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In the framework of the random matrix approach, we apply the theory of Selberg’s integral to problems of
quantum transport in chaotic cavities. All the moments of transmission eigenvalues are calculated analytically
up to the fourth order. As a result, we derive exact explicit expressions for the skewness and kurtosis of the
conductance and transmitted charge as well as for the variance of the shot-noise power in chaotic cavities. The
obtained results are generally valid at arbitrary numbers of propagating channels in the two attached leads. In
the particular limit of large �and equal� channel numbers, the shot-noise variance attends the universal value
1 /64� that determines a universal Gaussian statistics of shot-noise fluctuations in this case.
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Quantum transport of noninteracting electrons in mesos-
copic systems can be conventionally described in the frame-
work of scattering theory.1,2 The conductance and shot noise
are the brightest and, perhaps, most frequently considered
examples. Being expressed in terms of transmission eigen-
values Ti of a conductor, the dimensionless conductance g
and the zero-frequency shot-noise power p of the two-
terminal setup at zero temperature are, respectively, given by

g = �
i

n

Ti, p = �
i

n

Ti�1 − Ti� . �1�

Here, n�min�N1 ,N2�, where N1,2 is the number of scattering
channels in each of the two attached leads.

Generally, the positive quantities Ti�1 are mutually cor-
related random numbers whose fluctuations depend on the
conductor’s nature. In the case of chaotic cavities considered
below, the joint distribution of Ti is believed to be provided
by the random matrix theory �RMT� and reads as follows:1

P��Ti�� = N�
−1�

i=1

n

Ti
�−1�

j�k

�Tj − Tk��, �2�

with �= �
2 ��N1−N2�+1� and normalization constant N�. The

symmetry index � �=1, 2, or 4� distinguishes between the
three standard RMT classes �orthogonal, unitary, or symplec-
tic ensembles, respectively� which are realized depending on
the presence or the absence of time-reversal and spin-flip
symmetry in the system.1,3

The exact RMT results for the average and variance of the
conductance are well known for quite a long time1,4,5 and
that for the average shot-noise power has become available
only recently6 �see also Refs. 7–9�. As concerns higher order
cumulants of these quantities, their exact RMT expressions
valid at arbitrary N1,2 have not been reported in the literature
so far, a progress in this direction being announced very
recently.10

In this paper, we present a thorough analysis of this ques-
tion by further developing and applying the theory of Sel-
berg’s integral to the problem. As was recently recognized,6

such an approach is a powerful nonperturbative method
suited particularly well for the studies of moments and

counting statistics �see also Refs. 10 and 11�. It represents a
useful alternative to orthogonal polynomial3 or
diagrammatic12 approaches, especially in the situation when
the finite dimensionality of relevant random matrices be-
comes important.

Selberg’s integral appears naturally in the problem first as
an integral determining the normalization constant,

N� = �
j=1

n−1 �	1 +
�

2
�1 + j�
��� +

�

2
j���1 +

�

2
j�

��1 +
�

2
��	1 + � +

�

2
�n + j − 1�
 . �3�

This expression assures that Eq. �2� is a probability density,
being generally valid for discrete n and continuous � and
�.13 To study the cumulants of g and p, one needs to know
the moments T1

n1
¯Tk

nk�, with ¯� standing for the integra-
tion over the joint probability density �2� and ni�0. Here,
we calculate all the moments with �ini�4 by deriving a set
of new algebraic relations for them and reducing the mo-
ments to the forms of Selberg’s integral. Presenting the rel-
evant technical details at the end of the paper, we now dis-
cuss applications of the obtained results to various linear and
nonlinear statistics on the transmission eigenvalues.

Transmitted charge cumulants. The statistics of charge
q �in units of e� transmitted through the cavity over the
observation time is usually described by means of the
current or charge cumulants qm��. Following Levitov and
co-workers,14,15 it is convenient to use a general formula for
the cumulant generating function expressed in terms of the
transmission eigenvalues as follows: �m

�m

m! q
m��= �i ln�1

+Ti�e�−1���. One finds that the first cumulant, q��=nT1�,
gives the conductance, the RMT average of which is known4

to be

q�� � g� =
N1N2

N − 1 +
2

�

, N � N1 + N2, �4�

while q2��=n�T1�− T1
2�� yields shot noise as follows:6
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q2�� � p� = g�
�N1 − 1 +

2

�
��N2 − 1 +

2

�
�

�N − 2 +
2

�
��N − 1 +

4

�
� . �5�

An equivalent to RMT derivation of these and related results
within a semiclassical approach may be found in Ref. 16.

The charge cumulants are an example of linear statistics
on the Ti, which is fully determined by the transmission ei-
genvalue density, 	�T�= �i
�T−Ti��. However, the latter is
analytically known only in some limiting cases of a few4,7 or
many17 open channels, restricting the use of 	�T� for the
calculation of qm�� and full counting statistics18,19 to these
cases.

In the general situation of arbitrary N1,2, one can alterna-
tively consider the joint probability distribution �2� and ex-
ploit its simple algebraic structure �i.e., that of the Selberg
integral kernel� to derive exact relations for its moments.6

For example, Eqs. �15� and �16� presented below yield
straightforwardly and in a uniform way exact results, Eqs.
�4�, �5�, and �9�, for g�, p�, and var�g�, respectively. This
approach was recently extended further to find the third cu-
mulant q3��= �q− q��3� exactly.11 For completeness and
later use, we write down this result �following from Eq. �18�
below� as follows:

q3��
var�q�

=
�1 −

2

�
�2

− �N1 − N2�2

�N − 3 +
2

�
��N − 1 +

6

�
� . �6�

As to the fourth cumulant of the transmitted charge, its
explicit expression can be found from Eqs. �15�–�19� accord-
ing to q4��=n�T1�−7T1

2�+12T1
3�−6T1

4��, the result being
too lengthy to be reported here. In the case of the single-
mode leads, N1=N2=1, one gets q4��=− 2

105 ,− 1
30 ,− 1

30 at the
values of �=1,2 ,4, respectively. In the opposite semiclassi-
cal limit of many channels, N1,2�1, we represent the out-
come of our calculation as the following 1

N expansion:

q4��
var�q�

=
N1

4 − 8N1N2
3 + 12N1

2N2
2 − 8N1

3N2 + N2
4

N4

+
6�� − 2��N1 − N2�2�2N1

2 − 7N1N2 + 2N2
2�

�N5

+ O�1/N2� . �7�

The leading order term agrees with the result obtained by a
different method in Ref. 18. The next order term gives a
weak localization correction which vanishes at �=2 or N1
=N2. In the latter case of symmetric cavities, one further
finds

q4�� =
n

64
�1 −

�2 − 6� + 4

2�2n2 � + O� 1

n2� . �8�

Conductance cumulants. As is clear from the discussion,
the presented method is equally applied to nonlinear statis-
tics determined by different transmission eigenvalues as

well. The simplest example of such a quantity is the variance
of the conductance, the exact RMT result of which reads1,6

var�g�
g�

=

2�N1 − 1 +
2

�
��N2 − 1 +

2

�
�

��N − 2 +
2

�
��N − 1 +

2

�
��N − 1 +

4

�
� . �9�

We note that var�g�=2g�p� /�N1N2 makes a relation of Eq.
�9� to the linear statics �4� and �5� considered above.

The third cumulant of the conductance, the so-called
skewness, can also be found from Eqs. �15�–�18� and be
represented after some algebra in the following compact
form:

g3��
var�g�

=

4	�1 −
2

�
�2

− �N1 − N2�2

��N − 3 +

2

�
��N − 1 +

2

�
��N − 1 +

6

�
� . �10�

One finds immediately that g3��=8�g� /�N1N2�2q3��. It is
also worth noting that the skewness vanishes for symmetric
cavities �N1=N2� at �=2. This holds generally for any odd
cumulant of g �or q�, as the corresponding distribution be-
comes symmetric around n

2 �or 1
2 � in this case.20

By our method, we have also calculated the fourth
cumulant g4�� which is related to the conductance kurtosis.
The fourth moment of the conductance is found to be deter-
mined by moments of Ti as g4�=n�T1

4�+ �n−1��3T1
2T2

2�
+4T1T2

3��+6�n−1��n−2�T1T2T3
2�+ �n−1��n−2��n

−3�T1T2T3T4��, the corresponding cumulant being given by
the standard formula. Since the resulting explicit expression
appears to be too cumbersome, we restrict our consideration
to the limiting cases of the single-mode and many-mode
leads. In the former case, we get g4��=− 32

4725 ,− 1
120 ,− 1

540 at
�=1,2 ,4, respectively, whereas in the latter case of N1,2
�1, we arrive at the following expression:

g4��
var�g�

=
24

�2N6	�N1 − N2�2�N1
2 + N2

2 − 4N1N2� +
� − 2

�N
�12�N1

4

+ N2
4� − 64N1N2�N1

2 + N2
2� + 105N1

2N2
2�
 + O�1/N4� .

�11�

One can readily see that higher cumulants contribute in
the next order of 1

N , thus the conductance distribution gets
more Gaussian-like as N grows.21 This tendency becomes
even stronger for symmetric cavities at �=2, as then g3��
=0 identically and g4�� vanishes in the leading and next-to-
leading orders. In this case of N1,2=n�1, one gets

g4�� =
3

128�3n3�1 −
2

�
+

�� + 2�2

2�2n
� + O� 1

n5� . �12�

Shot-noise variance. Now, we discuss statistics of the
shot-noise power. Its average value is given by Eq. �5�,
whereas its second cumulant, the variance, is determined by
var�p�=n�T1

2�−2T1
3�+ T1

4��+n�n−1��T1T2�−2T1T2
2�

+ T1
2T2

2��−n2�T1�− T1
2��2. However, as in all other cases of
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the fourth order cumulants considered above, the explicit re-
sult for var�p� cannot be casted in a compact form, so we
present the limiting cases again. In the single-mode case, we
get var�p�= 4

525 , 1
180 , 1

180 corresponding at �=1,2 ,4. In the
many channel case, we obtain the following expansion:

var�p�
p�

=
2

�N5	N1
4 + N2

4 − 4N1N2�N1 − N2�2 +
� − 2

�N
�9�N1

4

+ N2
4� − 42N1N2�N1

2 + N2
2� + 70N1

2N1
2�
 + O�1/N3� .

�13�

As usual, the first weak localization correction vanishes for
unitary symmetry, �=2. The next order correction can also
be found and reads as follows:

var�p� �
1

64�
�1 +

� − 2

�n
+

4 + ��� − 2�
2�2n2 � , �14�

where we have omitted the terms �n−3 and set N1=N2 for
simplicity. The general dependence of the shot-noise vari-
ance on the channel numbers in the leads is illustrated on
Fig. 1.

Covariance of g and p. It is also instructive to consider
statistical correlations between the conductance and the shot-
noise power, which can be characterized by their covariance,

cov�g , p�= gp�− g�p�. This quantity involves moments of
Ti up to the third order. Surprisingly, the resulting exact for-
mula for cov�g , p� /var�g� turns out to be given precisely by
the right-hand side of Eq. �6�. This expression vanishes in
symmetric cavities at �=2 that can be easily seen again as a
consequence of the symmetry of the distributions. In this
case, therefore, g and p become uncorrelated on the level of
their averages and it would be interesting to understand to
which extent this holds for their higher moments in general.

Moments of �Ti� and Selberg’s integral. Finally, we dis-
cuss the derivation of general moments T1

n1
¯Tk

nk� at arbi-
trary positive � and �. Moments with all ni=1 as well as
T1

2� can be found from recursion relations already given in
Mehta’s book,3 which read as follows:

�m � T1T2 ¯ Tm� = �
j=1

m � +
�

2
�n − j�

� + 1 +
�

2
�2n − j − 1�

, �15�

T1
2� =

�� + 1 + ��n − 1���1 −
�

2
�n − 1��2

� + 2 + ��n − 1�
. �16�

To calculate moments containing higher powers of Tm, one
may note that

T1T2 ¯ Tm
k � = �T1T2 ¯

�

�Tm

Tm
k+1

k + 1
�

and employ a partial integration here �for �0�. This yields
a contribution T1T2¯ �n−1� at the upper boundary Tm=1,
where notation ¯�n−1� has been introduced for an averaging
over a joint density of eigenvalues T1 , . . . ,Tn−1, which con-
tains in addition a factor �i=1

n−1�1−Ti��. This case is also con-
tained in the general form of Selberg’s integral. In particular,
the corresponding analog of Eq. �15� is found to be

�m� � T1 ¯ Tm�n−1� = �
j=1

m � +
�

2
�n − j − 1�

� + 1 +
�

2
�2n − j − 1�

. �17�

In this way, we are able to calculate all the moments up to
the fourth order. For moments of the third order, we have

T1
3� =

� +
�

2
�n − 1��1 − 2T1T2

2��

� + 3 + ��n − 1�
, �18a�

T1T2
2� =

	� +
�

2
�n − 1�
�1� −

�

2
�n − 2��3

� + 2 + ��n − 1�
. �18b�

The fourth order moments are given as follows:

T1
4� =

� +
�

2
�n − 1��1 − 2T1T2

3� − T1
2T2

2��

� + 4 + ��n − 1�
, �19a�
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FIG. 1. The variance of the shot-noise power in chaotic cavities
as a function of the channel numbers in the leads. �a� The case of
symmetric cavities �N1=N2=n� for three RMT ensembles, when
var�p� saturates at the universal value �64��−1 at large n. �b� The
case of asymmetric cavities with preserved time-reversal symmetry
��=1� for fixed number N1 of channels in the one lead and varied
one N2 in the other lead. The shot-noise variance shows a well-
developed maximum at N2�N1 and then diminishes down to zero
according to var�p��2N1�N1−1+ 2

� � /�N2
2 as N2 grows.
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T1T2
3� =

	� +
�

2
�n − 1�
�1� −

�

2
T1

2T2
2�

� + 3 + ��n − 1�

−
��n − 2�T1T2T3

2�
� + 3 + ��n − 1�

, �19b�

T1
2T2

2� =
	� +

�

2
�n − 1�
T1

2�n−1�

� + 2 + ��n − 3
2�

−
�

2

�n − 2�T1T2T3
2�

� + 2 + ��n − 3
2� , �19c�

T1T2T3
2� =

	� +
�

2
�n − 1�
�2� −

�

2
�n − 3��4

� + 2 + ��n − 1�
, �19d�

and

T1
2�n−1� =

�� + 1 + ��n − 2���1� −
�

2
�n − 2��2�

� + 2 + ��n − 1�
. �20�

At last, expressions �15� and �17� taken at m=1, . . . ,4 make
the above algebraic system of equations be closed.

In conclusion, we have applied essentially the theory of
Selberg’s integral to problems of quantum transport in cha-
otic cavities. The cumulants up to the fourth order for current
and conductance fluctuations and up to the second order for
shot noise have been calculated exactly at arbitrary channel
numbers and symmetry parameter �. We note that the pro-
posed method can also be used for determining the corre-
sponding distributions in closed form suitable for an analytic
work in the case of a few open channels as well as for nu-
merical implementations.10,22 Our analysis of shot-noise sta-
tistics suggests that in close analogy with universal conduc-

tance fluctuations,21 we may characterize universal
fluctuations of shot noise by their cumulants as follows:

pm�� � p�2−m. �21�

In the limit of large �and equal� channel numbers, Eq. �21�
yields the Gaussian distribution which is peaked at p�� n

4
and has a width given by the universal value of var�p�
� 1

64� . It would be highly interesting to understand how our
findings, which are relevant to the zero-dimensional �RMT�
case, can be extended to higher dimensions where some ana-
lytical results are already known.23,24

It would also be desirable to compare our results with the
relevant experimental data. For example, measurements of
up to the fifth cumulants of the transmitted charge have been
recently done in a weakly coupled quantum dot.25 However,
performing similar experiments for a lower impedance de-
vice, such as a perfectly open chaotic cavity with several
modes in the leads, requires a much higher detector reso-
lution that represents a current experimental challenge. On
the other hand, the conductance distribution in chaotic
cavities26 has been directly measured in open quantum dots27

and also tested recently by means of experiments with
microwaves.28 A comparison with our results in this case
could be, however, not so straightforward, as it involves tak-
ing into account effects of dephasing and absorption26,29 as
well.

As another potential application of our results, we men-
tion quantized transport in graphene p-n junctions, which has
been very recently studied both experimentally30 and
theoretically.31 The exact RMT results for higher cumulants
of the conductance and noise may be useful for understand-
ing possible mechanisms of edge mode mixing in the bipolar
regime leading to chaotic transport there.31 Further work in
this and in the other directions mentioned above is needed.
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