

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

ARABIC LANGUAGE PROCESSING FOR TEXT

CLASSIFICATION

Contributions to Arabic Root Extraction Techniques,

Building An Arabic Corpus, and to Arabic Text Classification

Techniques

by

May Yacoub Adib AL-NASHASHIBI

Thesis submitted for the degree of

Doctor of Philosophy in Computer Science

School of Computing, Informatics and Media

University of Bradford

2012

 ii

Abstract

Keywords: Arabic language, Root extraction techniques, Corpus development, Text

labeling, Term weighting methods, Document representation, Single-label text

classification.

The impact and dynamics of Internet-based resources for Arabic-speaking users is increasing

in significance, depth and breadth at highest pace than ever, and thus requires updated

mechanisms for computational processing of Arabic texts. Arabic is a complex language and

as such requires in depth investigation for analysis and improvement of available automatic

processing techniques such as root extraction methods or text classification techniques, and

for developing text collections that are already labeled, whether with single or multiple

labels.

This thesis proposes new ideas and methods to improve available automatic processing

techniques for Arabic texts. Any automatic processing technique would require data in order

to be used and critically reviewed and assessed, and here an attempt to develop a labeled

Arabic corpus is also proposed. This thesis is composed of three parts: 1- Arabic corpus

development, 2- proposing, improving and implementing root extraction techniques, and 3-

proposing and investigating the effect of different pre-processing methods on single-labeled

text classification methods for Arabic.

This thesis first develops an Arabic corpus that is prepared to be used here for testing root

extraction methods as well as single-label text classification techniques. It also enhances a

rule-based root extraction method by handling irregular cases (that appear in about 34% of

texts). It proposes and implements two expanded algorithms as well as an adjustment for a

weight-based method. It also includes the algorithm that handles irregular cases to all and

compares the performances of these proposed methods with original ones. This thesis thus

develops a root extraction system that handles foreign Arabized words by constructing a list

of about 7,000 foreign words. The outcome of the technique with best accuracy results in

extracting the correct stem and root for respective words in texts, which is an enhanced rule-

 iii

based method, is used in the third part of this thesis. This thesis finally proposes and

implements a variant term frequency inverse document frequency weighting method, and

investigates the effect of using different choices of features in document representation on

single-label text classification performance (words, stems or roots as well as including to

these choices their respective phrases). This thesis applies forty seven classifiers on all

proposed representations and compares their performances. One challenge for researchers in

Arabic text processing is that reported root extraction techniques in literature are either not

accessible or require a long time to be reproduced while labeled benchmark Arabic text

corpus is not fully available online. Also, by now few machine learning techniques were

investigated on Arabic where usual preprocessing steps before classification were chosen.

Such challenges are addressed in this thesis by developing a new labeled Arabic text corpus

for extended applications of computational techniques.

Results of investigated issues here show that proposing and implementing an algorithm that

handles irregular words in Arabic did improve the performance of all implemented root

extraction techniques. The performance of the algorithm that handles such irregular cases is

evaluated in terms of accuracy improvement and execution time. Its efficiency is

investigated with different document lengths and empirically is found to be linear in time for

document lengths less than about 8,000. The rule-based technique is improved the highest

among implemented root extraction methods when including the irregular cases handling

algorithm. This thesis validates that choosing roots or stems instead of words in documents

representations indeed improves single-label classification performance significantly for

most used classifiers. However, the effect of extending such representations with their

respective phrases on single-label text classification performance shows that it has no

significant improvement. Many classifiers were not yet tested for Arabic such as the ripple-

down rule classifier. The outcome of comparing the classifiers' performances concludes that

the Bayesian network classifier performance is significantly the best in terms of accuracy,

training time, and root mean square error values for all proposed and implemented

representations.

 iv

Dedicated to my Mother and the beloved memory of my

Father

Mother, your dedication, unconditional love and the ethics that

you patiently embedded in me while growing up have

motivated me to arrive where I am.

Father, although you passed away, yet your free spirit, dignity,

decency, integrity, and diligence to provide us with better

opportunities than you had shall always inspire me to be my

best.

 v

Acknowledgements

I would like first to thank the School of Computing, Informatics and Media

especially the Department of Computing at the University of Bradford for the high

standard facilities provided for the students and the friendly atmosphere among the

faculty and research students. I would like to express my deepest appreciation to my

supervisor Prof. Daniel Neagu whose encouragement, support, advice, and fruitful

discussions have guided me throughout my study. Prof. Neagu’s support has made

me not just enthusiastically working to develop a solid background on the subject,

but also enjoying the process while doing so. I am grateful to Dr. Ali Yaghi for his

support and guidance in the first phase of my research. His deep understanding of the

Arabic language and experience has helped me a lot. I would like also to thank Petra

University, Amman (Jordan) for partially financing my PhD study. My deep

gratitude goes to the ex-vice president for academic affairs at Petra University Prof.

Nizar El-Rayyes for his support throughout my study. Special thanks go to my

colleagues, Basic Sciences Department at Petra University especially to the head of

department Dr. F. Badawi and also Mr. I. Suweid for their encouragements. I would

like to express my appreciation to my cousin Eng. Samia Al-Shahabi for her warm

welcome and hospitality throughout the period of my study in UK. I would like also

to thank all those who participated in the questionnaire I distributed for my research

especially my uncle Mr. Mazin Al-Shahabi. My thanks go to Miss Rona Wilson for

her cooperation when ever needed. I would like to thank all my friends especially

Reema, Basima, Yasmina, Asma'a, and Ghadeer for their support and

encouragement. Special thanks go to my friend Fatima for her help in printing the

foreign Arabized words list. Finally my gratitude goes to my sister Rula and brothers

Adib and Mohammad for their unlimited support, encouragement and love.

 vi

List of Peer Reviewed Publications and Contributions

1- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction

technique for Arabic words" in proceedings of 2
nd

 International conference on

Computer Technology and Development ICCTD 2010, S. Mahmoud and Z.

Lian (Eds.), pp. 264-269, 2-4 November, Cairo, Egypt, 2010. IEEE Explore.

2- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "Stemming Techniques for Arabic

Words: A Comparative Study" in proceedings of 2
nd

 International conference

on Computer Technology and Development ICCTD 2010, S. Mahmoud and Z.

Lian (Eds.), pp. 270-276, 2-4 November, Cairo, Egypt, 2010. IEEE Explore.

3- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction

technique for Arabic words" in Computational Linguistics in The Netherlands

CLIN 2010, Poster session, 4 February, Utrecht University, Utrecht, The

Netherland, 2010.

 vii

Table of Contents

Acknowledgements v

List of Tables xi

List of Figures xiii

List of Abbreviations xvi

Chapter 1: Introduction 1

1.1 Introduction 1

1.2 Thesis Contributions 3

1.3 Motivation and Objectives 4

1.4 Research Questions 5

1.5 Research Approach Methodology 6

1.6 Thesis Organization 9

1.7 Summary 10

Chapter 2: Background and Related Work 11

 2.1 Introduction 11

 2.2 Arabic Corpora and Related Work 11

 2.3 Stemming Techniques for Arabic 15

2.3.1 Rule-Based Techniques 16

2.3.2 Lexical-Based Techniques 16

2.3.3 Other Techniques 17

2.3.4 Comparison between Stemming Techniques 17

2.4 Text Classification Approaches Applied to Arabic Sources 20

2.4.1 Pre-Processing Steps for Text Classification 22

2.4.1.1 Document Representation 22

2.4.1.2 Dimensionality Reduction 24

2.4.1.2.1 Dimensionality Reduction by Stemming 25

2.4.1.2.2 Dimensionality Reduction by Term

Selection

26

2.4.1.2.3 Dimensionality Reduction by Term

Extraction

27

2.4.2 Applied Text Classification Techniques on Arabic Sources 28

 viii

2.4.2.1 Specific Machine Learning Techniques 29

2.4.2.2 Naïve Bayes Classifier 30

2.4.2.3 Example-Based Classifiers (k-NN Classifier) 30

2.4.2.4 Support Vector Machine Classifier 31

2.4.2.5 Comparison between Classifiers' Performance 32

2.5 Summary 33

Chapter 3: The Development of an Arabic Text Corpus and Pre-

processing Steps

36

3.1 Introduction 36

3.2 Description of Newly Gathered Text collection 37

3.2.1 Newly Gathered Text Collection 37

3.3 Description of University of Leeds Arabic Contemporary Corpus 40

3.3.1 Original Categorization of LACC 40

3.3.2 Re-Categorization of LACC and Final Corpus

Categorization

43

3.4 Pre-processing Steps 47

3.4.1 Arabic Function Word List Construction 47

3.4.2 Arabic Text Pre-processing 48

3.5 Conclusions 48

Chapter 4: The Development of an Arabic Root Extraction System 50

4.1 Introduction 50

4.2 Rule-based Approach: 52

4.2.1 Description 54

4.2.2 Enhanced Rule-based Technique 55

4.2.3 Results of implementation 58

4.3 Weight-Based Approach 60

4.3.1 Description of Al-Shalabi Algorithm 61

4.3.2 Adjustment of Al-Shalabi Algorithm 63

4.3.3 First Expanded Weight-Based Method 65

4.3.4 Second Expanded Weight-Based Method 67

4.3.5 Results of Implementation 69

4.4 Analysis of Results 71

 ix

4.4.1 First Accuracy Analysis Method 71

4.4.2 Native Arabic Speaker Accuracy Analysis 80

4.5 Foreign Arabized Words List 89

4.6 Final Proposed Root Extraction System 90

4.7 Conclusions and Future Work 91

Chapter 5: Arabic Single-Label Text Classification Methods 96

5.1 Introduction 96

5.2 Pre-processing Steps 97

5.2.1 The Proposed Modified TFIDF Term Weighting Method 97

5.2.2 Document Representation 98

5.2.2.1 Features Implemented Using Single Terms 98

5.2.2.2 Extending VSM Feature Representation Using

Phrases

99

5.2.3 Implemented Feature Subset Selection Method 101

5.2.3.1 Chi-square method 101

5.3 Applied Text Classification Methods 102

5.3.1 Single-Label Classification Methods 102

5.3.1.1 Implemented Classifiers 103

5.4 Results of Implementations 105

5.4.1 Results of Implemented Single-Label Text Classification

Methods

106

5.4.1.1 First Experiment 106

5.4.1.2 Second Experiment 134

5.5 Conclusions 138

Chapter 6: Critical Analysis of Text Classification Methods'

Performances

140

 6.1 Introduction 140

 6.2 Effect of Using Phrases on Classification Performance 140

 6.3 Comparison between Classifiers 142

 6.3.1 Function Classifiers 143

 6.3.2 Bayes-Based Classifiers 144

 6.3.3 Tree Classifiers 147

 x

 6.3.4 Rule Classifiers 152

 6.3.5 Miscellaneous Classifiers 158

 6.3.6 Meta Classifiers 159

 6.3.7 Comparison between Classifiers 163

 6.4 Conclusions and Future Work 166

Chapter 7: Conclusions and Recommendations 169

7.1 Research Contributions 169

7.2 Research Limitations 174

7.3 Recommendations for Further Work 174

References 177

Appendices 190

Appendix I: Relevant Detailed Background Information, Equations,

And Comparisons in Literature Review, and Relevant Tables for

Developed Corpus

190

Appendix II: Additional Detailed Information, Tables and Figures

for Chapter 4

202

Appendix III: Additional Detailed Information, Tables and Figures

for Implemented Root Extraction Techniques in Chapter 4

211

Appendix IV: Additional Detailed Information, Tables and Figures

for Chapter 5

215

 xi

List of Tables

Table 1: Number of Texts and Words in AT8 collection 38

Table 2: Source Websites and their Number of Texts in AT8 collection 39

Table 3: Number of Texts and Words in LACC Corpus 40

Table 4: Source Websites and their Number of Texts in the LACC Corpus 41

Table 5: Percentage of Texts and Words in LACC Corpus under major

domains

42

Table 6: Number of Texts and Words in LACC Corpus after Re-

categorization

43

Table 7: Comparison between LACC and AT8 collections in terms of

number of files according to AT8 categorization scheme

43

Table 8: Comparison between LACC and AT8 collections in terms of

number of Words according to AT8 categorization scheme

44

Table 9: Comparison between LACC and AT8 collections in terms of

number of files and Words according to LACC categorization

scheme

44

Table 10: Final Corpus' number of files and generality among classes 46

Table 11: Some examples of Function Word list 48

Table 12: Performance of Rule-Based algorithm and its Correction one in all

categories using AT8 collection

58

Table 13: Letter ranking in Al-Shalabi algorithm (derived from [17]) 62

Table 14: Weights of letter groups in Al-Shalabi algorithm (derived from

[17])
62

Table 15: Examples of extracted roots using Al-Shalabi algorithm (from right

to left)
62

Table 16: Percentages of Letter Appearances in Texts 65

Table 17: Weights of Letter groups for EWBM1 algorithm 66

Table 18: Weights of Letter groups for EWBM2 algorithm 68

Table 19: Proposed weighting for Assigned Groups in algorithms 69

Table 20: Performance of weight-based algorithms in all categories using

AT8 collection

70

Table 21: Performance of weight-based with Correction algorithm in all

categories using AT8 collection

70

 xii

Table 22: Accuracy results for all ten algorithms (all categories) using AT8

collection

72

Table 23: Accuracy results for Rule-Based algorithm and Adjusted Al-

Shalabi algorithm along with their Enhanced algorithms (all

categories) using AT8 collection

74

Table 24: Variance values among categories for Rule-Based and Adjusted Al-

Shalabi algorithms along with their Enhanced algorithms using

AT8 collection

77

Table 25: Accuracy results for Rule-Based algorithm and Adjusted Al-

Shalabi algorithm along with their Enhanced algorithms (all

categories) using LACC Corpus

77

Table 26: Native Arabic speaker analysis of algorithm' accuracy (all

categories) using AT8 collection

82

Table 27: Examples of foreign Arabized words list 90

Table 28: Number of different original implemented terms available in

feature lists processed from Corpus

99

Table 29: A paragraph taken from Addustour newspaper: (a) original

paragraph (55 words), (b) paragraph (40 words, 19 three-word

phrases) after removal of function words, punctuation marks,

short vowels and/or numerals, (c) paragraph after words are put

into two-word phrases (60 phrases) (here phrases are put between

double quotes for illustration)

100

Table 30: Number of different proposed terms available in feature lists

processed from Corpus

100

Table 31: Maximum F1
M

 values at specific features number for

implemented VSM representations along each classifier.

132

Table 32: F1
M

 Improvement/Degradation by comparing implemented VSM

representations performances at feature numbers presented in

Table 31 for each classifier.

133

Table 33: Performance of implemented classifiers along different

representations by selecting best 1000 features.

135

Table 34: Performance of best two classifiers among types for different

representations by selecting best 1000 features.

137

 xiii

List of Figures

Figure 1: The structure of the thesis and steps followed in the research

method

10

Figure 2: The structure of Chapter 2 12

Figure 3: Distribution of texts in AT8 along to (a) three major sources,

(b) region

38

Figure 4: Distribution of texts in LACC along (a) three major sources, (b)

region

42

Figure 5: Percentage in final Corpus according to LACC categorization

scheme for (a) words, (b) files

45

Figure 6: Percentage in final Corpus according to AT8 collection

categorization scheme for (a) words, (b) files

45

Figure 7: Distribution of texts in final Corpus along (a) three major

sources, (b) region

46

Figure 8: Pre-processing step before Arabic TC 49

Figure 9: A brief illustration of implemented root extraction techniques 53

Figure 10: Flowchart of Correction Algorithm 59

Figure 11: Performance of Rule-Based and Enhanced Rule-Based

algorithms

59

Figure 12: Comparison between accuracy results of all weight-based

algorithms in all categories with the ones incorporating the

Correction algorithm using AT8 collection

70

Figure 13: Comparison between average accuracy results of all weight-

based algorithms with the ones incorporating the Correction

algorithm using AT8 collection

70

Figure 14: Comparison between accuracy results of all algorithms in all

categories with the ones incorporating the Correction one using

AT8 collection

73

Figure 15: Comparison between average accuracy results of all algorithms

with the ones incorporating the Correction one using AT8

collection

73

Figure 16: Comparison between accuracy results for Rule-Based algorithm

and Adjusted Al-Shalabi algorithm along with their Enhanced

algorithms (all categories) using AT8 collection

74

Figure 17: Variance values for all algorithms among all categories (points

were connected here by smooth curves for illustration purposes

only)

75

 xiv

Figure 18: Comparison between total variance results for the Rule-Based

and the Adjusted Al-Shalabi algorithms

76

Figure 19: Comparison among AT8 and LACC corpora: (a) for Adjusted

Al-Shalabi algorithm in all categories, (b) for Rule-based

algorithm in all categories, (c) between two algorithms with

their enhanced algorithms on average

78

Figure 20: Investigation of performance of both Adjusted Al-Shalabi and

Rule-Based algorithms and their Enhanced algorithms as

Length of texts increases with (a) change in their Execution

time, (b) the difference in Execution time for each algorithm,

(c) the Percentage of (difference in execution time by execution

time for each algorithm)

79

Figure 21: Percentages of unidentified Words, function Words, foreign

Arabized Words in texts in all categories (points were connected

here by smooth curves for illustration purposes only)

82

Figure 22. Average percentage for function Words, unidentified Words

and foreign Arabized Words

82

Figure 23: Native Arabic speaker analysis of algorithm's accuracy 83

Figure 24: Native Arabic speaker analysis of algorithm's accuracy after

excluding number of names, transliterations, function Words

and compounds from total number of Words in texts

84

Figure 25: Percentage of wrongly extracted weak Words by all algorithms 86

Figure 26: Percentage of wrongly extracted two-letter geminated Words by

all algorithms

87

Figure 27: Percentage of wrongly extracted four-letter Words 88

Figure 28: The Flowchart of the Final Proposed Arabic Root Extraction

System

94

Figure 29: Basic Steps for Arabic TC classification 96

Figure 30: Comparison between classifiers' performance for Root VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

109

Figure 31: Comparison between classifiers' performance for Stem VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

112

Figure 32: Comparison between classifiers' performance for Word VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

114

Figure 33: Comparison between classifiers' performance for RRP VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

117

 xv

Figure 34: Comparison between classifiers' performance for SSP VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

119

Figure 35: Comparison between classifiers' performance for WP VSM

representation according to their type (a) rules, (b) trees, (c)

functions, (d) Bayes-based, (e) miscellaneous, (f) meta

122

Figure 36: Performance of different VSM representations as number of

selected features varied using classifier (a) BN, (b) NBM, (c)

Compl NB, (d) SMO, (e) Simple Logistic, (f) PART, (g) JRIP,

(h) Ridor, (i) Decision Table, (j) J48, (k) LMT, (l) FT, (m)

Simple Cart, (n) Random Forest, (o) Rep Tree, (p) Hyper Pipes,

(q) END, (r) Filtered Classifier, (s) Logit Boost, (t) Random

SubSpace, (u) AdaBoost.M1, (v) Rotation Forest, (w) Bagging,

(x) Classification Via Regression

131

Figure 37: Comparison between Bayes-based classifiers' performance for

all VSM representations according to (a) time, (b) RMSE

147

Figure 38: Comparison between tree classifiers' performance for all VSM

representations according to (a) tree sizes, (b) time, (c) RMSE

151

Figure 39: Comparison between rule classifiers' performance for all VSM

representations according to (a) rule numbers, (b) time, (c)

RMSE

157

Figure 40: Comparison between meta classifiers' performance for all VSM

representations according to (a) time, (b) RMSE

163

Figure 41: Comparison between best classifiers' performance for all VSM

representations from different types according to (a) time, (b)

RMSE

165

 xvi

List of Abbreviations

ANN Artificial Neural Network

ARFF Attribute Relation File Format

BN Bayesian Network

DF Document Frequency

DM Data Mining

DR Dimensionality Reduction

EM Expectation Maximization

FSS Feature Subset Selection

IB Information Bottleneck

IE Information Extraction

IG Information Gain

IR Information Retrieval

KDD Knowledge Discovery from Databases

KDT Knowledge Discovery from Text

K-NN K Nearest Network

LC Label Cardinality

LD Label Density

LDC Linguistic Data Consortium

LSI Latent Semantic Indexing

MI Mutual Information

ML Machine Learning

MSA Modern Standard Arabic

NB Naïve Bayes

NLP Natural Language Processing

OR Odds Ratio

RBF Radial Basis Function

SMO Sequential Minimal Optimization

SOM Self Organizing Map

SVM Support Vector Machine

TC Text Classification

TFIDF Term Frequency Inverse Document Frequency

TM Text Mining

VSM Vector Space Model

WEKA Waikato Environment for Knowledge Analysis

1

Chapter 1: Introduction

1.1 Introduction

The early 90's represented a turning point for research in automatic Text

Classification (TC) due to two factors [34]. The first was when the Internet became

free to be accessed by everybody, anywhere and anytime. The second was the vast

development of hardware capabilities as well as the increased number of required

special purpose systems. Furthermore, the continuously increasing number of

internet users whose mother-tongue is not necessarily English urged researchers to

investigate new methods or improve existing ones in order to process and organize

the immense volume of online data [147]. Usually such textual data were manually

labeled to specific categories by human experts [20], which is an expensive and time

consuming process.

Arabic language is among the top ten languages (7
th

 place) used in the Web.

Also, for Arabic users an internet penetration
1
 was found to be 17.5% and a growth

in internet usage was 2,297.7% between the years 2000 and 2009 (further statistics

and details of number of web sites, internet users in the Arab world are shown in

appendix I)
2,3

. Such statistics emphasize the importance of applying Text Mining

(TM) approaches especially TC to Arabic. However, Arabic language is a complex

language and as such requires in depth investigation in terms of applying or

improving available automatic processing techniques such as Natural Language

1
 From: Internet World Stats, url: http://www.internetworldstats.com/stats7.htm [1/6/2010]

2 From url: http://www.labnol.org/internet/blogging/he-total-number-of-websites-on-earth/2257/ [1/6/2010]
3 From Royal Pingdom, url: http://royal.pingdom.com/2010/01/22/internet-2009-innumbers/ [1/6/2010]

http://www.internetworldstats.com/stats7.htm
http://www.labnol.org/internet/blogging/he-total-number-of-websites-on-earth/2257/
http://royal.pingdom.com/2010/01/22/internet-2009-innumbers/

2

Processing (NLP), and/or TC. Among NLP processes that require investigation for

Arabic are morphological analysis and Machine Learning (ML) methods for TC.

Much research has been conducted for the development, improvement of Arabic

light stemmers (i.e. outputs stems only) or morphological analyzers (i.e. outputs

roots) according to the level of analysis required. Such applications were

concentrated mostly for Information Retrieval (IR) whether by building stemmers

that handle inflectional or derivational morphology. Examples of commercial

morphological systems are Sakhr's
4
, Xerox's

5
, and MORPHO3's

6
 morphological

analyzers. Reported Morphological analysis [28] systems for Arabic can be

categorized into either systems that were implemented by individuals so as to be

used partially in their academic research, or systems that were implemented by

commercial institutes or companies as part of the market's needs for Arabic

applications such as search engines. Since work in this thesis is within the first

category, emphasis here will be on displaying its respective techniques. These

techniques can be further subcategorized into: 1- Rule-based techniques as in [1],

[18]; 2- Lexical-based techniques as in [56], [88]; and 3- Others as in [30], [15],

[36], [124] and [17]. However, such techniques are not freely accessible on line for

other researchers to use and compare except for Khoja's [111] morphological

analyzer
7
 or Buckwalter's stemmer

8
 [41].

Although [26] there are many available Arabic corpora, yet there is no online

bench mark large Arabic text corpus that is freely accessible for researchers to use

for testing root extraction methods as well as ML methods.

4 Sakhr's morphological processor can be found at: http://www.sakhr.com
5 Xerox's morphological processor can be found at: http://www.xrce.xerox.com/Research-Development/Historical-
projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
6 Morpho3's morphological processor can be found at: http://www.rdi-eg.com/technologies/Morpho.aspx
7 This analyzer was not accwssible to author at period of implementing root extraction techniques.
8 This stemmer's performance was lower than other reported extraction techniques [159] so not tested here.

http://www.sakhr.com/
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.rdi-eg.com/technologies/Morpho.aspx

3

There are many [92] ML methods that are used for classification or regression.

This thesis concentrates on classification methods only. Most of these methods are

not implemented so far for Arabic TC. This thesis's aim is to investigate and

compare the performance of many TC methods for Arabic and test the effect of using

different choices of features in document representation on TC performance by first

improving and comparing the results of two root extraction methods.

1.2 Thesis Contributions

This thesis focuses on exploring different preprocessing methods and investigating

their effect on TC performance. More specifically, this thesis focuses on

investigating and improving root extraction methods. Its first contribution is that it

improves two existing root extraction techniques, namely a rule-based method that

extracts triliteral and quadriliteral roots and a weight-based one that extracts only

triliteral roots. The improvements are performed through: 1- proposing and

implementing an algorithm that handles irregular cases, 2- collecting a list of foreign

Arabized words (aforementioned rule-based and weight-based root extraction

methods do not handle), 3- proposing and adding a simple method to handle

quadriliteral roots for the weight-based technique, and 4- investigating changing the

weight options for letters in the weight-based technique on its performance. The

importance of handling irregular and foreign Arabized cases comes from the fact that

irregular words consist of weak
9
, two-letter geminated, hamzated, and eliminated-

long-vowel words that are available in about 34% in texts
10

, whereas foreign

Arabized words are available in about 11% in texts
10

. This thesis compares between

these techniques in terms of their accuracy and execution time by testing their

performances using a single-labeled Arabic corpus that is developed here.

9 We use here Haywood and Nahmad 1998 terminology for describing Arabic irregular forms.
10 Percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection as is described in Chapter 4.

4

The second contribution of this study is that it investigates the effect of using the

outputs of the best reported accuracy root extraction technique (i.e. normalized

words, stems, and roots) as well as including other feature choices (their respective

phrases) in document representation on single-labeled TC performance using also the

developed Arabic corpus.

This chapter presents an overview of the research problem as well as its rationale,

and the organization of this study. Also, it presents a brief outline of this thesis.

1.3 Motivation and Objectives

With the vast and expanding use of the internet especially in the Arab world and the

enormous number of websites/pages that are provided in Arabic, it has become a

necessity to have online tools/search engines that automatically

classify/retrieve/translate Arabic documents/web pages according to the needs of the

respective users (whether individuals or companies such as online newspapers and

journals). Generally, available search engines that provide such services for Arabic

are limited and although the literature provides much research work that specifically

concentrated on more effective morphological analysis methods and their effect on

IR efficiency yet more research work is required to investigate and improve the

accuracy of these methods and their effect on TC performance or effective

translation.

Despite the recent research studies that investigated the effect of using roots/stems as

alternatives of words in Vector Space Model (VSM) [155] for Arabic on TC

performance such as in [148] or [154], yet there is no consensus regarding which of

features root, stem or word should be used to provide best TC results. Also, the

effect of using other feature choices on TC performance for Arabic was not

investigated. Furthermore, there is neither available Arabic benchmark corpus nor an

5

online corpus that is freely accessible except the recently developed small Arabic

contemporary corpus by University of Leeds (about 420 text documents). Thus, in

literature, research works use different text collections (mostly collected on ad-hoc

basis and usually small in size) for TC which makes it difficult to compare the

results of such works to reach a conclusion.

Since this thesis's aim is to test the effect of using different choices of features in

document representation on TC performance for Arabic, then a need for developing

an Arabic corpus to be tested for both root extraction and TC methods, implementing

and improving root extraction techniques performances in order to obtain roots and

stems for respective words accurately. This is performed here by improving two root

extraction methods and taking the outputs of best performing method to be used for

feature choices. Furthermore, it proposes and implements a new variant of Term

Frequency Inverse Document Frequency (TFIDF) weighting method and uses it to

all investigated representations mentioned above in order to emphasize term

presence among categories. It also, implements various TC methods using

representations that use either words, stems, roots and/or their respective phrases and

compares their performances. This work identifies the appropriate text collections,

tools and procedures to satisfy the objectives mentioned above.

1.4 Research Questions

In order to satisfy the objectives stated in this thesis, the focus here is on the

following four research questions:

 Research Question (1)

What are the steps to develop an Arabic corpus from two different small collections

to be manually classified as single-labeled corpus among eight classes?

 Research Question (2)

6

What are the available root extraction methods to be implemented in this research?

What are their disadvantages and how to improve and compare their performance in

order to obtain the most correctly outputted stems and/or roots for respective words

using the developed Arabic corpus?

 Research Question (3)

How varying feature choices in Vector Space Model representation of corpus will

affect the performance of various text classification methods as well as proposing

and implementing a variant of TFIDF term weighting? If there is an improvement in

text classification performance, would it be statistically significant?

 Research Question (4)

Which classifiers applied to various representations of Arabic corpus have the best

performance? Are the results obtained for such classifiers in agreement with

previously reported studies?

1.5 Research Approach and Methodology

In order to achieve the objectives of this research, the current study and contributions

are constructed in the following three phases:

1- To address the first research question, two labeled Arabic text collections are

gathered and after investigating their characteristics, their labeling is unified in

order to have a comparatively large corpus. This lead to the development of a

single-labeled Arabic corpus: described in Chapter 3.

2- To address the second research question, two available root extraction

methods are implemented and their advantages and disadvantages as well as

performances are investigated. This lead to the improvement of these two root

extraction techniques, proposing and implementing an adjustment method as well

as two expanded methods for the second root extraction method, and the validation

7

of such improvements/investigations by implementing these techniques using the

developed Arabic corpus and finally the proposal to develop a root extraction

system that handles foreign Arabized words: described in Chapter 4.

3- To address the third and forth research questions, the author found that not

many choices of features in document representation have been investigated.

However, for some choices that are investigated, no report of significance testing is

present to conclusively affirm which has better effect on TC performance. This is

reached after studying what has been investigated in literature for Arabic TC in

terms of feature choices, term weighting methods, and tested classifiers. Thus, the

investigation of the effect of using various features in document representation

when using a proposed variant TFIDF term weighing method on single-labeled TC

performance is presnted in this thesis. Various classifiers of all types for Arabic are

tested and the comparison and critical analysis of their performances for Arabic TC

is presented: described in Chapters 5 and 6.

The first phase involves the following: 1- acquiring two text collections (the first one

is collected by the author from various online newspapers, magazines and personal

websites where she aimed to cover different geographical regions along classes

specified, and the second was downloaded from University of Leeds website [25]),

2- investigating their characteristics and unifying their labeling under eight general

domains.

The second phase consists in: 1- the development and improvement of two available

root extraction techniques by extending their algorithms to handle irregular words, 2-

proposing and implementing an adjustment method as well as two expanded

methods of the second root extraction method that handles specific cases of

quadriliteral roots. The validation of implemented algorithms was by using two

8

criteria: accuracy and execution time. After critically evaluating such algorithms a

final root extraction system is proposed that would handle foreign Arabized words.

The third phase involves applying the proposed variant of TFIDF method as well as

representing features of documents in the corpus by either normalized words, stems,

roots, or a hybrid of words and word phrases, stems and stem phrases, roots and root

phrases. Then, such representations' effect on single-labeled TC performance is

investigated using the WEKA tool [181]. This is performed by: 1- applying a feature

subset selection technique for such representations in order to see if varying the

number of best selected features would improve TC performance, 2- performing

significance testing to verify whether indeed improvement/degradation in TC

performance among representations is evident, 3- comparing between the

performance of forty seven classifiers applied on above representations is presented

whether between different classifiers of the same type or between classifiers among

different types. The tested classifiers are categorized in WEKA tool among eight

types: a) Nine Rule learners where six different classifiers are tested among this

category, b) Thirteen Tree learners where eleven different classifiers are tested

among this category, c) Eight Bayes-based learners where six different classifiers

are tested among this category, d) Seven Function learners where five different

classifiers are tested among this category, e) Two Miscellaneous learners where two

classifiers are tested among this category, f) Twenty eight Meta learners where

seventeen different classifiers are tested among this category, h) Four Lazy learners,

and finally i) Four Multi-Instance (MI) learners. No classifiers are tested among

those last two categories since either the classifiers had poor performance or are not

applicable. Thus, only six types of classifiers are investigated here.

9

1.6 Thesis Organization

This thesis is composed of six chapters (excluding this one) as shown in Figure 1

where:

 Chapter 2: critically reviews literature from the two main disciplines of this

research: morphological analysis methods and text classification methods for

Arabic as well as a brief description of available Arabic corpora.

 Chapter 3: focuses on describing the two text collections, the texts'

respective different classes, their characteristics, and the methodology of

unifying their classes.

 Chapter 4: presents our contributions towards improving two different

approaches for extracting roots for inputted words. It also presents the

methods for evaluating these approaches' performance, and proposes a root

extraction system that incorporates the best features among such methods and

handles foreign Arabized words.

 Chapter 5: discusses the design of proposed text representations, proposes a

variant TFIDF term weighing and implements these proposals for single-

labeled text classification Also, forty seven classifiers performances are

presented, compared, and tested for significance on implemented

representations.

 Chapter 6: critically evaluates and compares the performance of used

classifiers on implemented document representations.

 Chapter 7: presents the major conclusions of the research as well as any

research contributions. Then, the limitations of this research are discussed

along with recommended future work.

10

1.7 Summary

This chapter presents the overall scope of this research by providing background

information, introducing it and research aims. It then introduces the research

approach and methodology and finally it outlines the thesis structure. In the next

chapter a detailed literature review is presented.

THE DEVELOPMENT OF AN ARABIC TEXT CORPUS

AND PRE-PROCESSING STEPS
(Chapter 3)

* Developed Single-labeled Arabic Corpus; * Pre-processing Steps

CONCLUSIONS AND RECOMMENDATIONS
(Chapter 7)

* Research Contributions, * Research Limitations, * Future Work

Pre-processing Steps:

1- Arabic function word list

2- Arabic text pre-processing

THE DEVELOPMENT OF AN ARABIC ROOT

EXTRACTION SYSTEM
(Chapter 4)

* Rule-based Technique; * Weight-based Technique; * Evaluation and

Analysis of Techniques, * Propose Root Extraction System

BACKGROUND AND RELATED WORK
(Chapter 2)

* Arabic Morphological Analysis Methods; * Text Classification Methods

applied to Arabic

Collected single-labeled Arabic

corpus:

1- Description, 2- Unification of

classes for Two Arabic text

collections

Rule-based Technique:

1- Description, 2- Contribution

through improving this technique by

handling irregular cases and foreign

words.

Weight-based Technique:

1- Description, 2- Adjustment of

technique, 3- Proposed two variants, 4-

Improving these methods by handling

irregular cases 5- Handling foreign

words.

Evaluation and Analysis of

Techniques:

1- Evaluation through: a) Accuracy, b)

Execution Time, 2- Analysis and

discussion.

ARABIC SINGLE-LABEL TEXT CLASSICIFICATION

METHODS
 (Chapter 5)

* Pre-processing steps;

* Text Classification methods

Pre-processing steps:

1- Document representation, 2-

Proposing a variant TFIDF., 3.

Including phrases into features and

VSM representations.

TC methods:

Applying 47 classifiers on six

representaions and comparing

their results.

Figure 1: The structure of the thesis and steps followed in the research method

CRITICAL ANALYSIS OF CLASSIFICATION METHODS'

PERFORMANCES
(Chapter 6)

* Effect of using phrases on Text classification performance; * Comparison

between classifiers

11

Chapter2: Background and Related Work

2.1 Introduction

This chapter presents a brief review of the literature on the application of two

major research areas for Arabic. The two areas are morphological analysis and TC as

illustrated in Figure 2. Since the aim of this thesis is twofold, then this chapter first

briefly presents different techniques for stemming Arabic words, and decides which

of these techniques will be used and improved in order to provide more accurate

results. This chapter then discusses briefly applied TC methods for Arabic and

compares their respective results with those for English. However, since a collection

of Arabic texts, preferably large in size, is required to evaluate the performance of

both root extraction and TC methods, this chapter first briefly presents available

Arabic text corpora and which to use (if applicable) or develop in this thesis.

The remainder of this chapter is organized as follows: next a brief review of

available Arabic text corpora. Section 2.3 discusses and classifies briefly available

Arabic root extraction techniques in the literature. Section 2.4 describes briefly

applied single-label TC techniques on Arabic. Finally, summary is presented in

Section 2.5.

2.2 Arabic Text Corpora

Newspaper articles available online are the common and frequent source for

obtaining Arabic texts. Available Arabic corpora can be found for example at

Linguistic Data Consortium (LDC)
11

 or European Languages Resources Association

(ELRA)
12

 websites. Further information on such corpora can be found in [26].

11 LDC, University of Pennsylvania, USA, LDC website: http://ldc.upenn.edu/ [last accessed 1/5/2011]
12 ELRA website: http://www.elra.info/ [last accessed 1/5/2011].

http://ldc.upenn.edu/
http://www.elra.info/

12

Figure 2: The Structure of Chapter 2

For example ELRA has two Arabic corpora in Modern Standard Arabic (MSA)

form. The first is An-Nahar newspaper text single-label corpus that contains about

270,000 texts and about 144 million words under 5 classes. The second is Al-Hayat

Arabic single-label corpus under 7 classes. On the other hand, LDC has larger scale

Arabic text corpora such as Arabic Newswire Part 1 corpus. This corpus, although

without any labels, contains 383,872 texts, about 76 million words and about

666,094 unique words. Another example in LDC is the Arabic Giga word corpus

with its 1
st
, 2

nd
, 3

rd
 and 4

th
 editions. Its 4

th
 edition has 2,716,995 texts under one of

three labels ('story', 'multi' (contains a series of unrelated blur
13

), and 'other' labels).

All previous Arabic corpora are not freely accessible to researchers as the English

RCV1-v2 [152], [127] or the Reuters-21578

[126] corpora. Thus, there is no

available online benchmark freely accessible Arabic corpus, whether single or multi

labeled. As such, two small text collections that are used in this thesis are described

and arranged in one corpus as is thoroughly explained in Chapter 3. The first text

13 as stated in: http://catalog.ldc.upenn.edu/LDC2003T12

Available Stemming Techniques

For Arabic

Single-label TC Techniques Applied on

Arabic

Arabic Text Corpora

Lexical-based techniques

Other techniques

Rule-based techniques

Applied

Single-label

TC

Preprocessing

steps before

TC

Document Presentation

and Term Weighing

Dimensionality

Reduction

Specific classifiers

NB, k-NN, SVM

classifiers

Introduction

Classifiers

comparison

13

collection was gathered from different websites and categorized into eight general

domains. The second text collection was downloaded from University of Leeds

website on January 2010 [25], originally categorized into eight other general

domains.

Thus, next a brief description of methods in literature used for choosing general

domains for manual classification of texts.

In 1996, Sinclair [165] proposed 35 domains to present texts. Later on Sharoff [163]

categorized texts into eight general domains since Sinclair's categorization list, in his

opinion, provides a too fine-grained list. The eight general domains are: 1- natural

sciences (mathematics, biology, physics, chemistry ... etc), 2- applied sciences

(agriculture, medicine, ecology, engineering, computing, transport .. etc), 3- social

sciences (law, history, philosophy, psychology, language, education .. etc), 4-

politics (inner, world), 5- commerce (finance, industry), 6- life (general domain e.g.

fiction, conversation .. etc), 7- arts (visual literature, architecture, performing), 8-

leisure (sports, travel, entertainment, fashion .. etc). However, Eibeed [64] suggested

that Arabic articles be classified according to one of 10 domains that are: 1- general,

2- philosophy and psychology, 3- religion, 4- social sciences, 5- languages, 6-

natural sciences and mathematics, 7- applied sciences, 8- arts, 9- literature, and 10-

geography and history. In [64], O. Dawood suggested to have 15 domains that are as

follows: 1- religion, 2- sports, 3- educational sciences and scientific research, 4-

medicine and health, 5- encyclopaedias, 6- philosophy and psychology, 7- languages,

8- Arabic articles translated to other languages, arts, 9- Foreign articles translated to

Arabic, 10- social sciences, 11- applied and natural sciences, 12- history and its

sciences, 13- geography and geology, 14- mathematics, and 15- others. It is clear that

14

although the topics are more or less the same, the categorization process and

numbers of general domains are different.

The enormous number of texts that is available online and is increasingly growing

explosively on the web requires for such texts to be classified into domains or topics

so that these texts can be for example retrieved easily. The determination of such

domains is crucial for the accuracy of the classification process whether there is

hierarchy in domains/genres or not. This is so since [165] if a text is to be classified

among predefined classes that are Physics, Biology among others where this text's

class is actually Bio-Physics (which is not among the predefined classes). Then, it is

expected that results of classifying this text will be lower since the boundaries

among such classes are neither fixed nor clear. The reason for this lower

performance is partially due to the fact that the classifier is designed to only choose

one class among those predefined, and then it would provide the wrong

classification. However, for the same classes, if the classifier chooses more than one

class, then it can provide a more representative answer to the classification required.

One of the criteria [161] that a corpus is characterized by is the generality of its

classes. A generality of a class ci is defined to be the percentage of documents dj in

this class to the total number of documents in the corpus  as shown in eq. 1.






}),({
)(

Tcdd
cg

ijj

i
 (1)

Among the issues [178] related to multi-labeled data sets is how to identify the

amount of data that is multi-labeled in such sets. A method for doing so is by using

the concepts of Label Cardinality (LC) and Label Density (LD). For these concepts

eq. (2) are provided below, where D: is data set with size |D|, |L| is number of labels;

|Yi| is number of assigned labels for document di. Multi-labeled data sets vary in

terms of their LC and LD values. An example [178] showing two data sets is for the

15

genbase and yeast sets with LC = 1.35, LD = 0.05 and LC = 4.25, LD = 0.3

respectively. From the equation for LC it is noticed that LC value does not depend

on the number of labels in corpus but rather is the average number of labels per text

in it. However, LD value depends on the number of labels assigned.

 



D

i

iY
D

DLC
1

1
)(, 




D

i

i

L

Y

D
DLD

1

1
)((2)

In Chapter 3, the development of the Arabic text corpus is presented in detail where

the two collections used to develop this corpus are described. Next is a description of

stemming techniques for Arabic.

2.3 Stemming Techniques for Arabic

Large-scale morphological analyzers [49] usually outputs to the user besides the

root for the inputted word further information. Such information may be the meaning

of prefixes, suffixes, and/or root disambiguation. Reported Morphological analysis

[28] systems for Arabic can be categorized into either systems that were

implemented by individuals so as to be used partially in their academic research, or

systems that were implemented by commercial institutes or companies as part of the

market's needs for Arabic applications such as search engines.

Much research has been conducted for the development, improvement of Arabic

light stemmers (i.e. outputs stems only) or morphological analyzers (i.e. outputs

roots) according to the level of analysis required. Since the stemming techniques

implemented in this work are within the first category, emphasis will be on

displaying its respective techniques. These techniques can be further subcategorized

into: 1- Rule-based techniques; 2- Lexical-based techniques; and 3- Others as will be

described briefly in the following three subsections.

16

2.3.1 Rule-Based Techniques

Many Arabic morphological analysis approaches use rules, prefix and suffix lists

to identify the possible roots for any Arabic word in MSA. Such approaches are thus

called rule-based. However, building and implementing the rules for this analyzer is

time consuming. These methods, based on the required level of analysis, can be [29]

subcategorized into: a) one-level rules that analyze words at the stem level using

regular concatenation, b) two-level rules that analyze words as roots + patterns +

concatenation, and c) three-level rules that analyze words as roots + templates +

vocalization + concatenation for obtaining their roots. Examples of stemming

techniques that use one-level rules to produce stems are as in [120], [121], [9], [44],

[29] and [50]; whereas examples of stemming techniques that provide roots (whether

two-level or three-level rules) are as in [1], [18], [22], [3], [11], [48], [16] and [72].

Although approaches that obtain roots/stems use rules, these approaches differ

in: a) the number of patterns, prefixes, suffixes used, rules' order in the approach,

and the amount of included function words to be removed, b) applying a

normalization step for some letters in words or not and if so to what letters, and c)

applying/removing diacritics for words or not.

2.3.2 Lexical-Based Techniques

This method uses lexical databases, dictionaries, and/or thesaurus to establish,

among other things, if the possible combinations of prefix-(root + pattern)-suffix is

correct for the processed word. Some of the research works that use lexical

databases, dictionaries, and/or thesaurus, use it along with methods as finite state

transducers [35], while others use it with rules [41], [56], [87], [111] and [182].

However, such techniques are usually collected based on a corpus and so are limited.

This limitation affects the performance of such analyzers negatively.

17

2.3.3 Other Techniques

The third method of stemming approaches, which is proposed for Arabic, cannot

be in our opinion categorized into any of the previous two categories. Examples of

such approaches are as in [54], [131], [151], [160], [49], [52], [28], [30], [15], [37],

[124] and [17]. All the above research works except in [17] used either statistical or

ML methods for morphological analysis.

Al-Shalabi, et al work [17] provided a rank, order and weight for each letter in

the word according to its position and calculated the product of rank and weight.

This method then only extracted a triliteral root for that word by choosing the three

least product values for letters of word without any change in their positions.

Implementing this method on a small set of Arabic abstracts reported an accuracy of

about 90%. Most of the aforementioned ML methods are further explained and

compared in appendix I.

ML methods, especially classification methods, usually require large corpora (as

the Reuters-21578

[126] corpus) for training in order to establish good results. Next

is a comparison between the types of stemming techniques presented above.

2.3.4 Comparison between Stemming Techniques

Although much work [24] have been performed on Arabic morphological

analysis and stemming especially for IR applications, yet few of such works handled

specific cases of irregular words (i.e. weak, eliminated-long-vowel, two-letter

geminated, and hamzated words) but not all of these cases except the works in [72]

and [35]. It is noteworthy that in [72] no results were provided of the system

implemented. Also, in [35] the Xerox demo
14

 is available, and although efficient it

14 Xerox demo can be found at http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-
Demos/Arabic-Morphological-Analysis-and-Generation

http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation

18

requires usually a relatively long time to provide the required roots (from about 1

hour to 7 day according to number and type of words provided).

The less-studied cases of irregular words are weak words [5], [42]. The lack of

study of such irregular cases is partially expected since research works concentrated

on building various light stemmers for IR especially in more recent times. Such

concentration was due to the extensive research on whether to use stems or roots for

improving IR performance.

When developing for Arabic a stemmer or morphological analyzer, important

issues present themselves [24] such as under-stemming and over-stemming. Other

issues that require handling for stemmers are compound words, proper nouns,

foreign Arabized words, diacritization, word disambiguation and irregular forms of

words. Also, available stemmers [22] automatically stem blindly words whether

proper nouns, foreign Arabized words or others and thus perform poorly. Thus, there

is a need to build an algorithm that handles some/all of these cases.

There is no comparative study available in the literature that compares between

available Arabic stemmers and evaluates their performances except for the works in

[160], [122] and [23]. The work in [160] compares between the performances of

three different stemmers in terms of accuracy. Larkey et al work [122] compares

between the performance of their light stemmer with other stemmers for IR as the

well-known Khoja stemmer
15

, Buckwalter stemmer, and Diab's Lemmatizer [55].

The work in [23] compares the performance of six existing algorithms for root

extraction, four of them are rule-based [16], [84], [172], and [169], one lexical-based

[111] and the last is a weight-based one [17]. This work implemented such

algorithms and compared their performance using a corpus that was built from 3,823

triliteral roots and applying 73 patterns with 18 suffixes and producing 27.6 million

15 The words stemmer and root extractor is used here interchangeably.

19

words. The highest obtained accuracy among these six algorithms was the one of

Ghwanmah, et al [84] work of 39% only. The results obtained in this work are rather

interesting considering that the reported accuracy in original works were above 90%.

However, the corpus used in this work is much larger than the ones used in the

original papers stated above.

There was a discrepancy among the published studies [24] regarding which are better

for IR, using words, stems or roots as in [3], [11], [97], [9], and [48]. Larkey, et al

[121] verified that using either stems or roots improved significantly IR performance

(much better than applying stemming on English for IR). Later on, Larkey, et al

[122] concluded that the effect of using light stemming is the highest on IR for

Arabic after comparing the effect of their light stemmer with other stemmers or root

extractors. This agrees [51] with what is known that IR is more tolerant to over-

conflation (i.e. removing letters at beginning or end that are not extra letters) than

under-conflation. Also, although [158] word sense disambiguation has been reported

to decrease retrieval effectiveness, yet by improving the correctness [51] of

morphological analysis (here context sensitive which is an akin to sense

disambiguation) retrieval results improved slightly. A drawback of context-sensitive

morphological analysis is that it requires considerably more computing time than

light stemming.

It is worth noting that names of places, countries, cities, months and foreign

Arabized words compose about 11% of texts
22

. A more comprehensive percentages

of words is described in [2] where the percentage of occurrence for proper nouns,

'verbs, nouns and adjectives', broken plurals, function words, and deverbals (i.e.

infinitive forms, active and passive participles, analogous adjectives and nouns of

place and time) are 1.14%, 16.01%, 24.3%, 7.87%, 0.37%, and 58.18% respectively.

20

Such percentages are based on the analysis of two million words using AraMorph
16

and DIINAR.1
17

 [57]. Thus, Arabic words are highly derivational. More specifically,

weak
18

, two-letter geminated, hamzated, and eliminated-long-vowel words are

available in about 13%, 7%, 11% and 2% (12% of weak words) in texts

respectively
19

. Arab linguists and consequently early research works on

morphological analysis, lexicons, and machine translation base the analysis of words

on their root + pattern structure. However, Dichy and Farghaly [57] argued that this

is not sufficient since root + pattern representation does not handle Ancient and

medieval words as IsmAEyl as well as the complex grammar-lexis relations in Arabic

words. This is so since such representation handles only verbs and deverbals. This

was also emphasized by Abbès, et al [2] which showed that using only prefix-suffix

combinations (without proclitics (i.e. letters at beginning of words as l, w, b) or

enclitics (i.e. complement pronouns)) are more ambiguous than when such clitics are

taken into consideration. On another point, Darwish, et al [51] investigated the effect

of context sensitive morphological analyzers on IR. Results of this work show that

better coverage and improved correctness have a dramatic effect on IR effectiveness.

Next is a brief description of reported applied TC methods for Arabic and the effect

of some preprocessing steps on their performances.

2.4 Text Classification Approaches Applied to Arabic Sources

TM is an interdisciplinary area [87] that involves fields as ML and Data Mining

(DM), Statistics and statistical methods, IR, and Natural Language Processing

(NLP). Researchers have explored and developed many TM and NLP techniques and

16 AraMorph can be found at: hhtp://sourceforge.net/projects/aramorph, [last accessed 1/11/2011]
17 DIINAR.1 can be found at: http://catalog.elra.info/product_info.php?products_id=902, [last accessed 1/11/2011]
18 We use here Haywood and Nahmad 1998 [96] terminology for describing Arabic irregular forms.
19 Percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection as will be described in
Chapter 4.

http://catalog.elra.info/product_info.php?products_id=902

21

algorithms especially to English language but few have been proposed for Arabic

text automatic interpretation. This is partially due to the rich morphology [96] of

Arabic language. TM methods, which are also known as DM methods for texts, are

applied [92] for basically: 1- TC (supervised learning), 2- clustering (unsupervised

learning), 3- IE, 4- association analysis, and 5- trend analysis. TC is the process of

assigning a text document to one or more predefined classes based on its content

[129].

Text processing techniques, such as TM methods, according to application, are

applied at different levels [87] at: 1- word level, 2- sentence level, 3- document level

or 4- document-collection level. If applied at word level, different processes might

be applied by: a- taking word properties (such as homonymy, polysemy, synonymy,

and hyponymy or word frequencies) into consideration, b- removal of function (stop)

words, c- using stemming or lemmatization, d- using frequent n-grams, and finally e-

using lexical relations databases such as Word Net (WN) for English or recently for

Arabic (AWN). However, if text processing is applied at document level, it would be

used, among others, for text summarization as in [138] when applied on English; and

[68], [69] when applied on Arabic. Finally, when it is applied at document-collection

level, several issues require handling such as choosing a representation of document,

deciding a similarity function to compare documents, reducing the high

dimensionality of documents by choosing an effective method to do so for

categorization or clustering. One of possible applications of using ML techniques for

Arabic is for language identification as in [162].

22

There are few available commercial tools or software that applies TM techniques

on Arabic such as Sakhr
TM

 automatic commercial categorizer, keyword extractor,

and summarizer [153] and [66] KP-Miner system
20

.

In the following subsection preprocessing steps for TC will be illustrated. In

subsection 2.4.2 single-labeled TC methods applied to Arabic will be discussed.

2.4.1 Pre-Processing Steps for Text Classification

Applying TC techniques requires usually a preprocessing stage that would

remove punctuation marks, function words and might return the remaining words to

their stems (for Arabic words to their stems or roots). For English language,

researchers perform the stemming step in order to reduce the high dimensionality of

documents [161]. Since the research work on Arabic TC is rather new, many issues

need to be investigated in order to establish its effect on TC. Among such issues are:

document representation, types of features used, methods of weighting, and feature

selection or extraction. Research work investigating such issues is presented next.

2.4.1.1 Document Representation

A text document dj is usually represented [161] as a vector of term weights

(wkj), 
jTj ww ,....., d 1j


, where T is the set of different terms (also called

features) that occur at least once in at least one document in the training set from the

collection. Different approaches are used for document representation, where two

differences occur for text representation. The first is related to how a term is

considered (for example a word or a phrase). The second is related to which method

the weights are calculated by. For Arabic the only representation of features in texts

investigated in literature was using words, stems, or roots separately but as far as is

known, the choice of features using phrases or combining them with other forms of

20 Found at: http://www.claes.sci.eg/coe_wm/kpminer/ [last accessed 1/11/2011]

http://www.claes.sci.eg/coe_wm/kpminer/

23

features was not reported for Arabic TC. As for term weighting, the TFIDF function,

besides the BOOLEAN representation of terms, is used mostly for weighting [156].

TFIDF is defined in eq. 1 as:

)().,(
)(#

||
log).,(#),(kjk

kTr

jkjk tidfdttf
t

Tr
dtdttfidf 










 (1)





||

1

2)),((

),(
T

k

jk

jk

kj

dttfidf

dttfidf
w

(2)

Where tf(tk,dj) (called Term Frequency) = #(tk,dj): number of times term tk occurs in dj,,

#Tr(tk) (called document frequency (df(tk)): number of documents in Tr that tk occurs in,

|Tr|: number of documents in training set,

Inverse document frequency idf(tk) is given by
)(

||
log)(

k

k
tdf

Tr
tidf  ,

However, other term weighting methods are used such as the weighted inverse

document frequency Widf(tk,dj) or the recently proposed term weighting Modified

inverse document frequency Midf(i,j) [53] or the pivoted document normalization

[166], [167] weighting equation. These methods' equations are provided in appendix

I. The idf part of TFIDF function defined in eq. 1 above handles the effect of the

presence of a term in documents compared to the total number of documents in the

corpus (i.e. global weighing). So if such a term appears in different categories in

different percentages and/or the generality of such categories is not balanced (i.e. not

the same or near one another) then this part of TFIDF will not include such an effect

into weighing the term. Thus, weighing such terms by considering their presence

among categories is neither proposed nor implemented (which is called here local

weighing). Although new variants of TFIDF or other functions were proposed and

implemented on texts for English as in [45], [46], [58], [116], [128] and [176],

nevertheless such methods were not investigated for Arabic. Also, as far as we know,

the effect of local weighing was not investigated for Arabic TC.

24

The method described above for text representation is called Vector Space Model

(VSM) [155]. The above weighting measures have been thoroughly investigated and

compared for TC on English [161]. Many of the TC methods that were implemented

on Arabic, used tfidf for weighting but only three works [108], [171] and [173]

studied the effect of most of weighting methods for Arabic on TC performance.

Thabtah, et al [173] studied the effect of using tf(tk,dj), idf(tk), tfidf, Widf(tk), inverse

tf(tk,dj) (itf(tk,dj)), and log(tf(tk,dj)) on classification performance and concluded that

using tfidf provided best results. Also, Syiam, et al [171] studied the effect of using

tf(tk,dj), Boolean, tfidf, and normalized tfidf for weighting on classification

performance and concluded that using normalized tfidf provided best results.

However, Kanaan, et al [108] used tf(tk,dj), tfidf, Widf(tk) for both k-NN and Rocchio

classifiers. This work showed that best results were provided: a) when using tfidf for

Rocchio classifier, b) when using Widf(tk) for k-NN classifier. It is noteworthy that

no significance testing in works mentioned above was reported. In general, such

results for TC on Arabic are in agreement with those concluded for English.

2.4.1.2 Dimensionality Reduction

In TC, the large number of terms [161] could be problematic, since such TC

methods cannot scale for large number of terms (i.e. high dimensionality). That is

why before implementing any TC algorithm, a technique to reduce the

dimensionality of the vector space from |T| to |T'| such that |T'| << |T| is often applied.

There are various Dimensionality Reduction (DR) techniques that are used in the

literature whether coming from information theory or from linear algebra. DR

methods are viewed through two different ways: 1- by performing it either locally

(per category) or globally, or 2- by performing it in terms of the nature of the

resulting terms (i.e. term selection versus term extraction). Local DR uses different

25

sets of document vectors according (e.g. the work of Apté, et al [32]) to their

respective categories. Global DR uses the same set |T'| for all categories (e.g. the

work of Yang and Pedersen [183]) such that |T'| << |T|.

Another method that is used by some researchers for DR is stemming. For

English language, [161] researchers differ on the effectiveness of using stems in the

representation of documents in the preprocessing stage to improve TC results but

agree that the stemming step is done in order to reduce the high dimensionality of

documents. Next, DR by applying stemming on Arabic is discussed.

2.4.1.2.1 Dimensionality Reduction by Stemming

Applying different stemming techniques on Arabic texts and investigating the

effect of such techniques for DR on TC performance have been undertaken by only

few research papers [63], [108], [135], [146], [147], [148], [154] and [176]. The

research works that investigated the effect of stemming on classification

performance for Arabic are presented in appendix I. In these papers, the classifier(s)

used stems, roots or words for features and their performances were compared in

order to establish if stemming improved TC.

The works that compared the effect of using words, roots or stems for features,

although used different stemmers, classifiers, and text collections, concluded that the

performance of classifiers when using stems or roots for features outperformed that

when using only words except for the works of [108], [154] and [135]. Kanaan, et al

[108] and Mesleh, [135] papers that showed degrading effects used only light

stemming whereas the others used light stemmers and root extractors. However,

Said, et al [154] work used for stemming and root extraction two different systems:

a) Al-Stem (for stems) and Sebawai (for roots) [49], [50] b) both RDIMORPHO3

stemmer and root extractor [28]. Results show: 1- using Al-Stem with either Mutual

26

Information (MI) or Information Gain (IG) enhances TC performance for small sized

dataset, 2- using words leads to worst TC performance in small datasets while in

large datasets its performance was among the best, 3- Al-Stem gave better TC

performance results than RDI stemmer while RDI root extractor gave better TC

performance results than Sebawai one. It should be noted that none of the works

mentioned above reported significance tests to provide a conclusion whether for

improvement/degradation or no effect.

2.4.1.2.2 Dimensionality Reduction by Term Selection

In the literature, various methods [87] are used for feature subset selection

(abbreviated as FSS). Simple Filters are usually used for large number of features

and are basically either function based on Information theory or based on term or

document frequency or based on using embedded approaches.

For Arabic Information theory-based methods used for FSS are as IG, Cross

entropy for text, MI, Chi-square (
2
), NGL [140] and GSS coefficients [82] (named

after the initials of their founders) (NGL and GSS coefficients are two variants of


2
), and Odds Ratio (OR), whereas the ones based on simply term frequency are as

in [95] or document frequency (threshold DF) as in [20]. However, [161] using the

first two approaches for simple filters are computationally easier alternatives.

Many of the reported Arabic TC methods used one or more of the well known

FSS methods as DF, 
2
, NGL, IG, OR, MI and GSS but mostly used DF or 

2
.

However, for Arabic TC only one work that is known in [95] used Singular Value

Decomposition (SVD) method for FSS. In two other research works [137], [184],

two different optimization methods were used for that purpose.

DF is an effective global and simple method that is used to select the features

with highest values among others. Examples of works that used DF for Arabic are as

27

[19], [20], [154], [171] and [184]. However, using DF in some of these studies didn’t

provide highest TC performance compared with using other FSS methods. As for

applying such FSS techniques on Arabic texts: a) IG was applied in [107], [171],

[137], [146], [151], [154] and [148], b) MI was used in [137], [154] and [136], c) 
2

was used in [135], [137], [136], [7], [98], [174], [146], [147], [148] and [184] works,

d) OR was used in [171], [137] and [136], e) NGL coefficient was used in [171],

[137] and [136], and f) GSS coefficient was used in [171], [137] and [136] works.

Yet, to the best of our knowledge, only the works of [171], [136], [184], [146],

[147], [148], [154] and [137] investigated and compared the effect of FSS methods

on classification performance (for further details regarding these works, kindly refer

to appendix I). However, it is not possible here from the literature mentioned above

to conclude which FSS method(s) provides best performance for Arabic TC. This is

so for two reasons: a) such studies were conducted on different text collections, b) in

above studies, the results of applying FSS methods were rather near in values and no

significance tests were reported.

The results of the above comparative works indicate that using 
2
, NGL or GSS

separately improved TC performance better than others. However, comparative

works on Arabic gave contradictory results regarding the effect of OR on TC

compared with those on English. Also, it is noticed that using optimization

techniques for FSS outperformed the other Information-theoretic ones on Arabic.

2.4.1.2.3 Dimensionality Reduction by Term Extraction

Term extraction is basically [161] a method that attempts to generate a set |T'|

formed of synthetic terms such that |T'| << |T| in order to maximize the effectiveness

of a classifier. There are two major methods for term extraction which are term

clustering and Latent Semantic Indexing (LSI).

28

Term clustering is a process by which features [117] with high degree of pair

wise semantic relatedness are grouped so that their representative would be used

instead of them as features in VSM. There are two types of clustering methods that

have been studied: 1- one-way clustering, and 2- co-clustering. As far as we know,

there is no research work that implements term clustering methods for Arabic TC.

LSI is a statistical [87] technique that attempts to estimate the hidden content

structure within documents where it uses SVD, and discovers statistically most

significant co-occurrences of terms. LSI was used for the unsupervised induction of

MSA verb classes in [168]. Another use of LSI for Arabic was by Brants, et al [37]

for topic analysis and segmentation. However, for TC it was implemented by Zukas

and Price
21

 where it reported an accuracy of 97% when LSI was used for TC.

2.4.2 Applied Text Classification Techniques on Arabic Sources

TC is [87] a three stage process. These stages are: 1- pre-processing stage, 2- the

classification stage where usually ML techniques (mainly supervised) are used, and

3- the evaluation stage. In the past few years more ML techniques have been applied

on Arabic for TC.

For Arabic texts VSM is mainly used for document representation. In [86], TC

methods were used to enhance an Arabic IR system. The work of Al-Kabi and Al-

Sinjilawi [10] investigated different measures to classify Arabic texts as Cosine,

Jaccard, Dice, and inner product measures, then compared their results with those of

using NB and Euclidean distance. Its results showed that NB surpasses the five

measures and among those five measures, the cosine measure provides best results.

The effect of pre-processing step on TC performance was discussed above. In

[161] the classification stage, besides the classifier used, the proposed corpus's size

21 A. Zukas and R. Price, "Document Categorization using Latent Semantic Indexing", Found at:
http://www.contentanalyst.com/images/images/Categorization_LSI.pdf [last accessed 1/11/2011]

http://www.contentanalyst.com/images/images/Categorization_LSI.pdf

29

used for classification task, its training/validation and testing sets ratios are

important factors that affect the performance of TC. The training set (Tr) is used to

train the classifier and the validation set (Tv) is used for fine tuning its internal

parameters, while the test set Te is used for evaluating the effectiveness of the

classifier. This is called the train-and-test approach. Other approaches are the k-fold

cross-validation and the hold-out approaches.

The evaluation [161] of classifier performance is done through its effectiveness

which is the ability to take the right classification decisions. Effectiveness is thus

usually measured by Precision (P), Recall (R), Accuracy (A), and/or Error (E).

Precision and Recall [161] measures cannot be looked into separately, so a

combination of their effect is used by: 1- the eleven-point average precision, 2- the

breakeven point, or 3- the Fβ function. The above measures' equations are as shown

from the contingency matrix in appendix I according to: 1- micro-averaging, 2-

macro-averaging. These two methods might provide different results depending on if

the number of documents per category is the same. Next is a brief description of ML

methods used for Arabic TC.

2.4.2.1 Specific Machine Learning Techniques

For Arabic, relatively few of ML methods have been used. Examples of

supervised ML techniques applied for Arabic TC are as: 1- decision trees [8], [94];

2- statistical as n-grams [112] or maximum entropy [70], [159] 3- Artificial Neural

Network (ANN) [95], [93], 4- distance-based [60], 5- association rule mining [27],

6- profile-based as Rocchio classifier [171], [108], and 7- more recently Rule-based

as RIPPER [6]; [175]. Most of the above mentioned works are further presented in

appendix I. Also, few other ML methods were implemented more often for Arabic as

30

parametric-based methods such as NB, example-based as k-NN, and SVM. These

last three methods will be described in the coming subsections.

2.4.2.2 Naïve Bayes Classifier

NB is a simple probabilistic [92] classifier based on applying Bayes' theorem. It

is a powerful, easy and language independent method. When NB classifier is applied

in order to choose a class for a test document among predefined classes, equations

presented in appendix I are used.

NB classifier was investigated on Arabic in works as [90], [89], [7], [108], [10],

[135], [174], [146], [147], [148], [71], [141], [34], [104] and [61] as shown in details

in appendix I, where in many of these studies, tfidf was used for weighting, whereas


2
, DF, and IG and/or using stemming were used for FSS. It is noteworthy that such

papers used different text collections and training-testing ratios, thus this classifier's

performance varied among such works in a wide range from 0.73 to 0.94 for F1-

measure. However, the highest performance reported for this classifier (F1 = 0.9369)

is in the work of Hadi, et al [90] which used a small corpus of 600 texts under 6

classes with 70%-30% training – testing ratios.

2.4.2.3 Example-Based Classifiers (k-NN Classifier)

K-NN is a [92] statistical learning algorithm. It is a simple yet very efficient

example-based approach for TC. Many parameters affect its performance such as the

similarity measure (as Cosine, Euclidean, Jaccard, and Dice measures) and the

choice of the number of nearest neighbors (k).

When k-NN classifier was applied for Arabic as in [135], [63], [62], [98], [20],

[90], [173], [19], [109], [171], [34], [107], [104] and [61] (detailed info are shown in

appendix I), about 23% of such research works did not state the distance measure

used. Also, about 38% of these works used the cosine measure and the remaining

31

works used either Euclidean, Dice, and/or Jaccard measures. However, about 30% of

these works did not specify the value of k. Other issues regarding these studies are

that such papers used different text collections, FSS methods and training-testing

ratios and thus the k-NN classifier performance using F1 varied among such works

from about 0.70 for small corpus size to about 0.90 for much larger corpora. The

highest reported F1 value [19] using this classifier was 0.96. This work used Cosine

similarity, DF and light stemming, k = 21, and a small corpus of 621 texts under 6

classes, and a 90%-10% training-testing ratio.

2.4.2.4 Support Vector Machines Classifier

SVM's [105] principle is based on the structural risk minimization principle from

computational learning theory. The idea is to find a hypothesis H for which the

lowest true error is guaranteed (i.e. by searching for the maximum marginal hyper

plane). A separating hyper plane can be found using 0. bXW , where W is a

weight vector. SVMs learn either linear threshold or nonlinear (kernel) threshold

function(s). Examples of nonlinear functions are as polynomial classifiers, radial

basic function (RBF) networks, and three-layer sigmoid neural nets. However, using

nonlinear [92] threshold functions is expensive. One remarkable [105] property of

SVMs is that their learning ability is independent of the dimensionality of the feature

space but depend on the number of training documents. Available SVM software

online are TinySVM
22

, GIST
23

 SVM, SVM
light24

and WEKA's Sequential Minimal

Optimization (SMO)
25

.

SVM classifier was investigated by few research works for Arabic (detailed info

of works applying SVM classifier on Arabic are shown in appendix I) where 33.3%

22 Found at: http://chasen.org/~taku/software/TinySVM [last accessed 1/11/2011]
23 Found at: http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi [last accessed 1/11/2011]
24 SVMlight for single-class TC is found at: http://svmlight.joachims.org/ and for multiclass TC is found at:

http://svmlight.joachims.org/svm-multiclass.html [last accessed 1/11/2011]
25 Further info on SMO can be found at: http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html [last accessed
7/6/2012].

http://chasen.org/~taku/software/TinySVM
http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi
http://svmlight.joachims.org/
http://svmlight.joachims.org/svm-multiclass.html
http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html

32

of such works [135], [136], [137]; used the same in-house collection composed of

1,445 documents with 9 classes, training – testing ratios (2/3-1/3), weighting using

tfidf, TinySVM tool and varied in using different FSS methods and its results for F1

varied between 0.74 for no FSS to 0.896 for ACO. Also, another 33.3% of works

applying SVM on Arabic used 7,000 documents with 7 classes, applied both 
2
 and

IG for FSS and various stemming techniques for DR [146], [147] and [148]. These

works found that for 2,000 features maximum F1 value was obtained (about 0.92)

when using 3-gram for stemming and 
2
. However, the highest reported F1 value of

0.982 was in the work of Hmeidi, et al [98], which used GIST SVM, tfidf for

weighting, local 
2
 for FSS, 2,237 texts and 98.6%-1.3% training-testing ratio.

2.4.2.5 Comparison between Classifiers' Performances

The most popular [161] classification methods were implemented for English on

Reuters 20 newsgroups text collection in an attempt to compare their performance.

Such implementation was performed for the following: a) total number of documents

is 12,902, b) number of training documents is 9,603, c) number of test documents is

3,299, and d) the number of categories is 90. Results showed that value of F1 for the

following classifiers: 0.795 using NB classifier, 0.794 using C4.5 classifier, 0.856

using k-NN classifier, 0.870 using SVM classifier, and 0.878 using boosted tree

classifier.

Since there is no bench mark corpus for Arabic, it is not possible to conclusively

decide if performance of classifiers' on Arabic is comparable with that for English.

Only few classifiers were implemented for Arabic as mentioned above. Many

classifiers that are not used for Arabic TC such as Ensemble of Nested Dichotomies

that is used in this thesis in Chapter 5 and is described fully in Chapter 6.

33

2.5 Summary

Although, lexical-based approaches are expected to provide better results, yet these

approaches require access to available lexical database(s), dictionaries, and/or

thesaurus or building them from scratch. Since such approaches were not available

for this thesis at the time of building our root extraction methods, and since building

such methods is time consuming, it was decided to work with other techniques. It

should be noted that since Buckwalter's stemmer provided the lowest performance

results among others [120], [121], [160], it was decided not to use it. Although

applying rule-based techniques is expected to provide good results, yet building and

implementing it is also time consuming. However, their building will expectedly

take less time compared to that of lexical-based approaches.

At the time of building the root extraction techniques in this work some of well

known stemmers as the Khoja's stemmer were not accessible. Also, although

statistical or ML-based techniques provided higher accuracy results than rule-based

or lexical-based methods, nevertheless these techniques will not be

used/implemented here since such methods: 1- are not available online, 2- require a

relatively large annotated corpus which is not available here. Finally, since the effect

of vowelized words had a rather small effect on root extraction performance as

presented above, it was decided not to apply vowels to words in MSA texts. Thus,

only two methods for root extraction will be implemented here. These are a rule-

based method [1] and a weight-based one [17].

The rule-based technique that is used here will be explained in chapter 4. It was

developed by Al-Ameed [1] where it was reported to have accuracy greater than

90%. However, since it did not handle many irregular cases as weak, geminated, and

hamzated words, it was enhanced by addressing such cases as will be shown in

34

Chapter 4 (i.e. by developing and adding the Correction algorithm that handles these

cases to the rule-based one). Also, in comparison with the enhanced rule-based

technique, a weight-based (also named here positional-letter-ranking) approach is

also investigated [17] along with proposing and implementing an adjustment and two

expanded weight-based methods in Chapter 4. The choice of this technique was due

to the fact that it is simple to implement and its reported accuracy value in [17] is

about 90%. Also, the Correction algorithm is added to all four weight-based

techniques and its effect on the performance of such techniques is shown in Chapter

4. The technique with best accuracy results is used further on to represent texts in

terms of their normalized words, stems or roots and investigates which of such

representations improves best TC techniques as is described in Chapter 5. However,

if a stemmer doesn’t remove efficiently/correctly prefixes and/or suffixes then the

remaining analysis to extract the root of such word would produce the wrong root.

This is called here the prefix-suffix paradigm.

The following was concluded for Arabic TC:

1- regarding document representation and term weighting: a) for document

representation VSM was used and for feature choices only words, stems, roots

were separately used, b) for term weighting methods, TFIDF was used frequently

and compared with others in terms of their effect on TC performance, but it was

not reported if such variation is statistically significant. The idf part of TFIDF

function defined above handles the effect of the term globally. So the local effect

of this part is not tested for Arabic TC.

2- for DR methods implemented and their effect on Arabic TC performance: a)

stemming was investigated but there were no reports of significance tests to

validate their results; b) term selection methods were investigated and it can be

concluded that when using DF in some research studies TC performance wasn’t

the highest and it is not possible to conclude which FSS method(s) provides best

performance for Arabic TC since different text collections were used, and results

of applying FSS methods were rather near in values and no significance tests were

35

reported; c) term extraction techniques there is no research work that

implemented any of term clustering methods for Arabic, whereas LSI was used

for TC on Arabic with a reported accuracy of 97%.

3- When applying NB, k-NN, and SVM classifiers on Arabic, no conclusive result

of their performance on Arabic can be provided since different text collections,

different FSS methods, and training-testing ratios were used. The performance of

NB classifier varied in a wide range from 0.73 to 0.94 for F1. K-NN classifier's

performance using F1 varied from about 0.70 to about 0.90. SVM classifier's

performance using F1 varied from about 0.74 to about 0.986. However, recent

results of research works presented in section 2.4.2 that compared between those

three classifiers indicate that performance of SVM classifier is highest followed

by k-NN then by NB ones.

4- Few clustering methods have been implemented for Arabic such as in [12],

[159], [85], [21], and [109]. However, since the scope of this thesis is to

investigate classification methods for Arabic, clustering techniques will not be

discussed.

5- Only a few classifiers were implemented for Arabic as mentioned above. There

is no investigation in the literature of the effect of representing texts by phrases

for Arabic (whether alone or combined with words) on TC performance. The

intent of this thesis is to study the effect of including phrases as features on TC

and compare the performance of many well performing classifiers as will be

presented in Chapter 5 and discussed in Chapter 6.

36

Chapter 3: The Development of an Arabic Text Corpus

and Pre-processing Steps

3.1 Introduction

The first aim of the work reported in this chapter is to present and describe two new

single-labeled Arabic text collections designed hereby to support the forthcoming

research on pre-processing and classifier performance study, to introduce a

comprehensive label set that unifies labeling of the two text collections, and to

integrate these two collections into one final corpus with an aim to use its texts in the

implementation of: a) root extraction techniques presented in Chapter 4, and b)

single-label TC techniques presented in Chapter 5. The second aim is to present

preprocessing steps necessary for both root extraction and TC methods. This requires

the handling of several issues such as removing function words, diacritics, non

Arabic alphabet and digits among others. Such requirements are presented in this

chapter whereas other preprocessing steps are presented in Chapter 5 for TC.

The investigation for text labelling is performed in order to classify a series of texts

into one domain from eight specified general domains namely politics, economics,

social issues, sports, music, religious issues, 'arts, literature, and culture', and finally

'educational, science, and health'. The first Arabic Text collection under 8 classes

(AT8) is gathered by the author of this thesis and contains 380 texts only, while the

second one is downloaded from Leed's University website. Leed's Arabic

Contemporary Corpus (LACC) contains 424 texts only. Since the number of texts in

each collection is small, the need to incorporate both into one final corpus and

unifying their classes is evident in order to acquire better performance results for

37

both root extraction and TC methods where the final corpus is a better representative

than each collection of available Arabic texts on the web written in MSA.

This chapter is organized as follows: Section 3.2 describes the first Arabic text

collection. In Section 3.3, the second Arabic text collection is described, where its

re-categorization process is presented in order to unify labels for both collections

among the eight domains mentioned above. The final corpus' single-labeling results

are also presented in Section 3.3. Pre-processing steps needed, for both root

extraction techniques and TC ones, are described in Section 3.4. Finally, conclusions

are presented in Section 3.5.

3.2 Description of Newly Gathered Text Collection

In order to support implementing root extraction techniques to be discussed in

Chapter 4, we have built up a new collection of Arabic texts. This was performed by

acquiring randomly from various online Arabic newspapers, academics, magazines

and other sources published online in the period 23/7/2008 - 1/2/2009. This

collection was presented in notepad text files (UTF-8).

3.2.1 Newly Gathered Text Collection

The AT8 collection is gathered randomly according to eight general subject domains

as stated in section 3.1. In each domain close to 50 texts were chosen randomly with

a total of 380 texts in all 8 domains (about 200,000 words). On average, the number

of words per text is about 526 words. These domains were chosen here in such a way

that: 1- these domains were in general chosen by the text's respective websites, 2-

these domains would contain articles, short stories … etc. Also, two of these

domains, which are the educational, science and health domain or the arts, literature

and culture domain, were chosen each containing three topics. This was performed

38

since although different, yet these three topics are related, and the number of texts

that is gathered from websites for each individual topic is comparatively low. The

actual number of text documents in each domain is shown in Table 1. Furthermore,

the list of source websites and number of texts chosen from each are shown in Table

2. The distribution of these texts along three different major source categories,

namely 'newspapers', 'magazines and channels', and 'other' websites as well as

different geographical regions are shown in Figure 3. 'Other' websites source

category presents in general personal websites that are constructed by individuals.

No. Domain # words # files

1- Politics 27,164 50
2- Economics 22,516 45

3- Religious issues 28,538 51

4- Social issues 21,562 38
5- Sports 22,266 61

6- Educational, science and health 25,538 43

7- Arts, literature and culture 33,518 50
8- Music 12,180 42

 Total 193,282 380

Table 1: Number of Texts and words in AT8 collection

Distribution of texts along sources

0

50

100

150

200

250

300

new spapers magazines and channels w ebsites

Sources

Nu
m

be
r

(a)

Distribution of gathered texts according to region

36.84

28.95

10.5

18.68

5

Middle east

Arabic gulf

Arab north african

Europe and USA

others

(b)

Figure 3: Distribution of texts in AT8 along (a) three major sources, (b) region

39

Website of Country Region Texts no Texts

no
Addustour newspaper Jordan

Middle East region (36.84%)

54 (14.2%)

12

Al-Rai newspaper Jordan 31

Alarabalyawm newspaper Jordan 7

UOP Jordan 4

Al-Anwar newspaper Lebanon

53

(13.95%)

3

Al-Intiqad newspaper Lebanon 1

Assafir newspaper Lebanon 7

Annahar newspaper Lebanon 13

Alhayat newspaper Lebanon 27

Almustaqbal newspaper Lebanon 2

Furat-alwehda newspaper Syria 6 (1.6%) 3

Jamahir-alwehda

newspaper

Syria 3

Al-Sabar magazine Palestine

20 (5.3%)

3

Alyaum newspaper Palestine 2

Al-ayyam newspaper Palestine 2

Alhayat-jadida newspaper Palestine 1

Alquds newspaper Palestine 12

Fasl-almaqal newspaper Israel 7 (1.8%) 7

Akhbar-alkhaleej

newspaper

Bahrain

Arabic Gulf region (28.95%)

99

(26.05%)

1

Ommandaily newspaper Omman 5

Al-sharq newspaper Qatar 3

Aljazeera Channel Qatar 28

Alqabas newspaper Kuwait 13

Alwatan newspaper Kuwait 7

Alkhaleej newspaper Emirates 1

Akhbaralarab newspaper Emirates 1

Kul-alwatan newspaper Saudi Arabia 5

Okaz newspaper Saudi Arabia 7

Al-madina newspaper Saudi Arabia 11

Al-jazirah newspaper Saudi Arabia 1

Al-Riyadh newspaper Saudi Arabia 8

Asharqalawsat newspaper Saudi Arabia 8

Azzaman newspaper Iraq 6 (1.6%) 6

Arabiya MBC news channel 5 (1.32%) 5

Alaswaq Al-Arabia channelsatellite

channel
Europe and USA 40 (10.5%)

1

Alquds-alarabi newspaper UK 10

BBC Arabic channel UK 16

CNN channel USA 13

Al-fadjr newspaper Algeria

Arab North African region

(18.68%)

46

(12.11%)

23

Al-Alam newspaper Morocco 3

Alkhabar newspaper Algeria 13

El-massa newspaper Algeria 2

Assaheefa newspaper Libya 1

MAP news agency Morocco 4

Al-Ahram newspaper Egypt

25 (6.6%)

12

Al-Gomhuria newspaper Egypt 5

Al-Wafd newspaper Egypt 1

Arabnet Egypt 5

Watani Egypt 2

Alarab online UK

Others (5%)

(4.21%) 16

Maktoob Jordan (0.26%) 1

Jeeran Saudi Arabia (4.21) (0.26%) 1

Hazemsakeek - (0.26%) 1

Table 2: Source Websites and their Number of Texts in AT8 collection

Despite this text collection effort, it is observed that the AT8 text collection

remained small in size whether in terms of the number of text files or words and did

40

not represent a sufficient corpus for both the root extraction and TC methods. It is

determined that combining the newly collected text set with the existing collection at

the University of Leeds, would provide a comparatively large enough corpus for the

root extraction and TC methods.

3.3 Description of University of Leeds Arabic Contemporary Corpus

LACC corpus was downloaded on January 2010 and will be described in detail.

Section 3.3.1 discusses the properties, components of LACC. The re-categorization

of LACC is performed in Section 3.3.2 as well as a comparison between the two text

collections in terms of their domains.

3.3.1 Original Categorization of LACC

LACC corpus that is available online [25] is presented here where its written texts

were originally put into 15 categories as shown in Table 3. Such texts were put in

XML mark-up as raw UTF-8 text files (except ScienceB category where its texts

were put in notepad text files (also UTF-8)) that contained many details such as title,

original publishing organization, author name(s), date of publication, number of

words …etc.

No. Original Category # files # words % words
1- Politics 10 44,590 5.03

2- Autobiography 72 151,687 17.13

3- Economics 28 66,354 7.49

4- Religion 19 111,199 12.56

5- Short stories 31 46,884 5.294

6- Sociology 30 88,577 10.002

7- Tourism and Travel 60 46,093 5.21

8- Recipes 9 4,972 0.56

9- Sports 4 8,809 0.995

10- Education 10 24,674 2.79

11- Health and Medicine 32 40,480 4.57

12- Science 45 105,206 11.88

13- Interviews 23 56,428 6.37

14- ScienceB 25 67,720 7.65

15- Children's stories 26 21,958 2.48

 Total 424 885,632

Table 3: Number of Texts and words in LACC corpus

41

The target users [25] of this corpus are language teachers, language engineers,

foreign learners of Arabic and material writers. Table 4 illustrates for each original

website name, country, region, number of files and words in LACC. Figure 4 briefly

illustrates the contents of this table.

No. Magazine, newspaper,

website name

Country Region #

files

% files # words %

words
1- Alarabi magazine Kuwait

Gulf Area

(84.86%)

138 32.55 353,171 39.88

2- Radio Qatar Qatar 2 0.47 1,771 0.2

3- Alrai Alaam Kuwait 13 3.07 61,592 6.96

4- Islamonline website Qatar 45 10.61 135,037 15.25

5- Lahaonline website Saudi Arabia 13 3.07 2,926 0.33

6- Economic world

Magazine

Saudi Arabia 83 19.58 86,501 9.77

7- Islam-online website Qatar 8 1.89 35,078 3.96

8- Al Marefah Saudi Arabia 10 2.36 24,674 2.79

9- Akalaat website UAE 8 1.89 4,620 0.52

10- Arabic Story Bahrain 30 7.08 45,831 5.18

11- Arab Medical Magazine Lebanon
Middle

East

(6.85%)

27 6.37 34,395 3.88

12- Ofouq Syria 12 2.83 21,667 2.45

13- Al Hourriah Syria 2 0.47 4,639 0.52

14- Sayidaty Magazine UK

Europe

(0.68%)

7 1.65 5,599 0.63

15- BBC UK 1 0.24 411 0.05

16- Science And Technology

Magazine

 (7.65%) 25 5.90 67,720 7.65

 Total 424 - 885,632 -

Table 4: Source Websites and their Number of Texts in the LACC corpus

The small size of both collections led us to include both in one corpus. Yet, the

difference in the type of domains between the two collections led us to investigate

which type of domains to use. Figure 4a shows that large percentage of texts came

from magazines and Figure 4b shows that about 85% of texts were provided from the

Arabian Gulf region. This corpus has 424 texts and about 900,000 words. On

average, the number of words per text in LACC is about 2,089 words.

From Tables 1 and 3, the domains in LACC are different than those in AT8

collection. This is due to the fact that, among other reasons, the target users in both

collections are different. Also, a comparison between Tables 2 and 4 as well as

Figures 3 and 4 shows that AT8 collection is more spread around the regions of Arab

speaking countries compared to LACC. This is due to the fact that LACC was

limited by the number of websites (publishers) that accepted that their texts in LACC

42

be available online. Yet, the number of words in LACC is far more than AT8

collection.

Distribution of texts along sources

0

50

100

150

200

250

300

350

new spapers magazines and channels w ebsites

Sources

N
u

m
b

er

(a)

(b)

Figure 4: Distribution of texts in LACC along (a) three major sources, (b) regions

No. Original Domain # files # words Major Domain % words)(icg

1- Politics 10 44,590 Politics 5.03 2.36

2- Autobiography 72 151,687

Arts

24.9

30.42 3- Short stories 31 46,884

4- Children's stories 26 21,958

5- Economics 28 66,354 Commerce 7.49 6.6

6- Religion 19 111,199

Social sciences

25.35

13.92 7- Sociology 30 88,577

8- Education 10 24,674

9- Tourism and Travel 60 46,093 Leisure 6.21 15.09

10- Sports 4 8,809

11- Recipes 9 4,972 Life 6.93 7.55

12- Interviews 23 56,428

13- Science 45 105,206 Natural sciences 11.88 10.61

14- Health and Medicine 32 40,480 Applied sciences 12.22 13.44

15- ScienceB 25 67,720

 Total 424 885,632

Table 5: Percentage of Texts and words in LACC corpus under major domains

43

3.3.2 Re-Categorization of LACC and Final Corpus Categorization

From Table 3, genre of domains in LACC is not as that in AT8 collection. In order to

use both collections for TC, their texts should be under the same genre of domains. It

was decided first to re-categorize the texts in LACC such that each text fits into only

one domain among eight domains of AT8 collection as shown in Table 6.

New Domain

Index

No. Original Domain # files # words % words % Words - combined

1-
1- Politics 10 44,590 5.04

8.00
2- Autobiography for politics 13 26,226 2.96

2- 3- Economics 28 66,354 7.49 7.49

3-
4- Religion 19 111,199 12.55

15.08
5- Autobiography for religion 13 22,440 2.53

4-

6- Sociology 30 88,577 10.00

15.4 7- Tourism and Travel for Social 60 46,093 5.21

8- Autobiography for social 1 1652 0.19

5- 9- Sports 4 8,809 1.00 1.00

6-

10- Education 10 24,674 2.79

27.86

11- Health and Medicine 32 40,480 4.57

12- Science for educational 45 105,206 11.88

13- Autobiography for

Educational

6 8,617 0.97

14- ScienceB for Educational 25 67,720 7.65

7-

15- Recipes for Arts 9 4972 0.56

23.69

16- Short stories for Arts 31 46,884 5.29

17- Children's stories for Arts 26 21,958 2.48

18- Interviews for Arts 22 56,011 6.32

19- Autobiography for Arts 33 80,023 9.04

8-
20- Interviews for music 1 417 0.05

1.49
21- Autobiography for music 6 12,729 1.44

 Total 424 885,632 - -

Table 6: Number of Texts and words in LACC corpus after Re-categorization

Also, a comparison between the two collections is shown in terms of number of files

as in Table 7 and in terms of words as in Table 8. It is clear from these two tables

that number of files or words are not evenly distributed among domains in both

collections, i.e. their generality, although in LACC, this is clearer. However, as is

shown below, after combining LACC with AT8 collection, the generality of the final

corpus is more similar among domains using AT8 scheme.

No. Category # files,

LACC
)(icg , LACC

files,

AT8
)(icg , AT8

files, final

corpus
)(icg

, final 1- Politics 23 5.42 50 13.16 73 9.08
2- Economics 28 6.60 45 11.84 73 9.08
3- Religion 32 7.55 51 13.43 83 10.32
4- Social 91 21.46 38 10 129 16.04
5- Sports 4 0.94 61 16.05 65 8.08
6- Educational,

health and

medicine

118 27.83 43 11.32 161 20.02
7- Arts, Culture

and Literature

121 28.54 50 13.16 171 21.27
8- Music 7 1.65 42 11.05 49 6.10

 Total 424 - 380 - 804 -

Table 7: Comparison between LACC and AT8 collections in terms of number of files

according to AT8 categorization scheme

44

No. Category # words,

LACC

%

words,

LACC

words,

AT8

% words,

AT8

words,

final

corpus

% words,

final to

total
1- Politics 70,816 72.28 27,164 27.72 97,980 9.08

2- Economics 66,354 74.66 22,516 25.34 88,870 8.24

3- Religion 133,639 82.40 28,538 17.6 162,177 15.03

4- Social 136,322 86.34 21,562 13.66 157,884 14.63

5- Sports 8,809 28.56 22,266 71.65 31,075 2.88

6- Educational,

health and

medicine

246,697 90.62 25,538 9.38 272,235 25.23

7- Arts, Culture and

Literature

209,849 87.17 33,518 13.77 243,367 22.56

8- Music 13,146 51.91 12,180 48.09 25,326 2.35

 Total 885,632 - 193,282 - 1,078,914 -

Table 8: Comparison between LACC and AT8 collections in terms of number of words

according to AT8 categorization scheme

Also, AT8 collection was re-categorized according to the general domains assigned

in [163] and a comparison between LACC and AT8 collection in that regard is

shown in Table 9.

Doma

in

AT8 collection LACC Final corpus

file

)(icg

word

%

word

file

)(icg

word

%

word

file

)(icg

word

%

word

Politics 50 13.16 27,164 14.05 10 2.36 44,590 5.03 60 7.46 71,754 8.1

Arts 38 10 23,891 12.36 129 30.42 220,529 24.9 167 20.77 244,420 22.65

Appl

science

24 6.32 15,432 7.98 57 13.44 108,200 12.22 81 10.07 123,632 11.46

Nat

science

1 0.26 308 0.16 45 10.61 105,206 11.88 46 5.72 105,514 9.78

Comm

erce

47 12.37 22,876 11.84 28 6.6 66,354 7.49 75 9.33 89,230 10.08

Social

science

s

110 34.74 62,696 32.44 59 13.92 224,450 25.34 191 23.76 287,146 26.61

Life - - - - 32 7.55 61,400 6.93 32 3.98 61,400 5.69

Leisure 110 28.95 40,915 21.17 64 15.09 54,902 6.2 174 21.64 95,817 8.88

Total 380 47.26 193,28

2

- 424 52.74 885,63

2

- 804 - 1,078,

914

-

Table 9: Comparison between LACC and AT8 collections in terms of number of files

and words according to LACC categorization scheme

45

(a) (b)

Figure 5: Percentage in final corpus according to LACC categorization scheme for (a)

words, (b) files

Figures 5 and 6 illustrate the information provided in Tables 7 & 8 regarding the

effect of both categorization schemes on final corpus.

(a) (b)

Figure 6: Percentage in final corpus according to AT8 collection categorization scheme

for (a) words, (b) files

Percentages in Tables 7 and 9 as well as in Figures 5 and 6, for both categorization

schemes illustrate that the generality among suggested domains is not consistent.

Also, when using the LACC categorization scheme no or nearly no texts were

available in the two domains life and natural sciences as in the AT8 collection.

The distribution of texts in the final corpus along three major source categories and

according to geographical regions is shown in Figure 7. Figure 7a illustrates that

large percentage of texts came from both magazines and newspapers sources and

46

Figure 7b illustrates that about 60% of texts were provided from the Arabian Gulf

region. Also, on average, the number of words per text in final corpus is about 1,342

words. Thus, we have decided to use the AT8 collection categorization scheme. The

final corpus characteristics are presented in Table 10. The final corpus categorization

is used for single-label TC in Chapter 5.

Distribution of texts in Final corpus along sources

0

50

100

150

200

250

300

350

400

450

new spapers magazines and channels w ebsites

Sources

N
u

m
b

e
r

(a) (b)

Figure 7: Distribution of texts in final corpus along (a) three major sources, (b) region

Table 10 presents the number of files in each category of the final corpus and as can

be seen from generality values that the corpus is less skewed than before. It should

be noted that through the process of manual re-categorization. Many texts could be

classified into more than one domain. This was further investigated by distributing a

questionnaire to native Arabic speakers requesting them to classify attached texts

with one or two classes among predefined eight classes to develop the first multi-

labelled Arabic corpus that is briefly presented in Chapter 7 for future work.

Domain # files)(icg

Politics 73 9.08

Economics 73 9.08

Religion 83 10.32

Social 129 16.05

Sports 65 8.08

Educational, science and

health

161 20.02

Arts, Culture and

Literature

171 21.27

Music 49 6.1

Total 804 -

Table 10: Final Corpus' number of files and generality among classes

47

Usually Arabic texts are available in MSA and do not contain words with short

vowels, nunnation, kasheeda or assimilation markers. Thus, in the pre-processing

stage before applying root extraction or TC techniques such markers are removed (if

available in the text) along with punctuation marks, function words, digits and

English letters. Next, the construction of function words list is presented as part of

the pre-processing stage.

3.4 Pre-processing Steps

3.4.1 Arabic Function Word List Construction

From a non-linguistic point of view, a function word is a word [87] that does not

carry information. It has mainly a functional role and is usually removed in TM

methods to help the methods to perform better.

Here we present the Arabic function words list that is formed from 2,549 words [96].

Examples of function words are the separate prepositions, personal pronouns,

demonstrative pronouns, interrogative pronouns, relative pronouns, conjunctions,

and interjections as shown in Table 11 as well as in appendix I. Imperfect verbs such

as kAn wAxwAthA standing for the verbs 'was and its sisters' were included in the

function word list along with similar verbs such as OSbH, mAzAl, or OmsY. Also,

words as Ontm, mvlhm, Elyhn, which are derivations from Ont, mvl, ElY

respectively, whether for dual or plural forms, are added to function word list. The

function word list constructed here is used in both Chapters 4 and 5 when preparing

texts for root extraction or TC methods by removing function words from texts in the

final corpus.

48

Arabic function word Transliterated Stands for

 IlY’ to, unto, until‘ ’ٳلى‘

 ElY’ Over, on, or against‘ ’على‘

 OnA’ I‘ 'أنا‘

 nHn’ We‘ ’نحن

 Onta’ masculine single you‘ ’أنت ‘

 hn~’ plural feminine they‘ ’هن‘

 hA*A’ masculine single this‘ ’هذا‘

 hAtAn’ feminine dual this‘ ’هٰتان‘

 mn’ Who‘ ’من ‘

 mA*A’, ‘mA’ What‘ ’ما‘ ’ماذا‘

 Al*y’ Who‘ ’الذي‘

 w’ AND‘ ’و‘

 Ow’ OR‘ ’أو‘

Table 11: Some examples of Function Word list

3.4.2 Arabic Text Pre-processing

From Figure 8, the first process before performing root extraction or TC methods is

to remove from texts English letters, punctuation marks, nunations, assimilation

markers, short vowels, kasheeda, function words or numerals (either Hindi or

Arabic). This is performed for all texts in final corpus in preparation for applying

root extraction and/or TC methods.

3.5 Conclusions

Two Arabic text collections are fully described and manually classified into one final

corpus and their labeling is unified under eight general classes. This corpus is

composed of 804 files and about a million words. It is prepared for the

implementation of root extraction techniques as shown in Chapter 4, and single-label

TC techniques as shown in Chapter 5. The generality differs among the final corpus's

eight classes. This difference is expected to affect TC results presented in Chapter 5.

49

Figure 8: Preprocessing Steps before Arabic TC

Apply best Root Extraction method to provide

normalized words, stems, and roots for

respective words in Text.

Remove punctuation marks, short vowels,

kasheeda, assimilation marks, nunations,

English letters, function words and numbers

Collect and describe Arabic Text Corpus

Represent texts using VSM method for all

feature choises.

in Chapter 3

in Chapter 3

in Chapter 4

in Chapter 5

50

Chapter 4: The Development of an Arabic Root Extraction

System

4.1 Introduction

In this chapter, the focus will be on investigating two different Arabic stemming

techniques, improving them and finally comparing their performances. The two

approaches for stemming used here are based on the works of Al-Ameed's [1] and

Al-Shalabi, et al [17]. The first approach is a rule-based one [1]. The choice of the

rule-based technique was because it was reported in the original work to have an

accuracy value higher than 90% [1]. The second approach is a weight-based

technique that is introduced by Al-Shalabi, et al [17] technique. The choice of this

technique was because it is simple, easy to implement and had a reported 90%

accuracy. However, in [17] no information was provided for the reasons of choosing

the weight and rank values for the alphabetical letters.

In this Chapter, a proposed adjustment method to the weight-based technique

described in [17] and two enhancement methods (named Expanded Weight Based

Method1 (EWBM1) and Expanded Weight Based Method2 (EWBM2)) are

implemented here. Such contributions have also been reported by the author in [14].

The two original approaches [1, 17] presented here do not handle weak words, names

of places, countries, cities, months, foreign Arabized words, geminated words

(except for the rule-based one in section 4.2 where geminating is partially handled),

or broken plurals (except for the rule-based one in section 4.2). In both approaches,

the concentration of affix removal is on the letters in sOltmwnyhA.

51

Since the two approaches used here do not handle irregular words, then the first

contribution of this thesis is through proposing and implementing the Correction

algorithm (as investigated in [13]). This algorithm is included here into all root

extraction algorithms and its effectiveness in improving their performance is

investigated. The results of implementing these techniques will be compared with

those of a rule-based approach thoroughly investigated by the author of this thesis

and reported in [14].

Figure 9 summarizes the contributions provided by all implemented root extraction

techniques (described in coming subsections), and demonstrates how original

algorithms were incorporated and enriched in this thesis. The comparison between

these techniques is performed according to two criteria: 1- accuracy, and 2-

execution time.

The final contribution here addresses the case of handling foreign Arabized words

and names of places, countries, cities, and months by developing a list of such cases

as described in section 4.5. This list is incorporated in a final proposed root

extraction system that is presented in Figure 28 at the end of this chapter. Figure 28

briefly summarizes the effort of the author to combine the best features of proposed

root extraction techniques that handle weak, eliminated-long-vowel, hamzated, and

geminated words, the best choices of investigated normalization lists, and extracting

quadriliteral roots (proposed in EWBM2 method) and as such presents the first

contribution. It also includes the second contribution by handling foreign Arabized

words. Thus, Figure 28 presents an effort to combine root extraction algorithms in an

overall approach.

52

The remainder of this chapter is organized as follows: in Section 4.2 the rule-based

approach is presented along with the contribution for correcting irregular words

through our proposed Correction algorithm. In Section 4.3, the four weight-based

techniques are presented. Section 4.4 presents and analyzes the evaluation criteria

and experimental results for implementing all techniques. In Section 4.5, the list of

foreign Arabized words and names of places, countries, cities, and months is

constructed and presented. Section 4.6 presents the final proposed root extraction

system. Finally, Section 4.7 discusses conclusions and future work.

4.2 Rule-Based Approach

In this part, the concentration will be on investigating/improving a rule-based light

stemmer/root extractor technique on Arabic based on the work of Al-Ameed [1]. Al-

Ameed method was chosen here since it reported an accuracy of root extraction of

more than 90% when tested on many derivations of many roots. However, Al-

Ameed’s method was not designed to handle irregular words in the Arabic language.

Irregular words represent a significant portion of words used in standard text (about

34%)
26

. This limitation in Al-Ameed’s method is addressed in this thesis by

introducing an enhanced method, based on Al-Ameed original approach, which

properly handles irregular words during the root extraction step without degrading the

performance of the original rule-based method.

The performance of the original method by Al-Ameed and the performance of the

enhanced method in handling irregular words in Arabic such as weak, two-letter

geminated, hamzated, and eliminated-long-vowel words, is evaluated using first the

AT8 text collection and then LACC collection. Furthermore, their efficiencies (based

26 Percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection.

53

Figure 9: A brief illustration of implemented root extraction techniques

54

on execution time) are analyzed. A similar set of evaluation steps are also performed

for the weight-based approach, which will be discussed in detail at a later stage in this

chapter.

Next a brief description of the rule-based approach is presented.

4.2.1 Description

The rule-based root extractor is implemented starting from the work of Al-Ameed

[1] and is composed of two parts. The first part is a rule-based light stemmer where

prefixes and suffixes are removed from the word also according to specific rules.

The second part is a pattern-based infix remover where infixes are removed from the

word according to also specific patterns. These two parts represent the entire original

algorithm (named here the Rule-Based algorithm). As cited in Al-Ameed’s work,

this algorithm was tested against the work of Chen and Gey [44] only due to the fact

that the later work gave better results than both Darwish's and Larkey's works [49],

[121]. In Al-Ameed's work [1], the analysis of the performance of the two algorithms

(Chen and Gey algorithm versus Al-Ameed one) showed that Al-Ameed’s algorithm

gave much better performance results. However, Al-Ameed's Rule-Based algorithm

does not handle irregular words, resulting in substantial percentage errors during root

extraction. Thus, a new algorithm that handles such cases is presented in Section

4.2.2 when it is added at the end of the Rule-Based algorithm in order to enhance its

performance. In Section 4.2.3, the results of this Rule-Based root extraction

approach will be compared with that of the enhanced Rule-based technique (i.e. with

the Correction algorithm included).

As can be seen from the algorithm below, the rule-based technique outputs, besides

to normalized words file, two files: the first file contains the stems, and the second

file contains the roots.

55

Rule-Based Algorithm

Inputs: Set of preprocessed documents D = {d1, d2, …..,dn},

Predefined root lists

Outputs: triliteral and quadriliteral roots for each new document

new_di_2 in output set DD2, stems for each new document new_di_1 in

output set DD1

START

1- For each document di do {

2- LastWord = Count_No_Words(di)

3- For j = 1 to LastWord in di do {

4- LastLetter = Count_No_Letters(wj,c), m = 0

5- If (LastLetter <= 3) then {Final_Wordj = wj, m = 1, go to *}

% output normalized words to an output document to be used later for

TM

6- New_Wordj = Normalize(wj)

7- Write New_Wordj to output document new_di_1

% Perform light stemming algorithm for word wj

8- New_Wordj = Light_Stemmer_Algorithm(wj)

9- LastLetter = Count_No_Letters(New_Wordj,c)

10- Write New_Wordj to output document new_di_2 %output stems to

a different document to be used later for TM

11- If (LastLetter <= 3) then {Final_Wordj = New_Wordj, go to *}

% Perform Infix Remover algorithm

12- New_Wordj = Inf_Remover_Algorithm(New_Wordj)

13- LastLetter = Count_No_Letters(New_Wordj,c)

14- Write Final_Wordj to output document new_di_3 % output roots

to an output document to be used later for TM

15- * if m == 1 then {Write Final_Wordj to output document

new_di_1}

% calculate the accuracy of algorithm

16- count = Count_Correct_Roots(Final_Wordj, count)}

17- Accuracy_of_document_ new_di_2 = (count/LastWord) 100% }

END

To illustrate the performance of the algorithm above, an example of the outcome of

each part in it is provided here. For the word استحسانهم transliterated "AstHsAnhm"
27

,

this word becomes after the light stemmer part in step 8 is performed سانح "HsAn"

and after the infix remover part is performed in step 12 حسن "Hsn" which is the

correct root for that word.

4.2.2 Enhanced Rule-Based Technique

We contribute to enhance the Rule-Based approach by proposing an algorithm to

correct irregular words as presented in [13]. This proposed algorithm handles:

1- weak words by replacing the long vowel in it by another long vowel according

to specific rules in Arabic,

27 Arabic letters and words are presented using Buckwalter's transliteration which is available in appendix III.

56

2- eliminated-long-vowel words where, for specific cases of these triliteral words,

when for example their tense is changed from past to present tense, the vowel is

cancelled and an extra letter is added to that word (whether at beginning or end),

3- two-letter geminated roots as "rd" when the word starts/ends with either ‘y, t,

n, or A’/ ‘t, p, or h’ respectively the extra letter must be deleted and the letter ‘d’

is doubled,

4- specific cases of Hamza (if present) in a root is corrected.

The proposed Correction algorithm includes 5,737 possible corrections of words in

71 predefined lists (collected from references [31], [33] according to specific rules

for only triliteral roots (see detailed flowchart for algorithm and samples of lists in

appendix II)).

The accuracy of the Rule-Based algorithm is calculated by first comparing its

extracted roots with a predefined list of triliteral and quadriliteral list of 5,405 roots

(4,655 triliteral roots and 750 quadriliteral roots) gathered from [31], [33], [67] (see

sample root lists in appendix II), then counting the roots that match the ones in the

predefined list, and finally calculating the percentage of correctly extracted roots.

The same applies when the Correction algorithm is added at the end of the Rule-

Based approach. In other words, when our Correction algorithm is added at the end

of the Rule-Based approach, the extracted root is checked whether in the predefined

root list. If not, the extracted root is checked if triliteral and if any of the rules in the

Correction algorithm apply for it. Finally, if the extracted root belongs to a

predefined list for a specific rule, then the root is corrected to the proper one and

then accuracy is calculated as above.

As can be seen from the Correction algorithm and Figure 10 that not only rules were

used to specify each case but also in following the rule the word was compared with

a predefined root list of words that do indeed follow that rule in Arabic. This

additional step was performed in order to minimize the effect of extracted roots

where the rule apply but are not the correct ones. Examples of words that this

57

algorithm handles are يصل "ySl", دلت "tld", قال "qAl", or تمت "tmt", these words become

after performing this algorithm صللو "wSl", دولل "wld", لوقل "qwl", or مملت "tmm"

respectively.

Correction Algorithm

Inputs: Arabic triliteral word, 71 predefined lists

Output: corrected triliteral Arabic word

START

1- Let ch1 <- first character of Word; ch2 <- second character of

Word; ch3 <- third character of Word

% handling 27 weak cases, some eliminated-long-vowel cases (6 cases

for pattern yEl, one case for yfE) and 18 hamzated word cases (e.g.

y$O becomes $A`, some are composite with either weak or eliminated-

long-vowel cases) (total of 47 different rules)

2- If ch1 is either y, t, &, A, n, or } { % (hamzated, eliminated-

long-vowel cases, or both)

3- if word is in specific lists {

4- change ch1 according to specific cases, go to *.}}

5- If ch3 is either y, Y, &, }, w, or A { % (weak, eliminated-long-

vowel, hamzated cases)

6- if word is in specific lists {

7- change ch3 according to specific cases, go to *.}}

8- If ch2 is either }, w, O or A { % (weak, eliminated-long-vowel,

hamzated cases)

9- if word is in specific lists {

10- change ch2 according to specific cases, go to *. }}

% handling geminated words (2 different rules)

11-If ch1 is either " t, y, n, or A {

12- if word is in specific lists {

13- delete ch1 and double ch3 according to specific cases, go to

*}}

14- If ch3 is either h, or p {

15- if word is in specific lists {

16- delete ch3 and double ch2 according to specific cases, go

to *}}

% handling one geminated, 6 hamzated (some are composite with

eliminated-long-vowel cases) or eliminated-long-vowel cases (18

cases for pattern fEt, 4 for flt) (23 different rules)

17- If ch3 is t {

18- if word is in specific lists {

19- either

20- delete ch3 and double ch2 according to specific cases

%(geminated cases)

21- OR replace ch3 by only one of letters A, y, w, or Y

according to specific rules % (eliminated-long-vowel & hamzated

cases)}}

22- * Return corrected word

END

It should be mentioned here that during the construction of the Rule-Based method,

function words were removed before the Rule-Based algorithm was implemented

and also at its middle (i.e. after light stemming is performed). However, from

58

preliminary experiments, it was found that this second step removes words that are

not function words. Thus, it was decided to remove function words only once before

implementing this algorithm. The results of implementing this proposed algorithm

are presented next.

4.2.3 Results of Implementation

Al-Ameed method [1] reported accuracy for root extraction of more than 90% when

tested on many derivations of many roots. Al-Ameed's algorithm was tested there

using a specially customized test set which was composed of 199,584 distinct words

derived from 24 distinct triliteral roots and 119,700 words derived from 25 distinct

quadriliteral roots. Since this test set is not available to us, such accuracy values

could not be verified. However, we used the AT8 collection (described in section

3.2) to test both Al-Ameed's algorithm and the Enhanced Rule-Based technique.

The experimental results of the accuracy for the Rule-based approach and the

Enhanced Rule-Based technique are presented. In Table 12 and Figure 11 the

following stand for:

RB: Rule-Based algorithm, Enh_RB: Enhanced Rule-Based with Correction algorithm (in

some figures and tables it is abbreviated RB_corr)

Results in Table 12 show that adding our proposed Correction algorithm to the

Rule-based approach increased the latter's accuracy by about 14% and relatively

improved it by about 23%. Also, bolded values in Table 12 present maximum

accuracy values whereas italic ones present minimum accuracy values.

Category RB (%) Enh_RB (%)
Politics 58.89 73.3

Economics 58.16 71.39
Religious issues 62.99 75.01

Social issues 60.56 74.79
Music 58.7 73.78

Educational … 60.67 74.81
Sports 56.91 70.37
Arts ... 61.41 74.27

Average 59.79 73.47

Table 12: Performance of Rule-Based and Enhanced Rule-Based algorithms in all

categories using AT8 collection

59

Figure 10: Flowchart of Correction Algorithm

Figure 11: Performance of Rule-Based and Enhanced Rule-Based algorithms.

Start
ch1 <-1st character of Word;
ch2 <- 2nd character of Word;
ch3 <- 3rd character of Word

Yes No

Yes No

Return Final_wordj End

No

ch1 is either y,
t, &, A, n, or }

word 
specific lists

Yes

Yes

Yes

Yes

No

No

No

Change ch1

ch3 is either y,
Y, &, }, w, or A

word 
specific lists

ch2 is either },
w, O or A

word 
specific lists

Change ch1 Change ch1

ch1 is either “

t, y, n, or A
word 
specific lists

ch3 is either
h or p

ch3 is t
word 
specific lists

word 
specific lists

Change ch1

Change ch1 Change ch1

No

No

No

No

No

No

Yes

Yes Yes

Yes

Yes

Yes

60

At the start of this part, the intention was to use Buckwalter's stemmer
28

 for

comparison. However, Sawalha and Atwell [160] reported that it used Buckwalter's

stemmer along with two other stemmers (Khoja's algorithm [111] and Al-Shalabi

weight-based [17] one). Buckwalter's stemmer provided lowest accuracy values

among stemmers used. The main limitations of Rule-Based approach were: 1- a

rather limited number of patterns used, 2- two-letter geminated roots were not

extracted as a first step, 3- couldn’t handle prefix-suffix dilemma completely and

efficiently although it used the most available prefixes and suffixes. In general, the

performance of proposed Correction algorithm can be increased by adding further

rules and restrictions.

4.3 Weight-Based Approach

In this part, the main purpose is to use and propose variants of a weight-based

approach to extract roots of words in texts as a preprocessing step for TC and to

compare the results of such techniques with those of the Rule-based one explained in

section 4.2. The weight-based work proposed by Al-Shalabi, et al [17], named here

Al-Shalabi, will be described in section 4.3.1, and a slight adjustment to it (Adjusted

Al-Shalabi) will be described in section 4.3.2. The contribution here is through

proposing two variants (Expanded Weight Based Method1 (EWBM1) and

Expanded Weight Based Method2 (EWBM2)) [14] that will be explained

thoroughly in sections 4.3.3 & 4.3.4 respectively.

The above techniques test at the beginning if the number of letters in the word is less

than or equal to 3 and if so take the word, except for EWBM2 technique, without

any further processing. EWBM2 technique tests if a two-letter word is geminated by

28 Buckwalter stemmer version 2.1 is found at URL: http://www.qamus.org/

61

comparing it to a two-letter geminated words list. If it is in the list, the EWBM2

technique presents the two-letter word as a triliteral root by doubling its second

letter. Also, EWBM1 & EWBM2 techniques extract specific cases of quadriliteral

roots along with triliteral ones whereas Al-Shalabi and Adjusted Al-Shalabi

techniques extract only triliteral roots. Section 4.3.5 presents the outcome of

implementing these techniques. Next is a description of Al-Shalabi algorithm.

4.3.1 Description of Al-Shalabi Algorithm

Al-Shalabi algorithm [17] employs a letter weight, an order index and assigns a rank

to a letter according to its order in the word. It extracts the root for the word through

the following simple steps: 1- for each letter in the word (from right to left) it applies

weight and rank values according to Tables 13 and 14 while assigning order values,

2- calculate the product of the rank and weight for each letter, then 3- keep only the

letters with the first three smallest product values without changing their order in the

word. In order to illustrate the steps of this algorithm, two examples of words are

shown in Table 15 where the least three product values are bolded. As shown in

Table 13, the rank of a word is calculated differently when its number of letters is

odd from that when it is even (an example showing ranking is presented in Table

15). The weights of letters are numerical values provided for letters categorized into

groups (e.g. allocating the group of letters 'p, A' a weight of 5) as shown in Table 14.

Al-Shalabi, et al [17] work did not explain or clarify why or on what basis it used

such ranking or weighting only that such groups and their values were chosen after

extensive experimentation. For a native Arabic speaker it is understood why the

letters p, A are given a high weight (compared to others) since the letter p appears at

the end of a word and is a suffix and the letter A appears at any position in a word

where it is also a prefix, infix or suffix in most cases. Also, it is noted that letters b, f,

62

k are considered among the 'Rest' group, which means that these letters will always

be considered by the algorithm as original. Yet, such letters, if present at the

beginning of a word, might be extra letters. The two examples shown in Table 15 are

presented separately where the algorithm first provides an order value for each letter,

a weight value, a rank value then calculates the product and finally takes the three

letters in this word with least product values. Al-Shalabi algorithm was implemented

with/out the Correction algorithm, and in section 4.3.5 the results of its

implementation is shown and analyzed.

Letter position Rank (if word length: even) Rank (if word length: odd)

1 N N
2 N – 1 N – 1
3 N – 2 N – 2
: : :

N/2 N/2 + 1 N/2
N/2 + 1 N/2 + 1 – 0.5 N/2 + 1 – 1.5
N/2 + 2 N/2 + 2 -0.5 N/2 + 2 – 1.5
N/2 + 3 N/2 + 3 -0.5 N/2 + 3 – 1.5

: : :
N N – 0.5 N – 1.5

Where N: number of letters in a word

Table 13: Letter ranking in Al-Shalabi algorithm (derived from [17])

Letters A, p y, } t, w, Y O, I, m, n l, s, h Rest

Weight 5 3.5 3 2 1 Zero

Table 14: Weights of letter groups in Al-Shalabi algorithm (derived from [17])

letters h m A d x t s I

Order 8 7 6 5 4 3 2 1

Weight 1 2 5 0 0 3 1 2

Rank 7.5 6.5 5.5 4.5 5 6 7 8

Product 7.5 13 27.5 0 0 18 7 16

Root sxd (X)

a) word IstxdAmh, correct root xdm

Letters t A m Y l E t l A

Order 9 8 7 6 5 4 3 2 1

Weight 3 5 2 3.5 1 0 3 1 5

Rank 7.5 6.5 5.5 4.5 5 6 7 8 9

Product 22.5 32.5 11 15.75 5 0 21 8 45

Root lEl (X)

b) word AltElymAt, correct root Elm

Table 15: Examples of extracted roots using Al-Shalabi algorithm (from right to left)

63

4.3.2 Adjustment of Al-Shalabi Algorithm

It was noticed in [17] that there was a discrepancy in some of its examples. The two

examples that caused such discrepancy were the ones when the letter l was at first or

second position in a word where the authors have assigned it a weight of 5.

However, it was given a weight of 1 when it was in other positions (as was specified

in their paper for the weight of this letter). This information was not explained or

mentioned throughout that paper except only in the two examples. So, here this is

considered as an adjustment (named Adjusted Al-Shalabi) by implementing it and

investigating its accuracy while maintaining the rest of the procedure mentioned in

[17]. Thus, the same ranking, weighting and ordering of letters in a word was

maintained, except that for letter l a different weight of 5 was given if it was in the

first or second position in the word. Following this adjustment for the weight of the

letter l when applied on the same two examples in Table 15, the expected extracted

roots would be sxd, Elm respectively. Adjusted Al-Shalabi algorithm was

implemented with and without the Correction algorithm. In section 4.3.5, the results

of its implementation is shown and analyzed.

As can be seen from the examples in the previous two techniques, it is expected that

these algorithms will not extract roots with high accuracy. However, since this

approach is very simple and easy to implement, then proposing a different weighting

scheme for the groups of letters might produce higher accuracy results. This is on the

basis of taking into consideration the characteristics of Arabic language letters. This

led us to look for any specific percentages of occurrences for letters in texts.

Throughout the process of searching for information regarding these letters, statistics

showing the percentages of such Arabic letters were found
29

. After close

29 From Khaled AlShamaa web site, URL: http://www.al-shamaa.com/php/arabic/index.html, [last accessed: 4/6/2010]

http://www.al-shamaa.com/php/arabic/index.html

64

examination of these percentages and including the effect of the number of letters

before and after them as shown in Table 16, it was not possible to quantitatively

reach a weight for these letters or classify them into separate distinct groups.

However, it was possible to do so qualitatively: 1- At a first analysis, it was proposed

that these letters be grouped into five groups (as Al-Shalabi algorithm or its

adjustment) where such groups are assigned classes: high, high or moderate,

moderate, moderate or low, and finally low. A high class contained letters p and A.

A high or moderate class contained letters y and }. A moderate class contained

letters t, w, and Y. A moderate or low class contained letters m and n. Finally, a low

class contained letters h, l, and s. 2- In a second analysis; it was proposed that these

letters be grouped into four groups where such groups are assigned classes: high,

high or moderate, moderate, and finally moderate or low. A high class contained

letters p, h, and A. A high or moderate class contained letters y and }. A moderate

class contained letters l, t, w, and Y. Finally, a moderate or low class contained

letters m, s, and n. 3- Finally, at a third analysis, it was proposed that these letters be

grouped into three groups where such groups are assigned classes: high, moderate,

and finally moderate or low. A high class contained letters p, h and A. A moderate

class contained letters y, }, t, w, and Y. A moderate or low class contained letters l,

m, s, and n. The reason why no conclusive number of groups was reached is the

nature of some of these letters and their similar percentages in appearing as extra and

original letters in words.

It was not possible to reach all the weights proposed by Al-Shalabi algorithm from

these statistics. However, since the initial number of groups found here are 5,

weighting letters was thus given by assigning the groups weights from 5 to 1

according to classes assigned: 5 for high, 3.5 for high or moderate, 3 for moderate, 2

65

for moderate or low, and 1 for low. In order to further explore such different choices

of the number of groups, EWBM1 method (explained next) will adapt grouping

these letters into four groups as shown in Table 17, while EWBM2 method will

group such letters into three groups as shown in Table 18.

Lette

r

Rate

(%)

Letters

no after,

%

letters no

before,

%

letter

after

highest %

letter

before

highest

%

Qualitative weight for rate values

only
space not given 27 84

OL

32 100

OL

43.02 A 21.9 p not a character

A 19.65 31 96

OL

30 94 OL 40.8 l 42.16

space

High
p 4.22 1 3 OL 30 84 OL 100 space 14.81 y moderate or low

h 1.79 14 44

OL

22 69 OL 81.11 A 1..4 l – t Low
} 0.50 10 31

OL

6 19 OL y 81..8 52.31 A Low
y 6.66 28 88

OL

31 97 OL 25.49

space

16.07 f high or moderate
l 12.99 30 94

OL

29 91 OL A 11.18 11.11 A high
t 5.64 31 97

OL

24 75 OL 22.76

space

22.49 A moderate
w 5.70 30 94

OL

27 84 OL 11.11 A 41.02

space

moderate
Y 0.91 1 3 OL 9 28 OL 100 space 11.81 l Low
m 8.52 30 94

OL

25 78 OL 19.73

space

22.33 l high or moderate

n 3.86% 25 78

OL

21 66 OL 42.57

space

14.11 A moderate or low
s 2.48% 20 63

OL

17 53 OL 11 l 14.11 l moderate or low
Where OL stands for Of Letters

Table 16: Percentages of Letter Appearances in Texts

4.3.3 First Expanded Weight Based Method

Here, it is proposed to use the same ranks of letters as that of Al-Shalabi algorithm

but to assign a different set of weights to letters as shown in Table 17 in order to

provide a triliteral root according to their order. The five groups of letters that were

proposed in [17] have been reduced to four with shown weights. The letter l was

moved to third group with weight 3. The letter s was moved to the fourth group to

give it a higher value especially when at the beginning of a word (most likely it will

be an extra letter but an original letter elsewhere) and finally the letter h was moved

to the first group with weight 5 since it is expected that when h is at the end of the

word, it is likely to be a suffix since it might be wrongly written as h where as it is

meant to be p. This algorithm is called EWBM1 (its flowchart is shown in appendix

II). Moreover, this algorithm proposes to extract specific cases of quadriliteral-root-

based words. This is performed by counting the number of zero product values in the

word. If the number of zeros is greater than 3 and the number of letters in the word is

66

greater than or equal to 4 then this proposed variant algorithm provides the

quadriliteral root of the letters (i.e. choose the least four product values keeping the

order of letters maintained) else it provides the triliteral root. EWBM1 algorithm

shown below is a combination of the original weight-based method and rules to

handle quadriliteral roots, i.e. a hybrid method.

Letters A, p, h y, } l, t, w, Y O, I, m, n, s rest

Weight 5 3.5 3 2 Zero

Table 17: Weights of Letter groups for EWBM1 algorithm

EWBM1 Algorithm

Inputs: Set of preprocessed documents D = {d1, d2, …..,dn},

Predefined root lists, Predefined letter groups weight lists

Outputs: List of triliteral and some quadriliteral roots for each

new document new_di_1 in output set DD

START

1- For each document di do {

2- LastWord = Count_No_Words(di)

3- For j = 1 to LastWord in di do {

4- LastLetter = Count_No_Letters(wj,c)

5- If (LastLetter <= 3) then {Final_Wordj = wj, go to *}

6- Provide the order, weight values for each letter in word wj

7- Perform calculating the product of order and weight values

for each letter in word wj

8- Count = Count_No_Zero_Product_Letters(wj)

% Take least 4 product value letters keeping their order

9- If ((Count > 3) and (LastLetter >= 4)) then

10- {Final_Wordj = Extract_4letter_with_least_product(wj), go

to *}

11- Else {Final_Wordj = Extract_3letter_with_least_product(wj)}

12- * Write Final_Wordj to output document new_di_1

13- count = Count_Correct_Roots(Final_Wordj, count)}

14- Accuracy_of_document_ new_di_1 = (count/LastWord) 100%}

END

So, the original two examples in Table 15 would generate when using this proposed

algorithm roots sxd, Elm. In brief, this algorithm varies from previous ones by

providing different groups of letters with different weight values and extracting four-

letter roots. EWBM1 algorithm was implemented with/out the Correction algorithm

and in section 4.3.5 results of its implementation is presented and analyzed.

67

4.3.4 Second Expanded Weight Based Method

EWBM2 technique uses the same ranks as described in Al-Shalabi technique. This

second technique performs the following steps:

1- It excludes the letter combination Al from the word if the word starts with it,

2- It replaces the letters O, I, | with A only and replaces letters }, y with Y only

and replaces letter p with h (i.e. a normalization step),

3- It presents specific two-letter geminated words as triliteral by comparing them

with a predefined list of two-letter geminated words (provided in appendix II)

and if the two-letter word is in the list, the algorithm duplicates the second letter

and adds it to the word,

4- It uses a different weighting scheme from the previous three techniques as

shown in Table 18,

5- It provides a quadriliteral root by counting the number of zero product values

for letters in a word (other than the letter b) and by counting the number of

repetitions a letter occurs in a word (other than the letters b or w or A). If the

number of zeros is greater than 3 or the number of repetitions of any letter in the

word is greater than 2 and the number of letters in the word is greater than or

equal to 4, then it chooses the four-letter root with the least product values

keeping the order of letters maintained, else it chooses the three-letter root with

the least product values.

As can be noticed here, more rules were put for choosing a quadriliteral root. This is

due to the fact that in some words such as $dyd, the letter d appears twice but

separated by y and when using EWBM1 algorithm, it will be considered as a correct

root where it is not. The above steps are illustrated in EWBM2 algorithm (its

flowchart is shown in appendix II). Since this is also a combination of the original

weight-based method and rules, it is then a hybrid method.

As can be seen from Table 18, the five groups of letters that were proposed in Al-

Shalabi algorithm have been reduced to only three with the shown weights. Here,

the second group in Table 14 is cancelled since its letters are replaced by Y. Also, the

letters l, m, s and n are moved to the third group with weight 2, and the letters t, w

and Y were moved to the second group with weight 3. EWBM2 algorithm was

68

implemented with and without the Correction algorithm where in section 4.3.5, the

results of its implementation is shown and analyzed.

Letters A, h t, w, Y l, m, n, s Rest

Weight 5 3 2 Zero

Table 18: Weights of Letter groups for EWBM2 algorithm

EWBM2 algorithm

Inputs: Set of preprocessed documents D = {d1, d2, …..,dn},

Predefined root lists, Predefined two-letter geminated words list, 3

Predefined Replace lists, Predefined letter groups weight lists

Outputs: List of triliteral and some quadriliteral roots for each

new document new_di_1 in output set DD

START

1- For each document di do {

2- LastWord = Count_No_Words(di)

3- For j = 1 to LastWord in di do {

4- LastLetter = Count_No_Letters(wj,c)

5- If (LastLetter < 3) then {Final_Wordj = wj, go to *}

% Remove Al from word (if it starts with it)

6- wj = Remove_AL(wj)

% Replace some letters with others from word (a normalization

step)

7- wj = Replace_letters(wj)

8- Provide the order, weight values for each letter in word wj.

9- Perform calculating the product of weight and order values

for each letter in word wj.

10- Count = Count_No_Zero_Product_Letters_Not_b(wj) % count

number of zeros for product values for letters other than b

11- Repeat = Count_No_Repetitions_Not_b_w_A(wj) % counts the

number of repetitions a letter occurs in word other than the letters

b or w or A

% Take least 4 product value letters keeping their order

12- If (((Count > 3) or (Repeat > 2)) and (LastLetter >= 4)) then

13- {Final_Wordj = Extract_4letter_with_least_product(wj), go

to *}

14- Else {Final_Wordj = Extract_3letter_with_least_product(wj)}

15- * LastLetter = Count_No_Letters(Final_Wordj,c)

16- If (LastLetter == 2) then

17- {cc = Compare (Final_Wordj, 2_letter_list)

18- If (cc == 0) then Final_Wordj = Correct_Word(Final_Wordj)}

19- Write Final_Wordj to output document new_di_1

20 count = Count_Correct_Roots(Final_Wordj, count)}

21- Accuracy_of_document_ new_di_1 = (count/LastWord) 100%}

END

Also, the original two examples in Table 15 would generate using this proposed

variant method roots, xdm, Elm respectively. In brief, this algorithm varies from the

previous ones in that it: 1- provides different weight values for different groups of

letters, 2- removes Al from words if these words start with it, 3- replaces specific

69

letters by others (a normalization step), 4- extracts two-letter geminated roots, and 5-

extracts four-letter roots. Table 19 illustrates briefly the various weights for letters

used in all weight-based algorithms as was explained in the sections above.

Letter Rate (%) Al-Shalabi Adjusted Al-Shalabi EWBM1 EWBM2

A 19.65 5 5
5 5 p 4.22

h 1.79 1 1

} 0.50 3.5 3.5 3.5 3

y 6.66

l 12.99 1
5 if at beginning 2 positions

of word, 1 else
3

2

t 5.64

3 3 3 w 5.70

Y 0.91

m 8.52 2 2
2 2 n 3.86

s 2.48 1 1

Table 19: Proposed weighting for Assigned Groups in algorithms

It should be noted that Al-Shalabi, its adjustment, EWBM1 and EWBM2 techniques

do not handle weak, eliminated-long-vowel, hamzated words, names of places,

countries, cities, months, broken plurals, or foreign Arabized words (examples are

presented in page 90). So, the Correction algorithm described in section 4.2.2 is

added to all techniques in order to improve their performance and investigate its

effectiveness.

4.3.5 Results of Implementation

Here experimental results demonstrating the accuracy of implementing the weight-

based techniques with/out our proposed Correction algorithm using AT8 collection

are presented. In the following tables and figures the following stand for:

S1: Al-Shalabi algorithm, S1_corr: Al-Shalabi with Correction algorithm,

S2: Adjusted Al-Shalabi algorithm, S2_corr: Adjusted Al-Shalabi with Correction algorithm,

S3: EWBM1 algorithm, S3_corr: EWBM1 with Correction algorithm,

S4: EWBM2 algorithm, S4_corr: EWBM2 with Correction algorithm.

70

 S1(%) S2(%) S3(%) S4(%)

Politics 55.36 62.16 59.39 58.9

Economics 52.59 60.73 58.52 57.44

Religious 53.82 61.63 57.84 59.09

Social 56.44 63.21 59.98 59

Music 55.02 60.86 59.49 60.26

Educational 53.46 62.37 59.73 59.05

Sports 55.53 61.67 57.58 57.23

Arts .. 55.67 63.22 61.38 60.42

Table 20: Performance of weight-based algorithms using AT8 collection

 S1_corr(%) S2_corr (%) S3_corr (%) S4_corr (%)

Politics 62.84 72.12 67.08 69.45

Economics 58.9 70.41 65.69 68.61

Religious 61.06 70.78 64.07 68.25

Social 64.13 72.81 67.22 69.37

Music 63.97 71.48 67.1 69.18

Educational 59.85 71.59 66.33 70.11

Sports 62.19 71.53 64.61 67.46

Arts .. 63.42 72.64 67.89 69.78

Table 21: Performance of weight-based with Correction algorithm using AT8 collection

0

10

20

30

40

50

60

70

80

Pol
iti
cs

Eco
no

m
ics

R
el
ig
io

us
 Is

su
es

Soc
ia
l

M
us

ic

Edu
ca

tio
na

l …

Spo
rts

Arts
 ..

S1

S1_corr

S2

S2_corr

S3

S3_corr

S4

S4_corr

Figure 12: Comparison between accuracy results of all weight-based algorithms in all

categories with the ones incorporating the Correction algorithm using AT8 collection

Performance of four algorithms

54.74

62.05 61.96

71.72

59.24

66.25

58.92

69.03

S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr

A
c
c
u

ra
c
y

Figure 13: Comparison between average accuracy results of all weight-based

algorithms with the ones incorporating the Correction algorithm using AT8 collection

71

Bolded values in tables above or below present maximum values whereas italic ones present minimum

accuracy values.

Figure 13 shows that Adjusted Al-Shalabi algorithm with/out Correction provides

the highest accuracy values among the other weight-based algorithms.

Accuracy of all techniques is found by each algorithm through:

1- comparing each extracted root with a predefined list of 5,405 roots that contains

lists of only triliteral and quadriliteral roots (4,655 triliteral roots and 750

quadriliteral roots) (this root list provides the roots without relating them to their

possible derived or inflected words),

2- The algorithm counts the roots that match the ones in the predefined list, and

3- Finally calculates the percentage of correct roots in each text of the collection.

A second method for calculating accuracy is performed by a native Arabic speaker

(NAS) (the author) who manually provided the root for each word. NAS compared

the root extracted by each algorithm with this root and counted the extracted roots

that matched hers and finally gave the percentage of correctly extracted roots for

each algorithm.

4.4 Analysis of Results

A comparison between the experimental results of the Rule-Based and the weight-

based approaches are presented here using the two methods of accuracy calculations

described above. Also, Rule-Based and Adjusted Al-Shalabi algorithms were

implemented using LACC corpus and a comparison between their accuracy and

execution time is presented.

4.4.1 First Accuracy Analysis Method

As has been illustrated, in the tables above and in Table 22 (samples of results of

algorithms are shown in appendix III), Figures 14 and 15, that among the four

72

weight-based algorithms (without Correction algorithm), Adjusted Al-Shalabi

algorithm provided the highest accuracy results. It is followed (in descending order)

by EWBM1 algorithm then by EWBM2 algorithm and finally Al-Shalabi algorithm.

Thus, Al-Shalabi algorithm had the lowest accuracy values, for all categories, among

all four algorithms. This algorithm's accuracy values are in agreement with those

reported in [160], although implemented on a different text collection. Also, among

the four weight-based algorithms with the Correction algorithm, Adjusted Al-

Shalabi with Correction algorithm provided the highest accuracy results followed

by (in descending order) EWBM2 with Correction algorithm then by EWBM1 with

Correction algorithm and finally Al-Shalabi with Correction algorithm.

The effect of adding the Correction algorithm to the weight-based algorithms,

discussed in section 4.3.5 above and shown in Table 21, was to increase the accuracy

of these algorithms by about 7%-10%. As is clear from the results shown above, that

although the EWBM1 algorithm is higher in accuracy than the EWBM2 algorithm,

yet their algorithms with Correction give the opposite result (i.e. EWBM2 with

Correction algorithm is more accurate than EWBM1 with Correction algorithm).

This preliminary observation indicates that EWBM2 is more sensitive to irregular

words.

 S1 % S1_corr

%

S2 % S2_co

rr %

S3 % S3_co

rr %

S4 % S4_co

rr %

RB % Enh_

RB % Politics 55.36 62.84 62.16 72.12 59.39 67.08 58.9 69.45 58.89 73.3

Economi

cs
52.59 58.9 60.73 70.41 58.52 65.69 57.44 68.61 58.16 71.39

Religious 53.82 61.06 61.63 70.78 57.84 64.07 59.09 68.25 62.99 75.01

Social 56.44 64.13 63.21 72.81 59.98 67.22 59 69.37 60.56 74.79

Music 55.02 63.97 60.86 71.48 59.49 67.1 60.26 69.18 58.7 73.78

Educatio

nal

53.46 59.85 62.37 71.59 59.73 66.33 59.05 70.11 60.67 74.81

Sports 55.53 62.19 61.67 71.53 57.58 64.61 57.23 67.46 56.9 70.37

Arts 55.67 63.42 63.22 72.64 61.38 67.89 60.42 69.78 61.4 74.27

Table 22: Accuracy results for all ten algorithms (all categories) using AT8 collection

It is noticed in Table 22 that the performances of algorithms vary among categories.

An example is the economics category which had the lowest accuracy for the first

four algorithms whereas the sports category had the lowest accuracy for five other

73

algorithms. Also, the arts, culture and literature category had the highest accuracy

for four algorithms whereas the social category had the highest accuracy for other

three algorithms. An interesting observation from Table 22 is that in general,

categories that had the lowest results for some algorithms did not have the highest

accuracy results for others. An exception for this observation is the religious issues

category. From Figure 15, the effect of adding Correction algorithm to the weight-

based algorithms was to increase the accuracy of these algorithms by about 7%-10%

(with relative improvement of about 12%-17%), whereas its effect when added to the

Rule-Based algorithm was to increase its accuracy by about 14% (with relative

improvement of about 23%).

Figure 14: Comparison between accuracy results of all algorithms in all categories with

the ones incorporating the Correction one using AT8 collection

54.74

62.05 61.96

71.72

59.24

66.25

58.92

69.03

59.7

73.33

S1

S1_corr S2

S2_corr S3

S3_corr S4

S4_corr RB

RB_corr

Figure 15: Comparison between average accuracy results of all algorithms with the

ones incorporating the Correction one using AT8 collection

74

Table 23 and Figure 16 illustrate a comparison between Adjusted Al-Shalabi

algorithm (the highest among weight-based algorithms) and Rule-Based algorithm

along with their Correction algorithms in terms of their accuracy values. Rule-Based

algorithm is less in accuracy than Adjusted Al-Shalabi algorithm in the range

1.81%-3.82%. However, Enhanced Rule-Based algorithm's accuracy is rather

higher than Adjusted Al-Shalabi with Correction algorithm's accuracy by about 2%.

 S2(%) S2_corr(%) RB(%) Enh_RB (%)

Politics 62.16 72.12 58.89 73.3

Economics 60.73 70.41 58.16 71.39

Religious issues 61.63 70.78 62.99 75.01

Social 63.21 72.81 60.56 74.79

Music 60.86 71.48 58.7 73.78

Educational 62.37 71.59 60.67 74.81

Sports 61.67 71.53 56.9 70.37

Arts .. 63.22 72.64 61.4 74.27

Table 23: Accuracy results for Rule-Based algorithm and Adjusted Al-Shalabi

algorithm along with their Enhanced algorithms (all categories) using AT8 collection

Figure 16: Comparison between accuracy results for Rule-Based and Adjusted Al-

Shalabi algorithms along with their Enhanced algorithms (all categories) using AT8

collection

The difference in accuracy [129, pp. 208 – 210] between algorithms implemented is

rather small. This makes it more difficult to conclude which is really better in

performance. Thus, variance was calculated using eq. (1) for all algorithms and

categories:

2

1

)(



n

i

i xxVar (1)

75

Where n: number of texts, xi: accuracy of i
th

 text, x: average accuracy of n texts.

The results of obtaining all algorithms variance in all classes are shown in Figure 17.

300

700

1100

1500

1900

2300

2700

3100

S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr RB RB_corr

Politics Economics Religious issues Social Music Educational … Sports Arts ..

Figure 17: Variance values for all algorithms among all categories (points were

connected here by smooth curves for illustration purposes only)

From Figure 17 it is clear that the worst category in performance is the sports

category whereas the relatively best category in performance is the social one. Also,

the arts, culture and literature, educational, health and medicine, religious issues

and politics categories have lower variance values than the others. This is in

agreement with earlier indication that the social category gave the highest accuracy

values and that the sports category gave the lowest values. It is expected that the

high variance in such categories is partially due to the higher presence of names and

foreign Arabized words in them.

Since the two algorithms with highest accuracies are Adjusted Al-Shalabi and Rule-

Based algorithms as was explained above, the concentration here will be on the

variance values for Adjusted Al-Shalabi and Rule-Based algorithms along with their

Enhanced algorithms as illustrated in Figure 18. The variance values are very near

and cannot clarify which of the two algorithms (or with their Enhanced algorithms) is

better. Thus, [129, pp. 208 – 210] we use here the t-test (see appendix II for SPSS

analysis results of normal distributions for these algorithms) by hypothesizing that

76

Adjusted Al-Shalabi algorithm is better than the Rule-Based algorithm (as the null

hypothesis). Then, we calculate the t-value using eq. (2) shown below:

n

s

xx
t

2

21

2




(2)

Where x1: accuracy of Adjusted Al-Shalabi algorithm, x2: accuracy of Rule-Based algorithm, s
2
:

pooled variance of both algorithms and

221

212






nn

VarVar
s)3(

Where Var1: variance of Adjusted Al-Shalabi algorithm, Var2: variance of Rule-Based algorithm, n1

= n2: number of texts for both algorithms

After substituting the accuracy values of algorithms and their pooled variance, t-

value is found to be 5.56. At a probability level of  = 0.01, the critical value of t is

2.576 (using a one-tailed test with  degrees of freedom [129, pp. 609]. Since here t

= 5.56 > 2.576 then the hypothesis is accepted. The t-test is also performed when

including Correction algorithm to the two mentioned ones above. The hypothesis

here is that Enhanced Rule-Based algorithm is better than Adjusted Al-Shalabi with

Correction algorithm. Their t value is 4.52 and at a probability level of  = 0.01, the

critical value is t = 2.576 (using a one-tailed test with  degrees of freedom). Since

here t = 4.52 > 2.576 then the hypothesis is accepted.

11321.1

9807.6

12478.8

10358.8

S2 S2_corr RB RB_corr

Figure 18: Comparison between total variance results for Rule-Based and Adjusted Al-

Shalabi algorithms

Thus, one concludes that the approach with the highest accuracy among all

algorithms would be Enhanced Rule-based algorithm.

77

 S2 S2_corr Variance change for S2 RB Enh_RB Variance change for RB

∆S2 (∆S2/S2)% ∆RB (∆RB/RB)%

Politics 1394.4 977.3 417.1 29.9 1446.2 1211.1 235.1 16.3

Economics 1876.6 1747.9 128.7 6.9 1789.5 1521.7 267.8 15

Religious 1337.8 1084.9 252.9 18.9 942.55 746.2 196.4 20.8

Social 572.1 400.3 171.8 30 765.2 478 287.2 37.5

Music 1660.8 1638.6 22.2 0.1 1094.9 925.8 169.1 15.4

Educational 1403.3 1053.7 349.6 24.9 1487.1 980.3 506.8 34.1

Sports 2056.2 2114.8 -58.6 -2.9 2753.2 2609.4 143.8 5.2

Arts .. 891.8 716.9 174.9 19.6 951.2 937.4 13.4 1.5

All 11321.1 9807.6 1513.5 13.4 12478.

8

10358.8 2120 17

Table 24: Variance values among categories for Rule-Based and Adjusted Al-Shalabi

algorithms along with their Enhanced algorithms using AT8 collection

From Table 24, the effect of using the Correction algorithm varied among

algorithms and categories in minimizing variance values. It was more effective in

doing so for social and educational categories. However, it varied in doing so for

other categories such as politics, music and sports. In general, such Correction

algorithm lowered variance and improved performance of all algorithms and

categories. The above results are for the implementation of algorithms on only the

AT8 collection. However, since the LACC corpus, which is described in Chapter 3,

is used in Chapter 5 for the implementation of TC methods, it was decided to

implement both Rule-Based and Adjusted Al-Shalabi algorithms and their

Enhanced algorithms on LACC corpus. These two algorithms were chosen only

since they provided the best results as was described above. The results of such

implementation are shown in Table 25 and a comparison between results of these

algorithms on AT8 and LACC corpora is shown in Figure 19.

 S2 (%) S2-Corr (%) RB (%) Enh_RB (%)

Politics 61.35 71.86 58.79 73.07

Economics 61.97 70.6 60.35 73.37

Social issues 63.22 71.88 60.28 72.92

Arts 61.16 72.2 59.68 73.52

Educational 62.86 71.6 59.98 73.28

Sports 62.69 72.04 57.91 71.41

Music 60.99 70.45 60.96 74.34

Religious issues 60.58 70.87 60.84 74.12

Average 61.85 71.44 59.85 73.25

Table 25: Accuracy results for Rule-Based algorithm and Adjusted Al-Shalabi

algorithm along with their Enhanced algorithms (all categories) using LACC corpus

78

(a)

(b)

(c)

Figure 19: Comparison among AT8 and LACC corpora: (a) for Adjusted Al-Shalabi in

all categories, (b) for Rule-based in all categories, (c) between two algorithms along

with their Enhanced algorithms on average

Figure 19 emphasizes our previous conclusion that Enhanced Rule-Based algorithm

provides the best results among investigated algorithms in terms of accuracy.

Another criterion that the two algorithms performances are compared by is their

execution time. This was performed using LACC corpus since this corpus has a large

range of texts' length (89 – 15,773). Figure 20 presents results of such comparison.

79

Execution Time versus Length for Two Root Extraction

Algorithms

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000 14000 16000

Length

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

ET-S2 ET-S2-Corr ET-RB ET-RB-Corr

(a)

Correction algorithm effect on execution time for Adjusted Al-

Shalabi (S2) and rule-based (RB) algorithms versus length

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000

Length

D
if

fe
re

n
c
e
 i
n

 E
x
e
c
u

ti
o

n

T
im

e
 (

s
e
c
) DET for S2

 DET for RB

(b)

Comparison between percentagevalues versus lengths for both algorithms

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Length

P
e
rc

e
n

ta
g

e
 (

%
)

Perc-BR Perc-S2

(c)

Figure 20: Investigation of performance of both Adjusted Al-Shalabi and Rule-Based

algorithms and their Enhanced algorithms as Length of texts increases with (a) change

in their Execution time, (b) the difference in Execution time for each algorithm, (c) the

Percentage of (difference in execution time by execution time for each algorithm)

Figure 20a shows that for lengths less than 5,000, the results of execution time for

both algorithms and their Enhanced algorithms are similar whereas as length increases

above 5,000 the difference in execution time becomes more apparent especially

80

above 8,000. This result indicates that although the Rule-based algorithm is

supposed to take longer time since it has many rules, yet the time it takes to execute

is similar to the one taken by the Adjusted Al-Shalabi algorithm. Such a result is an

indication of its efficiency. Figure 20b illustrates the effect of Correction algorithm

on execution time. For texts with length less than 7,000 the execution time is highly

similar for both algorithms. However, for length values higher than that, the effect of

Correction algorithm on execution time for Rule-Based algorithm is apparently

higher than that for Adjusted Al-Shalabi one. Finally, Figure 20c presents the

efficiency of both algorithms in terms of the effect of Correction algorithm by

finding the percentage of the difference of execution time for each algorithm (i.e.

with/out Correction one) to the execution time for that algorithm without Correction

as length increases). It indicates that the effect of Correction algorithm is similar in

both algorithms for text length less than about 5,500. However, for length range

5,500 to 8,300 the effect of Correction algorithm is more in Rule-Based algorithm

than in Adjusted Al-Shalabi algorithm since percentage is less. Nevertheless,

surprisingly so, this effect is the opposite for lengths more than 8,300. In general,

Figure 20c shows that as length increases the percentage decreases until it reaches a

rather constant value.

4.4.2 Native Arabic Speaker Accuracy Analysis

NAS manually, as a preliminary analysis, provided the roots for words in only about

40 texts (5 in each category) chosen randomly from the AT8 collection only. First,

all compound words or single letters (named here unidentified words), names of

places, countries, cities or months and foreign Arabized words, un-detected function

words were excluded and their percentages in the texts in each category was counted

then the accuracy for each algorithm was calculated.

81

The preliminary results of the NAS's analysis percentages of excluded words are

shown in Figure 21. Here, it is noticed that the percentage of names and foreign

Arabized words is highest in music, economics, politics and sports categories

whereas it is lowest in social and religious issues categories. This might explain

partially the high and low accuracy and variance values in these categories as was

shown in the above section. On average the presence of these excluded words are as

shown in Figure 22. From Figure 22, it is expected that the NAS’s accuracy results

would be less than the ones of the first method by about 14% (by excluding names

and foreign Arabized words 10.62%, unidentified words 0.57% and function words

3.42% percentages). NAS noted that the rather unexpected presence of undetected

function words was due to a main factor which is: in some texts (coming for example

from Al-Ahram news paper) most of the undetected function words were misspelled

such as the function word ElY (meaning on) was misspelled as Ely (an Arabic name

of a male person).

NAS counted the number of words in each text that has the letter b at its first or

second position in the word and found that it appeared in analyzed texts with a

percentage of about 6.22%. Such appearance may affect the accuracy of algorithms

if the special effect of b, as an extra letter when at beginning of a word, is not

handled. It is worth noting that the effect of b was not handled in any of the weight-

based algorithms as was illustrated in section 4.3 where it was given the weight zero

(i.e. it will always be considered an original letter in any word that starts with it in

these algorithms).

82

General Properties of Human anaylsis of 5 files in each category

0

2

4

6

8

10

12

14

16

Politic
s

Art, C
ulture and Literature

Religious issues
Sports

Economics

Educational And Health Music
Social

Categories

%
 P

er
ce

nt
ag

e Names and

forgein

Arabized

w ords
Unidentif ied

w ords

Stop w ords

Number of

Words starting

w ith b

Figure 21: Percentages of unidentified words, function words, foreign Arabized words

in texts in all categories (points were connected here by smooth curves for illustration purposes

only)

Unidentified

0.57%

Names

10.62%

Words starting with b

6.22%

Function words

3.42%

Others

79.17

Figure 22: Average percentage for function words, unidentified words and foreign

Arabized words

NAS then compared the roots she provided with those extracted by each algorithm

and calculated the accuracy of correctly identified roots for each algorithm as shown

in Table 26 and Figure 23. The accuracy values for the algorithms clearly emphasize

that the best algorithm for root extraction in terms of accuracy is Enhanced Rule-

Based algorithm followed by Adjusted Al-Shalabi with Correction algorithm.

 Human expert analysis of Algorithms Accuracy %Acc

 S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr RB Enh_RB

Politics 41.23 43.21 52.07 54.84 47.39 50.44 48.68 51.8 51.45 58.47

Economics 40.27 42.51 49.64 52.07 47.23 48.36 45.59 48.36 50.17 54.01

Religious 43.85 47.53 55.52 59.1 52.53 55.86 51.56 55 56.81 61.67

Sports 42.05 43.62 53.1 56.04 48.51 50.33 49.03 51.66 49.51 53.85

Social 44.21 45.88 53.36 55.34 48.82 51.01 48.98 50.93 54.83 59.11

Educational 41.49 42.75 53.74 56.11 49.44 52.21 50.51 53.52 55.65 59.73

Music 39.25 42.82 46.28 50.15 44.04 48.6 45.93 49.08 45.52 52.45

Art, .. 45.05 46.65 55.6 57.4 52.81 54.24 51.43 53.19 54.14 57.72

Aver. 42.18 44.37 52.41 55.13 48.85 51.38 48.96 51.69 52.26 57.13

Imp. +2.19 +2.72 +2.53 +2.73 +4.87

Rel. Imp. +5.19 +5.19 +5.18 +5.58 +9.32

Table 26: Native Arabic speaker analysis of algorithms' accuracy using AT8 collection

83

Average of all categories

42
44.54

52.2
54.95

48.67
51.19

48.81
51.54 52.07

56.93

S1

S1_corr S2

S2_corr S3

S3_corr S4

S4_corr RB

RB_corr

Figure 23: Native Arabic speaker analysis of algorithm's accuracy

It is noticed in Table 26 that the performances of algorithms vary among categories.

However, the religious issues category had the highest accuracy for seven algorithms

whereas the music category had the lowest accuracy for six algorithms. Thus,

religious issues category is affected much more by the performance of such

algorithms. Also, the music category is affected much less by the performance of

such algorithms.

By simple comparison one can observe that the difference between the first and

second methods' accuracies is on average for: Al-Shalabi algorithm in the range

12.74%–17.51%, Adjusted Al-Shalabi algorithm in the range 9.78%–16.77%,

EWBM1 algorithm in the range 10.57%–15.06%, EWBM2 algorithm in the range

9.42%–18.49%, and for Rule-Based algorithm in the range 7.72%–16.54%. Such

differences are expected and are due partially to the fact that in human analysis

names, function words, and unidentified words were excluded (around 14%) before

counting the accuracy. However, for the Rule-based algorithm, the difference

between the first and second analyses is the least one (about 7%) compared to the

others. This smaller difference is partially due to the fact (as the human analyzer

observed) that the Rule-based approach did not extract a trililetral root for many

foreign Arabized words as the other approaches did.

84

From NAS's analysis, the Correction algorithm improvement on algorithms'

accuracies varied on average where for: Al-Shalabi algorithm it was 2.54%,

Adjusted Al-Shalabi algorithm about 3%, EWBM1 algorithm 2.52%, EWBM2

algorithm 2.73%, and for Rule-Based algorithm about 5%.

In order to investigate the performance of these algorithms apart from the effect of

different words (i.e. names, foreign Arabized words, function words, and compound

words), NAS recalculated the accuracy of each algorithm per category by dividing

the number of correct roots by (the total number of words in text minus the number

of such different words). The results are shown in Figure 24.

Algorithms Accuracy (after exclusion) on average

49.45 52.07

61.36
64.52

57.17
60.13

57.37
60.87 61.12

67.33

S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr RB RB_corr

Algorithm

Figure 24: Native Arabic speaker analysis of algorithm's accuracy after excluding no.

of names, transliterations, function words and compounds from total no. of words in

texts

From Figure 24, one can observe that there is a slight difference in the relative

improvements among algorithms based on weight-based technique (about 5.1% –

6.9%), whereas for Rule-Based algorithm the relative improvement is about 10.1%.

The above mentioned relative improvement percentage values are not near those

found from Figure 15 in section 4.4.1. This difference can be due to some limitations

such as:

1- In specific cases Correction algorithm does not check the extracted root since

it is not reached (this is due to the fact that the extracted root is found in the

predefined root list (so is considered correct even though it is actually the wrong

85

root), e.g. if an algorithm extracts a root sgl for the word IstglAl, then it checks if

this root is in root list and finds it is so even though the correct root for this word

is gll which is two-letter geminated root)),

2- In other few cases the extracted root is not found in Correction algorithm to

be corrected, although required so, since its case is not handled,

3- In other cases the extracted root is not found in the root list, although correct,

since the root list provided here does not include all roots (since Arabic roots are

estimated to be 10,000 [49]),

4- In other cases, although relatively few, a surface word might have more than

one option for correction and Correction algorithm chooses (according to its

structure) only one of them (that might be wrong), (e.g. is the word 'نمتت' nmt if

pronounced nemto "I slept" is thus corrected to the root nwm but if pronounced

nam~t "she gossiped" then is corrected to nmm). This limitation can be handled

by redesigning the algorithm to take such options as alternatives and to include

all possible roots in the root list,

5- In most wrongly handled cases, the original algorithm is not successful in

removing prefixes and suffixes correctly always so the extracted root is wrong

although the Correction algorithm can handle its case.

Other factors that the native Arabic speaker has studied in the algorithms'

performance were their efficiency in extracting weak, two-letter geminated roots and

four-letter roots. The results of such analysis are presented in Figures 25, 26, and 27

respectively where Figure 25 presents the percentage of wrongly detected weak roots

to the number of words in text, Figure 26 presents the percentage of wrongly

detected two-letter geminated roots to the number of words in text, and Figure 27

presents percentage of wrongly detected four-letter roots to number of words in text.

As can be seen from Figure 25, the effectiveness of algorithms in correctly extracting

weak roots can be categorized according to their percentage values. This figure

indicates the higher efficiency of Rule-based approach (with relative improvement

of about 33% when Correction algorithm is included) compared with the weight-

based-based ones except for EWBM2 algorithm (with relative improvement of about

11% for Al-Shalabi algorithm, 19% for Adjusted Al-Shalabi algorithm, 14% for

86

EWBM1 algorithm, and 18% for EWBM2 algorithm when Correction algorithm is

included). EWBM2 algorithm presented the highest algorithm in detecting weak

roots among all five original algorithms. This is due to the fact that this algorithm, as

was explained in section 4.3.4, replaced the letter y by Y in words in the text before

extracting the roots. This pre-process helped some weak words to produce the

desired root but lowered in general the accuracy. However, Rule-based algorithm is

the most sensitive among the rest since the inclusion of Correction algorithm to it in

terms of correcting weak roots had the highest relative improvement of 33%.

Average Performance of all 10 algorithms

14.6

12.99
14.09

11.4

14.35

12.3 12.55

10.32

13.49

9.06

S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr RB RB_corr

algorithm

%
 A

v
e
ra

g
e
 P

e
rc

e
n

t
o

f

w
ro

n
g

 w
e
a
k
 r

o
o

ts
 t

o

n
u

m
b

e
r

o
f

w
o

rd
s

Figure 25: Percentage of wrongly extracted weak words by all algorithms

As for two-letter geminated roots, Figure 26 illustrated that EWBM2 algorithm

performed better than the rest of the four weight-based algorithms, which is expected

since it is the only one among them that attempted to handle this issue. However,

Enhanced Rule-based algorithm gave the best results in extracting two-letter

geminated roots among all algorithms with a relative improvement of about 17%.

The performance of the weight-based algorithms when Correction algorithm was

included also increased with relative improvements of 9.4%-13.7%. This is another

indication of the effectiveness of the proposed Correction algorithm.

87

Average Perfomance of all 10 algorithms

5.28
4.76

5.12

4.44

5.28
4.84

4.5
3.99 4.13

3.39

S1 S1_corr S2 S2_corr S3 S3_corr S4 S4_corr RB RB_corr

algorithm

%
 A

v
e
ra

g
e
 P

e
rc

e
n

t
o

f

w
ro

n
g

 t
w

o
-l

e
tt

e
re

d
 r

o
o

ts

to
 n

u
m

b
e
r

o
f

w
o

rd
s

Figure 26: Percentage of wrongly extracted two-letter geminated words by all

algorithms

From preliminary results, only 69.23% of analyzed texts by the native Arabic

speaker had more-than-three-lettered roots with very low numbers (about only 1%).

Algorithms Al-Shalabi and Adjusted Al-Shalabi do not handle such roots. Only

EWBM1 and EWBM2 algorithms attempt to extract four-letter roots and Figure 14

shows that these algorithms succeeded to partially extract four-letter roots with about

12% improvement whereas Rule-based algorithm was successful in extracting four-

letter roots with about 37% improvement. Although both EWBM1 and EWBM2

algorithms provided the same improvement percentage, nevertheless the Arabic

speaker noticed that EWBM1 algorithm in few cases wrongly extracted three-letter

roots as four-letter ones and this increased the error. Also, although EWBM2

algorithm was not successful in extracting all four-letter roots (if available in texts)

but it did not perform as EWBM1 algorithm in wrongly extracting some three-letter

roots as four-letter ones. Still, Rule-based approach is considered the best algorithm

among all five algorithms to provide correct four-letter roots.

From the description of Correction algorithm in section 4.2.2 above, this algorithm

corrects special cases of triliteral roots and thus is expected not to change the

performance of any of the algorithms as is shown in Figure 27.

88

Average Performance for Variant1, Variant2, and Rule-based

algorithms

0.89 0.89

0.64

S3 S4 RB

algorithm

%
 A

v
e
ra

g
e
 P

e
rc

e
n

t
o

f

w
ro

n
g

 f
o

u
r-

le
tt

e
re

d

ro
o

ts
 t

o
 n

u
m

b
e
r

o
f

w
o

rd
s

Figure 27: Percentage of wrongly extracted four-letter words

In brief the effectiveness of presented algorithms showed:

1) In correctly extracting weak roots, Enhanced Rule-Based algorithm had the

highest percentage among all algorithms, followed by EWBM2 with Correction

algorithm. The Adjusted Al-Shalabi with Correction algorithm showed the third

highest percentage. This clearly indicates the higher efficiency of the Rule-Based

approach compared with the others.

2) In correctly extracting two-letter geminated words, only EWBM2 and Rule-

Based algorithms were investigated along with their Enhanced algorithms since

they are the ones that handle such cases. Here EWBM2 algorithm performed less

efficiently than Rule-Based one. By including the Correction algorithm,

Enhanced Rule-Based algorithm gave the best results in extracting two-letter

geminated roots.

3) In correctly extracting more-than-three-lettered roots, only EWBM1 and

EWBM2 algorithms extract four-letter roots along with the Rule-Based one. The

proposed two algorithms succeeded in partially extracting four-letter roots with

about 12% relative improvement whereas the Rule-Based algorithm was

successful in extracting such roots with about 37% relative improvement.

From the results shown above, it is evident that the accuracy obtained here for the

non-Rule-Based approach of Al-Shalabi algorithm or its Adjusted one is not near

the accuracy claimed in that work. This is partially due to that in [17] the text

collection was a small corpus whether in terms of its texts or words numbers and

concentrated into a specific category. There is no information in Al-Shalabi's, et al

[17] work regarding availability of weak, hamzated, or geminated words in abstracts

collection.

89

Also, the accuracy of Rule-based root extraction approach of Al-Ameed work

implemented here is not near to the accuracy claimed at Al-Ameed work. This is also

partially due to the fact that at Al-Ameed's work the algorithm was tested using a

specially customized test of derived words from triliteral roots and quadriliteral

roots. Since neither the corpus used in Al-Shalabi, et al work nor the test set used in

Al-Ameed work could be acquired, the AT8 collection was used to test all

algorithms.

In all, the addition of Correction algorithm to the Rule-Based algorithm gave the

highest improvement in accuracy among all original five algorithms, yet the above

results are still preliminary. Also, the examples presented at Al-Ameed's work, as far

as was observed, did not include any weak, hamzated or geminated words. However,

AT8 and LACC collections used here contain proper nouns, foreign Arabized words

as well as weak, hamzated, or geminated words. The analysis presented here urged

the author to construct a list that handles foreign Arabized words and names of

countries, places as will be presented next.

4.5 Foreign Arabized Words List

The list presented here is composed of Foreign Arabized Words as well as Names of

Places, Countries, Continents and Cities was constructed here by gathering manually

foreign words available in Arabic texts of this corpus (named here FAW_List).

Foreign words that are used in Arabic texts are of two categories. The first includes

words that obey Arabic patterns but are not Arabic while the second does not include

such cases. The gathered foreign words list here is mostly for the second category. In

future it is intended to increase this list to include the first category as well as other

90

words of Persian or Turkish origins. Examples of the constructed foreign Arabized

words, names of places, countries, cities, and month's list are presented in Table 27.

Foreign Arabized words "باستتتتتاد", "أستتتتي ", "البرلمانيتتتت ", "وديمقراطيتتتت ", "بالديمقراطيتتتت ","دولار" ,

, "بتتتوي ", "أوتتتترا", "لم ستتت ", " امبيتتت ", "لفلافيتتت ", "شتتتام ", "بتتترو "

, "م ستتتت ", "نتتتتداو", "وباتريتتتت ", "بتتتتاوا", "نمتتتتارت", "جيلبرتتتتت ", "ب جلبتتتتان"

, "والتو ل جيتا", "التد ت ر ", "الي نستو ", "فلافيت ", "ج زيت ", " يا", "س ل "

, "بتتت ", "والفتتتي ", "الإنترنتتتت", "العربجليزيتتت ", "رمستتتي ", "التو ل جيتتتا"

, "عستتتتوران", "ديمقراطيتتتت ", "فايتتتتد ", "مفتتتتي ", "فرعتتتت ن", "والإنجليزيتتتت "

"ويل", "أندرو", "ميوروبات", "للمريخ", "ناسا", "في يو ", "يحي ", "المريخ"

Table 27: Examples o Foreign Arabized words list

This list consists of 7,227 words
30

. Next, a description of the proposed root

extraction system is presented.

4.6 Final Proposed Root Extraction System

The two root extraction algorithms with highest accuracy values (based on the results

of all root extraction algorithms presented in section 4.4, pages 72-77), namely the

Enhanced Rule-based (Enh_RB) and the Improved Adjusted Al-Shalabi (S2-Corr)

methods, although near in their accuracy values, are selected for use. The other

methods performed lower than these two, but after analyzing their results some of

their proposed and implemented parts proved to be effective, namely the EWBM2

method. Thus, the proposed root extraction system would be composed of these two

root extraction techniques. Figure 28
31

 is a flowchart that summarizes the proposed

root extraction system. EWBM2 algorithm included handling two-letter geminated

roots and results of analyzing its effect (shown in page 87) showed that it improved

the performance of such method by about 5%. Thus, the Enh_RB method is

improved by including at its beginning handling the extraction of two-letter

geminated roots and named here as Enhanced Rule-Based_2 method (abbreviated

30 This list was gathered from: 1- http://www.bbc.co.uk/arabic/learningenglish/2010/08/801016_cojo_arabic_guide5.shtml, 2-

http://mogameh.ahlamontada.net/t9899-topic, 3- remaining words gathered by author from corpus.
31 Flowchart symbols are according to the link: http://www.eng.iastate.edu/efmd/161algor.htm

91

Enh_RB_2 method). The Improved Adjusted Al-Shalabi one (S2-Corr) does not

handle quadriliteral roots or two-letter geminated roots, so it is improved by

including to it: a) handling specific cases of quadriliteral roots proposed and

implemented in EWBM2 algorithm presented in section 4.3.4 (only steps 8-15 of

this algorithm, page 68), and b) handling the extraction of two-letter geminated

roots. This improved algorithm is named Improved Adjusted Al-Shalabi_2

algorithm as shown below (abbreviated here IAA method). Both original methods

lack handling foreign Arabized words and as such the handling of such cases are

included in the proposed root extraction system. The pseudo-code of this system is

presented (this system enables the user to choose which of these two methods to use

or both). Also, the proposed improved algorithms are briefly presented below.

The two improved root extraction algorithms output lists that are included in the

proposed system in order to be incorporated with the identified foreign Arabized

words in documents and outputted for the user as respective output documents of

normalized words, stems or roots. This proposed root extraction system algorithm is

an addition to this work where it combines the best performing implemented

algorithms in an overall one.

4.7 Conclusions and Future Work

In this part we contribute with Correction algorithm [13] in order to:

1) replace long vowels appearing in words that require to be changed in order to

have the correct root for a word according to specific rules,

2) delete an extra letter (at the beginning or end) of two-letter geminated roots,

3) handle specific cases of eliminated-long-vowel words,

 4) handle specific cases of hamzated rots.

The Correction algorithm was included into two different approaches for root

extraction, a Rule-based and a weight-based one. Furthermore two contributions of

92

Proposed Root Extraction System Algorithm

Inputs: Set of n documents in Arabic corpus d_i i = 1,n, Two-

letter_geminated_words_List, FAW_List, Chosen root extraction

method(s)

Outputs: List of triliteral and some quadriliteral roots, stems and

normalized words for each new document new_di_1 separately in output

set DD

START

1- For each document di do {

2- LastWord = Count_No_Words(di)

3- For j = 1 to LastWord in di do {

4- LastLetter = Count_No_Letters(wj,c)

// Identify foreign Arabized words

5- If (wj  FAW_List) then {Add wj to TEMP_LIST } // word is a

foreign word

// handle 2-letter words

6- If (LastLetter == 2) then {

7- If (wj  Two-letter_geminated_words_List) then {Stem_wj =

Double_2_letter(wj), Root_wj = Stem_wj, Add wj to Norm_Words_list_1,

Add wj to Norm_Words_list_2, Add Stem_wj to Stems_list_1, Add

Root_wj to Roots_list_2, Add Root_wj to Roots_list_1, go to *}}

// apply Enh_RB_2 method

8- If (Chosen root extraction method == Enh_RB_2 method) {

9- Apply Enh_RB_2(di) method}

// apply IAA method

10- Else if (Chosen root extraction method == IAA method) then {

11- Apply IAA method(di)}

12- Else {

13- Apply Enh_RB_2(di) method

14- Apply IAA(di) method}

15- * If (TEMP_LIST is not Empty) then {

// lists Norm_Words_list_1, Stems_list_1, Roots_list_1 are outputs

// of Enh_RB_2 method, lists Norm_Words_list_2, Roots_list_2 are

//outputs of IAA method

16- Add TEMP_LIST to Norm_Words_list_1, Norm_Words_list_2,

Stems_list_1, Roots_list_2, Roots_list_1}

17- Write all lists to respective output documents according to

chosen method(s)}

END

Enh_RB_2(document di) Algorithm

Inputs: document di, Normalization_list1, Root_lists,

Function_words_List, Correction_algorithm

Outputs: Lists of triliteral and quadriliteral roots, stems and

normalized words for each new document new_di_1 separately

START

1- LastWord = Count_No_Words(di)

2- For j = 1 to LastWord in di do {

3- If (Numerals or non-arabic letters  wj) then remove these

4- If (wj  Function_words_List) then wj =""

5- LastLetter = Count_No_Letters(wj,c)

// apply Rule_Based algorithm

6- Norm_wj = Normalization_List1(wj)

7- Stem_wj = Light_Stemmer(Norm_wj)

8- Root_wj = Infix_Remover(Stem_wj)

// apply Correction algorithm

93

9- If (Root_wj  Root_Lists) then Root_wj =

Correction_algorithm(Root_wj)

10- Add Norm_wj to Norm_Words_list_1

11- Add Stem_wj to Stems_list_1

12- Add Root_wj to Roots_list_1})

// below lists are to be outputted to the proposed system

13- Return Norm_Words_list_1, Stems_list_1, Roots_list_1

END

IAA(document di) Algorithm

Inputs: document di, Predefined letter groups weight lists,

Normalization_List2, Root_Lists, Function_words_List,

Correction_algorithm

Outputs: lists of triliteral and some quadriliteral roots and

normalized words

START

1- LastWord = Count_No_Words(di)

2- For j = 1 to LastWord in di do {

3- If (Numerals or non-arabic letters  wj) then remove these

4- If (wj  Function_words_List) then wj =""
5- LastLetter = Count_No_Letters(wj,c)

6- Norm_wj = Normalization_List2(wj)

// apply only steps 8-15 of EWBM2 algorithm

7- Root_wj = EWBM2(Norm_wj) algorithm

// apply Correction algorithm

8- If (Root_wj  Root_Lists) then Root_wj =

Correction_algorithm(Root_wj)

9- Add Norm_wj to Norm_Words_list_2

10- Add Root_wj to Roots_list_2}

11- * LastLetter = Count_No_Letters(Root_wj,c)}

// below lists are to be outputted to the proposed system

12- Return Norm_Words_list_2, Roots_list_2

END

variants of weight-based approach were implemented in [14] using AT8 collection.

The Adjusted Al-Shalabi method proved to be the highest in accuracy among all five

original algorithms. However, Rule-based algorithm became the approach with the

highest accuracy among all ten algorithms when Correction algorithm was included

in it. Also, Correction algorithm improved performance of all algorithms especially

Rule-based one by about 14% while it improved other algorithms' accuracy by 7% to

10%. It was observed that EWBM2 algorithm had the following advantages:

1) higher sensitivity to handling weak words among the five original algorithms,

2) the highest capacity to extract two-letter geminated roots among the four

original weight-based algorithms but lower than that of the Rule-Based

algorithm,

3) partial success in extracting quadriliteral roots.

94

Figure 28: The Flowchart of Final Proposed Root Extraction System

LACC corpus was also used, which had much more words than AT8 collection, for

implementing both Rule-based and Adjusted Al-Shalabi approaches and their

Enhanced algorithms. The accuracy results of the two algorithms agree highly, as

was shown above, with those when using AT8 collection. Execution time results for

these algorithms is interesting since the efficiency of both algorithms in terms of the

Arabic Text
Corpus {di, |
i =1, n}

Read new document di

TEMP_LIST  

IAA
method

Identify_Foreign(di),
Store TEMP_LIST

Stop

Enh_RB_2

method

Yes

No

No

Yes

Start

 Write all
Lists to their
respective
output
documents

End of
Corpus

Yes

No

Enh_RB_2
algorithm (di)

IAA
algorithm(di)

Handle Two-letter-
geminated words

FAW_LIST

Two-letter-
geminated_LIST

Chosen root
extraction
algorithm(s)

Store all lists
Norm_Words_list_1,
Stems_list_1, Roots_list_1

Store all lists
Norm_Words_list_2,
Roots_list_2

95

effect of Correction algorithm is investigated by finding the percentage of the

difference of execution time for each algorithm (i.e. with Correction one to the

execution time for that algorithm without Correction as length increases). It was

shown that the effect of Correction algorithm is similar in both algorithms for text

lengths less than about 5,500. However, for length range 5,500 - 8,300 the effect of

Correction algorithm is higher in Rule-Based algorithm than in Adjusted Al-Shalabi

one since its percentage is less. Nevertheless, this effect is the opposite for lengths

more than 8,300.

In future, the Rule-based approach can be improved by including more patterns in

the infix remover, and handling the prefix-suffix paradigm. This can be performed

by taking all possible prefix-suffix combinations and then deciding which is most

appropriate according to a previously determined statistical value. In the weight-

based algorithms, it is clear from the experimental results that the two proposed

grouping of letters and their respective weights did not provide in general higher

accuracy values. However, it was noted that for some words EWBM1 method gave

the correct root which for other words EWBM2 provided their correct roots but in

many others Adjusted Al-Shalabi method provided the correct root. This emphasizes

the fuzzy nature of some letters in sOltmwnyhA and indicates perhaps that by using

fuzzy sets to handle their grouping and weighting might provide higher accuracy and

thus handle the prefix-suffix dilemma better. Correction algorithm is a promising

efficient algorithm since it's highest reported improvement of the performance of

original algorithms was 14%,. Its improvement can be increased by adding further

rules and restrictions. Also, the proposed root extraction system is to be tested.

96

Chapter 5: Arabic Single-Label Text Classification

Methods

5.1 Introduction

This chapter investigates the effect of implementing various classifiers for six

different VSM representations on TC performance. Such representations are for the

developed single-labeled Arabic corpus (presented in Chapter 3). The features'

choices for VSM representations in this thesis are separately normalized words,

stems, roots or extending such features by including their respective phrases. Also,

such features in all representations here are weighted by a proposed TFIDF variant.

Figure 29 briefly presents the steps needed for the implementation of TC methods.

Part of the needed preprocessing steps in Figure 29 such as removing function words

and extracting stems and roots for words were presented in Chapters 3 and 4.

This chapter is organized as follows: Section 5.2 describes preprocessing steps taken

in order to provide the VSM representations of text documents and assign weights

for features used/proposed for single-label TC. Section 5.3 briefly presents

implemented classifiers as well as software tools for single-label TC. Section 5.4

presents the results of such implementations. Finally, it concludes with a brief

presentation of such results. The detailed analysis of TC results will be presented in

Chapter 6.

Figure 29: Basic Steps for Arabic TC classification

Inputs: documents

from corpus

Pre-processing

documents &

VSM

representations

Implemented

classification

techniques &

evaluations

End

97

5.2 Pre-processing Steps

Applying classifiers on text documents requires first a preparation step of the

documents. In this thesis, this is done by performing the following steps: 1- remove

function words, punctuation marks, and numerals as was explained in Chapter 3, 2-

perform a root extraction process to extract normalized words, their stems and roots

as was presented and implemented in Chapter 4, 3- include the results of step 2 into

normalized word, stem, and root lists as well as word phrases, stem phrases, and root

phrases lists in order to further assign for each feature a weight and present each

document in VSM representation, and 4- finally, present all documents in a single

Attribute Relation File Format (ARFF) to be used by the Waikato Environment for

Knowledge Analysis (WEKA) [91] software for classification (version 3.6.6). Steps

3 & 4 implemented in this thesis and mentioned above are explained next.

5.2.1 The Proposed Variant TFIDF Term Weighting Method

It was noticed that the generality among classes is not constant in the developed

single-label corpus (presented in Chapter 3). This would have an impact on the

process of developing the lists of words/stems/roots necessary to produce an ARFF

file in terms of including the number of times each feature appeared in corpus and in

each specific class. Thus, Table 28 below illustrates briefly the availability of these

words in single-labeled documents. As noticed in Table 28, many words in corpus

are not frequent. So, using the well-known TFIDF method for term weighting in

document representation (presented in subsection 2.4.1.1) will result in weighting

values of such words that do not reflect their presence among such classes. Thus, a

variant-TFIDF method for weighting terms that includes such effect is proposed and

implemented in this thesis as presented in eq. (1) below.

98
















)(#
log).,(#),(var_

iC k

i
jkjk

t

N
dtdttfidf (1)

Where #(tk,dj): number of times term tk occurs in dj,,

#Ci(tk) (called document frequency (df(tk)): number of documents in class Ci that tk occurs in,

Ni: number of documents in class Ci,

It is noteworthy that although Do and Ng [58] mentioned the
)(#

iC k

i

t

N part in

eq. (1) above as one of possible methods for weighting terms but did not implement

it. As far as is known, this proposed simple variant of TFIDF is implemented for

term weighting here for the first time to be used in Arabic single-label TC. Results of

implementing such term weighting are presented in section 5.4.

5.2.2 Document Representation

5.2.2.1 Features Implemented Using Single Terms

The works that used stemming for DR on Arabic texts, such as [63], [108], [135],

[146], [147], [148], [154] and [171], as was explained in section 2.4.1.2, compared

the effect of using words, stems or roots on Arabic TC performance. However, these

works did not reach the same conclusion regarding the effect of such features on

Arabic single-label TC performance. None of these works reported significance

testing especially those that concluded that using roots provided best results for TC

compared to that when using stems or words. Thus, here the use of different VSM

representations using separately normalized words, stems or roots for features and

the comparison of the effect of feature choice on TC performance is performed. If an

improvement occurred, then significance testing is performed.

The results of constructing the lists of normalized words, stems and roots for the

Arabic corpus 804 texts is presented in Table 28. The number of different

normalized words is 117,724, the number of different stems is 18,019, and the

number of different roots is 11,063. So, finally three ARFF files are ready to be used

99

for single-label TC with dimensions 804 x 117,724, 804 x 18,019, and 804 x 11,063

for normalized words, stems, and roots respectively.

List # Terms Ratio (%) List (DF >1) # Terms Reduction of Terms (%)

Roots 11,063 9.4 (to words list) Roots 7,294 34.1

Stems 18,019 15.3 (to words list) Stems 12,079 32.96

Words 117,724 - Words 54,140 54

Table 28: Number of different original implemented terms available in feature lists

processed from corpus

From Table 28, the ratio of roots to words is 1 to 10.64 whereas the ratio of stems to

words is 1 to 6.53. This is in agreement with the percentages presented in section

2.3.4. The results of implementing such representations are presented in section 5.4.

Also, an extension of the above VSM representations is performed in this Chapter by

adding their respective phrases and an investigation of their effect on TC

performance is conducted. This will be discussed next.

5.2.2.2 Extending VSM Representation Using Phrases

As can be seen from Table 28 DF of words in Arabic texts is relatively low. This

lead us to propose representing features in documents by phrases instead of words

and investigate this representation' effect on single-label TC performance.

The method that was implemented in order to extract phrases is as follows: each

three consecutive normalized words in a text (after removing function words,

punctuation marks, etc) are presented by three two-word phrases. An example

presenting this idea is for the phrase " الإستراييلي أيوت د اولمترت استتبعد ريتي الحو مت ": (transliterated

AstbEd r}ys AlHkwmp Al<srA}ylyp >yhwd Awlmrt) this phrase is presented by the

following six phrases " أيوت د الحو مت " , "الحو مت الإستراييلي " , "استتبعد الحو مت ", " ريتي الحو مت " , "استتبعد ريتي" ,

" أيوت د اولمترت", " الإستراييلي أيوت د" respectively (transliterated AstbEd r}ys , r}ys AlHkwmp ,

AstbEd AlHkwmp , AlHkwmp Al<srA}ylyp , AlHkwmp >yhwd , Al<srA}ylyp >yhwd ,

>yhwd Awlmrt) respectively. Table 29 presents an example of how two-word

100

phrases are chosen from a paragraph in a text. The same is performed for texts

presented by roots as well as those presented by stems.

 لقريت استبعد ريي الحو م الإسراييلي أيو د اولمرت حدوث تصعيد ف الأوضاع الأم ي علتى الجبوت والحتدود اللتمالي لإستراييل فت المستتقبل ا

لم يقم حتى ألان بالرد علتى مقتتل القايتد العستوري فت الحتزب " حزب الله"بالأزمات السياسي الداخلي ف لب ان , مبي ا أن " حزب الله"بسب انلغال

 عماد مغ ي خلي من رد فعل إسراييل على ت فيذ أي عملي انتقام

(a)
عيد الأوضاع الأم ي الجبو والحدود اللمالي لإسراييل المستقبل القريت انلتغال حتزب استبعد ريي الحو م الإسراييلي أيو د اولمرت حدوث تص

 عملي انتقام ذالله بالأزمات السياسي الداخلي لب ان مبي ا حزب الله يقم بالرد مقتل القايد العسوري الحزب عماد مغ ي خلي رد فعل إسراييل ت في

(b)
 أيوتت د" "أيوتت د اولمتترت" "الإستتراييلي أيوتت د" "أيوتت د الحو متت " "الحو متت الإستتراييلي " "استتتبعد الحو متت " "ريتتي الحو متت " "استتتبعد ريتتي "

" الجبوتت الأوضتتاع" "الأم يتت الجبوتت " "الأوضتتاع الأم يتت " "الأوضتتاع حتتدوث" "تصتتعيد الأوضتتاع" "حتتدوث تصتتعيد" "اولمتترت حتتدوث" "حتتدوث

" المستتتقبل القريتت " "اللتتمالي المستتتقبل" "لإستتراييل المستتتقبل" "اللتتمالي لإستتراييل" " اللتتمالي الجبوتت" "والحتتدود اللتتمالي " "الجبوتت والحتتدود"

السياستي " "الله السياستي " "بالأزمتات السياستي " "الله بالأزمتات" "انلتغال الله" "حتزب الله" "انلتغال حتزب" "المستتقبل انلتغال" "القري انلغال"

" بتالرد مقتتل" "يقتم بتالرد" "حزب يقتم" "الله يقم" "حزب الله" "لب ان حزب" "مبي ا حزب" "لب ان مبي ا" "سياسي لب انال" "الداخلي لب ان " "الداخلي

" مغ يت خلتي " "عماد مغ يت " "العسوري عماد" "الحزب عماد" "العسوري الحزب" "مقتل العسوري" "القايد العسوري" "مقتل القايد" "يقم مقتل"

 "ت فيذ انتقام" "عملي انتقام" "عملي ت فيذ" "فعل ت فيذ" "إسراييل ت فيذ" "فعل إسراييل " "خلي فعل" "رد فعل" "دخلي ر" "عماد خلي "
(c)

Table 29: A paragraph taken from Addustour newspaper: (a) original paragraph (55

words), (b) paragraph (40 words, 19 three-word phrases) after removal of function

words, punctuation marks, short vowels and/or numerals, (c) paragraph after words

are put into two-word phrases (60 phrases) (here phrases are put between double quotes

for illustration)

After such phrases are chosen, these phrases are included in lists to investigate their

numbers in such texts and along categories and corpus. The results are presented

briefly in Table 30. Also, as conducted for the lists of roots, stems, and words, an

investigation of the document frequency for such phrases in corpus is performed.

List # Terms Ratio (%) List (DF >1) # Terms Reduction of Terms (%)

RP 655,923 83.8 (from WP) RP 39,028 94

SP 799,314 102 (from WP) SP 25,236 96.8

WP 782,969 - WP 6,873 99

Table 30: Number of different proposed terms available in feature lists processed from

corpus

From Tables 28 & 30, the ratio of reduced roots to reduced root phrases is 1 to 5.4;

the ratio of reduced stems to reduced stem phrases is 1 to 2.1, whereas the ratio of

reduced words to reduced word phrases is 1 to 0.13. The number of phrases, stem-

phrases, or root-phrases is very large to be used instead of words, stems, or roots

respectively. Also, from Tables 28 and 30, the ratio of roots to root phrases is 1 to

59.3, the ratio of stems to stem phrases is 1 to 44.4, and the ratio of words to word

phrases is 1 to 6.7.

101

The relatively much smaller number of reduced phrases, stem-phrases, or root-

phrases (i.e. with DF>1) lead us, instead of representing documents by phrases, to

propose to extend the original representation of features in texts through including at

the end of each VSM the representation of their respective reduced phrases. An

example illustrating this proposal is suppose a VSM representation of a document

using words would be <politics, 0, 0, 1.34, 0, 3.87, 0, 0, 0, 0, 7.39> and the VSM for

the same document using only phrases with DF greater than 1 be <politics, 0, 0, 0,

3.25, 11.11, 0, 0, 4>, then the proposed VSM representation for this document would

be <politics, 0, 0, 1.34, 0, 3.87, 0, 0, 0, 0, 7.39, 0, 0, 0, 3.25, 11.11, 0, 0, 4>. So,

finally three ARFF files are ready to be used for single-label TC with dimensions

804 x 124,598, 804 x 43,256, and 804 x 50,091 for normalized words and phrases,

stems and stem phrases, and roots and root phrases respectively. The results of

implementing such representations are presented in section 5.4.

5.2.3 Implemented Feature Subset Selection Method

There was consensus among research works for Arabic TC that implemented various

FSS methods, that using Chi-square method for FSS improved single-label TC

performance [135], [137], [136], [8], [98], [174], [146], [147], [148] and [184] (as

was presented in subsection 2.4.1.2). Thus, it was decided to use this method here for

FSS. The results of using this FSS method is presented in section 5.4.

5.2.3.1 Chi-square Method

Chi-square function [161] is defined as shown in eq. 2 below

 
)().().().(

)],().,(),().,(.[||
,

2

2

iikk

ikikikik

ik
cPcPtPtP

ctPctPctPctPTr
ct


 (2)

Where |Tr|: number of documents in training set,

),(ik ctp is Probability that kth term of document dj occurs from class ci

102

This function is available in WEKA software and is implemented here where using

the outputs of this function, the effect of varying the number of selected features on

single-label TC performance is investigated.

5.3 Applied Text Classification Methods

Seventy five classifiers that are available in WEKA software are implemented here

where the developed Arabic corpus (presented in Chapter 3) is used. The results of

only forty seven classifiers under six types are presented here. The remaining results

are not included either because the performance of such classifiers is poor for F1-

measure (i.e. << 0.5), or couldn't be implemented due to either such classifiers are

not available in the WEKA version used or these require different representation or

binary labeling. Lazy learners such as k-NN and Multi-Instance (MI) learners in

WEKA are not among the presented ones in this thesis since either their classifiers

were tested to have poor performance or are not applicable. Thus, only six types of

classifiers are investigated here. Examples of poor F1 values for such classifiers are

(0.1) for k-NN
32

 [4] classifier, and (around 0.12) for Classification Via Clustering

classifier (CVC)
33

.

5.3.1 Single-Label Classification Methods

In this part two experiments are conducted. The criteria of tested classifiers are

consistent in both experiments (see appendix IV for performance criteria used for

such classifiers). All used classifiers are presented briefly in this section, and these

classifiers are further presented and compared in Chapter 6 where their results in

original research works are presented in order to compare the results in this thesis

with those of such classifiers in previous works. The first experiment tests the six

32 k-NN classifier is named in WEKA IBK, further info can be found at:

http://weka.sourceforge.net/doc/weka/classifiers/lazy/IBk.html
33 Further info on CVC classifier can be found at: http://wiki.pentaho.com/display/DATAMINING/ClassificationViaClustering

103

ARFF VSM representations discussed above using forty seven classifiers (using the

explorer in WEKA software) according to their type. In this experiment, the effect of

varying the number of selected features on TC performance is investigated. This is

performed since the proposed term weighting method discussed above has not been

implemented before and as far as known many of the classifiers used here were not

performed previously for Arabic such as the rule learner NNge
34

 [130].

The second experiment investigates further the same forty seven classifiers (used in

first experiment), in performance to conclude which of the: a) classifiers, b) six VSM

representations provided the best performance. This is performed in three parts and

implemented using the experimenter in WEKA software and results are tested for

significance. The first part compares the performance of classifiers of same type.

FSS is performed using Chi-square on all those VSM representations and only best

1000 and 5000 selected features are maintained here. In the second part, the best two

performing classifiers among representations for each type are chosen and the

comparison among types are performed and tested for significance. The third part

presents briefly the results of significance testing for each classifier between root and

RRP representations, stem and SSP representations, and finally word and WP

representations. In this experiment, two-tail statistical (corrected) t-test is conducted

with significance level of 0.05.

5.3.1.1 Implemented Classifiers

Forty seven different classifiers are applied on the six ARFF files. Five of these

classifiers are Function classifiers, namely SMO [110]; [142], Logistic [123], Multi

Layer Perceptron
35

 (MLP), Simple Logistic [119], and RBF network
36

 classifiers.

34 Further info on NNge can be found at: http://weka.sourceforge.net/doc.packages/NNge/weka/classifiers/rules/NNge.html.
35 Further info on MLP can be found at: http://weka.sourceforge.net/doc/weka/classifiers/functions/MultilayerPerceptron.html.

104

Six Rule classifiers are also applied, namely the Repeated Incremental Pruning to

Produce Error Reduction (RIPPER) rule learning classifier [47] (in WEKA it is

named JRip)
37

, the rule learning algorithm [75] that builds C4.5 partial tree (named

in WEKA PART)
38

, RIpple-DOwn Rule learner (named in WEKA Ridor) [80], a

classifier that builds and uses a 1R classifier (named in WEKA OneR) [102],

Nearest-Neighbor like algorithm using non-nested Generalized Exemplars (named in

WEKA NNge) [130], and Decision Table [114].

Another type of classifiers that is implemented here is the one based on Bayes

theory, namely Naïve Bayes (NB) [106], Bayes Net (BN) [181], Naïve Bayes

Multinomial (NBM) [132], Complement NB [149], NBMUpdatable [132], and

NBUpdatable [106].

Eleven Tree classifiers are also implemented, namely the Reduced Error Pruning

Tree algorithm (named in WEKA REPTree)
39

, the Random Forest tree learner (in

WEKA is named RandomForest)
40

 [38] which is a classifier that consists of a

collection of tree-structured classifiers with no pruning, the C4.5 tree classifier

(named in WEKA J48)
41

, Best-First decision Trees (named in WEKA BF Tree)

[164]; [77], Functional Trees (named in WEKA FT) [82], grafted C4.5 decision tree

(named in WEKA J48 graft) [180], Logit boost Alternating Decision Tree (name in

WEKA LAD Tree) [101], Logistic Model Trees (named in WEKA LMT) [118];

36 further ino regarding RBFnetwork can be found at:

http://weka.sourceforge.net/doc/weka/classifiers/functions/RBFNetwork.html
37 Further info on JRip can be found at: http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-

4/doc/weka.classifiers.rules.JRip.html [last accessed 7/5/2012].
38 Further info on PART can be found at: http://weka.sourceforge.net/doc.dev/weka/classifiers/rule/PART.html [last accessed
7/5/2012].
39 Further info on RepTree can be found at: http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-

4/doc/weka.classifiers.trees.REPTree.html [last accessed 7/5/2012].
40 Further info on RandomForest can be found at: http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/pdfs/Software%202.pdf [last

accessed 7/5/2012].
41 Further info on J48 (C4.5) can be found at: http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html [last accessed
7/5/2012]

http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.rules.JRip.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.rules.JRip.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/rule/PART.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.trees.REPTree.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.trees.REPTree.html
http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/pdfs/Software%202.pdf
http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html

105

[119], Naive Bayes Tree (named in WEKA NB Tree) [115], Random Tree
42

, and

Classification And Regression Trees (named in WEKA Simple Cart) [40].

Two Miscellaneous classifiers are used here namely Voting Feature Interval

Classifier (named in WEKA VFI)
43

, and Hyper Pipes
44

 (HP and used in [65]).

Finally, seventeen Meta classifiers are used here, namely AdaBoost.M1 [78],

Attribute Selected Classifier
45

 (ASC), Bagging [39], Classification Via Regression

(CVR) [76], Dagging [177], Decorate [133]; [134], END [59]; [74], Filtered

Classifier
46

 (FC), Logit Boost (LB) [77], Multi Class Classifier
47

, Class Balanced

Nested Dichotomies (named in WEKA ClassBalancedND) (CBND) [59]; [74],

DataNearBalanced ND (DNBND) [59]; [74], Nested Dichotomies (ND) [59]; [74],

Ordinal Class Classifier (OCC) [73], a classifier that consists of multiple trees

constructed pseudo randomly selecting subsets of components of feature vector

(named in WEKA RandomSubSpace) (RSS) [99], Random Committee
48

 (RC), and

Rotation Forest (RF) [150].

Results of implementing experiments are presented in section 5.4.

5.4 Results of Implementations

The implementation of single-label TC on proposed and prepared VSM

representations discussed in subsection 5.2.2 is performed through two experiments.

The first experiment applies forty seven classifiers (using the explorer of the WEKA

42 further info on Random tree can be found at: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomTree.html.
43 Further info on VFI can be found at: http://roust.gotdns.com/weka-doc/weka/classifiers/misc/VFI.html.
44 Further info on HyperPipes can be found at: http://weka.sourceforge.net/doc/weka/classifiers/misc/HyperPipes.html.
45 further info on Attribute selected classifier can be found at:
http://weka.sourceforge.net/doc/weka/classifiers/meta/AttributeSelectedClassifier.html.
46 further info on Filtered classifier can be found at:

http://weka.sourceforge.net/doc/weka/classifiers/meta/FilteredClassifier.html.
47 further info on MultiClas Classifier is found at:

http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/MultiClassClassifier.html
48 further info on Random committee can be found at:
http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/RandomCommittee.html.

106

software) on the six representations where the effect of varying the number of best

selected features on TC performance is investigated. The results of such application

in terms of weighted-F1 are presented in Figures 30 to 35 as well as Tables 31 and

32. The second experiment investigates further: 1- which of the forty seven

classifiers among the six representations provides the best performance, and 2-

which of representations provides best significant performance results. This is

implemented using the experimenter of the WEKA software and results are tested for

significance. Results of F1
M

 measure for these classifiers are presented in Tables 33

and 34.

5.4.1 Results of Implemented Single-Label Classification Methods

In the two experiments, stratified 10-fold stratified cross validation is used for all

implemented classifiers on all six representations. The choice of stratified 10-fold

cross validation is the same as some research works on Arabic TC. This method is

chosen here due to: the relatively small size of corpus, the different number of texts

among categories, and the method's relatively low bias and variance [92]. The

criteria chosen for these classifiers such as the number of epochs, stopping

criteria,..etc whether for the first experiment or second are shown in appendix IV.

For evaluation, weighted-macro average F1-measure is used to compare the

performance of such classifiers in the first experiment (among others as training

time, root mean square error, percent correct, .. etc) whereas Macro F1-measure is

used, among others, in the second experiment. The other performance measures

effects are presented and critically analyzed in Chapter 6.

5.4.1.1 First Experiment

This experiment is composed of two parts. The first part investigates and compares

the performance of classifiers of the same type for each representation as the number

107

of best selected features is increased (presented in Figures 30-35 below), and the

second part investigates and compares the performance of each classifier among the

six representations also as the number of best selected features is increased

(presented in Figure 36 and appendix IV). As far as is known, no reports were

presented for most of these classifiers on Arabic text classification studies. Also,

among the categories and for only 1000 selected features, the performance of these

classifiers is presented in appendix IV where due to space limitations the rest of

results are not shown. The reason why only this was performed for 1000 features is

explained at end of this subsection. Further analysis of results of Figures 30-36 are

shown in Tables 31 and 32.

The performances of classifiers according to their type are introduced separately as

shown in Figures 30-35. Figure 30 presents the performance of classifiers according

to their type for Root representation, Figure 31 for Stem representation, Figure 32 for

Word representation, Figure 33 for RRP representation, Figure 34 for SSP

representation, and Figure 35 for WP representation (kindly refer to appendix IV for

the display of all classifiers performance for each representation). It can be

concluded that the performance of some of these classifiers degrade when terms are

extended by including their respective phrases while for others the performance

improve. Also, since some of the VSMs used here have high dimensionality and as

such some classifiers require extensive calculations, then such implementation of

classifiers is limited by available RAM and PC speed. This resulted in that some of

these classifiers didn’t provide results for such representations as number of selected

features was increased such as the NB Tree, Logistic, or MLP classifiers.

108

(a)

(b)

(c)

109

(d)

(e)

 (f)
Figure 30: Comparison between classifiers' performance for Root VSM representation

according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)

miscellaneous, (f) meta

110

Figure 30 presents the performance of all classifiers for the Root representation.

From Figure 30a, the three classifiers with best performance among rule-learners are

JRip, Ridor, and PART respectively. In Figure 30b, the four classifiers with best

performance among tree learners are LMT, FT, Simple Cart, and RepTree

respectively. However, from Figure 30c, the best performance of function learners is

for the two classifiers Simple Logistic and SMO respectively. In Figure 31d, the

performance of Bayes-based learners is compared. The three classifiers with best

performance are BN, NBM, and Complement NB respectively. Miscellaneous

learners are presented in Figure 30e and among the two learners, HP classifier

performs better. In Figure 30f, Meta classifiers performances are presented and the

best seven classifiers in performance are END, FC, RSS, LB, AdaBoost.M1, RF, and

Bagging.

(a)

111

(b)

(c)

(d)

112

(e)

(f)
Figure 31: Comparison between classifiers' performance for Stem VSM representation

according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)

miscellaneous, (f) meta

Figure 31 presents the performance of all classifiers for Stem representation. From

Figure 31a, the three classifiers with best performance among rule-learners are JRip,

Decision Table, and Ridor respectively. In Figure 31b, the four classifiers with best

performance among tree learners are LMT, FT, RepTree, and Simple Cart

respectively. However, from Figure 31c, the best performance of function learners is

for the two classifiers Simple Logistic and SMO respectively. In Figure 31d, the

performance of Bayes-based learners is compared. The three classifiers with best

performance are BN, NBM, and NBMU respectively. Miscellaneous learners are

presented in Figure 31e and among the two learners, HP classifier performs better. In

113

Figure 31f, Meta classifiers performances are presented and the best seven classifiers

in performance are END, LB, RSS, AdaBoost.M1, FC, RF, and Bagging.

(a)

(b)

(c)

114

(d)

(e)

(f)
Figure 32: Comparison between classifiers' performance for Word VSM

representation according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-

based, (e) miscellaneous, (f) meta

115

Figure 32 presents the performance of all classifiers for Stem representation. From

Figure 32a, the three classifiers with best performance among rule-learners are JRip,

Decision Table, and PART respectively. In Figure 32b, the four classifiers with best

performance among tree learners are LMT, FT, Random Forest, and Simple Cart

respectively. However, from Figure 32c, the best performance of function learners is

for the two classifiers Simple Logistic and SMO respectively. In Figure 32d, the

performance of Bayes-based learners is compared. The three classifiers with best

performance are BN, NBM, and NBMU respectively. Miscellaneous learners are

presented in Figure 32e and among the two learners, HP classifier performs better. In

Figure 32f, Meta classifiers performances are presented and the best seven classifiers

in performance are END, FC, LB, AdaBoost.M1, RSS, RF, and Decorate

respectively.

(a)

(b)

116

(c)

(d)

(e)

117

(f)
Figure 33: Comparison between classifiers' performance for RRP VSM representation

according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)

miscellaneous, (f) meta

Figure 33 presents the performance of all classifiers for RRP representation. From

Figure 33a, the three classifiers with best performance among rule-learners are

PART, Ridor, and JRip respectively. In Figure 33b, the four classifiers with best

performance among tree learners are LMT, FT, Simple Cart, and J48 respectively.

However, from Figure 33c, the best performance of function learners is for the two

classifiers Simple Logistic and SMO respectively. In Figure 33d, the performance of

Bayes-based learners is compared. The three classifiers with best performance are

BN, NBM, and Complement NB respectively. Miscellaneous learners are presented

in Figure 33e and among the two learners, HP classifier performs better. In Figure

33f, Meta classifiers performances are presented and the best seven classifiers in

performance are LB, END, AdaBoost.M1, FC, RSS, RF, and Bagging.

118

(a)

(b)

(c)

119

(d)

(e)

(f)
Figure 34: Comparison between classifiers' performance for SSP VSM representation

according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)

miscellaneous, (f) meta

120

Figure 34 presents the performance of all classifiers for SSP representation. From

Figure 34a, the three classifiers with best performance among rule-learners are JRip,

PART, and Decision Table respectively. In Figure 34b, the four classifiers with best

performance among tree learners are LMT, FT, BF Tree, and Simple Cart

respectively. However, from Figure 34c, the best performance of function learners is

for the two classifiers Simple Logistic and SMO respectively. In Figure 34d, the

performance of Bayes-based learners is compared. The three classifiers with best

performance are BN, NBM, and NBMU respectively. Miscellaneous learners are

presented in Figure 34e and among the two implemented learners, HP classifiers

performs better. In Figure 34f, Meta classifiers performance are presented and the

best seven classifiers in performance are END, FC, LB, RSS, AdaBoost.M1, RSS,

RF, and CVR.

(a)

(b)

121

(c)

(d)

(e)

122

(f)
Figure 35: Comparison between classifiers' performance for WP VSM representation

according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)

miscellaneous, (f) meta

Figure 35 presents the performance of all classifiers for WP representation. From

Figure 35a, the three classifiers with best performance among rule-learners are JRip,

Ridor and Decision Table respectively. In Figure 35b, the four classifiers with best

performance among tree learners are LMT, FT, Random Forest, and Simple Cart

respectively. However, from Figure 35c, the best performance of function learners is

for the two classifiers SMO and Simple Logistic respectively. In Figure 35d, the

performance of Bayes-based learners is compared. The three classifiers with best

performance are BN, NBM, and NBMU respectively. Miscellaneous learners are

presented in Figure 35e and among the two implemented learners, HP classifiers

performs better. In Figure 35f, Meta classifiers performances are presented and the

best seven classifiers in performance are END, RSS, LB, FC, AdaBoost.M1,

Decorate, and Bagging. It is clear from previous figures that the Bayes Net classifier

has the highest weighted-F1 value among implemented classifiers for all VSM

123

representations with maximum weighted-F1
M

 = 98.1%. The remaining implemented

classifiers varied in their performances as the number of selected features varied for

the used VSM representations.

Figure 36 is presented in order to compare between the effect of implemented VSM

representations for each classifier on TC performance (here only highest performing

classifiers are presented and the rest of classifiers comparisons are in appendix IV).

(a)

(b)

124

(c)

(d)

(e)

125

(f)

(g)

(h)

126

(i)

(j)

(k)

127

(l)

(m)

(n)

128

(o)

(p)

(q)

129

(r)

(s)

(t)

130

(u)

(v)

(w)

131

(x)
Figure 36: Performance of different VSM representations as number of selected

features varied using classifier (a) BN, (b) NBM, (c) Compl NB, (d) SMO, (e) Simple

Logistic, (f) PART, (g) JRIP, (h) Ridor, (i) Decision Table, (j) J48, (k) LMT, (l) FT, (m)

Simple Cart, (n) Random Forest, (o) Rep Tree, (p) Hyper Pipes, (q) END, (r) Filtered

Classifier, (s) Logit Boost, (t) Random SubSpace, (u) AdaBoost.M1, (v) Rotation

Forest, (w) Bagging, (x) Classification Via Regression

From Figure 36, BN performance is affected very slightly with choosing different

VSM representations. Such small variation indicates that representing terms by roots

or stems of respective words and including phrases in such representations have

slight effect on its performance. However, the performance of this classifier is

highest for Roots representation. Also, as the number of selected features varies the

performance of this classifier reduces by about 5% when using Words representation

while for Roots and Stems representations the reduction is about 2%. Other

classifiers in Figure 36 performed in a different way than the BN classifier.

In order to establish at which number of features each classifier has highest

performance, Table 31 is presented. From this table, 44 classifiers' performances are

highest for Root and RRP representations especially for features numbers in the

range [50, 5000]. It is noticed that most classifiers have highest performance at 1000

or 5000 features. In general, the addition of phrases to original VSM representation

132

improved/degraded TC performance slightly especially as feature numbers are above

5000.

Classifier VSM representation

Name Information Roots Stems Words RRP SSP WP

JRip # features 10,000 5,000 1,000 1,000 500 10,000

F1M 0.759 0.698 0.695 0.757 0.71 0.619

PART # features 1,000 500 1,000 100 500 1,000

F1M 0.745 0.651 0.619 0.755 0.709 0.614

Decision Table # features 5000 5000 5000 5000 50 40000

F1M 0.655 0.645 0.62 0.688 0.648 0.6

Ridor # features 10000 5000 1000 5000 500 5000

F1M 0.719 0.644 0.584 0.721 0.63 0.611

RepTree # features 500 10,000 1,000 1,000 500 5,000

F1M 0.733 0.648 0.558 0.737 0.615 0.536

J48 # features 100 500 1,000 100 100 1,000

F1M 0.746 0.685 0.598 0.758 0.667 0.62

LMT # features 500 5000 5000 5000 500 5000

F1M 0.789 0.773 0.717 0.793 0.759 0.722

FT # features 1000 500 5000 500 1000 5000

F1M 0.758 0.73 0.676 0.772 0.735 0.68

Simple Cart # features 5000 500 1000 40000 100 5000

F1M 0.741 0.642 0.616 0.751 0.494 0.621

Random Forest # features 500 500 1000 500 500 5000

F1M 0.753 0.694 0.69 0.744 0.691 0.689

Simple Logistic # features 10000 5000 5000 5000 500 5000

F1M 0.784 0.764 0.717 0.793 0.756 0.717

SMO # features 500 5,000 5,000 5,000 10,000 5,000

F1M 0.77 0.716 0.75 0.733 0.718 0.766

Hyper Pipes # features 5000 5000 5000 5000 1000 5000

F1M 0.464 0.502 0.599 0.504 0.542 0.668

END # features 1000 1000 10000 500 500 40000

F1M 0.873 0.834 0.791 0.872 0.838 0.781

Filter Classifier # features 500 100 500 50 100 50

F1M 0.863 0.845 0.799 0.858 0.858 0.84

Logit Boost # features 1000 5000 40000 40000 5000 1000

F1M 0.868 0.801 0.775 0.871 0.792 0.769

Rand SubSpace # features 10000 10000 50 1000 500 50

F1M 0.837 0.793 0.785 0.844 0.788 0.786

AdaBoost.M1 # features 500 500 50 500 1000 50

F1M 0.858 0.822 0.781 0.861 0.804 0.784

Rotation Forest # features 1000 1000 1000 5000 1000 5000

F1M 0.826 0.771 0.74 0.84 0.772 0.729

Bagging # features 500 5000 5000 1000 500 1000

F1M 0.83 0.749 0.622 0.836 0.747 0.727

CVR # features 500 1000 5000 5000 1000 10000

F1M 0.812 0.742 0.681 0.795 0.745 0.666

BN # features 500 50 50 500 100 50

F1M 0.979 0.981 0.973 0.978 0.981 0.98

Complement NB # features 10000 10000 5000 5000 5000 5000

F1M 0.735 0.749 0.766 0.733 0.747 0.784

NBM # features 500 5,000 5,000 5,000 10,000 5,000

F1M 0.798 0.783 0.795 0.796 0.678 0.804

Table 31: Maximum F1
M

 values at specific features number for implemented VSM

representations along each classifier.

Table 31 illustrates that maximum weighted-F1
M

 values are rather similar among

most classifiers (remaining classifiers' performance comparisons are presented in

133

appendix IV). Also, since the maximum weighted-F1
M

 values are achieved for

different number of features among different VSM representations and classifiers.

Thus, Table 32 was formed to present the amount of improvement/degradation of

each representation using best performing classifiers (remaining classifiers'

performance comparisons are presented in appendix IV).

Classifier Max w-F1M,

VSM type

Improvement/degradation of first

compared to second VSM type (%)

Improvement/degradation of second

compared to first VSM type (%)

Roots, RRP Stems, SSP Words, WP Roots,

Stems

Roots,

Words

RRP,

SSP

RRP,

WP

J48 0.758, RRP +1.2 -1.8 +2.2 +6.1 +14.8 +9.1 +13.8

SMO 0.77, Roots -6.7 +0.2 +1.6 +5.4 +2 +1.5 -3.3

BN 0.981, Stems

& SSP

-0.1 0 +0.2 +0.2 -0.6 +0.3 +0.2

NBM 0.804, WP -0.2 -10.5 +0.9 +1.5 +0.3 +11.8 -0.8

RepTree 0.737, RRP +0.4 -3.3 -2.2 +8.5 +17.5 +12.2 +20.1

JRip 0.759, Roots -0.2 +1.2 -0.4 +6.1 +6.4 +4.7 +6.6

PART 0.755, RRP +1.0 +5.8 -0.5 +9.4 +12.6 +4.6 +14.1

Decision Table 0.688, RRP +3.3 +0.3 -2 +1 +3.5 +4 +8.8

Ridor 0.721, RRP +0.3 -1.4 +2.7 +7.5 +13.5 +9.2 +11.0

LMT 0.793, RRP +0.4 -1.4 +0.5 +1.6 +7.2 +3.4 +7.1

FT 0.772, RRP +1.1 +0.5 +0.4 +3.1 +8.5 +3.7 +9.2

Simple Cart 0.751, RRP +1 -14.8 +0.5 +9.9 +12.5 +25.7 +13.0

Rand Forest 0.753, Roots -0.9 -0.3 -0.1 +5.9 +6.3 +5.3 +5.5

S Logistic 0.793, RRP +0.9 -0.9 0 +1.9 +6.7 +3.7 +7.6

Hyper Pipes 0.668, WP +4 +4 +6.8 +3.8 -13.5 +3.8 -16.4

END 0.873, Roots +0.8 +0.4 -1 +3.9 +8.2 +4.3 +9.1

Fil Classifier 0.863, Roots -0.5 +1.3 +4.1 +1.8 +6.4 0 +1.8

Logit Boost 0.871, RRP +0.3 -0.9 -0.6 +6.7 +9.3 +7.9 +10.2

RSS 0.844, RRP +0.7 -0.3 +0.1 +4.6 +5.2 +5.6 +5.8

AdaBoost.M1 0.861, RRP +0.3 -1.7 +0.3 +3.6 +7.7 +5.6 +7.7

Rotation Forest 0.84, RRP +1.4 +0.1 -1.1 +5.5 +8.6 +6.8 +11.1

Bagging 0.836, RRP +0.6 -1.3 +10.5 +7 +20.8 +8.9 +10.9

CVR 0.812, Roots -1.7 +0.3 -1.5 +7 +13.1 +5 +12.9

Compl NB 0.784, WP -0.2 -0.2 +1.8 -1.4 -3.1 -1.4 -5.1

Table 32: F1
M

 Improvement/Degradation by comparing implemented VSM

representations performances at feature numbers presented in Table 31 for each

classifier.

It is clear from Table 32 that using RRP representation provides highest performance

for 23 classifiers and using Roots representation provides highest performance for 11

classifiers compared to using other representations. Such improvement varies from

0.2% to 25.7%. However, improvement/degradation of performance when including

phrases for all original VSM representations varies among classifiers and such

variation is not clear to be indeed an improvement or degradation or none. This is

investigated in the second experiment.

From Table 32 and results in appendix IV, the performance of 29 classifiers is higher

when using RRP representation than when using Roots representation. The

134

performance of 23 classifiers is higher when using SSP representation than when

using Stems representation. The performance of 30 classifiers is higher when using

WP representation than when using Words representation. Also, the performance of

42 classifiers is higher when using Roots representation than when using Stems

representation. The performance of 36 classifiers is higher when using Roots

representation than when using Words representation. The performance of 41

classifiers is higher when using RRP representation than when using SSP

representation and the performance of 37 classifiers is higher when using RRP

representation than when using WP representation. Also, the performance of most

classifiers among categories for 1000 best FSS is presented in appendix IV. Next is a

detailed description of the second experiment.

5.4.1.2 Second Experiment

The second experiment performs a comparison between the forty seven classifiers in

three parts using the experimenter in WEKA and tests for significance using a two-

tailed (corrected) T test ( = 0.05) along many criteria as F-measure, and Percent

correct. The criteria chosen for these classifiers such as the number of epochs,

stopping criteria, ..etc are shown in appendix IV. As such, the experiment's inputs

are the representations used with the number of selected features required for chosen

classifiers (more specifically 1000 and 5000 features only). Stratified 10-fold cross

validation is used and the chosen number of repetitions is 5 for all parts of this

experiment. The outputs are the contingency matrix, kappa statistics, percent correct,

and macro F1 measures among others. However, only macro F1 values are shown

here.

The first part compares the performance of classifiers of same type. FSS is

performed using Chi-square on all those VSM representations and only best 1000

135

and 5000 selected features are maintained here. Results shown in Table 33 are for

best 1000 features only (for 5000 features see appendix IV). For the second part, the

best performing classifiers among representations for each type shown in Table 33

are chosen and the comparison among types is performed and tested for significance

(results are shown in Table 34). The third part presents briefly the results of

significance testing for classifiers between Root and RRP representations, Stem and

SSP representations, and finally Word and WP representations (some results are

presented in appendix IV).

Classifiers Roots RRP Stems SSP Words WP v/ /*

Bayes based, significance relative to NBM
BN 0.99 (0.03) v 0.98 (0.03) v 0.99 (0.03) v 0.99 (0.03) v 0.96 (0.06) v 0.96 (0.06) v 6/0/0

NB 0.65 (0.14) * 0.63 (0.13) * 0.58 (0.13) * 0.58 (0.12) * 0.52 (0.16) * 0.52 (0.12) * 0/0/6

NBM 0.78 (0.11) 0.78 (0.11) 0.72 (0.11) 0.72 (0.10) 0.67 (0.11) 0.68 (0.12)

Complement NB 0.71 (0.11) * 0.72 (0.14) 0.70 (0.13) 0.69 (0.13) 0.65 (0.13) 0.67 (0.12) 0/5/1

NBMU 0.72 (0.15) 0.71 (0.11) 0.69 (0.13) 0.68 (0.16) 0.66 (0.13) 0.68 (0.14) 0/6/0

NBU 0.65 (0.14) * 0.63 (0.13) * 0.58 (0.13) * 0.58 (0.12) * 0.52 (0.16) * 0.52 (0.12) * 0/0/6

Functions, significance relative to SMO
SMO 0.68 (0.13) 0.68 (0.11) 0.64 (0.12) 0.64 (0.11) 0.59 (0.16) 0.56 (0.15)

Simple Logistic 0.83 (0.09) v 0.83 (0.11) v 0.79 (0.13) v 0.78 (0.11) v 0.63 (0.15) 0.63 (0.14) 4/2/0

RBF 0.64 (0.09) 0.57 (0.18) * 0.60 (0.14) 0.60 (0.17) 0.57 (0.14) 0.51 (0.14) 0/5/1

Rules, significance relative to PART

JRip 0.87 (0.09) 0.85 (0.11) 0.73 (0.14) 0.74 (0.13) 0.69 (0.16) v 0.67 (0.16) v 2/4/0

PART 0.83 (0.10) 0.84 (0.11) 0.68 (0.13) 0.70 (0.12) 0.49 (0.17) 0.50 (0.14)

Ridor 0.86 (0.08) 0.85 (0.09) 0.69 (0.11) 0.69 (0.13) 0.58 (0.15) 0.57 (0.14) 0/6/0

OneR 0.79 (0.15) 0.80 (0.14) 0.51 (0.17) * 0.52 (0.17) * 0.54 (0.20) 0.53 (0.18) 0/4/2

NNge 0.43 (0.20) * 0.42 (0.18) * 0.33 (0.19) * 0.34 (0.20) * 0.31 (0.19) * 0.32 (0.21) * 0/0/6

Decision Table 0.54 (0.18) * 0.55 (0.15) * 0.50 (0.17) * 0.48 (0.16) * 0.48 (0.12) 0.47 (0.16) 0/2/4

Trees, significance relative to J48

J48 0.86 (0.08) 0.87 (0.09) 0.70 (0.13) 0.69 (0.11) 0.47 (0.16) 0.46 (0.16)

Random Forest 0.69 (0.14) * 0.70 (0.13) * 0.62 (0.14) 0.63 (0.15) 0.61 (0.14) v 0.59 (0.16) 1/3/2

RepTree 0.87 (0.09) 0.86 (0.10) 0.64 (0.11) 0.67 (0.10) 0.52 (0.18) 0.53 (0.16) 0/6/0

BF Tree 0.88 (0.07) 0.88 (0.08) 0.69 (0.09) 0.68 (0.12) 0.55 (0.15) 0.52 (0.15) 0/6/0

FT 0.81 (0.10) 0.81 (0.08) 0.73 (0.13) 0.72 (0.11) 0.64 (0.16) v 0.64 (0.13) v 2/4/0

J48 graft 0.89 (0.08) 0.89 (0.08) 0.71 (0.12) 0.71 (0.10) 0.50 (0.16) 0.49 (0.15) 0/6/0

LAD Tree 0.84 (0.10) 0.84 (0.10) 0.57 (0.16) 0.59 (0.15) 0.52 (0.17) 0.52 (0.16) 0/6/0

LMT 0.83 (0.10) 0.83 (0.10) 0.79 (0.13) 0.78 (0.11) 0.64 (0.15) v 0.65 (0.14) v 2/4/0

Random Tree 0.43 (0.17) * 0.40 (0.17) * 0.37 (0.14) * 0.32 (0.15) * 0.34 (0.15) 0.37 (0.16) 0/2/4

Simple Cart 0.86 (0.08) 0.85 (0.10) 0.70 (0.10) 0.68 (0.10) 0.60 (0.16) 0.57 (0.15) 0/6/0

Miscellaneous, significance relative to VFI
VFI 0.51 (0.21) 0.53 (0.15) 0.56 (0.15) 0.54 (0.18) 0.70 (0.17) 0.68 (0.14)

Hyper Pipes 0.49 (0.19) 0.52 (0.17) 0.53 (0.18) 0.56 (0.17) 0.51 (0.18) * 0.52 (0.19) 0/5/1

Meta, significance relative to AdaBoost.M1

AdaBoost.M1 0.92 (0.07) 0.93 (0.05) 0.84 (0.09) 0.82 (0.11) 0.71 (0.12) 0.74 (0.11)

Attr Sel

Classifier

0.84 (0.08) * 0.86 (0.09) * 0.68 (0.13) * 0.67 (0.15) * 0.54 (0.15) * 0.55 (0.12) * 0/0/6

Bagging 0.91 (0.06) 0.92 (0.07) 0.75 (0.11) * 0.74 (0.11) * 0.65 (0.15) 0.67 (0.13) 0/4/2

Class. Via

Regression

0.90 (0.09) 0.89 (0.07) 0.76 (0.12) 0.78 (0.11) 0.63 (0.15) 0.60 (0.12) * 0/5/1

Dagging 0.50 (0.23) * 0.52 (0.18) * 0.53 (0.13) * 0.50 (0.19) * 0.48 (0.19) * 0.46 (0.19) * 0/06

Decorate 0.83 (0.09) * 0.85 (0.10) * 0.74 (0.13) * 0.76 (0.12) 0.66 (0.14) 0.66 (0.11) 0/3/3

END 0.92 (0.07) 0.92 (0.06) 0.85 (0.08) 0.85 (0.09) 0.70 (0.16) 0.74 (0.12) 0/6/0

Filtered

Classifier

0.83 (0.09) * 0.84 (0.08) * 0.81 (0.10) 0.81 (0.11) 0.80 (0.12) 0.80 (0.13) 0/4/2

Logit Boost 0.94 (0.06) 0.95 (0.05) 0.80 (0.12) 0.80 (0.10) 0.69 (0.12) 0.72 (0.12) 0/6/0

Multi Class

Classifier

0.33 (0.11) * 0.34 (0.13) * 0.38 (0.14) * 0.37 (0.09) * 0.27 (0.12) * 0.31 (0.11) * 0/0/6

CBND 0.68 (0.16) * 0.71 (0.15) * 0.64 (0.13) * 0.62 (0.14) * 0.49 (0.15) * 0.49 (0.19) * 0/0/6

DNBND 0.70 (0.16) * 0.72 (0.16) * 0.64 (0.13) * 0.63 (0.15) * 0.48 (0.14) * 0.49 (0.19) * 0/0/6

ND 0.69 (0.15) * 0.73 (0.17) * 0.63 (0.15) * 0.63 (0.16) * 0.49 (0.17) * 0.47 (0.14) * 0/0/6

OCC 0.70 (0.14) * 0.75 (0.13) * 0.55 (0.18) * 0.57 (0.15) * 0.42 (0.19) * 0.43 (0.17) * 0/0/6

Random

Committee

0.73 (0.14) * 0.74 (0.12) * 0.65 (0.12) * 0.61 (0.14) * 0.60 (0.11) * 0.61 (0.15) * 0/0/6

RSS 0.93 (0.07) 0.93 (0.07) 0.83 (0.08) 0.85 (0.09) 0.72 (0.14) 0.71 (0.14) 0/6/0

Rotation Forest 0.90 (0.08) 0.90 (0.09) 0.81 (0.10) 0.82 (0.11) 0.66 (0.14) 0.68 (0.13) 0/6/0

Numbers in brackets are for standard deviation, win/ tie/ loose is abbr. as v/ /*

Table 33: Performance of implemented classifiers along different representations by

selecting best 1000 features.

136

Table 33 presents the results of implementing different classifiers on all VSM

representations for only the best selected 1000 features and testing for significance

(for 5000 see appendix IV).

Results shown in Table 33 show that:

1- For Bayes-based classifiers, BN classifier performance is significantly the best

among others (relative to NBM) for all representations (F1=99%) followed by NBM

classifier (F1=78%);

2- For Function classifiers, Simple Logistic classifier performance is significantly

the best among others (relative to SMO) for root, RRP, stem, SSP representations

(F1=83%) followed by SMO classifier (F1=68%);

3- For Rule classifiers, JRip classifier performance is significantly the best among

others (relative to PART) for word and WP representations (F1=87%) followed by

Ridor classifier (F1=86%) but with no significance, then by PART classifier (83%);

4- For Tree classifiers, LMT classifier performance is significantly the best among

others (relative to J48) for word and WP representations (F1=83%) followed by FT

classifier (F1=81%) performance is significantly the best among others also for word

and WP representations, then by BF Tree (88%) and RepTree (87%) classifiers with

no significance; and

5- For Meta classifiers, Logit boost classifier performance is the best among others

(relative to AdaBoost.M1) for all representations with no significance (F1=94%)

followed by RSS classifier (F1=93%) with no significance, then followed by END

classifier (92%) with no significance, then by AdaBoost.M1 classifier (92%).

137

It is noticed here that the performance of all best classifiers mentioned above is

better than the performance of SMO classifier. The SMO classifier implemented here

uses linear kernel. Other types of kernels, although not presented here, are tested for

this classifier and results of using these types did not improve the classifier's

performance but actually degraded it.

Table 34 re-represents best results of classifiers shown in Table 33 among types

(except Miscellaneous) and tests for significance with respect to C4.5 classifier.

Type Classifiers Roots RRP Stems SSP Words WP v/ /*
Bayes-

based

BN 0.99 (0.03) 0.98 (0.03) 0.99 (0.03) 0.99 (0.03) 0.96 (0.06) 0.96 (0.06) 6/0/0

NBM 0.78 (0.11) 0.78 (0.11) 0.72 (0.11) 0.72 (0.10) 0.67 (0.11) 0.68 (0.12) 2/3/1

Functi

ons

Simple

Logistic

0.83 (0.09) 0.83 (0.11) 0.79 (0.13) 0.78 (0.11) 0.63 (0.15) 0.63 (0.14) 2/4/0

SMO 0.68 (0.13) 0.68 (0.11) 0.64 (0.12) 0.64 (0.11) 0.59 (0.16) 0.56 (0.15) 0/4/2

Rules

JRip 0.87 (0.09) 0.85 (0.11) 0.73 (0.14) 0.74 (0.13) 0.69 (0.16) 0.67 (0.16) 2/4/0
Ridor 0.86 (0.08) 0.85 (0.09) 0.69 (0.11) 0.69 (0.13) 0.58 (0.15) 0.57 (0.14) 0/6/0
PART 0.83 (0.10) 0.84 (0.11) 0.68 (0.13) 0.70 (0.12) 0.49 (0.17) 0.50 (0.14) 0/6/0

Trees

LMT 0.83 (0.10) 0.83 (0.10) 0.79 (0.13) 0.78 (0.11) 0.64 (0.15) 0.65 (0.14) 2/4/0
FT 0.81 (0.10) 0.81 (0.08) 0.73 (0.13) 0.72 (0.11) 0.64 (0.16) 0.64 (0.13) 2/4/0

BF Tree 0.88 (0.07) 0.88 (0.08) 0.69 (0.09) 0.68 (0.12) 0.55 (0.15) 0.52 (0.15) 0/6/0
RepTree 0.87 (0.09) 0.86 (0.10) 0.64 (0.11) 0.67 (0.10) 0.52 (0.18) 0.53 (0.16) 0/6/0

J48 0.86 (0.08) 0.87 (0.09) 0.70 (0.13) 0.69 (0.11) 0.47 (0.16) 0.46 (0.16)

Meta

Logit boost 0.94 (0.06) 0.95 (0.05) 0.80 (0.12) 0.80 (0.10) 0.69 (0.12) 0.72 (0.12) 5/1/0
RSS 0.93 (0.07) 0.93 (0.07) 0.83 (0.08) 0.85 (0.09) 0.72 (0.14) 0.71 (0.14) 5/1/0
END 0.92 (0.07) 0.92 (0.06) 0.85 (0.08) 0.85 (0.09) 0.70 (0.16) 0.74 (0.12) 4/2/0

AdaBoost.M

1

0.92 (0.07) 0.93 (0.05) 0.84 (0.09) 0.82 (0.11) 0.71 (0.12) 0.74 (0.11) 4/2/0

Filt

Classifier

0.83 (0.09) 0.84 (0.08) 0.81 (0.10) 0.81 (0.11) 0.80 (0.12) 0.80 (0.13) 3/3/0

Table 34: Performance of best two classifiers among types for different representations

by selecting best 1000 features (significance results are relative to J48).

C4.5 classifier [164]; [92]; [143] is one of the frequently studied classifiers that

usually provide good results. This is why it is chosen here for significance

comparison (in appendix IV significance testing for classifiers in Table 34 relative

LMT and BN classifiers). Results in Table 34 show that BN classifier is significantly

the best classifier among those used in this thesis and for all representations.

The third part compares the performance of the classifiers between: a) Roots and

RRP representations, b) Stems and SSP representations, and c) Words and WP

138

representations. It tests their performance for significance. FSS is performed using

Chi-square on all those representations and best 1000 and 5000 selected features are

maintained (some results are presented in appendix IV). It is evident that although a

slight improvement/degradation was obtained for some classifiers when the original

VSM was extended, yet such results are not significant.

5.5 Conclusions

The results of implementing the proposed variant TFIDF and VSM representations

for various classifiers have been presented in this chapter and can be briefed as:

1- The comparison between the performance results of most classifiers showed that

using Roots representation significantly improved their performance than when

using Stems or Words representations.

2- A comparison between the performances of those classifiers showed that using

RRP representation significantly improved most of their performances than when

using SSP or WP representations.

3- It is evident that although a slight improvement/degradation was obtained for

some classifiers when the original VSM was extended, as explained above, yet such

results are not significant.

4- It was noticed that the performance of BN was the best among implemented

classifiers for all representations with F1
M

 = 0.99 and the effect of the variation of

the number of selected features on its performance was the minimal among all

classifiers.

139

5- Using the proposed variant of TFIDF, the classifiers' results in Table 34 showed

that the best classifier was BN, followed by, in decreasing order, Logit Boost,

Random Sub Space, END, Filtered Classifier Meta classifiers when features' number

is 1000. The same can be concluded when features' number is 5000.

6- The high improvement in classification performance for most implemented

classifiers when using roots representation compared to when using words

representation provides an increase in knowledge obtained by using roots

representation.

The overall analysis and critical review of the work and results for the two

experiments reported in this chapter are explored in the next Chapter.

140

Chapter 6: Critical Analysis of Text Classification Methods'

Performances

6.1 Introduction

This chapter provides critical analysis of the results of implementing various

classifiers for six different VSM representations on TC performance whether for the

first or second experiment as presented in Chapter 5.

This chapter is organized as follows: Section 6.2 compares the results of using

phrases in document representation on Arabic TC performance shown in Chapter 5

with those implemented for English TC and further analyzes these results. Section

6.3 further compares between the results of implemented classifiers here according

to their types in terms of their errors, training time and size (if tree learners) or

number of rules (if rule learners). It also relates to the results of the same classifiers

in other studies for English TC besides those for Arabic (if any). Finally, it

concludes with the outcome of such analysis and comparison.

6.2 Effect of Using Phrases on Classification Performance

Since there are no reports of using phrases as representatives of features for Arabic

TC, as was mentioned in subsection 2.4.1.1, this thesis extends the single term

representation, as was explained in subsection 5.2.2.2, by including phrases with

DF>1 to such representations. The results of the effect of this extension on TC

performance were presented in section 5.4.1. Such results are in agreement with

reported studies for English TC as [79]; [139]. However, in reported English TC, the

effect of such phrases on TC performance was further investigated by including [79]

141

syntactic heuristics in phrase development or the [139] syntactic category of the

word (using a POS-tagger) then extracting two levels of phrases from texts: a) proper

nouns, b) complex nominal that express domain concepts, then word senses were

used in place of simple words. In both studies [79]; [139] the detailed and explicit

investigation of each case on different and large corpora showed that the effect of

using phrases, word senses .., etc doesn't improve TC performance for English.

When word VSM representation was extended for English in (Moschitti and Basili,

2004) it seems to not improve TC. The new idea here (in this thesis) is to extend

roots and stems representations with their respective phrases and studying their

effect on TC performance. In this thesis, phrases were constructed as explained in

section 5.2 and although results of including phrases for Arabic TC is similar to

those for English TC and that the construction of Arabic phrases includes most of

above cases for English, yet such linguistic options were not separately studied. This

is due to the fact that there are no available online resources that would provide such

options for Arabic except for the AWN software that can provide word senses but

unlike WN it does not provide the percentage of each sense for a given word and as

such cannot be used here.

Although, the method of extracting phrases implemented here for Arabic is slightly

different than the method for extracting phrases for English, yet results of extending

single terms with their respective phrases for Arabic is in consensus with those for

English. Moschitti and Basili, (2004) [139] tended to explain the reasons for such

results over English due to two possible properties of phrases: 1- Loss of coverage,

and 2- poor effectiveness. The author tends to agree with such explanations here.

Also, only one Arabic corpus was used here (rather small) which would lead to the

142

conclusion that further investigation of this matter (i.e. including phrases, word

senses) is the next step on larger Arabic corpora.

6.3 Comparison between Classifiers

As far as known there is no work that investigated all WEKA classifiers for Arabic

TC. However, in order to provide indicative comparison, the results of two works are

presented here briefly. These are the works of [83] and [43]. Gelbukh and

Kolesnikova [83] reported using different classification methods for recognizing

semantic types of Spanish verb-noun collocations. Maximum reported F-measure

values for such algorithms were: 0.903 for PART, 0.903 for JRip, 0.888 for Ridor,

0.908 for BF Tree, 0.915 for Simple Cart, 0.915 for FT, 0.893 for REPTree, 0.759

for NB, 0.783 for IB1, and 0.933 for SMO algorithms. Also, Chakraborty et al, [43]

reported using various methods for classifying accounting literature. Maximum

reported Accuracy values for such algorithms were: 0.832 for BN, 0.8531 for

Complement NB, 0.8042 for NB, 0.8 for NBM, 0.6334 for NB Updatable, 0.8 for

NBM Updatable, 0.74 for J48, 0.74 for J48 graft, 0.5 for LAD Tree, 0.73 for

Random Forest, 0.57 for Random Tree, 0.8 for RepTree, 0.75 for Simple Cart, 0.64

for BF Tree, 0.65 for FT, 0.7 for LMT, 0.73 for ZeroR, 0.7136 for Ridor, 0.7136 for

PART, 0.77 for OneR, 0.7433 for JRip, 0.8 for Decision Table, 0.6 for NNge, 0.7833

for CVR, 0.4333 for Multi Class Classifier, 0.7 for Simple Logistic, 0.5667 for

SMO, 0.7833 for Attribute Selected Classifier, 0.7833 for Bagging, 0.6833 for

Dagging, 0.7833 for Decorate, 0.8167 for END, 0.8 for FC, and 0.734 for Logit

Boost.

Before comparing results obtained in this thesis with those presented above, further

analysis of results for Arabic TC of each type of classifiers is presented next.

143

6.3.1 Function Classifiers

Function classifiers are classifiers that build models that use functions such as linear

regression, logistic regression functions. The best two performing function classifiers

here are further discussed, namely Simple Logistic and SMO.

Simple Logistic classifier [119] builds a logistic regression model using LogitBoost

and incorporates attribute selection by fitting simple regression functions in

LogitBoost. In [119] this method was compared with C4.5, AdaBoost, LMT, and

two other algorithms and was tested on 32 data sets. Results show that its accuracy

values are comparable with those of C4.5 and LMT. Although not presented here,

Simple Logistic takes much less time than LMT. SMO classifier [110; 142] breaks

large quadratic programming optimization problem into a series of smallest possible

quadratic programming problems.

In [110; 142], SMO performance is better than linear SVM and faster. The SMO

classifier tested here used linear kernel. Other types of kernels, although not

presented here, were tested for this classifier and results of using these types did not

improve the classifier's performance but actually degraded it. Also, the performance

of this classifier for Arabic texts using macro-F1 in [146; 147; 148] is about 88-90%

and highly different from its performance reported here for root representations

(about 70%). In order to clarify the effect of variant TFIDF on this classifier

performance further investigations are required.

It is worth mentioning that Logistic classifier [123] uses ridge estimator to reduce the

effect of large number of covariates compared to number of observations and the

high correlation of such covariates. The use of a ridge estimator would partially

144

explain the lower performance results of this classifier compared to Simple logistic

and SMO for Arabic TC in this thesis.

Simple logistic performance in this thesis is significantly higher than the remaining

function classifiers for all representations. For Words representation, the F1 values

are 63% for Simple Logistic and 59% for SMO as is shown in Table 33, section 5.4.

This is in general agreement with results obtained in [43]. However, for root

representation the comparison between the performance of Simple Logistic with that

of LMT, C4.5 and other classifiers, as shown in Table 34, section 5.4, shows their

comparability. This conclusion is in agreement with that obtained in [119] although

for different data sets.

6.3.2 Bayes-Based Classifiers

Bayes-based classifiers [92] are statistical classifiers. Studies investigating the

performance of such classifiers found that NB classifier is comparable with decision

trees and selected neural net work ones. Bayes-based classifiers have shown high

accuracy and speed when applied on large databases. As far as known there is no

comparison between various Bayes-based classifiers on Arabic texts and here a

comparison is presented. Among the six classifiers investigated only the four highest

in performance are further described.

BN classifier is [132] a classifier that uses a model that specifies a document to be

represented by a vector of binary attributes. Thus, the number of times the word

occur in the document is not captured and as such the probability of a document is

found by multiplying the probability of all attribute values (occurring or not in

document). The distribution then is based on multi-variate Bernoulli event model.

145

Thus, this model considers "... the document to be the event and the absence or

presence of words to be attributes of the event".

NBM classifier [132] considers a model that specifies a document to be represented

by the set of word occurrences from the document, i.e. word count in document is

captured. The probability of a document is found by multiplying the probabilities of

words that occur. In this thesis, the results of NBM and NBMU classifiers are highly

comparable in terms of F1 values, time, and RMSE for all representations.

A comparison between the performance of BN and NBM classifiers as the number of

features [132] was varied on five text corpora was investigated and it was found that

NBM performance is almost uniformly better than BN and that NBM reduces error

by an average of 27%. Also, BN had higher accuracy values than NBM for number

of features generally less than 1000 (more near to 100 features). However, NBM is

better in performance than BN above 1000 features. More specifically, in [132] BN

accuracy is slightly higher than NBM by about (3 to 9)% for features number less

than 1000 whereas in this thesis it is much higher by about 21%. Also,

precision/recall breakeven point values for BN in [132] decreased largely as number

of features increased whereas in this thesis F1 values for this classifier reduced

slightly as number of features increased. The maximum precision/recall breakeven

point values for BN in [132] for different corpora varied and were in the range 52-

98% whereas in this thesis it was around 98% for all representations.

In this thesis, the results of BN performance above 10000 for features' numbers

cannot be compared with those in [132] since it was not investigated due to hardware

limitations. Unlike in [132] both BN and NBM classifiers in this thesis maintained

an F1 value that reduced slightly as the number of features increased. Also, the FSS

146

method used in this thesis is the Chi-square method whereas in [132] it was mutual

information.

Complement NB classifier [149] modifies NBM classifier in four ways where it: 1-

introduces a complement method to estimate the probability of a document, 2-

normalizes weights of attributes, 3- uses a power law distribution to match term

frequency distributions, and 4- uses two transformation pre-processing steps to

improve the performance of NBM. This classifier was tested [149] on several text

corpora and was compared with NBM and SVM classifiers. Its performance

approaches that of SVM and outperforms NBM. Complement NB classifier

performance was in this thesis less than that for NBM for all representations

although comparable. This is different than that reported in [149].

In [43] the result of Complement NB was the highest among Bayes-based classifiers

followed by BN, then by NBM. This is different than their performances reported in

this thesis for word or WP representations.

As was presented in Table 33, section 5.4, the performance of Bayes-based

classifiers was compared in terms of F1 values where the BN classifier's

performance is significantly better than the remaining Bayes-based classifiers for all

representations. In this chapter, their performance is also compared in terms of

training time and RMSE as shown in Figure 37. Figure 37a presents the training time

(in seconds) of such classifiers for all representations and the fastest one is the

NBMU and NBM then Complement NB, and finally BN as the slowest among these

classifiers (about 2 - 2.5 seconds). Figure 37b illustrates the error in their

performance where BN classifier had the lowest error value followed by NBMU and

NBM, and finally NBU classifier had the highest error value for all representations.

147

(a)

(b)

Figure 37: Comparison between Bayes-based classifiers' performance for all

VSM representations according to (a) time, (b) RMSE

The results shown in Table 4 when testing Bayes-based classifiers especially the

NBM one are lower than those reported in [146; 147; 148]. It is not evident at this

stage whether the different performance of NBM classifier in [132] or that of

Complement NB classifier in [149] is different than their performance in this thesis

is due to the following factors: use of variant TFIDF weighting method, FSS method,

text corpus, or all. In order to establish the cause of such difference, further research

in future is required to study each factor separately.

6.3.3 Tree Classifiers

Decision Trees classifiers [92] are flowchart-like tree structures that are built from

labeled data. The class of an unlabelled test instance is found by testing the attribute

148

values against the tree. Decision trees are [92] popular due to: 1- their handling high

dimensionality of data, 2- their tree representation of knowledge is intuitive and easy

to relate to by humans, and 3- their classification and learning steps are generally fast

and simple. In this chapter, only the seven tree classifiers with best results are further

discussed. Some of these trees are based on logistic regression. The efficiency [164]

of tree classifiers is not only judged by their accuracy but also by other criteria as

their errors and tree sizes. In this chapter all above criteria is further analyzed.

C4.5 classifier [143] generates a decision tree from a set of labeled instances by: 1-

seeing if this set satisfies a stopping criterion, and if so the tree of this set is a leaf

associated with the most frequent class in this set, then 2- using a test to recursively

partition this set into smaller subsets. This algorithm uses the divide-and-conquer

strategy in growing decision trees and adjusts Information Gain splitting criterion.

This method was tested on 20 data sets (non-textual) and compared with its previous

releases as well as other classifiers in terms of error rate and tree size using 10-fold

cross validation. Results of this comparison [143] showed that this method produced

smaller decision trees with higher accuracies and is superior to approaches that use

global discretization.

LMT classifier [119; 170] is a method that combines linear logistic regression and

tree induction by using such functions at tree leaves. In [170] LMT was compared in

performance with AdaBoost classifier and their accuracy was in general comparable

on 13 data sets. Yet, LMT training time was found to be much higher than that for

AdaBoost. In [119] LMT was compared with C4.5, Simple Logistic, AdaBoost and

others on 32 data sets in terms of accuracy and tree size. LMT in that work

149

outperformed C4.5 and was comparable to AdaBoost, Simple logistic and other

classifiers but much lower in tree size than C4.5.

FT classifier [82; 119] is a method used for building trees that could use logistic

regression functions at inner nodes and/or leaves. In [82] a comparison between

performance of FT classifier and C4.5, linear Bayes, and Cruise [113] classifiers on

30 data sets was conducted. Results indicate that FT performance is generally

comparable with linear Bayes and Cruise (for some datasets FT significantly wins

while for others it loses).

RepTree classifier is a fast method that builds a decision/regression tree using

information gain/variance reduction, prunes it using Reduced-Error Pruning (with

back fitting), and sorts numeric attributes only once. Simple Cart is [40] a method

that builds classification trees by implementing minimal cost-complexity pruning.

BF Tree classifier [164; 77] builds a Best-First decision tree and uses binary splitting

criterion. In [164] a comparison between the performance of BF Tree method and

CART in terms of accuracy, training time and tree size on 38 data sets was

conducted. Its results showed that both CART and BF Tree are comparable in terms

of accuracy and training time but BF Tree outperforms CART in terms of having

significantly lower tree sizes on most data sets.

Random Forest classifier is [38] a method that combines tree classifiers such that

each tree depends on the values of a random vector sampled independently and with

same distribution for all trees in forest. In [38] it was found that Random Forests

give results that are competitive to boosting and adaptive bagging classification

algorithms in performance.

150

As far as known, this thesis is the first work that compares various tree learners for

Arabic TC. Here, as was presented in Table 33, section 5.4, results of tree classifiers

showed that, relative to C4.5, LMT and FT classifiers performances are significantly

the best among others for word and WP representations. However, for the remaining

representations, classifiers' performances are comparable. The maximum F1 values

for root representation are: Simple Cart (86%), LMT (83%), LAD Tree (84%), FT

(81%), BF Tree (88%), RepTree (88%) and C4.5 (86%). The maximum F1 values

for word and WP representations are: Simple Cart (60%), LMT (64%), LAD Tree

(52%), FT (64%), BF Tree (55%), RepTree (53%), Random Forest (61%), Random

Tree (37%), C4.5 graft (50%) and C4.5 (47%). Also, the performance of Random

Tree is lower than the remaining classifiers for all representations.

The above tree classifiers are further compared here in terms of their error, time and

tree sizes as presented in Figure 38. From Figure 38a, for representations used, the

least tree size was for FT method and the highest size was for Random Tree. Here,

unlike results presented in [164], Simple Cart method provided less tree size than BF

Tree method for all representations. Figure 38b showed that the method with least

error is LMT followed by FT, Random Forest, Simple Cart, LAD Tree, Rep Tree,

BF Tree, J48, and finally Random Tree. This is in general agreement with the

finding of previous works mentioned above. Figure 38c illustrated that Random Tree

method had the least training time among the tree classifiers followed by RepTree,

Random Forest, J48, Simple Cart, BF Tree, LAD Tree, FT, and finally LMT (here

time for LMT classifier is 10102.48 sec). Although, LMT provided best results in

terms of significant F1 values, RMSE values but its time was the worst. So, in this

thesis, FT classifier is better than other tree classifiers in terms of comparative F1

values, low RMSE and time values.

151

(a)

(b)

(c)

Figure 38: Comparison between decision trees classifiers' performance for all

VSM representations according to (a) size of trees, (b) RMSE, (c) time

152

Results presented in Table 34, section 5.4 for comparing the performances of CART,

C4.5, LMT, FT and BF Tree classifiers with classifiers as Simple Logistic or NB, are

in general agreement with those in [164], [119], and [82] in terms of F1 values.

Chakraborty et al, (2010) [43], although no significance testing was reported,

showed that RepTree had the highest performance among implemented tree

classifiers, followed by Simple Cart, J48, J48 graft, Random Forest, LMT, FT, BF

Tree, Random Tree, and finally by LAD Tree classifier. Such results are different

from those presented for the same classifiers in this thesis in terms of their order or

values for word representation.

6.3.4 Rule Classifiers

Rule-based classifiers [47] produce rule sets which are relatively easy for people to

understand and outperform decision tree classifiers [145]. Here, the five applied rule-

based classifiers' results are further discussed.

NNge classifier is an algorithm [130] that generalizes exemplars without nesting or

overlap and forms a generalization each time a new example is added by joining it to

its nearest neighbor of same class and adopts a heuristic that performs modifying any

generalizations in a uniform fashion, and is an extension of NGE [157] but doesn't

allow hyper rectangles to nest or overlap. This method was tested [130] on 13 data

sets (none of them are textual data sets) against CART, k-NN, Bayes, C4.5, and

Composite Learner classifiers. In [157], NNge shows an improvement over standard

NN classifier. Also, NNge tends to produce rules that test a large number of

attributes. It also reduces the number of exemplars and improves classification

accuracy while reducing classification time. In general this method was found to

either outperform most above classifiers or is comparable to their performance.

153

Ridor classifier [80] is a technique that creates a two-way dependency relation

between rules such that rule activation is investigated only in the context of other

rule activation. Thus, it forms ripple down rules that form a binary decision tree

where compound clauses are used to determine branching. Such clauses are not

required to exhaustively cover all cases so that eventually this technique results in

rule sets having minimal inter-rule interactions. This method [80] was tested on

some large medical data and compared to ID3 and manual rules results. The

comparison showed that Ridor is a simple, fast and effective method for rule

induction.

OneR classifier is [102] a technique that outputs very simple rules on datasets and

are called 1-rules since these rules classify an object on the basis of a single attribute.

This method basically ranks attributes according to error rate (from training set

results). Simple improvements presented in [102] to this method showed that it is

similar (less than by about 3%) to the accuracy of C4 classifier when tested on 16

data sets (none is textual). However, its complexity is far less than C4.

Decision Table classifier is [114] a method that produce a decision table with a

default rule mapping to the majority class. This representation has two components

schema and body. Schema is a set of features that are included in the table and body

consists of labeled instances from space defined by the features in the schema. To

build this table, the algorithm decides which features to be included in schema using

best-first search method to estimate the future prediction accuracy with k-fold cross

validation. This algorithm [114] was tested on 16 datasets with discrete features and

on 2 datasets with continuous features (non are textual). Also, this work compared

the performance of this algorithm with C4.5 and majority classifiers. For discrete

154

features, this algorithm outperformed both C4.5 and majority classifiers for some

datasets, whereas for continuous features this algorithm's performance is comparable

to C4.5 in some datasets.

PART classifier [75] is a rule-induction method that avoids global optimization but

produces accurate and compact rules. This method infers rules by repeatedly

generating partial decision trees thus combines creating rules from decision trees and

the separate-and-conquer rule-learning technique. The performance [75] of this

classifier was tested against that of C4.5, C5.0 and RIPPER classifiers on 34

datasets. It was found that PART rule sets compare favorably to those of C4.5 and

C5.0 and are more accurate, although larger, than those of RIPPER. Also, in a

comparison between the performance of C4.5, PART and RIPPER [75] classifiers, it

was found that PART has better performance than C4.5 and RIPPER in terms of

CPU time, error rate and accuracy.

RIPPER classifier is [47] a propositional rule learning algorithm that performs

efficiently on large noisy datasets (that extend naturally to first order representations)

and are competitive in generalization performance with more mature symbolic

learning methods as decision trees. It starts first with an initial model then secondly

it iteratively improves it using heuristic techniques. This classifier was [47] tested on

22 datasets (few are textual) and compared with C4.5 and other previously rule-

based algorithms in terms of generalization performance and efficiency. RIPPER

was found to be extremely competitive with C4.5 rules and on most of datasets its

error rate was lower than that for C4.5. Also, for noisy data sets, RIPPER is more

efficient than C4.5 and scales nearly linearly with number of examples. In a

comparison between the performance of C4.5 and RIPPER [47] classifiers on

155

different data sets, it was found that RIPPER has better performance than C4.5 in

terms of error rate.

For Arabic TC, only the works [175]; [6] used RIPPER, PART and OneR methods

among the rule-based algorithms in WEKA and compared their performances with

C4.5. Thabtah et al, (2011) [175] applied these methods on Leeds Corpus of

Contemporary Arabic with 427 texts among 15 categories, used Khoja's stemmer,

and employed 10-fold cross validation. On average, the results of C4.5, RIPPER,

PART, and OneR methods (using Roots for features) in terms of F1 are respectively

0.9, 0.887, 0.8877, and 0.1769. Also, it reported the methods' number of rules and

error rates. It reported the number of rules to be lowest for OneR then in increasing

order PART, RIPPER, and finally the highest for C4.5. However, the error rate was

the highest for OneR, then in decreasing order RIPPER, PART and finally C4.5. Al-

diabat (2012) [6] also applied these methods on 1526 texts with six categories, used

Chi square for FSS and selected the top 30 features (Roots), and employed 10-fold

cross validation. On average, the results of C4.5, RIPPER, PART, and OneR

methods in terms of F1 are respectively 0.6085, 0.5788, 0.621, and 0.1331. The

highest number of rules in [6] was for C4.5 then in decreasing order PART, RIPPER

and finally OneR.

As was shown in section 5.4, the results of applying the five rule-based algorithms,

namely NNge, OneR, Decision Table, Ridor, RIPPER, and PART, have shown that

the best performing classifier for Roots or RRP representations among rule learners

in terms of F1 values is the JRip classifier (87%) followed by Ridor (86%) and

PART (83%), then by OneR (79%), then by Decision Table (54%) and finally by

NNge (43%) classifiers. This is not in agreement with the results presented above for

156

Arabic TC above in [175]; [6] in terms of values or order. However, unlike results in

[175; 6], as shown in Table 34, section 5.4, RIPPER classifier is significantly better

than C4.5 for 2 representations and comparable with it for the others. In [43], the

highest best performing rule learner was the Decision Table followed by OneR, then

JRip, then Ridor and PART and finally by NNge classifiers.

In this thesis, when using words representation the performance of these classifiers is

different from those in [43] whether in order or values. In this chapter, these

algorithms' performances are further compared in terms of number of rules, building

time, and RMSE for 5000 top selected features only. This is presented in Figure 39.

It can be concluded from Figure 39a that the least number of rules was in OneR

(although not shown) followed, in increasing order, by RIPPER, PART, Decision

Table, NNge, and finally Ridor for all representations. This is in agreement with

results presented in [75] regarding the performance of RIPPER and PART in terms

of number of rules and with the results of [175] for Arabic TC in that regard. From

Figure 39b it can be seen that RMSE values are the least for RIPPER, then in

increasing order Decision Table, PART, Ridor, OneR, and finally NNge. However,

Figure 39c presents the amount of time taken for building these classifiers and the

fastest classifier among these is OneR, and then less fast comes NNge, then RIPPER,

PART, Ridor, and finally Decision Table.

TC performance in terms of accuracy for English was [79] reported to be about 78%

(no FSS) whereas for Arabic as reported here for words representation is about 69%.

Another difference that is noted here is that the number of rules and CPU time for

RIPPER is less than for PART classifier whereas the reverse was concluded [75] for

such classifiers. It is not clear here the cause of such difference and requires further

157

investigation whether on the same corpus but using other term weighting methods or

on other corpora.

(a)

(b)

(c)

Figure 39: Comparison between rule-based classifiers' performance for all

VSM representations according to (a) number of rules, (b) RMSE, (c) time

158

It is noteworthy that in [175; 6] the reported accuracy of OneR classifier (about 0.1)

is much lower than its value here (accuracy values for WP, Words, SSP, Stems,

RRP, and Roots representations are respectively 0.5833, 0.5249, 0.5323, 0.5485,

0.6294, and 0.6182). It is considered here that such large difference in accuracy

values might be partially due to the use of the proposed TFIDF variant. However,

this requires further investigation in future.

6.3.5 Miscellaneous Classifiers

The two miscellaneous classifiers applied here are VFI and HyperPipes. Both

performances for all representations were rather low but HP method had higher F1

values than VFI as was presented in section 5.4. For Arabic TC these methods have

not been implemented before.

In [65] HP classifier accuracy was compared with those of SVM, C4.5, NB and

TWCNB (a modification of NB for TC found in [149]) classifiers in WEKA

software and found that HP accuracy is comparable with TWCNB but higher than

the others.

VFI was compared with HP as well as NB classifiers
49

 on 35 data sets and it was

found that VFI is faster than NB but slower than HP and less in accuracy than both

NB and HP for most sets and the highest performance was for NB then HP then VFI.

In this thesis, the results of comparing VFI and HP classifiers performances in terms

of F1 are in agreement with results shown above. Also, comparing the performance

of HP, VFI with NB here shows that for only words and WP representations it is

similar to those reported in [65].

49 further info regarding results can be found at: http://bio.informatics.indiana.edu/ml_docs/weka/weka.classifiers.VFI.html

159

6.3.6 Meta Classifiers

Meta classifiers use either ensemble of base classifiers, boosting or bagging to

improve the performance of usually a weak classifier. Here, only the best seven

performing Meta classifiers (presented in Table 33, section 5.4) are further explained

and compared.

Filtered classifier
50

 runs an arbitrary classifier on data that has been passed through

an arbitrary filter (here Discretize).

END classifier [74] is an Ensemble of Nested Dichotomies that chooses randomly

the nested dichotomies and repeats this process for 10 iterations then takes the

average. In [74] this method was tested on 21 data sets and its implemented base

classifiers was either C4.5 or Logistic regression. Both were tested to see if this

ensemble improvement/degradation of performance depends on the base classifier or

not. It was compared to C4.5 and logistic regression, among others, and it was found

that END produces more accurate classifications than when applying C4.5 and

logistic regression. In this thesis, the base classifier for END is C4.5.

LogitBoost classifier [77] applies additive logistic regression with Decision Stump

base classifier and best-first as the splitting strategy. For multi-class problem, direct

generalizations based on multinomial likelihood were derived and their performance

were found to be comparable to some boosting algorithms and far superior in some.

This method also performed a slight modification to boosting that reduced

computation through weight trimming. In [77] LogitBoost was tested on simulated

and real data sets (non textual) and compared with AdaBoost (based on C4.5),

CART, and Bootstrapping algorithms as well as C4.5 for two-class and multi-class

50 info on Filtered clasifier was taken from: http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/FilteredClassifier.html

160

problems. This classifier's performance is comparable to AdaBoost performance on

real data sets. In [77], it was tested to investigate the effect of using C4.5 and

Decision Stump (as base classifiers) on LogitBoost performance where both had the

same effect. In this thesis, although not presented here, both base classifiers were

used and their effect on Logit Boost performance is comparable which is in

agreement with results obtained in [77].

Random SubSpace classifier (RSS) [99] consists of multiple trees constructed

systematically by pseudo randomly selecting subsets of features. This method can

take advantage of high dimensionality, unlike others that suffer from it, since it

improves on generalization accuracy as it grows in complexity. In [99] this method

was tested on 4 data sets and compared with C4.5 (with/out pruning), AdaBoost, and

bootstrapping methods. Results of such tests showed that RSS is more accurate than

C4.5 and higher than boosting and bootstrapping methods in accuracy.

Rotation Forest (RF) classifier [150] is an ensemble of base classifiers (in this thesis

C4.5) where the feature set is split into subsets randomly (K is the number of subsets

and a parameter of the algorithm) and Principle Component Analysis (PCA) is

applied to each subset. K-axis rotations take place to form the new features for the

base classifier, i.e. reassembling a new extracted feature set while keeping all

components. In [150] this method was compared with Bagging, AdaBoost, and

Random Forest algorithms and tested on 33 benchmark datasets. Results were

significantly favorable to RF classifier in terms of accuracy over all others.

AdaBoost.M1 classifier [78] is a method that boosts the performance of a weak

learner (in this thesis C4.5). This method was compared with C4.5 along with the

Bagging classifier, using FindAttrTest, FindDecRule and C4.5 weak algorithms. In

161

[78] 27 data sets were used for comparing such methods' results show that when

using C4.5 as weak learner, Boosting and Bagging seem more evenly matched even

though Boosting has a slight advantage.

Bagging classifier [39] is a method for aggregating multiple versions by making

bootstrap replicates of learning set of a predictor (in this thesis C4.5) and using these

to get an aggregated predictor. This method was tested on different data sets

(whether real or simulated) and compared it with CART's performance, subset

selection in linear regression. In [39] Bagging accuracy results is substantially higher

than others.

Classification Via Regression (CVR) classifier [76] is a model tree that takes the

form of a decision tree with linear regression functions at its leaves (base classifier is

M5P [144], [179]). In [76] this method was found to be significantly more accurate

than C5.0' and linear regression when tested on 33 datasets.

As was shown in Table 33, section 5.4, the results of applying 17 meta algorithms

showed that for Roots or RRP representations Logit Boost classifier's performance is

the best among others (relative to AdaBoost.M1) (F1=94%) followed by RSS

classifier (F1=93%), then by END classifier (92%), then by AdaBoost.M1 classifier

(92%), then Bagging (91%), CVR (90%), RF (90%), Att. selected classifier (84%),

then Dagging (83%) where the highest performances in terms of F1 of above

classifiers are not significant. This is not in agreement with the results presented

above in [43], whether in values or order, since the best performance, in decreasing

order, is for END, Filtered classifier, CVR, Decorate, Bagging, Att. selected

classifier, Logit boost, Dagging, and finally Multi Class Classifier.

162

The performance of the AdaBoost.M1 here in terms of F1
M

 varied among

representations in boosting C4.5 performance from about 3-4% for root

representations to about 10-12% for word representations for 5000 features. Also, as

mentioned (in subsection 2.4.2) in the work of Raheel at el, [147] the maximum F1
M

was found to be about 88.5% for root representation. However, here for roots

representation, the performance of this classifier is about 92%.

From results in Table 34, section 5.4, the comparison between the performances of

best classifiers among Meta classifiers whether among these classifiers or with other

types as C4.5 or Logistic is in agreement with reported results in [99], [74] and [77].

In this chapter, these algorithms' performances are further compared in terms of time

and RMSE for top 5000 selected features only as is presented in Figure 40.

Figure 40a presents a comparison between these classifiers in this thesis in terms of

building time. Some of these classifiers' time is small, although its macro F1 is low

such as Dagging, yet for few others that have comparatively high macro F1; their

time is still small such as RSS or FT classifiers. However, most Meta classifiers that

have high macro F1 values have a rather high time. Figure 40b presents the best

performing classifiers in terms of lowest RMSE values. Such values are in

agreement with their macro F1 values (i.e. classifiers with lowest RMSE have

highest F1 values).

163

(a)

(b)

Figure 40: Comparison between Meta classifiers' performance for all VSM

representations according to (a) time, (b) RMSE

Next is a comparison between the best performing classifiers of each type is further

analyzed.

6.3.7 Comparison between Classifiers:

In previous subsections, a comparison between the performances of classifiers of

same type was conducted and analyzed. Here, the best performing classifiers among

each type are compared further. Before doing that, a summary of what is reached so

far in this thesis is presented.

1- For Bayes-based: the performance of Bayes-based classifiers was compared in

terms of F1 measure where the BN classifier's performance (max. F1 is 99%) is

significantly better than the remaining Bayes-based classifiers for all representations,

164

2- For Functions: Simple logistic performance is significantly higher than the

remaining function classifiers for all representations, where for Roots representation,

the F1 values are 83% for Simple Logistic and 68% for SMO,

3- For Trees: results of tree classifiers performances showed that (max. F1 values),

relative to C4.5, LMT (83%), FT (F1=81%), BF Tree (88%), RepTree (87%), C4.5

(86%), and Simple Cart (86%) are comparable for most representations,

4- For Rules: results of applying the five rule-based algorithms have shown that the

best performing classifier for Roots or RRP representations among rule learners in

terms of F1 values is the JRip (87%) classifier followed by Ridor (86%) and PART

(83%), then by OneR (79%), then by Decision Table (54%) and finally by NNge

(43%) classifiers,

5- For Miscellaneous: results of comparing VFI and HP classifiers performances are

in agreement with previous works results,

6- For Meta: results of applying 17 meta algorithms showed that for Roots or RRP

representations Logit boost classifier's performance is the best among others (relative

to AdaBoost.M1) (F1=94%) followed by RSS classifier (F1=93%), then by END

classifier (92%), then by AdaBoost.M1 classifier (92%), then Bagging (91%), CVR

(90%), RF (90%), Att. selected classifier (84%), Decorate (83%), Filtered classifier

(83%), then Dagging (50%) where the highest performances in terms of F1 of above

classifiers are not significant.

As is shown in Table 34, section 5.4, the BN classifier (99%) is significantly the best

one among used classifiers in terms of F1 values for all representations. The second

best performance classifier is Logit Boost (94%) followed by in decreasing order,

165

RSS (93%), AdaBoost and END (92%), BF Tree (88%), RIPPER and RepTree

(87%), C4.5 and Ridor (86%), Simple logistic, PART, LMT, and FC (83%), FT tree

(81%), NBM (78%), then SMO (68%).

In order to further compare these classifiers, their training time and RMSE values are

compared. This is presented in Figure 41. From Figure 41a, in terms of least training

time, the best classifier is NBM followed by BN, RepTree, and then Logit Boost.

From Figure 41b, in terms of least RMSE values, the best classifier is BN, followed

by Logit Boost, then END and FC classifiers.

(a)

(b)

Figure 41: Comparison between best classifiers' performance for all VSM

representations from different types according to (a) time, (b) RMSE

Thus, it can be concluded that the best classifier among all used ones in this thesis in

terms of F1, time, and RMSE values is BN, followed by Logit Boost for all

representations.

166

6.4 Conclusions and Future Work

The results of implementing the proposed variant TFIDF and VSM representations

for various classifiers have been presented and further analyzed and compared in this

chapter and can be briefed as:

1- The comparison between the performance results of most classifiers showed that

using Roots representation significantly improved their performance than when

using Stems or Words representations. Also, a comparison between the performances

of those classifiers showed that using RRP representation significantly improved

most of their performances than when using SSP or WP representations. However, it

is evident that although a slight improvement/degradation was obtained for some

classifiers when the original VSM was extended, yet such results are not significant.

2- The classifiers' results showed that the best classifier was BN, followed by Logit

Boost classifier when features' number is 1000 for all representations in terms of F1,

training time, and RMSE values. The same can be concluded when features' number

is 5000. However, the effect of the variation of the number of selected features on

BN performance was the minimal among all classifiers. This is so since for 5000

features the improvements were slightly less, among the implemented classifiers, the

BN classifier had the least percentage of required features to obtain the maximum

performance: about 4.5% for Roots, about 1% for RRP, about 0.28% for Stems,

about 0.23% for SSP, about 0.043% for Words, and about 0.08% for WP. This is

different from previously reported studies on English TC.

3- The high improvement in classification performance when using roots

representation compared to when using words representation suggest an increase in

167

knowledge obtained by using roots representation for most implemented classifiers

and that using BN or Logit Boost classifiers for obtaining excellent Arabic TC

results is favorable not just in terms of accuracy, F1, time values, but also in lower

error values.

4- It is not clear at this stage whether using the proposed variant of TFIDF does

indeed improve the performance of classifiers or not since its effect in this thesis was

not compared with that of other term weighting methods. However, results in this

work indicate that this variant improves or has no effect on TC performance. This is

so although k-NN classifier's performance in this thesis was poor.

5- The comparison between different rule learners in this work is similar to

previously reported works on other data sets but rather different than those for

Arabic TC in terms of F1, time, RMSE values and number of rules. The comparison

between different tree learners in this work is rather similar to those of previously

reported works on other languages in terms of F1, time, RMSE values and size of

trees. The same applies to the comparison between the results of Meta learners here

in terms of F1, time, and RMSE values. However, the comparison between different

Bayes-based learners in this work is different than previously reported works on

other languages in terms of F1, time, and RMSE values.

6- It is noteworthy that, for 1000 features, the amount of improvement in

classification performance that AdaBoost.M1 provided for C4.5 classifier varied

among VSM representations from about 6% for roots or RRP to about 24-28% for

words or WP. Also, for 1000 features the amount of improvement in classification

performance that RSS provided for RepTree classifier varied among VSM

representations from about 6-7% for roots or RRP to about 18-20% for words or WP.

168

For 1000 features, the amount of improvement in classification performance that

END provided for C4.5 classifier varied among VSM representations from about 5-

6% for roots or RRP to about 23-28% for words or WP. For Logit Boost, the effect

of the base classifier choice on its performance is tested among representations and

although not presented but was found to be negligible. In general, the small

differences in the performance of Meta classifiers are not significant among

representations.

7- The high improvement in classification performance when using roots

representation compared to when using words representation suggest an increase in

knowledge obtained by using roots representation for most implemented classifiers.

In future, further work is expected to compare the performance of such classifiers on

other Arabic corpora (once acquired) and to investigate the effect of the proposed

variant of TFIDF method by comparing its effect on TC performance with other

weighting methods on different Arabic corpora. Also, further work is expected to

investigate the effect of other different VSM representations for Arabic on TC

performance and include further feature choices as word senses.

169

Chapter 7: Conclusions and Recommendations

This thesis explores and improves different preprocessing methods and investigates

their effect on TC performance for Arabic text. The preprocessing methods for TC

that are investigated are concentrated in two areas: morphological analysis and

document representations. More specifically, this thesis improves two existing root

extraction techniques by proposing and implementing an algorithm that handles

irregular words and compares between these techniques in terms of their accuracy

and execution time [13], [14]. It also proposes and implements an adjustment and

two expanded weight-based techniques and compares their performance with the

original ones [14]. Throughout the process of analyzing the results of root extraction

techniques, further modifications are presented such as handling foreign Arabized

words to establish a root extraction system.

This thesis investigates the effect of using the outputs of the best reported accuracy

root extraction technique among those implemented here (i.e. roots or stems as

alternatives of their respective words in document representation) on single-labeled

TC performance as well as including other feature choices such as phrases in

document representation. It also proposes and implements a variant TFIDF for

weighting features in VSM representation. Finally, in this thesis, such six VSM

representations and the proposed weighting method are used in the implementation

of various single-label TC techniques and a comparison and analysis of their

performances is conducted.

7.1 Research Contributions

This section presents the contributions for each research question introduced in

Chapter 1.

170

 Research contributions regarding the first research question

"What are the steps to develop an Arabic corpus from two different small

collections to be manually classified as single-labeled corpus among eight

classes?"

 This thesis contributes to the literature of Arabic corpora by reviewing briefly

available corpora and emphasizes the necessity for developing an Arabic

corpus that eventually will be available online (Chapter 3).

 This thesis contributes to the literature of corpus development in developing

an Arabic corpus. This corpus was developed after collecting texts from

various online newspapers and downloading the LACC corpus that were all

single-labeled. Then, a re-categorization process of the LACC corpus among

eight pre-defined classes was performed in order to unify the labeling of the

developed corpus. This resulted in a final corpus of 804 documents and about

a million words. The generality differs among categories for this corpus

(Chapter 3).

 Research contributions regarding the second research question

"What are the available root extraction methods to be implemented in this

research? What are their disadvantages and how to improve and compare

their performance in order to obtain the most correctly outputted stems

and/or roots for respective words using the developed Arabic corpus in order

to finally propose to develop a root extraction system?"

171

 This thesis contributes to the literature of available root extraction techniques

applied to Arabic by providing a brief review of these techniques and

compares them in terms of their performance, availability and advantages

and/or disadvantages (Chapter 2).

 This thesis identified specific disadvantages of two available different root

extraction techniques, namely their lack of extracting roots for irregular

words, contributed by improving the performance of these two techniques

through the development and implementation of an algorithm that handles

such irregular cases (Chapter 4). The implementation of this algorithm

reported improvement of the performance of original two root extraction

techniques or their proposed Expanded methods was in the range of 7% -

14%, and its efficiency was also presented in terms of its execution time

where in general, its space and time complexity is linear as long as the

number of words in documents was less than 8,000. This algorithm can easily

be included in any root extraction technique that does not handle such cases.

Results of such improvements were published in [13] and [14]. Also, after

critically analyzing the results of these techniques, handling the effect of

foreign Arabized words was performed by developing a list that includes

7,227 foreign words and names of places, countries, and cities. Also, a

proposed root extraction system is developed that gathers advantages of some

of the implemented algorithms as well as handling the foreign words.

 Research contributions regarding the third research question

"How varying feature choices in Vector Space Model representation of

corpus will affect the performance of various text classification methods as

well as proposing and implementing a variant of TFIDF term weighting? If

172

there is an improvement in text classification performance, would it be

statistically significant?"

 This thesis identified a problem in the frequently implemented term

weighting method TFIDF and proposed a variant TFIDF method that takes

into consideration the effect of the presence of a term among different

classes. It represented the developed corpus using three different

representation schemes, words, stems and roots. It also proposed three

different VSM representations by extending the original representations

through including their respective phrases. The comparison between the

performance results of forty seven different classifiers showed that using

Roots representation significantly improved their performance than when

using Stems or Words representations for most classifiers. Also, comparing

the performance results of those classifiers showed that using RRP

representation significantly improved classifiers performance than when

using SSP or WP representations for most classifiers. However, although a

slight improvement/degradation was obtained for most classifiers when the

original VSM was extended, yet such results are not significant (Chapter 5).

 Research contributions regarding the fourth research question

"Which classifiers applied to various representations of Arabic corpus have

the best performance? Are the results obtained for such classifiers in

agreement with previously reported studies?"

 This thesis contributes to the literature of available classification techniques

applied to Arabic by providing a brief review of these techniques and

compares them in terms of their performance, availability, and advantages

173

and disadvantages (Chapter 2). Also, it contributes to the literature of

classification techniques by providing a brief review of those techniques that

are used for Arabic TC in this thesis and compares their performances in

terms of their F-measure, training time, and root mean square error values

(Chapter 6).

 This thesis identified the lack of using all well-performing classifiers for

Arabic TC. Thus, it used 47 classifiers that are available in WEKA software

and tested these classifiers on all VSM representations of the developed

Arabic corpus. It compared between the performances of these classifiers in

terms of their F1 values and tested for significance (Chapter 5). This thesis

further analyzed the results of such classifiers by comparing these results

with those of previous works and comparing between these classifiers'

performances by their training time and root mean square error values

(Chapter 6). From these classifiers' performances, it is concluded here that

the best one among them is the Bayes Net classifier (with F1
M

 = 99%,

training time about 2.5 seconds, RMSE value about 0.1 when using the Roots

representation).

This research provided unique contributions in that it developed the first Arabic

corpus that can be used in both single-labeled and multi-labeled TC although here it

was used only for single-label TC. It also proposed a simple and efficient algorithm

that handles the less visited irregular words in Arabic. Furthermore, it handles

foreign Arabized words. It then explored extending the usual VSM representation of

documents by including phrases, stem phrases, or root phrases in such

representations and compared such extension with the usual choice of features in

terms of words, stems, and roots, as well as proposed a variant of the well-known

174

TFIDF weighting method and implemented and compared various classifiers to

investigate the effect of such preprocessing methods on TC performance.

7.2 Research Limitations

Although the results can be considered promising and positive, the research has

some limitations that should be highlighted.

 The first limitation of this study is in the small length of corpus developed.

 The second limitation of this study is the lack of available efficient online

processing tools for Arabic.

 The third limitation of this study includes the length of time for the study

where a short time frame especially for the last portion of thesis resulted in

the most of the limitations.

7.3 Recommendations for Further Work

This research essentially covered two main areas of research: the development,

improvement, and comparison between two techniques for root extraction to finally

propose a root extraction system, and the investigation of the effect of preprocessing

methods on improving TC performance for Arabic.

Throughout the development of Arabic corpus and the re-categorization of its texts

among eight classes, as briefly mentioned in Chapter 3, some of such texts were hard

to categorize to only one class. This led to distributing a questionnaire on native

Arabic speakers in Petra university and other working environments in Amman,

Jordan took place throughout the period 4/11/2010 – 1/2/2011. The objective of the

questionnaire was to obtain a text collection with multi-labels (at least for some of its

texts when applicable). It was requested that each text be classified by at least two

175

participants. The total number of texts that were classified was 1,985. Also, Hooper's

measure of consistency [100] was used for some texts to find the consistency among

participants' choices. Preliminary results of applying Hooper equation support the

results of our procedure. Thus, 36.82% of the files in the combined text collection

are multi-labeled. Also, the final corpus's LC and LD are found to be 1.4 and 0.175

respectively. Such values are relatively low compared to other multi-labeled data

collections as those shown in [178]. Examples of other factors [125] that were

reported to affect the results of indexing (here labeling) are indexer's education,

experience in indexing, and document length. Their effects, except the "experience

in indexing" factor, were investigated.

Further to the work reported in this thesis, it is suggested that there could be

advances for further research and development:

1. Further research regarding the developed Arabic corpus is to increase the size of

this corpus so that the generality among classes becomes similar in values. Also,

although Arabic TC was conducted and tested in this thesis on the developed Arabic

corpus with the eight chosen classes, yet further research regarding performing the

same classifications on the same corpus but with the eight classes chosen by LACC

is required in order to compare the effect of such choices of classes on TC

performance. Further research regarding the developed Arabic corpus is to increase

its size and investigate the presence of texts with multi labels so that eventually the

label cardinality as well as the number of texts and words will be higher in it. This

would be carried out through collecting much more texts in MSA from various

Arabic websites and performing active learning techniques to further classify these

texts by one or more labels among the eight classes.

176

2. Further research regarding the investigated root extraction techniques, discussed

in Chapter 4, is through: a- improvement of the rule-based technique by adding more

rules, b- improvement of the proposed and implemented algorithm for correcting

irregular words by adding more special cases, c- investigation of improving the

weight-based technique through weighting the letters in sOltmwnyhA by using fuzzy

sets to handle their grouping, and d- further testing the efficiency of proposed root

extraction system.

3. Further research to that discussed in Chapters 5 and 6 regarding the investigation

of the effect of other VSM representations on TC performance is through

investigating other possible combinations of features (i.e. combining for example

words with roots, .. etc) on single-label TC performance as well as comparing the

effect of variant TFIDF with other term weighting methods on TC performance.

177

References

1. H.K Al-Ameed, A Proposed New Model using a light stemmer for increasing the

success of search in Arabic terms, PhD Thesis, 2006. Bradford: University of

Bradford, UK.

2. R. Abbès, J. Dichy and M. Hassoun, "Morph-lexical ambiguities in the recognition

of written Arabic word-forms, evidence from the DIINAR.1 lexical resource" in

proceedings of The second International Conference on Machine Intelligence

ACIDCA-ICMi'05, 5-7 Nov, Tozeur, Tunisia, 2005.

3. H. Abu-Salem, M. Al-Omari, and M. W. Evens, "Stemming methodologies over

individual query words for an Arabic IR system" Journal of the American Society

for Information Science and Technology JASIST, 50(6): 524-529, 1999. ASIS&T.

4. D. Aha, D. Kibler, and M. Albert, "Instance-Based learning algorithms" in Machine

Learning, 6: 37-66, 1991. Kluwer Acadmic Publishers. Boston.

5. Z. Ahmed, "Arabic weak verb formulation and computation" in 7
th

 Annual

Computational Linguistics in UK CLUK research colloquium, 6-7 Jan,

Birmingham, UK, 2004.

6. M. Al-diabat, "Arabic text categorization using classification rule mining" Applied

Mathematical Sciences, 6(81): 4033-4046, 2012.

7. N. Al Fe'ar, E. Al Turki, A. Al Zaid, M. Al Duwais, M. Al Sheddi, N. Al Khamees,

and N. Al Drees, "E-Classifier: A bilingual email classification system" in

proceedings of International Symposium on IT, ITSim'08, 26-28 Aug, Kuala

Lumpur, Malasyia, 3: 1–4, 2008. IEEE Xplore.

8. S Al-Harbi, A. Almuhareb, A. Al-Thubaity, M. S. Khorsheed and A. Al-Rajeh,

"Automatic Arabic TC" 9
es

 Journees internationals d'Analyse statistique des

Donnees Textuelles JADT'08, pp. 77-83, 12-14 March, Lyon, France, 2008. Presses

Universitaires de Lyon.

9. M. Aljlayl and O. Frieder, "On Arabic search: Improving the retrieval effectiveness

via light stemming approach" in proceedings of the eleventh ACM International

Conference on Information and Knowledge Management CIKM'02, pp. 340–347,

4-9 November, Illinois Institute of Technology, Mclean, Virginia, USA, 2002.

ACM.

10. M. N. Al-Kabi and S. I. Al-Sinjilawi, "A comparative study of the efficiency of

different measures to classify Arabic Text" University. of Sharjah Journal of pure

and applied sciences, 4(2): 13-25, June, 2007. University of Sharjah: Sharjah,

UAE.

11. I. A. Al-Kharashi and Martha W. Evens, "Comparing words, stems, and roots as

index terms in an Arabic IR system" Journal of the American Society for

Information Science and Technology JASIST, 45(8): 548-560, 1994. ASIS&T.

12. A. Al-Marghilani, H. Zedan and A. Ayesh, "TM based on Self-Organizing Map

method for Arabic-English documents" in proceedings of the 19
th

 Midwest

Artificial Intelligence and Cognitive Science Conference MAICS'08, pp. 174–181,

12-13 April, Cincinnati, USA, 2008. AAAI.

13. M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction

technique for Arabic words" in proceedings of 2
nd

 International Conference on

Computer Technology and Development ICCTD 2010, S. Mahmoud and Z. Lian

(Eds.), pp. 264-269, 2-4 Nov, Cairo, Egypt, 2010a. IEEE Xplore.

14. M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "Stemming Techniques for Arabic

Words: A Comparative Study" in proceedings of 2
nd

 International Conference on

Computer Technology and Development ICCTD 2010, S. Mahmoud and Z. Lian

178

(Eds.), pp. 270-276, 2-4 Nov, Cairo, Egypt, 2010b. IEEE Xplore.

15. H. Al-Serhan and A. Ayesh, "A Triliteral word roots extraction using Neural

Network for Arabic" in proceedings of the 2006 International Conference on

Computer Engineering and Systems, 5-7 Nov, Ain Shams University, Cairo, Egypt,

pp. 436–440, 2006. IEEE.

16. R. Al-Shalabi and Martha Evens, "A Computational Morphology System for

Arabic" in proceedings of The workshop on computational approaches to Semitic

languages, Montreal, Quebec, Canada, pp. 66–72, 1998. ACL.

17. R. Al-Shalabi, G. Kanaan and H. Al-Serhan, "New approach for extracting Arabic

roots" in proceedings of 2003 International Arab conference on Information

Technology (ACIT’2003), pp. 42-59, 20-23 Dec, Alexandria, Egypt, 2003. Arab

Academy for Science and Technology and Maritime Transport, Egypt.

18. R. Al-Shalabi, "Pattern-based stemmer for finding Arabic roots" Information

Technology Journal, 4(1), pp. 38-43, 2005.

19. R. Al-Shalabi, G. Kanaan and M. H. Gharaibeh, "Arabic TC using kNN algorithm"

in proceedings of The 4
th

 Int Multiconference on Computer Science and

Information Technology CSIT'06, pp. 1–9, April, Amman, Jordan, 2006. Applied

Science Private University, Amman, Jordan.

20. R. Al-Shalabi and R. Obeidat, "Improving KNN Arabic TC with n-grams based

document indexing" in proceedings of the 6th International Conference on

Informatics and Systems INFOS'08, pp. 108-112, 27-29 March, Cairo, Egypt,

2008. Faculty of Computers and Information-Cairo University: Cairo, Egypt.

21. E. Al-Shammari and J. Lin, "A novel Arabic lemmatization algorithm" in

proceedings of 2nd Workshop on Analytics for Noisy unstructured text Data

AND'08, pp. 113-118, 24 July, Singapore, 2008a. ACM.

22. E. Al-Shammari and J. Lin, "Towards an Error-Free Arabic Stemming" in

proceedings of 2nd ACM International Workshop on Improving Non English Web

Searching iNEWS'08, pp. 9-15, 30 Oct, Napa Valley, California, USA, 2008b.

ACM.

23. E. Al-Shawakfa, A. Al-Badarneh, S. Shatnawi, K. Al-Raba'ah, and B. Bani-Ismail,

"A comparison study of some Arabic root finding algorithms" Journal of the

American Society for Information Science and Technology JASIST, 61(5): 1015-

1024, 2010. ASIS&T.

24. I.A. Al-Sughaiyer and I.A Al-Kharashi, "Arabic Morphology Analysis Techniques:

A Comprehensive Survey" Journal of the American Society for Information

Science and Technology JASIST, 55(3): pp. 189–213, Feb. 2004. ASIS&T.

25 L. Al-Sulaiti Home page, URL:

http://www.comp.leeds.ac.uk/eric/latifa/research.htm, 2009. University of Leeds,

UK.

26. L. Al-Sulaiti and E. Atwell, "The design of a corpus of Contemporary Arabic"

International Journal of Corpus Linguistics, 11(1): 1–36, 2006. John Benjamins

Publishing Company.

27. A. Al-Zoghby, A. S. Eldin, N. A. Ismail, and T. Hamza, "Mining Arabic text using

soft-matching association rules" in proceedings of International Conference on

Computer Engineering and systems, ICCES '07, pp. 421–426, 27-29 Nov, Cairo,

Egypt, 2007. IEEE Xplore.

28. M. Attia, A large-scale computational processor of the Arabic morphology, and

applications, M.Sc. Thesis, January 2000. Faculty of Engineering- Cairo

University: Giza, Egypt.

29. M. Attia, "Developing robust Arabic morphological transducer using Finite state

http://rea.teimes.gr/lazarinf/iNEWS08/
http://rea.teimes.gr/lazarinf/iNEWS08/
http://www.comp.leeds.ac.uk/eric/latifa/research.htm

179

technology", in 8
th

 Annual Computational Linguistics in UK CLUK Research

Colloquium, Manchester, UK, 2005.

30. M. Attia, "Arabic tokenization system" in proceedings of the workshop on

Computational Approaches to Semitic Languages: Common Issues and Resources

(Semitic'07), Prague, Czech Republic, pp. 65-72, June, 2007. ACL: Stroudburg,

PA, USA.

31. Imam Mohammed Ibn Abi Baker Ar-Rhazi, Mukhtar us-Sihah. 1986. Beirut:

Librairie du Liban Publishers. (in Arabic).

32. C. Apté, F.J. Damerau, and S.M. Weiss, "Automated learning of decision rules for

text categorization" ACM Transactions on Information Systems, 12(3): 233-251,

July, 1994. ACM.

33. H. Bayyomee, Kh. Kolfat, and A. Al-Shafe'e, Lexicon for Arabic Verbs morphology.

1989. Cairo: Dar Ilias Modern Publishing Comp. (in Arabic).

34. M. J. Bawaneh, M. S. Alkoffash and A. I. Al Rabea, "Arabic TC using k-NN and

NB" Journal of Computer Science, 4(7): 600–605, 2008. Science Publications.

35. K.R. Beesley, "Finite-State Morphological Analysis and Generation of Arabic at

Xerox Research: Status and Plans in 2001" in proceedings of ARABIC NLP

Workshop: Status and Prospects ACL-EACL2001, pp. 1–8, 6 July, Toulouse,

France, 2001. ACL.

36. A. Boudlal, R. Belahbib, A. Lakhouaja, A. Mazroui, A. Meziane, and M. Ould

Abdallahi Ould Bebah, "A markovian approach for Arabic root extraction" in

proceedings of The international Arab conference on information technology ACIT

2008, University of Sfax, Tunisia, Dec. 16-18, 2008.

37. T. Brants, F. Chen, and A. Farahat, "Arabic document analysis" in proceedings of

workshop Arabic Language Resources and Evaluation Conference LREC'02, Las

Palmas, Spain, 2002.

38. L. Breiman, "Random Forests" Machine Learning, 45(1): 5-32, Oct 2001. Kluwer

Academic Publishers, The Netherlands.

39. L. Breiman, "Bagging predictors" Machine Learning, 24(2): 123-140, 1996. Kluwer

Academic Publishers, The Netherlands.

40. L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone, Classification and

Regression Trees, 1984. Wadsworth Int Group, Belmont, California.

41. T. Buckwalter, "Buckwalter Arabic morphological analyzer Version 1.0", Linguistic

Data Consortium, Philadelphia, 2002, available online at URL:

http://www.qamus.org/. [Accessed 22/12/2010].

42. L. Cahill, "A syllable approach to verbal morphology in Arabic" in proceedings of

Language Resources and Evaluation LREC workshop on Semitic languages, pp.

19-26, 17
th

 May, Malta, 2010.

43. V. Chakraborty, M. Vasarhelyi, and V. Chiu, "Automatic classification of

accounting literature" in proceedings of 19
th

 Annual Strategic and Emerging

Technologies Research workshop, San Francisco, CA, USA, 31 July, 2010.

44. A. Chen and F. Gey, "Building an Arabic Stemmer for Information Retrieval" in

proceedings of NIST Special Publication: The Eleventh Text REtrieval Conference

TREC'02, Voorhees, E.M. & Harman, D.K. (Eds.), 19-22 Nov, Gaithersburg,

Maryland, 2002. NIST: Gaithersburg, Maryland.

45. Long-Sheng Chen and Chai-Wei Chang, "A new term weighting method by

introducing class information for sentiment classification of textual data" in

proceedings of International MultiConference of Engineers and Computer

Scientists Vol 1 IMECS'11, 16-18 March, Hong Kong, 2011.

46. Ding-An Chiang, Huan-Chao Keh, Hui-Hua Huang, and D. Chyr, "The Chinese text

http://www.qamus.org/

180

categorization system with association rule and category priority" Expert Systems

with Applications, 35: 102-110, 2008. ElSEVIER.

47. William W. Cohen, "Fast effective rule induction" in proceedings of the twelfth

international conference on Machine Learning ML95, pp. 115-123, 9-12 July,

Tahoe City, California, USA, 1995. Morgan Kaufmann Publishers, San Francisco,

CA, USA.

48. K. Darwish, D. Doermann, R. Jones, D.W. Oard, and M. Rautiainen, "TREC-10

Experiments at University of Maryland CLIR and Video" in proceedings of NIST

Special Publication: The Tenth Text REtrieval Conference TREC'01, pp. 549–562,

USA. 2001. NIST: Gaithersburg, Maryland.

49. K. Darwish, "Building a Shallow Arabic Morphological Analyzer in one day" in

proceedings of workshop on computational approaches to Semitic languages

ACL'02, Philadelphia, PA, USA, 2002a. ACL.

50. K. Darwish, "Al-stem: A Light Arabic Stemmer", As part of Dissertation Work

Probabilistic Methods for Searching OCR-Degraded Arabic Text, University of

Maryland, College Park, 2002b.

51. K. Darwish, H. Hassan, and O. Emam, "Examining the effect of improved context

sensitive morphology information retrieval" in proceedings of of the ACL

workshop on Computational approaches to Semitic languages, pp. 25-30, June,

Ann Arbor, MI, USA, 2005. ACL.

52. E. Daya, D. Roth and S. Wintner, "Identifying Semitic Roots: Machine Learning

with Linguistic Constraints" Computational Linguistics, 34(3): 429-448, 2008.

ACL.

53. C. Deisy, M. Gowri, S. Baskar, S.M.A. Kalairasi and N. Ramraj, "A Novel term

weighting scheme MIDF for Text Categorization" Journal of Engineering Science

and Technology, 5(1): 94–107, March, 2010. School of Engineering, Taylor's

University College.

54. A. N. DE Roeck and W. Al-Fares, "A Morphologically sensitive clustering

algorithm for identifying Arabic roots" in proceedings of 38
th

 Annual meeting of

ACL, Hong Kong, pp. 199–206, 2000. ACL.

55. M. Diab, K. Hacioglu and D. Jurafsky, "Automatic tagging of Arabic text: from raw

text to base phrase chunks" in proceedings of 5
th

 meeting of the North American

chapter of the Association for Computational Linguistics/Human Language

Technologies conference (HLT-NAACL 04), pp. 149–156, Boston, MA, USA, 2-7

May, 2004. ACL.

56. J. Dichy, A. Braham, S. Ghazali, M. Hassoun, "La Base de connaissances

linguistiques DIINAR.1 (DIctionnaire INformatise de l'Arabe, version 1)"., in

Colloque international sur le traitement automatique de l’arabe – proceedings of

the International Symposium on The Processing of Arabic, A. Braham (Ed.),

Université de la Manouba, Tunis (en Arabe, Français et Anglais) 18-20 April,

2002.

57. J. Dichy, and A. Farghaly, "Roots and patterns vs. stems plus grammar-lexis

specifications: on what basis should a multilingual lexical database centred on

Arabic be built?" in proceedings of workshop on Machine Translation for Semitic

languages MT-summit IX, 23 Sept, New Orleans, USA, 2003.

58. Chuong B. Do and Andrew Y. Ng, "Transfer learning for text classification" in

proceedings of Advances in Neural Information Processing Systems NIPS, 2006.

59. L. Dong, E. Frank, and S. Kramer, "Ensembles of balanced nested dichotomies for

multiclass problems" in proceedings of 9
th

 European conference on Principles and

Practice of Knowledge Discovery in Databases: PKDD'05, LNCS -3721, pp 84-95,

181

Porto, Portugal, October 3-7, 2005. Springer.

60. R.M. Duwairi, "Machine Learning for Arabic Text Categorization" Journal of the

American Society for Information Science and Technology JASIST, 57(8): 1005–

1010, April, 2006. ASIS&T.

61. R. Duwairi, "Arabic Text Categorization" in The International Journal of

Information Technology, 4(2): 125–131, March, 2007. ASIS&T.

62. R. M. Duwairi, M. N. Al-Refai and N. Khasawneh, "Stemming versus light

stemming as feature selection techniques for Arabic text" in proceedings of 4th

International Conference on Innovations in Information Technology, 2007. IIT '07,

pp. 446–450, 18-20 Nov, Dubia, UAE, 2008. IEEE Xplore.

63. R. M. Duwairi, M. N. Al-Refai and N. Khasawneh, "Feature Reduction Techniques

for Arabic TC" Journal of the American Society for Information Science and

Technology, 60(11): 2347–2352, Nov, 2009. ASIS&T.

64. E. Eibeed, "Suggestions for the best way to classify articles in Knol-Google" (in

Arabic), URL: http://knol.google.com/k/ [last accessed 16/2/2011].

65. J. Eisenstein and R. Davis, "Visual and linguistic information in gesture

classification" in proceedings of the 6th International Conference on Multimodal

Interfaces ICMI'04, pp. 113-120, 13-15 Oct, Pennsylvania, USA, 2004. ACM.

66. S. El-Beltagy and A. Rafea, "KP-Miner: A Key phrase Extraction System for

English and Arabic documents" in Information Systems Journal, 34(1): 132-144,

2009. Elsevier.

67. A. El-Dahdah, A Dictionary of Arabic Grammar in Charts and Tables, 2008. Beirut:

Librairie du Liban Publishers. Revised by: Dr. GM Abdul-Massih (in Arabic).

68. M. El-Haj, U. Kruschwitz, and C. Fox, "Experimenting with automatic text

summarization for Arabic" in proceedings of Human Language Technology LTC-

09, 2009. Revised selected papers, volume 6562 of Lecture Notes in Computer

Science, pp. 490-499. Springer: Berlin, Heidelberg, 2011.

69. M. El-Haj, U. Kruschwitz, and C. Fox, "Using mechanical turk to create a corpus of

Arabic summaries", in proceedings of the Language Resources (LRs) and Human

Language Technologies (HLT) for Semitic languages workshop held in conjunction

with the 7
th

 International Language Resources and Evaluation Conference

(LREC'10), pp. 36-39, Valletta, Malta, 2010.

70. A. M. El-Halees, "Arabic TC using maximum entropy" The Islamic University

Journal (Series of Natural studies and engineering), 15(1): 157–167, 2007. The

Islamic University, Gaza, Palestine. URL:

http://www.iugaza.edu.ps/ar/periodical/articles/natural15(1)2007pp157-167.pdf

[last accessed 22/12/2010].

71. M. El-Kourdi, A. Bensaid, and T. Rachidi, "Automatic Arabic documents

categorization based on the Naive Bayes algorithm" in proceedings of the

workshop on Computational Approaches to Arabic Script-Based Languages, The

20th International Conference on Computational Linguistics COLING'04, pp. 51-

58, 23-27 August, University of Geneva, Switzerland, 2004. ACL. URL:

http://acl.ldc.upenn.edu/coling2004/W5/index.html [last accessed 22/12/2010].

72. T. A. El-Sadany and M. A. Hashish, "An Arabic morphological system" IBM Systems
Journal, 28(4): 600-612, 1989. IBM, IEEE Xplore.

73. Eibe Frank and M. Hall, "A simple approach to ordinal classification" in proceedings

of 12th European Conference on Machine Learning ECML'01, pp. 145-156,

Freiburg, Germany, September 5-7, 2001. Berlin: Springer-Verlag.

74. Eibe Frank and S. Kramer, "Ensembles of nested dichotomies for multiclass
problems" in proceedings of 21

st
 International Conference on Machine Learning

http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://knol.google.com/k/
http://www.iugaza.edu.ps/ar/periodical/articles/natural15(1)2007pp157-167.pdf
http://acl.ldc.upenn.edu/coling2004/W5/index.html

182

ICML'04, pp. 39, Banff, Alberta, Canada, 2004.
75. Eibe Frank and I. H. Witten, "Generating accurate rule sets without global

optimization" in proceedings of fifteenth International conference on Machine

Learning, Shalvik, J. (Ed.), pp. 152-160, 24-27, Madison, Wisconsin, USA, 1998.

Morgan Kaufmann Publishers, San Francisco, CA, USA.

76. Eibe Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, "Using model trees for

classification" Machine Learning, 32: 63-76, 1998. Kluwer Academic Publishers,

The Netherlands.

77. J. Friedman, T. Hastie, R. Tibshirani, "Additive logistic regression: A statistical view

of boosting" Annals of Statistics, 28(2): 337-407, 2000.

78. Y. Freund and R.E. Schapire, "Experiments with a new Boosting algorithm" in

proceedings of 13
th

 International Conference on Machine Learning (ICML-96), p.

148-156, Bari, Italy, 3-6 July, 1996.

79. J. Fürnkranz, T. Mitchell, and E. Riloff, "A case study in using linguistic phrases for

text categorization on the WWW", AAAI technical report W5-98-05, 1998. AAAI.

80. B. Gaines and P. Compton, "Induction of Ripple-DOwn Rules applied to modeling

large databases" Journal of Intelligent Information Systems November, 5(3): 211-

228, 1995. Springer.

81. L. Galavotti, F. Sebastiani and M. Simi, "Experiments on the use of feature selection

and negative evidence in automated TC" in proceedings of 4
th

 European

conference on research and advanced technology for Digital Libraries ECDL-00,

pp. 59-68, Sept, Lisbon, Portugal, 2000. Springer-Verlag: Berlin, Heidelberg.

82. J. Gama, "Functional Trees" Machine Learning, 55(3): 219-250, 2004. Kluwer

Academic Publishers, The Netherlands.

83. A. Gelbukh and O. Kolesnikova, "Supervised learning algorithms evaluation on

recognizing semantic types of Spanish verb-noun collocations" Computación y

Sistemas, 16(3): 297-308, 2012.

84. S. Ghwanmeh, R. Al-Shalabi, G. Kanaan, K. Khanfar, and S. Rabab'ah, "An

algorithm for extracting the root for the Arabic language" in proceedings of 5
th

International Business Information Management Association Conference IBIMA

on the Internet and Information Technology in Modern Organizations, 13-15 Dec,

Cairo, Egypt, 2005.

85. S.H. Ghwanmeh, "Applying Clustering of Hierarchical K-means-like Algorithm on

Arabic Language" Inernational. Journal of Information Technology, 3(3): 168–

172, July, 2006. Singapore Computer Society.

86. S. Ghwanmeh, G. Kanaan, R. Al-Shalabi and A. Ababneh, "Enhanced Arabic IR

system based on Arabic TC" in proceedings of 4
th

 International conference on

Innovations in Information Technology, 2007, IIT'07, pp. 461–465, 18-20 Nov,

Dubai, UAE, 2008. IEEE Xplore.

87. M. Grobelnik and D. Mladenic "Tutorial on Text Mining" 2004. Available online at

URL: http://eprints.pascal-network.org/archive/00000017/01/Tutorial_Marko.pdf.

[Accessed 27/12/2010].

88. N. Habash "Large Scale Lexeme Based Arabic Morphological Generation", in

proceedings of Session Tritement Automatique de l’Arabe, Les conférences JEP

("Journées d'Etude sur la Parole") et TALN ("Traitement Automatique des

Langues Naturelles") JEP-TALN, Fez, pp.1–6, April, 20, 2004.

89. W. Hadi, M. Salam and J. Al-Widian, "Performance of NB and SVM classifiers in

Islamic Arabic data" in proceedings of The International Conference on Intelligent

Semantic Web – Services and Applications ISWSA'10, 14-16 June, Amman, Jordan,

2010. ACM.

http://eprints.pascal-network.org/archive/00000017/01/Tutorial_Marko.pdf

183

90. W. Hadi, F. Thabtah and G. Kanaan, "NB and K-nearest neighbor to categorize

Arabic text data" in proceedings of The European multidisciplinary society for

modeling and simulation technology ESM'08, pp. 196-200, 27 – 29 Oct, Universite

du Havre, Le Havre, France, 2008. EUROSIS-ETI.

91. Mark Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, "The

WEKA data mining software: an update" Special Interest Group Knowledge

Discovery and Data Mining SIGKDD explorations, 11(1), 2009.

92. J. Han and M. Kamber, Data Mining Concepts and Techniques, 2
nd

 edition. 2006.

San Francisco: Morgan Kaufmann Publishers (an imprint of ELSEVIER), CA,

USA.

93. F. Harrag, A.M. Al-Salman, and M. Ben Mohammed, "A comparative study of

neural networks architectures on Arabic text categorization using feature

extraction" in proceedings of International Conference on Machine and Web

Intelligence ICMWI'10, 3-5 Oct, Algiers, Algeria, pp. 102-107, 2010. IEEE.

94. F. Harrag, E. El-Qawasmeh and P. Pichappan, "Improving Arabic TC using decision

trees" in proceedings of First International conference on Networked Digital

Technologies NDT'09, pp. 110–115, 28 – 31 July, Ostrava, The Czech Republic,

2009a. IEEE Xplore.

95. F. Harrag and E. El-Qawasmeh, "Neural Network for Arabic TC" in proceedings of

2
nd

 International conference on Application of Digital information and Web

technologies, ICADIWT'09, pp. 778–783, 4-6 August, London, UK. 2009b. IEEE

Xplore.

96. J.A. Haywood and H.M. Nahmad, A New Arabic Grammar of Written Language.

1998. London: Lund Humphries Publishers, UK.

97. I. Hmeidi, G. Kanaan, and M. Evens, "Design and Implementation for Information

Retrieval with Arabic Documents" Journal of the American Society for Information

Science and Technology JASIST, 48(10): 867–881, 1997. ASIS&T.

98. I. Hmeidi, B. Hawasashin and E. El-Qawasmeh, "Performance of KNN and SVM

classifiers on full word Arabic articles" Advanced Engineering Informatics 22:

106-111, August, 2008. ELSEVIER.

99. T.K. Ho, "The random subspace method for constructing decision forests" IEEE

transactions on pattern analysis and machine intelligence, 20(8): 832-844, 1998.

IEEE.
100

.
R.S. Hooper, "Indexer consistency tests-Origin" Measurements, results and

utilization, 1965. IBM, Bethesda.

101. G. Holmes, B. Pfahringer, R. Kirkby, E. Frank and M. Hall, "Multiclass alternating

decision trees" in proceedings of 13
th

 European Conference on Machine Learning

ECML'02, pp. 161-172, 19-23 Aug, Hilsinki, Finland, 2002. LNCS 2430, Springer.

102. R.C. Holte, "Very simple classification rules perform well on most commonly used

datasets" in Machine Learning, 11, p. 63-91, 1993.

103. A. Hotho, A. Nürnberger and G. Paaβ, "A brief survey of Text Mining" in

LDV_Forum, 20(1): 19-62, May, 2005. Text MiningImpressum. Found at URL:

http://www.jlcl.org/2005_Heft1/19-62_HothoNuernbergerPaass.pdf . [last accessed

27/12/2010].

104. M. Hussien, F. Olayah, M. Al-dwan, and A. Shamsan, "Arabic text classification

using SMO, Naive Bayesian, J48 algorithms" International Journal of Research

and Reviews in Applied Sciences IJRRAS, 9(2): 306-316, Nov 2011.

105. T. Joachims, "Text Categorization with Support Vector Machines: Learning with

Many Relevant Features" in proceedings of 10
th

 European Conference on Machine

Learning ECML'98, pp. 137-142, 21-23 April, Chemnitz, Germany, LNCS, vol

http://www.jlcl.org/2005_Heft1/19-62_HothoNuernbergerPaass.pdf

184

1398, 1998. Springer.

106. G. H. John and P. Langley, "Estimating continuous distributions in Bayesian

classifiers" in proceedings of eleventh conference on uncertainty in artificial

intelligence, pp. 338-345, 18-20 August, Montreal, Quebec, Canada, 1995. Morgan

Kaufmann Publishers, San Mateo.

107. G. Kanaan, R. Al-Shalabi, and A. Al-Akhras, "kNN Arabic TC using IG Feature

selection" in proceedings of the 4
th

 international multi-conference on Computer

Science and Information Technology CSIT'06, pp. 1–9, April, Amman, Jordan,

2006. Applied Science Private University, Amman, Jordan.

108. G. Kanaan, R. Al-Shalabi, S. Ghwanmeh and H. Al-Ma'adeed, "A comparison of TC

techniques applied to Arabic text" Journal of the American Society for Information

Science and Technology, 60(9): 1836–1844, July, 2009a. ASIS&T.

109. G. Kanaan, M. Yaseen, R. Al-Shalabi, B. Al-Sarayreh and A. B. Mustafa, "Using

EM for Text Classification on Arabic Documents" in proceedings of the Second

International Conference on Arabic Language Resources and Tools, pp. 9-11, 22-23

April, Cairo, Egypt, 2009b. The MEDAR Consortium.

110. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, K. Murthy, "Improvements to Platt's

SMO algorithm for SVM classifier design" Technical report CD-99-14, control

division, Dept. of Mechanical and Production Engineering, National University of

Singapore, 1999. Also published in Neural Computation, 13(3): 637-649, 2001.

111. S. Khoja, "Stemming Arabic Text" 1999. Available online at URL:

http://zeus.cs.pacificu.edu/shereen/research.htm#stemming [accessed 27/12/2010].

112. L. Khreisat, "A machine learning approach for Arabic text classification using N-

gram frequency statistics" Journal of Informatics 3: 72-77, Nov, 2009. ELSEVIER.

113. H. Kim and W-Y. Loh, "Classification trees with unbiased multi way splits" Journal

of the American Statistical Association, 96: 589-604, 2001.

114. R. Kohavi, "The power of decision tables" in proceedings of European conference

on machine learning ECML'95, pp. 174-189, Crete, Greece, April 25-27, 1995.

115. Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree

Hybrid" in proceedings of 2nd International Conference on Knowledge Discovery

and Data Mining KDDM'96, pp. 202-207, Portland, OR, August 2-4, 1996.

116. Q. Kuang and X. Xu, "Improvement and application of TF*IDF method based on

text classification" in proceedings of 2010 International conference on Internet

Technology and Applications ITAP'10, 21-23 Aug, Wuhan, China, 2010. IEEE

Xplore.

117. A. Kyriakopoulou, "Text classification aided by clustering: a literature review"

Chapter 14 in Tools in Artificial Intelligence, Paula Fritzsche (Ed.), August, pp.

233-252, 2008. InTech. URL:

http://www.intechopen.com/articles/show/title/text_classification_aided_by_clusteri

ng__a_literature_review [accessed 27/12/2010].

118. N. Landwehr, Logistic model trees, Diploma thesis, University of Freiburg, Freiburg,

Germany, 2003

119. N. Landwehr, M. Hall, and E. Frank, "Logistic Model Trees" Machine Learning,

95(1-2):161-205, 2005.

120. L.S. Larkey and Margaret E. Connell, "Arabic Information Retrieval: at UMass in

TREC-10" in proceedings of Text REtrieval Conference TREC'10, NIST, Nov, pp.

562–570, 2001. NIST: Gaithersburg, Maryland.

121. L.S. Larkey, L. Ballesteros, M.E. Connell, "Improving Stemming for Arabic

Information Retrieval: Light Stemming and Co-occurrence Analysis" in proceedings

of Special Interest Group on Information Retrevial SIGIR’02, pp. 275–282, August,

http://zeus.cs.pacificu.edu/shereen/research.htm#stemming
http://www.intechopen.com/articles/show/title/text_classification_aided_by_clustering__a_literature_review
http://www.intechopen.com/articles/show/title/text_classification_aided_by_clustering__a_literature_review

185

Tampere, Finland, 2002. ACM.

122. L.S. Larkey, Lisa Ballesteros, and Margaret E. Connell, "Light stemming for Arabic

Information retrieval", Arabic computational morphology knowledge-based and

empirical methods, text, speech and language technology series, Abdelhadi Soudi,

Antal van den Bosch and Gunter Neumann (Eds.), Vol. 38, Part IV, pp. 221–243,

2007. The Netherlands: Springer.

123. S. le Cessie, J.C. van Houwelingen, "Ridge Estimators in Logistic Regression"

Applied Statistics, 41(1): 191-201, 1992.

124. Young-Suk Lee, K. Papineini, S. Roukos, O. Emam, and H. Hassan, "Language

model based Arabic word segmentation", in proceedings of the 41
st
 annual meeting

of the Association for Computational Linguistics, Vol. 1, pp. 399-406, July,

Sapporo, Japan, 2003. ACL.

125. L.E. Leonard, "Inter-indexer consistency studies, 1954-1975: a review of the literature

and summary of study results" in The Library of University of Illinois at Urbana-

Champaign (occasional papers), Dec, no. 131, 1977.

126. D. Lewis, Reuters-21578 corpus, 2004. Available at:

http://www.daviddlewis.com/resources/testcollections/reuters21578/ [last accessed

1/5/2011].

127. D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A new benchmark collection for Text

Categorization research" Journal of Machine Learning Research, 5: 361-397, 2004.

128. Ying Liu, H.T. Loh, and A. Sun, "Imbalanced text classification: a term weighting

approach" Expert Systems with Applications, 36: 690-701, 2009. ElSEVIER.

129. C.D. Manning and H. Schütze, Foundations of Statistical Natural Language

Processing. 1999. Massachusetts: MIT press, USA.

130. Brent Martin, "Instance-Based learning: Nearest Neighbour with Generalization"

M.Sc. Thesis, 1995. Hamilton, New Zealand: University of Waikato.

131. E. Marsi, A. van den Bosch and A. Soudi "Memory-based morphological analysis

generation and part-of-speech tagging of Arabic" in proceedings of ACL workshop

on computational approaches to Semitic languages, Ann Arbor, Michigan, pp. 1-8,

2005. ACL.

132. A. McCallum and K. Nigam, "A comparison of event models for Naive Bayes text

classification" in proceedings of AAAI-98 workshop on learning for text

categorization, pp. 41-48, 26-27 July, Madison, Wisconsin, USA, 1998

133. P. Melville and R.J. Mooney, "Constructing diverse classifier ensembles using

artificial training examples" in proceedings of 18
th

 International Joint Conference

on Artificial Intelligence IJCAI '03, pp. 505-510, Acapulco, Mexico, 9-15 Aug,

2003.

134. P. Melville and R.J. Mooney, "Creating diversity in ensembles using artificial data"

Information Fusion: Special issue on diversity in multi classifier systems, 6(1): 99-

111, 2005. ELSEVIER.

135. A. M. Mesleh, "Chi Square Feature Extraction based SVMs Arabic language text

categorization system" Journal Computer Science, 3(6): 430-435, 2007. Science

Publications.

136. A. M. Mesleh, "SVM based Arabic language TC system: feature selection

comparative study" International Joint Conferences on Computer, Information and

Systems Sciences and Engineering CISSE'07, pp. 11–16, 3 – 12 Dec, University of

Bridgeport, USA. Advances in Computer and Information Sciences and

Engineering, 2008a. Springer Science + Business Media B.V.2008.

137. A. M. Mesleh and G. Kanaan, "SVM TC system: using Ant colony optimization based

feature subset selection" in proceedings of International conference on computer

http://www.daviddlewis.com/resources/testcollections/reuters21578/

186

engineering and systems ICCES'08, pp. 143–148, 25-27 Nov, Cairo, Egypt, 2008b.

IEEE Xplore.

138. R. Milhalcea and P. Tarau, "A language independent algorithm for single and multiple

document summarization" in proceedings of second international joint conference

on natural language processing IJCNLP'05, 11 – 13 Oct, Jejo Island, Korea, 2005.

139. A. Moschitti and R. Basili, "Complex linguistic features for text classification: a

comprehensive study" Advances in Information Retreival, LNCS, 2997:181-196,

2004. Springer.

140. H. Ng, W.B. Goh, and K.L. Low, "Feature term selection, perceptron learning, and a

usability case study for TC" in proceedings of Special Interest Group on

Information Retrevial SIGIR'97, 20
th

 ACM International conference on Research

and Development in IF, pp. 67-73, December, Philadelphia, PA, 1997. ACM.

141. H. M. Noaman, S. Elmougy, A. Ghoneim, and T. Hamza, "NB classifier based Arabic

TC" in proceedings of The 7
th

 International conference on Informatics and Systems,

INFOS '10, pp. 1–5, 28-30 March, Cairo, Egypt, 2010. IEEE Xplore.

142. J. Platt, "Fast training of SVM using Sequential Minimal Optimization" Advances in

kernel methods - support vector learning, 1998. MIT press.

143. J.R. Quinlan, "Improved use of continuous attributes in C4.5" Journal of Artificial

Intelligence Research, 4:77-90, 1996. Journal of Artificial Intelligence Research and

Morgan Kaufmann Publishers.

144. J.R. Quinlan, "Learning with continuous classes" in proceedings of Australian Joint

Conference on Artificial Intelligence AJCAI'92, pp. 343-348, 1992. World

Scientific, Singapore.

145. J.R. Quinlan, "Simplifying decision trees" International Journal of Man-Machine

Studies, 27: 221-234, 1987.

146. S. Raheel and J. Dichy, "Reducing data sparsity in a language dependent automatic

classification of Arabic documents" in proceedings of 7
th

 Conference of the French

chapter of ISKO'09, 24-26 June, Lyon, France, 2009a.

147. S. Raheel, J. Dichy, and M. Hassoun, "The Automatic Categorization of Arabic

Documents by Boosting Decision Trees" in proceedings of 5
th

 International

Conference on Signal-Image Technology and Internet-based Systems SITIS'09, pp.

294-301, 29 Nov – 4 Dec, Marrakech, Morocco, 2009b. IEEE Xplore. Found from

URL: http://www.raheels.net/includes/RAHEEL_SAEED_SITIS2009.pdf.

[Accessed 27/12/2010].

148. S. Raheel and J. Dichy, "An empirical study on the feature's type effect on the

automatic classification of Arabic documents" in proceedings of Conference on

Intelligent Text Processing and Computational Linguistics CICLing'10, LNCS 6008,

pp. 675–686, 2010. Springer- Verlag: Berlin, Heidelberg.

149. J.D.M. Rennie, L. Shih, J. Teevan, and D. Karger, "Tackling the poor assumptions of

Naive Bayes text classifiers" in proceedings of 20
th

 International Conference on

Machine Learning ICML'03, pp. 616-623, 21 -24 Aug, Washington DC, 2003.

AAAI press.

150. J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, "Rotation forest: A new classifier

ensemble method" IEEE transactions on pattern analysis and machine intelligence,

28(10): 1619-1630, 2006. IEEE.

151. M. Rogati, S. McCarley and Y. Yang, "Unsupervised learning of Arabic stemming

using parallel corpus" in proceedings of 41
st
 Annual meeting of ACL, Sapporo,

Japan, pp. 391–398, 2003. ACL: Morristown, NJ, USA.

152. T. G. Rose, M. Stevenson and M. Whitehead, "The Reuters corpus volume I – from

yesterday's news to tomorrow's language resources" in proceedings of Third

http://www.raheels.net/includes/RAHEEL_SAEED_SITIS2009.pdf
http://www.cicling.org/contact.html
http://www.cicling.org/contact.html

187

International Conference on Language Resources and Evaluation LREC'02, pp.827-

833, 29-31 May, 2002.

http://about.reuters.com/researchandstandards/corpus/LREC_camera_ready.pdf [last

accessed 22/2/2011].

153. Sakhr software company. 2004. URL: http://www.textmining.sakhr.com/ [accessed

27/12/2010].

154. D. Said, N. M. Wanas, N. Darwish, and N. Hegazy, "A study of text preprocessing

tools for Arabic Text Categorization" in proceedings of the 2
nd

 International

Conference on Arabic Language Resources and Tools MEDAR'09, pp. 230-236, 22-

23 April, Cairo, Egypt, 2009.

155. G. Salton, A. Wong, and C. Yang, "A Vector Space Model for automatic indexing"

Communication ACM, 18, 11, pp. 613-620, Nov, 1975. ACM. Also, reprinted in

Spark Jones and Willett [1997], pp. 273-280.

156. G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval"

Information Processing and Management, 24(5): 513-523, January, 1988. Pergamon

press, UK.

157. S. Salzberg, "A nearest hyper rectangle learning method" Machine Learning, 6: 277-

309, 1991.

158. M. Sanderson, "Word Sense Disambiguation and Information Retrieval" in

proceedings of 17
th

Anual International ACM SIGIR conference, pp. 142-151,

Dublin, Ireland, 1994. Springer-Verlag: New York, USA.

159. H. Sawaf, J. Zaplo and H. Ney, "Statistical classification methods for Arabic news

articles" in proceedings of workshop on Arabic natural language processing,

ACL'01, 6 July, Toulouse, France, 2001. ACL: Morriston, NJ, USA. Online:

http://www.elsnet.org/acl2001-arabic.html [last accessed 27/12/2010].

160. M. Sawalha and E. Atwell, "Comparative Evaluation of Arabic Language

Morphological Analyzers and Stemmers" in proceedings of International

Conference on Computational Linguistics COLING'08: Companion volume –

Posters and Demonstrations, pp. 107–110, 18-22 August, Manchester, UK, 2008.

ACL: Morriston, NJ, USA.

161. F. Sebastiani, "Machine Learning in Automated Text Categorization" ACM

Computing Survey, 34(1): 1–47, March, 2002. ACM.

162. A. Selamat and Ng C. Ching, "Arabic script documents language identifications using

Fuzzy ART" in proceedings of Second Asia International Conference on Modeling

and Simulation, pp. 528-533, Kuala Lumpur, Malaysia, 13-15 May, 2008. IEEE

Computer society.

163. S. Sharoff, "Towards basic categories for describing properties of texts in a corpus",

in proceedings of Language Resources and Evaluation Conference LREC04

(volume V), M. T. Lino, M. F. Xavier, F. Ferreira, R. Costa, R. Silva, C. Pereira, F.

Cervalho, M. Lopes, M. Catarino & S. Barros (Eds.), pp. 1743-1746, Lisbon,

Portugal, 2004.

164. H. Shi, Best-first decision tree learning, Master thesis, University of Waikato,

Hamilton, NZ. 2007.

165. J. Sinclair, "Preliminary recommendations on text typology" Eagles document EAG-

TCWG-TTYP/P, URL: http://ilc.cnr.it/EAGLES96/texttyp/texttyp.html, 1996, [last

accessed 16/2/2011].

166. A. Singhal, C. Buckley and M. Mitra, "Pivoted document length normalization" in

proceedings of 19
th

 annual International ACM SIGIR conference on Research and

Development in Information Retrieval SIGIR 96, pp. 21-29, 18-22 August, Zurich,

Switzerland, 1996a. ACM.

http://about.reuters.com/researchandstandards/corpus/LREC_camera_ready.pdf
http://www.textmining.sakhr.com/
http://www.elsnet.org/acl2001-arabic.html
http://ilc.cnr.it/EAGLES96/texttyp/texttyp.html

188

167. A. Singhal, G. Salton, M. Mitra, and C. Buckley, "Document length normalization"

Information Processing and Management, 32(5): 619-633, Sept, 1996b.

ELSEVIER.

168. N. Snider and M. Diab, "Unsupervised induction of Modern Standard Arabic verb

classes using syntactic frames and LSA" in proceedings of International Conference

on Computational Linguistics - Association of Computational Linguistics

COLING/ACL'06 main conference poster sessions, pp.795–802, Sydney, July, 2006.

ACL.

169. R. Sonbol, N. Ghneim, and M.S. Desouki, "Arabic morphological analysis: a new

approach" in proceedings of 3
rd

 International Conference on Information and

Communication Technologies: from Theory to Applications ICTTA'08, pp. 1-6, 7-11

April, Damascus, Syria, 2008. NJ:IEEE.

170. Marc Sumner, Eibe Frank, and Mark Hall, "Speeding up Logistic Model Tree

Induction" in proceedings of 9
th

 European Conference on Principles and Practice of

Knowledge Discovery in Databases, pp 675-683, Porto, Portugal, October 3-7,

2005.

171. M. M., Syiam, Z. T. Fayed and M. B. Habib, "An intelligent system for Arabic TC"

International Journal of Intelligent Computing and Information Sciences IJICIS,

6(1): 1–19, 2006. World Sci. Publ. Co.

172. K. Taghva, R. Elkhouri, and J. Coombs, "Arabic stemming without a root dictionary"

in proceedings of the International Conference on Information Technology: Coding

and Computing ITCC'05, Vol. 1, pp. 152-157, 4-6 April, Las Vegas, NV, USA,

2005. NJ:IEEE.

173. F. Thabtah, W. M. Hadi and G. Al-Shammare, "VSMs with k-nearest neighbor to

categorize Arabic text data" in proceedings of the World Congress on Engineering

and Computer Science WCECS'08, pp. 778–781, 22 – 24 Oct, San Francisco, USA,

2008. IAENG International Association of Engineers, Hong Kong.

174. F. Thabtah, M. Eljinini, M. Zamzeer and W. M. Hadi, "Naïve Bayesian based on Chi

square to categorize Arabic data" Communications of the IBIMA, 10:158-163, 2009.

175. F. Thabtah, Omar Gharaibeh and H. Abdeljaber, "Comparison of Rule-based

classification techniques for the Arabic textual data" in proceedings of 4
th

International Symposium on Innovation in Information and Communication

Technology ISIICT'11, 29 Nov-1 Dec, Philadelphia Univ, Amman, Jordan, pp.105-

111, 2011. IEEE.

176. T. Theeramunkong and V. Lertnattee, "Improving centroid-based text classification

using term-distribution-based weighting system and clustering" in proceedings of

2
nd

 International Symposium on Communication and Information Technology

ISCIT'01, pp. 1167-1182, Nov, Cheingmai, Thailand, 2001.

177. K.M. Ting and I.H. Witten, "Stacking bagged and dagged models" in proceedings of

14
th

 International Conference on Machine Learning ICML'97, pp.367-375,

Nashville, Tennessee, USA, 8-12 July, 1997. Morgan Kaufmann, San Francisco,

CA.

178. G. Tsoumakes and I. Katakis, "Multi-Label Classification: An Overview"

International Journal of Data Warehousing and Mining, 3(3): 1-13, 2007. IGI

Global.

179. Y. Wang and I.H. Witten, "Induction of model trees for predicting continuous

classes" in proceedings of the poster papers of the 9
th

 European Conference on

Machine Learning ECML'97, 23-25 April, Prague, Czech Republic, 1997. Springer.

180. G. Webb, "Decision Tree grafting from the all-tests-but-one-partition" in proceedings

of 16
th

 International Joint Conference on AI, pp. 702-707, 31 July - 6 Aug,

189

Stockholm, Sweden, 1999. Morgan Kaufmann, San Francisco, CA.

181. WEKA manual, version 3.6.6, "Bayesian Network classifiers", pp. 115-157, 1998.

Found at: http://etudiant.istic.univ-rennes1.fr/current/esir2/aci/weka-3-6-

6/WekaManual.pdf [last accessed 2/7/2012].

182. Jinxi Xu, Alexander Fraser and Ralph Weischedel, "TREC 2001 Cross-lingual

Retrieval at BBN" in proceedings of Text REtrieval Conference TREC'01, Nov,

2001. NIST: Gaithersburg, Maryland.

183. Y. Yang and J.O. Pedersen, "A comparative study on feature selection in text

categorization" in proceedings of 14
th

 International Conference on Machine

Learning ICML'97, pp. 412-420, 8-12 July, Nashville, TN, USA, 1997. Morgan

Kaufmann.

184. B. M. Zahran and G. Kanaan, "Text Feature Selection using Particle Swarm

Optimization Algorithm" World Applied Sciences Journal, 7 (special issue of

Computer and IT), pp. 69-74, 2009. IDOSI Publications.

190

Appendix I: Relevant Detailed Background

Information, Equations, and Comparisons in Literature

Review, and Relevant Tables for Developed Corpus

For Chapter 2:

Number of Web sites, Internet users in Arab Countries per World
Country # Web

sites51

% Total

websites in

Arabic

Countries

Internet

Users (CIA's

World Fact

book)52

Population

(CIA's World

Fact book)5

Internet users

to Population

(%)

Websites to

internet

users (%)

Jordan 2,582 3.92 1.13 million 6.34 million 17.82 0.23

Emirates 7,435 11.28 2.3 million 4.8 million 47.92 0.32

Bahrain 1,753 2.66 250,000 727,785 34.35 0.7

Algeria 4,372 6.63 3.5 million 34.18 million 10.24 0.125

Saudi Arabia 9,575 14.53 6.2 million 28.69 million 21.61 0.154

Sudan 1,472 2.23 1.5 million 41.09 million 3.65 0.98

Somalia 146 0.22 98,000 9.83 million 0.997 0.15

Iraq 1,872 2.84 54,000 28.95 million 0.187 3.47

Kuwait 2,354 3.57 900,000 2.69 million 33.46 0.26

Morocco 4,024 6.11 7.3 million 34.86 million 20.94 0.06

Yemen 999 1.52 320,000 22.82 million 1.402 0.312

Tunisia 2,672 4.05 1.72 million 10.49 million 16.397 0.155

Comoros 33 0.05 21,000 731,438 2.87 0.157

Djibouti 36 0.05 11,000 516,055 2.13 0.33

Syria 3,882 5.89 3.47 million 20.18 million 17.195 0.112

Oman 1,098 1.67 340,000 3.42 million 9.94 0.323

Palestine
(West Bank)

1,657

2.51

355,500 (200953) 2.461 million
(20096)

Palestine

(Gaza Strip)

- 1.55 million

(20096)

Qatar 1,006 1.53 351,000 833,285 42.12 0.287

Lebanon 5,725 8.69 950,000 4.02 million 23.63 0.603

Libya 1,567 2.38 260,000 6.31 million 4.12 0.603

Egypt 12,656 19.2 8.62 million 83.08 million 10.38 0.147

Mauritania - - 30,000 3.13 million 0.96 -

Total 65,917 39.325 million

(1.15% only of

world internet

users)

347.377 million

(18.98% of

worldwide

population)

Average is 14.65 Average is

0.168

Indication of Availability of Infrastructure needed for Internet

Usage in Arab World
54

No Service Statistics Country

1.
of PC (per 100 of

population) (2008)

7.5 Jordan

4 DJibouti

4 Egypt

75 Bahrain

6 Morocco

70 Saudi Arabia

51 Collected from: http://www.arabo.com. Last accessed 8/6/2010.
52 Collected from: http://www.clickz.com/tats/web_worldwide. last accessed 8/6/2010.
53 From http://www.internetworldstats.com/stats5.htm. Last accessed 8/6/2010
54 Collected from UNDP http://www.arabstats.org/indicator.asp?ind=249&gid=4&sgid=35. [last accessed

8/6/2010] (in Arabic).

http://www.arabo.com/
http://www.clickz.com/tats/web_worldwide
http://www.internetworldstats.com/stats5.htm
http://www.arabstats.org/indicator.asp?ind=249&gid=4&sgid=35

191

10 Tunisia

2.

Expenditure from total local

income per person on IT and

communications (2007) (%)

8.9 Jordan

2.5 Algeria

5.8 Egypt

4.5 Kuwait

8.3 Morocco

4.7 Saudi Arabia

6 Tunisia

3.

Expenditure per person on IT

and communications in US$

(2007) (%)

258.7 Jordan

100.1 Algeria

95.2 Egypt

1906.9 Kuwait

202.3 Morocco

743.9 Saudi Arabia

206.3 Tunisia

2236.4 Emirates

4.

Expenses of using internet

(monthly in US$) (2006)

10.9 Jordan

9.31 Algeria

4.98 Egypt

13.72 Kuwait

5.33 Saudi Arabia

3.1 Tunisia

5.44 Emirates

9.22 Syria

5.18 Oman

52.48 Sudan

5.47 Qatar

10 Lebanon

22.05 Libya

7.9 Bahrain

6 Yemen

12.7 Comoros

41.01 Djibouti

16.02 Mauritania

5.
Percent of internet users to

population (2006) (%)

11.71 Jordan

35.09 Emirates

20.67 Bahrain

5.7 Algeria

10.55 Saudi Arabia

7.8 Sudan

5.64 Somalia

0.13 Iraq

25.64 Kuwait

15.1 Morocco

1.03 Yemen

9.2 Tunisia

2.9 Comoros

1.1 Djibouti

5.64 Syria

9.99 Oman

7.9 Palestine

26.57 Qatar

15.36 Lebanon

3.3 Libya

6.9 Egypt

0.5 Mauritania

6.
of safe servers per million

person (2008)

8.8 Jordan

125.8 Emirates

78.2 Bahrain

0.5 Algeria

8.3 Saudi Arabia

192

0 Sudan

0.1 Somalia

64.9 Kuwait

1.4 Morocco

0.2 Yemen

10.7 Tunisia

1.6 Comoros

1.2 Djibouti

0.1 Syria

11.5 Oman

1.3 Palestine

50.7 Qatar

13 Lebanon

0.5 Libya

1 Egypt

1.6 Mauritania

7.

Internet users per 100,000 of

population (2002)

7.73 Jordan

139.4 Emirates

19.93 Bahrain

0.26 Algeria

6.73 Saudi Arabia

13.79 Kuwait

0.9 Morocco

0.06 Yemen

0.35 Tunisia

0.16 Comoros

7.59 DJibouti

0.01 Syria

2.66 Oman

2.55 Qatar

21.08 Lebanon

0.15 Libya

0.45 Egypt

0.29 Mauritania

8.

Approximate # of internet

users (2006)

797,000 Jordan

1,708,000 Emirates

210,000 Bahrain

2,460,000 Algeria

4,700,000 Saudi Arabia

3,500,000 Sudan

94,000 Somalia

817,000 Kuwait

6,100,000 Morocco

270,000 Yemen

1,295,000 Tunisia

21,000 Comoros

11,000 DJibouti

1,500,000 Syria

319,000 Oman

266,000 Palestine

290,000 Qatar

950,000 Lebanon

6,000,000 Egypt

30,000 Mauritania

9.

Indicator to internet

readiness (2008)

4.18551 Jordan

4.76199 Emirates

4.37571 Bahrain

3.14429 Algeria

4.28148 Saudi Arabia

3.28168 Libya

3.12229 Mauritania

193

(defined as the degree of a

country or local community

to participate or to benefit

from the development in IT

and communication, its

composed of 3 components:

1- the environment that the

country provide for IT, 2- the

degree by which individuals,

companies and governments

are willing to use such

services, 3- the degree of

usage by such benefiters

such services)

3.75747 Egypt

3.97924 Kuwait

3.59132 Morocco

4.34095 Tunisia

3.40690 Syria

4.08312 Oman

4.68134 Qatar

10.

of prescribers in broadband

service per 100 person

(2008)

2.2 Jordan

11.8 Emirates

12.1 Bahrain

4.2 Saudi Arabia

0.2 Mauritania

0.9 Egypt

1.5 Morocco

2.2 Tunisia

0.1 Syria

1.1 Oman

8.1 Qatar

ML based Works Used for Morphological Analysis

No Reference # ML technique used Training/text collections Performance Results

1- [54] a clustering technique by which they

used 2-grams, unique 2-grams and a
modified version of it

used five small data sets to

extract roots for some
irregular cases as weak and

hamzated words

accurate clustering up to

94.06%.

2- [151] unsupervised ML based on statistical
MT, and an English stemmer

a small parallel corpus as its
whole training resources

then a monolingual un-

annotated text was used to
further improve the stemmer.

unsupervised stemmer
performance was

compared with a GOLD

one and was found to
have 87.5% agreement

3- [131] Buckwalter's analyzer and tables that

outputted only stems then such stems are
used as inputs for training k-NN for

morphological analysis then using two

filters

LDC collection when using also the two

filters F-measure values
increased to about 57.5%.

4- [160] used three existing stemming methods: a)

Khoja's stemmer (for root extraction), b)

Buckwalter's Morphological Analyzer, c)
Al-Shalabi et, al (2003) root extraction

algorithm. Then, it compared between

their accuracy and looked into improving
it using majority voting technique (if no

agreement on a specific root by

aforementioned methods).

Collected news texts The Khoja stemmer

achieved the highest

accuracy among used
stemmers. The voting

algorithm achieved about

70% accuracy for
newspaper texts but

slightly less than the

Khoja stemmer.

5- [52] SNoW package was used to tune state-

of-the-art versions of three linear
classifiers. The purpose of using such

classifiers was to identify only triliteral

roots in Arabic. the following were
investigated: the features number,

linguistic constrains, variable size feature

representation, and handling only two
types of irregular forms: 1- weak

(including eliminated-long-vowels cases)

and 2- geminated roots.

This work used the

following resources: 1- a list
of roots, 2- lists of common

prefixes and suffixes, 3-

corpora annotated with roots
using Buckwalter's

morphological analyzer, 4-

knowledge of word-
formation processes and in

particular the behavior of

weak roots in certain
paradigms.

When the classifiers were

combined using linguistic
knowledge pertaining to

word formation processes

in Arabic by
implementing a scoring

function that

approximates the
likelihood of a given

candidate to the root, F

value became 80.44%.

6- [15] Used Back-Propagation Neural Network

(BPNN) for extracting Arabic triliteral
roots only. Inputted word size was

limited to a maximum of five letters and

each letter was encoded to three binary

digits where letters in sOltmwnyhA are

provided specific encoding of 1, 2, or 3

whereas other letters are encoded to zero
value.

Implementing this approach

required to train it first on a
set of 500 5-letter words

with roots attached then

testing it on other 200 5-

letter words.

Accuracy rate of 94%.

7- [124] work

was the first
one that

an unsupervised algorithm to build the

Arabic word segmenter from a large un-
segmented Arabic corpus where this

It used training set as: 1- a

small manually segmented
Arabic corpus of about

This method achieved

around 97% exact match
accuracy on test set when

194

analyzed

Arabic words

within their

content

work performed the following steps: 1-

the algorithm uses a Trigram Language

Model (3-gram LM) to determine the

most probable morpheme sequence for a
given input by calculating the

probabilities of morphemes (here finding

the stem of the word not its root), 2- the
task of a decoder used was to find the

morpheme sequence which maximizes

the trigram probability of the input
sentence (i.e. morphological analysis of

word within its context), finally 3- the

unsupervised acquisition of new stems
from an automatically segmented new

corpus is done through three steps: a)

select new stem candidates on the basis
of a frequency threshold, b) filter out

new stem candidates containing a sub-

string with a high likelihood of being a
prefix, a suffix or prefix-suffix (PS), c)

further filter out new stem candidates on

the basis of contextual information.

110,000 words, 2- a large

un-segmented Arabic corpus

of about 155 million words,

whereas it's testing set: was
about 28,449 word tokens.

including 3-gram LM, PS

filter and/or new stems

acquisition.

8- [36] work

was the

second one
that analyzed

Arabic words

within their
context.

It used Hidden Markov Model (HMM)

approach for choosing the proper root for

each word in text among possible roots.
This step was performed after extracting

possible roots for such word out-of-

context using a rule-based method.

This was performed by

training this classifier using

an annotated corpus from
NEMLAR.

Results show that more

than 98% of roots were

correctly chosen by
system in training set

while 94% of roots were

correctly chosen in test
set.

Other Used Term Weighting Methods






Di

k

jk

jk
ittf

dttf
dtWidf

),(

),(
),(

 


















Di

k

j

ijij
ittf

dDFR
cdtfcdMidf

),(

)(
.)),(log(1),(

Where DFR(dj) stand for the number of non-zero values of document dj, tf(dj,ci) is the frequency of term tk in document dj

which belong to category ci

Evaluation Metrics for TC

The contingency matrix for category ci

Category

 ci

Expert Judgments

Yes No

Classifier

Judgments

Yes TPi FNi

No FPi TNi

ii

i

i
FPTP

TP
P




ii

i

i
FNTP

TP
R




 iiii

ii

i
FNTNFPTP

TNTP
A






ii AE 1

Micro-averaging












C

i ii

C

i i

FPTP

TP
P

1

1

)(



195












C

i ii

C

i i

FNTP

TP
R

1

1

)(



Macro-averaging
C

P
P

C

i iM   1

C

R
R

C

i iM   1

Fβ function
RP

PR
F






2

2)1(






 β  [0,[

RP

PR
F




2
1 When β = 1

Naïve Bayes Classifiers Equations

)(

)/()(
)/(

j

iji

ji
dp

cdpcp
dcp 

Where:)/(ji dcp : Probability that a given document dj belongs to a given class ci,)(jdp : Probability of document dj, this

probability is a constant, thus can be ignored especially if not possible to calculate,)(icp : Probability of class ci, it is

computed usually by the percentage of documents in ci to documents number in all categories,)/(ij cdp : Probability of

document dj given class ci, and since documents are modeled as sets of words.

According to Bayes theorem, such words are assumed independent, thus)/(ij cdp can be written as:


k

ikij cwpcdp)/()/(

So:


k

ikiji cwpcpdcp)/()()/(

Where:)/(ik cwp is Probability that kth word of document dj occurs from class ci, and this can be computed using info taken

from training set (Thabtah, et al 2009) as follows:

VN

T
cwp

ci

ct

ik







)/(

Where Tct: Number of times the word occurs in class ci, Nci: Number of words in class ci, V: Size of the vocabulary table, λ:

Positive constant, usually 1, or 0.5 to avoid zero probability.

TC Methods that used Stemming Techniques for DR on Arabic

No TC Method Stemming method Compared

1. SVM, k-NN, NB [135] Light stemmer Larkey et al [121] work
Did not give detailed results but reported

that it degraded SVM performance

2. k-NN [63]

a- Al-Shalabi root extractor

[17]

b- Aljlayl light stemmer [9]

c- Word clustering method

All methods improved effectiveness of

classifier compared to word, the best

improvement was for light stemming, then

word clustering, then root extraction

methods.

3.
k-NN, Rocchio, NB

[108]

Both Aljlayl and Frieder [9] and

Larkey, et al [121] light stemmers (no
details)

with stemming, for both k-NN and Rocchio:

for k-NN with tf or tfidf, performance

improved but others it degraded, No

196

stemming for NB

4. k-NN, Rocchio [171]

a- root-based (simple

explanation but no ref)
b- light stemmer (no info)

c- statistical (n-gram, 2 or 3)

d- hybrid (statistical + light
stemmer)

(all methods gave better results than words

only but the hybrid method gave the best

improvement in classifiers performance.

5.
AdaBoost.M1 with C4.5,

[147]
DIINAR.1 lexicon [56]

This part was performed after

experimenting on 1250 doc among 5 classes

using only Boosted C4.5 classifier and 3

feature selection methods 2, IG, Gain Ratio

(GR) and compared with no selection for

original words, lemmas and roots

separately. Macro average F1 results

showed that for roots best value for F1 =

88.46% using 161 terms and IG.

6-
SVM, NBN classifiers

[146]
DIINAR.1 lexicon [56]

Both SVM and NBN were used on vector

representation of 7034 doc among 7 classes

representing words, lemmas, roots

separately using tfidf and studied the effect

of those VSM on classification and used for

FS separately IG and 2. Evaluation was by

F1, R, P, accuracy and results show that

using roots outperformed others in terms of

F1 and accuracy values.

7-
SVM, NBN classifiers

[148]

a- DIINAR.1 lexicon [56]

b- Statistical 3-gram and 4-gram

Both SVM and NBN were used on vector

representation of 7034 doc among 7 classes

representing words, lemmas, roots word 3-

gram, word 4-gram separately using tfidf

and studied the effect of those VSM on

classification and used for FS both

separately IG and 2. Evaluation was by

macro-averaging F1, R, P and Accuracy and

results show that using word 3-gram

outperformed others in terms of F1 (92.4%)

and accuracy (92.3%) values.

8- SVM light, [154]

For stemming and root extraction used
2 different systems: a) Al-Stem for

finding stems and Sebawai for roots

[49], [108]

b) both RDIMORPHO3 stemmer and

root extractor [28].

Results show: 1- using Al-Stem + MI or IG

enhances the performance for small sized

dataset, 2- using the words leads to worst

performance in small datasets while in large

datasets its performance was the among the

best, 3- Al-Stem performed better than RDI

stemmer while RDI root extractor

performed better than Sebawai one.

However, no significance tests were

provided.

FSS Main Functions (derived from (Sebastiani, 2002) [161], d:

constant damping factor)
Function Denoted by Mathematical form

DIA association factor z(tk, ci) P(ci| tk)

Information Gain IG(tk, ci) 


 },{},{
)().(

),(
log).,(

iiii tttccc
cPtP

ctP
ctP

Mutual Information MI(tk, ci)
)().(

),(
log

ik

ik

cPtP

ctP

Chi-square 2(tk, ci)

)().().().(

)],().,(),().,(.[|| 2

iikk

ikikikik

cPcPtPtP

ctPctPctPctPTr 

NGL coefficient NGL(tk, ci)

)().().().(

)],().,(),().,(.[||

iikk

ikikikik

cPcPtPtP

ctPctPctPctPTr 

197

Relevancy Score RS(tk, ci)
dctP

dctP

ik

ik





)|(

)|(
log

Odds Ratio OR(tk, ci)
)|()).|(1(

))|(1).(|(

ikik

ikik

ctPctP

ctPctP





GSS coefficient GSS(tk, ci)),().,(),().,(ikikikik ctPctPctPctP 

TC Methods that used FSS methods for DR on Arabic
No Reference

FSS methods Classifiers used Results

1- [171] used for global

selection the methods

DF, IG, 2, NGL, OR
and GSS

k-NN and Rocchio classifiers Using DF thresholding and a hybrid of DF

and IG gave the best results when using k-

NN or Rocchio classifiers

2- [136] used MI, 2, NGL, OR,

and GSS

SVM classifier Using 2, NGL or GSS gave better results.

This work showed that when using MI for
160 features provided better results

compared to when using OR.

3- [147] IG and 2 AdaBoost.M1 to boost a weak
classifier (here a decision trees

one C4.5) and compared its

performance with other four
classifiers (C4.5 alone, SVM,

NB, and NB Multinomial

(NBM).

Results show that when using IG, both
SVM and NBM classifiers outperformed

NB and C4.5 but slightly higher than

AdaBoost.M1 (but still comparable). It was

also found, when using 2, that both SVM

and NBM outperformed NB and C4.5 but

slightly higher than AdaBoost.M1.
4- [137] used Ant Colony

Optimization (ACO)

based on 2 and
compared its effect

with 2, NGL, GSS,

OR, IG, and MI

SVM classifier Using ACO based on 2 for FSS

outperformed others when using SVM

classifier.

5- [184] used Particle Swarm

Optimization (PSO)

and compared its effect

with 2, DF, tfidf as

well as no selection

Radial Basis Function (RBF)

Neural Networks (NN)

classifier

Using PSO for FSS outperforms the rest

FSS methods used for this text classifier.

Specific Classifiers Implemented for Arabic
No Reference # Classifier

Type

Classifier FSS methods, Training/testing

texts

Results

1- [94] Decision

trees

ID3 using IG on 2 small data sets

with different classes, tf for FSS,
light stemming, with 2/3-1/3

training-testing ratios

average F1 about 0.70

2- [147] Decision

trees

C4.5, AdaBoost.M1

to boost C4.5

 average F1 about 0.80,

and for boosting F1 is

about 0.84.
3- [112] Statistical n-gram Used embeddings to map each

document into R representing the

tri-gram freq. statistics profiles
for that document. Also, it used

both the Dice measure and

Manhattan distance to compute
the distance between the text to

be classified and training texts

using tri-gram with Dice

outperforms that with

Manhattan distance

4- [70] Statistical Maximum entropy text set with 6 classes, used
stemming

F1 = 0.8041

5- [159] statistical Maximum entropy LDC Arabic newswire (7M

words, 1994 part) and used n-
gram (either on word level or on

character level) as a step towards

stemming, used 80%-20% for
training-testing ratio

F1 has a max value of

0.627 after number of
iterations (5 – 250)

6- [95] used ANN ANN back- 453 documents with 14 classes, SVD increased F1 to

198

ANN back-

propagation

classifier

propagation classifier used Al-Stem for stemming, used

SVD for FSS (i.e. reducing

features to 200), limited number

of unique words to 739, used 2/3
-1/3 for training-testing ratio

0.88 compared to 0.85

without it

7- [60] distance-

based

Dice similarity 1000 documents with 10 classes,

used Al-Shalabi, et al [17]
algorithm for stemming, used

50%-50% for training-testing

ratio

micro R = 0.628, P =

0.74

8- [171] profile-

based

Rocchio classifier β = 1.6, γ = 0.4, used 1,132

documents with 39,468 words

with leaving-one-out method,
applied different types of

stemming techniques and FSS

functions

macro-average F1 has a

max value of about 0.94

when applying a hybrid
method for stemming and

another hybrid method

for FSS by using DF
thresholding and IG

9- [27] association

rule mining

Apriori and CHARM

algorithms to find
Frequent Closed Item

sets and Frequent

Item sets, CHARM
for soft-matching

Association rules

Frequent Closed Item sets where

used, used the RDI
morphological analyzer for

stemming, used a min. threshold

for Support and Confidence of
15% and 70% respectively,

proposed a semantic similarity

function, tested on an Arabic
textual database of 5,524 records

It induced accurate

predictive rules of
implemented system

despite the variation of

automatically extracted
textual databases. It also

illustrate the excellence

of soft-matching over
hard exact-matching

NB Classifier Implemented for Arabic

No Reference # Weighing, FSS Prob. eq
Corpus +

class

Training -

testing
Results

1. [90] - , - Mod 600 + 6 70-30% F1=93.69%

2. [89] - , - - 2244 + 5
10-fold cross

validation
Average F1 = 0.884

3. [7] - , - -
Leed's

collection+3
- Accuracy 60%

4. [108] Boolean, - - 1445+9
k-fold cross

validation
Micro average F1=84%

5. [10]
tfidf, DF
threshold

mod 12+12 12+1 F1=85%

6. **[135]

tfidf, local 2, #

terms = 162
gave best

results

mod 1445+9 2/3-1/3 Macro F1=84.54% **

7. **[174]

local 2, #

terms = 800

gave best

results

mod 1562+6 70-30% Macro F1 = 72.8% **

8. ** [147]
tfidf, roots, 2,

IG

Used NB
and NBM

(using
Weka)

6825+7

Stratified

10-fold cross

validation

when using 1239 features, 1- for

NBM classifier: a) using IG max

F1 is about 88% , b) using 2 max
F1 = 87.5%. 2- for NB classifier:

a) using IG F1 is 75%. b) using 2

F1 is 81%. **

9. [146]

tfidf, roots,

stems, #

selected
features varied

from 400 -

2000, 2, IG

Used NBM

(using
Weka)

7034+7

Stratified

10-fold cross
validation

For features no = 2000, when

using Lemma (highest value but

still comparable to using root):

for accuracy = 87.79% when

using 2 and 87.63% when using

IG (about the same), whereas

for F1= 0.878 when using 2 and

0.876 when using IG.

10. [148]

tfidf, roots,

stems, 3-gram,
4-gram #

selected

features varied
from 400 –

Used NB
network

(using

Weka)

7034+7

Stratified

10-fold cross
validation

For features no = 2000, when

using 3-gram (highest value

than using Lemma or root): for

accuracy = 89.49% when using

2 and 89.62% when using IG,

whereas for F1= 0.894 when

199

2000, 2, IG using 2 and 0.896 when using

IG. Comparing this with those

for Lemma there is an

improvement of about 2%

11. [71]

tfidf, rooted
features

selected from

50 -> 2000
based on

highest tfidf

values

mod 1550+5

1/3-2/3

1/2-1/2

2/3-1/3

Leave-one-

out

Accuracy = 68.78% for trained,

62% for tested

12. [141] -, roots mod 300 + 10 - Accuracy about 62.2%

13. [34]
Norm tfidf,

light stemming
- 242+6

k-fold cross

validation
73.6% (not stated if provided

value is for F1, P, R or other)

14. ** [61]

Feature vector

composed of

words, their tf

and idf,
stemming

mod 1000+10 50-50%
For NB on average P=R about

80%. **

**: this mark means that values shown were calculated by me from figures shown in paper so an estimate.

k-NN Classifier Implemented for Arabic
No Paper K value Similarity

used

FSS Corpus

size +

classes

training -

testing

Results

1. ** [135] -

- here k-NN
results shown

for

comparison

1445 + 9 2/3-1/3 F1 = 72.72% **

2. [63] 10 - Stemming,

weighting tf

15,000 + 3 (60-40)% P = 92%, R = 91% for

light stemming (highest

among other stemming

methods)

3. ** [62] - - Stemming 15,000 + 3 60-40% Results of micro P, R

shown (I cal. Micro

average F1 = 91.5% for

light stemming & 88%
for stemming) **

4. ** [98] 29 Cosine Local 2 2206 + 2 (99 – 1)% Max F1 = 93.6% at 250

terms **

5. [20] - Cosine Based on DF

> 3

1445+ 4 (60-40)% F1 = 73.57% for using

n-gram & 66.88% for

single terms

6. [90] - Cosine - 600 + 6 (70-30)% F1 = 90.93%

7. [173] 11 Cosine,

Dice,
Jaccard

- Small + 6 (70-30)% F1 = 94.91% for both

Dice and Jaccard when

using tfidf

8. [19] Varied, 18,

effectiveness
started to

decline at

k>24

Cosine Based on DF

+ light
stemming

621 + 6 (90-10)% Both Micro recall &

precision = 95% at k=18,

but 96% at k = 21,

9. [109] 13 Jaccard Light

stemming

1445 + 9 k-fold cross

validation

k=4

using tfidf F=78% & tf

F=69% had improved

with stemming, while

using Widf was 80% and

lowered to 73% with

stemming

10. ** [171] 1 - 19 Euclidean

distance

Hybrid

stemming

using tri-gram
+ light

stemming,

hybrid of DF
threshold + IG

1132 + 6 Leave-one-

out

Macro F1=52% for k=1,

lower for higher k as no

of features about 5000 **

11. [34] 1 - 20 but as Euclidean Light 600 + 6 k-fold cross 84.2% (not mentioned

200

k > 15

effectiveness

of classifier

decreased

distance stemming validation which F, P, R or else)

12. ** [107] 19 Jaccard Light

stemming +

IG

600 + 6 Varied

(shown for

60-40%)

Macro max F1 = 75.8%

at 360 training doc **

13. ** [61] Change k:

10, 20, 50,

100

Dice Stemming 1000 + 10 50-50% On average P=R=66%.
** (results shown here for

k=50)
**: this mark means that values shown were calculated by me from figures shown in paper so an estimate.

SVM Classifier Implemented on Arabic Texts
No Ref. # SVM type weighting FSS Corpus

size +

classes

training -

testing

Results

1. ** [137] TinySVM tfidf Used ACO based on

local 2 algorithm,
compared with other

FSS methods (NGL,

GSS, OR, IG, MI.
Max. performance at

160 terms.

1445+9 966 – 479

(2/3-1/3)

Macro F1 for: no FSS is

74.04, for 2 is 87.54, for
NGL is 86.5, for GSS is

86.5, for OR is 78.75, for

MI is 78.53, for IG is
78.81, for ACO is

89.61%. **
2. ** [135] TinySVM tfidf Local 2 Max.

performance at 162

terms.

1445+9 2/3-1/3 Macro average F1 =

88.11% **

3. ** [136] TinySVM tfidf 2, NGL, GSS, OR,
MI.

1445+9 2/3-1/3 Macro average F1 about

87.5% for 2 at 160

features. **

4. [8] RapidMiner Boolean Local 2 applied on
DF. Top 30 terms of

each class

7 data sets
(17,658

document

s) each

has its

different
no of

classes

70-30 Average Accuracy

68.65%

5. ** [98] Gist SVM
and kernel

principal

components
analysis

software

toolkit

tfidf Local 2 varied 50 ->
500 features

2235-2 2206-29 Micro F1, max at 450

terms is 98.2% but all its

value at all terms selected

is higher than k-NN ones.
**

6. ** [147] SMO (from

Weka)

tfidf 2, IG 6825+7 Stratified 10-

fold cross

validation

Results show that when

using 1239 features:

using IG for SVM max

F1 is about 88% and

when using 2 it is about

88%. **
7. [146] SMO (from

Weka)

tfidf 2, IG 7034+7 Stratified 10-

fold cross

validation

For features no = 2000,

when using root (highest

value but slightly higher

to using Lemma): for

accuracy = 87.97% when

using 2 and 87.80% when
using IG, whereas for F1=

0.880 when using 2 and

0.878 when using IG.

8. [148] SMO (from

Weka)

tfidf 2, IG 7034+7 Stratified 10-

fold cross

validation

For features no = 2000,

when using 3-gram

(highest value than using

Lemma or root): for

accuracy = 92.41% when

using 2 and 92.28% when

using IG, whereas for F1=

0.924 when using 2 and

0.923 when using IG.

Compared to when using

root there is an

improvement of about

4%

201

9- [89] From Weka - - 2244 + 5 10-fold cross

validation
Average F1 = 0.954

**: this mark means that values shown were calculated by me from figures shown in paper so an estimate.

For Chapter 3:

Samples of Function Words

Samples of Function words = {" , "اليومتتا", "إليتت ", "اليتت ","إلتتيوم", "إليومتتا","فوليوتتا", "وإليوتتا", "نالتتيو"," إليوتتا","التتى", "لتتىٳ

, "وإليومتتتتا", "فتتتتالى", "فتتتتولى", "وإلتتتتى", "فاليوتتتتا", "اليوتتتتا", " التتتتيوم", "اليومتتتتا", "اليتتتت ", "إليتتتت ", "إليومتتتتا", "إلتتتتيوم","إلتتتتيون","التتتتيوم"

, "وإلتتيون", "فتتاليون", "فاليومتتا", "فوليومتتا", "فاليتت ", "فوليتت ", "وإليتت ", "يومفتتول", "وإلتتيوم", "فوليتت ", "فتتوليوم", "فاليومتتا", "فتتاليوم","فوليومتتا"

, "وعليومتتا", "فعليتت ", "وعليتت ", "وعلتتى", "عليوتتا", "علتتيون", "علتتيوم", "عليومتتا","عليتت ", "علتتيوم","عليومتتا", "عليتت "," علتتى", "فتتوليون"

, "فننمتا","فانمتا","فونوتا", " فننت ", "فونت ","فتنن"," تنن"," انت ", " أنوتا","إنمتا", "أنمتا","انمتا","بتنن", "فتون","فعليوم ", "وعليوم", "فعليوما"

, "أنوتت ", "أنومتتا", "أنتت ", "وإنتت ", "وإنوتت ", "وإنوتتن", "وإنوتتم", "وأنوتتم", "وأنوتت ", "وأنومتتا", "وأنتت "," فوتتنن", "فانتت ", " فننوتتا","فونمتتا"

, "لوتتا", "لتت ", "لتت ", " لأنتت ", "بتتننون", "بتتننوم","بننوتتا", "بننتت ", "بانتت "," أنتتى", " فتتنن ","انوتتا", "إنتت ", "إنوتت ", "إنوتتن", "إنوتتم", "أنوتتم"

, "ولتت "," انوتتن", "انوتتم", "انوتت ", "بانوتتا", "لانتت ", "فلتت ", "ولوتتن", "ولتت ", "ولوتتا", "ولوتتم"," لوتتن", "لوتتن", "لوتتم", "لوتتم", "لومتتا","لومتتا"

, "وأضتتتحت", "فتتتالا ", "وألا", "وإلا", "والا", "ألا", "الا", "إلا", "لات", "فلوتتتن", "ولوتتتن", "فلوتتتم", "ولوتتتم", "ولومتتتا","ولومتتتا", "فلوتتتا"

, "واضتتح ا", " وأضتتح ا", "اضتتح ا", "أضتتح ا", " فاضتتحتا", "فنضتتحتا", "فاضتتحت", " فنضتتحت", "واضتتحتا", "وأضتتحتا", " واضتتحت"

, "فمايفتئتان", "ومايفتئتان", "مايفتئان", "فمايفتؤا", "ومايفتؤا", "مايفتؤا", "تضح ", "فيضح ", "ويضح ", "يضح ", "فاضح ا", "فنضح ا"

, "فماانفوتتا", "وماانفوتتا", "ماانفوتتا", "فماانفتت ", "وماانفتت ", "ماانفتت ", فمتتاتفتئن", "ومتتاتفتئن", "متتاتفتئن", "فمتتايفتئن", "ومتتايفتئن", "متتايفتئن"

, ومات فتتت ", "مات فتتت ", "فماي فتتت ", "وماي فتتت ", "ماي فتتت ", "فمتتتاانفوون", "متتتاانفوونو", "متتتاانفوون", "فمتتتاانفو ا", "ومتتتاانفو ا", "متتتاانفو ا"

" تدتن", " تدتم", " تدتما", " تادي", "ومتاي فو ا ", "متاي فو ا", "فمات فوتا", "ومات فوتا", "مات فوتا", "فماي فوا", "وماي فوا", "ماي فوا", "فمات ف "

, "و ربتتا", " ربتتا", "فوربتت", "و ربت", " ربت", "فورب ا", "و رب ا", " رب ا", "فوربا", "و ربا", " ربا", "فورب", "و رب", " رب"

"فوتتربن", "و تتربن", " تتربن", " تتربتم", " ربتمتتا", " رب تتا", "فوربتتتا" , , "فنوشتتوا", "وأوشتتوا", "أوشتتوا", "فنوشتت ", "وأوشتت ", "أوشتت "

, "انبرتتتا", "فانبريتتا", "وانبريتتا", "انبريتتا", "فتتانبرت", "وانبتترت", "انبتترت", "نبر فتتا", "وانبتتر ", "انبتتر ", فابتتتدأن", "نوابتتتدأ", "ابتتتدأن"

"فانبرين", "وانبرين", "انبرين", "فانبروا", "وانبروا", "انبروا", "فانبرتا", "وانبرتا" }

202

Appendix II: Additional Detailed Informations, Tables and

Figures of Chapter 4

TIM BUCKWALTER'S ARABIC TRANSLITERATION

I developed my transliteration system before XML days. To make it XML-friendly I would:

replace < with I (for hamza-under-alif)

replace > with O (for hamza-over-alif—the A is already used for bare alif)
replace & with W (for hamza-on-waw)

Examples of Two Letter Geminated Words

Two letter geminated words list = {" , "ود", " جتد", "حتن", "حتل", "ظتن", "ضتل", "ضتم", "قتل", " ظتل", " تتم", "شتد"," متد

ستف", "ستد", "حت ", "جن", "ثع", "ثط", "ثج", "بر", "ب ", "بص", "بت", "بح", " ل", "رد", " ش ", "حق", "مر", "خف", "طن" ",

" , "جتح", "جتث", "جت ", "ثتم", "ثتل", "ثر", "تل", "تف", "ب ", "بغ", "بع", "بظ", "بط", "بض", "ب ", "بز", "بذ", "بد", "بج", "بث

حتف", "حتظ", "ح ", "حر", "حد", "تخ", "ت ", "بن", "بل", "بق", "جر", "جذ", "جخ" ", " , "جتض", "جتص", "جت ", "جت ", "جتز

, "تت ", "تتر" ,"خت ", "حتم", "حت ", "حتط", "حتض", "حص", "ح ", "حز", "حذ", "حج", "حث", "حت", "جم", "جل", "جف", "جع"

رخ", "رح", "رت", "ذن", "ذم", "ث " ", " , "ختم", "ختل", "ختق", "ختط", "ختص", "خت ", "خت ", "ختز", "ختر", "ختذ", "ختد", "خج

, "رم", "ر ", "رف", "دف", "دخ", "دب", "ختتتتن", "ختتتتت", "ذح", "دم", "دل", "د ", "دع", "دش", "دس", "در", "دح", "دج", "دث"

رن" ", " , "زح", "زج", "زت", "زب", "رق", "رع", "رض", "رص", "رش", "رس", "رز", "رذ", "رج", "رث", "رب", "ذر

, "صتتف", "صتتد", "شتتم", "زن", "زر", "زخ", "ذل", "ذف", "ذب", "دن", "دق", "ستتن", "ستتم", "ستتل", "ستت ", "ستتر", "ستتج", "ستت "

وط", "وج", "وص", "اض", "أض", "اط", "أط", "از", "أز", "ار", "أر", "ان" , "ضد", "صم", "ص " "}

203

Detailed Correction Algorithm Flowchart

Start
ch1 <-1st character of Word;
ch2 <- 2nd character of Word;
ch3 <- 3rd character of Word

Yes

No
Yes

No

No

ch1 is either y, t,
& ch3 is either A
or O

word 
$roots82_wa
w list

Yes Yes

Yes

No

Change ch1 to w and ch3 to O

word 
$roots84_
yae2 list

Change ch1 to w

word 
$roots87_w
aw list

word 
$roots49_y
ae list

Change ch1 to ch2, ch2 to A, ch3 to Hamza

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

word 
$roots82_ale
f list

Change ch3 to O

ch1 is either y,
t, & ch3 is y

ch1 is
either y, t,
& ch3 is y

word 
$roots86_
yae2 list

Change ch1 to w

ch1 is
either y, t,
& ch2 is }

Change ch1 to w and ch2 to O

ch1 is either y,
t, & ch3 is
either y or }

No

word 
$roots90_w
aw list

Change ch1 to w and ch2 to O

ch1 is either y,
t, & ch3 is }

Yes

Yes
No

No

A
B

ch1 is W
and ch2 is
w

No

Yes

word 
$roots68_w
aw list

Yes

Yes

Yes

Yes No

No

No

No

Change ch1 to |, ch2 to ch3,
word = ch1.ch2

ch1 is } and
ch2 is y

word 
$roots71_y
ae list

Change ch1 to |, ch2 to ch3,
word = ch1.ch2

ch2 is either A
or O or Hamza
and ch3 is w

204

No

Yes

Yes

Yes

Yes

No

No

No Ch2 is either
A or O and
ch3 is y

word 
$roots29_
mah_ain_w
aw list

Change ch2 to }, word = ch1.ch2

Change ch3 to A

word 
$roots21_
yae list

ch3 is
either Y or
y

word 
$roots24_
yae list

word 
$roots42_
chan list

Change ch3 to y

Change ch3 to w Change ch3 to Y

No

No No

No No No

Yes

Yes Yes

Yes Yes Yes

A

B

word 
$roots30_mah
_ain_waw list

Change ch3 to Y, ch2 to O

word 
$roots32_mah
_ain_yae list

No

Yes

Change ch3 to Y, ch2 to O

ch3 is w
word 
$roots17_w
aw list

word 
$roots18_w
aw list

Change ch3 to A

word 
$roots19_w
aw list

Change ch3 to A

Yes

No word 
$roots31_
mah_ain_w
aw

Change ch3 to Y

Yes

No

word 
$roots62_w
aw list

Change ch3 to A
No

No Yes

Yes

word 
$roots22_
yae list

Change ch3 to y

word 
$roots23_
yae list

Change ch3 to Y

Yes Yes

No
No

word 
$roots33_
mah_ain_y
ae

Change ch3 to Y

word 
$roots43_
yae list

Change ch3 to Y

Yes

Yes

No

No word 
$roots52_
naq list

Yes Yes

Yes Yes Yes

No No

No

No

Change ch3 to A

word 
$roots65_
yae list

Change ch3 to y

word 
$roots66_
alef list

Change ch3 to A

word 
$roots70_
yae list

Change ch3 to y

word 
$roots84_
yae1 list

Change ch3 to y

No No No

Yes Yes

word 
$roots85_
yae1 list

word 
$roots86_
yae1 list

word 
$roots90_
yae1 list

Change ch3 to Y Change ch3 to y Change ch3 to y

C

D

205

No

Yes

Yes

Yes

Yes

No

No

No
Ch3 is
W

Change ch3 to y

Change ch3 to O

word 
$roots25_
mah_ain

Ch2 is }

word 
$roots38_
waw list

Change ch2 to O

Change ch2 to w and ch3 to O

No

No

No

No

No No

Yes

Yes

Yes

Yes

Yes Yes

C

D

word 
$roots13_
mah_lam

Change ch3 to O

No

ch3 is }
word 
$roots15_h
am_lam2

word 
$roots27_
mah_ain

Change ch2 to O

Yes

No word 
$roots89_
mah_ain

Change ch2 to }

Yes

No

word 
$roots100_
mah_ain

Change ch2 to O

No

No Yes

Yes

word 
$roots45_
yae list

Change ch2 to y

Yes

Yes No

No

word 
$roots34_3
7_waw

Change ch2 to w

word 
$roots39_
naq list

Change ch3 to A

Yes

Yes

No

No Ch1 is
either y or
t or n

Yes

Yes

Yes Yes

Yes
No

No

No

No

word 
$roots74_7
5_77_waw

Change ch1 to w

word 
$roots81_
waw list

Change ch1 to w

Word = ch2.ch3.ch3

word 
$roots8_12
_79_80_mo
d

No No

No

Yes

Yes
word 
$roots8_12
_79_80_en
d_haa

Change ch3 to ch2

E

F

word 
$roots98_
yae list

Ch3 is
Y

Yes word 
$roots15_
mah_lam1

No

Change ch3 to O

Yes

Ch2 is }

Ch2 is A

Ch2 is A

Ch1 is
either y or
t or n or A

Ch3 is
either p
or h

Ch3 is t

206

No

Yes

Yes

Yes

Yes

No

No

No
Ch3 is
t

Change ch3 to A

Change ch3 to y

word 
$roots24_
naq

Ch3 is t

Change ch3 to w

Change ch3 to Y

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

E

F

word 
$roots18_n
aq

Change ch3 to A

No

ch3 is t
word 
$roots21_n
aq list

word 
$roots22_n
aq list

Change ch3 to y

Yes

No Yes

No

word 
$roots23_n
aq

Change ch3 to Y

No

No Yes

Yes

word 
$roots34_
37_ajw list

Ch3 = ch2, Change ch2 to w

Yes

Yes No

No

word 
$roots38_aj
w

Change ch2 to w, ch3 to O

word 
$roots42_
naq list

Yes

Yes

No

No

Yes

Yes

Yes Yes Yes

No

No

No

No

word 
$roots43_n
aq

Change ch3 to Y Change ch3 to A

No No

No

Yes

Yes

word 
$roots45_a
jw

Change ch3 to ch2, ch2 to y

G

H

word 
$roots17_
naq list

Ch3 is
t

Yes word 
$roots19_n
aq

No

Change ch3 to A

Yes

Ch3 is t

Ch3 is t

Ch3 is t

Ch3 is t

ch3 is t

Ch3 is t

Ch3 is t Ch3 is t
word 
$roots44
_naq

Ch3 is t
word 
$roots47_a
jw

Change ch3 to ch2, ch2 to A

207

No

Yes

Yes

Yes

No

Ch3 is t

Change ch3 to A, ch1 to O

word 
$roots85_
naq

Ch3 is t

Change ch3 to Y, ch1 to O

Change ch3 to ch2

No

No

No

No

No

Yes Yes

Yes

Yes

Yes

G

H

word 
$roots65_n
aq

Change ch3 to y, ch1 to O

ch3 is t

word 
$roots66_n
aqlist

word 
$roots70_n
aq list

Change ch3 to y, ch1 to O

Yes

No

Yes No

word 
$roots84_n
aq

Change ch3 to y

No

No Yes

Yes

word 
$roots86_
naq

 Change ch3 to y

Yes

Yes No

No

word 
$roots90_n
aq

Change ch3 to y

word 
$roots8_12_79_
80_end_taa

Yes

No

word 
$roots6
2_naq

Ch3 is t

Yes
No

Yes

Ch3 is t

Ch3 is t Ch3 is t

ch3 is t

Ch3 is t

No Yes

No

No

Change ch3 to y, ch1 to O

Return word

No

208

Flowchart for EWBM1 Algorithm

Start

For each
document

For each word wj
No_letters = Count_N0_letters(wj)

Yes

No

No_letters<=3 Final_wordj = wj

Provide the order, weight values for each letter in word wj
Calculate product of order and weight values for each letter in word wj
Count = Count_No_Zero_Product_Letters(wj)

(Count > 3) and
(No_letters >= 4)

Yes

No

Final_wordj =
Extract_4letter_wi
th_least_product(
wj)

Final_wordj =
Extract_3letter_with_least_produ
ct(wj)

Write Final_wordj to output document new_di_1
Calculate Accuracy_of_document_ new_di_1

End

209

Flowchart for EWBM2 Algorithm

Start
For each
document

For each word wj
No_letters = Count_N0_letters(wj)

Yes

No

No_letters<=3 Final_wordj = wj

Remove_Al(wj)
Replace_letters(wj)
Provide the order, weight values for each letter in word wj
Calculate product of order and weight values for each letter in word wj
Count = Count_No_Zero_Product_Letters(wj)
Repeat = Count_No_Repetitions_Not_b_w_A(wj)

((Count > 3) or
(Repeat > 2)) and
(No_letters >= 4)

Yes

No

Final_wordj =
Extract_4letter_wi
th_least_product(
wj)

Final_wordj = Extract_3letter_with_least_product(wj)

Write Final_wordj to output document new_di_1
Calculate Accuracy_of_document_ new_di_1 End

No_letters = Count_N0_letters(Final_wordj)

No_letters == 2

Yes No
cc = Compare
(Final_Wordj,
2_letter_list)

cc == 2

No

Yes
Final_Wordj=Correct_Word(Final_Wordj)

210

Samples of Lists used in Correction Algorithm

No Comments on List List

1. // from 8 - 12 3-letter root
MODDA'AF (root 8 eg َّد ر

د - ي ترد root 9 eg َّتل ي ضِتل - ض

root 10 eg َّتل تل -م ي م root
11 eg َّ ي حد -ح root 12 eg

ي عِتض -ع تضَّ) remove first

then check 2 letter roots
// from 79 - 80 3-letter root

METHAL WAWEE

MODDA'AF
// root 79 eg َّص ص -و ي د

// root 80 eg َّد د -و ي

$roots8_12_79_80_mod = { " , "تظتتن", "تضتتل", "تضتم", "تقتتل", " تظتتل", " تتتم", "تلتتد"," تمتتد
, "تبتت", "تتبح", "توتل", "تترد", " تلت ", "تحق", "تمر", "تخف", "تطن", "ت د", " تجد", "تحن", "تحل"

ن د", " ن ط", "ن ج", "ن ص", "ن ط", "ن ج", "تب ", "تبص" "}

$roots8_12_79_80_end_taa = {" , "ضتلت", "ضتمت", "قلتت", " ظلتت", " تمتت", "شتدت"," متدت
, "ردت", " شتتتوت", "حقتتتت", "متتترت", "خفتتتت", "ط تتتت", "ودت", " جتتتدت", "ح تتتت", "حلتتتت", "ظ تتتت"

, " ودت", " اضتتتت", "أضتتتت", "اطتتتت", "أطتتتت", "ازت", "أزت", "ارت", "أرت", "بحتتتت ", " لتتتت"

وطت", "وجت", "وصت" "}
$roots8_12_79_80_end_haa = {" , "ظ ت ", "ضتل ", "ضتم ", "قلت ", " ظلت ", " تم ", "شده"," مده

, "بتتت ", "بحتت ", " لتت ", "رده", " شتتو ", "حقتت ", "متتره", "خفتت ", "ط تت ", "وده", " جتتده", "ح تت ", "حلتت "

وط ", "وج ", "وص ", "ود ", " بره ", "بل ", "بص " "}

2. // root 13 eg ن تؤد - ن ج ي جد return

to أ

$roots13_mah_lam = {"نجؤ"}

3. // root 15 eg ِأد -ب تتتر تتتر ي ب
return end in 1 or in 2 to

$roots15_ham_lam1 = {" , "حلتى", "حتد ", "ج تى", "جمتى", "تفى", "بوى", "بسى", "بذ ", "بر
ه ى", "هز ", "دنى ", "دفى", "خطى", "خر ", "خذ ", "خجى" "}

$roots15_ham_lam2 = {" , "حلتئ", "حتد ", "ج تئ", "جمتئ", "تفئ", "بوئ", "بسئ", "بذ ", "بر

ه ئ", "هز ", "هذ ", "دفئ ", "خطئ", "خر ", "خذ ", "خجئ" "}
4. // root 17 eg ا عد -د ع يد return

end to ا

$roots17_waw = {" , "بلتت ", "بعتت ", "بظتت ", "بصتت ", "بتتزو", "بتترو", "بتتذو", "بتتدو", "بختت ", "دعتت

هف ", "هط ", "حص ", "جب ", "ثغ ", "ثط ", "ثرو", "ثدو", "تل ", "بو " "}

$roots17_naq = {" , "بعتتت", "بظتتت", "بصتتت", "بتتزت", "بتترت", "بتتذت", "بتتدت", "بختتت", "دعتتت
, "هصتتتت", "هتتتزت", "هتتترت", "هتتتذت", "هجتتتت", "ثطتتتت ", "ثتتترت", "ثتتتدت", "تلتتتت", "بوتتتت", "بلتتتت"

هفت", "هطت" "}

5. // root 18 eg ه تتتا ه تتتى -ز ي ز
return end to ا

$roots18_waw = {" زه"}
$roots18_naq = {"زهت"}

6. // root 19 eg ِتتتقى تتتق ى -ش ي ل

return end to ا

$roots19_waw = {" , "خفت ", "حلت ", "حقت ", "حفت ", "حظت ", "جو ", "جس ", "بو ", "بزو", "شق

نق ", "نل ", "نس ", "ندو", "لو ", " دو", "قع ", "رض ", "رذو", "رخ ", "رج ", "رب " "}
$roots19_naq = {" , "حلتت", "حقتت", "حفتت", "حظتت", "جوتت", "جستت", "بوتت", "بتزت", "شتقت

, " تتدت", "قعتتت", "قصتتت", "فجتتت", "غلتتت", "غتترت", "رذت", "رختتت", "رجتتت", "ربتتت", "خفتتت"

نقت", "نلت", "نست", "ندت", "لوت" "}

Samples of Root Lists

No Comments on List List

1. // from 1 - 7 3-letter root

SALEM

// root 1 eg ر رد -ن ص ي صد

$roots1 = {" , "بتتذل", "بتذر", "بتذخ", "بتدن", "بتدر", "بجتل", "بجت ", "بجتد", "بثتق", "بتتر", "نصتر

بتزج", "بترم", "بر ", "برق", "برض", "برز", "برد", "برح", "برج", "بذم" "," , "بتزل", "بتزق", "بتزر

, "بقتتر", "بغتتض", "بطتتن", "بطتتل", "بطتتر", "بصتتق", "بلتتر", "بستتل", "بستتق", "بستتط", "بستتر", "بتتزم"
بوتت ", "بوت ", "بوتتر", "بوتت", "بقتتل", "بقتط" ", " , "بلتتق", "بلتتغ", "بلتط", "بلتتص", "بلتد", "بلتتج", "بوتتل

ه د", "همل", "خف ", "خفد", "خفت", "خط ", "تبر ", "ب ق" "}

2. // root 2 eg ب ر رِبد -ض ي ض $roots2 = {" , "تتبن", "بط ", "بضع", "بصم", "بل ", "بلق", "بسم", "بجم", "بتل", "بت ", "ضرب
جتتدب", "جبتتذ", "ثمتتد", "لتتمث", "ثلتتط", "ثلتت ", "ثتترم", "ثتترب", "ثتتبن", "ثبتتق", "تفتتن", "تستتع", "تتترز" ",

" , "جلز", "جفل", "جزم", "جزل", "جزف", "جرم", "جرش", "جرس", "جذم", "جذف", "جذب", "جدف

هم ", "هم ", "جلسز" {"همط" ,"
3. // root 3 eg ثد -ب ع ث ي ب ع $roots3 = {" , "بتدع", "بتدح", "بخق", "بخع", "بخص", "بخ ", "بخر", "بحر", "بحث", "بتع", "بعث

بعتتض", "بعتتص", "بعتتر", "بعتتج", "بطتتح", "بصتتع", "بتتزخ", "بتترع", "بتتذح", "بتتده" " , " , "بعتتق", "بعتتط

, "بوتتث", "بوتت", "بلتع", "بلتح", "بلتتت", "بوتع", "بغتم", "بغت ", "بغتتز", "بغتر", "بغتت", " بعتل", "بعت "
نوتف", "نوتط", "نوتض", "نوت ", "نوت ", "بوتج " ", " , "هترق", "هتد ", "هجتع", "هبتغ", "نوت ", "نوتق

ه غ", "ه ع", "همغ", "همع", "هل ", "هوع", "هقع", "هطع", "هزع" "}

4. // root 4 eg حد -ف رِح ي ف ر $roots4 = {" , "بتره", "بتر ", "بترص", "بترش", "بتدل", "بختل", "بجتر", "بجتح", "بثتع", "بثر", "فرح
بوتص", "بلت ", "بلتم", "بلتخ", "بوتم", "بقتع", "بغتث", "بعتد", "بظتر", "بصتر", "بلتم", "بلتع" ", " , "بوتق

, "هتتزج", "هتترع", "هتترص", "هبتتل", "نوتتل"" تغتت ", "تعتت ", "تتتره", "تتترف", "تتترح", "تختتذ", "تبتتع"

ه ق", "ه ", "هلم", "هلع", "هور", "هقم", "هقف", "هزق" "}
5. // root 9 eg َّل ي ضِل -ض $roots9 = {" , "توت ", "تترر", "تختخ", "تبت ", "بت ن", "لبلت", "بقق", "بصص", "برر", "بتت", "ضلل

, "نعتع", "نطط", "رفف ", "ذمم", "حرر ", "حذذ", "ج ن", "جدد", "ثعع", "ثطط", "ثجج", "ثب ", "تمم"

هجج", "هتت", "نقق" }

211

Appendix III: Additional Detailed Informations, Tables and

Figures of Implemented Root Extraction Techniques in

Chapter 4

Samples of Accuracy Results for All Ten Algorithms using AT8 corpus
Category: Politics

Name of Text

*.txt

S1

(%)

S1_corr

(%)

S2

(%)

S2_corr

(%)

S3

(%)

S3_corr

(%)

S4

(%)

S4_corr

(%)

RB

(%)

Enh_RB

(%)

alqabas1 53.90 60.86 58.54 67.66 57.05 63.02 57.05 66.83 57.38 70.98

alqabas2 60.87 65.22 66.96 73.48 61.30 67.39 61.52 68.48 66.30 73.04

ahram1 60.30 66.25 65.51 77.67 64.52 73.20 62.78 74.69 60.30 76.92

addustour1 57.98 63.81 62.65 69.26 59.53 64.59 57.98 68.48 61.87 71.21

alwafd2 60.42 63.54 69.79 76.04 60.42 64.58 61.46 73.96 57.29 69.79

maktoob1 53.37 60.80 58.87 69.60 56.53 65.06 55.98 64.92 53.65 70.15

Category: Economics

Name of Text

*.txt

S1 (%)
S1_co

rr (%)

S2

(%)

S2_corr

(%)

S3 (%)
S3_cor

r (%)

S4

(%)

S4_corr

(%)

RB

(%)

Enh_RB

(%)

ahram2 59.07 66.51 67.91 77.21 63.26 72.56 61.86 72.09 63.72 77.21

addustour2 52.16 60.30 59.80 69.98 57.76 67.68 55.98 71.25 54.45 70.74

alwatan5 55.66 60.70 65.18 73.55 63.76 69.88 63.46 71.71 63.76 73.85

cnn9 56.63 63.25 58.43 67.47 56.33 60.84 58.13 64.76 56.93 70.18

okaz4 44.04 51.38 49.54 63.30 49.54 61.47 42.20 58.72 44.95 60.55

Category: Religious issues

Name of

Text

*.txt

S1

(%)

S1_cor

r (%)
S2 (%)

S2_cor

r (%)
S3 (%)

S3_cor

r (%)
S4 (%)

S4_corr

(%)

RB

(%)

Enh_R

B (%)

addustour3 53.49 63.00 63.85 75.48 62.16 71.04 61.10 71.67 64.48 79.49

al-madina9 53.13 60 62.02 73.13 60.40 67.07 62.83 71.31 61.82 74.95

alqabas11 60.61 64.99 66.74 73.30 61.27 67.40 61.71 68.71 66.30 73.09

bbc16 55.68 63.74 65.93 76.56 64.84 70.70 60.07 69.23 55.31 70.33

alquds-

alarabi4

59.23 65.24 63.95 72.53 62.66 68.24 55.79 68.67 58.16 72.75

Category: Educational And Health

Name of Text

*.txt S1 (%)

S1_cor

r (%)
S2 (%)

S2_cor

r (%)
S3 (%)

S3_cor

r (%)
S4 (%)

S4_cor

r (%)

RB

(%)

Enh_R

B (%)

ahram5 52.75 64.90 60 75.88 55.69 66.08 54.71 66.67 53.33 71.18

ahram6 57.83 66.86 63.86 74.70 66.27 72.89 56.02 66.27 69.88 82.53

alquds10 60.42 65.28 64.58 72.22 65.28 73.61 59.72 70.83 62.5 75

alquds11 55.25 62.98 62.98 73.48 65.75 70.72 54.14 68.51 59.67 76.80

alquds12 60 62.73 72.73 79.09 72.73 75.45 62.27 80.91 65.45 79.09

Category: Social

Name of Text

*.txt

S1

(%)

S1_cor

r (%)
S2 (%)

S2_cor

r (%)
S3 (%)

S3_cor

r (%)
S4 (%)

S4_cor

r (%)

RB

(%)

Enh_RB

(%)

addustour5 56.39 67.12 57.31 71.01 54.57 64.61 58.68 68.49 56.39 71.01

al-fadjr6 51.28 58.69 60.11 70.94 58.41 64.94 57.27 65.53 58.69 72.08

al-fadjr7 61.78 68.15 63.38 72.93 62.10 68.47 61.15 73.25 66.24 77.07

alkhabar12 55.84 64.04 60.88 71.29 58.36 65.30 57.41 66.88 62.46 75.39

cnn10 50 60.09 58.26 67.89 49.54 58.26 54.59 68.81 59.63 75.69

alqabas12 57.27 64.55 61.82 74.55 60.91 69.09 55.45 70.91 58.18 80

Category: Music

Name of Text

*.txt S1 (%)

S1_co

rr (%)

S2 (%)

S2_cor

r (%)

S3

(%)

S3_corr

(%)

S4

(%)

S4_corr

(%)

RB

(%)

Enh_RB

(%)

addustour12 48.86 62.60 58.02 72.52 56.49 67.94 59.54 70.99 51.91 73.28

al-fadjr10 54.07 61.05 59.30 68.61 55.81 64.53 65.12 71.51 57.56 78.49

el-massa2 54.52 61.56 62.81 71.11 59.80 68.82 60.30 68.34 58.54 77.39

alyaum2 62.10 70.16 70.16 81.45 66.94 75 75.81 82.26 62.10 74.19

alqabas10 56.30 66.87 60.34 72.16 60.34 67.34 58.63 67.03 62.99 73.87

Category: Sports

Name of Text

*.txt
S1 (%)

S1_cor

r (%)

S2 (%)
S2_cor

r (%)

S3 (%)
S3_cor

r (%)

S4 (%)
S4_cor

r (%)

RB

(%)

Enh_

RB

(%)

212

ahram3 58.96 66.23 67.53 75.84 58.18 66.49 58.96 67.01 60.78 68.83

ahram10 57.58 65.15 65.15 74.62 58.71 64.52 58.71 67.80 59.72 72.48

alanwar2 57.59 63.80 64.90 73.31 59.60 66.36 57.95 67.82 52.65 67.46

alqabas7 52.88 60.47 56.55 67.02 50.26 59.42 52.62 61.78 54.97 67.02

ommandaily3 69.79 75.51 69.18 73.72 60.12 64.35 66.47 70.09 64.95 74.92

cnn1 52.69 58.60 66.16 74.19 60.75 66.13 53.76 69.89 65.52 70.97

assaheefa1 51.84 55.88 55.88 59.93 51.10 57.35 55.52 63.24 60.29 72.43

Category: Art, Culture and Literature

Name of Text

*.txt
S1 (%)

S1_cor

r (%)

S2 (%)
S2_cor

r (%)

S3 (%)
S3_cor

r (%)

S4 (%)
S4_cor

r (%)

RB

(%)

Enh_R

B (%)

ahram4 52.51 59.32 61.59 71.31 58.83 65.80 58.67 69.04 64.51 73.26

alalam3 48.28 51.72 54.02 63.22 56.32 57.47 55.17 60.92 65.52 78.16

azzaman5 58.17 64.78 64.92 73.09 62.74 69.21 60.49 69.62 64.24 76.43

alquds-alarabi8 55.11 63.78 60.68 72.14 58.36 65.65 60.22 71.36 56.81 68.89

jeeran1 50.43 53.85 64.10 67.95 61.97 62.39 58.55 62.82 55.13 64.53

Analysis using SPSS for rule_based, Enh_rule_based, Adjusted Al-

Shalabi, Adjusted Al-Shalabi-corr algorithms (All categories)
Histogram for rule_based algorithm: Histogram for Enh_rule_based algorithm:

Histogram for Adjusted Al-Shalabi: Histogram for Adjusted Al-Shalabi-corr:

Model Description

Model Name MOD_1 MOD_2 MOD_3 MOD_4

Series or

Sequence

1 RB Enh_RB S2 S2-corr

Transformation None None None None

Non-Seasonal Differencing 0 0 0 0

Seasonal Differencing 0 0 0 0

Length of Seasonal Period No periodicity No

periodicity

No

periodicity

No periodicity

Standardization Not applied Not applied Not applied Not applied

Distribution Type Normal Normal Normal Normal

Location estimated estimated estimated estimated

Scale estimated estimated estimated estimated

Fractional Rank Estimation

Method

Blom's Blom's Blom's Blom's

Rank Assigned to Ties Mean rank
of tied values

Mean rank
of tied values

Mean rank
of tied values

Mean rank
of tied values

Applying the model MOD_1 MOD_2 MOD_3 MOD_4

213

specifications from

Case Processing Summary

 RB Enh_RB S2 S2-

corr

Series or Sequence Length 380 380 381 381

Number of Missing

Values in the Plot

User-Missing 0 0 0 0

System-Missing 0 0 1 1

The cases are unweighted

Estimated Distribution Parameters

 RB Enh_RB S2 S2-corr

Normal

Distribution

Location 59.7016 73.3325 61.9559 71.6429

Scale 5.73808 5.22792 5.45823 5.08720

The cases are unweighted.

P-P plot for Rule-based algorithm:

P-P plot for Enh_Rule-based algorithm:

P-P plot for Adjusted Al-Shalabi algorithm:

P-P plot for Adjusted Al-Shalabi-corr algorithm:

214

K-S (NORM) test:
One-Sample Kolmogorov-Smirnov Test

 RB Enh_RB S2 S2-corr

N 380 380 380 380

Normal

Parametersa,,b

Mean 59.7016 73.3325 61.9559 71.6429

Std. Deviation 5.73808 5.22792 5.45823 5.08720

Most Extreme

Differences

Absolute 0.042 0.060 0.033 0.040

Positive 0.025 0.036 0.019 0.031

Negative -0.042 -0.060 -0.033 -0.040

Kolmogorov-Smirnov Z 0.820 1.164 0.648 0.780

Asymp. Sig. (2-tailed) 0.511 0.133 0.796 0.578

a. Test distribution is Normal.

b. Calculated from data.

215

Appendix IV: Additional Detailed Informations, Tables and

Figures of Chapter 5

Criteria of Applied Classifiers here in WEKA
Type Classifier Criteria

Bayes-Based

Learners

BN uses various search algorithms and quality measures. debug = F, estimator =
SimpleEstimator A-0.5, searchAlgorithm = k2-P1-S Bayes, useAD Tree = F.

NBM Class for building and using a multinomial Naive Bayes classifier. debug = F.

NB Class for a Naive Bayes classifier using estimator classes. debug = F,
displayModelInOldFormat = F, useKernelEstimator = F,

useSupervisedDiscritization = F.

Complement NB builds and uses a Complement class Naive Bayes classifier. debug = F,
normalizeWordWeights = F, smoothingParameter = 1.

NBMU As NBM

NBU As NB

Tree Learners

Random Forest Class for constructing a forest of random trees. debug = F, maxDepth = 0,
numFeatures = 0, numTrees = 10, seed = 1.

RepTree Fast decision tree learner. debug = F, maxDepth = -1, minNum = 2,

minVarianceProp = 0.0010, noPruning = F, numFolds = 3, seed = 1.

BF Tree Class for building a best-first decision tree classifier. debug = F, heurestic = T,
minNumObj = 2, numFoldsPruning = 5, pruningStrategy = Post-Pruning, seed = 1,

sizePer = 1, useErrorRate = T, useGini = T, useOneSE = F.

NB Tree Class for generating a decision tree with naive Bayes classifiers at the leaves., debug
= F.

FT Classifier for building 'Functional trees', which are classification trees that could

have logistic regression functions at the inner nodes and/or leaves. binSplit = F,
debug = F, errorOnProbabilities = F, minNumInstances = 15, modelType = FT,

numBoostingIterations = 15, useAIC = F, weightTrimBeta = 0.

J48 Class for generating a pruned or unpruned C4. binarySplits = F, confidenceFactor =

0.25, debug = F, minNumObj = 2, numFolds =3, reducedErrorPruning = F,
saveInstanceData = F, seed = 1, subTraaRaising = T, unpruned = F, useLaplace = F.

J48 graft Class for generating a grafted pruned or unpruned C4. (as J48).

LAD Tree Class for generating a multi-class alternating decision tree using the LogitBoost

strategy. dbug = F, numOfBoostingIterations = 10.

LMT Classifier for building 'logistic model trees', which are classification trees with

logistic regression functions at the leaves. convertNominal = F, debug = F,

errorOnProbabilities = F, fastRegression = T, minNumInstances = 15,
numBoostingIterations = -1, splitOnResiduals = F, useAIC = F, weightTrimBeta = 0.

Random Tree Class for constructing a tree that considers K randomly chosen attributes at each

node. kValue = 0, allowUnclassifiedInstances = F, debug = F, maxDepth = 0,

minNum = 1, numFolds = 0, seed = 1.

Simple Cart Class implementing minimal cost-complexity pruning. debug = F, heuristic = T,

minNumObj = 2, numFoldsPruning = 5, seed = 1, sizePer = 1, useOneSE = F,

usePrune = T.

Rule Learners

JRip This class implements a propositional rule learner, Repeated Incremental Pruning to
Produce Error Reduction (RIPPER), which was proposed by William W.

checkErrorRate = T, debug = F, folds = 3, minNo = 2, optimizations = 2, seed = 1,
usePruning = T.

PART Class for generating a PART decision list. binarySplits = F, confidenceFactor = 0.25,

debug = F, minNumObj = 2, numFolds = 3, reducedErrorPruning = F, seed = 1,

unpruned = F.

Ridor An implementation of a RIpple-DOwn Rule learner. debug = F, folds = 3,

majorityClass = F, minNo = 2, seed = 1, shuffle = 1, wholeDataErr = F.

OneR Class for building and using a 1R classifier; in other words, uses the minimum-error

attribute for prediction, discretizing numeric attributes. debug = F, minBucketSize =
6.

NNge Nearest-neighbor-like algorithm using non-nested generalized exemplars (which are

hyperrectangles that can be viewed as if-then rules). debug = F,
numAttemptsOfGeneOption = 5, numFoldersMIOption = 5.

Decision Table Class for building and using a simple decision table majority classifier. crossVal = 1,

debug = F, displayRules = F, evaluationMeasure = Default: accuracy(discrete class);

RMSE (numeric class), search = BestFirst -D 1-N 5, useIbk = F.

 SMO Implements John Platt's sequential minimal optimization algorithm for training a

support vector classifier. buildLogisticModel = F, c = 1, checksTurnedOff = F,

debug = F, epsilon = 1.0E-12, filterType = Normalize training data, kernel = Poly
kernel-C 250007-E1.0, numFolds = -1, randomSeed = 1, toleranceParameter =

0.0010.

216

Function

Learners

RBF Class that implements a normalized Gaussian radial basis function network.

clusteringSeed = 1, dbug = F, maxIts = -1, minStdDev = 0.1, numClusters = 8, ridge

= 1.0E-8.

Logistic Class for building and using a multinomial logistic regression model with a ridge
estimator. debug = F, maxIts = -1, ridge = 1.0E-8.

MLP A Classifier that uses backpropagation to classify instances. GUI = F, autoBuild = T,

debug = F, decay = F, hiddenLayers = a, learningRate = 0.3, momentum = 0.2,
nominalToBinaryFilter = T, normalizeAttributes = T, NormalizeNumericClass = T,

reset = T, seed = 0, trainingTime = 500, validationSetSize = 0, validationThreshold

= 20.

Simple Logistic Classifier for building linear logistic regression models. debug = F,

errorOnProbabilities = F, heuristicStop = 50, maxBoostingIterations = 500,

numBoostingIterations = 0, useAIC = F, useCrossValidation = T, weightTrimBeta =
0.

Miscillaneous

Learners

VFI Classification by voting feature intervals. bias = 0.6, debug = F,

weightByConfidence = T.

Hyper Pipes Class implementing a HyperPipe classifier. debug = F.

Meta Learners

AdaBoost.M1 Class for boosting a nominal class classifier using the Adaboost M1 method.

classifier = J48 -C 0.25 -M 2, debug = F, numIterations = 10, seed = 1,

useResampling = F, weightThreshold = 100.

Attribute Selected

Classifier

Dimensionality of training and test data is reduced by attribute selection before

being passed on to a classifier. classifier = J48 -C 0.25 -M 2, debug = F, evaluator =

CfsSubsetEval, search = BestFirst - D 1- N 5.

Bagging Class for bagging a classifier to reduce variance. bagSizePercent = 100,

calOutOfBag = F, classifier = J48 -C 0.25 -M 2, debug = F, numIterations = 10,

seed = 1.

Classification Via

Regression

Class for doing classification using regression methods. classifier = M5P --M 4.0,

debug = F.

Dagging This meta classifier creates a number of disjoint, stratified folds out of the data and
feeds each chunk of data to a copy of the supplied base classifier. classifier = SMO -

C 1.0 - L 0.0010 - P 1.0E-12 -N 0 -V -1, debug = F, numFolds = 10, seed = 1,

verbose = F.

Decorate is a meta-learner for building diverse ensembles of classifiers by using specially

constructed artificial training examples. Artificial Size = 1, classifier = J48 - C0.25-

M2, debug = F, desiredSize = 10, numIterations = 10.

END A meta classifier for handling multi-class datasets with 2-class classifiers by

building an ensemble of nested dichotomies. classifier = ND -S1 -W

weka.classifiers.trees.j48-- C 0.25 M 2, debug = F, numIterations = 10, seed = 1.

Filtered Classifier Class for running an arbitrary classifier on data that has been passed through an

arbitrary filter. classifier = J48 -C 0.25 -M 2, debug = F, filter = Discritize -R first-

last.

Logit Boost Class for performing additive logistic regression. classifier = DecisionStump, dbug =

F, likelihoodThreshold = -1.7976931348623157E308, numFolds = 0, numIterations

= 10, numRuns = 1, seed = 1, shrinkage = 1.0, useResampling = F, weightThreshold
= 100.

Multi Class

Classifier

A metaclassifier for handling multi-class datasets with 2-class classifiers. classifier

= Logistic -R 1.0E-8 -M -1, debug = F, method = 1-against-all, randomWidthFactor
= 2.0, seed = 1, usePairwiseCoupling = F.

CBND A meta classifier for handling multi-class datasets with 2-class classifiers by

building a random class-balanced tree structure. (as ND).

DNBND A meta classifier for handling multi-class datasets with 2-class classifiers by

building a random data-balanced tree structure. (as ND)

ND A meta classifier for handling multi-class datasets with 2-class classifiers by

building a random tree structure. classifier = J48 -C 0.25 -M 2, debug = F, seed = 1.

Ordinal Class

Classifier

Meta classifier that allows standard classification algorithms to be applied to ordinal
class problems. classifier = J48 -C 0.25 -M 2, debug = F.

Random

Committee

Class for building an ensemble of randomizable base classifiers. classifier =

RandomTree - k 0 -M 1.0 -S1, debug = F, numIterations = 10, seed = 1.

Random SubSpace This method constructs a decision tree based classifier that maintains highest

accuracy on training data and improves on generalization accuracy as it grows in

complexity. classifier = RepTree - M2 -V 0.0010 - N3 - S1 -L-1, debug = F,
numIterations = 10, seed = 1, subSpaceSize = 0.5.

Rotation Forest Class for construction a Rotation Forest. classifier = J48 -C 0.25 -M 2, debug = F,

maxGroup = 3, minGroup = 3, numIterations = 10, numberOfGroups = F,
projectionFilter = PrincipleComponents -R 1.0 -A5 -M-1, removedPercentage = 50,

seed = 1.

217

Performance of all classifiers of corpus as number of selected features increased among a) Roots, b) Stems, c) Words, d) RRP,

e) SSP, f) WP representations

(a)

218

(b)

219

(c)

220

(d)

221

(e)

222

(f)

223

Performance of most Classifiers among categories for all representations at 1000 best selected features

BN, F1 values for 1000 features NB, F1 values for 1000 features NBM, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.986 0.986 0.972 0.986 0.986 0.972 0.675 0.63 0.486 0.663 0.562 0.519 0.779 0.722 0.659 0.771 0.718 0.679

Religious 0.956 0.956 0.915 0.949 0.955 0.915 0.406 0.371 0.433 0.333 0.377 0.441 0.648 0.649 0.658 0.657 0.636 0.645

Arts 0.988 0.988 0.973 0.988 0.988 0.976 0.678 0.663 0.681 0.657 0.688 0.714 0.793 0.783 0.762 0.796 0.779 0.771

Social 0.988 0.976 0.968 0.988 0.976 0.964 0.406 0.39 0.403 0.414 0.362 0.385 0.627 0.602 0.47 0.615 0.606 0.457

Economics 0.986 0.979 0.902 0.986 0.979 0.909 0.556 0.52 0.457 0.586 0.495 0.436 0.846 0.782 0.671 0.824 0.792 0.686

Sports 0.909 0.844 0.643 0.935 0.844 0.653 0.806 0.784 0.701 0.803 0.835 0.672 0.934 0.927 0.869 0.943 0.918 0.893

Music 0.916 0.942 0.968 0.875 0.951 0.98 0.915 0.86 0.791 0.928 0.867 0.782 1 0.99 0.915 1 0.979 0.896

Educational 0.981 0.975 0.93 0.981 0.978 0.93 0.695 0.694 0.695 0.671 0.693 0.693 0.857 0.863 0.83 0.854 0.856 0.839

SMO, F1 values for 1000 features Simple Logistic, F1 values for 1000 features Decision Table, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.69 0.639 0.604 0.723 0.621 0.562 0.818 0.832 0.649 0.816 0.766 0.667 0.562 0.473 0.488 0.57 0.528 0.503

Religious 0.638 0.57 0.587 0.642 0.519 0.606 0.765 0.69 0.539 0.835 0.675 0.575 0.662 0.564 0.564 0.702 0.569 0.454

Arts 0.754 0.741 0.693 0.744 0.731 0.726 0.761 0.719 0.689 0.752 0.749 0.688 0.628 0.565 0.614 0.67 0.565 0.567

Social 0.591 0.568 0.467 0.576 0.541 0.494 0.551 0.575 0.466 0.581 0.552 0.484 0.579 0.714 0.5 0.68 0.667 0.524

Economics 0.774 0.738 0.667 0.739 0.719 0.634 0.825 0.783 0.647 0.849 0.713 0.567 0.661 0.476 0.614 0.678 0.59 0.564

Sports 0.696 0.693 0.667 0.688 0.703 0.656 0.889 0.912 0.821 0.894 0.956 0.814 0.512 0.532 0.593 0.534 0.619 0.589

Music 0.926 0.94 0.818 0.925 0.922 0.8 0.923 0.96 0.866 0.923 0.96 0.914 0.819 0.619 0.684 0.847 0.624 0.592

Educational 0.848 0.828 0.751 0.838 0.821 0.746 0.822 0.81 0.804 0.814 0.82 0.799 0.743 0.8 0.76 0.718 0.822 0.74

JRIP, F1 values for 1000 features PART, F1 values for 1000 features J48, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.873 0.734 0.699 0.851 0.667 0.624 0.808 0.692 0.532 0.863 0.639 0.513 0.797 0.696 0.477 0.883 0.681 0.474

Religious 0.841 0.611 0.709 0.818 0.646 0.646 0.743 0.619 0.658 0.707 0.537 0.596 0.736 0.602 0.577 0.746 0.536 0.671

Arts 0.63 0.589 0.595 0.661 0.584 0.571 0.712 0.634 0.619 0.704 0.613 0.648 0.667 0.637 0.614 0.674 0.582 0.65

Social 0.603 0.563 0.728 0.632 0.535 0.715 0.603 0.506 0.453 0.579 0.498 0.482 0.552 0.54 0.432 0.579 0.453 0.438

Economics 0.809 0.685 0.563 0.808 0.644 0.565 0.816 0.632 0.475 0.831 0.65 0.5 0.841 0.623 0.455 0.835 0.675 0.452

Sports 0.875 0.829 0.836 0.87 0.809 0.814 0.923 0.815 0.797 0.902 0.853 0.75 0.908 0.842 0.748 0.919 0.853 0.672

Music 0.851 0.878 0.857 0.878 0.827 0.903 0.86 0.835 0.811 0.909 0.84 0.73 0.911 0.884 0.825 0.929 0.874 0.845

Educational 0.738 0.685 0.721 0.782 0.727 0.731 0.725 0.661 0.706 0.722 0.612 0.699 0.731 0.673 0.717 0.697 0.627 0.761

224

Random Forest, F1 values for 1000 features FT, F1 values for 1000 features RepTree, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.636 0.646 0.551 0.658 0.585 0.561 0.815 0.732 0.662 0.797 0.706 0.646 0.865 0.654 0.549 0.865 0.647 0.507

Religious 0.566 0.55 0.581 0.645 0.606 0.612 0.717 0.615 0.548 0.725 0.611 0.556 0.824 0.589 0.56 0.779 0.593 0.506

Arts 0.739 0.723 0.753 0.726 0.735 0.734 0.738 0.675 0.703 0.698 0.736 0.691 0.639 0.603 0.621 0.65 0.589 0.566

Social 0.581 0.524 0.571 0.641 0.548 0.525 0.58 0.496 0.471 0.554 0.569 0.476 0.567 0.415 0.359 0.559 0.425 0.422

Economics 0.693 0.624 0.621 0.634 0.608 0.625 0.791 0.748 0.618 0.797 0.733 0.644 0.803 0.63 0.378 0.809 0.611 0.321

Sports 0.853 0.837 0.851 0.862 0.857 0.837 0.871 0.91 0.776 0.863 0.892 0.835 0.914 0.879 0.654 0.928 0.827 0.657

Music 0.97 0.949 0.884 0.98 0.949 0.839 0.906 0.941 0.752 0.841 0.923 0.793 0.918 0.9 0.723 0.928 0.882 0.66

Educational 0.764 0.697 0.746 0.704 0.712 0.775 0.81 0.797 0.747 0.812 0.824 0.784 0.643 0.602 0.648 0.728 0.598 0.622

BF Tree, F1 values for 1000 features Random Tree, F1 values for 1000 features Decorate, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.863 0.726 0.533 0.865 0.689 0.553 0.524 0.731 0.344 0.456 0.315 0.413 0.826 0.707 0.654 0.823 0.699 0.667

Religious 0.793 0.522 0.548 0.825 0.577 0.588 0.552 0.577 0.433 0.356 0.268 0.397 0.813 0.687 0.651 0.763 0.675 0.605

Arts 0.635 0.588 0.667 0.644 0.636 0.671 0.523 0.59 0.558 0.51 0.516 0.513 0.75 0.717 0.71 0.739 0.705 0.731

Social 0.55 0.478 0.392 0.543 0.598 0.49 0.259 0.486 0.316 0.361 0.335 0.332 0.649 0.586 0.578 0.69 0.638 0.659

Economics 0.803 0.642 0.511 0.818 0.667 0.444 0.432 0.656 0.323 0.44 0.301 0.288 0.761 0.676 0.613 0.797 0.718 0.636

Sports 0.91 0.887 0.627 0.881 0.863 0.627 0.471 0.881 0.609 0.713 0.532 0.631 0.896 0.871 0.872 0.916 0.881 0.813

Music 0.911 0.871 0.734 0.92 0.9 0.879 0.32 0.843 0.587 0.863 0.685 0.624 0.939 0.9 0.837 0.939 0.874 0.874

Educational 0.725 0.632 0.629 0.702 0.705 0.692 0.505 0.644 0.522 0.513 0.518 0.44 0.764 0.735 0.787 0.773 0.751 0.753

Rotation Forest, F1 values for 1000 features Ridor, F1 values for 1000 features OneR, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.899 0.789 0.694 0.902 0.797 0.671 0.904 0.696 0.62 0.871 0.684 0.564 0.823 0.481 0.556 0.791 0.519 0.556

Religious 0.863 0.748 0.765 0.859 0.72 0.743 0.775 0.645 0.614 0.736 0.67 0.636 0.649 0.511 0.486 0.635 0.496 0.486

Arts 0.797 0.754 0.716 0.818 0.742 0.747 0.607 0.61 0.635 0.637 0.581 0.669 0.703 0.563 0.63 0.728 0.546 0.548

Social 0.685 0.597 0.586 0.715 0.616 0.516 0.533 0.509 0.417 0.559 0.402 0.522 0.627 0.607 0.38 0.676 0.593 0.43

Economics 0.895 0.844 0.705 0.878 0.855 0.616 0.822 0.569 0.477 0.834 0.582 0.42 0.591 0.388 0.404 0.554 0.306 0.408

Sports 0.955 0.905 0.855 0.963 0.938 0.828 0.94 0.849 0.709 0.894 0.845 0.63 0.41 0.354 0.286 0.41 0.415 0.282

Music 0.929 0.887 0.854 0.938 0.902 0.893 0.929 0.86 0.636 0.939 0.909 0.774 0 0 0.537 0 0.154 0.551

Educational 0.801 0.811 0.831 0.824 0.8 0.798 0.667 0.645 0.614 0.637 0.57 0.644 0.742 0.681 0.71 0.769 0.684 0.71

225

LAD Tree, F1 values for 1000 features Simple Cart, F1 values for 1000 features Complement NB, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.819 0.583 0.538 0.825 0.638 0.5 0.83 0.731 0.623 0.848 0.699 0.581 0.712 0.713 0.637 0.729 0.694 0.663

Religious 0.792 0.63 0.616 0.791 0.641 0.585 0.824 0.577 0.566 0.848 0.615 0.591 0.563 0.538 0.641 0.4 0.524 0.653

Arts 0.654 0.631 0.647 0.627 0.633 0.571 0.653 0.59 0.661 0.667 0.625 0.688 0.733 0.718 0.731 0.674 0.71 0.74

Social 0.516 0.357 0.235 0.557 0.378 0.351 0.553 0.486 0.449 0.555 0.544 0.47 0.517 0.435 0.328 0.591 0.465 0.331

Economics 0.847 0.667 0.412 0.841 0.713 0.395 0.8 0.656 0.593 0.811 0.698 0.403 0.686 0.649 0.578 0.706 0.63 0.593

Sports 0.779 0.763 0.546 0.767 0.78 0.546 0.902 0.881 0.722 0.902 0.859 0.715 0.908 0.881 0.874 0.725 0.87 0.876

Music 0.905 0.874 0.571 0.891 0.88 0.46 0.893 0.843 0.787 0.911 0.832 0.872 0.936 0.913 0.841 0.833 0.923 0.867

Educational 0.701 0.687 0.677 0.697 0.727 0.671 0.715 0.644 0.644 0.811 0.663 0.667 0.786 0.774 0.79 0.701 0.781 0.794

AdaBoost.M1, F1 values for 1000 features Attribute Selected Classifier, F1 values for 1000 features Bagging, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.905 0.841 0.662 0.933 0.848 0.709 0.821 0.743 0.491 0.892 0.623 0.564 0.905 0.754 0.657 0.933 0.725 0.676

Religious 0.857 0.805 0.72 0.877 0.766 0.725 0.76 0.588 0.454 0.807 0.703 0.5 0.843 0.654 0.739 0.859 0.653 0.691

Arts 0.836 0.828 0.794 0.848 0.81 0.793 0.685 0.611 0.618 0.716 0.617 0.622 0.803 0.766 0.745 0.822 0.761 0.793

Social 0.727 0.703 0.621 0.719 0.68 0.614 0.552 0.566 0.403 0.622 0.442 0.447 0.643 0.597 0.541 0.683 0.589 0.544

Economics 0.871 0.826 0.729 0.91 0.811 0.68 0.855 0.614 0.427 0.855 0.658 0.411 0.869 0.731 0.647 0.889 0.717 0.606

Sports 0.963 0.902 0.844 0.962 0.899 0.848 0.882 0.866 0.61 0.901 0.866 0.65 0.928 0.887 0.848 0.914 0.882 0.833

Music 0.959 0.917 0.863 0.959 0.94 0.868 0.893 0.92 0.549 0.911 0.868 0.673 0.938 0.905 0.837 0.938 0.882 0.869

Educational 0.854 0.833 0.857 0.855 0.817 0.827 0.63 0.605 0.634 0.748 0.627 0.632 0.796 0.791 0.818 0.831 0.806 0.813

Classification Via Regression, F1 values for 1000 features Dagging, F1 values for 1000 features END, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.907 0.784 0.699 0.893 0.774 0.634 0.547 0.53 0.528 0.569 0.475 0.491 0.918 0.861 0.691 0.903 0.873 0.733

Religious 0.907 0.78 0.667 0.843 0.725 0.586 0.477 0.469 0.48 0.46 0.381 0.417 0.897 0.831 0.717 0.91 0.81 0.733

Arts 0.774 0.749 0.714 0.755 0.774 0.691 0.694 0.663 0.651 0.671 0.678 0.671 0.847 0.846 0.808 0.802 0.813 0.795

Social 0.65 0.597 0.494 0.624 0.55 0.523 0.38 0.4 0.368 0.433 0.423 0.385 0.795 0.726 0.654 0.738 0.661 0.639

Economics 0.832 0.759 0.533 0.861 0.792 0.595 0.574 0.523 0.451 0.49 0.462 0.433 0.905 0.841 0.772 0.919 0.792 0.657

Sports 0.903 0.836 0.764 0.894 0.825 0.721 0.414 0.451 0.496 0.419 0.447 0.443 0.913 0.924 0.87 0.934 0.892 0.885

Music 0.926 0.891 0.745 0.946 0.907 0.796 0.851 0.754 0.517 0.865 0.778 0.624 0.928 0.928 0.905 0.948 0.929 0.936

Educational 0.795 0.721 0.731 0.773 0.768 0.73 0.722 0.749 0.727 0.76 0.748 0.723 0.881 0.828 0.828 0.825 0.827 0.818

226

Filtered Classifier, F1 values for 1000 features Logit Boost, F1 values for 1000 features Ordinal Class Classifier, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.837 0.816 0.835 0.837 0.766 0.835 0.947 0.808 0.727 0.939 0.789 0.698 0.688 0.591 0.446 0.753 0.553 0.463

Religious 0.889 0.821 0.735 0.888 0.81 0.747 0.907 0.838 0.769 0.874 0.815 0.81 0.465 0.438 0.492 0.571 0.492 0.468

Arts 0.829 0.806 0.825 0.824 0.773 0.854 0.83 0.746 0.738 0.801 0.753 0.774 0.577 0.574 0.552 0.581 0.62 0.556

Social 0.84 0.726 0.72 0.767 0.788 0.709 0.75 0.677 0.529 0.727 0.558 0.59 0.434 0.354 0.374 0.454 0.424 0.378

Economics 0.881 0.814 0.739 0.87 0.788 0.797 0.923 0.819 0.713 0.939 0.725 0.778 0.438 0.555 0.389 0.767 0.615 0.377

Sports 0.929 0.756 0.765 0.922 0.813 0.752 0.962 0.896 0.868 0.934 0.899 0.851 0.62 0.448 0.535 0.549 0.49 0.596

Music 0.948 0.865 0.756 0.948 0.869 0.826 0.931 0.917 0.863 0.938 0.941 0.878 0.694 0.805 0.692 0.795 0.814 0.684

Educational 0.856 0.791 0.869 0.824 0.806 0.885 0.864 0.82 0.835 0.857 0.82 0.849 0.557 0.585 0.58 0.669 0.61 0.567

Random Committee, F1 values for 1000 features Random Sub Space, F1 values for 1000 features LMT, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP

Politics 0.711 0.688 0.606 0.732 0.588 0.652 0.921 0.859 0.732 0.927 0.842 0.685 0.899 0.35 0.68 0.816 0.766 0.703

Religious 0.658 0.595 0.637 0.65 0.608 0.675 0.846 0.797 0.671 0.88 0.797 0.658 0.863 0.345 0.563 0.835 0.675 0.573

Arts 0.746 0.772 0.72 0.794 0.771 0.776 0.798 0.784 0.763 0.821 0.779 0.741 0.797 0.505 0.693 0.752 0.749 0.696

Social 0.598 0.5 0.573 0.608 0.55 0.561 0.669 0.605 0.61 0.702 0.629 0.632 0.685 0.402 0.487 0.581 0.552 0.474

Economics 0.73 0.667 0.571 0.752 0.653 0.657 0.887 0.76 0.699 0.922 0.827 0.585 0.895 0.35 0.662 0.849 0.713 0.61

Sports 0.894 0.929 0.901 0.91 0.859 0.872 0.942 0.892 0.8 0.934 0.859 0.797 0.955 0.612 0.813 0.894 0.956 0.824

Music 0.98 0.949 0.817 0.979 0.96 0.896 0.928 0.913 0.845 0.96 0.904 0.869 0.929 0.74 0.887 0.923 0.96 0.883

Educational 0.776 0.762 0.767 0.736 0.731 0.789 0.819 0.785 0.832 0.818 0.814 0.791 0.801 0.55 0.806 0.814 0.82 0.796

227

Performance of different VSM representations as number of selected

features varied using (a) NB, (b) NBMU, (c) NBU, (d) Logistic, (e) RBF,

(f) MLP, (g) NNge, (h) OneR, (i) Random Tree, (j) J48 graft, (k) LAD

Tree, (l) BF Tree, (m) NB Tree, (n) VFI, (o) Attribute Selected Classifier,

(p) Dagging, (q) Decorate, (r) Multi Class Classifier, (s) CBND, (t)

DNBND, (u) ND, (v) Ordinal Class Classifier, (w) Random Committee

(a)

(b)

(c)

(d)

228

(e)

(f)

(g)

(h)

229

(i)

(j)

(k)

(l)

230

(m)

(n)

(o)

(p)

231

(q)

(r)

(s)

(t)

232

(u)

(v)

(w)

Maximum F1
M

 values at specific features number for implemented

VSM representations along each classifier.
Classifier VSM representation

Roots Stems Words RRP SSP WP
NB # features 10000 10000 5000 40000 10000 10000

F1M 0.676 0.656 0.695 0.674 0.691 0.721

NBMU # features 5000 5000 5000 5000 5000 5000

F1M 0.734 0.75 0.781 0.729 0.752 0.793

NBU # features 10000 5000 5000 40000 10000 10000

F1M 0.678 0.657 0.693 0.67 0.692 0.722

Logistic # features 50 50 50 50 50 1000

F1M 0.583 0.543 0.461 0.607 0.548 0.491

RBF # features 1000 1000 5000 5000 5000 5000

F1M 0.613 0.621 0.718 0.653 0.637 0.757

MLP # features 100 100 50 100 100 50

F1M 0.511 0.737 0.417 0.493 0.44 0.41

NNge # features 10000 10000 10000 5000 10000 10000

F1M 0.445 0.484 0.509 0.487 0.494 0.533

OneR # features 50 50 50 50 50 50

F1M 0.627 0.514 0.531 0.638 0.517 0.522

Random Tree # features 50 100 100 100 100 100

233

F1M 0.545 0.483 0.464 0.558 0.494 0.478

J48 graft # features 100 500 1000 100 100 1000

F1M 0.761 0.701 0.618 0.78 0.675 0.624

LAD Tree # features 1000 500 500 1000 1000 500

F1M 0.714 0.647 0.556 0.712 0.646 0.539

BF Tree # features 5000 500 5000 5000 1000 1000

F1M 0.742 0.655 0.583 0.737 0.68 0.616

NB Tree # features 100 100 50 50 100 100

F1M 0.953 0.981 0.963 0.947 0.981 0.973

VFI # features 500 500 500 500 5000 500

F1M 0.486 0.503 0.531 0.501 0.496 0.534

Atribute Selected

Classifier

features 100 500 5000 1000 100 50

F1M 0.746 0.69 0.558 0.772 0.665 0.625

Dagging # features 5000 5000 5000 10000 5000 10000

F1M 0.606 0.615 0.622 0.626 0.643 0.608

Decorate # features 100 50 50 100 100 10000

F1M 0.841 0.82 0.73 0.867 0.805 0.716

Multi Class Classifier # features 50 5000 5000 50 50 5000

F1M 0.567 0.521 0.498 0.595 0.529 0.522

CBND # features 500 1000 1000 500 500 1000

F1M 0.683 0.64 0.581 0.68 0.625 0.587

DNBND # features 1000 5000 1000 100 1000 1000

F1M 0.672 0.629 0.576 0.68 0.628 0.583

ND # features 100 5000 5000 100 500 5000

F1M 0.717 0.638 0.618 0.709 0.663 0.61

Ordinal Class Classifier # features 100 50 50 100 50 40000

F1M 0.581 0.623 0.561 0.658 0.652 0.558

Random Committee # features 100 500 1000 500 500 1000

F1M 0.779 0.721 0.694 0.778 0.718 0.727

F1
M

 Improvement/Degradation by comparing implemented VSM

representations performances at feature numbers presented above

for each classifier.
Classifier Max w-F1M,

VSM type

Improvement/degradation of first compared

to second VSM type

Improvement/degradation of second compared to

first VSM type

Roots, RRP

(%)

Stems, SSP

(%)

Words, WP

(%)

Roots,

Stems (%)

Roots,

Words (%)

RRP,

SSP (%)

RRP,

WP (%)

NB 0.721, WP -0.2 +3.5 +2.6 +2 -1.9 -1.7 -4.7

NBMU 0.793, WP -0.5 +0.2 +1.2 -1.6 -3.7 -2.3 -6.4

NBU 0.722, WP -0.8 +3.5 +2.9 +2.1 -1.5 -3.5 -6.2

Logistic 0.607, RRP +2.4 +0.5 +3 +4 +12.2 +5.9 +11.6

RBF 0.757, WP +4 +1.5 +3.5 -0.8 -10.5 +1.6 -10.4

MLP 0.737, Stems -1.8 -29.7 -0.6 -22.6 +9.4 +5.3 +8.3

NNge 0.533, WP +4.2 +1 +2.4 +3.9 -6.4 +0.7 -4.6

OneR 0.638, RRP +1.1 +0.3 -0.9 +11.3 +9.6 +12.1 +11.6

Random Tree 0.558, RRP +1.3 +1.1 +1.4 +6.2 +8.1 +6.4 +8.0

J48 graft 0.78, RRP +1.9 -2.6 +0.6 +6 +14.3 +10.5 +15.6

LAD Tree 0.714, Roots -0.2 -0.1 -1.7 +6.7 +15.8 +6.6 +17.3

BF Tree 0.742, Roots -0.5 +2.5 +3.3 +8.7 +15.9 +5.7 +12.1

NB Tree 0.981, Stems -0.6 0 +1.0 +2.8 -1 +3.4 -2.6

VFI 0.534, WP +1.5 -0.7 +0.3 +1.7 -4.5 +0.5 -3.3

Attrib.Sel.Cla

ss

0.772, RRP +2.6 -2.5 +6.7 +5.6 +18.8 +10.7 +14.7

Dagging 0.643, SSP +2 +2.8 -1.4 +0.9 -1.6 +1.7 +1.8

Decorate 0.867, RRP +2.6 -1.5 -1.4 +2.1 +11.1 +6.6 +15.1

MuliClassClas

s.

0.595, RRP +2.8 +1.4 +2.4 +4.6 +6.9 +6.6 +7.3

CBND 0.683, Roots -0.3 -1.5 +0.6 +7.8 +10.2 +5.5 +9.3

DNBND 0.68, RRP +0.8 -0.1 +0.7 +4.3 +9.6 +5.2 +9.7

ND 0.717, Roots -0.8 +2.5 -0.8 +7.9 +9.9 +4.6 +9.9

Ord.ClaaClass

.

0.658, RRP +7.7 +2.9 -0.3 -4.2 +2 -0.6 +10.0

Rand.Comm. 0.779, Roots -0.1 -0.3 +3.3 +5.8 +8.5 +8 +5.1

Performance of implemented classifiers along different

representations by selecting best 5000 features with significance

testing.
Classifiers Roots RRP Stems SSP Words WP v/ /*

Bayes based, significance relative to NBM
BN 0.99 (0.03) v 0.98 (0.03) v 0.99 (0.03 v) 0.99 (0.03) v 0.97 (0.05) v 0.98 (0.05) v 6/0/0

234

NB 0.71 (0.15) 0.68 (0.12) * 0.64 (0.13) 0.66 (0.12) 0.64 (0.16) 0.67 (0.12) 0/5/1

NBM 0.74 (0.11) 0.76 (0.10) 0.71 (0.10) 0.73 (0.10) 0.72 (0.11) 0.74 (0.11)

Complement NB 0.71 (0.10) 0.74 (0.11) 0.73 (0.10) 0.74 (0.13) 0.74 (0.12) 0.76 (0.11) 0/6/0

NBMU 0.73 (0.13) 0.72 (0.12) 0.72 (0.11) 0.68 (0.15) 0.72 (0.13) 0.73 (0.11) 0/6/0

NBU 0.71 (0.15) 0.68 (0.12) * 0.64 (0.13) 0.66 (0.12) 0.64 (0.16) 0.67 (0.12) 0/5/1

Functions, significance relative to SMO
SMO 0.64 (0.12) 0.71 (0.12) 0.67 (0.15) 0.67 (0.14) 0.69 (0.14) 0.69 (0.15)

Simple Logistic 0.85 (0.09) v 0.85 (0.10) v 0.79 (0.12) 0.77 (0.12) v 0.68 (0.13) 0.73 (0.12) 3/3/0

RBF 0.37 (0.16) * 0.63 (0.14) 0.48 (0.14) * 0.59 (0.15) 0.68 (0.14) 0.73 (0.11) 0/4/2

Rules, significance relative to PART
JRip 0.86 (0.11) 0.89 (0.10) 0.73 (0.12) v 0.72 (0.13) 0.66 (0.15) 0.66 (0.13) 1/5/0

PART 0.82 (0.09) 0.85 (0.10) 0.60 (0.12) 0.64 (0.11) 0.56 (0.12) 0.58 (0.17)

Ridor 0.85 (0.09) 0.85 (0.09) 0.68 (0.11) 0.68 (0.18) 0.60 (0.15) 0.56 (0.17) 0/6/0

OneR 0.79 (0.15) 0.80 (0.14) 0.51 (0.17) 0.52 (0.17) 0.54 (0.20) 0.53 (0.18) 0/6/0

NNge 0.45 (0.16) * 0.48 (0.19) * 0.46 (0.20) 0.45 (0.20) * 0.52 (0.20) 0.55 (0.16) 0/3/3

Decision Table 0.49 (0.16) * 0.51 (0.15) * 0.47 (0.15) 0.46 (0.15) * 0.45 (0.13) * 0.44 (0.15) 0/2/4

Trees, significance relative to J48
J48 0.87 (0.09) 0.88 (0.08) 0.69 (0.11) 0.69 (0.16) 0.57 (0.14) 0.57 (0.13)

Random Forest 0.62 (0.16) * 0.62 (0.12) * 0.60 (0.13) 0.60 (0.13) 0.60 (0.15) 0.62 (0.16) 0/4/2

RepTree 0.87 (0.09) 0.86 (0.10) 0.64 (0.11) 0.68 (0.11) 0.52 (0.15) 0.51 (0.16) 0/6/0

BF Tree 0.89 (0.07) 0.88 (0.08) 0.68 (0.12) 0.70 (0.11) 0.52 (0.17) 0.51 (0.13) 0/6/0

FT 0.78 (0.11) 0.81 (0.12) 0.71 (0.14) 0.73 (0.12) 0.67 (0.12) 0.67 (0.12) 0/6/0

LAD Tree 0.84 (0.10) 0.84 (0.10) 0.57 (0.16) 0.60 (0.13) 0.54 (0.15) 0.52 (0.15) 0/6/0

Random Tree 0.35 (0.17) * 0.34 (0.19) * 0.33 (0.15) * 0.30 (0.18) * 0.38 (0.14) * 0.37 (0.14) * 0/0/6

Simple Cart 0.86 (0.08) 0.85 (0.10) 0.70 (0.10) 0.68 (0.10) 0.56 (0.18) 0.53 (0.15) 0/6/0

Miscillanueousm significance relative to VFI
VFI 0.36 (0.18) 0.59 (0.14) 0.36 (0.17) 0.53 (0.15) 0.59 (0.18) 0.54 (0.17)

Hyper Pipes 0.46 (0.19) 0.56 (0.19) 0.57 (0.18) v 0.64 (0.19) 0.65 (0.19) 0.74 (0.15) v 2/4/0

Meta, significance relative to AdaBoost.M1
AdaBoost.M1 0.90 (0.07) 0.92 (0.07) 0.79 (0.10) 0.81 (0.12) 0.72 (0.13) 0.70 (0.14)

Attr Sel Classifier 0.84 (0.09) 0.86 (0.10) 0.66 (0.14) * 0.67 (0.15) * 0.50 (0.16) * 0.52 (0.14) * 0/2/4

Bagging 0.91 (0.06) 0.91 (0.07) 0.75 (0.09) 0.75 (0.10) 0.68 (0.12) 0.68 (0.17) 0/6/0

CVR 0.90 (0.09) 0.88 (0.08) 0.76 (0.12) 0.76 (0.11 0.64 (0.16) 0.61 (0.13) 0/6/0

Dagging 0.44 (0.24) * 0.58 (0.16) * 0.56 (0.17) * 0.62 (0.17) * 0.58 (0.17) * 0.56 (0.18) 0/1/5

END 0.92 (0.08) 0.92 (0.06) 0.83 (0.09) 0.84 (0.10) 0.73 (0.14) 0.73 (0.14) 0/6/0

Filtered Classifier 0.83 (0.09) * 0.82 (0.08) * 0.75 (0.13) 0.76 (0.13) 0.76 (0.11) 0.74 (0.16) 0/4/2

Logit Boost 0.94 (0.05) 0.94 (0.06) 0.82 (0.12) 0.81 (0.11) 0.70 (0.12) 0.70 (0.15) 0/6/0

CBND 0.73 (0.16) * 0.72 (0.16) * 0.62 (0.16) * 0.58 (0.14) * 0.45 (0.19) * 0.50 (0.16) * 0/0/6

DNBND 0.73 (0.15) * 0.74 (0.17) * 0.62 (0.17) * 0.58 (0.13) * 0.47 (0.18) * 0.50 (0.15) * 0/0/6

ND 0.69 (0.14) * 0.71 (0.17) * 0.65 (0.15) * 0.58 (0.18) * 0.51 (0.16) * 0.51 (0.16) * 0/0/6

Ordinal Class

Classifier

0.72 (0.14) * 0.71 (0.12) * 0.56 (0.19) * 0.51 (0.19) * 0.50 (0.19) * 0.53 (0.18) * 0/0/6

Random

Committee

0.64 (0.15) * 0.62 (0.13) * 0.57 (0.15) * 0.58 (0.16) * 0.65 (0.12) 0.66 (0.13) 0/2/4

RSS 0.93 (0.05) 0.93 (0.06) 0.83 (0.09) 0.85 (0.08) 0.69 (0.16) 0.69 (0.15) 0/6/0

Rotation Forest 0.91 (0.06) 0.90 (0.08) 0.73 (0.11) 0.78 (0.11) 0.69 (0.13) 0.70 (0.15) 0/6/0

Numbers in brackets are for standard deviation, win/tie/loose is abbr. by v/ /*

Significance tests to compare results of some classifiers on Roots and RRP

representations
For 1000 features:
Tester: weka.experiment.PairedCorrectedTTester

Analysing: F_measure

Datasets: 7

Resultsets: 2

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 20/06/12 04:17 م
base test: roots
Dataset (1) 'root2-classe | (2) 'RootsAndR

--
rules.PART '-M 2 -C 0.25 (50) 0.83(0.10) | 0.84(0.11)

rules.JRip '-F 3 -N 2.0 - (50) 0.87(0.09) | 0.85(0.11)

trees.J48 '-C 0.25 -M 2' (50) 0.86(0.08) | 0.87(0.09)

trees.REPTree '-M 2 -V 0. (50) 0.87(0.09) | 0.86(0.10)

functions.SMO '-C 1.0 -L (50) 0.68(0.13) | 0.68(0.11)

bayes.NaiveBayesMultinomi (50) 0.78(0.11) | 0.78(0.11)

bayes.BayesNet '-D -Q wek (50) 0.99(0.03) | 0.98(0.03)

--
 (v/ /*) | (0/7/0)

Key:

(1) 'root2-classes - 804 - 11063-supervised.attribute.AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-

unsupervised.attribute.Remove-R10001-11063-unsupervised.attribute.Remove-R1001-10000'

(2) 'RootsAndRootPhrases-supervised.attribute.AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-

unsupervised.attribute.Remove-R40001-50091-unsupervised.attribute.Remove-R5001-40000-unsupervised.attribute.Remove-R1001-5000'

Significance tests to compare results of few classifiers on Stems and SSP

representations

235

For 1000 features:
Tester: weka.experiment.PairedCorrectedTTester

Analysing: F_measure

Datasets: 7

Resultsets: 2

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 20/06/12 03:57 م

Base test: Stems

Dataset (1) 'Stems-superv | (2) 'StemsAndS

--

bayes.BayesNet '-D -Q wek (50) 0.99(0.03) | 0.99(0.03)

bayes.NaiveBayesMultinomi (50) 0.72(0.11) | 0.72(0.10)

functions.SMO '-C 1.0 -L (50) 0.64(0.12) | 0.64(0.11)

rules.JRip '-F 3 -N 2.0 - (50) 0.73(0.14) | 0.74(0.13)

rules.PART '-M 2 -C 0.25 (50) 0.68(0.13) | 0.70(0.12)

trees.J48 '-C 0.25 -M 2' (50) 0.70(0.13) | 0.69(0.11)

trees.REPTree '-M 2 -V 0. (50) 0.64(0.11) | 0.67(0.10)

--

 (v/ /*) | (0/7/0)

Key:

(1) 'Stems-supervised.attribute.AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-

unsupervised.attribute.Remove-R10001-14945,14947-18019-unsupervised.attribute.Remove-R10001-unsupervised.attribute.Remove-R1001-

10000'

(2) 'StemsAndStemPhrases-supervised.attribute.AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-

unsupervised.attribute.Remove-R40001-40016,42600-43255-unsupervised.attribute.Remove-R40001-42583-unsupervised.attribute.Remove-

R5001-40000-unsupervised.attribute.Remove-R1001-5000'

Significance Testing among Best Performing Classifiers for 1000 features

relative to LMT then BN classifiers

Significance Testing-1000-best classifiers from different types (rel to LMT):
Tester: weka.experiment.PairedCorrectedTTester

Analysing: F_measure

Datasets: 6

Resultsets: 17

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 28/04/13 03:14 م

Dataset (8) trees.LMT '-I | (1) bayes.Baye (2) bayes.Naiv (3) functions. (4) functions. (5) rules.JRip (6) rules.Rido (7) rules.PART (9)

trees.J48 (10) trees.FT (11) trees.BFT (12) trees.REP (13) meta.AdaB (14) meta.Logi (15) meta.END (16) meta.Rand (17) meta.Filt

'root2-classes - 804 - 11 (50) 0.83(0.10) | 0.99(0.03) v 0.78(0.11) 0.83(0.09) 0.68(0.13) * 0.87(0.09) 0.86(0.08) 0.83(0.10)

0.86(0.08) 0.81(0.10) 0.88(0.07) 0.87(0.09) 0.92(0.07) v 0.94(0.06) v 0.92(0.07) v 0.93(0.07) v 0.83(0.09)

'RootsAndRootPhrases-weka (50) 0.83(0.10) | 0.98(0.03) v 0.78(0.11) 0.83(0.11) 0.68(0.11) * 0.85(0.11) 0.85(0.09) 0.84(0.11)

0.87(0.09) 0.81(0.08) 0.88(0.08) 0.86(0.10) 0.93(0.05) v 0.95(0.05) v 0.92(0.06) v 0.93(0.07) v 0.84(0.08)

'Stems-weka.filters.super (50) 0.79(0.13) | 0.99(0.03) v 0.72(0.11) 0.79(0.13) 0.64(0.12) * 0.73(0.14) 0.69(0.11) 0.68(0.13)

0.70(0.13) 0.73(0.13) 0.69(0.09) 0.64(0.11) * 0.84(0.09) 0.80(0.12) 0.85(0.08) 0.83(0.08) 0.81(0.10)

'StemsAndStemPhrases-weka (50) 0.78(0.11) | 0.99(0.03) v 0.72(0.10) 0.78(0.11) 0.64(0.11) * 0.74(0.13) 0.69(0.13) 0.70(0.12)

0.69(0.11) 0.72(0.11) 0.68(0.12) 0.67(0.10) 0.82(0.11) 0.80(0.10) 0.85(0.09) 0.85(0.09) 0.81(0.11)

'Words-weka.filters.super (50) 0.64(0.15) | 0.96(0.06) v 0.67(0.11) 0.63(0.15) 0.59(0.16) 0.69(0.16) 0.58(0.15) 0.49(0.17) *

0.47(0.16) * 0.64(0.16) 0.55(0.15) 0.52(0.18) 0.71(0.12) 0.69(0.12) 0.70(0.16) 0.72(0.14) 0.80(0.12) v

'WordsAndPhrases-weka.fil (50) 0.65(0.14) | 0.96(0.06) v 0.68(0.12) 0.63(0.14) 0.56(0.15) 0.67(0.16) 0.57(0.14) 0.50(0.14) *

0.46(0.16) * 0.64(0.13) 0.52(0.15) 0.53(0.16) 0.74(0.11) 0.72(0.12) 0.74(0.12) 0.71(0.14) 0.80(0.13) v

 (v/ /*) | (6/0/0) (0/6/0) (0/6/0) (0/2/4) (0/6/0) (0/6/0) (0/4/2) (0/4/2) (0/6/0)

(0/6/0) (0/5/1) (2/4/0) (2/4/0) (2/4/0) (2/4/0) (2/4/0)

Key:

(1) bayes.BayesNet '-D -Q bayes.net.search.local.K2 -- -P 1 -S BAYES -E bayes.net.estimate.SimpleEstimator -- -A 0.5' 746037443258775954

(2) bayes.NaiveBayesMultinomial '' 5932177440181257085

(3) functions.SimpleLogistic '-I 0 -M 500 -H 50 -W 0.0' 7397710626304705059

(4) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"functions.supportVector.PolyKernel -C 250007 -E 1.0\"' -

6585883636378691736

(5) rules.JRip '-F 3 -N 2.0 -O 2 -S 1' -6589312996832147161

(6) rules.Ridor '-F 3 -S 1 -N 2.0' -7261533075088314436

(7) rules.PART '-M 2 -C 0.25 -Q 1' 8121455039782598361

(8) trees.LMT '-I -1 -M 15 -W 0.0' -1113212459618104943

(9) trees.J48 '-C 0.25 -M 2' -217733168393644444

(10) trees.FT '-I 15 -F 0 -M 15 -W 0.0' -1113212459618105000

(11) trees.BFTree '-S 1 -M 2 -N 5 -C 1.0 -P POSTPRUNED' -7035607375962528217

(12) trees.REPTree '-M 2 -V 0.0010 -N 3 -S 1 -L -1' -9216785998198681299

(13) meta.AdaBoostM1 '-P 100 -S 1 -I 10 -W trees.J48 -- -C 0.25 -M 2' -7378107808933117974

(14) meta.LogitBoost '-P 100 -F 0 -R 1 -L -1.7976931348623157E308 -H 1.0 -S 1 -I 10 -W trees.DecisionStump' -3905660358715833753

(15) meta.END '-S 1 -I 10 -W meta.nestedDichotomies.ND -- -S 1 -W trees.J48 -- -C 0.25 -M 2' -4143242362912214956

(16) meta.RandomSubSpace '-P 0.5 -S 1 -I 10 -W trees.REPTree -- -M 2 -V 0.0010 -N 3 -S 1 -L -1' 1278172513912424947

(17) meta.FilteredClassifier '-F \"supervised.attribute.Discretize -R first-last\" -W trees.J48 -- -C 0.25 -M 2' -4523450618538717400

Significance Testing-1000-best classifiers from different types (rel to BN):
Tester: weka.experiment.PairedCorrectedTTester

Analysing: F_measure

Datasets: 6

Resultsets: 17

236

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 28/04/13 03:15 م

Dataset (1) bayes.BayesNe | (2) bayes.Naiv (3) functions. (4) functions. (5) rules.JRip (6) rules.Rido (7) rules.PART (8) trees.LMT

(9) trees.J48 (10) trees.FT (11) trees.BFT (12) trees.REP (13) meta.AdaB (14) meta.Logi (15) meta.END (16) meta.Rand (17) meta.Filt

'root2-classes - 804 - 11 (50) 0.99(0.03) | 0.78(0.11) * 0.83(0.09) * 0.68(0.13) * 0.87(0.09) * 0.86(0.08) * 0.83(0.10) * 0.83(0.10) *

0.86(0.08) * 0.81(0.10) * 0.88(0.07) * 0.87(0.09) * 0.92(0.07) * 0.94(0.06) 0.92(0.07) * 0.93(0.07) 0.83(0.09) *

'RootsAndRootPhrases-weka (50) 0.98(0.03) | 0.78(0.11) * 0.83(0.11) * 0.68(0.11) * 0.85(0.11) * 0.85(0.09) * 0.84(0.11) * 0.83(0.10)

* 0.87(0.09) * 0.81(0.08) * 0.88(0.08) * 0.86(0.10) * 0.93(0.05) * 0.95(0.05) 0.92(0.06) * 0.93(0.07) * 0.84(0.08) *

'Stems-weka.filters.super (50) 0.99(0.03) | 0.72(0.11) * 0.79(0.13) * 0.64(0.12) * 0.73(0.14) * 0.69(0.11) * 0.68(0.13) * 0.79(0.13) *

0.70(0.13) * 0.73(0.13) * 0.69(0.09) * 0.64(0.11) * 0.84(0.09) * 0.80(0.12) * 0.85(0.08) * 0.83(0.08) * 0.81(0.10) *

'StemsAndStemPhrases-weka (50) 0.99(0.03) | 0.72(0.10) * 0.78(0.11) * 0.64(0.11) * 0.74(0.13) * 0.69(0.13) * 0.70(0.12) * 0.78(0.11)

* 0.69(0.11) * 0.72(0.11) * 0.68(0.12) * 0.67(0.10) * 0.82(0.11) * 0.80(0.10) * 0.85(0.09) * 0.85(0.09) * 0.81(0.11) *

'Words-weka.filters.super (50) 0.96(0.06) | 0.67(0.11) * 0.63(0.15) * 0.59(0.16) * 0.69(0.16) * 0.58(0.15) * 0.49(0.17) * 0.64(0.15) *

0.47(0.16) * 0.64(0.16) * 0.55(0.15) * 0.52(0.18) * 0.71(0.12) * 0.69(0.12) * 0.70(0.16) * 0.72(0.14) * 0.80(0.12) *

'WordsAndPhrases-weka.fil (50) 0.96(0.06) | 0.68(0.12) * 0.63(0.14) * 0.56(0.15) * 0.67(0.16) * 0.57(0.14) * 0.50(0.14) * 0.65(0.14) *

0.46(0.16) * 0.64(0.13) * 0.52(0.15) * 0.53(0.16) * 0.74(0.11) * 0.72(0.12) * 0.74(0.12) * 0.71(0.14) * 0.80(0.13) *

 (v/ /*) | (0/0/6) (0/0/6) (0/0/6) (0/0/6) (0/0/6) (0/0/6) (0/0/6) (0/0/6) (0/0/6)

(0/0/6) (0/0/6) (0/0/6) (0/2/4) (0/0/6) (0/1/5) (0/0/6)

Key:

(1) bayes.BayesNet '-D -Q bayes.net.search.local.K2 -- -P 1 -S BAYES -E bayes.net.estimate.SimpleEstimator -- -A 0.5' 746037443258775954

(2) bayes.NaiveBayesMultinomial '' 5932177440181257085

(3) functions.SimpleLogistic '-I 0 -M 500 -H 50 -W 0.0' 7397710626304705059

(4) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"functions.supportVector.PolyKernel -C 250007 -E 1.0\"' -

6585883636378691736

(5) rules.JRip '-F 3 -N 2.0 -O 2 -S 1' -6589312996832147161

(6) rules.Ridor '-F 3 -S 1 -N 2.0' -7261533075088314436

(7) rules.PART '-M 2 -C 0.25 -Q 1' 8121455039782598361

(8) trees.LMT '-I -1 -M 15 -W 0.0' -1113212459618104943

(9) trees.J48 '-C 0.25 -M 2' -217733168393644444

(10) trees.FT '-I 15 -F 0 -M 15 -W 0.0' -1113212459618105000

(11) trees.BFTree '-S 1 -M 2 -N 5 -C 1.0 -P POSTPRUNED' -7035607375962528217

(12) trees.REPTree '-M 2 -V 0.0010 -N 3 -S 1 -L -1' -9216785998198681299

(13) meta.AdaBoostM1 '-P 100 -S 1 -I 10 -W trees.J48 -- -C 0.25 -M 2' -7378107808933117974

(14) meta.LogitBoost '-P 100 -F 0 -R 1 -L -1.7976931348623157E308 -H 1.0 -S 1 -I 10 -W trees.DecisionStump' -3905660358715833753

(15) meta.END '-S 1 -I 10 -W meta.nestedDichotomies.ND -- -S 1 -W trees.J48 -- -C 0.25 -M 2' -4143242362912214956

(16) meta.RandomSubSpace '-P 0.5 -S 1 -I 10 -W trees.REPTree -- -M 2 -V 0.0010 -N 3 -S 1 -L -1' 1278172513912424947

(17) meta.FilteredClassifier '-F \"supervised.attribute.Discretize -R first-last\" -W trees.J48 -- -C 0.25 -M 2' -4523450618538717400

	cover_sheet_thesis
	University of Bradford eThesis

	MYA AL-Nashashibi-PhD Thesis-Final Submision

