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T-cell responses are induced by antigen presenting cells (APC) and signals from the microen-
vironment. Antigen persistence and inflammatory microenvironments in chronic infections
and cancer can induce a tolerant state in T-cells resulting in hyporesponsiveness, loss of
effector function, and weak biochemical signaling patterns in response to antigen stimula-
tion. Although the mechanisms of T-cell tolerance induced in chronic infection and cancer
may differ from those involved in tolerance to self-antigen, the impaired proliferation and
production of IL-2 in response to antigen stimulation are hallmarks of all tolerant T cells. In
this review, we will summarize the evidence that the immune responses change from non-
self to “self”-like in chronic infection and cancer, and will provide an overview of strategies
for re-balancing the immune response of antigen-specific T cells in chronic infection and
cancer without affecting the homeostasis of the immune system.
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INTRODUCTION
T cells are essential for robust adaptive immune responses against
pathogen invasion, as well as maintaining immune tolerance to
self-antigens. In the tolerant state, T cells generally fail to prolif-
erate and produce IL-2 in response to antigen stimulation (1, 2).
Anergy and immune regulation are two interconnected mecha-
nisms that maintain peripheral tolerance to self-antigens in vivo.
In contrast to the biochemical events induced during effective
responses to pathogenic antigens, in anergy the biochemical sig-
naling pathways in T cells are only partially activated. Activation of
the calcium/calcineurin/nuclear factor of activated T cells (NFAT)
pathway, but not AP1 and NFκB pathways (1–3), in anergic con-
ditions results in the expression of tolerance associated genes such
as E3-ligases (1–3). This partial TCR signaling is largely due to
the lack of additional signals such as costimulatory signals and
activating cytokines such as IL-2, or due to direct regulation by
Treg (2). Therefore, altered expression of costimulatory signals
and/or activating cytokines, or defective Treg function, results in
full activation of TCR signals in response to self-antigens and may
induce autoimmune responses. Recent studies have uncovered
hyporesponsive phenotypes with partial activation of biochem-
ical events in virus specific T cells in chronic infectious diseases
(4, 5) and models mimicking chronic infectious conditions (5, 6).
These findings indicate that during chronic infection the T-cells
switch from mounting robust non-self responses to a state simi-
lar to self-tolerance due to antigen persistence and/or changes in
the microenvironment. Similar to the immunological milieu of
chronic infection, the tumor microenvironment contains a mul-
titude of suppressive mechanisms that allow tumors to escape
immune surveillance (4, 7). Immune hyporesponsive states have
been studied in many different models in vitro and in vivo and
have been categorized based on the phenotypes discovered in each
tolerant state (8).

This review will briefly summarize the extracellular signals
that affect self-tolerance or effector function of antigen-specific
T cells. We will describe the application of these signals in
therapeutic intervention and focus on the recently developed
nano-technologies that can reverse the tolerant state of viral spe-
cific T cells by delivering costimulatory or cytokine signals to
antigen-specific T cells.

ALTERED T-CELL RESPONSES DURING CHRONIC VIRUS
INFECTION AND CANCER
Chronic virus infections are associated with impaired anti-viral
immunity, particularly in the infections caused by highly replica-
tive viruses such as HIV, HBV, and HCV. In chronic infection,
persistent viral antigen, and often chronic inflammation, renders
T-cells dysfunctional. The mechanisms underlying dysfunctional
immune responses in patients are largely unknown. Based on
experimental systems studied in vitro and in vivo, different states
of T-cell dysfunction have been discovered and are classified as
exhaustion, tolerance, anergy, senescence, deletion, induced Treg,
and ignorance based on the phenotypes, production of inhibitory
cytokines such as IL-10 and TGFβ, impairment of T-cell receptor
signaling molecules, and apoptosis of the T-cells in these mod-
els (Figure 1) (4–6, 8–10). These findings have been extensively
reviewed (4–6, 8–10). Despite the differences in dysfunctional T-
cells characterized in different model systems, the common feature
is proliferative hyporesponsiveness, and impaired production of
IL-2 following antigen stimulation in vivo or in vitro (4–6, 8–10).
The chronic LCMV infection model resembles the observations
from patients with chronic virus infections more closely than
other models in terms of induction of dysfunctional T cells (4,
5). The phenotype of exhaustion of CD8 T cells in the chronic
LCMV model is well-characterized, with hierarchical loss of effec-
tor cytokine production, including IL-2, TNFα, and IFNγ and
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FIGURE 1 | Differential responses ofT cells during acute and chronic infection or cancer.

impaired proliferation in response to antigen receptor stimula-
tion in vitro (4, 5). In addition to this hyporesponsive phenotype,
increased expression of the inhibitory costimulatory molecule PD-
1 and production of the repressive cytokine IL-10 are also found
in T cells from chronic LCMV infected mice (9, 10). Notably,
similar phenotypes have been found in T cells from HIV, HBV,
and HCV patients (11–14). Under chronic infectious conditions,
viral specific CD8 T cells often lose cytotoxic function (15, 16).
At the late stages of exhaustion, viral specific CD8 T cells may be
deleted (5, 6). However, in contrast to CD8 T cells, viral specific
CD4 T cells can persist under chronic infectious conditions, but
in a hyporesponsive state (17). Therefore, there is the potential
to restore CD4 responses, which may thereafter help CD8 func-
tion. It has been reported that Treg cells are increased or induced
in chronic infection (18, 19). The increased Treg cells can reduce
chronic inflammation from persistent viral antigen stimulation,
but may also contribute to the establishment of immune tolerance
toward the virus (18, 19).

Comparable to chronic infection, high levels of tumor antigens
and chronic inflammation can establish an immunosuppressive
microenvironment. Tumor reactive T cells have been shown to
respond to tumor antigens in a similar fashion to viral specific
T cells in chronic infection with expression of high levels of
inhibitory costimulatory molecules such as PD-1, CTLA-4, and
LAG-3 and impaired production of effector cytokines including
IFNg, TNFa, and IL-2 (7, 20–22). It has been shown that advanced
tumors with high loads of tumor antigens cause functional exhaus-
tion and rapid elimination of tumor reactive T cells (23). However,
in contrast to chronic viral infections, tumor antigens are generally
poorly antigenic. Therefore, the frequency and avidity of tumor
reactive T cells are low.

IMPAIRED TCR SIGNALING DURING CHRONIC VIRUS
INFECTION
We have found that antigen persistence can impair TCR signaling
resulting in hyporesponsiveness (24). This hyporesponsiveness is
gradually induced during antigen persistence with reduction of

NFkB and AP1 activation (2, 24). This characteristic phenotype
of T-cell tolerance is similar to that observed in chronic HBV
infection (25). Down-regulation of TCR proximal signaling mol-
ecules has been found in CD8 T cells from chronic HBV patients
(25). The impaired TCR signaling in CD8 T cells from chronic
HBV patients is partly due to the down-regulation of CD3ζ (25).
The reduced expression of CD3ζ is associated with up-regulation
of PD-1 and impaired production of IL-2, suggesting that it is
part of the mechanism leading to exhaustion (25). Viral protein
Nef of HIV and E2 and core protein of HCV directly modulate
TCR signaling (26). HIV Nef protein interacts with a number
of TCR signaling molecules including Lyn, Hck, and Lck (27).
The interaction stimulates the TCR signaling pathways in the
absence of antigens leading to maintenance of viral replication
(26, 27). The altered TCR signaling induced by Nef negatively
affects antigen-mediated TCR signaling (28). Similarly, viral pro-
teins from HCV also modulate TCR signaling (29). E2 protein
of HCV binds CD81 and promotes TCR signaling while the core
protein inhibits JNK signaling and IL-2 expression (29). However,
HCV does not infect T cells. Therefore, the altered TCR responses
during chronic HCV infection are largely due to the persistence
of viral antigens. Whether the persistent, but abnormal, TCR sig-
naling induced by viral proteins causes the development of T-cell
exhaustion is yet to be investigated.

It has been found that the tumor microenvironment impairs
the formation of T-cell immunological synapses; supramolecular
structures that assemble at the T cell-APC interface (30). Dysreg-
ulated synapse formation is associated with impaired activation
of Rho-GTPases and can lead to partial activation or anergy of
T cells.

INDUCTION OF NEGATIVE COSTIMULATORY MOLECULES
One of the important changes to the phenotype of CD8 T cells
in chronic LCMV infection is the increased expression of the
negative costimulatory molecules PD-1, 2B4, CTLA-4, and LAG-
3 (5). A similar phenotype of increased negative costimulatory
molecules has been discovered in CD4 and CD8 T cells from
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chronic HBV and HIV patients (5, 15, 31–35). The function
of these negative costimulatory molecules is important in the
maintenance of immune tolerance toward self-antigens. Although
the mechanisms underlying the induction of negative costim-
ulatory molecules in T cells during chronic infection are not
clear, it may be part of a physiological protection mechanism
to reduce immunopathology induced by viral persistence and
chronic inflammation. These negative costimulatory molecules
are transiently up-regulated in activated effector T cells in the
early stages of acute infection. However, the sustained expression
of PD-1 on virus-specific CD8 T cells is associated with chronic
infection, both in LCMV mouse models and in HBV patients (5).
Co-expression of multiple inhibitory molecules correlates with
increased functional deficits in anti-virus responses and decreased
control of viral loads. Similarly, increased expression of PD-1 and
CTLA-4 has been found on tumor infiltrating T cells (TIL), which
can be associated with E3-ligase expression and increased Treg
cells (7). Thus, the overexpression of inhibitory molecules results
in shifting the balance of the immune responses from effective
anti-virus or -cancer responses toward tolerance.

ALTERED CYTOKINE PRODUCTION IN T CELLS
One of the most pronounced changes in T cells in chronic infec-
tious conditions is the altered production of cytokines (4–6). In
contrast to acute infection, antigen-specific T cells from chronic
infectious diseases fail to produce IL-2 and TNFα, but express
the regulatory cytokine IL-10 (4–6). We have discovered that
antigen-specific CD4 T cells gradually alter their cytokine pro-
file in response to antigen persistence in vivo (24). Initial antigen
stimulation effectively induces IL-2 production in antigen-specific
CD4 T cells in vivo, while repeated exposure to the same antigen
yields CD4 T cells that produce both IL-2 and IL-10 (24). Anti-
gen persistence can finally switch off the expression of IL-2 in T
cells, but these cells still produce high levels of IL-10 (24). This
altered cytokine profile is associated with impaired proliferative
responses and reduced AP1 and NFκB activation in response to
antigen stimulation in vivo (24). Impaired production of effector
cytokines such as IL-2, TNFα, and IFNγ is also associated with the
defective activation of TCR signaling pathways and effector func-
tion of viral-specific CD4 and CD8 T cells in chronic HBV, HCV,
and HIV infections (5, 6, 25). The up-regulation of inhibitory mol-
ecules, especially PD-1, is closely associated with the production
of IL-10 and/or TGFβ (5, 6). Thus, virus persistence skews the T-
cell response from activation and differentiation into effector cells
toward antigen-specific immune tolerance. However, the mecha-
nisms whereby IL-10 and/or TGFβ result in tolerance in chronic
infections are still undefined. In the LCMV model, the lack of IL-10
or a defect in IL-10 signaling improves CD8 T-cell responses and
drastically enhances the control of the infection (36, 37). TIL also
display an altered cytokine profile, which is similar to that seen in
chronic infections. High levels of IL-10 producing Treg cells have
been found in TILs, which is associated with impaired production
of IL-2, TNFa and IFNg (7, 38).

THERAPEUTIC INTERVENTIONS TO REVERSE IMMUNE
TOLERANCE IN CHRONIC INFECTION AND CANCER
Therapeutic interventions for chronic viral infection and
cancer aim to counter the effects of the immunosuppressive

microenvironment and skew responses toward antigenic
determinants that are highly immunogenic. Various approaches
have been tried to increase antigen presentation quality via immu-
nization with selected antigenic peptides, using methods such as
recombinant vaccinia vaccines, DNA vaccines, peptide vaccines,
and DC vaccines, to boost the anti-viral and -tumor responses
(39). So far these therapeutic vaccines have not been successful.
One of the possible explanations is that the hyporesponsiveness
of T cells is not due to the lack of antigens, but to aspects of the
chronic disease such as antigen persistence and chronic inflamma-
tion, which increase the activation threshold of T cells in response
to antigen. Therefore, to overcome the high activation threshold
of antigen-specific T cells in these conditions, immune therapy
has to consider the antagonizing tolerogenic environment. Thus,
therapeutic vaccines in combination with targeted immune mod-
ulation have been proposed as a more effective strategy to reverse
the hyporesponsive state of T cells in chronic infections and can-
cer. In ovarian cancer, improved anti-tumor immune responses
were observed after blockade of PD-1 (40). Similarly, in the LCMV
model, immunization with LCMV GP33 encoding vaccinia virus
coupled with administration of anti-PD-L1 blocking antibody
significantly improved viral-specific CD8 T-cell responses and
reduced viral load (41). Moreover, in chronic LCMV, combined
therapy with a DNA vaccine and IL-10 neutralizing antibody effec-
tively reversed viral specific CD8 T-cell tolerance (42). Immune
tolerance induced by virus persistence is due to a network with
multiple suppressive components. Blockade of multiple inhibitory
receptors including PD-1,LAG-3,and CTLA-4 or combined block-
ade of inhibitory receptors and immunosuppressive cytokines
achieves greater efficacy than blockade of a single inhibitory mol-
ecule in chronic LCMV models (43, 44). Although the increased
T-cell function and concomitant decrease in viral load in these
interventions are transient, these data support the hypothesis that
reversing immune tolerance to the virus or tumor is the key for
successful immunotherapy. While blockade of PD-1 and IL-10
resulted in restoration of viral specific CD8 T-cell function in a
mouse model (45), the mechanisms underlying this recovery of
effector function are still unknown. As many of these interven-
tions do not specifically target the virus- or tumor-specific T cells
and these pathways are important for maintenance of peripheral
tolerance, it is essential to control the balance between restoration
of anti-viral or -tumor responses and prevention of autoimmune
diseases (5, 7). The ideal intervention will be to specifically reverse
the tolerance of viral or tumor specific T cells, while maintaining
the overall self-tolerance of the immune system.

RESTORING NON-SELF-RESPONSES OF VIRAL SPECIFIC T
CELLS, WHILE MAINTAINING THE SELF-TOLERANCE OF
BYSTANDER T CELLS IN CHRONIC INFECTION
The differential responses of antigen-specific T cells result from
biochemical signals induced in T cells following interaction with
antigen-MHC complexes, costimulatory molecules, and cytokines.
When the mitogenic biochemical signals break the activation
threshold, the T cell will enter into the cell cycle and produce
growth cytokines such as IL-2 to promote clonal expansion. Due
to the persistence of viral antigen, the chronic inflammatory envi-
ronment and the increased production of inhibitory molecules,
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the activation threshold of viral specific T cells is increased and
the T cells are unable to enter the cell cycle following antigen
stimulation (5, 24). However, chronic infection normally does not
induce tolerance in T cells responding to antigens other than those
derived from the virus itself. Therefore, systemic intervention may
reverse the tolerance of viral-specific T cells, but also break the
self-tolerance of bystander T cells potentially resulting in autoim-
munity (5). Therefore, the ideal strategy is to reverse tolerance via
modulations that increase positive and/or dampen negative cos-
timulatory signals thereby breaking the activation threshold and
driving clonal expansion of virus responding T cells, but impor-
tantly, without affecting bystander T cells. Cytokine modified and
viral antigen pulsed DCs have been used to deliver antigen and
positive costimulatory signals to viral specific T cells in chronic
infection (46–48). However, DCs are unstable and very heteroge-
neous in terms of population and function. It is therefore difficult
to target and deliver additional positive signals to antigen-specific
T cells (49). We found that an increase in the amount of anti-
gen presented by activated dendritic cells (DC) cannot reverse
tolerance (50, 51). Although exogenous IL-2 can effectively over-
come tolerance and restore the full activation of tolerant T cells
in response to antigen stimulation in animal models and HBV
specific CD8 T cells, systemic administration of high doses of
IL-2 not only induces severe side effects, such as cardiovascular,
pulmonary, hematological, hepatic, neurological, endocrine, renal,
and/or dermatological complications (52), but may also promote
Treg function, which can further increase the activation threshold
of antigen-specific T cells (53).

In order to use IL-2 and/or anti-PD1 to overcome the
hyporesponsiveness of viral specific T cells induced in chronic

HBV infection while avoiding the side effects of systemic
administration, we have developed a novel therapeutic vaccine
(nanoAPC). These nanoAPC are derived from an APC line; the
human B cell line 721.221. This cell line is MHC deficient,
but expresses high levels of costimulatory molecules (51). The
nanoAPC are prepared from the endoplasmic reticulum (ER)
membranes of 721.221 cells (51), that are genetically engineered
to express ER retained MHC class I alleles and membrane-bound
IL-2. Therefore, MHC and IL-2 are synthesized physiologically
in 721.221 human B cells and immobilized on ER-membranes
(Figure 2) (51). After assembly with HBV antigenic peptide
in vitro, the nanoAPC contain peptide-MHC complexes, costimu-
latory molecules, and IL-2. Unlike therapeutic DCs, the nanoAPC
are homogeneous, stable, and can be stored at −80°C (50, 51).
Equipped with defined viral-peptide-MHC complexes, the admin-
istered nanoAPC can directly interact with antigen-specific T cells
in vivo (51). Due to the native structure of their membranes,
nanoAPC effectively induce immune synapses and expression of
the high affinity IL-2 receptor on T cells (Figure 2) (51). The IL-2
delivered by nanoAPC enhanced antigen-specific T-cell responses
and effector function, but did not affect bystander T cells or Treg
cells. When assembled with a pool of HLA A2 associated HBV
peptides and HBV peptides associated with HLA DR and DP,
IL-2-nanoAPC induced strong CD4 and CD8 T-cell responses
in peripheral lymphocytes from chronic HBV patients (51). We
demonstrated that IL-2 on nanoAPC is able to enhance TCR sig-
naling and downregulate PD-1 expression on virus responding
CD8 T cells from chronic HBV patients, which could effectively
reverse tolerance as demonstrated by induction of IFNγ producing
CD8 T cells in lymphocytes from chronic HBV patients (51). In

FIGURE 2 | Example of nanoAPC designed to deliver peptide-MHC
complexes and IL-2 to their receptors on antigen-specificT lymphocytes.
(A) Graphical representation of nanoAPC. (B) Electron microscopy shows
purified nanoAPC from IL-2 engineered 721.221 B cells. (C) Confocal
microscopy shows nanoAPC stained with anti-IL-2 (red) and anti-HLA A2

(green). (D) Confocal microscopy shows interaction of nanoAPC (green) with
T lymphocytes after 1 and 6 h in vitro. After 6 h, nanoAPCs are internalized into
T cells. (E) Distribution of nanoAPC (green) prepared from mouse dendritic
cells in T lymphocyte areas of mouse lymph node 48 h after i.v. injection. B
cells were stained by B220 (orange).
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addition to TCR signaling, MAPK activation can result directly
from IL-2R signaling (53). It has been found that the activa-
tion of MAPK and PI3K through Shc recruited by the IL-2R is
independent of STAT5 signaling in effector T cells, which differs
from that in Treg cells, and is important for the expansion of acti-
vated CD8 T cells (54). We have demonstrated that nanoAPC can
induce CD25 expression and immune synapse formation, which
not only enables the induction of T-cell activation but also brings
engineered bio-adjuvants such as IL-2 stably into signalsomes of
effector T cells (51). The increased expression of CD25 on CMV
antigen-specific CD8 T cells by IL-2-CMVnlvA2-nanoAPC is con-
sistent with the well-known observation that IL-2 can induce
CD25 expression on pre-activated CD8 T cells (51). Thus, together
with peptide-MHC complexes and costimulatory molecules, the
selective delivery of IL-2 is important in inducing activation of
HBV responding T cells in chronic HBV patients. As the over-
all pharmacological dose remains low, the IL-2-nanoAPC do not
activate Treg cells indicating that this approach can be adapted
for use with other bio-adjuvants. Our results demonstrate that
IL-2-nanoAPC, which deliver both antigen and IL-2 to antigen-
responding T cells, can significantly increase functional anti-viral
responses, thereby overcoming the immune tolerance induced by
persistent viral load.

Nano-particles prepared from synthetic materials or geneti-
cally engineered microbes have been used to deliver antigens to
DC for induction of anti-viral or -cancer immune responses (55).
In contrast to these particles, nanoAPC are prepared from the ER-
membranes of bio-engineered APC. Therefore, they are not only
more biocompatible than synthetic nano-particles or microbes,
but also deliver therapeutic molecules that are physiologically syn-
thesized by APC seed cells. Thus, the IL-2 on IL-2-nanoAPC is
more stable than free IL-2 in vivo, and maintains its physiological
conformation allowing optimal interaction with the IL-2 recep-
tor (data not shown). Unlike other nano-particle based vaccines,
we have demonstrated that nanoAPC can directly activate T cells.
NanoAPC are derived from APC cells and contain high levels of
costimulatory molecules (51). Therefore, the nanoAPC mimic live
DC to induce lipid raft clustering on T cells and formation of
an immunological synapse, which is essential for T-cell activa-
tion. Furthermore, using HLA I negative 721.221 cells as seed cells
allows us to specifically express selected HLA alleles allowing con-
struction of HLA allele matched nanoAPC for individual patient
populations.

Previously, we observed nanoAPC homing to T-cell areas of
peripheral lymphoid organs, largely due to the expression of hom-
ing receptors by the cells from which the nanoAPC are derived
(50). We have now further demonstrated that nanoAPC are not
efficiently endocytosed by DC in vivo (50, 51). This is important
as it allows the nanoAPC to remain as free-particles in periph-
eral lymphoid organs. The absence of endocytosis may be due
to the lack of molecules on nanoAPC recognized by DC pattern
recognition molecules (56). Thus, nanoAPC effectively target viral
specific T cells and deliver immune modulation to reverse their
tolerant state.

SUMMARY
In chronic infection and cancer, T cells are continuously
confronted with moderate to high levels of antigens, which, in

combination with the induced immunosuppressive microenviron-
ment resulting from high antigen load and dysregulated immune
responses, leads to increased activation thresholds and, subse-
quently, a reduction in effector function resulting in a tolerant
state. This tolerant state can be reversed by positive regulatory mol-
ecules such as IL-2, IL-7, and/or blockade of PD-1 and CTLA-4.
However, systemic administration of positive regulatory cytokines,
or blocking antibodies, may cause autoimmunity. Therefore, one
of the major challenges for immunotherapy against chronic infec-
tious diseases and cancer is to reverse the tolerance of antigen-
specific T cells, without affecting bystander T cells, thereby main-
taining immune homeostasis to self-antigens. The development of
delivery vehicles targeting antigen-specific T cells allows the pro-
vision of not only antigen but also engineered bio-adjuvant(s),
which can restore effector function.
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