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Abstract

Background: Protein structure comparison is a fundamental task in structural biology. While the
number of known protein structures has grown rapidly over the last decade, searching a large
database of protein structures is still relatively slow using existing methods. There is a need for new
techniques which can rapidly compare protein structures, whilst maintaining high matching
accuracy.

Results: We have developed IR Tableau, a fast protein comparison algorithm, which leverages the
tableau representation to compare protein tertiary structures. IR tableau compares tableaux using
information retrieval style feature indexing techniques. Experimental analysis on the ASTRAL
SCOP protein structural domain database demonstrates that IR Tableau achieves two orders of
magnitude speedup over the search times of existing methods, while producing search results of
comparable accuracy.

Conclusion: We show that it is possible to obtain very significant speedups for the protein
structure comparison problem, by employing an information retrieval style approach for indexing
proteins. The comparison accuracy achieved is also strong, thus opening the way for large scale
processing of very large protein structure databases.

Background structural information of 59,330 proteins. The steady
Protein structure comparison is crucial for understanding  growth of the PDB is now beginning to place considerable
protein evolution, architecture and function [1]. The  computational demands on queries which search the entire
Protein Data Bank (PDB) database [2], a public repository ~ database, a routine task for determining structural protein
for macromolecule structure data, is a rapidly growing  similarities. There are a number of existing techniques to
database which currently (as of 4 Aug 2009) contains  compare protein structures: Methods based on structural
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alignments (for example, DALI [3], SSAP [4] and MUS-
TANG [5]) compare protein structures at a level of residues
(sometime even atoms), and hence detect structural
similarities (and differences) with high sensitivity and
accuracy. However, the long running times of these
methods are prohibitive for exhaustive searches across the
entire database. PRIDE [6,7] has been proposed for fast
recognition of folds, with reasonable accuracy, using the C,
- C,, distance profiles of a fixed range of residues. SARST
[8-10] utilizes sequence alignment methods to compare
Ramachandran codes of different proteins. It is fast enough
perform database search. YAKUSA [11] and SHEBA [12]
also compare protein structures using their one-dimen-
sional characterizations, either based on protein backbone
internal angles or on their environmental profiles.
Although these methods are significantly faster than their
structural alignment-based counterparts, the lack of global
geometric information makes these methods less accurate.
Several methods have also been proposed which compare
proteins at a coarse level of secondary structures [13-22].
ProSMoS [20] and TableauSearch [15] both try to match
the orientation between secondary structure elements
(SSEs). Rather than only using angles, OPAAS [13,14,23]
uses a probability-based method to align the angle-distance
map of SSEs. Mainly, these programs look for similarities
in the geometry of interactions between the secondary
structural elements in the proteins being compared.

Lesk [24] proposed tableau as a concise representation of
protein folding patterns. The tableau encodes the
geometry of interactions between pairs of secondary
structural elements that are in contact [24,25]. Kona-
gurthu et al. [15] proposed three methods to identify
structural similarities using a generalized tableau
description of protein folding patterns. Their first
method allows the identification of identical and near-
identical folding patterns in constant time. The second
method facilitates a rigorous comparison of two tableaux
to identify maximally similar substructures using com-
putationally expensive quadratic and linear integer
programming techniques. (We note that Stivala et al.
[16] recently gave a faster solution to the quadratic
programming formulation of the tableau comparison
problem proposed by Konagurthu et al. However, their
method still remains infeasible for searching entire
databases.) The third method (TableauSearch) was
proposed as a fast heuristic to detect similarities using
a two-step dynamic programming method.

Most of the existing protein comparison techniques
share a major limitation. They are computationally
expensive, requiring hours or even days to search a
large protein structure database. This has motivated us to
develop a new and rapid protein comparison algorithm,
IR Tableau, based on feature indexing techniques from
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Information Retrieval (IR). Our method transforms the
robust tableau representation of a protein fold into a
vector of features, allowing the application of several
well-known similarity measures to efficiently compare
these feature vectors. IR Tableau achieves excellent search
efficiency (it can search the ASTRAL protein structure
database for a protein containing 83,731 domains in less
than a second), while providing accuracy comparable to
the existing methods.

Methods

This section describes our IR Tableau method, which
utilizes IR techniques to index and search protein
structures efficiently.

Tableau representation of protein structure

Briefly, tableau encodes the geometry of pairs of
secondary structural elements (SSEs) - that is, helices
and strands of sheet [24]. The relative orientation of a
pair of SSEs in a protein is defined by the angle between
their axes. Each angle between pairs of SSEs (in the range
180° to 180°) uses a double-character encoding scheme
[15]. (See Figure 1.)

There are 8 possible combinations of two characters. For
example, Table 1 shows the tableau of a Ubiquitin-like
protein, 1UBI (chain A). We used the idea of generalized
tableau, which is introduced in [15].

Information retrieval (IR) approach

A typical IR system aims to retrieve documents that are
relevant to keywords (terms) in a user-query. Each
document is represented as a vector of weights, where
each weight denotes the importance of a given term.
Terms are usually the words used by a document and
each weight may correspond to the frequency of
occurrence of some terms in the document. The
collection of all term weights for a document effectively
describes the contents of that document. This is known
as the ‘bag-of-words’ model. Different documents can
then be compared by comparing their weight vectors.

0
-45’ 45
E D
-90} 90’
S T
-135 135
180
Figure 1

Tableau orientation encoding scheme.

Page 2 of 9

(page number not for citation purposes)



BMC Bioinformatics 2010, 11(Suppl 1):S46

http://www.biomedcentral.com/1471-2105/11/S1/S46

Table I: Tableau representation for 1UBI (chain A). Tableau representation for 1UBI (chain A) containing 6 secondary structure
elements. Helix and strand of sheets are represented as o and f respectively

SSE 18 28 3a 48 5a 6p
I B - oT LE RT RT PE
28 oT - RT LE LS RT
3a LE RT - RT LS LE
48 RT LE RT - PD oT
5a RT LS LS PD - RT
6p PE RT LE oT RT -

If they use similar weights for each term, then they are
likely to be related. Since only vector comparison is used,
similarity matching of vectors can be performed extre-
mely fast.

In our protein context, we analogously translate each
protein tableau into a vector of weights, where each
weight describes the importance of some feature of the
protein. Protein structure comparison is then performed
by similarity matching of protein vectors. We next
describe our technique for creating the vector for a
protein structure.

Protein feature construction method

We generate a vector of features for a given protein based
on its tableau representation. So effectively, we translate
a two dimensional (2D) tableau into a one dimensional
(1D) vector. Each cell in a tableau describes the angle
between a pair of SSEs in the protein. For example, in
Table 1, the OT in < row 1 column 2> is the orientation
between SSE f3 | and SSE f3 ,. To turn this tableau into a
1D vector, we summarise the distribution of angle
frequencies for each possible pair of SSE types.

Each feature of our vector will describe a pair of SSE
types in one of eight possible orientations: PE, PD, RD,
RT, OT, OS, LS, and LE. The value of each feature
corresponds to the frequency at which that configuration
occurs in the protein. There are also four possible pairs
of SSE types: o, of3, Bo and B . Hence each protein can
thus be described by 4 x 8 = 32 features.

Again, in Table 1, there are two 8 OT in the tableau of
1UBI, which appear at <row 1, column 2> and <row 4,

column 6> in the matrix. Therefore the value for the
feature B3 OT is 2. The full feature vector for this protein
is given in Table 2. In this table, each number indicates
the frequency for some combination of SSE types and
angle. In summary, there are 32 features, each with an
associated frequency count. We construct the above
feature vector transformation for every tableau in a
structure database. Given a protein structural query,
searching can now be performed rapidly in the new 1D
feature space.

Similarity function

Choice of an appropriate similarity function is important
for accurate comparison. In IR Tableau, there are a
number of possible similarity functions which can be
applied for comparing the protein vectors.

Cosine similarity [26] simply computes the cosine of the
angle between two vectors in a N dimensional space. A
higher score implies a smaller angle between the two
vectors. If the value is 1, it means that the two vectors
have the same direction.

A-B

C(A,B)=—22
IA[l[1Bl|

The Jaccard index [27] is another popular similarity
function, defined as the size of the intersection, divided
by the size of the union of two sets.

| ANB|

J(a.B)= |AUB|

where A and B are sets.

Table 2: Frequency table. Frequency table for combinations of angles and SSE types for the protein 1UBI (chain A). This is information

is modelled in our approach using a 32 dimensional vector

SSE types PD RD RT oT oS LS LE PE

oo 0 0 0 0 0 | 0 0

of 0 0 2 0 0 0 | 0

Bo [ 0 2 0 0 | I 0

BB 0 0 2 2 0 0 I |
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The Tanimoto coefficient [26] is a generalization of the
Jaccard index.

AB
2 (12
||A[|=+[B][*-A-B

J(A,B) =

Euclidean distance is another means of measuring
similarity of proteins. Unlike the similarity functions
described above, the value for Euclidean distance is not
normalized to be between 0 and 1.

where a; is the ith element of vector A, b; is the ith
element of vector B.

Unless stated otherwise, our results in the rest of the
paper assume the use of the cosine similarity function.

Variation of featuring process

In addition to the method we have described for
generating 32 features for each protein (hereafter referred
to as the base method), we have also explored the value of
associating further, additional features with each protein
vector. In general, there is a trade-off between adding
extra features which can help discriminate between
classes of proteins, versus adding too many features
which overwhelm accurate similarity calculation.

Alternative combinations of SSEs

In our base method, ordering information was only used
for pairs of SSE types. This description loses some
information about the position of each SSE. By instead
preserving positional information about SSEs, we can
hope to build a more accurate profile in each protein
vector. Incorporating such relationships may be carried
out as described in the following example. Protein 1UBI,
whose tableau is shown in Table 1 has 6 SSEs: SSE;
compared with SSE, is B8 OT, SSE, compared with SSE;
is Ba RT and SSE; compared with SSE; is Bo LE.
Combining these, we get the triplet of SSE;, SSE, and
SSEs, which is fBa OT RT LE. In general, we can record
statistics for all triplets of the form SSE,, SSE,., and
SSE,..2. (Note that the idea may also be generalized to
non-consecutive triplets, such as SSE,,, SSE,,,; and SSE,,
.3). In this triplet approach, there there are 2°> = 8 SSE
types and 8% = 512 angles, giving a space of 8 x 512 =
4096 possible features. This idea can be further extended
to the use quadruplets, quintuplets and so on of SSEs to
generate a larger feature space. However, as we can
clearly see, the size of the protein vector grows
exponentially with the increase in the number of SSEs
in each combination. Another possibility is to disregard

http://www.biomedcentral.com/1471-2105/11/S1/S46

the ordering information between SSEs, which may be
useful for non-linear matching of sub-structures. In this
case, there are only three possible orderings, between
two SSEs, rather than four: all ae, B and o8 . A final
possibility is to only consider consecutive SSEs for
generating features from a tableau [25]. This can be
done by only using the + 1 off-diagonal entries.

Approximate ordering: partitioning the SSE chain

Using the exact order of SSEs as the basis for forming a
protein vector can cause the vector to be very large, for
complex combinations. To handle this, we have investigated
a strategy which uses approximate positions for each SSE,
rather than exact positions. Suppose we have a protein with
N SSEs. The sequence of SSEs can be partitioned into two
halves along the chain. All the SSEs in the first-half part will
be given a position marker P;. SSEs in the second-half will
be marked as P,. Then, when comparing each pair of SSEs,
position markers can be used to provide additional position
information. In protein 1UBI, the first SSE compared to the
last SSE will be § P, B P, OT. The number of features
generated by using this strategy will then be 4 SSE types x8
angles x2° positions = 128 features. If a protein SSE
sequence is partitioned into n parts, the number of features
will be 4 SSE types x 8 angles x n’positions.

Datasets
For our experimental evaluation, we use:

1. the entire ASTRAL 1.73 [28] protein domain
database. All 97169 protein domains in this data
set are processed through the tableau generator
program of Konagurthu et al. [24]. The program
successfully generated 83,731 tableaux of protein
domains covering 1077 different SCOP folds. Using
these tableaux, our index database is generated in a
single preprocessing step.

2. the ASTRAL 1.73 95% sequence-identity non-
redundant data set. We generate our index database
from the tableau data set published by Stivala et al.
[16] containing 15,169 entries.

We also use the query data set of Stivala et al.s [16]
containing 200 randomly chosen protein domains. Each
run using a query returns a list containing all proteins in the
respective index databases along with the associated scores.

Evaluation methodology

All experiments were conducted using a Intel Core 2 Duo
2.4 GHz processor running Ubuntu 9.10 Linux system.
IR Tableau was implemented in Java. SCOP [29] fold
classification is used as the gold-standard while assessing
the accuracy of each search. We use the Receiver

Page 4 of 9

(page number not for citation purposes)



BMC Bioinformatics 2010, 11(Suppl 1):S46

Operating Characteristic (ROC) curve, the Area Under
this ROC Curve (AUC), Precision-Recall curve and the
Mean Average Precision (MAP) to gauge the accuracy.

Given a query protein P, which belongs to the SCOP fold
F,, let us consider the top k proteins returned by the search
as hits and the remainder as misses. For an ith protein P,

belonging to the SCOP fold F, , if F, =F,and i<k then
the protein P, is a true positive (TP). On the other hand, if
F, #F andi<kthen P, is a false positive (FP). If F, #F,
and i >k then P, is treated as a true negative (TN).
Otherwise, P, is a false negative (FN). Using the above
statistics, we can then compute the true positive rate (TPR
or recall), false positive rate (FPR) and positive predictive
value (PPV or precision) using the following formulae:

TPR = TP | P = TP(TP + FN)
FPR=FP /N = FP /(FP + TN)
PPV = TP /(TP + FP)

Using the above formulae TPR,, FRP), and PPV, are
calculated for all 1 <k < n, where n is the size of the data
set. The ROC defines a curve of points with FPR), as the
abscissa and TPR; as the ordinate. Precision-Recall
defines a curve with TPR;, and PPV, as abscissa and
ordinate respectively. For a good search system, the ROC
curve is closer to the top-left corner and the Precision-
Recall is closer to the top-right corner of the plot.

The area under the ROC curve (AUC) is a single-figure
measurement for the quality of an ROC curve. The averaged
AUC over our experiment with queries can thus be used to
evaluate the method'’s performance. Mean average precision
(MAP) is another useful single-figure accuracy measure-
ment. Here, the average precision over the top K positive
results is computed by varying k over all possible values. The
mean of these precisions gives the MAP.

Results and discussion
In this section we first compare our IR Tableau against
several popular methods for protein structure comparison.
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ProSMoS, OPAAS, SARST and some other web-server based
programs are not tested, as results are not comparable.
Later, we assess the sensitivity and accuracy of IR Tableau
using different types of features defined in this work.

Comparison between protein comparison algorithms
Table 3 and 4 summarizes the results of comparison of
IR Tableau against TableauSearch, Yakusa, QP Tableau,
SHEBA, VAST and TOPS. These runs were conducted
using 200 queries searching on the two ASTRAL data set.
(See Section “Datasets” for more details.)

Running time performance

Comparing the running times in Table 3, we can clearly
see the superior speed of IR Tableau taking merely 27
seconds to complete the 200 query set, while all the
other methods take hours and in some cases even days.
Searching the full ASTRAL 1.73 database IR tableau takes
only 147 seconds, while the search times of other
methods increase drastically. We note here that QP
Tableau, SHEBA, and VAST are infeasible to run on the
full ASTRAL data set. For the smaller ASTRAL 95% data
set, the search speeds reported in this work of QP
Tableau, SHEBA, VAST, and TOPS are estimations based
on the corresponding figures from the work of Stivala et
al [16]. These estimations account for the different
systems used to conduct our experiments, by using the
running time of TableauSearch as a reference to normal-
ize the speeds reported in [16]. (TableauSearch takes 21
minutes in our experiments, while Stivala et al. report 85
minutes for the same job.

More elaborately, on the full ASTRAL 1.73 data set, IR
Tableau takes 0.627 seconds per each query. (We note that
the comparison time is constant for each pairwise
comparison between the query and a database protein.)
On the other hand, TableauSearch takes a variable amount
of time to complete a query depending on the size of the
query. For example it takes 13.38 seconds (CPU time) to
search the whole database using SCOP domain dlubia, a
protein which contains only 6 SSEs. But searching on the

Table 3: Search speed for 200 query set. Results annotated with asterisks (**') are estimations based on results in [16]. The running time
of TableauSearch which was evaluated independently by this work was used to appropriately normalize the results from [16] to

account for the differences in machines used between the two works.

~'s indicate that the programs were infeasible to run in a

practical time frame. The ‘speed-up’ columns gives the performance gain as a measure of search speed of IR Tableau with respect to

other programs

Method Astral 1.73 95% Speed-up Astral 1.73 Full Speed-up
IR Tableau 0.0075 h (27 s) Ix 0.0408 h (147 s) I %
Yakusa 25h 333x 83 h 2,034x%
TableauSearch 0.42 h 56x% 377 h 92x
QP tableau 222 h* 29,600% - -
SHEBA 15.6 h* 2,080% - -
VAST 8.4 h* 1,120% - -
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Table 4: AUC results for 200 query set. AUC results for QP
Tableau, SHEBA and VAST are taken from [16], which used
exactly the same query set and dataset as in our experiments.
For IR Tableau, TableauSearch and Yakusa, the output of a query
is a list of all proteins along with scores

Method AUC
IR Tableau 0.948
Yakusa 0.950
TableauSearch 0.871
QP tableau 0.925
SHEBA 0.941
VAST 0.890
TOPS 0.871

SCOP domain d1f6dc_ containing 26 SSEs takes 118
seconds. For the same query of dlubia_, Yakusa takes 26
minutes to search the full ASTRAL 1.73 data set.

ROC curve and precision-recall curve performance

In Table 4, the AUC is shown for the 200 query set.
Surprisingly, IR Tableau achieves the second highest
AUC value of 0.948. This clearly suggests that the protein
feature vectors seem to capture important structural
information from tableau. ROC curves for IR Tableau,
TableauSearch and Yakusa are shown in Figure 2.

Yakusa has the highest TPR when the FPR is less than
0.35. After this point, IR Tableau becomes slightly better
than the other two. TableauSearch is always worse than
Yakusa, but better than IR Tableau when the TPR less
than 0.3. So in terms of ROC performance, IR Tableau is
as good as Yakusa, but over three hundreds times faster.

ROC curve for 200 query set in ASTRAL 1.73 95% data set
T

True Positive Rate
o
n
T
L

—— IR Tableau
- - - TableauSearch
oF Yakusa H

I |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
False Positive Rate

Figure 2

ROC curves for 200 query set. ROC curve of IR Tableau,
TableauSearch and Yakusa for 200 query set in ASTRAL 1.73
95% data set.

http://www.biomedcentral.com/1471-2105/11/S1/S46

The Precision-Recall (PR) curves for IR Tableau, Tableau-
Search and Yakusa are shown in Figure 3. We note that
the performance of both TableauSearch and Yakusa is
better than the performance of IR Tableau (their curves
are both closer to the upper right corner). Clearly, the
Precision-Recall curve exposes differences between the
algorithms that weren’t apparent in ROC space.

The difference between the behaviour in ROC-space
compared to PR-space can be explained based on the
imbalance between the classes formed from the top-k
results when k is small. In this circumstance, a small
number of positive and a large number of negative results
are returned. Therefore a difference in the absolute
number of FPs only results in a small change in FPR (as
seen in the ROC curves). On the other hand, the same
difference in FP results in a large change of precision (as
seen in PR curves). In other words, for small k, Yakusa and
TableauSearch have an advantage in accuracy over IR
Tableau, but as k becomes larger, all three are very similar.

This suggests that IR Tableau may be very useful to use as a
hybrid technique in conjunction with one of these more
computationally expensive algorithms. Under this strategy, one
would first search the protein database using IR Tableau to
return a relatively large set of matches and then pass these
results to a second algorithm for deeper, more computationally
demanding analysis and reranking of matches.

We also conducted experiments on searching for
commonly occurring protein folds. For SCOP domain

Precision-Recall curve for 200 query set in ASTRAL 1.73 95% data set
T

T T T T T T T T

081
0.7
0.6

051

Precision

0.4

031

0.2r-

01l — IR Tableau AU ,
- - ~TableauSearch .
o Yakusa 1
6 UiW 0?2 UTS Ur4 UiS 0?6 0,‘7 018 U‘.B 1‘
Recall
Figure 3

Precision-recall curves for 200 query set. Precision-
recall curve of i) IR Tableau, ii) TableauSearch and iii) Yakusa
for 200 query set in ASTRAL 1.73 95% data set. The MAP
scores are respectively i) 0.498, ii) 0.647, iii) 0.74.
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ROC curve for d1ae6h1in ASTRAL 1.73 95% data set
T

True Positive Rate
o
n
T

—— IR Tableau
- - - TableauSearch
- Yakusa H

1 L | L L I | T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Figure 4

ROC curve for dlaebhl. ROC curve of IR Tableau,
TableauSearch and Yakusa for protein dlae6hl in ASTRAL
1.73 95% data set.

dlae6hl, a B-grasp protein, the AUC of IR Tableau is
0.978 compared with 0.89 in QP tableau, 0.906 in
TableauSearch and 0.887 in Yakusa. This is also
better than the version of QP tableau with added SSE
distance information, which is 0.95 [16]. The ROC and
Precision-Recall curves for this protein search are shown
in Figure 4 and 5 respectively.

Precision-Recall curve for d1aegh1 in ASTRAL 1.73 95% data set
T T T T T T T T T

0.9

081

07+

0.6

0.5

Precision

04F

0.3

0.2

o1l — IR Tableau e
- - - TableauSearch -
o Yakusa 3
6 011 0:2 DTS Dj4 U‘.S 0:6 0.‘7 Djﬂ 0:9 ;
Recall
Figure 5

Precision-recall curve of dlaebhl. Precision-recall curve
of IR Tableau, TableauSearch and Yakusa for protein
dlaeébhl in ASTRAL 1.73 95% data set.
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IR Tableau achieves a superior TPR across almost all the
regions in the ROC curve. For the precision-recall curve,
the performance of IR Tableau is comparatively not as
good for low k (low recall), but becomes comparatively
better for higher k (higher recall). The mean average
precision is 0.775 for IR Tableau, 0.777 for Tableau-
Search and 0.703 for Yakusa.

In some cases, search results with higher scores are more
important than ones with lower scores. Superposition of
these returned protein structures is then a very good
demonstration of the quality of the top ranked proteins.
For protein dlubia_, the graph in Figure 6 shows the
superposition of the top 20 proteins returned by IR

Figure 6

Superposition graph. Superposition of the top 20 results
using dlubia as a query protein. MUSTANG [5] was used for
structure alignment. This figure is generated using PyMol
[30].
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Table 5: Behaviour for different featuring methods. Behaviour for
different featuring methods using ASTRAL 1.73 95% data set and
200 query set

Featuring method AUC MAP
Base 0.948 0.498
Consecutive SSEs 0.923 0.489
Without ordering 0.944 0.476
Triplet 0.921 0.331

Tableau, aligned using MUSTANG [5]. We see that all
helices and strands are superposed well, indicating good
quality of the results.

Testing different IR Tableau feature choices

Table 5, shows the results of different featuring methods.
If only consecutive SSEs are considered in the indexing
process, the AUC and MAP are 0.923 and 0.489
compared with 0.948 and 0.498 for the base method.
This difference is relatively small and justifies the notion
that consecutive SSEs are important. After discarding all
the ordering information between SSEs, the AUC of IR
Tableau drops from 0.948 to 0.944, meaning that non-
linear structure matching may be easily handled. The
accuracy of the triplet approach was very low compared
with other featuring methods.

Results of IR Tableau when partitioning proteins into N
parts are shown in Table 6. As the number of partitions
increases, the AUC gradually decreases. When N is
between 5 to 7, the system achieves the highest MAP
values. The SSE length distribution in Figure 7 clearly
shows that most of proteins have 6 to 8 SSEs.

So it is therefore natural that partitioning the SSE chain
into 5 to 7 parts works well, since it means that we are
effectively trying to match the position of each SSE
exactly.

The behaviour for different similarity functions is shown
in Table 7. Cosine similarity has the highest AUC 0.948,
followed by the Tanimoto coefficient at 0.947. Even the
worst, Jaccard index, still achieves 0.906. With respect to
MAP, the differences are greater. The Tanimoto coeffi-
cient and Jaccard index have very low MAP, while
Euclidean distance gives the highest MAP. Unlike the
other measures, Euclidean distance is not normalized.
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Figure 7

Distribution of number of SSEs in ASTRAL 1.73 data
set. X axis: number of SSEs in a proteins, Y axis: the number
of proteins.

Table 7: Behaviour for different similarity functions using
ASTRAL 1.73 95% data set and 200 query set

Similarity function AUC MAP
Cosine similarity 0.948 0.498
The Jaccard index 0.906 0.347
The Tanimoto coefficient 0.947 0.244
Euclidean distance 0.932 0.544

If two proteins greatly differ in size, we can expect un-
normalized similarity measures will reduce the distance
greatly.

Conclusion

We have introduced IR Tableau, a new algorithm for
protein structure comparison. A key advantage is that it
is highly scalable, being faster than existing methods, by
over a factor of 100. This speed up factor also increases
for longer proteins. Moreover, it is able to achieve good
quality of search results, obtaining comparable AUC
scores to existing algorithms and slightly lower MAP
scores. Highly efficient search algorithms will be very
important for protein structure databases of the future,
which may contain millions of proteins. We believe that
our IR Tableau approach is very promising for such a
scenario. In particular, it may be used as part of a hybrid
filter approach. The user can run IR Tableau for a high
throughput scan of the database for approximate

Table 6: Behaviour for different partitioning methods. Behaviour for different partitioning methods using ASTRAL 1.73 95% data set

and 200 query set

No. of Partitions | 2 3 4 5 [ 7 8 9 10

AUC 0.948 0.946 0.940 0.933 0.929 0918 0916 0.896 0.892 0.890

Mean Average Precision 0.498 0.537 0.554 0.564 0.573 0.570 0.574 0.568 0.562 0.563
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matches. The search results would then be passed to a
second algorithm, for deeper (and more computation-
ally expensive) comparative analysis. Conducting experi-
ments along these lines is an interesting avenue for
future work.
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