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Abstract—Cell selection is the process of determining the cell(s) that provide service to each mobile station. Optimizing these

processes is an important step toward maximizing the utilization of current and future cellular networks. We study the potential benefit

of global cell selection versus the current local mobile SNR-based decision protocol. In particular, we study the new possibility available

in OFDMA-based systems, such as IEEE 802.16m and LTE-Advanced, of satisfying the minimal demand of a mobile station

simultaneously by more than one base station. We formalize the problem as an optimization problem, and show that in the general

case this problem is not only NP-hard but also cannot be approximated within any reasonable factor. In contrast, under the very

practical assumption that the maximum required bandwidth of a single mobile station is at most an r-fraction of the capacity of a base

station, we present two different algorithms for cell selection. The first algorithm produces a ð1� rÞ-approximate solution, where a

mobile station can be covered simultaneously by more than one base station. The second algorithm produces a 1�r
2�r -approximate

solution, while every mobile station is covered by at most one base station. We complete our study by an extensive simulation study

demonstrating the benefits of using our algorithms in high-loaded capacity-constrained future 4G networks, compared to currently used

methods. Specifically, our algorithms obtain up to 20 percent better usage of the network’s capacity, in comparison with the current cell

selection algorithms.

Index Terms—Cellular networks, 4G, WiMAX, LTE-advanced, approximation algorithms, cell selection, association, resource

allocation

Ç

1 INTRODUCTION

THE ability to provide services in a cost-effective manner
is one of the most important building blocks of

competitive modern cellular systems. Usually, an operator
would like to have a maximal utilization of the installed
equipment, that is, to maximize the number of satisfied
customers at any given point in time. This paper addresses
one of the basic problems in this domain, the cell selection
mechanism. This mechanism determines the base station (or
base stations) that provides the service to a mobile
station—a process that is performed when a mobile station
joins the network (called cell selection), or when a mobile
station is on the move in idle mode (called cell reselection, or
cell change, in HSPA).

In most current cellular systems the cell selection process
is done by a local procedure initialized by a mobile device
according to the best detected SNR. In this process, the
mobile device measures the SNR to several base stations
that are within radio range, maintains a “priority queue” of
those that are best detected (called an active set), and sends
an official service subscription request to base stations by
their order in that queue. The mobile station is connected to
the first base station that positively confirmed its request.
Reasons for rejecting service requests may be handovers or
drop-calls areas, where the capacity of the base station is

nearly exhausted. Such approaches usually result in sig-

nificantly suboptimal associations of mobile users to base

stations. Optimizing cell selection is crucial in future 4G

networks due to both the restricted capacity available at the

base stations (e.g., in the case of femtocells), combined with

the increased demand by the mobile users. To the best of our

knowledge, very little work has focused on optimizing these

procedures taking into account the scarcity of spectrum

expected in future 4G cellular networks.
Consider, for example, the settings depicted in Fig. 1.

Assume that the best SNR for Mobile Station 1 (MS1) is

detected from microcell A, and thus MS1 is being served by

this cell. When Mobile Station 2 (MS2) arrives, its best SNR

is also from microcell A, who is the only cell able to cover

MS2. However, after serving MS1, microcell A does not

have enough capacity to satisfy the demand of MS2 who is

a heavy data client. However, if MS1 could be served by

picocell B then both MS1 and MS2 could be served. Note

that MS1 and MS2 could represent a cluster of clients. The

example shows that the best-detected-SNR algorithm can

be a factor of maxf~dg=minf~dg from an optimal cell assign-

ment, where ~d is the demand of any mobile station in the

coverage area. Theoretically speaking, this ratio can be

arbitrarily large.
This simple example illustrates the need for a global,

rather then a local, cell selection solution that tries to

maximize the global utilization of the network, and not just

the SNR of a single user. In voice only networks, where base

station capacities are considered to be high, sessions have

limited duration, and user demands are uniform, this may

not be a big barrier. That is, the current base station

selection process results, in most cases, in a reasonable

utilization of the network. However, in the forthcoming 4G

cellular networks this may not be the case.
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Although the detailed structure of 4G systems is as of yet
not well defined, there is a clear consensus regarding some
of the important aspects of the technologies to be
implemented in these systems.1 Fourth generation systems
are planned to provide even higher transmission rates and
larger capacity than current 3G (IMT-2000 based) systems,
both in terms of the number of users as well as in terms of
traffic volume. Most likely, 4G systems will be designed to
offer bit rates of 100 Mbit/s (peak rate in mobile environ-
ment) to 1 Gbit/s (fixed indoors) with a 5 MHz frequency
bandwidth. The systems’ capacities are expected to be at
least 10 times larger than current 3G systems. In addition,
these objectives should be met together with a drastic
reduction in the cost (1/10 to 1/100 per bit) [20]. Such high
frequencies yield a very strong signal degradation and
suffer from significant diffraction resulting from small
obstacles, hence forcing the reduction of cell size (in order
to decrease the amount of degradation and to increase the
degree of coverage), resulting in a significantly larger
number of cells compared to previous generations. In
addition, with the further deployment of technologies such
as femtocells in providing broadband access, it is expected
that users will remain connected for long periods of time.
When considering the user demand to cell capacity ratio, for
voice traffic in current cellular technologies, a single cell
may support up to �100 concurrent voice connections [17].
As demands are expected to increase on the order of two- to
three fold, whereas capacities are expected to increase by a
mere one- to two fold [23], the resulting user demand to cell
capacity ratio is expected to increase by at least one order of
magnitude. These facts render the optimization of cell
selection and association extremely significant in optimiz-
ing spectrum and capacity utilization.

The increased number of base stations, and the variable
bandwidth demand of mobile clients, will force operators to
optimize the way the capacity of a base station is utilized.
Unlike in previous generations, the ability of a base station
to successfully satisfy the service demand of all its mobile
clients would be highly limited and will mostly depend on
its infrastructure restrictions, as well as on the service
distribution among its mobile clients.

Another interesting aspect is the support for different
QoS classes for the mobile stations, (e.g., gold, silver, or
bronze). In such a case, the operator would like to have as
many satisfied “gold” customers as possible, even if this
means several unsatisfied “bronze” customers.

In this paper, we study the potential benefit of a new
global cell selection mechanism, which should be contrasted
with the current local mobile SNR-based decision protocol.
In particular, we rigourously study the problem of max-
imizing the number of mobile stations that can be serviced by
a given set of base stations in such a way that each of the
serviced mobile stations has its minimal demand fully
satisfied. More formally, we consider a collection of users,
each having some demand (e.g., in terms of rate) and some
profit, alongside a set of base stations, each with some
capacity (e.g., in terms of available bandwidth). Each base
station has some coverage area, modeled by a set of clients it
can potentially service. We focus our attention on potentially
overloaded settings, where it might not be possible for the
base stations to meet the demands of all the users, due to
capacity constraints. Our goal is to find a fractional assign-
ment of users to base stations, such that the overall profit
obtained by users that are fully covered, is maximized. We
differentiate between two coverage paradigms: The first is
cover-by-one where a mobile station can receive service from
at most one base station. This paradigm is the common case
considered in previous work (e.g., the generalized assign-
ment problems, which is discussed in detail in Section 3). In
this coverage approach the produced assignment is actually
integral. The second paradigm, which is the main focus of our
work, is cover-by-many, where we allow a mobile station to be
simultaneously satisfied by more than one base station. This
means that when a mobile stations has a relatively high
demand (e.g., video-on-demand) in a sparse area (e.g., sea
shore), several base stations from its active set can participate
in its demand satisfaction. This option is not available in
third-generation networks (and not even in HSPA networks)
since these networks have universal frequency reuse and the
quality of a service a mobile station receives will be severely
damaged by the derived cochannel interference. However,
OFDMA-based technology systems and their derivatives
are considered to be among the prime candidates for future
cellular communication networks. The ability to satisfy the
demand of a mobile station by more than one member of its
active set is possible in these systems, as defined by the IEEE
802.16m standard, using MIMO technology [2], and also as
part of LTE-Advanced (e.g., in the form of cooperative
multipoint transmission) [1], [16]. An important question in
this context is whether cover-by-many is indeed more
powerful than cover-by-one, in the sense that it improves
the ability of the network to satisfy more clients. Simple
examples can show that improvement can indeed be made,
by considering, e.g., combining the leftover capacities of base
stations in order to support additional users. However, it is
not clear how much more powerful is the cover-by-many
paradigm, when compared with the cover-by-one approach.

Our work focuses on the offline version of the problem,
where the entire input is given in advance. We believe that
from a theoretical point of view, a better understanding of
the offline problem is extremely helpful if one is to design
good algorithms for distributed or online settings, which
are the natural settings in which our problem is cast. For
example, we note that our offline hardness results guide us
to focus on restricted settings. Furthermore, additional
work that followed the preliminary version of our work has
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Fig. 1. Bad behavior of the best detected SNR algorithm in high-loaded
capacitated network.

1. See the International Telecommunication Union (ITU) website at
http://www.itu.int/home/index.html.



built on our offline results to design distributed algorithms
for related models, essentially focusing on the cover-by-one
paradigm [25].

Approximation algorithms and heuristics play a major
role in our paper. A �-approximation algorithm is a
polynomial-time algorithm that always finds a feasible
solution for which the value of the objective function is
within a proved factor of � of the optimal solution.
Heuristics will be described in comparison with the worst
case behavior of approximation algorithms, in order to
design a good practical solution to the problems in question.

1.1 Our Contribution

In this paper, we present a new approach for cell selection
that is derived from the anticipated 4G technologies. To the
best of our knowledge, despite recent extensive research
done on future cellular networks planning and coverage
optimization (e.g., [4], [22]), there is no explicit study in the
literature discussing the new IEEE 802.16m and LTE-
Advanced possibility of simultaneous servicing of mobile
clients by more than one base station.

We model, in Section 2, the cell selection problem as an
optimization problem called all-or-nothing demand maximiza-
tion (AoNDM). We show that the general version of
AoNDM cannot be approximated within a factor better
than Jj j1��, unless NP ¼ ZPP, for any � > 0, where J is the
set of mobile stations. Motivated by this result, we address a
special case of the problem. Following practical scenarios,
we define a restrictive version of AoNDM, the r-AoNDM
problem, for some r < 1, where the network satisfies the
condition that the demand of every mobile station is at most
an r fraction of the capacity of any base station that can
potentially cover the mobile station. We show that even this
special case of the problem is NP-hard. These results appear
in Section 4.

We further present, in Section 4, two different algorithms
for this problem. The first is a 1�r

2�r -approximation algorithm,
which uses the cover-by-one paradigm, i.e., every mobile
station is covered by at most one base station. Note that this
approximation guarantee is with regard to the optimal
cover-by-many assignment. The second algorithm uses the
cover-by-many paradigm, where a mobile station can be
covered simultaneously by more than one base station. It is
a careful refinement of the first algorithm, and we prove it
guarantees at least a 1� r fraction of the value of an optimal
solution, at a price of increased running time. We note that
better approximation guarantees are known for the cover-
by-one assignment problem, however most of these algo-
rithms were based on solving a linear programming
relaxation of the problem and rounding the resulting
solution in order to obtain an integral solution. Our
algorithms, based on the local-ratio method, are combinator-
ial and provide further insight into the structure of the
underlying problem. Furthermore, our results for the cover-
by-many assignment problem provide the currently best
known guarantees for this problem.

In order to evaluate the practical differences between
global and local mechanisms for cell selection in future
networks we conducted an extensive simulation study
(Section 5). We compare between global mechanisms that
are based on our approximation algorithms and the current

best-SNR greedy cell selection protocol. We study the
relative performance of these three algorithms under
different conditions. In particular, we show that in a high-
load capacity-constrained 4G-like network, where clients’
demands may be large with respect to cell capacity, global
cell selection can achieve up to 20 percent better coverage
than the current best SNR greedy cell selection method.

2 MODEL AND DEFINITIONS

Consider a bipartite graph G ¼ ðI; J; EÞ where I ¼ f1; 2;
. . . ;mg is the set of base stations and J ¼ f1; 2; . . . ; ng is the

set of mobile stations (or clients). Every client j 2 J has a

nonnegative demand dðjÞ, and a nonnegative profit pðjÞ,
and every base station i 2 I has a nonnegative capacity cðiÞ.
In addition, for every base station i 2 I, the coverage area of

i is modeled by a subset Si � J of clients which can be

serviced by i. The set of base stations NðjÞ � I connected by

edges to a client j 2 J , represents the active set of this client.

We further extend the above definitions to sets of nodes,

such that for every A � J , dðAÞ ¼
P

j2A dðjÞ, and pðAÞ ¼P
j2A pðjÞ, and for every B � I, cðBÞ ¼

P
i2B cðiÞ. Further-

more, given any A � J , we let NðAÞ ¼
S
j2A NðjÞ. Given a

subset of clients S � J , a cover plan for S is a weight function

x : E ! IRþ, such that for every j 2 S,
P

i:ði;jÞ2E xði; jÞ � dðjÞ,
and for every i 2 I,

P
j:ði;jÞ2E xði; jÞ � cðiÞ. Notice that such a

restriction of
P

i:ði;jÞ2E xði; jÞ � dðjÞ, for every j 2 S, is also

known as all-or-nothing-type of coverage. This means that

clients that are partially satisfied are not considered to be

covered (such a model appears, for example, in OFDMA-

based networks where mobile stations have their slot

requirements over a frame and these are not useful if not

fulfilled).
The all-or-nothing demand maximization problem is to find a

subset of clients S � J , and a cover plan x for S, such that
pðSÞ is maximized.

For i 2 I, we use xðiÞ ¼
P

j:ði;jÞ2E xði; jÞ, and for j 2 J , we

use xðjÞ ¼
P

i:ði;jÞ2E xði; jÞ. As before, we extend these

notations to sets of nodes, such that for every A � I,

xðAÞ ¼
P

i2A xðiÞ, and for every B � J , xðBÞ ¼
P

j2B xðjÞ.
We further extend this notation to subgraphs of G, such that

given any A � I and B � J , xðA;BÞ ¼
P
ði;jÞ2E\ðA�BÞ xði; jÞ.

In addition, for every v 2 I [ J we denote by EðvÞ the set
of edges with endpoint v, and for every W � I [ J , let
EðW Þ ¼

S
v2W EðvÞ. We further denote for every A � I and

B � J , EðA;BÞ ¼ fði; jÞ 2 E \ ðA�BÞg.
Given any constant r < 1, we say an instance is r-

restricted if for every ði; jÞ 2 E, dðjÞ � r � cðiÞ. We further
define the problem of r-AoNDM as the AoNDM problem
limited to r-restricted instances.

3 RELATED WORK

Cell selection has received much attention in recent years
(e.g., [14], [19], [26], [27]) where research focused mainly on
multiple-access techniques, as well as on power control
schemes and handoff protocols [14], [26], [27].

In [14], a cell selection algorithm is presented where the
goal is to determine the power allocations to the various

AMZALLAG ET AL.: CELL SELECTION IN 4G CELLULAR NETWORKS 1445



users, as well as a cover-by-one allocation, so as to satisfy
per-user SINR constraints. An HSPA-based handoff/cell-
site selection technique is presented in [26], [27], where the
objective is to maximize the number of connected mobile
stations (very similar to our objective), and reaching the
optimality of this objective is done via a new scheduling
algorithm for this cellular system. All the above results did
not take into account variable base station capacities nor
mobile station bandwidth demands. In the case of [26], [27],
this enables the authors to reduce their corresponding
optimization problem to a polynomial-time solvable match-
ing problem. As shown in our paper, when base station
capacities and/or mobile stations’ demands are incorpo-
rated, this approach is no longer feasible.

An integrated model for optimal cell-site selection and
frequency allocation is shown in [19], where the goal is to
maximize the number of connected mobile stations, while
maintaining quasi independence of the radio based tech-
nology. The optimization problem in this model is shown to
be NP-hard.

The case where we restrict the clients in AoNDM to be
satisfied by a single base station belongs to the family of
generalized assignment problems. Among this class of
problems the most related problem to AoNDM is the
separable assignment problem (SAP) [13].

In this problem, we are given a set U of m bins, a set H of
n items, and a profit, fij, for assigning item j to bin i. The
assignment constraints are such that every i 2 U has a
family I i of feasible subsets that can be packed in bin i, such
that I i is closed under taking subsets, i.e., if A 2 I i, then so
is every subset of A. The goal is to find an assignment of
items to bins with the maximum aggregate profit.

The suggested SAP solution presented in [13], depends on
an algorithm which solves the single-bin subproblem in SAP.
Given a �-approximation algorithm for finding the highest
profit packing of a single bin, they present a polynomial-time
LP-rounding based ðð1� 1

eÞ�Þ-approximation algorithm and
a polynomial-time local search ð �

�þ1� �Þ- approximation
algorithm, for any � > 0. Specifically, for all special cases of
SAP that admit an approximation scheme for the single-bin
problem, there exists an LP-based algorithm with a
ð1� 1

e � �Þ-approximation guarantee, and a local search
algorithm with a ð12� �Þ-approximation guarantee.

This problem is a generalization of several well-known
problems. Among these problems are the maximum general-
ized assignment problem (GAP), and the multiple knapsack
problem (MKP). In GAP, we are given a set of bins with
capacity constraints and a set of items that have a possibly
different size and profit for each bin. We wish to pack a
maximum-profit subset of items into the bins. MKP is the
special case of GAP where the size and the profit of each
item are the same for all the bins.

Shmoys and Tardos [28] give an LP-rounding based
2-approximation algorithm for the minimization version of
GAP. However, Chekuri and Khanna [8] observed that a
1=2-approximation for standard GAP is implicit in [28]. In
addition, Chekuri and Khanna [8] develop a PTAS for MKP
and also classify the APX-hardness of GAP. Cast in our
terminology, the algorithm of Shmoys and Tardos [28] for
the GAP problem solves our problem using the cover-by-

one paradigm. Their algorithm, which is based on solving a
linear programming (LP) relaxation of the problem, and
rounding the solution to obtain an integral solution,
guarantees a 2-approximate solution with respect to the
optimal fractional solution to the LP, which also serves as an
upper bound on the optimal solution to our problem under
the cover-by-many paradigm. This result holds for any
r � 1. Furthermore, for r-restricted instances with r < 1=2,
the observation made by Chekuri and Khanna [8] implies
that the cover-by-one algorithm proposed by Shmoys and
Tardos yields a ð1� 2rÞ-approximate solution. Our scheme
provides a twofold improvement upon these results; First,
our algorithms are combinatorial, and do not resort to
solving linear programming relaxations of the problem.
Second, our ultimate result guarantees a ð1� rÞ-approx-
imate solution for any r � 1, which improves upon the best
known results for any r � 1=2.

Fractional packings, where items are allowed to be
partitioned among more than one bin, are studied in [21]
and in [18]. The assumption in the models studied in these
papers is that splitting an item is associated with overhead,
thus the objective is to pack the items (possibly splitting
some of the items) with maximal profit and minimum
overhead. Our problem is different since in our case, while
splitting is for free, not every item can be packed in every bin.

Combinatorial algorithms, and more specifically local-
ratio and primal dual algorithms, which only allow an item to
be packed in a single bin, have been considered for some of
the above mentioned related problems. A greedy algorithm
that iteratively assigns users to base stations using the best
approximation scheme for the Knapsack problem, was
proved to produce a 2þ �-approximation [11]. For the
particular case considered in this paper, where a user cannot
be covered by several base stations, a simple 2-approximation
based on finding a maximum s-t flow was suggested in [24].

AoNDM is closely related to the problem of planning 4G
cellular networks under budget limitation as described in
[3], [5]. In this problem, in addition to the input of AoNDM,
we are given a set I of possible configuration of base
stations, as well as an opening cost wðiÞ for every i 2 I.
When a client belongs to the coverage area of more than one
base station, interference between the servicing stations
may occur. These interferences are modeled by a penalty-
based mechanism and may reduce the contribution of a
base station to a client. The budgeted cell planning problem
asks for a subset of base stations I 0 � I whose cost does not
exceed a given budget B, and the total number of fully
satisfied clients is maximized. Notice that in these settings,
by taking the set I of base stations with zero opening costs,
without interferences, we get a special case of AoNDM
where all clients have the same profit. It was shown [3] that
this problem cannot be approximated, unless P ¼ NP, and
that a e�1

3e�1 -approximation algorithm exists for a special case
of the problem where every set of k open base stations can
fully satisfy at least k clients, for every integral value of k.

Another closely related problem is the all-or-nothing
multicommodity flow problem discussed in [9] and [10]. In this
problem, we are given a capacitated undirected graph G ¼
ðV ;E; uÞ (where u is the edge-capacity function) and set of
k pairs ðs1; t1Þ; . . . ; ðsk; tkÞ. Each pair has a unit demand. The
objective is to find a largest subset S of f1; . . . ; kg such that
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one can simultaneously route for every i 2 S one unit of
flow between si and ti. It is straightforward to verify that the
unit profit version of AoNDM is a special case of this
problem. It was shown that the all-or-nothing multicom-
modity flow problem can be approximated within an
Oðlog2 kÞ factor of the optimum [10]. On the other hand,
for any � > 0, the problem cannot be approximated to
within a factor of Oðlog

1
3�� Ej jÞ of the optimum, unless NP�

ZPTIMEð Vj jpoly log Vj jÞ [6]. However, no special attention is
given to specific network topologies (e.g., bipartite graphs,
as in our case), and other special instances.

Following the preliminary version of our work, Patt-
Shamir et al. [25] have considered our problem in the
distributed setting, focusing merely on the cover-by-one
paradigm. They build upon our results and show, for any
� 2 ð0; 1Þ, a distributed 1�r

2�r ð1� �Þ-approximation (with high
probability) algorithm which runs in Oð��2 log3 nÞ commu-
nication rounds. This result uses a distributed emulation of
our proposed cover-by-one algorithm, which iteratively
finds maximal matchings to improve upon the solution.

4 APPROXIMATING THE r-AONDM PROBLEM

4.1 Lower Bounds

The important goal of efficiently solving the AoNDM
problem is beyond our reach since this problem is NP-
hard, as we mentioned before. Moreover, as the following
theorem shows, even obtaining a reasonable approximation
algorithm for the problem is improbable under standard
complexity assumptions.

Theorem 4.1. For any � > 0, AoNDM cannot be approximated
to within a factor better than Jj j1��, unless NP ¼ ZPP .

Proof. We present a reduction from the Maximum-Size
Independent Set (MIS) problem to AoNDM. Let G ¼
ðV ;EÞ be any input to MIS. Consider the bipartite graph
~G ¼ ðI; J; ~EÞ, where I ¼ E, J ¼ V , and ~E ¼ fðe; vÞ 2
E � V j v is an endpoint of eg. For every v 2 V , let �ðvÞ
denote the degree of v in G, and let M ¼ maxv�ðvÞ. For
every j 2 J we set dðjÞ ¼ �ðjÞ and set pðjÞ ¼ 1. Finally,
we define for every i 2 I, cðiÞ ¼ 1.

Since all clients have unit profit, our goal is to
maximize the number of clients which can be covered.
Let S be any subset of J , and let x be any cover plan for
S. For any j 2 S, the overall capacity of the base stations
connected to j is

X
i:ði;jÞ2 ~E

cðiÞ ¼ �ðjÞ ¼ dðjÞ:

It follows, that any client covered in S uses all the
capacity of the base stations in its range. Hence, a base
station may contribute to the covering of at most
one client, and in particular, any e 2 E can contribute
to covering at most one of its endpoints. It follows that
for any S � V , S has a cover plan if and only if it is an
independent set in G. Since for any � > 0, MIS cannot be
approximated to within a factor better than Vj j1��, unless
NP ¼ ZPP [15], the same holds for AoNDM. tu
Note that in this reduction the client’s demand is �ðjÞ

which is greater than the capacity of each of the base
stations (¼1). In realistic cellular networks this is not

the case. Motivated by this fact, and the above theorem,
we focus on a special case of the problem. Namely, for any
r < 1 we consider the r-AoNDM problem. The following
theorem shows that even in such restrictive settings, the
problem is still intractable.

Theorem 4.2. For any fixed r < 1, the r-AoNDM problem is
NP-hard, even if there is only one base station.

Proof. We show a reduction from the Knapsack problem,
which is known to be NP-hard. Let K be any instance to
the Knapsack problem, which comprises of a set of
elements A, and a knapsack of size B, such that every
element a 2 A has a size sðaÞ, and a value vðaÞ. Let
S ¼

P
a2A sðaÞ, and P ¼

P
a2A vðaÞ. Given any r 2 ð0; 1Þ,

we let M 2 IN such that 1
M � r < 1

M�1 .
We construct a bipartite graph G ¼ ðI; J; EÞ, such that

I consists of a single node i, and J ¼ JA [ JB where
JA ¼ fja j a 2 Ag, and JB ¼ fb1; . . . ; bMg. We let E ¼ I �
J . For every ja 2 JA we let dðjaÞ ¼ sðaÞ, and pðjaÞ ¼ vðaÞ.
For every b‘ 2 JB we let dðb‘Þ ¼ 2S, and pðb‘Þ ¼ 2P . We
set cðiÞ ¼ 2MS þB.

First note that the above instance to AoNDM is
r-restricted. To see this note that for every j 2 JA,
dðjÞ � S < 2S þ B

M , and for every j 2 JB, dðjÞ ¼ 2S <
2S þ B

M . Since 2S þ B
M ¼

cðiÞ
M � r � cðiÞ we have for every

ði; jÞ 2 E, dðjÞ � r � cðiÞ.
In addition, note that for every optimal solution X to

the above r-AoNDM instance, JB � X. This follows from
the fact that JB is a feasible solution, and for every
j 2 JB, the profit obtained by covering j is strictly greater
than the profit obtained from covering all of JA. It
therefore follows that the cover plan for X uses exactly
2MS units of i’s capacity, leaving a capacity of B to cover
clients in JA. Hence, the subset X \ JA induces an
optimal solution to the original knapsack problem. This
completes the proof that r-AoNDM is NP-hard for any
r < 1, even if there is only one base station. tu

4.2 Algorithmic Framework

In the following sections, we present two approximation
algorithms for the r-AoNDM problem. The algorithms are
local-ratio algorithms that are based on a decomposition of
the profit obtainable from every client into two nonnegative
terms; One part is proportional to the demand of the client,
while the other part is the remaining profit. We define a
family of feasible solutions, which we dub “maximal” (see
below for the formal definition), and prove that any such
solution is an approximate solution when considering a
profit function which is proportional to the demand. The
algorithms we present generate such maximal solutions
recursively. We then apply an inductive argument which
proves that the solution generated by the algorithm is also
an approximate solution w.r.t. the original profit function.

We first present an approximation algorithm that
guarantees a solution whose value is within a factor of 1�r

2�r
from the value of an optimal solution. This algorithm
follows the cover-by-one paradigm, and thus every mobile
station is covered by at most one base station. Our second
algorithm is obtained by a careful refinement of this
algorithm, and an appropriate change to the notion of
maximality. This algorithm uses the cover-by-many para-
digm, and is guaranteed to produce a solution whose value
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is within a factor of ð1� rÞ from the value of an optimal
solution, while the complexity increases by a polynomial
factor. Next, we specify several definitions needed for the
analysis of the proposed algorithms.

Given any instance of r-AoNDM over a graph G ¼
ðI; J; EÞ, and any two subsets A � I and B � J , we define
the A-B flow-graph of G, GfðA;BÞ ¼ ðV ; F Þ, such that V ¼
fsg [ A [B [ ftg for new vertices s; t 62 I [ J , and F ¼
ðfsg � AÞ [ EðA;BÞ [ ðB� ftgÞ. We define a capacity
function � : F ! IRþ as follows:

�ðu; vÞ ¼
cðvÞ if u ¼ s; v 2 A
1 if u 2 A; v 2 B
dðuÞ if u 2 B; v ¼ t:

8<
:

For brevity of notation, we let Gf ¼ GfðI; JÞ. Given any two
subsets C;D � V , we let �ðC;DÞ ¼

P
u;v2F\ðC�DÞ �ðu; vÞ.

A cover plan x for S � J is said to be a cover-by-one plan if
for every j 2 S, there is exactly one i 2 I such that
xði; jÞ > 0. Given a cover-by-one plan x for S � J , a cover-
by-one plan x0 for T � J is said to be a T -extension of x, if for
any j 2 S and every i 2 I, x0ði; jÞ ¼ xði; jÞ. Note that in such
a case one is guaranteed to have S � T . Given a cover plan
x for S � J , a cover plan x0 for T � J is said to be a T -
rearrangement of x, if S � T .

Given any cover-by-one plan x for S � J , we say that x
is cover-by-one-maximal (CBO-maximal) if for any j 2 J n S,
no S [ fjg-extension of x exists. We further say S � J is
CBO-maximal when it has a CBO-maximal cover plan
which is clear from the context. For any A � I and B � J ,
and any flow y in GfðA;BÞ, we can denote the value of the
flow by yðsÞ. Given any cover plan x for S � J , we say
that x is rearrangement-maximal if for any j 2 J n S, no
S [ fjg-rearrangement of x exists. Given any set S � J , let
S ¼ J n S and YS ¼ I nNðSÞ. We say a cover plan x for
S � J is cover-by-many-maximal (CBM-maximal) if x is
rearrangement-maximal, and xðYS; SÞ is a maximum flow
in the flow graph GfðYS; SÞ. As before, we further say S �
J is CBM-maximal when it has a CBM-maximal cover plan
which is clear from the context.

The following lemma, appearing in [7], serves as a basic
tool with which we analyze the approximation guarantee of
the algorithms proposed in this section.

Lemma 4.3 (Local Ratio). Let I be an instance to r-AoNDM,
over a graph G ¼ ðI; J; EÞ, with profit function p. Then, if
p ¼ p1 þ p2, and x is a cover plan for some set S � J which is
c-approximate w.r.t. p1, and also c-approximate w.r.t. p2, then
x is c-approximate w.r.t. p.

4.3 A Cover-by-One 1�r
2�r -Approximation Algorithm

We start with Algorithm CBO-MC. We note that there are at
hand cover-by-one algorithms that ensure an approxima-
tion ratio better than our proposed algorithm [8], [28].
However, these algorithms are based on solving linear
programming relaxations of the problem, and rounding the
resulting solution in order to obtain an integral solution.
Our algorithm, on the other hand, is strictly combinatorial.
Furthermore, our cover-by-one algorithm forms the basis
for the algorithm we describe in Section 4.4, which uses the
cover-by-many paradigm. In this sense, understanding the
simpler settings set forth in this section also serves to clarify
many of the tools and approaches used when describing

and analyzing the more complex settings of the cover-by-
many algorithm discussed in the sequel.

We now turn to describe our cover-by-one algorithm,
Algorithm CBO-MC. Roughly speaking, under CBO-MC,
given a specific ordering of the clients, and given an existing
cover plan x, a client is added greedily by finding a CBO-
extension of x, if such an extension exists. Otherwise, the
client is discarded. See Algorithm 1 for the pseudocode of
the algorithm.

Algorithm 1. CBO-MC (G ¼ ðI; J; EÞ, demands d, profits p,

capacities c).

1: if J ¼ ; then

2: return x 	 0

3: end if

4: if there exists a j 2 J such that pðjÞ ¼ 0 then

5: x CBO-MC (G0 ¼ ðI; J n fjg; E n EðjÞÞ, d, p, c)

6: return x

7: else

8: for every j 2 J , set �j ¼ pðjÞ
dðjÞ

9: set � ¼ minj�j
10: for every j 2 J , set p1ðjÞ ¼ � � dðjÞ
11: set p2 ¼ p� p1

12: x CBO-MC (G, d, p2, c)
13: for every j such that p2ðjÞ ¼ 0 do

14: if 9i 2 NðjÞ such that cðiÞ � xðiÞ � dðjÞ then

15: set xði; jÞ ¼ dðjÞ
16: else

17: discard j

18: end if

19: end for

20: return x

21: end if

Lemma 4.4. Consider any instance of the r-AoNDM problem
such that for every client j, pðjÞ ¼ � � dðjÞ, for some constant

�. Any cover-by-one plan x for S � J which is CBO-maximal
is a 1�r

2�r -approximate solution w.r.t. profit function p.
Furthermore, this approximation is with regards to the

optimal cover-by-many solution.

Proof. Let S ¼ J n S. Without loss of generality, we can
assume that no uncovered client receives any service,
i.e., for every j 2 S, xðjÞ ¼ 0.

If S ¼ J , then x is an optimal cover plan, and therefore
clearly a 1�r

2�r approximate solution. Assume therefore
that S � J . First note that for every i 2 NðSÞ, one of the
following holds:

. Either there are no edges between i and S, or

. xðiÞ ¼ xði; SÞ > ð1� rÞcðiÞ.
To see this, assume by contradiction that there exists an
i 2 NðSÞ such that there are edges between i and S, and
xðiÞ � ð1� rÞcðiÞ. By the assumption, there exists at least
one client j 2 S such that ði; jÞ 2 E. Consider the function
x0 : E ! IRþ defined by

x0ði0; j0Þ ¼ dðj0Þ if i0 ¼ i; j0 ¼ j
xði0; j0Þ otherwise:

�

Clearly, for every i0 6¼ i, x0 does not violate the capacity
constraint imposed by cði0Þ, since by the feasibility of x,
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for every such i0, x0ðiÞ ¼ xðiÞ � cðiÞ. Furthermore, since x
was a cover-by-one plan, then so is x0. Consider base
station i. Since by the assumption xðiÞ � ð1� rÞcðiÞ,
using the fact that the instance is r-restricted, we have
x0ðiÞ ¼ xðiÞ þ dðj0Þ � cðiÞ, hence the capacity constraint is
satisfied for i as well. Finally, note that all clients j0 2
S [ fjg are satisfied by the cover plan x0. It follows that x0

is an S [ fjg-extension of x, contradicting the assump-
tion that x is CBO-maximal. Using a similar argument
one can show that NðSÞ � NðSÞ, otherwise there is a
base station in NðSÞ nNðSÞ that can satisfy at least one
client in S, contradicting the maximality of S. It follows
that for every i 2 NðSÞ, xðiÞ > ð1� rÞcðiÞ.

Let OPT � J denote any optimal solution to the
problem, assuming the cover-by-many paradigm. Note that

pðOPTÞ ¼ pðOPT \ SÞ þ pðOPT \ SÞ � pðSÞ
þ � �

X
j2OPT\S

dðjÞ � pðSÞ þ � � cðNðSÞÞ;

where the last inequality follows from the feasibility of
OPT.

On the other hand, by the maximality of S, we are
guaranteed to have

dðSÞ ¼
X
j2S

dðjÞ ¼
X
i2I

xðiÞ �
X
i2NðSÞ

xðiÞ

>
X
i2NðSÞ

ð1� rÞ � cðiÞ ¼ ð1� rÞ � cðNðSÞÞ;

which in turn implies

pðSÞ ¼ � � dðSÞ > �ð1� rÞ � cðNðSÞÞ:

It follows that

pðOPTÞ � pðSÞ þ pðSÞ
1� r ¼ pðSÞ 1þ 1

1� r

� �
¼ 2� r

1� r � pðSÞ;

hence S is a 1�r
2�r approximate solution w.r.t the profit

function p, when compared to the optimal cover-by-
many solution. tu

Theorem 4.5. Algorithm CBO-MC produces a 1�r
2�r -approximate

solution. Furthermore, this approximation is with regards to
the optimal cover-by-many solution.

Proof. We prove by induction on the recursion that the
cover plan returned from every call is a 1�r

2�r -approximate
solution. Note that the number of clients in every two
consecutive recursive calls decreases by at least 1, thus
the recursion will terminate.

For the base case, since J ¼ ;, there are no clients to
cover, hence x 	 0 is an optimal cover, and therefore
clearly a 1�r

2�r -approximate solution. For the inductive step,
we have two cases to consider. First, consider the cover
plan x0 forB � J n fjg returned in line 6. By the induction
hypothesis, B is a 1�r

2�r approximate solution w.r.t. the
graph G0 ¼ ðI; J n fjg; E n EðjÞÞ and profit function p.
Since pðjÞ ¼ 0, the optimal profit w.r.t the graph G ¼
ðI; J; EÞ and profit function p cannot be greater than the
optimal profit w.r.t the graph G0 and profit function p.
Hence, B is also a 1�r

2�r approximate solution w.r.t. the

graphG ¼ ðI; J; EÞ and profit function p. The second case
to consider is the cover plan x0 for B returned in line 20.
By the induction hypothesis, B is a 1�r

2�r approximate
solution w.r.t. the graph G ¼ ðI; J; EÞ and profit function
p2. Since for every client j considered in lines 13-19,
p2ðjÞ ¼ 0, the optimal profit w.r.t the graph G ¼ ðI; J; EÞ
and profit function p2 cannot be greater than the optimal
profit attainable from the instance returned from the
recursive call. Hence, the solution returned in line 20 is a
1�r
2�r approximate solution w.r.t. the graph G ¼ ðI; J; EÞ
and profit function p2, and so is any extension of it using
clients j such that p2ðjÞ ¼ 0. Note that for every client j
such that p2ðjÞ ¼ 0, who has a neighbor with sufficient
residual capacity, j is added to the cover, where exactly
one base station is used to satisfy its demand. It follows
that the solution returned in line 20 is a CBO-maximal
solution. By Lemma 4.4 it follows that this solution is a 1�r

2�r
approximate solution w.r.t. the graph G ¼ ðI; J; EÞ and
profit function p1. Using Lemma 4.3 we conclude that the
solution returned is a 1�r

2�r approximate solution w.r.t. the
graphG ¼ ðI; J; EÞ and profit function p ¼ p1 þ p2, which
completes the proof. tu

Note that the solution x produced by algorithm CBO-MC

is a cover-by-one plan. It therefore follows that the ratio
between the optimal cover-by-one solution and the optimal
cover-by-many solution is at most 1�r

2�r as well.
The running time of CBO-MC is governed by two

components: 1) in each recursive call we sort the current
set of items (to either find the minimum profit or minimum
ratio, in lines 4 and 9, respectively), and 2) finding the
candidate base station for coverage (in line 14). This gives
an overall running time of Oðn2 lognþ nmÞ.

4.4 A Cover-by-Many ð1� rÞ-Approximation
Algorithm

We now turn to describe our second algorithm, called CBM-
MC, which achieves an approximation ratio of ð1� rÞ using
the cover-by-many paradigm. Under CBM-MC, a client is
added by first trying to exhaust the capacities of base
stations which cannot contribute to uncovered clients, and
then using the capacity of the remaining base stations in
order to complete the cover. If such a cover cannot be
produced, then the client is discarded. The pseudocode of
the algorithm is given in Algorithm 2, where we use the
subroutine MAXFLOWðGfðA;BÞÞ to denote the computa-
tion of the maximum s-t flow in the flow graph GfðA;BÞ
using an algorithm that finds a maximum flow, which may
extend a pregiven initial feasible flow from s to t. An
example of such algorithms include algorithms based on
finding augmenting paths, such as the Edmonds-Karp
algorithm [12]. The reason we require such an algorithm
is due to the fact that our algorithm must ensure the
property of CBM maximality is maintained whenever a
client is added to the cover (recall the definition of CBM
maximality appearing at the end of Section 4.2). Note that
by duality, given any s-t flow in a flow graph GfðA;BÞ, it is
easy to verify if a cut is a minimum cut by checking that all
the edges are saturated. For concreteness and clarity,
throughout our proof we assume the algorithm used is
the Edmonds-Karp algorithm, and thus use augmenting-
paths terminology.
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Algorithm 2. CBM-MCðG ¼ ðI; J; EÞ, demands d, profits p,
capacities c).

1: x MAXFLOWðGfÞ
2: if ftg is a MINCUT in Gf then

3: return x

4: end if

5: if there exists a j 2 J such that pðjÞ ¼ 0 then

6: x CBM-MCðG0 ¼ ðI; J n fjg; E n EðjÞÞ, d, p, c)

7: return x

8: else

9: for every j 2 J , set �j ¼ pðjÞ
dðjÞ

10: set � ¼ minj�j
11: for every j 2 J , set p1ðjÞ ¼ � � dðjÞ
12: set p2 ¼ p� p1

13: x CBM-MCðG; d; p2; c)

14: for every j such that p2ðjÞ ¼ 0 do

15: S  fj0 2 J j xðj0Þ ¼ dðj0Þg
16: set N

Snfjg ¼ NðJ n ðS [ fjgÞÞ
17: set YS[fjg ¼ I nNSnfjg
18: y MAXFLOWðGfðYS[fjg; S [ fjgÞÞ

. See Fig. 2a

19: z MAXFLOWðGfðI; S [ fjgÞÞ, starting from

the initial feasible flow y. . See Fig. 2b

20: if ftg is a MINCUT in GfðI; S [ fjgÞ then

21: x z

22: end if

23: end for

24: return x

25: end if

Given a cover plan x for S � J , let S ¼ J n S, and consider
I as partitioned into two sets: NS ¼ NðSÞ, and YS ¼ I nNS .
Note that by definition, for every j 2 S and i 2 YS , ði; jÞ 62 E.
The following lemma provides a necessary and sufficient
condition for covering a set of clients.

Lemma 4.6. For any instance of r-AoNDM over a graph
G ¼ ðI; J; EÞ, and any A � I and B � J , ftg is a minimum
s-t cut in the flow-graph GfðA;BÞ if and only if A can cover
all clients in B.

Proof. Let x be a maximum s-t flow in GfðA;BÞ. By duality,
the value of the maximum s-t flow is the same as the
capacity of the minimum s-t cut, and the edges of any
such cut are all saturated by any maximum flow.
Assume ftg is a minimum s-t cut in GfðA;BÞ, and
assume by contradiction that there is client j 2 B which
is not fully covered. It follows that

P
i:ði;jÞ2E xði; jÞ < dðjÞ.

By flow conservation, we have xðj; tÞ ¼
P

i:ði;jÞ2E xði; jÞ,
which implies xðj; tÞ < dðjÞ. Since ðj; tÞ is an edge in the
minimum s-t cut ftg, and its capacity is dðjÞ, this
contradicts the fact that all such edges are saturated by
the maximum flow x. Assume now ftg is not a
minimum s-t cut, and assume by contradiction that all
clients can be covered. By flow conservation it follows
that for every j 2 J ,

P
i:ði;jÞ2E xði; jÞ ¼ dðjÞ ¼ xðj; tÞ,

which by summing over all j 2 J implies that the value
of the flow equals the capacity of the cut ftg. By duality,
this implies that ftg is a minimum s-t cut, contradicting
our assumption. tu

Lemma 4.6 admits a method for finding a rearrange-
ment-maximal cover plan, as shown in the following
lemma:

Lemma 4.7. Given any instance of r-AoNDM over a graph

G ¼ ðI; J; EÞ, any cover plan x for S � J , and a client
j 2 J n S, the task of finding an S [ fjg-rearrangement of x, if

one exists, can be done in polynomial time.

Proof. In order to find a rearrangement of x, consider the
flow graph G0 ¼ GfðI; S [ fjgÞ, and let y be a maximum
flow in this graph. If ftg is a minimum cut in G0, then by
Lemma 4.6, y is a cover plan for S [ fjg, and hence it is
an S [ fjg-rearrangement. If ftg is not a minimum cut in
G0f , then its capacity is strictly greater than the maximum
flow, and therefore not all clients in S [ fjg can be
satisfied. Verifying whether or not �ðtÞ ¼ yðtÞ can clearly
be done in polynomial time. This is illustrated in Fig. 2. tu

The following is an immediate corollary of Lemma 4.7.

Corollary 4.8. Given any instance to r-AoNDM over a graph
G ¼ ðI; J; EÞ, any cover plan x for S � J , and a client

j 2 J n S, the task of finding a rearrangement of x which is

rearrangement-maximal can be done in polynomial time.

Proof. By iteratively applying Lemma 4.7, we are guaran-
teed to obtain a rearrangement-maximal cover plan. tu

The following lemmas describe the correlation between
the maximum flow in Gf , and the maximum flow in flow
graphs of the form GfðYS; SÞ, for sets S which have a
cover plan.
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Lemma 4.9. Assume S � J has some cover plan. Then, there
exists a maximum flow x in Gf such that xðYS; SÞ ¼
MAXFLOWðGfðYS; SÞÞ. Furthermore, such a flow can be
found in polynomial time.

Proof. Let y ¼ MAXFLOWðGfðYS; SÞÞ. Clearly, y is a feasible
flow inGf as well. Consider the Edmonds-Karp Algorithm
MAXFLOW, see [12] for details) for finding a maximum
flow, executed on graph Gf , starting from the initial
feasible flow y. We show that for every augmentation path
found by MAXFLOW, after increasing the flow along this
path and obtaining some flow y0, y0ðs; YSÞ � yðs; YSÞ.

First note that we can assume that all the augmentation
paths used by the MAXFLOW algorithm are simple paths.
Furthermore, note that by the fact that any augmentation
path is simple, we obtain that for every flow y0 obtained
during executing the MAXFLOW algorithm, and for
every i 2 YS , yðs; iÞ � y0ðs; iÞ, since such flow can only
decrease if the algorithm uses a path p such that ði; sÞ 2 p,
which implies that p is not a simple path.

Since for every feasible flow z we have zðYS; SÞ ¼
zðs; YSÞ (by flow conservation, and using the fact that
there are no edges between YS and S), we can conclude
that during the entire execution of the MAXFLOW
algorithm, the flow y0 resulting in augmenting any path
p satisfies y0ðs; YSÞ � yðs; YSÞ. On the other hand, note
that given any maximum flow in Gf , if we consider its
flow path decomposition, then the set of paths using
edges between YS and S also constitutes a flow in HS

(due to the unidirectionality of edges between NS and S
in Gf ). Hence, these paths cannot support a flow whose
value is greater than MAXFLOWðGfðYS; SÞÞ.

Finally note that MAXFLOW produces a maximum
flow in Gf in polynomial time, which completes the
proof of the lemma. tu

The above lemma gives rise to the following corollary:

Corollary 4.10. If there exists a rearrangement-maximal cover
plan y forS � J , then there exists a CBM-maximal cover plan x
for S. Furthermore, such a cover plan can be found in
polynomial time.

Proof. Using a similar argument as the one used in
Lemma 4.9, by running MAXFLOW with an initial
feasible flow z ¼ MAXFLOWðGfðYS; SÞÞ, we are guar-
anteed to produce a cover plan for S (by the existence of
y, S can be covered by I). Furthermore, this cover must
also be CBM-maximal. Note that such a cover plan can
be found in polynomial time by the same arguments as
the ones used in Lemma 4.9. tu

The following lemma shows a bound on the value of any
maximum flow in Gf .

Lemma 4.11. Given any S � J , if S has a CBM-maximal cover
plan, then MAXFLOWðGfÞ � MAXFLOWðGfðYS; SÞÞ þ
cðNSÞ.

Proof. Let y be a CBM-maximal cover plan for S, and
consider a partition of y into two types of flow paths,
each consisting of three edges:

. T1 ¼ fp ¼ ðs; i; j; tÞ j such that i 2 YSg.

. T2 ¼ fp ¼ ðs; i; j; tÞ j such that i 2 NSg.

Note that such a packing exists, by the directionality of
the edges in Gf .2 If we denote the flow along a flow path
p by xðpÞ, then clearly

X
p2T1

xðpÞ � MAXFLOWðGfðYS; SÞÞ;

since all paths in T1 are paths in GfðYS; SÞ, and therefore
cannot support a flow greater than MAXFLOWðGfðYS;SÞÞ.
On the other hand,

X
p2T2

xðpÞ � cðs;NSÞ ¼ cðNSÞ;

since all these paths use edges in the cut ðs;NSÞ. It
therefore follows that:

MAXFLOWðGfÞ � MAXFLOWðGfðYS; SÞÞ þ cðNSÞ:
ut

We can now continue in the same way as we did with the
simpler algorithm, where CBM-maximality replaces CBO-
maximality.

Lemma 4.12. Consider any instance of the r-AoNDM problem
such that for every client j, pðjÞ ¼ � � dðjÞ, for some constant �.
Any cover plan x for S � J which is CBM-maximal is a
ð1� rÞ-approximate solution w.r.t. profit function p.

Proof. Let x be any cover plan for S � J which is CBM-
maximal. If S ¼ J , then x is an optimal cover plan, and
therefore clearly a ð1� rÞ approximate solution. Assume
S � J . Note that by maximality of

x; xðYS; SÞ ¼ MAXFLOWðGfðYS; SÞÞ;

and since S � J , xðNS; SÞ > ð1� rÞcðNSÞ, i.e., cðNSÞ <
xðN

S
;SÞ

1�r . By the fact that x is a cover plan for S, we have

pðSÞ ¼ �dðSÞ ¼ �ðxðNS; SÞ þ xðYS; SÞÞ, since NS; YS are a

partition of I.
Let OPT � J denote any optimal solution to the

problem. We wish to bound the value of pðOPTÞ. Clearly,
for any maximum s-t flow y in Gf , dðOPTÞ � yðsÞ, since
any cover plan for OPT induces a feasible flow in Gf .
Combining the above with Lemma 4.11 we obtain that for
any maximum s-t flow y in Gf ,

dðOPTÞ � yðsÞ
� MAXFLOWðGfðYS; SÞÞ þ cðNSÞ

< xðYS; SÞ þ
xðNS; SÞ

1� r
¼ 1

1� r ð1� rÞ � xðYS; SÞ þ xðNS; SÞ
� �

� 1

1� r xðYS; SÞ þ xðNS; SÞ
� �

¼ 1

1� r dðSÞ:

By the definition of p we obtain that pðSÞ > ð1� rÞ �
pðOPTÞ, which completes the proof. tu
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2. Note that these are not augmentation paths used in computing the
maximum flow by MAXFLOW. These paths are part of an actual path
decomposition of the maximum flow.



Theorem 4.13. Algorithm CBM-MC produces a ð1� rÞ-
approximate solution.

Proof. We prove by induction on the recursion that the cover
plan returned from every call is a ð1� rÞ-approximate
solution, similarly to the proof of Theorem 4.5.

For the base case, if ftg is minimum cut, then by
Lemma 4.6 all the clients can be covered, hence x is an
optimal cover plan, and therefore clearly a ð1� rÞ-
approximate solution. For the inductive step, we have
two cases to consider. First, consider the cover plan x0 for
B � J n fjg returned in line 7. By the induction hypoth-
esis, B is a ð1� rÞ-approximate solution w.r.t. the graph
G0 ¼ ðI; J n fjg; E n EðjÞÞ and profit function p. Since
pðjÞ ¼ 0, the optimal profit w.r.t the graph G ¼ ðI; J; EÞ
and profit function p cannot be greater than the optimal
profit w.r.t the graph G0 and profit function p. Hence, B
is also a ð1� rÞ-approximate solution w.r.t. the graph
G ¼ ðI; J; EÞ and profit function p. The second case to
consider is the cover plan x0 for B returned in line 24. By
the induction hypothesis, B is a ð1� rÞ approximate
solution w.r.t. the graph G ¼ ðI; J; EÞ and profit function
p2. Since for every client j considered in lines 13-19,
p2ðjÞ ¼ 0, the optimal profit w.r.t the graph G ¼ ðI; J; EÞ
and profit function p2 cannot be greater than the optimal
profit attainable from the instance returned from the
recursive call. Hence, the solution returned in line 20 is a
ð1� rÞ-approximate solution w.r.t. the graph G ¼
ðI; J; EÞ and profit function p2, and so is any superset
of this solution produced by adding any of the clients for
which p2ðjÞ ¼ 0.

Note that by Lemma 4.7, for every client j 62 S such
that p2ðjÞ ¼ 0, lines 19 and 20 compute an S [ fjg-
rearrangement of the current cover plan, if such a
rearrangement exists. Hence, the resulting solution
returned in line 24 is a rearrangement-maximal solution.
In addition, by lines 18-19, the cover plan x0 computed in
every iteration also satisfies that xðYS; SÞ is a maximum
flow in the flow graph GfðYS; SÞ. It therefore follows that
the cover plan returned in line 24 is also CBM-maximal.
By Lemma 4.12 it follows that this solution is a ð1� rÞ-
approximate solution w.r.t. the graph G ¼ ðI; J; EÞ and
profit function p1. Using Lemma 4.3 we conclude that the
solution returned is a ð1� rÞ approximate solution w.r.t.
the graph G ¼ ðI; J; EÞ and profit function p ¼ p1 þ p2,
which completes the proof. tu

The running time of CBM-MC is governed by two
components: 1) in each recursive call we sort the current set
of items (to either find the minimum profit or minimum
ratio, in lines 4 and 9, respectively), and 2) computing the
max flow on lines 18 and 19. If we denote by F the running
time of the max-flow algorithm used in lines 18 and 19, we
obtain an overall running time of Oðn2 lognþ nF Þ. In case
we use the Edmonds-Karp maxflow algorithm, which finds
a maximum flow in a graph G ¼ ðV ;EÞ in time Oð Vj j Ej j2Þ,
we obtain an overall running time of OððnþmÞn3m2Þ.

5 SIMULATION RESULTS

In the previous sections, we proposed two different
algorithms for a new global mechanism for cell selection
in 4G cellular networks. The main difference between these

two algorithms is the way the demand of a mobile client is
satisfied. In the CBO-MC Algorithm (Section 4.3) at most
one base station satisfies the demand of any given mobile
station while the CBM-MC Algorithm (Section 4.4) allows
satisfaction of the demand simultaneously by more than
one base station.

In order to study the expected performance of the
proposed global cell selection algorithms with respect to the
current local mobile SNR-based protocol we conducted
several simulations over high-loaded, capacity constrained,
4G-like networks. A secondary goal of these simulations
was to study the “benefit” of using the new ability, as made
possible by the evolving standards of IEEE 802.16m and
LTE-Advanced, of a mobile station to be serviced simulta-
neously by more than one base station.

5.1 Methodology

We considered a network consisting of an n� n-grid of
clients’ locations (demand points, each considered as a
single client, or bin). Each client has a service request for
either voice or data service. The demand of a voice and data
client is defined as 1 and 25, respectively.3 Under this ratio
between the demand of data and voice clients, the number
of the data clients was chosen so that the overall voice
volume is 20 percent of the network’s traffic.4 The locations
for each type of client was uniformly and randomly selected
over the grid. The profit for satisfying the demand of a voice
client was defined as 1, while satisfaction of a data client is
credited with a profit that is proportional to its demand
(i.e., 25 units of profit).

We maintain microcells and picocells in our network.
Since we implemented the restricted version of AoNDM,
the demand of every client must be less than or equal to an
r-fraction of the capacity of any base station service this
client. Therefore, the capacity of a picocell was taken to be
about 25=r, for any given value of 0 < r < 1. To simulate
high-loaded networks we assumed that the total sum of
(client) demands equals the sum of (base station) capacities
in the network. The ratio between the number of picocells
and microcells was defined to be � while this factor was
also selected as the ratio between the corresponding
radiuses and capacities of microcells and picocells. By
taking � ¼ 5, we can now derive the appropriate number of
microcells and picocells. The locations for each type of base
station was uniformly and randomly selected over the grid
and clients were associated with (omnidirectional) base
stations according to their distance from each of the centers.

In each of the following three sets of simulations we
measured the ratio between the total profit achieved by
each of the three algorithms and the total profit of all
connected clients, i.e., clients that are within service range of
some base station. As AoNDM is NP-hard, the maximum
possible profit is hard to calculate, and we consider the total
profit of all connected clients as an upper bound on the
optimal solution.
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3. The bit rate for voice applications is 64 Kbps and the downlink rate for
data application is approximately 2 Mbps in HSDPA. This gives a ratio of
25-30 between the demand of voice and data clients.

4. To be precise, if nv and nd are the number of voice and data clients,
respectively, and dv and dd are the corresponding demands, then the
following are satisfies for an overall voice volume of � of the network’s
traffic: dv �nv

dv �nvþdd �nd ¼ �, nd ¼ n2 � nv, and nv ¼ b ��dd �n2

ðdd�dvÞ��þ1c. In our case � ¼ 0:2.



5.2 Results

In the first set of simulations, we study the performance of
the three algorithms over various network sizes (10K to
40K) and different values of r (0.05 to 0.3). Typical results
are shown in Figs. 3, 4, and 5, where the upper, middle and
the lower curves correspond to the cover-by-many algo-
rithm, cover-by-one algorithm, and the greedy-best de-
tected-SNR algorithm, respectively. In each of the three
scenarios, our results show that the cover-by-many algo-
rithm is better than the cover-by-one algorithm by 5 percent
(for r ¼ 0:05) to 11 percent (for r ¼ 0:3). An improvement of
at least 10 percent (and up to 20 percent) was achieved by
the cover-by-many algorithm in comparison with the
greedy-best detected-SNR algorithm. The results show that
the performances of all three algorithm are nearly indepen-
dent of the size of the network. Moreover, due to the
existence of the simultaneous coverage in the third algo-
rithm, when r increases the “distance” between the
performance of the cover-by-many algorithm and the other
two algorithms also increases in a significant fashion. This
shows that when there exist mobile clients with demands
that are relatively close to the capacity of the servicing cell
(e.g., in case of picocells) allowing satisfaction of a client by
more than one base station is crucial in order to maintain
high utilization of the network capacities.

The second set of simulations investigates the level of
profit achieved by the three algorithms when the value of r
varies (from r ¼ 0:01 to r ¼ 0:5). We fixed a network of

15,129 clients (i.e., a grid of 123� 123) with a number of
picocells and microcells as explained above. Focusing on
the relative fraction of the demand of a client with respect
to the capacity of any serviced base station, the results
show (Fig. 6) that when this fraction increases the ability to
reach a higher percentage of the total possible profit
decreases. As shown in Fig. 6, all three algorithms exhibit
the same behavior. The performance of the cover-by-many
algorithm (upper curve) decreases from 100 to 89 percent
when r increases from 0.01 to 0.5. The cover-by-one
algorithm decreases by 21 percent (from 100 percent in
r ¼ 0:01 to 79.5 percent in r ¼ 0:5), and the greedy-best
detected-SNR algorithm (lower curve) exhibited a decrease
of 30 percent (from 89 to 59 percent). The third set of
simulations examines the level of profit obtained by the
three algorithms when the available capacity increases. We
fixed a network of 15,129 clients, where each client has a
demand (of any service) that is at most a fraction of 1/4
(r ¼ 0:25) of the capacity of each of the servicing base
stations. In this study, the number of picocells as well as
microcells was increased by j times their basic number,
j ¼ 1; 1:5; 2; . . . ; 5, where the basic numbers are the same as
the ones computed in the first set of simulations (65 micro-
cells and 327 picocells). Note that for j > 1, the total
capacity is higher than the total demand of clients. As one
might expect (see Fig. 7), when there is a larger number of
base stations the performance of the three algorithms can
only improve. The greedy-best detected-SNR algorithm
(lower curve) achieve an improvement of up to 8 percent
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Fig. 3. Expected profit as a function of the number of clients, r ¼ 0:05.

Fig. 4. Expected profit as a function of the number of clients, r ¼ 0:1.

Fig. 5. Expected profit as a function of the number of clients, r ¼ 0:3.

Fig. 6. Expected profit as a function of r (n ¼ 15;129).



(from 79 to 87 percent) when the number of base station
grows from 392 to 1,960. The cover-by-one algorithm (in
the middle) achieves an improvement of up to 8 percent
(from 89 to 97 percent), and the cover-by-many algorithm
(upper curve) is nearly constant (around 99 percent) in its
ability to satisfy clients.

Finally, the worst case running time of each of the
algorithms, for all cases, was approximately 4 minutes for
the case of n ¼ 40; 000; r ¼ 0:25, on a Pentium M machine,
1.4 GHz, and 256 Mb of RAM.

6 CONCLUSIONS

In this paper, we present a rigorous study of a new
approach for cell selection in fourth generation cellular
networks. Unlike the current cell selection protocol, our
proposed mechanism is global, has a performance guaran-
tee, and addresses many of the anticipated 4G technologies.
We show that even though AoNDM is hard to approximate
to within a reasonable factor, we can still cover all practical
scenarios by adopting the assumption that every mobile
station has a traffic demand that is relatively smaller than
the capacity of any base station that is able to participate in
its coverage. We give two approximation algorithms for this
problem. The first is a 1�r

2�r -approximation algorithm for the
case where each mobile station can be covered by exactly
one base station (cover-by-one). The second is a slower,
delicate refinement of the first algorithm, guaranteeing a
ð1� rÞ-approximate solution, that adopt the new IEEE
802.16m and LTE-Advanced possibility of simultaneously
servicing a mobile clients by more than one base station
(cover-by-many). We compare between global mechanisms
that are based on our approximation algorithms and a local
procedure performed by the current best-SNR greedy cell
selection protocol. We show that when clients of very high
bandwidth demand, relatively to the base station’s capacity,
exist, the use of multiple base station to satisfy the demand
of a mobile station can maintain a level of at least 97 percent
of the possible coverage—20 percent better coverage than
the current best-SNR greedy cell selection method. In
addition to 4G networks, such relevant scenarios may be
found in spread areas where there are several very small
populated areas and “standard” infrastructure is not cost-
effective. In these areas, coverage can be achieved using
several WiMAX-cells and situations where such cells are

overloaded may be common. Our scheme for cell selection
can be used in order to allow a better utilization of these
coverage solutions.

There are several interesting problems that arise from this
work. The first and most important aspect is to devise an
online, distributed, algorithm for doing cell selection. Such
algorithms will undoubtedly make extensive use of the
network initiated handoffs, which are available, e.g., under
the specification of IEEE 802.16m and LTE-Advanced.
Solving such problems should also be extended to consider
user mobility, and online performance for heterogeneous
users. In this respect is should be noted that for real-life
cellular layouts, one might expect finding restricted inputs
to the problem of cell-selection. For such restricted topolo-
gies (e.g., determined by power considerations, or geome-
trical restrictions), it is possible better approximation can be
obtained. Furthermore, we expect that good online, local-
control, algorithms might also be developed for such
restricted scenarios, demonstrating good performance. Our
results and algorithms may serve as a benchmark for
evaluating the performance of such algorithm. Our work
also gives rise to various scheduling issues, that are related
to the implementation of the cover-by-many paradigm. Such
questions should address the microlevel scheduling deci-
sions made by the base stations, as opposed to the
macrolevel association that is the focus of the current paper.
Another interesting question is determining the complexity
of various restricted versions of the AoNDM problem. A
primary question in this respect is whether or not there
exists a PTAS for the r-AoNDM problem, and under which
conditions. We note that by our reduction, the general case is
proven to be hard to approximate for instances in which the
demand of every client is strictly greater than the capacity of
the base stations which can contribute to its coverage. On the
other hand, the work of [28] implies a constant approxima-
tion if every station has sufficient capacity to cover any
single user within its range. Abusing our notation, it is
unclear whether this phase transition occurs in r ¼ 1, or is
there some r > 1 for which the r-AoNDM problem still
adheres to good approximation algorithms.
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