with two patch elements is presented for 

cognitive radio applications where the antenna is capable of operating in wideband and narrow 

bands depending on the states of the switches. In addition to this, a switchable design is proposed 

to switch between single, dual and tri bands applications (using a single varactor diode to act as a 

switch at lower capacitance values) with some fine tuning capabilities for the first and third bands 

when the capacitance of the diode is further increased. Secondly, the earlier designed fixed 

antennas are modified to be reconfigurable with fine-tuning so that they can be used for more 

applications in both wireless and mobile applications with the ability to control the bands 

simultaneously or independently over a wide range.  

Both analytical and numerical methods are used to implement a realistic and functional design. 

Parametric analyses using simulation tools are performed to study critical parameters that may 

affect the designs.  

Finally, the simulated designs are fabricated, and measured results are presented that validate the 

design approaches. 
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Introduction 

1.1 Antennas  

Antennas are key components of any wireless communication system and it is a device that 

provides a way for radiation or receiving electromagnetic waves. IEEE standard definition of 

terms for antenna (IEEE Std 145-1983) defines antenna as a means for radiating or receiving 

radio wave [1]. Figure 1.1 shows an antenna as a conversion device [1]. The arrows 

displayed in Figure 1.1 correspond to the electric field lines as the wave is transitioned into 

free space.  

 

 

Figure ‎1-1: Antenna as a transition device 

 

Antennas are usually made of metals but also other materials are possible. Patch antennas 

have been used in commercial and military application. In military applications, patch 

antennas are used for radar systems and peer-to-peer communications. 

Chapter 1 
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1.2 General Background  

1.2.1 Types of Antenna 

There are different types of antenna for different applications. Some of the common 

antennas are discussed in this section. 

1.2.1.1 Wire Antenna 

Wire Antennas are mainly used in cars and T.V where they are made of conducting wires. 

Therefore, the cost is usually low and fabrication is inexpensive. Wire antennas can include 

dipole, helical and Yagi-Uda. It usually operates at low frequencies (HF-UHF) and they have 

low gain [2].  

Dipole: Developed by Heinrich Rudolph Hertz [3] in the late 19th century. Dipole antennas 

are the most popular type of antenna. Dipole antennas consist of two metals wires with 

equal length. It can operate in the low frequencies. The evolution of a dipole is shown in 

Figure 1-2 and an example of a prototype of dipole antenna is shown in Figure 1-3 [2].  

 

Figure ‎1-2: Evolution of dipole antenna 

 

 

Figure ‎1-3: Prototype of dipole antenna 
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Monopole: In the early days, monopole antennas (Figure 1-4) were the choice for mobile 

phone and they are still being used in countries that have limited coverage [2].  The 

advantages of monopole antennas when they are used in mobile phone are:  

 Low SAR  

 High efficiency 

           

                           

(a) (b) 

 

Figure ‎1-4: (a) Model of monopole antenna and (b) Prototype of monopole antenna 

 

Helical: The helical antenna, which is simply called helix. It is first introduced and 

investigated in 1950 [4]. In the 1990s, helical antennas were widely used in mobile 

handsets [2]. They have the advantages of wideband impedance characteristic, circularly 

polarized radiation and using less space inside mobile phones where the biggest part placed 

outside the mobile phone [5] case as shown in Figure 1-5. Some mobile phone companies 

have stopped using this type of antenna in mobile phone because helical antenna is placed 

outside the handset, which can get broken easily by users.     
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                                                (a)                                                                    (b) 

Figure ‎1-5: (a) Model of Helix antenna (b) Helix antenna in Ericson mobile phone 

 

1.2.1.2 Microstrip Antenna 

Since 1970s microstrip antennas have become very popular mainly for space borne 

applications [6] However, now they are being used for commercial applications as well. 

Microstrip patch antenna consists of a metal patch on a substrate and a ground plane as 

shown in Figure 1-6.   

 

Figure ‎1-6: Patch Antenna 

 

To meet different design requirements, the patch can take different forms of shapes [1] 

such as rectangular, circular, triangle and elliptical as shown in Figure 1-7.   
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Figure ‎1-7: Different Configuration of Microstip antennas 

 

The advantages of patch antennas are [1]:  

 Low cost. 

 Easy and simple to manufacture. 

 Low profile. 

 Can be confirmable if thin substrate is used. 

 

The disadvantages of patch antennas are: 

 Low efficiency.  

 Narrow bandwidth.  

Patch antenna can be fed using different feed configuration such as coaxial feed and 

microstrip line as shown in Figure 1-8 [5]. 

 

 

 

                                       (a)                                                                     (b) 

Figure ‎1-8 Different feed the can be used in patch antennas 
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1.2.1.3 Planar Inverted-F Antenna (PIFA)  

Planar Inverted-F Antenna (PIFA) is popular antenna for mobile phones since 1990s [7] due 

to low profile, light weight, easy integration and manufacturability. The PIFA typically 

consists of a rectangular planar element located above a ground plane, a short circuiting 

plate or pin, and a feeding mechanism for the planar element as shown in Figure 1-9. 

 

 

 

Figure: ‎1-9 Evolution of a PIFA from a monopole antenna 

 

1.2.2  Main Parameters of an Antenna  

There are several fundamental parameters that have major impact on the performance of 

an antenna such as [1]:  

 S-parameters  

 Impedance Bandwidth (B.W) 

 Radiation pattern 

 Directivity 

 Efficiency 

 Gain 

 Polarisation 

These parameters must be considered while designing any antenna. Some of these 

parameters are discussed in this section. 

 

1.2.2.1 S-Parameters  

In the Vector Network Analyzer (VNA), the data is normally presented in the form of S-

parameters and they are defined by measuring the voltage travelling waves between the N-
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ports shown in Figure 1-10. S-parameters describe the response of an N-port network to 

voltage signals at each port [8, 9]. 

                                                       

    Figure ‎1-10 An N-Port Network 

The responding port is the first number in the subscript and the incident port is the second 

number. Thus S12 means the response at port 1 due to a signal at port 2 and S21 means the 

response at port 2 due to a signal at port 1. In microwave engineering, the most common 

"N-port" are single ports and dual ports or three ports network [10].  

To discuss this in more detail, dual ports are used as an example as shown in Figure 1-11.  

          

Figure ‎1-11 Two-Ports Network 
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S-Parameters for such a network are defined as:  

                                                       (
  
  
)   (

          
          

)   (
  
  
)                                                   (1-1) 

If we assume that each port is terminated in impedance Z0, we can define the four S-

parameters of the 2-port as: 

                                                                 
1
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 0  
b
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2

21 2

1

 0  
b

S a
a

                                                      (1-3) 
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2

 0  
b

S a
a

                                                   (1-5) 

In this case, if S11 is to be measured the port one would be used to inject the signal so the 

reflected signal will measured. a2 will be equal to 0 as there is no signal injected in port 2.  

 

1.2.2.2 Impedance Bandwidth (BW)  

Impedance bandwidth is used to describe the bandwidth over which the antenna has 

acceptable losses due to mismatch. From Figure 1-12, the bandwidth of broadband antenna 

can be calculated using the equation (1-6). 

 

 

                                                

2 1

0

.   100%
f f

BW
f


 

                                                        (1-6) 
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                                                                                   Frequency in GHz 

                        Figure ‎1-12: Bandwidth measuring 

 

 

Where f0 is the centre frequency,  

f1 is the lower frequency  

f2 is the Higher frequency 

 

1.2.2.3 Radiation Patterns 

Antenna’s radiation pattern is defined in the IEEE Standard Definitions of Terms for 

Antennas [1] as: 

 “A mathematical function or a graphical representation of the radiation properties of the 

antenna as a function of space coordinates. In most cases, the radiation pattern is 

determined in the far-field region and is represented as a function of the directional 

coordinates. Radiation properties include power flux density, radiation intensity, field 

strength, directivity, phase or polarisation.” 

Radiation patterns have main lobe, side lobes and back lobe as shown in Figure 1-13.  
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Figure ‎1-13: Radiation Lobes and beam width of an antenna Pattern 

 

Radiation patterns can be omnidirectional as shown in Figure 1-14(a) or directional as 

shown in Figure 1-14(b). Omnidirectional antennas tend to have low gain because the 

power radiates in all directions [11] where directional antennas have high gain as the 

power is directed toward one direction [12]. Omnidirectional radiation patterns are 

suitable for many applications including mobile phone applications whereas directional 

antennas are suitable for wireless applications such as point to point applications.  

 

                                  

                                                    (a)                                                                               (b) 

  Figure ‎1-14 (a) Omnidirectional radiation pattern and (d) Directional radiation pattern 

 

1.2.2.4 Directivity  

Directivity of an antenna is “the ratio of the radiation intensity in a given direction from the 

antenna to the radiation intensity averaged over all directions” [1]. It is a measure of how 
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'directional' an antenna's radiation pattern can be. If an antenna radiates in all directions 

i.e. oimnidirectional patterns, the directivity of this type of antenna would be 1 or 0 dB 

whereas directional antenna would have a high directivity as shown in Figure 1-15 [13].  

 

                                              (a)                                                                                (b)  

Figure ‎1-15 Radiation Patterns for Antennas that have (a) low directivity and (b) high directivity 

 

1.2.2.5 Gain 

For a given antenna, it is defined as the ratio of power radiated or received by particular 

antenna in a given direction, to the power radiated or received by an isotropic antenna 

both fed by the same power and it is measured in dBi.  

Gain of any antenna is closely related to the directivity of the antenna. Therefore, in order 

to find the gain of any antenna, the directivity should be found. Equation (1-7) can be used 

to determine gain.   

                    

                                  

 . Gain D                                                                                                (1-7) 

 

Where   is the efficiency   

D: is the directivity  

1.2.2.6 Radiation Efficiency 

The efficiency of an antenna relates the power delivered to the antenna and the power 

radiated or dissipated within the antenna. A high efficiency antenna has most of the power 
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present at the antenna's input radiated away. A low efficiency antenna has most of the 

power absorbed as losses within the antenna, or reflected away due to impedance 

mismatch.  

1.2.3 Antenna Field Region  

The electromagnetic field distribution of a radiated antenna changes as the radiation 

moves away from the antenna. These changes are classified into three different groups as 

shown in Figure 1-16 [1, 14]. 

 

 

 

Figure ‎1-16 Field regions of an antenna 

 

1.2.3.1 Reactive Near-Field Region 

From Figure 1-16, the immediate field is considered to be the reactive near field region of 

the antenna. For the majority of antennas this region exists at 3

1 0.62 /R D   from the 

antenna.  

R: Radius  

D: Maximum antenna dimension.  
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1.2.3.2 Radiating Near-Field or Fresnel Region 

The radiating near field or Fresnel region is the region between the near and far fields. The 

boundaries for this region are between 3 2

20.62 / 2 /D R D   . If the antenna is very small 

compared to wavelength this region may not exist. 

1.2.3.3 Radiating Far-Field or Fraunhofer Region 

In the radiating far-field or Fraunhofer region the field components are transverse to the 

radial direction from the antenna and all the power flow is directed outwards in a radial 

fashion. In this region the shape of the field pattern is independent of the distance, R, from 

the antenna. The inner boundary is taken to be the distance 2

1>2 /R D  , where D is the 

largest dimension of the antenna. 

1.3 Motivation 

The advent of wireless communication and mobile phone devices has revolutionized our 

life styles. Through the evolutionary process of development, a numerous of antennas have 

been developed for these applications. The requirements of new small and multiband 

antennas are becoming even more challenging with time. To cope up with such challenging 

demands, a constant and even thorough research is required for developing new antennas 

capable of operating in multiple bands with small size.  

In this thesis, novel antennas are designed and developed to be used in fixed and 

reconfigurable terminals for wireless, mobile phone and cognitive radio applications to 

enhance the system capability. These novel antennas offer smaller size, slim and 

independently controlled bands, in addition to the added functionality in the performance 

of wireless systems.   

Throughout the discussion, the designs are verified with experimental implementation.  

1.4 Scope of the Thesis  

The aims of the research presented in this thesis are mainly two folds: i) Design small and 

slim fixed multiple bands antennas for mobile and wireless applications. The aim here is to 

make mobile phone smaller and slimmer with reduce user’s hand effect on the antenna’s 

performances and to generate multiple bands from a single band antenna to reduce the 

size of wireless devices. Moreover, adding the independent control feature to allow the 
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antenna to be designed to other applications easily. ii) Design of compact and slim 

reconfigurable multifunctional antennas for mobile, wireless and cognitive radio 

applications. The aim here is to propose a switchable method to switch between wideband 

and multi-narrow bands to be used for cognitive radio applications. Moreover, proposed a 

new method through a switchable antenna that introduces multiple bands without the 

need to incorporate any additional parts and by only using a single varactor diode. Finally, 

introduce a tunable reconfigurable antennas with independently and simultaneously 

controlled multiple bands over a wide range to enhance the antenna capability in serving 

other standard.   

 

The research primarily focuses on achieving the following objectives:  

 

1. In the fixed designs, using slots technique with different shape which can reduce the 

size of the antennas as well as allowing the antenna to generate multiple bands. The 

shape of the radiators or the slots must be simple and easy to optimise. To achieve 

independent control, the current distribution is an essential way to identify the key 

parameter for each band. To achieve insensitive antenna to user’s hand and to the 

housing of mobile phones, the ground plane should not radiate and it should be less 

sensitive. Therefore, the bands should be obtained mainly from the main radiator 

not from the ground plane. Again, the current distribution on the structure must be 

mentor while designing and optimising the antenna.  

 

2.  In the reconfigurable designs, studying the best location to place the switches in 

order to achieve a wide tuning range and independent bands over wide range. Slot 

must be used in order to disturb the current path on the antenna and to allow the 

antenna to generate multiple band operations. Varactor diodes should be used to 

achieve fine tuning or PIN diode should be used to switch between the operating 

frequencies.     
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1.5 Contribution to Knowledge*  

The key contributions of this thesis are summarized as follows:  

1- Employment of U-slots technique to generate multiband operations and to minimise the size of 

the antenna [R6, R29, and R31]  

2- Proposed novel compact multiband antennas with the capability to operate over five-band for 

fixed and reconfigurable systems. The designs were specifically constructed to allow the 

operating frequencies to be controlled independently over a wide range. In the fixed design, the 

five-band can be optimised independently [R4, R14 and R2]. In the reconfigurable design, the 

independent control is performed electrically using varactor diodes [R4, R12].  

3-  Extended the capabilities of Planar Inverted-F Antenna (PIFA) to operate as ultra-slim tri-band 

handsets antenna [R1, R9 and R10] with switching and tuning functions [R5 and R10].   

4- Introduced a technique to switch between wideband and multi-narrow band operations for 

cognitive radio applications [R3, R19 and R8].   

5- Introduced a multiband selection method with a single varactor diode to select and operate as a 

single, dual and three bands [R2 and R13]. Moreover, the antenna has some fine tuning 

capabilities toward the lower frequencies [R2].   

1.6 Organisation of the Thesis 

This thesis consists of six chapters. The chapters are inter-dependent and the reader should 

follow the right order to better understand the contributions presented in the thesis. 

After the introductory and the basic theory of antennas and the fundamental parameters in 

chapter-1, chapter-2 gives a brief overview and some previous work in the area of fixed and 

reconfigurable multiband antennas. General information about PIN and varactor diodes is 

provided. This is followed by an introduction to modelling techniques used in different 

simulations software and then giving a brief introduction to the chosen simulation software 

that was used to design and predict the performance of the antennas.   

Chapter-3 presents three different techniques to design fixed multiple-band antennas for 

wireless and mobile applications. The effect of user’s hand, mobile phone housing and the 

size of the ground plane are discussed in this chapter. Finally, the independent control 

concept on fixed antennas is presented in this chapter.  

Chapter-4 presents two antennas using switchable techniques. The first antenna is to be   
--------------------------------------------------  
* References are relative to the numbered list in page XV (Author’s Publications)   
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used in cognitive radio applications where the antenna can be switchable between 

wideband and multiband operations. The second antenna introduces a new technique to 

select the number of bands (single, dual or tri bands) with some fine tuning capabilities.  

Chapter-5, wide tunable antennas using varactor diodes are introduced to cover the major 

wireless and mobile services and standards. Then, the concept of independent tuning on 

reconfigurable antenna is introduced in this chapter.  

 Finally, Chapter-6 concludes the research findings of the thesis and presents the future 

work to be carried out in connection with the research presented in this thesis. 
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2  Fixed and Reconfigurable Antenna 

 

Fixed and Reconfigurable Antenna 

 

 

2.1 Introduction 

The research presented in this thesis deals with different types of antenna for different 

wireless communications bands such as the Global System for Mobile Communications 

(GSM900 and 800), Personal Communication System (PCS 1800 and 1900), Digital 

Communication Systems (DCS), Global Positioning System (GPS), Universal Mobile 

Telecommunications System (UMTS), Wireless Local Area Networks (WLAN) and Worldwide 

Interoperability for Microwave Access (WiMAX) etc... 

Some of these applications requires fixed antenna where the antenna is designed and 

optimized to operate at particular frequencies and some requires adaptive antenna 

(reconfigurable) where the antenna’s operating frequencies can change to other bands by 

using reconfigurable elements (multifunctional antenna). Different techniques have been 

used in the past to reduce the size of the antenna or to allow the antenna to operate in 

multiple band operations or to generate a wide bandwidth. Slots are usually employed in 

antenna’s structure and it has been widely used to achieve these techniques.  

This chapter gives a brief overview of the latest techniques used to achieve multiple bands 

on fixed antennas and to achieve a wide tunability range in reconfigurable antennas. Then 

the types of reconfigurability are discussed. To change the performances of the antenna 

electrically, switches such as varactor and PIN have been used in order to tune/switch the 

operating frequencies or control the position of the radiation patterns or change the 

polarization of the antenna. This is introduced in brief in this chapter. Finally, modelling 

techniques and High Frequency simulation software (HFSS) software are discussed.    

Chapter 2 
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2.2 Fixed multiband antennas 

Antennas for mobile and wireless terminals supporting several standards simultaneously 

are currently receiving a lot of interest. Therefore, there is an increasing demand for 

multiband antennas which can be easily integrated in a wireless device supporting multiple 

standards. 

The term fixed means that the operating frequencies, radiation patterns and polarization 

are fixed upon the designer goal and once the antenna is fabricated and placed in the 

system, the performances of the antenna cannot be changed.   

Printed antennas, monopole antennas and Planar Inverted-F Antennas (PIFA) are the most 

suitable antennas to be used in wireless systems thanks to their low profile, low fabrication 

cost, and simple feeding structures.  

Printed antenna is characterized by the length and width of the radiator shape, the height 

of the substrate above the ground plane and the dielectric constant of the substrate 

material. 

Printed antennas usually consist of radiated elements and a dielectric substrate material, 

such as FR-4 and Duriod, on one side and a ground plane on the other. 

Different techniques have been used in printed antennas to achieve wideband or 

multiband operation. Some of these techniques are pointed here.   

 Modifying the radiators shape: the radiators can take different shapes, as shown in 

Figure 1-7, and hence multiple-band can be obtained.   

 Slotted radiators: the slot can disturb the current path on the radiators and hence 

change the performance of the antenna. Slots technique is employed in the design of 

many antennas and it became the most commonly used technique when multiple 

band operation is the aim [1] – [5]. 

 Using foam layer between the radiator and the substrate can generate multiband and 

wideband performance [6] 

 Shorting wall: the shorting wall allow the current to travel longer distance where the 

bandwidth can be increased and the antenna size can be minimised. [7] - [8].  

 Shorting pins: shorting pins can improve the bandwidth of the antenna by few more 

percentages [9].  
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 Stack multi-layers and fractal shape [10]. The fractal shape also can be used in the 

ground plane to generate multiple band operations [11] as shown in Figure 2-1 (a)-(c)  

The above techniques may result in larger dimensions and thickness of the physical 

antenna, which sometimes make it difficult to fit into small and slim devices.  

 

                                                     (a)                                                                             (b) 

 

    (c) 

Figure ‎2-1 (a) Multiband Antenna and (b) Fractal-based ground plane (c) S11 [11] 

 

Planar Inverted-F Antennas are widely used in a variety of communication systems 

especially in mobile phone handsets due to low profile, light weight, easy integration and 
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manufacturability [12-14]. The first portable mobile terminal shown in Figure 2-2 (a) was 

produced by Motorola in 1983 [15]. It is clear that this antenna is bulky and heavy 

compared to the recent mobile phone shown in Figure 2-2 (b) produced by Nokia [16].  

 

 

                           

                           (a)                                                                                               (b) 

Figure ‎2-2: (a) Early single band mobile phone 1980 (b) Latest multiband mobile phone from 
Nokia in 2009 

 

In PIFA, different techniques have been used to generate wideband or multiple band 

operations. Some of these techniques are:   

 Truncated corner technique [17] 

 Meandered strips [18] 

 Meandered shapes [19-20] 

 Branch line slit [21] 

 Slot in the ground [22] 

 Optimising the height of radiators[23] 
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The PIFA offers high radiation efficiency and wide bandwidth, 10%, for mobile applications 

in a compact structure.  

The size and the shape of the radiators, the height of the plate above the ground plane, the 

size, shape and position of the shorting plate or shorting pin, and the feed point location 

along the substrate all have considerable impact on the impedance matching, bandwidth, 

frequency bands, efficiency and gain of the antenna. Normally the size of the radiator can 

be calculated by using equation 2-1.  

 

                                             

  4 (    )L W  
                                                      (2-1) 

Where L and W are the length and width of the radiator respectively. 
 

 

2.2.1 Independent Control on Fixed Terminals  

To design an antenna with multiple bands operation, it is desirable to have an independent 

frequency control on two or more separate frequencies. Achieving this option is very 

challenging. Very often, when one parameter is changed, all the other frequencies are 

affected [24]-[25] as shown in Figure 2-3 and Figure 2-4. Therefore, independent control 

can be a difficult task and sometimes the whole structure has to be altered when other 

bands are required.  

 

      

(a)                                                                             (b)  

Figure ‎2-3: Changing one parameter (L3) of the T-Shaped Antenna [24]            



Chapter 2: Fixed and Reconfigurable Antenna  
________________________________________________________________________ 

 22 

 

          

(a) 

 

(b) 

Figure ‎2-4: Effect of changing some parameters (Ws&p) of the PIFA [25] 

 

Some work has been done to achieve frequency independent control for a small-size and 

thin antenna. For example in [26], a Planer Inverted-F Antenna (PIFA) was thoroughly 

studied to control three resonant frequencies for GSM/DCS/DMB with an overall size of 105 

x 30 x 9 mm3.  In [27], a switchable design for dual bands at (1.9 GHz, 5.2 GHz) and (1.9 

GHz, 3.5 GHz) was presented with some tuning capability for a reconfigurable system. In 

[27], the dual-band can be controlled independently. Moreover,  in the patent reported in 

[28], a multi-frequency band antenna, capable of tuning the low-band portion to a low 

frequency band and the first high-band portion to a first high frequency band, was 

introduced for use in mobile handsets applications which of a larger size.  

Most of the reported antennas offering this feature either has large ground plane, high 

profile or the control range is not wide enough to cover the major services and standard.  
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2.2.2 Effect‎of‎Mobile‎Phone‎Housing‎and‎User’s‎Hand‎on‎Antenna’s‎

Performances  

An antenna is designed in the real operating environment with the handset. Handsets must 

have a housing, which is made usually of plastic as shown in Figure 2-6 [29]. This plastic, or 

any other type of material, might sometimes affect the impedance matching, gain and 

efficiency of the antenna [30]. Therefore, the effect of the mobile phone housing should be 

considered before placing the antenna in mobile phones [31].   

Many designed PIFA for mobile phone handsets have not taken into account the effect of 

user’s hand and the housing of mobile phone [33] – [35].  

 

 

Figure ‎2-6: Housing of a mobile phone [29] 

 

Not only the plastic but also user’s hands or user’s interactions which can have a huge 

impact on the impedance matching, gain and efficiency of the antenna [36] as shown in 

Figure 2-7(a)-(c). Therefore, antennas should be designed to have minimum effect when 

user’s hold the phone in different positions as discussed in [37].   
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   (a)                                                                                (b) 

 

                   

                                                                                 

                                                                                   (c) 

Figure ‎2-7:  Effect of user’s hand on mobile phone antenna [36] 

 

2.3 Reconfigurable Antennas 

Although fixed multiband antennas can widely be used in many different systems or 

devices, they lack the flexibility to accommodate new services compared with 

reconfigurable antennas [38]. A reconfigurable antenna can be considered as one of the 

key elements in future wireless communication transceivers. The advantage of using a 

reconfigurable antenna is the ability to operate in multiple bands where the total antenna 
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volume can be reused thus enabling the overall size to be reduced. Modern wireless 

communication systems relying on multiband reconfigurable antennas are becoming more 

popular for their ability to serve multiple standards. Devices using a single compact antenna 

allow reduction in the dimensions of the device and more space to integrate other 

electronic components. Different reconfigurable antenna techniques have been proposed 

in [38].  

2.3.1 Types of Reconfigurable Antennas  

Reconfigurable antennas can be classified into three different categories, namely,  

 Frequency reconfigurable 

 Continuous   (Tunable Antenna) 

 Coarse (Switchable Antenna)  

 Radiation pattern reconfigurable  

 Polarization reconfigurable  

2.3.1.1 Frequency Reconfigurable: 

The first category is based on frequency reconfigurability. The aim is to tune/switch the 

operating frequency of the antenna and to have a single multifunctional antenna in a small 

terminal for many applications [38]-[39]. The shape of the radiation patterns of these 

reported antennas remain unchanged when the frequencies are tuned/switched from one 

band to the other. 

Frequency reconfigurable antennas are classified into two categories:  

 

Continuous tuning: This can be achieved by using varactor diodes where the antenna 

allows for smooth transitions within or between operating bands without hops as in [40]  

 

Coarse tuning: This can be achieved by using PIN diode switches. Coarse tuning employs 

different switching mechanisms to operate at multiple bands. Examples include a widely 

tunable antenna using PIN switches [39], switching different feeding location to reconfigure 

the operating frequencies [41] and reconfigurable patch antenna [42] for satellite and 

terrestrial applications.   
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2.3.1.2 Radiation Pattern Reconfigurability   

The second category is based on pattern reconfigurability, where the frequency band 

remains unchanged while the radiation pattern changes based on system requirements. 

The antenna can steer its radiation pattern main beam in different directions. This type of 

pattern reconfigurability has been reported recently in [43] by using a CPW fed antenna. In 

[44], a reconfigurable antenna combining both frequency and radiation pattern 

reconfigurability was introduced. 

2.3.1.3 Polarization Reconfigurability 

The third category is based on polarization reconfigurability, where the polarization is 

switched from linear to circular [45] and from left hand (LHCP) to right hand (RHCP) circular 

as reported in [46]. A novel reconfigurable patch antenna with both frequency and 

polarization diversity was also reported in [47]. 

2.3.2 Independent Control on Reconfigurable Terminals  

Independent tuning in reconfigurable antennas has received much attention recently. The 

technique is to fix one band at a particular frequency and tunes the other band to other 

frequencies. This can be done by fixing the voltage at the first varactor diode and vary the 

voltage on the other varactor diode. This is not an easy task as the radiators have to be 

designed carefully in order to allow the one band to be controlled without affecting the 

other. The location of the switch has to be optimised and placed in the highest current 

density location. A number of techniques have been proposed to achieve independent 

control (electrically) for one or more bands over a wide range. For example in [48], a 

reconfigurable slot antenna with dual-band operations has been proposed with a wide 

tuning range (2020 MHz) as shown in Figure 2-8 and Figure 2-9(a)-(b). The total size of this 

antenna is 150 x 110 mm2. 
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Figure ‎2-8: Multiband Slot Antenna [48] 

   

     (a)                                                                                     (b) 

Figure ‎2-9: input reflection coefficients of the dual-band tunable antenna [48]. 

 

2.4 Switching Technology  

2.4.1 PIN Diode Switches  

PIN diode is a semiconductor device that operates as a variable resistor at RF and 

Microwave frequencies. It can also be used as a switch and Limiter.  PIN diodes are popular 

in microwave circuit applications due to its fast switching times and relatively high current 

handling capabilities [49]. The construction of a PIN diode is showing in Figure 2-10. 
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Figure ‎2-5: PIN diode 

The P and N types are separated by an intrinsic region, the P contact is the anode, and the 

N contact is the cathode as shown in Figure 2-11 where the anode is the side with the 

arrow, the cathode is the side with the plate. Between the P and N region is the intrinsic 

where the width of this region has an important role on the performance of the PIN diode 

[49].  

 

Figure ‎2-6: Circuit symbol for PIN diode 

 

Figure 2-12 shows a simple equivalent circuit of a switch that can be ON or OFF. In the ON 

state, the switch can be represented as a resistor and a series capacitor in the OFF state.    

 

   (a)                                                                                   (b)                           

    Figure ‎2-7: Simple switch equivalent circuit (a) ON state (b) OFF state 

 

PIN diode has been widely used to prove the concept of many switchable antennas as 

shown in Figure 2-13 (a)-(c) as an example.  
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Figure ‎2-8: Prototype of switchable Vivaldi antenna using PIN diodes [50] 

 

2.4.2 Varactor Diode Switches 

Varactor diode also called varicaps is a semiconductor diode with a small junction 

capacitance that varies it values depending on the bias voltage applied to the diode. They 

are an important component of radio frequency or RF applications. Varactor diodes are 

widely used in communication applications when tuning is needed. The circuit symbol for a 

varactor diode is shown in Figure 2-14.   

 

 

Figure ‎2-9 Circuit symbol for a varactor diode / varicap diode 

 

The capacitance of a varactor decreases when the voltage gets larger. A tuning varactor can 

be represented by the following electrical equivalent circuit (Figure 2-15) [30]. 
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   Figure ‎2-10: Equivalent circuit for a varactor 

 

PIN diode has been also been widely used to achieve fine tuning  and to prove the concept 

of many reconfigurable antennas as shown in Figure 2-16 (a)-(c) [51]. 

 

              

 

Figure ‎2-11: Illustration of Manufactured Multilayered EBG with varactor diodes [51]. 

 

2.4.3 MEMS  

MEMS switches are devices that use mechanical movement to achieve a short circuit or an 

open circuit in the RF transmission line. RF MEMS switches are the specific 

micromechanical switches that are designed to operate at RF-to-millimetre-wave 

frequencies.  

In the last ten years, RF MEMS switches have been used for telecommunication 

applications due to many advantages compared to other switches such as small in size, 

good linearity and good isolation. However, they require high DC actuation voltages [30].   

MEMS switch are used in different applications such as phase array phase shifter, 

switching, reconfigurable networks and low power oscillator [52]-[53]. Cross-section view 
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of a MEMS switch is shown in Figure 2-17 [54] and an example of practical MEMS on an 

antenna is shown in Figure 2-18 [54].  

 

 

                  

Figure ‎2-12: Cross-sectional view of a capacitive MEMS switch realized in the NXP [54] 

 

         

 

Figure ‎2-18 Photograph of the annular slot integrated with two double-arm MEMS actuators [55]. 

 

2.5 Modelling Techniques  

Many methods have been developed over the past years for a wide range of applications in 

RF engineering. These methods or techniques can be divided into: i) Time Domain (TD) such 

as Finite Different Time Domain (FDTD) and ii) Frequency Domain (FD) such as Moment Of 

Methods (MOM) and Finite Element Method (FEM).  

Many different commercial software have been developed using one of these methods, 

and it is therefore not necessary any longer to write a new code but just utilize any of them 
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to aid the modelling of the RF design. In this section, the foundation principles on which 

these methods are based are briefly introduced.    

2.5.1 Moment of Method (MOM)  

The Method of Moment (MoM) is a numerical method of solving electromagnetic problems 

or volume integral equation in the frequency domain. MoM can be used to solve problems 

in several areas of engineering and sciences including electromagnetic. In the 1960’s Roger 

F. Harrington was the first to use MoM to solve electromagnetic problem.  Numerical 

Electromagnetic Code (NEC) is the most well known of the codes using MoM to solve 

problems that can be defined as sets of one or more wires. Although, it is an adaptable and 

thoroughly simple method, it requires large amounts of computation.  The Method of 

Moments is broadly used to solve electromagnetic scattering and radiation problems. This 

technique is based on reducing the operator equations to a system of linear equations that 

is written in matrix form. The MoM applied to wire antennas for instance, is used by the 

commercial software IE3D. Results accuracy is considered an advantage using this method 

as it uses essentially exact equations and provides a direct numerical solution of these 

equations. Another advantage is that, in practice, it is applicable to geometrically complex 

scatters [56]-[57]. 

2.5.2 Finite-Difference Time-Domain (FDTD)   

The Finite Difference Time Domain is a method that is broadly used to stimulate several 

electromagnetic problems. The literature on (FDTD) is extensive and has been used for 

various microwave analysis such as, antenna designs, propagation, filter design, and many 

other microwave analysis. However, FDTD is not suitable for electrically huge system but is 

good for system involving pulses. This method did not gain considerable attention despite 

its usefulness to handle electromagnetic problems until the computing costs became low. 

FDTD method was first proposed by Yee in 1966 for a simple Cartesian co-ordinate system 

[58]. The FDTD algorithm iteratively calculates the field values in the problem space that is 

discretised into unit cells. Each unit cell is assigned with three orthogonal electric and three 

orthogonal magnetic fields as shown in Figure 2-19 [59].  
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Figure ‎2-19: Yee cell [59] 

 

2.5.3 Finite Element Method (FEM)   

The finite element method (FEM) is a mathematical technique used for finding approximate 

solutions of partial differential equations (PDE) as well as of integral equations. The solution 

is based on reducing the differential equation completely, or rendering the PDE into an 

approximating system of common differential equations, which are then numerically 

integrated using Euler's method which is a standard technique such as the Runge-Kutta. 

FEM is a method used to solve frequency domain boundary valued electromagnetic 

problems using a variational form. There are generally two types of analysis that are used in 

FEM 2-D and 3-D canonical elements of differing shape. While 2-D conserves simplicity and 

allows itself to be run from a normal computer, it however, tends to give less accurate 

results. Three-dimensional canonical element, however, gives more accurate results by 

working effectively on faster computers. The FEM is often used in the frequency domain for 

computing the frequency field distribution in complex, closed regions such as cavities and 

waveguides [30, 56].  
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2.6 High Frequency Simulation Software (HFSS)  

2.6.1 Introduction to HFSS  

There are many different commercial software available to design antennas such as Zeland, 

CST, HFSS, M-Sonnet and Feko... etc. HFSS is an interactive simulation system whose basic 

mesh element is tetrahedron. The reason for choosing HFSS is that it uses FEM methods, 

which deals with very complex structures and it predicts accurate results. The HFSS 

software is used in the design of all the antennas in this thesis, partly due to the hands on 

experience gained using it for the RF designs.  

The name HFSS stands for High Frequency Structure Simulator, which employs the Finite 

Element Method (FEM). It is a high-performance full-wave electromagnetic field simulator 

for 3D volumetric passive device modelling. It integrates simulation, visualization, solid 

modelling, and automation in an environment that facilitates learning and where solutions 

to 3D electromagnetic (EM) problems are quickly and precisely attained [60].  

2.6.2 Modelling Diodes in HFSS  

Since it is difficult to model diodes, surface mount ceramic chip capacitors, inductors and 

resistors in a full-wave solver, the diode was modelled with a RLC boundary sheet.  

PIN diode: The PIN diode can be modelled using RLC sheet. When the PIN diode is in the 

ON state, it act as a resistance and if the PIN diode is in the OFF state, it act as a 

capacitance. In the simulation, different module can be created to check the results when 

switching the diode ON and OFF.  

Varactor diode: Vatractor diode is a variable capacitance. Depending on the capacitance 

range of the practical diode, the diode can be simulated with these values.  

2.7 Summary 

In this chapter, literature review on fixed and reconfigurable antennas has been 

introduced. It has been noticed from the reported researches in the literature review that, 

the size of antennas are still needed to be slimmer as well as small to meet the demand for 

slim devices like the Ipad and Ipod devices. It has also been noticed that when designing an 

antenna for mobile phone, the effect of user’s hand and mobile phone housing are usually 

neglected which is not the case in real world. Therefore, research is needed to design 
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antennas for handsets which can be less sensitive when user’s hold the phone in different 

direction. 

Types of reconfigurable antennas have also been discussed. Reconfigurable antennas are 

become very popular and many projects are aiming to achieve multifunctional antennas. 

Researches in this area are still needed to design and develop antennas capable of 

operating in all the major wireless services and standard. The number of switches and the 

size of the antenna are still the case in achieving good designs.      

The concept of independent control in fixed and reconfigurable antennas was discussed. 

The wide control to cover as many bands as possible has not been achieved yet. 

Switches component such as PIN, varactor and MEMS have been briefly introduced. Finally, 

modelling technique and HFSS software are introduced in brief.    
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3  Fixed Multiband Antennas 

 

Fixed Multiband Antennas  

 

 

3.1 Introduction 

Modern wireless devices or systems are getting smaller and thinner in addition to the 

increase in the number of services required to be integrated in one device. Therefore, 

antennas are required to fulfil these needs with multiple bands capabilities and with small 

and slim overall size. Different techniques have been investigated to achieve multiband 

operation for printed antennas and for PIFA as discussed earlier in section 2.2.  

In PIFA, the ground plane can play an important role to enhance the performance of the 

antenna [1]. For example, for low frequency operation such as for the GSM 900/800 bands, 

the ground plane has to be used as a radiating part. However, if the ground plane also acts 

as a radiating part, the effect of the user’s hand is likely to degrade the antenna 

performance when the antenna is fitted inside the mobile phone. This causes several 

practical engineering problems [2] - [5]. In some designs, the location of the antenna on the 

substrate is also an important factor to be considered as it can enhance the bandwidth of 

the antenna by few more percentages [6].  

Although there is extensive literature on multiband antenna for wireless and mobile 

applications, the following important issues need to be addressed:   

 The independent control of the operating bands with a wide controlled range. 

 Small and low profile structures to suite modern slim designs.  

 Antennas performance in its operating environment specially the effect of the:  

(a) Antenna housing 

Chapter 3 
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(b) User’s hand  

 Many designs have not studied the sensitivity of the antenna when user’s hold the 

mobile phone and when the antenna is cover with a plastic (housing of mobile 

phone). In Iphone 4, from apple, the antenna was designed perfectly but when it 

was fitted inside the handsets, user’s found that, the matching of the antenna is 

affected when they hold the phone in different positions. Therefore, this should be 

taken into account when designing an antenna for handsets. These issues may 

results in a significant changes in the performance. 

This chapter addresses the above issues with some novel designs.  

In section 3.2, U-slots have been used to show how possible this technique can be used to 

minimise the size of the antenna and to create multiple bands from a single band antenna. 

The design is optimised to operate in the WiMAX bands with enough bandwidth to cater 

this application.  

Then, in section 3.3, a PIFA is proposed for small and ultra-slim mobile phone handsets. 

Slots are also used in this design to create multiple bands. The effect of the ground plane 

size is studies comprehensively. In addition, user’s hand and mobile phone housing effect 

have been studies with the design to have less effect on the performance of the antenna.  

Finally, in section 3.4, a sub-patches technique has been used to generate multiple band 

operations. In this case, size reduction and multiple bands operations have been achieved 

with small and thin structure.  

The independent control concept that was discussed in section 2.2 is achieved in all the 

antennas presented in this chapter and hence the antennas can be controlled 

independently over a wide range. This feature gives an additional level of freedom for the 

antenna designer to design the antenna to any other band of interest.  

All the antennas presented in this chapter have simple structures to manufacture. 

Moreover, they are designed for fixed terminals i.e. once they are placed in the system, 

their operating bands are fixed. 
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3.2 Compact U-Slot antenna for Tri-band WiMAX applications 

3.2.1 Introduction  

This section discusses the following points:  

 Reduce the size of the antenna.  

 The possibility of obtaining multiple bands for WiMAX applications.  

 Independent control of the WiMAX bands.  

 Studying the effect of the coaxial cable in the radiation pattern measurements.  

Therefore, the antenna proposed in this section is focused on using U-Slot shape to 

introduce multiple bands and to minimize the size of the antenna. The proposed design was 

optimised to operate at three bands for use in WiMAX applications. Other frequencies can 

be obtained by changing key dimensions of the antenna.   

3.2.2 WiMAX Applications  

The IEEE 802.16 working group has established a new standard known as WiMAX 

(Worldwide Interoperability for Microwave Access) which can reach theoretically up to 30-

mile radius coverage. Moreover, in the case of WiMAX, the highest theoretically achievable 

transmission rates are possible at 70 Mbps. As currently defined through IEEE Standard 

802.16, a wireless MAN provides network access to buildings through exterior antennas 

communicating with central radio base stations (BSs). One of the potential applications of 

WiMAX is to provide backhaul support for mobile WiFi hotspots. In order to satisfy the 

integration of WiFi, WiBro and WiMAX for WMAN applications, multiband compact 

antennas are the preferred front-end for mobile terminals [7].  

3.2.3 Antenna Structure and Design Procedure  

The design specifications for the proposed antenna are: 

 The dielectric material selected for the design is FR-4. 

 Dielectric constant 4.4  

 Height of substrate (h) = 1.57 mm. 

The antenna is fed by 50 Ω microstrip line.  It has two U-slot shaped and two bridges to 

connect both shapes together as shown in Figure 3-1. 
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          Figure ‎3-1: Structure and detailed dimensions of proposed patch antenna 

 

The proposed antenna is optimised to operate at the three WiMAX frequency bands 2.7, 3.3 

and 5.3 GHz with simulated impedance bandwidth of 4.8 %, 3 % and 2.5 % respectively. Thus 

the three bands satisfied the required bandwidth for the WiMAX compliant transmitters. The 

proposed antenna consists of a ground plane, a printed patch with large and small U-slots 

and a microstrip feed line. In step one; basic formulas have been used to design the total size 

of the patch [8]. The total size of the small patch is 25 x 30 mm2 this can generate a single 

band at 4.68 GHz which is about half wavelength. When cutting a U-Slot shape on the small 

patch the currents travel over a longer path which results in shifting the band to lower 

frequency at 4.26 GHz. Two other bands have been generated when cutting a U-Slot shape 

on the small patch at 3.26 GHz and 5.4 GHz. However, WiMAX has allocated three frequency 

bands, the low band (2.5 to 2.8 GHz), the middle band (3.2 to 3.8 GHz) and the high band 

(5.2 to 5.8 GHz). Therefore, by increasing the size of the small patch, cutting a larger U-slot 

and then adding two bridge elements in appropriate place to connect both shapes together, 

the currents can travel longer distance which results in shifting the bands to lower 

frequencies and also the fine tuning of the length, width and the location of the bridges and 
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the feed line results in the final targeted frequencies at 2.7 GHz, 3.3 GHz and 5.3 GHz as 

shown in Figure 3-2 and table 3-1.   The mobile WiMAX requires an operating bandwidth of 

1.25 MHz [9]. The proposed antenna operates with adequate bandwidths at the specified 

operating frequencies within these WiMAX bands.  

An edge feed approach was employed in the design as it will be convenient to integrate the 

antenna with other microstrip circuits printed on the same board and also to reduce space 

requirements. The offset feeding arrangement was found to give a better input match at 

these operating frequencies and hence it was adopted.   

 

 

Figure ‎3-2: S11 with and without bridge elements. 

 

Table ‎3-1: The effect of the bridges on the proposed U-Slot antenna  

 

 Band I Band II Band III 

Without Bridges 3.2 GHz 4.3 GHz 5.4 GHz 

With Bridges 2.7 GHz 3.3 GHz 5.3 GHz 
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3.2.4 Parametric Analysis  

Of all the investigated design parameters, two of them have a very noticeable effect in 

determining the performance of the antenna. The parameters that show the most effect are 

W and W2. In order to check the changes of the frequencies shift or bandwidth changes, 

parametric studies for each parameter have been carried out and obtained from iterative 

simulation with initial data.  

3.2.4.1 Effect of Changing (W)  

In Figure 3-3, it shows the S11 based on variation in the parameter (W). The first and second 

bands are not affected, however, there is a noticeable change on the impedance matching of 

the third band when decreasing the size of (W) from 45 mm to 35 mm. A better 

characteristic for S11 and the bandwidth is obtained when (W) is 40 mm.   

 

 

 

Figure ‎3-3: Variation of the (W) parameter on the S11 response  

 



Chapter 3: Fixed Multiband Antennas 
________________________________________________________________________ 

 46 

 

3.2.4.2 Effect of Changing (W2)  

Figure 3-4 describes the S11 based on increasing and decreasing the width (W2) of the first U-

slot. (W2) affects the resonance frequency of the first band (2.7 GHz) only.  Therefore, when 

(W2) is 15 mm the first band is at 2.7 GHz. By increasing the value to 17 mm the resonance is 

shifted to a lower band whereas by decreasing the value to 13 mm, the resonant is shifted to 

a higher frequency. A better characteristic for S11 and the bandwidth is obtained when (W2) 

is 40 mm. As a result, the antenna can be easily constructed on any other band by choosing 

the appropriate width for both U-slots.   

 

 

 

Figure ‎3-4: Variation of (W2) parameter on the S11 response 

 

3.2.5 Simulation and Measurements 

3.2.5.1 S11 and Current Distributions 

In order to validate the simulation results from HFSS software, the proposed antenna has 

been fabricated according to the specifications given in section 3.2.3. Figure 3-5 (a) shows 

the prototype of the antenna. The measured data for the proposed antenna showing that 

the antenna operates at 2.7 GHz, 3.3 GHz and 5.3 GHz, and measured using Agilent N5230A 

vector network analyser. In Figure 3-5 (b), the simulated values of the S11 in the final design 
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are compared with the measured data and it was found that the simulated and measured 

results are in good agreement, confirming that the simulated results were obtained with 

reasonable accuracy. The discrepancy between the simulated and measured results might 

be attributed to the fabrication process. 

 

     

  (a)  

 

 

           (b)  

Figure ‎3-5: (a) Fabricated prototype and (b) measured and simulated results for the proposed 
antenna 

 

The current distributions on the proposed antenna at 2.7 GHz, 3.3 GHz and 5.3 GHz are 

shown in Figure 3-6 (a)-(c) respectively.  Figure 3-6 (a) shows that the current distribution at 

2.7 GHz band is concentrated mainly in the X direction and results in H-plane in Y-Z plane 

and it can also be observed that high cross-polar components due to high current densities 
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in the Y direction. Similarly Figure 3-6 (b) and (c) show current concentration in Y direction 

at 3.3GHz and X direction at 5.3GHz resulting in H-planes in X-Z and Y-Z planes respectively. 

The current path lengths correspond to respective resonance frequencies.  

     

(a)                                                                             (b) 

            

 

          (c) 

Figure ‎3-6: Current distribution for U-Slot antenna at (a) 2.7 GHz, (b) 3.3 GHz and (c) 5.3 GHz 

 

3.2.6 Radiation Patterns and Gain     

The Co and X polarization for E-Plane and H-Plane radiation patterns at the centre 

frequencies 2.7, 3.3 and 5.3 GHz are plotted as shown in Figure 3-7 (a)-(c). From the 

radiation patterns it can be observed that there is a stable response throughout the three 

bands with -8 dB low cross polarization for the first band and below -10 dB for the second 

and third bands. The antenna gain is 1.7 dBi at 2.7 GHz, 2.3 dBi at 3.3 GHz and 4.1 dBi at 5.2 

GHz.  
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(a) 

                       

(b) 

                                   

(c) 

Figure ‎3-7: Co and Cross polarization for E-plane and H-plane at (a) 2.7 GHz. (b) 3.3 GHz. (c) 5.3 
GHz 
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During the radiation pattern measurements, an RF-optical cable was used to connect the 

antenna instead of traditional coaxial cable to eliminating the large distortion associated 

with the unwanted radiation from a coaxial cable as shown in Figure 3-8 (a)-(b).  

 

 
                                         (a)                                                                         (b)  

Figure ‎3-8: Experimental setup for radiation pattern measurement of the U-Slot antenna using: 
(a) coaxial cable; (b) optical fibre 

 

The measurements were made in the NPL SMART chamber. The use of optical fibre on the 

receiving antenna eliminates cable reflections [10-11]. Results of the radiation patterns of 

the proposed antenna with coaxial cable and with optical fibre are compared as shown in 

Figure 3-9 (a)-(c). The results in Figure 3-9 show that the optical cable has slightly improved 

the shape of the radiation patterns and some nulls have been cleared which reflect that the 

coaxial cable has some effects on the radiation patterns.    

                                                     

                2.7 GHz with optical                                                                   2.7 GHz with coaxial 

(a) 
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       3.3 GHz with optical                                                        3.3 GHz with Coaxial 

                                                                    (b) 

                                    

 

                     5.3 GHz with optical                                                                5.3 GHz with coaxial 

(c) 

 

Figure ‎3-9: 3D measured radiation patterns with optical cable and with coaxial cable 

 

 

 

 



Chapter 3: Fixed Multiband Antennas 
________________________________________________________________________ 

 52 

 

3.3 Multiband Inverted-F Antenna for Small and Slim Mobile 

Handsets 

3.3.1 Introduction  

Based on the discussion in section 3.1, this section tackles the following points:  

 The effect of the ground plane size, the height of PIFA and the location of the 

feeding point.   

 The independent control over a wide range.  

 The effect of the housing and user’s hand on the antenna’s performance. 

 The overall size of the antenna.   

Therefore, the design of a small ultra-thin Printed Inverted-F Antenna (PIFA) with 

independent frequency control is proposed. The antenna consists of a slotted radiator 

supported by shorting walls and a small ground plane. The structure is designed and 

optimized to operate at 2.09, 3.74 and 5 GHz with achievable bandwidths of 11%, 8.84% 

and 10%, respectively. These three bands cover the existing wireless communication 

frequency bands from 1.5 - 6.8 GHz. Each of the three bands can be controlled 

independently without affecting the other two bands. The 2.09 GHz band can be controlled 

to operate between 1.5 – 2.09 GHz (33.33%), the 3.74 GHz band can be controlled over the 

range of 3.57 – 4.18GHz (15.76%) and the 5 GHz band can be controlled to cover the band 

from 5.00 – 6.80 GHz (30.50%). Results of intensive investigations using computer 

simulations and measurements show that the ground plane and the feed locations of the 

antenna have marginal effects on the performance of the antenna. The effects of the user’s 

hand and mobile phone housing on the return loss, radiation patterns, gains and efficiency 

are characterized. The measured peak gains of the prototype antenna at 2.09, 3.74 and 

5GHz are 2.05, 2.32 and 3.47 dBi, respectively. The measured radiation efficiencies for the 

corresponding three bands are 70.12, 60.29 and 66.24 % respectively. 

3.3.2 Antenna Configuration and S11 Measurements   

Figure 3-10 (a) shows the structure of the proposed antenna with detailed dimensions 

given in Figure 3-10 (b) and Table 3-2. The proposed antenna consists of a main radiator 

with an irregular shape, a rectangular slot, shorting walls, and a ground plane. The material 
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used is FR-4 substrate with a dielectric constant of 4.4, a loss tangent of 0.02 and a 

substrate height of 1.57mm. The proposed antenna has a very small size and is physically 

thin. The total volume of the radiator with feed point is 25.6 x 26 x 3.57 mm3, while the 

overall volume of the antenna including the ground plan is 40 x 40 x 3.57 mm3. The EM 

software, High Frequency Structure Simulator (HFSS) V.11.4 package, is used for full wave 

analysis of the antenna and material losses is taken into account in the simulation studies.  

To validate the simulated results, the proposed antenna is also fabricated on a FR-4 

substrate with the same characteristics used in simulation. The thickness of the copper 

used in the prototype is 0.15 mm. The simulated and measured reflection coefficient (S11) 

of the proposed antenna is presented in Fig 3-11 (a) and the prototype is shown in Fig. 3-10 

(b). It can be seen that the simulated and measured results are in good agreements. The 

little discrepancies might be due to many factors such as the soldering proficiency and 

accuracy of cutting the edges of the copper. The results in Fig. 3-11 (a) show three distinct 

bands are generated at 2.09 GHz, 3.74 GHz and 5 GHz. The corresponding bandwidths 

defined by -6 dB for the three bands are 11 % (1.978–2.2 GHz) for the 2.09 GHz band, 8.84 

% (3.571 –3.9 GHz) for the 3.74 GHz band and 10 % (4.887–5.391 GHz) for the 5 GHz band. 

These bandwidths satisfy the requirements for most of the wireless applications. The 

antenna achieves a wider bandwidth, smaller ground plane size and thinner structure than 

the designs reported in [12] and [13].  

Table ‎3-2: Detailed dimensions of proposed antenna (in millimeter) 

Parameter W W1 W2 W3 W4 W5 

Dimension 40 6 2 2 11.6 4 

Parameter L L1 L2 L3 L4 L5 

Dimension 40 25.6 25.6 20 20 12 

Parameter S1 S2 S3 S4 Ground Plane 

Dimension 2 3.57 4 3 40 x 40  
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                     (a)                                                                      (b) 

Figure ‎3-10: Layout of proposed antenna (a) 3D View and (b) detailed dimensions 

 

             

  (a)                                          

                                                                        

                                                                                         (b) 

Figure ‎3-11: (a) Simulated and measured S11 for the proposed antenna (b) prototype antenna 
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3.3.3 Radiation Mechanism and Current Distributions  

Further understanding of the antenna behaviour can be observed from the current 

distribution plots shown in Figure 3-12 (a) - (c). These current distribution plots can be 

used to identify the electrical lengths for the first, second and third resonant frequencies, 

f1, f2 and f3, at 2.09 GHz, 3.74 GHz and 5 GHz, respectively. It can be seen in Figure 3-12 

(a) that there are two major current paths on the radiator generating the 2.09 GHz band. 

The first current path is along L1 and W1 whereas the second current path is along L2 and 

W2 of Figure 3-10 (b). Both paths have an electrical length of about a quarter wavelength 

at 2.09 GHz. At 3.74 GHz, Figure 3-12 (b) shows that there is only one major current path 

concentrated along L3 and W3 on the radiator. This path has an electrical length of about 

a quarter wavelength at 3.74 GHz. In Figure 3-12 (c), there are two major current paths 

on the radiator. The first path is formed around W1 and (L1 - W4) whereas the second path 

is formed around L4 and W4. The electrical lengths for both paths are about a quarter 

wavelength at 5 GHz. Thus by varying these parameters, the current paths for the first, 

second and third resonances can be independently controlled over a wide range, which is 

further elaborated in the next section. 

 

       

 

                                    (a)                                                                       (b)                                                
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(c) 

 

Figure ‎3-12: Currents distribution for proposed antenna at (a) 2.09 GHz, (b) 3.74 GHz and (c) 5 GHz 

 

3.3.4 Parametric Analysis and Independent Control over a Wide Range  

To design an antenna with multiple band operation, it is desirable to have an independent 

frequency control on two or more separate frequencies. Achieving this option is very 

challenging as discussed in section 2.2. 

The idea proposed in this work to achieve an independent frequency control on different 

frequencies of a single antenna is to find out the radiation elements of the antenna 

responsible for individual bands. From the current distribution discussions in section 3.3.3, 

we can identify the key radiation elements by observing the current paths for each 

resonance frequency, so we can control each band independently. For example, the current 

path along L2 and W2 is for the 2.09 GHz band. Increasing the length of L2 in the X-direction 

moves the lower order mode resonance (at 2.09 GHz) toward the lower frequencies as 

shown in Figure 3-13 (a) and Table 3-4. The 2.09 GHz band can be controlled over 33.33% 

between 1.5 – 2.09 GHz. Similarly, the current path for 3.74 GHz is along L3 and W3 , so by 

changing the size of the width of W3 in the X-direction (without changing the parameters 

(L1 and W1)), the 3.74 GHz band can be tuned to a lower or higher frequency, as shown in 
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Figure 3-13 (b) and Table 3-4. Here, we can tune the 3.74 GHz band over 15.75% between 

3.57 – 4.188 GHz. For the 5 GHz band, the current path is formed along L4 and W4. By 

varying the length and the width simultaneously, we can tune the 5 GHz band over 30.50% 

between 5 – 6.8 GHz without affecting the 2.09 GHz band and the 3.74 GHz bands, as 

shown in Figure 3-13 (c) and Table 3-3.   

It should be noted that the 2.09 GHz and 5 GHz bands have one common current path 

around L1 and W1, so by changing the length or the width of L1, these two bands can be 

controlled without affecting the 3.74 GHz band.  Since these three bands can be controlled 

independently over wide frequency ranges (compared with the design reported in [12] and 

[14]), the antenna can be designed easily for other applications. 

 

     (a) 

 

    (b) 
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       (c) 

Figure ‎3-13: Parametric studies showing independent control for each band over wide range (a) 
2.09 GHz band (b) 3.74 GHz band and (c) 5 GHz band 

 

Table ‎3-3: Independent ontrol range in three bands  

Frequency Band 2.09 GHz 3.74 GHz 5 GHz 

Control Range (MHz) 1500 – 2090 3570 – 4188 5000 - 6800 

Control Range (%) 33.33 15.76 30.50 

 

 

3.3.5 Effect of Antenna Geometrical Parameters on the Antenna Performance 

The effects of the ground plane size, the antenna location and the height of the PIFA on the 

performance of the antenna are examined and further elaborated in this section  

3.3.5.1 Ground Plane Effect 

The geometry of a ground plane in a PIFA are known to affect the antenna performance. In 

[15], slots were added to the ground plane to significantly improve the bandwidth 

performance of the antenna. In [12], it was shown that varying the ground plane size would 

affect S11. An antenna can be designed to couple more energy to the ground plane, making 

the ground plane a radiating part and resulting in a wider impedance bandwidth. However, 
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this makes the ground plane quite sensitive. Since the proposed antenna is designed for 

use in the mobile phone systems which require a relatively narrow width, there is no need 

to use the ground plane to increase the bandwidth. Moreover, there are many advantages 

of having a less sensitive ground plane. For example, with an insensitive ground plane, the 

antenna performance will not be affected by other electronic components and circuits 

nearby. When multiple antennas are integrated together, there will be strong isolation 

between antennas, allowing easy optimization of antennas positions. The antenna can be 

used in mobile phones with different ground plane sizes without changing the 

performance. The user’s hand will not affect the matching of the bands and also the 

radiation efficiency. For these reasons, we should design the antenna to have the ground 

plane as less sensitive as possible so that the performance mainly depends on the structure 

alone and not the surrounding elements [16]. For this antenna, results in Figure 3-14 (a) 

show that varying the length of the ground plane from 40 x 40 mm2 to 40 x 100 mm2 does 

not affect the matching or the bandwidth of the antenna, indicating that the ground plane 

effect is quite small. Similar observation was also reported in [6]. However, this will not be 

the case if the ground plane is used as part of the radiating part as in [12] and [15].   

When the size of the ground plane changes the current distribution on the main radiator 

and the ground plane for the three bands do not significantly change. In addition, the gain 

and the radiation efficiency have been observed when changing the size of the ground 

plane. No significant changes in the gain and the radiation efficiency have been noticed at 

the three bands 

3.3.5.2 Antenna Location with Respect to the Ground Plane  

The location of the antenna can also affect the performances [6]. However, in the proposed 

antenna, results in Figure 3-14 (b) shows that changing the location of the proposed 

antenna along the substrate do not affect the matching or bandwidth of the bands.  More 

results have also shown that this would not change the gain and the shape of the radiation 

pattern. 

3.3.5.3 Height of the PIFA (h2) 

Figure 3-14 (c) shows the effects of the height (h2) of the PIFA above the ground plane on 

the bandwidth of the antenna. It can be seen that, at a smaller value of h2 = 1 mm, the 
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reflection coefficient is larger at the high frequency band and significantly lower at only 5 

dB in the lower frequency band. This is because the radiator was too close to the substrate 

base to resonate at low frequency. At the heights of h2 = 5, 6 and 9 mm, the return loss is 

larger than 10 dB (S11 <-10 dB) in the low frequency band, but less than 5 dB in the high 

frequency bands. With h2 = 2 mm, the return losses of the three bands are larger than 10 

dB which satisfies many applications. Since the objective of this research is to design a small 

antenna with a thin structure, we have selected the heights h2 = 2 mm from the substrate 

and 3.57 mm from the ground plane for further studies. With these dimensions, the 

proposed antenna can operate in the UMTS, m-WiMAX and 5 GH WLAN bands with a 

bandwidth wide enough to cater for these applications. More results have also shown that 

changing h2 does not alter the radiation efficiency and gain of the antenna significantly 

enough to affect the performance, except at 5 GHz for h2 = 9 mm, where the efficiency 

changes slightly 

 

 

                                                                                              (a)                                
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    (b) 

 

  

            

       (c)  

 

Figure ‎3-14: The effects of  (a) ground plane size (b) antenna location and (c) physical height of the 
PIFA on S11 performance. 
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3.3.6 Simulation and Measurements  

3.3.6.1 Measurement Setup 

The antenna was measured using the antenna measurement equipment, StarLab, 

manufactured by Satimo [17]. The orientation of the antenna inside the Satimo is shown in 

Figure 3-15. Before any measurement was done, calibration was carried out by using the 

standard antennas provided. For radiation pattern and gain measurements, it is just like 

other antenna measurement equipment. For power efficiency measurement, the 

equipment first measures the gain, radiation intensity and reflection coefficient of the 

antenna and computes the directivity using the radiation intensity [8]. The efficiency of the 

antenna is then computed using equation (3-1): 

                                      

   

2G(θ,j)
Efficiency= (1- Γ )

D(θ,j)                                                      (3-1) 

where   is the voltage reflection coefficient, G(θ,f)  and D(θ,f)  are the gain and directivity, 

respectively, of the antenna and are functions of spherical coordinate angles θ  and   .  

 

 

 

Figure ‎3-15: The orientation of the proposed antenna during the measurements of the radiation 
patterns, gain and radiation efficiency   
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3.3.6.2 Simulated and Measured Radiation Patterns and its Relation with the 

Current Distribution  

The simulated and measured radiation patterns for co- and cross- polarizations in the E-

plane and H-plane at the frequencies of 2.09, 3.74 and 5 GHz are shown in Figure 3-16 (b) - 

(d). It can be observed the radiation patterns are quite stable throughout the UMATS, m-

WiMAX and WLAN bands. To relate the X-Y-Z orientation of the antenna in Figure 3-10 to 

the E- and H-planes in Figure 3-16, we use the current directions of Figure 3-12 (a) - (c) on 

the radiator in the individual frequency bands. Figure 3-12 (a) shows that the current 

direction for the first band at 2.09 GHz is in the X-direction, so the E- and H-planes in Figure 

3-16 are the X-Z and Y-Z planes, respectively, in Figure 3-10. The current direction for the 

second band at 3.74 GHz is in the Y-direction as shown in Figure 3-12 (b), indicating that the 

E- and H-planes are the Y-Z and X-Z planes, respectively. Here, a high cross-polarization 

level is found at 3.74 GHz. This might be due to high current concentration around the 

bottom right corner of L2, as shown in Figure 3-12 (b). Finally, the current direction for the 5 

GHz band in Figure 3-12 (c) indicates that the E- and H-planes are the Y-Z and X-Z planes, 

respectively. To conclude this, at 3.74 GHz and 5 GHz, the currents have the same direction 

and their E-planes are the Y-Z plane, whereas at 2.09 GHz, the current has a different 

direction and the E-plane is the X-Z plane.   

 

 

     

 

(X-Z)                                                                                         (Y-Z) 

(a)  2.09 GHz 
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(X-Z)                                                                                               (Y-Z) 

 

(b) 3.47 GHz 

 

 

    (X-Z)                                                                                        (Y-Z) 

                                                                            (c) 5 GHz 

Figure ‎3-16: Simulated and measured Co and X-pol radiation patterns in E and H planes (a) 2.09 
GHz (b) 3.74 GHz and (c) 5 GHz 

 

3.3.6.3 Measured Gain and Radiation Efficiency  

Simulations and measurements on the peak gain and radiation efficiency of the antenna 

have been carried out. Results have shown that, in the 2.09 GHz, 3.74 GHz and 5 GHz 

bands, the simulated peak gains are 2.14 dBi, 2.4 dBi and 5 dBi, respectively, and the 

corresponding measured peak gains 2.05 dBi, 2.32 dBi and 4.42 dBi, as shown in Figure 3-

17. The measured radiation efficiencies for the three bands are 70.12 %, 60.29 % and 66.24 

%, respectively, as shown in Figure 3-17. These results have taken into account the loss of 

the FR-4 substrate. If the loss is neglected, the gains and the radiation efficiencies in the 

three-band are higher, as shown in Table 3-4.  
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Figure ‎3-17: Measured S11, peak gain and radiation efficiency 

 

 

Table ‎3-4: Simulated and Measured gain and efficiency with and without the material losses 

Parameters  
(f 1)  

2.09 GHz  

(f 2) 

3.74 GHz 

(f 3) 

5 GHz  

Gain (dBi) 

 Measured with 0.02 FR-4 

losses  
2.05 2.32 4.47 

   Simulated with Lossless 

material 
2.24 3.70 5.53 

Efficiency (%)  

  Measured with 0.02 FR-4 

losses 
70.12 60.29 66.24 

Simulated with Lossless 

material 
99.8 96.5 99.6 
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3.3.7 Effects of Mobile Phone Housing and‎User’s‎Hand‎on‎Antenna’s Ground 

Plane    

The effects of a human hand and mobile phone housing on the reflection coefficient S11, 

radiation patterns, gain and efficiency of the antenna have also been investigated. Figure 3-

18 (a) shows the simulation model of the antenna with the human hand model.  The fingers 

and the palm are attached directly to the ground plane and the main substrate, 

respectively. In Figure 3-18 (b), the mobile phone housing model is in direct contact with 

the antenna and the hand model is then touching the housing of the mobile phone (the 

hand model is in direct touch the ground plane). The relative permittivity and conductivity 

of 3.5 and 0.02 S/m, respectively, for the mobile phone housing model [16] and of 54 and 

1.45 S/m, respectively, for human hand model [18] have been used in simulations. The 

results in Figure 3-19 show that the human hand and mobile phone housing increase the 

S11 in the two lower frequency bands and slightly increase it in the higher frequency band. 

  

     

                           

                                (a)                                                                     (b)                 

Figure ‎3-18: The proposed antenna with (a) Hand (b) mobile phone housing and hand 
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Figure ‎3-19: The effect of the human hand and the plastic housing of the mobile phone on S11 

 

With the human hand and mobile phone housing are in place, the radiation patterns at 2 

GHz are shown in Figure 3-20. It can be seen that the shape of the radiation patterns does 

not change much.  The simulated peak gain and radiation efficiency are shown in Figure 3-

20. At 2 GHz, Figure 3-21(a) shows that the mobile phone housing and the hand increase 

the peak gain by 2 dB. However, if only the human hand is attached directly to the ground 

plane, the peak gain is decreased by almost 1 dB. This can also be observed in the radiation 

pattern of Figure 3-20 where the antenna loses some energy in the direction of the ground 

plane and gain from its maximum value. At 3.74 GHz and 5 GHz, the gains drop by 

approximately 1 dBi, yet maintaining the shape of the radiation patterns. There is no 

significant change in radiation efficiency when both the human hand model and mobile 

phone housing are present, as shown in Figure 3.21(b). 

These results indicate that the ground plane of the proposed design is not too sensitive to 

the hand and mobile phone housing.                             
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                                       (a)                                                                              (b) 

                                                     

Figure ‎3-20: Normalized Co-Pol and X-Pol radiation patterns at 2.09 GHz band in the presence of 
human hand model and the mobile phone housing in (a) X-Z Plane (b) Y-Z Plane 

 

(a) 
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(b) 

Figure ‎3-21: Simulated Results of the proposed antenna with human hand model and mobile 
phone housing (a) peak gain and (b) radiation efficiency 

                                                                                                                           

3.3.8 Effect‎of‎User’s‎Hand‎at‎Different‎Positions‎on‎Antenna  

It is also essential to examine the effects of the hand at different positions on the return 

loss, gain and efficiency of the antenna. In [19], results of studies showed a dual-band of 

the antenna was significantly affected by a hand placed on the top of the radiator with 1 

cm gap between them. Here, the performances of the antenna with the hand in three 

different positions, positions 1, 2 and 3, as shown in Figure 3-22 (a) - (c), respectively, are 

studied. In position 1, the hand (palm) is placed 1 mm above the top of the radiator and the 

fingers are touching the ground plane on the other side. The results in Figure 3-23 (a) show 

that the first and the third resonances at 2.09 and 5 GHz remain about the same. The 

second resonance at 3.74 GHz slightly moves to 3.69 GHz. The S11 of the three bands are 

still greater than 6 dB (S11<-6 dB), which is different from the results reported in [19]. In 

position 2, where the hand is at the centre of the antenna and the palm of the hand 

partially covering the radiator with 1 mm gap between them as shown in Figure 3-22  (b), 

the results in Figure 3-23 (a) show that the three resonant frequencies again remain about 
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the same. In position 3, where the hand model is relatively far from the radiator as shown 

in Figure 3-23 (c), the three resonances again remain about the same, as indicated in Figure 

3-23 (a). 

               

 

                 (a)                                (b)                                                                       

 

                                                                         

                                                                          (c)  

Figure ‎3-22: Simulation model for different positions of user’s hand (a) User’s hand covering 
radiator, (b) User’s hand partly covering radiator and (c) User’s hand not covering radiator of 

antenna. 
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The simulated results on the gain and radiation efficiency for the three different positions 

are shown in Figure 3-23 (b) - (c). It can be seen that, when the hand moves closer to the 

radiator, the gain drops by almost 0.7 dBi compared with that when the antenna in free 

space. The radiation efficiency drops to 63% when the hand moves closer to the radiator. 

These results indicate that, in these 3 positions, the performance of the antenna is not very 

much sensitive to the user’s hand. The best position, in terms of maximum efficiency and 

gain, is when the user is holding the mobile phone from the bottom, i.e., position 3. When 

the user’s hand gets closer to the radiator, the gain and the radiation efficiency drop 

slightly compared with the case when the antenna is in free space. Even for the worst case 

scenario where the user’s hand is completely or partly covering the radiator with 1 mm gap 

between them, as in positions 1 and 2, the simulation results show that it still can attain 

above 60% efficiency which is considered quite acceptable for mobile phone applications 

unlike the design reported in [16] where the radiation efficiency is about 28% at 1795 MHz 

when the hand is covering the radiator. The gain only drops by 2.2 dBi in the first band of 

2.09 GHz and by smaller amounts in the other bands. 

 

 

 

                                                                               

                                                                                (a)                                                                        

                                                  



Chapter 3: Fixed Multiband Antennas 
________________________________________________________________________ 

 72 

 

 

                                                                                   

                                                                                                (b)         

 

 

                                                                               (c)  

Figure ‎3-23: Effect of different positions of user’s hand on (a) The reflection coefficient (S11) (b) 
gain (c) radiation efficiency 
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3.4 Compact Printed Multiband Antenna with Independent-Control 

for Different Wireless Applications 

3.4.1 Introduction  

Based on the discussion in section 3.1, this section investigates the following points:  

 Independent control over a wide range.  

 Small size and simple design. 

 Using sub-patches technique to generate multiple band operations. 

 Targeting the lower frequency bands.    

Therefore, a design of a low profile compact printed multiband antenna is presented. The 

antenna consists of a main patch, four sub-patches and a ground plane for generating five 

frequency bands, bands #1, #2, #3, #4 and #5 at 0.92, 1.73, 1.98, 2.4 and 2.9 GHz, 

respectively. In the proposed antenna, each of the frequencies in bands #1 to #5 can be 

adjusted and set independently over a wide range, i.e., 18.78%, 22.75%, 4.51%, 11% and 

8.21%, respectively using just one parameter of the antennas. 

3.4.2 Antenna Layout and Design Procedure  

A simple and compact multiband antenna, having five frequency bands, bands #1, #2, #3, 

#4 and #5 at 0.92, 1.73, 1.98, 2.4 and 2.9 GHz, respectively, with the feature of 

independently setting on individual frequencies, is proposed here. The geometry of the 

proposed antenna is shown in Figure 3-24, with key parameters listed in Table 3-5. It 

consists of a main patch, four sub-patches (sub-patches #1, #2, #3 and #4), a ground plane 

and a 50-Ω feed line. The antenna is mounted on an FR-4 substrate with a thickness of 1.57 

mm and a relative permittivity of 4.4. The structure occupies a total area of 45.6 × 50 mm 

and has a ground plane of 50 × 50 mm on the other side of the substrate.  Computer 

simulation using the HFSS is employed to design the antenna. In the design procedure, the 

main patch is first designed and the four sub-patches, sub-patches #1, #2, #3 and #4, are 

then designed and added one-by-one to the main patch to generate the five desirable 

frequency bands required for the other standards and applications.  
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 Figure ‎3-24: Structure of the proposed fixed design 

 

Table ‎3-5: Dimensions of the proposed printed antenna (in mm) 

Lo L1 L2 L3 L4 Lf LP 

31 24 24 24 24 14.6 4 

Wo W1 W2 W3 W4 Wf WB 

50 8 10 10 12 3 27 

F1 F2 F3 F4 D1 D2 D3 

3 2 3 2.5 1 2 2 

D4 D5 h UL UW RL RW 

3 2 1.57 19 7 14 6 

Ground Plane  

50 x 50 
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3.4.3 Design Methodology    

The design steps can be easily described with the aids of Figure 3-25(a) - (e) as follows. 

Step 1: The main patch, with an area of 50 mm × 30 mm (length × width), is designed to 

generate operate band #4 at 2.4 GHz for the Wireless Local Area Network (WLAN) band and 

optimised in terms of minimizing the reflection coefficient s11 across the band by computer 

simulation. Figure 3-25(b) shows the layout and the optimised s11 for the main radiation 

patch. At 2.4 GHz, s11 = -18 dB. 

Step 2: Sub-patch #1 is added to the main patch as shown in Figure 3-25(b) and designed to 

generate the resonant frequency for band #1 at 0.92 GHz with s11 = -7 dB.  To make room 

for adding the sub-patch without increasing the antenna size, the width of the main 

radiator is reduced to 4 mm, so the main patch in Figure 3-25(b). looks like a strip line. It 

can be seen that adding sub-patch #1 and reducing the width of the main patch increases 

the s11 for band #4 at 2.4 GHz from -18 dB to about -7 dB which is undesirable.    

Step 3: Sub-patch #2, with layout shown in Figure 3-25(c), is added to the main patch. A U-

Slot cut on sub-patch #2 is used to generate band #2 at 1.73 GHz. The dimensions of sub-

patch #2 are optimised in terms of minimizing s11 at the resonant bands. It can be seen that 

sub-patch #2 does not alter the frequencies for bands #2 and #4 generated by the main 

patch and sub-patch #1, respectively, but lowering down their s11 values. Sub-patch #2 also 

generates an unwanted band at 1 GHz which will become insignificant in the final design (in 

Step 5). Note that, without the U-Slot, band #2 disappears, as can be seen in Figure 3-25(c). 

Step 4: Sub-patch #3 is added to the main radiation patch as shown in Figure 3-25(d). A 

rectangular slot is cut on the sub-patch to generate a band #5 at 2.9 GHz. The dimensions 

of the sub-patch are optimised and the simulated s11 is shown in Figure 3-25(d).  It can be 

seen that all the bands generated are not affected by adding sub-patch #3, except band #1 

at 0.92 GHz which is slightly detuned by sub-patch #3. However, adding sub-patch #4 in 

Step 5 will tune the resonant frequency back to 0.92 GHz as seen later. Note that, without 

the rectangular slot, band #5 disappears, as can be seen in Figure 3-25(d).  

Step 5: Sub-patch #4 is added to generate band #3 at 1.98 GHz as shown in Figure 3-25(e), 

resulting in five different bands, at 0.92, 1.73, 1.98, 2.4 and 2.9 GHz, for serving different 

applications. The dimensions of the sub-patch are optimised in terms of minimizing the s11 

in all bands, so the s11 values in these five bands are much lower than those without having 
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sub-patch #4. For example, when sub-patch #1 is added to the main patch in Step 1, the s11 

in band #1 is only about -7 dB. When all the sub-patches are added, the s11 in band #1 is 

reduced to more than -10 dB. Thus sub-patch #4 plays a major role in matching. The key 

parameters of the antenna are listed in Table I. The final design of the five-band antenna is 

fabricated on a substrate, as shown in Figure 3-25(f), with the same parameters used for 

simulation. The s11 of the prototyped antenna is measured using an Agilent N5230A 

network analyzer and shown in Figure 3-25(e) for comparison. It can be seen that the 

simulated and measured s11 are in good agreements.   

 

       

                                  

                                   (a)                                                                    (b)          

                  

               

                                      

                                   (c)                                                                     (d) 
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                                (e)                                                                        (f)                   

Figure ‎3-25: The steps involved in designing the proposed antenna (a) Main patch (b) Main Patch 
and Sub-Patch 1 (c) Main patch and sub-patch 1 & 2 with and without U-slot (d) Main patch and 
sub-patch 1, 2 & 3 with and without rectangular slot (e) Simulated and measured results  

 

3.4.4 Current Distributions 

The operation of the five-band antenna is further studied using surface current 

distributions at the five resonant frequencies and simulated results are shown in Figure 3-

26. For band #1 at 0.92 GHz, Figure 3-26(a) shows that the current mainly flows on the 

main radiator and sub-patch #1 which contribute to most radiation. The other sub-patches 

simply help improve matching. This explains the reason that when all sub-patches are 

added to the main patch, the s11 at 0.92 GHz is reduced from -7 dB to more than -10 dB. For 

band #2 at 1.73 GHz, Figure 3-26(b) shows that the current is mainly concentrating on sub-

patch #2 which contributes most radiation. Similarly, for bands #5 and #3 at 2.9 and 1.98 

GHz, respectively, sub-patches #3 and #4 have the highest current densities and so are 

responsible for the corresponding radiations. The current paths indicated in Figure 3-26(a) - 

(d) where λ is the wavelength at the resonant frequency of the respective band and given 

by (0 rλ= λ / +1) / 2 , with being the free space wavelength. 
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                                        (a)                                                                                        (b)            

 

                       
                                                     

                                           (d)                                                                                 (c)            

                                                                                     

Figure ‎3-26: Simulated surface current distributions at (a) 0.92 GHz, (b) 1.73 GHz, (c) 2.9 GHz and 

(d) 1.98 GHz 

 

3.5 Independent Control Concept  

In this proposed antenna, we can independently set the individual frequency bands, one-

by-one, without affecting other bands. In the previous results in section  3.4.4, The current 

paths responsible for radiations at different resonant frequencies were identified. Thus, 

those antenna parameters can be change, which in turn alter the lengths of the current 

paths and set the resonant frequencies independently. For example, at 0.92 GHz band, 

Figure 3-27(a) shows that the current travels along sub-patch #1 in the Y-direction, thus 

changing the width W1 of sub-patch #1 alters the resonant frequency 0.92 GHz but without 

affecting other bands. Applying this same principle to Figure 3-27 (b)-(d), it can be shown 

that the lengths L2, L3, and L4 in sub-patches #2, #3 and #4, respectively, can be used to 

independently set the corresponding frequencies 1.73, 2.9 and 1.98 GHz to other values. 

The simulation results on the effects of varying the parameters W1, L2, L3, and L4 on the 

frequency bands are shown in Figure 3-27. It is can be seen from Figures 3-27(a)-(d) that, 

the parameters , W1, L2, L3, and L4 can be used to independently adjust the frequency bands 
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at 0.92, 1.73, 1.98, and 2.9 GHz over the wide ranges of 18.78%, 22.75%, 4.51%, and 8.21% 

respectively. Table 3-6 summaries these results.   

 

 

 

(a) 

 

    (b) 
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                                                                              (c)                                                                                         

 

                    

 

           (d) 

Figure ‎3-27: Parametric study on the fixed design showing the independent control at (a) 0.92 GHz 
band (b) 1.7 GHz band (c) 2.9 GHz band and (e) 1.98 GHz band 
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Table ‎3-6: Effects Of Changing W1, L2, L4, and L3, On S11   

Parameters 0.92 GHz 1.73 GHz 1.98 GHz 2.4 GHZ 2.9 GHz 

W1 820–990 MHz 

18.78% 
Fixed Fixed Fixed Fixed 

L2 
Fixed 

1550–1948 

MHz 

22.75% 

Fixed Fixed Fixed 

L3 Fixed Fixed 
1952–2044 

MHz 

4.51% 

Fixed Fixed 

L4 Fixed Fixed Fixed 
 

Fixed 
2800–3044 MHz 

8.21% 

 

3.5.1 Simulated and Measured radiation patterns  

The measurements were conducted at the Small Antenna Radiated Testing Range (SMART) 

of the National Physical Laboratory (NPL). After measuring the co and cross polar patterns, 

the results were normalized with the maximum value. The normalized measured and 

simulated radiation patterns for the co- and cross polar far field E-plane (X-Z plane) and H-

plane (Y-Z plane) at 0.92, 1.73, 1.98, 2.4 and 2.9 GHz are shown in Figure 3-28 (a) - (e) 

respectively. An example of measured 3D pattern is shown in Figure 3-28 (f) for 0.92 GHz.   

              
                  X-Z                                   Y-Z                                             X-Z                             Y-Z 

            (a)  0.92 GHz                                                   (b) 1.73 GHz 
 

                                                            
                 X-Z                                     Y-Z                                        X-Z                                    Y-Z 
                             (c) 1.98GHz                                                                             (d) 2.4 GHz 
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                   X-Z                                  Y-Z 
                                  
                                        (e) 2.9 GHz                                                                          (f) 2.9 GHz  
                           
Figure ‎3-28 Measured versus simulated Co-Pol and X-Pol radiation patterns for X-Z and Y-Z  planes 
at (a) 0.92 GHz (b) 1.73 GHz (c) 1.98 GHz (d) 2.4 GHz (e) 2.9 GHz and (f) 3D measured patterns at 
2.9 GHz. 

 

3.6 Summary 

Small and ultra-slim multiband antennas for wireless and mobile applications have been 

investigated in this chapter. Tackling the challenge of limited space in modern small and 

slim device was one of the main motivations of this chapter. The multiplicity of bands and 

the size reduction have been achieved by the use of different methods including different 

shapes of slots and sub-patches. The capabilities of Planar Inverted-F Antenna (PIFA) and 

patch antenna have been extended to include independent control over a wide range. The 

effect of user’s hand and housing of mobile phone have been discussed and taken into 

account to minimise their effects in real applications.        

In section 3.2, U-Slots technique has been used to minimise the size of the antenna and to 

create multiple band operations. The antenna is optimised for WiMAX applications. Other 

applications are also possible.  In section 3.3, an ultra-slim PIFA for mobile handsets has 

been designed. The effect of the feed location and the sensitivity of the ground plane have 

been studied. In addition, the ground plane of the antenna has minimal effects on the 

antenna performance and the performance is not too sensitive to the human hand and the 

mobile phone housing used in the studies. This feature allows the nearby electronic 

components to be placed closed to the antenna, making the overall size the mobile phones 

even more compact and thin.  



Chapter 3: Fixed Multiband Antennas 
________________________________________________________________________ 

 83 

 

In section 3.4, Sub-patches technique has been used to allow the antenna to operate in 

five-band. Some sub-patches had U-slot and rectangular shape to disturb the current path 

on the sub-patch.  

All the presented antennas in this chapter have the independent control feature which was 

obtained by studying the key controlling parameters of each band. This feature allow the 

antennas to cover the major wireless and mobile applications and standards such as the 

Global System for Mobile Communications (GSM900 and 800), Personal Communication 

System (PCS 1800 and 1900), Digital Communication Systems (DCS), Global Position System 

(GPS), Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks 

/ Bluetooth (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX), etc. 

Finally, the designed antennas have been fabricated and tested to verify the results from 

HFSS software. The measured and simulated results showed very good agreement. 
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4  Switchable Multiband Antennas 

 

Switchable Multiband Antennas  

 

 

4.1 Introduction 

Future cognitive communication systems will require reconfigurable antennas 

(Switchable) capable of operating over a wide range and over multiple wireless standards 

[1]. Therefore, the antenna should be designed to have multiple band and wideband 

operation to cover multiple standards at the same time. This requirement can be 

achieved by using switchable antenna (coarse tuning) capable of operating in wideband 

and multiband operations to cover different standards.  

It is a well known that patch antennas have narrow bandwidth, which can limit their uses in 

any applications requiring wideband antennas. A variety of studies has come up with 

different techniques to achieve wideband operation for printed antennas. Some of the 

techniques employed are changing the physical size of the antenna, modifying the radiator 

shape (which sometime increases antenna size) and adding additional parts such as multi 

layers or gaps (which again make the antenna large and of a high profile).  Other techniques 

include using U-slot array [2], shorting wall [3], folded shorting wall [4], Y-V Slot [5], slots 

form [6], stacked patch [7], pair of slits on the patch (with total size of the antenna 150 x 

150 x 14.3 mm2) [8], E-shaped patch on thick substrates with ground plane size of 140 x 210 

mm2 [9] and using circular arc shaped slot on thick substrate [10]. The designs in [2]-[10] 

can achieve wide impedance bandwidths. However, these antennas are larger in sizes and 

difficult to fit into small and slim devices.  

Chapter 4 
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A reconfigurable (switchable) antenna is another solution to achieve a wide impedance 

bandwidth by switching ON and OFF some parts of the antenna. In literature, few papers 

were found to use this approach for switching between wideband and narrowband 

operations. For example in [11], studies were done on switching between dual ports, one 

port for Ultra Wideband (UWB) and the other port for a single narrowband. In [12]-[13], 

switching between UWB and a single narrowband was reported. However, the use of an 

UWB antenna for multiband applications could result in unwanted emissions in the 

transmission mode.      

Therefore, in section 4.2, a single feed switchable wideband and multiband antenna using 

two patch elements on a planar structure is proposed. Dual-band modes are achieved by 

switching “ON” either one of the two patch elements, while the wideband mode with an 

impedance bandwidth of 33.52% is obtained by switching “ON” both patch elements. The 

antenna occupies a compact volume of 50 x 50 x 1.57 (3925mm3), including the ground 

plane. The frequencies in the dual-band modes can be independently controlled over a 

wide range without affecting the wideband mode. This approach help to overcome the 

need for increasing the surface area normally incurred when designing wideband patch 

antennas. 

Moreover, several studies on switchable multiband-antenna designs for different wireless 

applications using H-shape [14]-[17] and T-shape antennas [18]-[21] have been reported. 

Although fixed multiband antennas can be used in different wireless systems, they lack the 

flexibility to accommodate new services when compared with reconfigurable antennas 

which can be considered as one of the key advances for future wireless communication 

transceivers. In the past few years, there has been a significant interest in the field of 

reconfigurable-multiband antennas. Different techniques used for reconfigurable antennas 

were reported in [22]. One of the advantages of reconfigurable antenna is to use the same 

antenna for multiband operation, thus the total antenna volume can be reduced when 

compared with those of having fixed multiband, leading to a reduction in the overall 

volume of wireless device and more space for integrating with other electronic 

components.  

An independent-multiband Planer Inverted-F Antenna (PIFA) was studied in [23], where 

three resonant frequencies were generated and controlled by employing additional parts in 

the main radiating patch.  
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Multiband antennas can cover multiple frequencies using a single antenna and so are very 

desirable for wireless applications. However, fixed multiband antenna usually requires 

complicated filters with inflexible requirements to improve their out-of-band noise 

rejection. The filters are bulky and can add complexity to the communication systems [22]. 

As a solution to these problems, reconfigurable antenna can achieve a better out-of-band 

noise rejection. Some designs from the literature review on switchable antennas are given 

in Table 4-1.  

Table ‎4-1 Some related work in switchable antennas 

Reference 
Antenna 

Type 
Bands Switches Size Remarks  

24 PIFA 2 2 70 x 30 Switching between 2 bands 

25 Monopole 1 4 
120 x 120 x 

7.8 
switching between 8 bands    
              (1.8 - 2.4) 

26 
Quasi-Yagi 

Dipole  
1 3 102 x 87 Switching between 4 bands  

27 PIFA 1 4 40 x 100 x 8 Switching between 5 bands 

28 Patch 1 3 
24 x 25 x 

1.524 
Switching between 4 bands 

29 PIFA 2 2 100 x 42 Switching between 4 bands 

30 Annular Slot 1 3 40 x 40 Switching between 2.4 and 
5.2 GHz bands 

31 Branched Up to 6 3 96 x 9 x 3 
Switching between a group 

of 6 bands 

32 Patch 2 10 
38 x 25 x 

1.524 

Selected dual frequencies  
(4.8 and 7.6 GHz) 

 

From Table 4-1 and the literature on switchable antennas, the following points can be 

observed: 
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 When using more than one switch, the antenna can offer additional features. 

However, the switches will add complexity to the communication system as the 

biasing will be more complicated. Therefore, to achieve reconfigurable behaviour, 

less switches should be used as much as possible.  

 The number of bands increases with the increase in size. However, in modern 

wireless devices or systems, the size of the devices are getting smaller while many 

different services have to be offered in one device.  The challenge is not only to 

reduce the size of the antenna but also to make the antenna capable of operating in 

different wireless and mobile applications.  

Therefore, in section 4.3, the design of a planar antenna with frequency reconfigurability is 

proposed. The antenna has an H-shaped radiator, a CPW and a varactor diode connecting 

the upper and lower arms of the H-shape radiator. Through the use of DC bias voltage 

across the varactor diode, the antenna can be operated in three different modes, a single-

band mode covering the Global System for Mobile communications 1900 (GSM1900) 

system, a dual-band mode at 1.88 and 2.4 GHz to cover GSM1900 and Bluetooth or 

Wireless Local Area Network (WLAN) systems, respectively, and a tri-band mode at 1.57, 

1.88 and 2.4 GHz to cover the GSM1900, WLAN and Global Positioning System (GPS), 

respectively. The frequency bands in these modes can also be controlled by the varactor 

diode and the widths of the arms in the H-shape radiator. Detailed simulation studies on 

the reflection coefficient, current density, antenna pattern and gain are carried out to 

investigate the behaviour of the antenna at each resonant frequency. Results are validated 

by measurements using the Small Antenna Radiated Testing Range (SMART) at the National 

Physical Laboratory (NPL). 
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4.2 Reconfigurable wideband and multiband patch antenna for 

Cognitive Radio 

4.2.1 Introduction  

Cognitive radio communication is envisaged to be a new/unconventional paradigm of 

methodologies for enhancing the performance of radio communication systems through 

the efficient utilization of radio spectrum. The driving force behind the idea of cognitive 

communication is the motivation of efficient and intelligent utilization of the radio 

spectrum. Owing to a number of possible methodologies for achieving the objectives 

associated with cognitive radio communication, it is very difficult to restrict its definition to 

a particular system specification. However, there are common traits of cognitive 

communication systems, for instance, according to [33], a cognitive communication system 

is an intelligent communication system, capable of learning from its radio environment and 

accordingly adapting its operational parameters for reliable communication and efficient 

utilization of radio spectrum. In order for a communication system to be intelligent, capable 

of learning, adaptive, and reliable (thus cognitive) there is a need of joint cooperation 

between several protocols across the layers. Learning from the environment constitutes an 

important part of a cognitive radio communication system. The learning phase employs 

many (hard and soft) parameters; for instance, a cognitive radio should be capable of 

sensing the spectrum over a wide range of frequencies and then combining the information 

gathered from sensing (hard parameters), with (optionally) using various soft-parameters 

(e.g. user preference, protocols’ interaction).The hard and soft parameters of the learning 

stage work as an input to the decision making module. Such a decision- making module is 

deemed to be intelligent so that it can take an appropriate decision according to the input 

parameters. The behaviour of the communication system in terms of its operational 

parameters has to be adaptive in order to support the decisions of a decision making 

module. Increasing the adaptability of the overall communication system comes at the 

price of higher protocol/hardware complexity; nevertheless, higher adaptability would 

imply the possibility of higher degrees of cognition in the system. 

It is important to notice that a key enabler for realization of the learning phase, more 

specifically for gathering the hard-parameters, is the capability of re-configurability in the 
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underlying hardware and the associated protocol suite [34]. For accomplishing the 

spectrum sensing the underlying hardware (antenna) should be capable of operating over a 

wide range of frequencies. The decision making module may then direct the actual 

transmitter to operate at a particular frequency band. As the ‘cognitive communication’ is 

still in its evolutionary research phases, there is no specification for the underlying 

hardware which should conform to the specification of a Cognitive communication system.  

In this section, C-Slots are employed on two patch elements to allow the antenna to 

generate dual-band and wideband modes. Two PIN diode switches are placed on the 

connecting lines of a simple feed network to the patch elements. Dual-band and wideband-

mode operations are obtained by switching “ON/OFF” the two patch elements. The 

antenna can be used for narrowband applications such as the WLAN and WiMAX and 

wideband operations in the frequency range of 5 GHz to 7 GHz for other wireless standards. 

The design eliminates the need for using two ports as proposed in [12]-[13] and increases 

the number of possible frequency bands from one to four. The volume of the proposed 

antenna, including the ground plane and the substrate, is 50 mm x 50 mm x 1.57 mm. 

4.2.2 Antenna Configuration and Design Procedure    

Figure 4-1(a) shows the schematic diagram of the proposed reconfigurable antenna which 

consists of two patch elements with a simple feed network, two PIN-diode switches and 

two chip capacitors on one side of the substrate and a ground plane on the other side of 

the substrate. The complete antenna is designed using the EM simulator, HFSS V.11.2, 

based on Finite Elements Modelling (FEM) and fabricated on an FR-4 substrate with 

thickness of 1.57 mm and a relative permittivity of 4.4. The key antenna parameters of the 

antenna are shown in Table 4-2. 

The dimensions of the patch elements of the antenna are computed to operate at the 5.5-

GHz WLAN band using the equations given in [35]. Since cutting a slot on the radiator can 

change the current distribution and the current path, and hence improve the impedance 

matching especially at higher frequencies, as discussed in [36], in this design, two C-Slots 

are used on the two patch elements, as shown in Figure 4-1(a), to generate a wide 

impedance bandwidth and to create multiple resonant frequencies. The feed network has a 

main 50-Ω feed line and two connecting lines which have been optimized, in terms of 

impedance bandwidth, to have a line impedance of 63 Ω. Two PIN diodes are placed on the 
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connecting lines to the patch elements and used as switches. Just to prove the design 

concept, practical PIN diodes, SMP1320-079 from Skyworks Solutions Inc, were used with a 

size of 1.5 x 0.7 mm2, as the switches. In computer simulation, these two diodes are 

modelled using the Resistance, Inductance and Capacitance (RLC) boundary sheet which 

gives 0.9 Ω as the impedance value of the PIN diode in the ON state and 0.3 pF as the 

capacitance value in the OFF state. These PIN diodes are turned “ON/OFF” using a DC 

biased signal, so two DC block chip capacitors (C1 and C2) each with 10 pF are used to 

prevent the DC signal from flowing to the main feed line but allow the RF current to pass 

through. The bias network for the diodes is shown in Figure 4-1(b), where the inductors L1, 

L2, L3 and L4, all with 12 nH, are used as radio-frequency (RF) chokes to provide low 

impedance for DC signal and high impedance for RF signals. The resistors R1, R2, R3 and R4, 

each with 10 kΩ, are used to control the biasing current to the PIN diodes. Results in the 

following section show that the antenna has a wide impedance bandwidth from 5 to 7 GHz 

band and so can cover many applications in this frequency range. 

                               

                          (a)                                                                                                                                    
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                  (b) 

Figure ‎4-1:  (a) Configuration of proposed antenna (b) Bias network 

  

Table ‎4-2: Detailed dimensions for the proposed antenna (unit in millimetres) 

L1 W1 L2 W2 S1 S2 S3 S4 

24 20 24 22 9 16 16 14 

S5 S6 S7 S9 F1 F2 F3 F4 

12 16 1 11 9 2 9 2 

F5 F6 F7 D R1 R2 G1 G2 

3 11.6 12 4 9 11 14 16 

h Ground PlaneArea Antenna Area 

1.57 50 x 50 46.6 x 46 
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4.2.3 Simulated and Experimental Results 

4.2.3.1  Impedance Bandwidth for S11<-10 dB  

The two diodes provide three possible and useful switching states, i.e., ON-OFF, OFF-ON 

and ON-ON states (note that the OFF-OFF state is no practical use). Simulation tests using 

the HFSS have been carried out on the impedance bandwidth (for S11<-10 dB) of the 

antenna in different states. In the OFF-ON state, only patch element #2 is ON and 

functioning. Simulation results in Figure 4-2(a) show that the dual-band is obtained at 5.6 

GHz and 6.2 GHz, with the respective bandwidths of 5.2% and 4.85%. In the ON-OFF state, 

only patch element #1 of the antenna is ON and radiating. The results in Figure 4-2(b) show 

that a dual-band mode is obtained at 5 GHz and 5.7 GHz, with the corresponding 

impedance bandwidth of 4.2% and 2.4%. In the ON-ON state, both patch elements are 

radiating. A wide bandwidth of 33.52%, covering the frequency range from 4.99 GHz to 7 

GHz, is obtained as shown in Figure 4-2(c). To validate the simulation results, the proposed 

antenna has also been fabricated and the S11 in the ON-OFF, OFF-ON and ON-ON states 

have been measured using Agilent N5230A vector network analyzer. Results are shown in 

Figure 4-2(a) - 2(c) for comparison. It can be seen that the simulated and measured results 

are in good agreement. The small discrepancies between the simulated and measured 

results could be attributed to the fabrication accuracy of the prototype. 

         

                                                                         (a) 



Chapter 4: Switchable Multiband Antennas 
________________________________________________________________________ 

 94 

 

                  

                                                                   (b) 

                    

                                                                                         (C) 

Figure ‎4-2 Simulated and measured S11 in (a) OFF-ON (b) ON-OFF and (c) ON-ON states 

 

4.2.3.2 Effect of C-Slots  

Multiband operation of the antenna is achieved mainly by the C-Slots on the patch 

elements. Simulation tests have been carried out to study the reflection coefficient S11 of 

the antenna without the C-Slots in the ON-OFF and OFF-ON states. Figure 3 compares the 

S11 with and without the C-Slots in the patch elements. In the ON-OFF state when patch 

element #1 is active and patch element #2 is OFF, Figure 4-3(a) shows that, without the C-
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Slots, the antenna has a resonant frequency at 5.6 GHz. While with the C-Slots, a dual-band 

is generated at 5 GHz and at 5.7 GHz. In the OFF-ON state when patch element #2 is turned 

ON and patch element #2 is OFF, Figure 4-3(b) shows that the antenna without the C-Slots 

has a single band at 5.55 GHz. While with the C-Slots on the patch elements, a dual-band is 

generated at 5.6 GHz and at 6.2 GHz. Therefore, the C-Slots on the patch elements help 

generate a dual band. Moreover, simulation results have also shown that the widths and 

the lengths of the patch elements determine the centre frequencies in the single band 

cases. While the positions and dimensions of the C-Slots on the patch elements determine 

the centre frequencies in the dual-band cases. The simulated-frequency bands generated 

with and without the C-Slots are summarised in Table 4-3.  

Table ‎4-3: Bands generated in ON-OFF, OFF-ON and ON-ON states with and without C-Slots 

` Without Slots With C-Slots 

ON-OFF 5.6 GHz 5 GHz and 5.7 GHz 

OFF-ON 5.55 GHz 5.6 GHz and 6.2 GHz 

ON-ON 5.55 GHz and 5.65 GHz Wideband 5 GHz to 7 GHz 

 

 

                                                                            (a)  
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                             (b)  

Figure ‎4-3 Effects of introducing the C-Slots on the radiated patch when switches are (a) ON-OFF 
and (b) OFF-ON states 

 

4.2.3.3 Current distributions   

Cutting slots on the radiator of an antenna can change the current path and so can be used 

to generate dual-band or even multiple-bands operations. In this antenna, if the slots are 

absent, the antenna will have only one major current path on each of the patch elements. 

However, in the presence of the two C-slots, the current path on each of the patch 

elements is disturbed, hence creating the dual-band operation. Figures 4-4(a) and (b) shows 

the simulated current distributions on the patch elements in different switching states. In 

the OFF-ON state, patch element #2 is radiating and patch element #1 is OFF. Figure 4-4(a) 

shows that the current travels around the C-Slot on patch element #2, as expected, 

generating the resonant frequencies at 5.6 and 6.2 GHz as shown in Figure 4-2(a) for the 

WLAN 802.11a/h/j/n applications. In the ON-OFF state, only patch element #1 is ON and 

radiating and patch element #2 is OFF. Figure 4-4(b) shows that the current travels around 

the C-Slot on patch element #1, generating the dual band at 5 and 5.7 GHz as shown in 

Figure 4-2(b), for the WLAN 802.11a/h/j/n applications. The dominate current paths for 

OFF-ON and ON-OFF states are shown in Figure 4-4. These paths correspond to 

approximately 0.5 λ , where λ  is the wavelength at the resonant frequency of the 

respective band and given by 0 rλ= λ / (ε +1) / 2 , with λ being the free space wavelength. The 

6.2-GHz band in the OFF-ON case is generated from a higher order mode. In the ON-ON 

http://en.wikipedia.org/wiki/802.11a
http://en.wikipedia.org/wiki/802.11h
http://en.wikipedia.org/wiki/802.11j
http://en.wikipedia.org/wiki/802.11n
http://en.wikipedia.org/wiki/802.11a
http://en.wikipedia.org/wiki/802.11h
http://en.wikipedia.org/wiki/802.11j
http://en.wikipedia.org/wiki/802.11n
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state where both patch elements are ON, the wideband operation is obtained by coupling 

which will be explained later. 

      
                                5.6 GHz                                                                                6.2 GHz          
                                                                           (a)  OFF ON           
                                            

                 
                            5GHz                                                                                        5.7 GHz 
                                                                           (b)  ON OFF           
 

Figure ‎4-4 Simulated current distribution in (a) OFF-ON and (b) ON-OFF  

 

4.2.4 Radiation patterns and gain measurements  

The radiation patterns of the antenna have been measured using the Small Antenna 

Radiated Testing Range (SMART) at the National Physical Laboratory (NPL), with results 

normalized to the maximum values. Figures 4-5 to 4-7 show the measured and simulated 

co- and cross-polarization patterns of the antenna in different switch states at several 

frequencies across the operating bandwidth. In OFF-ON, ON-OFF and ON-ON states, the 

radiation patterns at resonant frequencies of 5.6 and 6.2 GHz, 5 and 5.7 GHz, and 5.2 and 

6.5 GHz, respectively, are used for comparison. Since the directions of the dominant 

current paths at all these frequencies, as shown in Figure 4-4, are mainly in the X-direction, 

the Y-Z and X-Z planes are the H- and E-planes, respectively. As expected, the co-

polarization patterns in Figures 4-5 to 4-7 are all unidirectional to the Z-direction with some 

back radiation due to the finite ground plane size. There is no major change in the radiation 

patterns in the three switch states of OFF-ON, ON-OFF and ON-ON. Some minor 
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discrepancies occur between the simulated and measured results, which could be due to 

the effect of the coaxial cable connected to the antenna during measurements. Better 

results could be obtained by using a fibre optic cable instead [37]. The peak gains at 

different frequencies are between 3 to 5 dBi in different switching states. The simulated 

radiation efficiency of the antenna in the ON-ON state ranges from 60% to 70%.  

    

                  X-Z                                    Y-Z                                           X-Z                                       Y-Z 

(a)                                                                                      (b)                                                                                                                 

Figure ‎4-5 Simulated and measured Co and X-pol in E and H-planes in OFF-ON state at (a) 5.6 GHz 
and (b) 6.2 GHz  
 

    

                 X-Z                                         Y-Z                                          X-Z                                 Y-Z 

(a)                                                                                   (b)                                                                                                                                                                                     

Figure ‎4-6 Simulated and measured Co and X-pol in E and H-planes in ON-OFF state at (a) 5 GHz 
and (b) 5.7 GHz 

 

    

                 X-Z                                        Y-Z                                           X-Z                                     Y-Z 

(a)                                                                                    (b)                                                                                                                                                                                                                                                                                                       

Figure ‎4-7 Simulated and measured Co and X-pol in E and H-planes in ON-ON state at (a) 5.2 GHz 

and (b) 6.5 GHz 
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4.2.5 Independent Control of Each Band  

To design antennas with multiple band operations, it is desirable to have independent 

frequency controls on the frequencies as mentioned in section 2.2. 

Previous results have shown that, in the ON-OFF and OFF-ON states, the C-Slots on the 

patch elements of the antenna can be used to generate two frequency bands for dual-band 

operation. How to use the C-Slots to independently control the frequency bands for dual-

band operation without affecting the wideband operation is shown here. 

In the ON-OFF state, the simulation results in Figure 4-8 (a) shows the effects of changing 

the length S4 in the slot of patch element #1 on the lower band of the dual band.  It can be 

seen that increasing S4 can move the 5-GHz band lower while keeping the 5.7-GHz band 

fixed. Figure 4-8 (b) shows that the effect of changing W1 and S2 together on the higher 

band of the dual band. It can be seen that reducing W1 and S2 together can move the 5.7-

GHz band to a higher frequency band, yet the 5-GHz band remains unchanged. 

In the OFF-ON state, Figure 4-9 (a) shows the effects of changing the position of the whole 

C-Slot up and down on patch element #2. It can be seen that the position of the C-Slot can 

be used to move the lower band (at around 5.6 GHz) while keeping the 6.2-GHz band fixed. 

Finally, Figure 4-9(b) shows that changing the distance G2 (i.e., moving S1 & S9 together 

closer or further from S5 while keeping S3 the same) can shift the higher band (at around 

6.2 GHz) to a higher or lower frequency band, yet maintaining the 5.6-GHz band. It should 

be noted that, in some cases, after moving the frequency of the band, we may need to 

optimize the other parameters of the antenna to achieve the desirable S11. 

These results show that we can independently control the frequencies of the dual bands by 

using the C-Slots on the radiators. Simulation results have also shown that the wideband 

performance in the ON-ON state is not affected when these narrow bands are moved to 

other bands. This degree of freedom further enhances the antenna capability. 
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         (a) 

          

          (b) 

 Figure ‎4-8: In ON-OFF state: (a) effects of S4 on lower band of dual band and (b) effects of W1 and 
S2 together on higher band of dual band 
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       (a) 

 

                                        (b) 

Figure ‎4-9: In OFF-ON state, (a) effects of C-Slot position on lower band of dual band and (b) 
effects of G2 on higher band of dual band. 

 

4.2.6 Effect of Coupling  

It has been shown that when both patch elements are ON, the antenna has a wide 

bandwidth. Mutual coupling between the patch elements must have played an important 

part for these characteristic and it is analysed here.    
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To study the coupling effects between the 2 patch elements, we place an EM wave 

absorber (high lost material) between the 2 patch elements in the simulation model as 

shown in Figure 4-10 (a) - (b) to remove the coupling effects and impedance bandwidth was 

simulated using the reflection coefficient S11 in the ON-OFF, OFF-ON and ON-ON states. 

With patch element #1 turned ON, patch element #2 turned OFF, and the coupling effect 

from element #2 to element #1  removed by the absorber, the simulated S11 is shown in 

Figure 4-11(a). For comparison, the simulated S11 without the absorber, i.e. with coupling, is 

also shown in the same figure. It can be seen that the differences in S11, particularly near 

the dual frequency bands, are quite insignificant, indicating that the coupling between the 

two patch elements is very small. With patch element #1 turned OFF and patch element #2 

turned ON, the simulated S11 with and without the absorber are shown in Figure 4-11(b). 

The differences in S11 near the dual frequency bands are slightly noticeable. Nevertheless, it 

is insignificant and so the coupling between the two patch elements is still very small. With 

both patch elements #1 and #2 are ON, i.e. in the ON-ON state, the simulated S11 with and 

without the absorber are shown in Figure 4-11 (c). It can be seen that the mutual coupling 

between the 2 elements are much stronger and significantly reduces the reflection 

coefficient S11 to less than –10 dB across the whole frequency band. As a result, the 

operation bandwidth of the antenna is much wider. 

 

      

 

         (a)                                                                 (b) 

 

Figure ‎4-10 Antenna with absorber to remove coupling effects (a) Top view and (b) side view 
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      (a)                                                                                      

                           

                                                                                      (b) 

                                                                                                     

               (c) 

Figure ‎4-11 Reflection coefficient (S11) with absorber in (a) ON-OFF (b) OFF-ON and (c) ON-ON 

states.  
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4.3 A CPW Antenna with Frequency Selectivity Feature  

4.3.1 Introduction  

From the extensive literature in switchable multiband antenna, this section tackle some 

important issues which needs to be addressed such as the size, thickness and the number 

of switches. Therefore, the antenna in this section consists of an H-shape radiator and a 

CPW printed on a PCB and a varactor diode connecting the upper and lower arms of the H-

shape radiator for reconfigurability. The uniqueness of the antenna lies on the ability to 

select the operating mode and frequencies electronically using a varactor diode. By 

selecting the DC bias voltages of 11.5, 10 and 8 V across the varactor diode, which in turn 

selecting the corresponding varactor capacitances of 2, 4 and 6 pF, the antenna can be 

controlled to operate in three different modes, namely, a single-band mode to cover the 

Global System for Mobile communications 1900 (GSM1900) system, a dual-band mode at 

1.88 and 2.4 GHz to cover the GSM1900 and Bluetooth or Wireless Local Area Network 

(WLAN) systems, respectively, and a tri-band mode at 1.57, 1.88 and 2.4 GHz to cover the 

GSM1900, WLAN and Global Position System (GPS), respectively. Furthermore, by varying 

the varactor capacitance from 7 to 13 pF, the GPS and WLAN bands can be tuned by 11.44 

% (1.57 - 1.4 GHz) and 6.46 % (2.4 - 2.25 GHz), respectively, yet keeping the 1.88-GHz band 

unchanged. Thus the proposed single antenna can be used to support different wireless 

standards. Detailed studies on the reflection coefficient, current density, antenna pattern 

and gain are carried out using simulations and measurements to investigate the behaviour 

of the antenna at each resonant frequency in each operating mode. 

4.3.2 Antenna Configuration 

The structure of the proposed reconfigurable antenna is shown in Figure 4-12, which is 

optimised using the HFSS software version 11.2 with the main optimized dimensions listed 

in Table 4-4. The antenna has an overall area of 43.6 mm x 50 mm, suitable for compact 

wireless devices. The antenna consists of an H-shape radiator; a CPW feed line and a 

varactor diode connecting the two horizontal arms of the H-shape radiator as shown in 

Figure 4-15. The antenna is designed on an FR-4 substrate with a thickness of 1.57 mm and 

a dielectric constant of 4.4. The CPW has a characteristic impedance of 50 Ω.  The varactor 

diode used in this design is BB184 from NXP. From its data sheet, the varactor diode has a 
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capacitance C ranging from 16 to 1 pF, depending on the DC bias voltage, as shown in 

Figure 4-16, an inductance of 0.6 nH, a resistance of 0.65 Ω and physical dimension of 0.6 

mm x 0.9 mm. The location of the varactor diode on the antenna is optimized to provide 

the desirable frequency bands for the antenna. 

 

 

 

Figure ‎4-12 Layout of the proposed antenna 

 

Table ‎4-4: Dimensions of the proposed CPW antenna (In mm) 

W W1 W2 W3 W4 W5 W6 WT L L1 

3 20 20 10.6 5 4 4 43.6 30.6 19.5 

L2 L3 L4 L5 L6 LT h G1 G2  

26.5 15 14 2.5 40 50 1.57 0.5 0.5  
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Figure ‎4-13 Capacitance versus DC bias voltage for the varactor Diode (BB184 data sheet) 

 

4.3.3 Simulations and Measured Results   

The performances of the proposed antenna, in terms of return losses, radiation patterns 

and gains, with different DC bias voltages across the varactor diode, have been studied 

using computer simulation. In the simulation tests, the varactor diode is modelled as a 

capacitance using the characteristic of Figure 4-13. The proposed antenna has also been 

fabricated as shown in Figure 4-14 (a) and measured using the Small Antenna Radiated 

Testing Range (SMART) at the National Physical Laboratory (NPL) shown in Figure 4-14 (b).   

 

(a) 
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                                                                       (b) 

Figure ‎4-14: (a) Fabricated prototype and (b) proposed antenna mounted on receiving 
mast at NPL smart anechoic chamber 

 

4.3.3.1 Single, Dual- and Triple-Frequency Bands  

The simulated and measured reflection coefficients S11 of the proposed antenna, for the DC 

bias voltages of 8, 10 and 11.5 V across the varactor diode, corresponding to the varactor 

capacitances C = 2, 4 and 6 pF, are presented in Figure 4-15. The measurements were 

performed using a network analyzer Agilent N5230A.  It can be seen that the measured and 

simulated results are in good agreements. The differences can be attributed to the 

fabrication tolerance and measurement errors. The results in Figure 4-15 (a)-(c) show that 

the antenna can operate in three different modes, a single-band, dual-band and tri-band 

modes, depending upon the DC bias voltage across the varactor diode. With C = 2 pF, Figure 

4-15 (a) shows that the antenna generates a single band at 1.88 GHz with a bandwidth from 

1.850–1.910 GHz, which is suitable for the GSM1900 applications. With C = 4 pF, Figure 4-

15 (b) shows that the antenna has a dual-band at 1.88 and 2.4 GHz. Here, the antenna 

generates another band at 2.4 GHz with a bandwidth from 2.4–2.46 GHz, which can be 

used for the IEEE802.11b/g WLAN and Bluetooth applications, yet the frequency band for 
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GSM1900 remaining unchanged. While with C = 6 pF, Figure 4-15 (c) shows that the 

antenna generates a tri-band at 1.575, 1.88 and 2.4 GHz. The additional band at 1.575 GHz 

can be used for the GPS applications. In this mode, same as in the dual-band mode, the 

GSM1900 band at 1.88 GHz and the WLAN/Bluetooth bands at 2.4 GHz remain unchanged. 

The bandwidths for the GSM1900, WLAN and GPS bands are 3.17%, 2.8%, and 2.6%, 

respectively. The DC bias voltages with the corresponding capacitances in these three 

operation modes for different applications are shown in Table 4-5. 

 

 

       (a) 

                      

                                                                             (b)        
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                                                                                                  (c) 

Figure ‎4-15 Simulated and measured return loss for the three resonant frequencies at (a) Single 
band when c = 2pF (b) Dual band when c = 4pF and (c) Tri-band when c = 6 pF. 

 

Table ‎4-5: DC bias voltages with corresponding capacitances in three operation modes for 
different applications 

Bias voltage C Frequency Mode Frequency bands Application  

11.5 V 2 pF Single-band 1.88 GHz GSM1900 

10 V 4 pF Dual-band 1.88 & 2.4 GHz  GSM1900 & WLAN/Bluetooth 

8 V 6 pF 
Tri-band 1.57, 1.88 & 2.4 

GHz 
GPS, GSM1900 & 
WLAN/Bluetooth   

 

 

The GPS system uses circular polarization and the antenna has linear polarization. However, 

linearly polarized antennas can also be useful for GPS system in many practical multipath 

scenarios.  According to the investigations carried out in [38], a linearly polarized PIFA 

antenna can reach relatively high performance, comparable with that of right hand 

circularly polarized antennas. 

In [23], a multiple-band antenna was designed by adding additional parts and folded parts 

to the radiators which resulted in a larger dimension, higher profile and very complicated 

structure which are difficult to manufacture. The Double-T antenna (or is called H-shape 
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antenna) reported in [20] is similar to the proposed antenna’s shape in this section. The 

antenna could operate only in a dual-band mode at the higher frequencies 2.4 and 5.2 GHz. 

Switchable techniques using three or more switches were proposed in [25, 28 and 32]. 

These techniques had limitations in terms of the number of switches required to 

reconfigure the antennas to a single-band or dual-band modes. In addition to increased 

complexity and space required, the multitude of switches also increases the power 

consumption and fabrication cost. However, the proposed antenna employs a simple 

varactor diode to select three operation modes, i.e., the single-band, dual-band and tri-

band modes, yet without requiring to incorporate with any additional parts to the antenna, 

yet having more flexibility with smaller size.  

It should be noted that the selectivity of the bands proposed here could be extended to a 

more complicated structure to generate more bands. For example, by using multiple H-

shape structures, it is possible to design antennas to operate more than three frequency 

bands. Since the target is for small wireless devices applications, we have limited the 

antenna structure to just a single H-shape. 

4.3.3.2 Radiation Patterns  

The simulated and measured co- and cross-polarization radiation patterns in the E- and H- 

planes for the single-band, dual-band and Tri-band modes are shown in Figure 4-16 (a) - (c), 

respectively. The measured radiation patterns have been normalized to the maximum 

values. It can be seen good agreements between measured and simulated patterns. The 

differences in some cases are due to the fabrication tolerance, measurements accuracy and 

the effects of the coaxial cable used for measurements. Figure 4-16 shows that the 

radiation patterns at a given bias condition remain nearly constant. The cross polarization is 

below -15 dB in most of the cases. More studies have also shown that the length of the 

CPW feed line affects the cross polarization level. Figure 4-17 shows the radiation patterns 

in the H-plane at 2.4 GHz with different lengths used for the CPW-feed line. It can be seen 

that a shorter feed line leads to a lower cross polarization. The measured 3D patterns in the 

three bands with C = 6 pF are shown in Figure 4-18.  
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(a) 

 

 

 

(b) 
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(c) 

Figure ‎4-16: Simulated and measured Co- and X-pol radiation patterns in E- and H-plane for (a) 
single-band, (b) dual-band and (c) Tri-band modes. 

 

 

Figure ‎4-17: Effect of feed-line length on radiation patterns in H-plane at 2.4 GHz with C = 6 pF. 
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                    (a) 1.57GHz                           (b) 1.88 GHz                                 (c) 2.4 GHz 

 

Figure ‎4-18: Measured 3D patterns at (a) 1.57, (b) 1.88 and (c) 2.4 GHz 

 

4.3.3.3 Control of Frequency Bands  

Although the three frequencies 1.57, 1.88 and 2.4 GHz are used for studies here, other 

combinations of frequency bands can also be generated by using different arm widths, W5 

& W6, in the H-shape radiator. The previous results in Figure 4-15 (c) show that, with C = 6 

pF, W5 = W6 = 4 mm, the antenna generates a tri-band at 1.575, 1.88 and 2.4 GHz. If 

different values of W5 & W6 are used, the antenna can generate different frequency bands 

as shown in Figure 4-19, which indicates that increasing the widths of both arms 

simultaneously shifts the bands to the higher frequencies, and vice versa. Thus the arm 

widths of the H-shape radiator can also be used to generate other combinations of 

frequency bands. Some simulation results are shown in Table 4-6. With W5 = W6 = 0.5 mm, 

a single UMTS band can be generated by using C = 2 pF. A dual band for the UMTS and 

WiMAX systems can be created by increasing C to 4 pF and a tri-band for the DCS, UMTS 

and WiMAX systems can be generated by increasing C further to 6 pF. 
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Figure ‎4-19: Effect of widths W5 and W6 on frequency bands 

 

Table ‎4-6: Frequency bands (GHz) Using Different widths W5 and W6 and Capaciatnce C 

W5 & W6 (mm) 

Tri-band (6pF)  

 
Dual band (4pF) 

Single band (2pF)   

0.5 1.75  2.06 2.78  

1 1.72  2.01 2.60  

3 1.62  1.95  2.45 

4 (Proposed) 1.57  1.88   2.4  

5 1.49  1.81 2.3  

7 1.39  1.79  2.1  

10 1.29  1.61  1.89  
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More studies have shown that, apart from the arm widths W5 & W6 of the H-shape 

radiator, the varactor capacitance C can also be used to shift the frequency bands to other 

frequencies. The varactor diode used in this study here has a capacitance ranging from 1 to 

14 pF and Figure 4-15 (c) shows that, with C = 6 pF and W5 = W6 = 4 mm, the antenna 

generates a tri-band at 1.575, 1.88 and 2.4 GHz. With the varactor capacitance C increased 

from 7 to 13 pF at a step of 1 pF, simulation results in Figure 4-20 shows that the higher and 

lower frequency bands of the tri-band move to the lower frequencies. The tuning range for 

the lower band is 11.44 % (from 1.57 to 1.4 GHz) and for the higher band is 6.46 % (from 

2.4 to 2.25 GHz). The middle band at 1.88 GHz is not affected by the varactor capacitance. 

This tuning capability of the proposed antenna can give designers more flexibility in 

designing reconfigurable antennas for uses in different systems and environments. 

 

 

 

 

     Figure ‎4-20: Effect of varactor capacitance on frequency bands 
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4.3.4 Studies on H-Shaped Radiators  

4.3.4.1 Full H-Shape Radiator  

The previous results show that a single-band, dual-band or tri-band mode can be generated 

using the varactor diode through the applied DC bias voltage. The operating modes using 

the Smith chart is studied in here.  

Figure 4-21 shows the S11 with the varactor capacitance C = 2, 4 and 6 pF.  With C = 2 pF, 

Figure 4-21  shows that S11 is less than -10 dB for the frequency band from 1.86 to 1.91 GHz 

and minimum at 1.88 GHz, generating the single-band mode. With C increased to 4 pF, 

Figure 4-15 (b) shows that the 1.88-GHz band remains unchanged, but a higher frequency 

band is created from 2.37 to 2.44 GHz with S11 < -10 dB and minimum at 2.4 GHz.  This 

generates the dual-band mode. With C further increased to 6 pF, Figure 4-21 (c) shows that 

the 1.88-GHz and 2.4-GHz bands remain about the same, but a lower band at 1.57 GHz is 

created, resulting in a tri-band mode. 

 

     
 

                            

                                        (a)                                                                      (b)                                                            



Chapter 4: Switchable Multiband Antennas 
________________________________________________________________________ 

 117 

 

 
 

                                                                     (c) 
 

Figure ‎4-17:  Simulated Smith Charts with varactor capacitance C of (a) 2 pF, (b) 4 pF and (C) 6 pF 

 

To further understand the antenna behaviour, the current distribution for the three 

resonant frequencies at 1.88, 2.4 and 1.57 GHz have been studied by simulation and results 

are shown in Figure 4-22 (a)-(c), respectively. The current density in Figure 4-22 (a) shows 

that the CPW feed line and the H-shape radiator have the highest densities and so generate 

the resonant bands at 1.88 GHz as shown in Figure 4-15 (a). Figure 4-22 (b) shows that the 

highest current density is on the left-hand side (LHS) of the H-shape, which generates the 

2.4-GHZ band in Figure 4-15 (b), while Figure 4-22 (c) shows that the current concentrates 

most in the right-hand side (RHS) of the H-shape radiator, generating the 1.57-GHz band in 

Figure 4-15 (c). So different parts of the H-shape radiator are responsible for generating 

different frequency bands and are further studied in the following section. 

 

   

      (a)                                                                                             (b)                                                                      
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                                                                                    (c) 

Figure ‎4-18: Simulated current distributions at (a) 1.88GHz, (b) 2.4GHz and (c) 1.57GHz with C=6pF 

 

4.3.4.2 Partial H-shape radiator  

Figures 4-23 (a) - (c) shows the simulated results with only the upper arm, the LHS of the H-

shape radiator and only the RHS of the H-shape radiator. Figure 23 (a) shows that, a 1.88-

GHz band with a return loss of less than 10 dB (S11 > -10 dB) can be generated by the upper 

arm of the H-shape. The lower arm with C = 2 pF increases the return loss to more than 10 

dB. The 2.4-GHz band as shown in Figure 4-26 (b) is mainly generated by the LHS of the H-

shape with C = 4 or 6 pF, while the 1.57-GHz band is generated by the RHS of the H-shape 

with C = 6 pF as shown in Figure 4-23 (c). 

 

                    

      (a)                 
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     (b)          

                                             

   (c)            

Figure ‎4-19: Simulated S11 with (a) upper arm only and two arms with C = 2 pF, (b) LHS arms and C 

= 2, 4, and 6 pF and (c) RHS arms with C = 2, 4 and 6 pF. 

The resonant behaviours of the antenna in these three conditions are also studied using the 

Smith charts in Figure 4-24. With the use of only the upper arm in the H-shape, Figure 4-24 

(a) shows that the return loss cannot be larger than 10 dB (i.e., cannot reach inside the -10-

dB circle). With C = 2, 4, or 6 pF, the antenna with only the LHS of the H-shape generates a 

frequency band centred at 2.4 GHz as can be seen in Figure 4-24 (b), while the antenna 

with only the RHS of the H-shape generate the bands all centred at 1.88 GHz as shown in 

Figure 4-24 (c).  Figures 4-23 and 4-24 indicate that different parts of the H-shape are used 

to generated different frequency bands. However, it should be noted that the role of the 

varactor diode is simply to help achieve the required matching at these frequencies. 
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                                         (a)                                                                          (b) 

 

 (c)  

Figure ‎4-20: Simulated smith chart with (a) top arm only and tow arms with c=2pF, (b) LHS arms 
and c- 2, 4 and 6 pF and (c) RHS arms with C = 2, 4 and 6 pF.  

 

 

4.4 Summary 

This chapter has tackled the narrow band problem in patch antenna using switchable dual-

patch elements allowing a wideband and multi-narrow bands characteristics to be obtained 

which can be used for cognitive radio applications. Moreover, this chapter has introduced a 

novel selectable method to select single, dual and tri bands. This method over comes the 

need to increase the surface area or add additional radiated elements to obtain multiple 

band operations.  
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 Therefore, in section 4.2, a reconfigurable multiband and wideband patch antenna, 

employing dual-patch elements and C-Slots with a compact volume of 50 x 50 x 1.57 mm3, 

has been presented and studied using simulation and measurement. Two PIN diode 

switches are used to switch ON and OFF two patch elements to operate the antenna in two 

different dual-band modes or a wideband mode (with a bandwidth of 33.52%). The 

frequencies in the dual-band modes can be independently control using the C-Slots without 

affecting the wideband performance. Simulation and calculation results have shown that 

the wideband performance is achieved by the coupling effects between the patch 

elements. The measured and simulated results have shown that radiation patterns across 

5-7 GHz are stable in different modes. The main advantages of the proposed antenna 

include low profile, lightweight and easy to fabricate simple structure targeting future 

smaller wireless communication devices.  

In section 4.3, a reconfigurable H-shaped antenna have been presented using a varactor to 

control three different operation modes, namely, a single-band mode to cover the 

GSM1900 system, a dual-band mode at 1.88 and 2.4 GHz to cover the GSM1900 and 

Bluetooth or WLAN systems, respectively, and a tri-band mode at 1.57, 1.88 and 2.4 GHz to 

cover the GSM1900, WLAN and GPS system, respectively. Simulation studies and 

measurements on the reflection coefficient, current density, antenna pattern and gain have 

been carried out to study the antenna behaviour. Results have shown that, by using the DC 

bias voltage across the varactor diode, which in turn controls the diode capacitance, the 

frequency bands in different operation modes can be turned for other applications. The 

proposed antenna is small and light weight, and so suitable for small wireless devices.  
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5  Tunable Multiband Antennas 

 
 
Tunable Multiband Antennas  

 

 

5.1 Introduction 

Although fixed multiband antennas can widely be used in many different systems or 

devices, they lack the flexibility to accommodate new services compared with 

reconfigurable antennas as discussed earlier. This chapter presents tunable reconfigurable 

antennas, which is another type of frequency reconfigurable antennas.  

Different reconfigurable (tunable) antennas have been proposed in [1] – [18]. Some of 

these techniques have the problems of 1) requiring high voltages to perform tuning, 2) 

being high profiles, 3) being large sizes or 4) having small tuning ranges and 5) services at 

lower frequencies such as DVB-H and GSM900 could not be covered as in [16]-[18]. 

 

Independent tuning on reconfigurable antennas has received much attention recently. A 

number of techniques have been proposed to achieve independent control for one or more 

bands over a wide range. For example in [19], a reconfigurable dual-band antenna has been 

reported with a wide tuning range (2020 MHz). However, a high voltage is required (30V) to 

achieve the independent tuning and the size of the antenna is large at 150 x 110 mm2. In 

[20] a square-ring dual-band microstrip antenna was reported where the upper resonance 

frequency was fixed around 1.93 GHz and only the lower resonance frequency was tuned 

from 1.37 to 1.7 GHz using voltage from 0 to 30 V. Most of the reported techniques to 

independently tune and control each band are either using high voltage to perform the 

tuning or using high profile and large size antenna.    

Chapter 5 
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 Although there is an extensive literature on frequency reconfigurable antennas [1] – [20], 

the following important issues needed to be addressed:  

 The overall size and thickness of the antenna should be small and thin. 

 The simplicity of the structure to reduce the cost of the fabrication. 

 The number of reconfigurable elements (varactors) should be less to avoid 

complex biasing circuits.  

 The multiplicity of bands generated from one antenna so the antenna can serve 

more than one application.  

 Electrically Independent control with wide control range to cover more 

applications. 

 The use of high voltages to perform reconfiguration. 

  The effect of user’s hand and housing of mobile phone when using 

reconfigurable antenna in mobile phone.  

This chapter addressed all the above issues using the same antennas that were presented 

in chapter 3. 
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5.2 Tunable Multiband Antenna with Wide and Independent 

Tuning   

5.2.1 Introduction  

The results obtained in section 3.4 are used here to design a frequency reconfigurable 

antenna. By putting a varactor (diode) at each of the inputs to the sub-patches, four of the 

frequency bands can be controlled independently over wide ranges and the antenna 

becomes a reconfigurable design. The achievable tunability ranges for the four bands of 

0.92, 1.73, 1.98 and 2.9 GHz are 23.5%, 10.30%, 13.5% and 3%, respectively.  

The design presented in this section has tackled the large size and the limited number of 

bands. Moreover, the antenna presented in this section has the freedom to control one of 

the five-bands and tune it for other applications without affecting the other four bands.  

5.2.2 Antenna structure and Design Procedure   

The dimensions used to the proposed frequency reconfigurable antenna, as shown in 

Figure 5-1, are same as those of the fixed design, i.e .shown in Figure 3-24 and listed in 

Table 1. Four varactors, varactors #1, #2, #3 and #4, are placed at the inputs of the sub-

patches. The positions of the varactors and the capacitor on the antenna are carefully 

selected and optimized so that the maximum tunable ranges with independent control can 

be accomplished.   

 A surface-mount-ceramic-chip capacitance is used for blocking the DC signal from the 

biased circuits for the varactors, preventing the DC signal from flowing to the antenna while 

allowing RF signal to go through. The inductors L1, L2, L3, L4 and L5 are used as radio-

frequency (RF) chokes, providing low impedance for the DC signal and high impedance for 

the RF signal. The resistors R1, R2, R3, R4 and R5 are used to give extra protection to the 

varactors from being damaged. Detailed structure of the bias network is also shown in 

Figure 5-1(a)-(b). The EM simulation tool, HFSS, is used for study the antenna performance. 

Just to proof the design concept, practical varactors, BB184 from Philips, have been used. It 

is difficult to model the packaging of the capacitor in a full-wave solver, so the varactors are 

modelled using the Resistance, Inductance and Capacitance (RLC) boundary sheet which 

gives 0.6nH and 0.65ohm for the inductance and resistance, respectively.  



Chapter 5: Tunable Multiband Antenna 
________________________________________________________________________ 
 

 128 

 

 

 
(a) 

             

(b) 
Figure ‎5-1: (a) Structure of proposed reconfigurable design and (b) biasing network 
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5.2.3 Independent Tuning and Control Range  

A DC biased voltage of 1V is applied to all varactors, leading to a capacitance of 14 pF, 

simulation results have shown that all the resonant frequencies remain the same as those 

in the fixed antenna design, i.e., the varacitors under such biased condition have no effect 

on the resonant frequencies. However, if the biased voltage of all varactors is increased to 

about 1.5 V simultaneously, all resonant bands slightly shift up. Here, a study of the tuning 

range for each band using the corresponding varactor is conducted while at the same time 

keeping all other bands fixed.  To study the tuning range of band #1 at 0.92 GHz,  the biased 

voltage for varactor #1 was varied, while keeping the biased voltages for other varactors at 

0.5 V. Figure 5-2(a) shows the effect of varying the capacitance of varactor #1 on the 

resonant frequency 0.92 GHz band. It can be seen the 0.92 GHz band can be independently 

tuned between 0.92 to 1.16 GHz without disturbing much the other four bands. For the 

tuning range of band #3 at 1.98 GHz, the biased voltage for varactor #4 is varied. Here to 

illustrate the flexibility of the design, the biased voltage was fixed at a higher value of 1.5 V 

to other varactors, which slightly shifts all five bands, bands #1, #2, #3, #4 and #5 to 1.08, 

1.75, 1.99, 2.48 and 2.98 GHz, respectively. The simulation results are shown in Figure 5-

2(b). It can be seen that band #3 at 1.99 GHz band can be tuned independently without 

affecting much the other four bands. Note that band #4 is determined by the main patch 

and so cannot be tuned in the reconfigurable design. For the tuning range of band #5 at 2.9 

GHz, the biased voltage for varactor #3 is varied.  Results have shown that, for the 

capacitance varied from 3–12 pF, the 2.9 GHz band is only moved by about 3% which is 

quite small. This might be due to the location of the slot which did not allow the current on 

this sub-patch to be changed. For the tuning range of band #2, varactor #2 is used. 

However, the simulated result in Figure 5-2(c) shows that the undesirable frequency band 

at 1 GHz is emphasised and moved, instead of band #2 at 1.73 GHz. The reason is that the 

varactor capacitance improves the matching at this frequency. To solve this problem, we 

re-design U-slot in sub-patch #2 and move the varactor to the slot gap as shown in Figure 5-

2(d). The effect of varying the capacitance of varactor #2 on the resonant frequency 1.73 

GHz band is shown in Figure 5-2(d). It can be seen that now, the 1.73 GHz band can be 

tuned independently from 1.73–1.56 GHz, while the other four bands remain unchanged. 

Table 5-1 summarise these results.  
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                                                                         (c) 

 

                     

                                                                             (d) 

Figure ‎5-2: Measured S11 for reconfigurable design with independent control using (a) Varactor 
#1, (b) Varactor #4, (c) Varactor #2 (at the input of sub-patch #2), and (d) Varactor #2 (re-located 
on the U-Slot). 
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Table ‎5-1: Effect of varying capacitances of varactors independently and/or simultaneously  

 Band #1 Band #2 Band #3 
Band 

#4 
Band #5 

Varactor #1 
920 – 1165 

MHz 
Fixed Fixed Fixed Fixed 

Varactor #2 Fixed 
1560-1730 

MHz 
Fixed Fixed Fixed 

Varactor #3 Fixed Fixed Fixed Fixed 
2900 - 

2990MHz 

Varactor #4 Fixed Fixed 
1980 – 

2267MHz 
Fixed Fixed 

Bandwidth 

covered 
23.5% 10.3% 13.5% -- 3% 

 

For the reconfigurable design, the effects of the varactor capacitance on the radiation 

patterns in three bands i.e., bands #1, #2 and #3 were studied. The measured results are 

shown in Figure 5-3 (a) - (c), indicating that the effects are insignificant. The study was not 

done for band #4 (which is not tunable) or band #5 (which has a very small tunable range of 

only 3%).  

                   
  

 (a) 
                                     X-Z                                                                                                         Y-Z             
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                                       X-Z                                                                                                     Y-Z  
 
 

                  
         

  (c) 
 

                                     X-Z                                                                                                  Y-Z  
 

Figure ‎5-3: Measured Co-Pol radiation patterns for the reconfigurable design for X-Z and Y-Z 
planes at (a) first band (b) Second band and (c) third band 
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5.3 Reconfigurable Penta-Band PIFA for Small and Slim Mobile 

Handsets  

5.3.1 Introduction  

In this section, as part of the comprehensive study on the fixed PIFA antenna presented in 

section 3.3, investigation is carried out to analyse the possibilities of making the PIFA 

tunable or switchable so other applications in the lower frequencies such as GSM, GPS, 

DVB-H and other bands can be achieved without changing the shape of the antenna. It is 

found that, when using varactor or PIN diodes, the antenna can serve more standards and 

applications than the fixed PIFA that was previously discussed in section 3.3. Yet, the size 

of the ground plane is small and slim which can be fitted in small and slim modern mobile 

phones. The proposed reconfigurable PIFA is simple and practically implementable.  

Therefore, the antenna consists of two radiators and connected together using two PIN or 

varactors diodes. Frequency reconfigurability is obtained by i) tuning using varactor diodes 

or ii) switching using PIN diodes. In the study, when varactors are used, the PIFA is 

optimized to operate in five frequency bands centered at 0.72, 1.35, 1.98, 3.6 and 5 GHz. 

Varying the voltages across the varactors can tune these five bands over the range of 

45.33% (5.8-9.2 GHz), 17.77% (1.23-1.47 GHz), 26% (1.57-2.04 GHz), 6.66% (3.48-3.72 GHz) 

and 0.97% (4.99-5.04MHz), covering the DVB-H, GSM 800/900, GPS, PCS, DCS, UMTS, 

Wibro phase III, WiMAX and WLAN systems etc.  If PIN diode switches are used instead, the 

frequency bands can be switched among different standards, including the DVB-H, GSM, 

UMTS, DCS, GPS, WiMAX and WLAN systems, depending on the switching states. The two 

radiators are supported using a shorting wall and a shorting pin connected to a small 

ground plane.  

5.3.2 Design Structure  

The structure and dimensions of the proposed reconfigurable PIFA are shown in Figure 5-

4 (a), where two radiators, radiators #1 and #2, are optimized to excite multiple 

resonances in the antenna as described in section 3.3 and in [21]. These two radiators are 

separated by a slot, but connected together by a pair of varactor or PIN diodes. The 

varactors and PIN diodes operate like variable capacitors and switches, respectively. The 
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positions of the varactor or the PIN diodes on the structure are optimized using the HFSS 

simulator software to achieve the widest tunable range. The antenna was fabricated using 

an FR-4 substrate with thickness of 1.57 mm and a relative permittivity of 4.4, as shown in 

Figure 5-4(b). To prove the design concept, a practical PIN diode, SMP1320-079 from 

Skyworks Solutions Inc was employed with size of 1.5 x 0.7 mm2, for the switching function 

in the prototype. For the tuning ,  a practical varactor diode, BB184 from NXP with a 

capacitance value ranging from 2 pF to 14 pF controlled by a DC bias voltage varying from 1 

V to 14 V was employed. The dimension of the varactor diode is approximately 1 x 1 mm2.  

In the simulations, the PIN diodes were modelled using Resistance, Inductance and 

Capacitance (RLC) boundary sheet with 0.9 Ω as the impedance value of the PIN diode in 

the ON state and 0.3 pF as the capacitance value in the OFF state. These PIN diodes were 

turned “ON” and “OFF” using a DC biased signal. Similarly, the RLC boundary sheet was 

used to simulate the antenna performance when the capacitance of the varactor diodes 

varied from 2 pF to 14 pF. Figure 5-4(a) also shows the DC bias setup using a Bias-Tee for 

the PIN or varactor diodes for the antenna. The RF signal from a VNA is fed to the Bias-Tee, 

combined with the DC biased voltage and then fed to feed line of the antenna. In order to 

maintain a DC potential difference between the two radiators for biasing the PIN or 

varactor diodes, the shorting wall is cut open and connected together using a 10 pF 

capacitance, as shown in Figure 5-4 (a). Studies have shown that the position of this 

capacitor on the shorting wall is not sensitive to impedance matching of the antenna. 

 

 

                                                                                   (a)        
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                                                                                                              (b) 

Figure ‎5-4: Layout of proposed antenna (a) 3D View and detailed dimensions and (b) prototype 
antenna   

                                                                                                    

5.3.3 Simulated and Measured Results  

5.3.3.1 Using Varactor Diode 

The reflection coefficients (S11 in dB) of the proposed antenna for different bias voltages 

across the varactors are shown in Figure 5-5. It can be seen that, with the capacitance 

varied from 2 to 6 pF, the operating frequency bands of the antenna can be tuned over the 

range of 45.33% (0.580-0.920 GHz), 17.77% (1.230-1.470 GHz) and 26% (1.570-2.040 GHz). 

Thus the antenna can be used to serve many wireless and mobile applications, including 

the DVB-H, GSM800/900/1800/1900, GPS, PCS, DCS, UMTS, WLAN, HaiperLAN/2 and the 

middle and higher bands of the WiMAX applications, as listed in Table 5-2. Further results 

of simulations have reviewed that varying the capacitance values of the varactor diodes 

alters the surface current distributions of the antenna, hence changing the operating 

frequencies of these bands. If the capacitance is further increased to more than 6pF by 

reducing the biased voltage, the impedance of the first and second bands are affected and 

no longer matched, i.e., S11>-6 dB. 
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Figure ‎5-5: Measured S11 when using varactor diode  

 

  

Figure ‎5-6: Measure S11 when using PIN diode 

 

5.3.3.2 Using PIN Diodes 

The two diodes, diodes #1 and #2, connecting the two radiators can have four possible 

switching states, i.e., ON-OFF, OFF-ON, ON-ON and OFF-OFF states, which affect the 

current distributions on the radiators and hence the operating frequencies of the antenna. 

The measured S11 in these four possible states are shown in Figure 5-6. It can be seen that, 
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when both diodes are in the ON state, the antenna can cover the DVB-H, DCS, m-WiMAX 

and WLAN system. When diode #1 is OFF and diode #2 is ON i.e. in the OFF-ON state, the 

antenna can cover the UMTS, m-WiMAX and WLAN systems. In the ON-OFF state, the 

antenna covers the DVB-H, GPS, m-WiMAX and WLAN systems. Finally, when both diodes 

are in the OFF state, the antenna operates in three frequency bands, covering the 

GSM1900 and WLAN as listed in Table 5-2.  

The dimensions of the PIFA are obtained by modifying the fixed PIFA antenna discussed in 

section 3.3. Results have shown that the radiation patterns of this reconfigurable antenna 

are similar to those of the antenna reported in section 3.3 [22]. The simulated efficiency 

when using the PIN or varactor diodes ranges between 78%-95%. The measured efficiency 

will be less than that as the losses of the parasitic elements will have some effects.   

 

Table ‎5-2: Band generated when using PIN or varactor diodes  

Switch Remarks F1 F2 F3 F4 F5 

Varactor 

Tuning 

range 

( MHz) 

580 – 920 

45.33% 

1230 – 

1470 

17.77% 

1570 – 2040 

26% 

3480 – 

3720 

6.66% 

4990 – 5040 

0.97 % 

Varactor Services 
DVB-H & 

GSM800/900 
-- 

DCS, PCS, GSM1800 / 

1900 & UMTS 

m-WiMAX 

& WiBro 

phase III 

WLAN / h-WiMAX  / 

HaiperLAN/2 

PIN ON-ON 0.72 / DVB-H -- 1.75 / DCS 
3.63/m-

WiMAX 
5.00 / WLAN 

PIN OFF-ON -- -- 2.05 / UMTS 
3.89/m-

WiMAX 
5.10 / WLAN 

PIN ON-OFF 0.72 / DVB-H -- 1.58 / GPS 
2.82/m-

WiMAX 
5.19 / WLAN 

PIN OFF-OFF -- -- 1.93 / GSM1900 3.03 5.35 / WLAN 
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5.3.4 Human Interaction and Ground Plane Size 

5.3.4.1 Effect of Ground Plane Size  

In some PIFA designs, the ground plane can have a direct impact on the antenna 

performance as discussed in the earlier work in section 3.3. However, changing the size of 

the ground plane in the proposed reconfigurable antenna when using PIN diode in the ON-

ON state did not affect its S11 response as shown in Figure 5-7. Similarly when using 

varactor diodes, the S11 did not change when the size of the ground plane was changed. 

 

 

                 

 

Figure ‎5-7: Effects of ground plane size when using PIN diode (ON-ON) 

 

5.3.4.2 Effect of User’s Hand  

When designing antennas for mobile phones, the effect of user’s hand on the performance 

needs to be studied in order to avoid too much human interactions with the antennas [22].  
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Figure 5-8 (a)-(c) shows the simulation model of the PIFA antenna with the human-hand 

model in three different positions. The fingers and the palm are attached directly to the 

ground plane and the main substrate, respectively. The relative permittivity and 

conductivity of 54 and 1.45 S/m, respectively, for human hand model [23] have been used 

for simulations.  

In position #1, the upper part of the antenna is covered by the hand model. In position #2, 

the middle part of the antenna is covered. While in position #3, the antenna is not covered 

by the hand model. Two scenarios have been investigated. The first scenario is when the 

fingers are placed 1 mm above the radiators and the hand (palm) is touching the ground 

plane directly on the other side. The results in Figure 5-9(a) show that the human hand only 

slightly affects the third and fourth bands but very little in the first and the second bands. In 

a real situation, there will be a gap of at least 2 mm between the antenna (radiators) and 

the mobile phone housing. If the gap between the antenna and the housing is 2 mm and 

the housing thickness is 2 mm, it will make a total distance of 4 mm between the antenna 

and the hand. This is the second scenario studied, i.e. when the fingers are placed 4 mm 

above the top of the radiators and the hand (palm) is touching the ground plane directly on 

the other side. The results for the second scenario are shown in Figure 5-9(b). It can be 

seen that the human hand increases the return losses in the two lower frequency bands 

and slightly increases it in the higher frequency bands. Thus, the results in Figure 5-11 

indicate that, in these three positions studied, the performance of the antenna is not 

sensitive to the user’s hand. Results have shown that the best position, in terms of 

maximum efficiency and gain, is when the user is holding the mobile phone at the bottom 

of the antenna, i.e., position #3. If the user’s hand gets closer to the radiator, the gain and 

the radiation efficiency drop slightly compared with the case when the antenna is in free 

space. However, even in the worse scenarios where the user’s hand is covering the 

radiators with 1 mm and 4 mm gap between them, as in positions #1 and #2, simulation 

results have showed that the antenna still can attain an efficiency of above 50% which is 

considered quite acceptable for mobile phone applications. 
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(c) 

 
 

Figure ‎5-8: Simulation model for different positions of user’s hand (a) User’s hand covering 
radiators, (b) User’s hand partly covering radiators and (c) User’s hand not covering radiators of 
antenna. 
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Figure ‎5-9: Effect of user’s hand in different position when the PIN diode is in the ON ON state (a) 
fingers are 1mm away 1mm from radiators (b) fingers are 3mm away from radiators. 
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5.4 Summary 

In this chapter, tunable antennas have been proposed with wide tunability range.   

Many designs presented in the literature have reported excellent designs with tunable 

frequency bands. Some of these antennas suffer from large size, high profile, limited 

number of band, complicated structure that can affect the fabrication cost and most 

important the freedom of tuning each band independently without affecting the other 

bands. All of the above issues have been tackled in this chapter. All the antennas presented 

in this chapter are small and thin that makes them become attractive for compact and slim 

handsets or wireless device. 

In section 5.2, printed antenna has been designed to operate in five-band. These five-band 

can be tunable over a wide range from 0.9 to 3 GHz. This will eliminate the need to increase 

the service area or dimensions that needed to design multiple bands antenna. In addition, 

many different wireless and mobile standard can be access from a single antenna. 

Indepednate tuning of each band has been performed.   

In section 5.3, a small and slim tunable PIFA for modern mobile phone handsets has been 

presented. The operating frequencies of the proposed antenna can be switchable or 

tunable over a wide range. The antenna can be used to serve most of the mobile and 

wireless applications including: DVB-H (470 MHz - 702 MHz), GSM, GPS, DCS (1710 1880 

MHz), PCS (1750 1870 MHz, 1850 1990 MHz), UMTS (1920 2170 MHz), Wibro (2.3-2.4GHz), 

WLAN, WiMax and WiBro phase III (3.1- 4.5 GHz) and many more. The size of the ground 

plane is insignificant to the antenna performance. The effect of user’s hand on the antenna 

performances has been investigated at different position and at different locations on the 

antenna which thought to be insensitive. 
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6  Conclusion and Future Work 

 

Conclusion and Future Work  

 

 

6.1 Conclusion 

Planar antennas are extensively used in various wireless and mobile applications. The 

continuous growth and commercial interest in wireless communications, especially in 

personal and mobile communication systems significantly increases the demand for low 

cost, compact size, multiple bands and high performance antennas, which are the key 

components used in any communication systems. The reduction of the antenna’s size, the 

multiplicity of bands, the ease of designing the antenna (simple structure) and the need for 

flexible specifications such as independent control, is very important in the design of new 

antennas.  

Reconfigurable antennas have more advantages in terms of increasing the antenna 

capabilities by tuning or switching its performances. Therefore, the needs to design 

compact size, simple structure, low profile, multiple bands antennas are required.   

The object of the thesis was to develop fixed and reconfigurable compact antennas with 

high performance, which are easy to design and cheap to manufacture. Other aims were 

also to investigate the independent control feature on the operating frequencies and to 

develop simple design guidelines.  

The proposed antennas in this these are all small and slim which make it easy to integrate 

any of them into small mobile handsets or wireless devices.  

Different antennas were developed in this thesis mainly for three categories:  

 Fixed terminal (non-reconfigurable) 

 Switchable terminals 

Chapter 6 
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 Tunable terminals 

   

In the fixed designs, the proposed multiple-band antennas have been designed to serve the 

wireless standards such as WiMAX, WLAN and many others applications. The antennas 

reported in the fixed designs have been designed in a way that they can be optimized to 

other operating frequencies easily. Not only that but also they have the options of 

optimizing each band independently without affecting the performance of the other 

operating frequencies.  

In the fixed designs, the following have been achieved: i) Employed U-slots to minimise the 

size of the antenna. ii) Enhanced the performance of PIFA by adding additional features 

such as independent control over a wide range. iii) Reduced the effect of the ground plane 

which intern reduces the effect of user’s hand and mobile phone housing. Finally, proposed 

a new printed antenna capable of operating in five-band with small and slim structure and 

with cost effective. This antenna has the flexibility to control the five-band independently 

adding additional feature to design the five-band to any application of interest with respect 

to the maximum variation range.  

In the switchable designs, the proposed antennas also have small and slim size. The 

application considered for the switchable antennas are cognitive radio and wireless 

applications. The antenna proposed for cognitive radio can operates in wide-band mode or 

in multiple-narrow bands mode (four bands in total). This antenna is suitable for cognitive 

radio applications where cognitive radio system needs reconfigurable antenna (switchable) 

that can operate in two different modes (wideband and narrow bands) where the 

wideband mode can search for free slots in the spectrum before the antenna changes to 

the narrow bands for transmitting. The proposed switchable technique allowed to 

overcome the need to increase the surface area of the antenna to obtain wideband 

operations.  

 Another design has been introduced with a novel method to select the number of 

operating frequencies with some tuning capabilities. The antenna has a simple shape based 

on H-shape. In this design, the antenna is capable of switching amongst three bands and it 

is capable of operating in a single, dual or/and three bands mode. In addition to this, the 

three bands can be further tuned to lower frequencies without the need to change the size 

of the shape of the antenna. All these features have been performed using a single varactor 
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diode which reduced the complexity of using many switches to achieve these results and 

eliminate the need for complicated filters that usually attached with the fixed multiple 

bands antennas to reject the unwanted bands.  

In the switchable designs, the following have been achieved: i) overcome the narrow band 

problem in patch antenna by using switchable technique that allowed the antenna to 

operate in different mode (wide and narrow). ii) Novel method to select the number of 

bands was achieved to eliminate the need for filter which can reduce the overall size of the 

wireless system. Only one varactor diode was used which also reduces the complexity of 

the biasing. 

In the tunable designs, the proposed antennas in the fixed design have been made 

reconfigurable in order to serve more applications when needed without changing the 

antenna or change the size. The tunable five-band antenna for wireless applications was 

able to be tunable over a wide band and can tune each band independently without 

affecting the performances of the other bands. For mobile phone application, the fixed PIFA 

design is also made reconfigurable (switchable or tunable) by using PIN or varactor diodes. 

Different applications can be covered when using PIN or varactor diodes such as DVB-H, 

GSM, UMTS, DCS, GPS, WiMAX and WLAN.   

 All the designs reported in this thesis have been fabricated and measured where the 

measured results were compared with the simulated results. The simulated and measured 

results agreed well in most results.  

6.2 Future research   

Many issues still have not been solved and can be the basis for future investigations. These 

are summarised in the following points:  

 The material used in the antennas presented in this thesis is FR-4, which is considered 

as a lossy material. Therefore, the efficiency of the antennas can be further enhanced 

by using expensive lossless materials.  

 PIN diode and varactor diodes might have some impact on the gain and efficiency of 

the antennas. The use of MEMS switches is recommended which has less losses than 

PIN and varactor diodes.   
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 Cognitive radio might needs antennas to operate at the very low frequency bands. 

Therefore, designing an antenna with wideband and narrow bands feature for the low 

frequencies is a great challenge.  

 In some designs, the bandwidth of the operating frequencies is narrow. Therefore, 

some techniques can be used to enhance the bandwidth to few more percentages. 

 In the H-Shape antenna, the selectivity of the bands can be further enhanced to be 

more flexible and to have more choice by adding additional H-shape radiators within 

the same substrate. This will increase the number of bands as well making the method 

more flexible.  

 Some of the reconfigurable antennas proposed in this thesis operate in GPS bands. 

The GPS applications may need antennas that operate with circular polarization. 

Therefore, frequency and polarization reconfigurablility can be achieved from the 

same antenna to be used in the GPS band and other bands. 

 The studies of the effect of user’s hand on the reconfigurable PIFA can be confirmed 

by measurements. Phantom of human head and hand is essential to complete this 

study.  

 All the switchable/tunable antennas presented in this thesis have used practical 

switches just to prove the concept of the designs. Better switches with the same 

values can be found which might be more expensive. هتان فهد ابو طربوش  
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