@4 UNIVERSITY of

0% BRADFORD Library

University of Bradford eThesis

This thesis is hosted in Bradford Scholars — The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons
Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

ARABIC LANGUAGE PROCESSING FOR TEXT

CLASSIFICATION

Contributions to Arabic Root Extraction Techniques,
Building An Arabic Corpus, and to Arabic Text Classification

Techniques

by
May Yacoub Adib AL-NASHASHIBI

Thesis submitted for the degree of

Doctor of Philosophy in Computer Science

School of Computing, Informatics and Media

University of Bradford

2012

Abstract

Keywords: Arabic language, Root extraction techniques, Corpus development, Text
labeling, Term weighting methods, Document representation, Single-label text
classification.

The impact and dynamics of Internet-based resources for Arabic-speaking users is increasing
in significance, depth and breadth at highest pace than ever, and thus requires updated
mechanisms for computational processing of Arabic texts. Arabic is a complex language and
as such requires in depth investigation for analysis and improvement of available automatic
processing techniques such as root extraction methods or text classification techniques, and
for developing text collections that are already labeled, whether with single or multiple
labels.

This thesis proposes new ideas and methods to improve available automatic processing
techniques for Arabic texts. Any automatic processing technique would require data in order
to be used and critically reviewed and assessed, and here an attempt to develop a labeled
Arabic corpus is also proposed. This thesis is composed of three parts: 1- Arabic corpus
development, 2- proposing, improving and implementing root extraction techniques, and 3-
proposing and investigating the effect of different pre-processing methods on single-labeled
text classification methods for Arabic.

This thesis first develops an Arabic corpus that is prepared to be used here for testing root
extraction methods as well as single-label text classification techniques. It also enhances a
rule-based root extraction method by handling irregular cases (that appear in about 34% of
texts). It proposes and implements two expanded algorithms as well as an adjustment for a
weight-based method. It also includes the algorithm that handles irregular cases to all and
compares the performances of these proposed methods with original ones. This thesis thus
develops a root extraction system that handles foreign Arabized words by constructing a list
of about 7,000 foreign words. The outcome of the technique with best accuracy results in

extracting the correct stem and root for respective words in texts, which is an enhanced rule-

based method, is used in the third part of this thesis. This thesis finally proposes and
implements a variant term frequency inverse document frequency weighting method, and
investigates the effect of using different choices of features in document representation on
single-label text classification performance (words, stems or roots as well as including to
these choices their respective phrases). This thesis applies forty seven classifiers on all
proposed representations and compares their performances. One challenge for researchers in
Arabic text processing is that reported root extraction techniques in literature are either not
accessible or require a long time to be reproduced while labeled benchmark Arabic text
corpus is not fully available online. Also, by now few machine learning techniques were
investigated on Arabic where usual preprocessing steps before classification were chosen.
Such challenges are addressed in this thesis by developing a new labeled Arabic text corpus
for extended applications of computational techniques.

Results of investigated issues here show that proposing and implementing an algorithm that
handles irregular words in Arabic did improve the performance of all implemented root
extraction techniques. The performance of the algorithm that handles such irregular cases is
evaluated in terms of accuracy improvement and execution time. Its efficiency is
investigated with different document lengths and empirically is found to be linear in time for
document lengths less than about 8,000. The rule-based technique is improved the highest
among implemented root extraction methods when including the irregular cases handling
algorithm. This thesis validates that choosing roots or stems instead of words in documents
representations indeed improves single-label classification performance significantly for
most used classifiers. However, the effect of extending such representations with their
respective phrases on single-label text classification performance shows that it has no
significant improvement. Many classifiers were not yet tested for Arabic such as the ripple-
down rule classifier. The outcome of comparing the classifiers' performances concludes that
the Bayesian network classifier performance is significantly the best in terms of accuracy,
training time, and root mean square error values for all proposed and implemented

representations.

Dedicated to my Mother and the beloved memory of my

Father

Mother, your dedication, unconditional love and the ethics that
you patiently empedded in me while growing up fiave
motivated me to arrive where 7 am.

Jather, although you passed away, yet your [free spirtt, dignity,
decency, integrity, and diligence to provide us with better
opportunities than you fiad shall always inspire me to be my

pest.

Acknowledgements

I would like first to thank the School of Computing, Informatics and Media
especially the Department of Computing at the University of Bradford for the high
standard facilities provided for the students and the friendly atmosphere among the
faculty and research students. | would like to express my deepest appreciation to my
supervisor Prof. Daniel Neagu whose encouragement, support, advice, and fruitful
discussions have guided me throughout my study. Prof. Neagu’s support has made
me not just enthusiastically working to develop a solid background on the subject,
but also enjoying the process while doing so. | am grateful to Dr. Ali Yaghi for his
support and guidance in the first phase of my research. His deep understanding of the
Arabic language and experience has helped me a lot. | would like also to thank Petra
University, Amman (Jordan) for partially financing my PhD study. My deep
gratitude goes to the ex-vice president for academic affairs at Petra University Prof.
Nizar El-Rayyes for his support throughout my study. Special thanks go to my
colleagues, Basic Sciences Department at Petra University especially to the head of
department Dr. F. Badawi and also Mr. I. Suweid for their encouragements. | would
like to express my appreciation to my cousin Eng. Samia Al-Shahabi for her warm
welcome and hospitality throughout the period of my study in UK. I would like also
to thank all those who participated in the questionnaire | distributed for my research
especially my uncle Mr. Mazin Al-Shahabi. My thanks go to Miss Rona Wilson for
her cooperation when ever needed. | would like to thank all my friends especially
Reema, Basima, Yasmina, Asmaa, and Ghadeer for their support and
encouragement. Special thanks go to my friend Fatima for her help in printing the
foreign Arabized words list. Finally my gratitude goes to my sister Rula and brothers

Adib and Mohammad for their unlimited support, encouragement and love.

List of Peer Reviewed Publications and Contributions

1- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction
technique for Arabic words" in proceedings of 2" International conference on
Computer Technology and Development ICCTD 2010, S. Mahmoud and Z.
Lian (Eds.), pp. 264-269, 2-4 November, Cairo, Egypt, 2010. IEEE Explore.

2- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "Stemming Techniques for Arabic
Words: A Comparative Study" in proceedings of 2" International conference
on Computer Technology and Development ICCTD 2010, S. Mahmoud and Z.
Lian (Eds.), pp. 270-276, 2-4 November, Cairo, Egypt, 2010. IEEE Explore.

3- M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction
technique for Arabic words" in Computational Linguistics in The Netherlands
CLIN 2010, Poster session, 4 February, Utrecht University, Utrecht, The
Netherland, 2010.

Vi

Table of Contents

Acknowledgements
List of Tables
List of Figures
List of Abbreviations
Chapter 1: Introduction
1.1 Introduction
1.2 Thesis Contributions
1.3 Motivation and Objectives
1.4 Research Questions
1.5 Research Approach Methodology
1.6 Thesis Organization
1.7 Summary
Chapter 2: Background and Related Work
2.1 Introduction
2.2 Arabic Corpora and Related Work
2.3 Stemming Techniques for Arabic
2.3.1 Rule-Based Techniques
2.3.2 Lexical-Based Techniques
2.3.3 Other Techniques
2.3.4 Comparison between Stemming Techniques
2.4 Text Classification Approaches Applied to Arabic Sources
2.4.1 Pre-Processing Steps for Text Classification
2.4.1.1 Document Representation
2.4.1.2 Dimensionality Reduction
2.4.1.2.1 Dimensionality Reduction by Stemming

2.4.1.2.2 Dimensionality Reduction by Term
Selection

2.4.1.2.3 Dimensionality Reduction by Term
Extraction

2.4.2 Applied Text Classification Techniques on Arabic Sources

Xi
Xiii

XVi

© o o1 B~ W = P

11
11
11
15
16
16
17
17
20
22
22
24
25
26

27

28

vii

2.4.2.1 Specific Machine Learning Techniques

2.4.2.2 Naive Bayes Classifier

2.4.2.3 Example-Based Classifiers (k-NN Classifier)

2.4.2.4 Support Vector Machine Classifier

2.4.2.5 Comparison between Classifiers' Performance
2.5 Summary

Chapter 3: The Development of an Arabic Text Corpus and Pre-
processing Steps

3.1 Introduction

3.2 Description of Newly Gathered Text collection
3.2.1 Newly Gathered Text Collection

3.3 Description of University of Leeds Arabic Contemporary Corpus
3.3.1 Original Categorization of LACC

3.3.2 Re-Categorization of LACC and Final Corpus
Categorization

3.4 Pre-processing Steps
3.4.1 Arabic Function Word List Construction
3.4.2 Arabic Text Pre-processing

3.5 Conclusions

Chapter 4: The Development of an Arabic Root Extraction System

4.1 Introduction

4.2 Rule-based Approach:
4.2.1 Description
4.2.2 Enhanced Rule-based Technique
4.2.3 Results of implementation

4.3 Weight-Based Approach
4.3.1 Description of Al-Shalabi Algorithm
4.3.2 Adjustment of Al-Shalabi Algorithm
4.3.3 First Expanded Weight-Based Method
4.3.4 Second Expanded Weight-Based Method
4.3.5 Results of Implementation

4.4 Analysis of Results

29
30

31
32
33
36

47
47
48
48

50
52
54
55
58
60
61
63
65
67
69
71

viii

4.4.1 First Accuracy Analysis Method
4.4.2 Native Arabic Speaker Accuracy Analysis
4.5 Foreign Arabized Words List
4.6 Final Proposed Root Extraction System
4.7 Conclusions and Future Work
Chapter 5: Arabic Single-Label Text Classification Methods
5.1 Introduction
5.2 Pre-processing Steps
5.2.1 The Proposed Modified TFIDF Term Weighting Method
5.2.2 Document Representation
5.2.2.1 Features Implemented Using Single Terms

5.2.2.2 Extending VSM Feature Representation Using
Phrases

5.2.3 Implemented Feature Subset Selection Method
5.2.3.1 Chi-square method
5.3 Applied Text Classification Methods
5.3.1 Single-Label Classification Methods
5.3.1.1 Implemented Classifiers
5.4 Results of Implementations

5.4.1 Results of Implemented Single-Label Text Classification
Methods

5.4.1.1 First Experiment
5.4.1.2 Second Experiment
5.5 Conclusions

Chapter 6: Critical Analysis of Text Classification Methods’
Performances

6.1 Introduction
6.2 Effect of Using Phrases on Classification Performance
6.3 Comparison between Classifiers

6.3.1 Function Classifiers

6.3.2 Bayes-Based Classifiers

6.3.3 Tree Classifiers

71
80
89
90
91
96
96
97

98
98
99

101
101
102
102
103
105
106

106
134
138
140

140
140
142
143
144
147

6.3.4 Rule Classifiers
6.3.5 Miscellaneous Classifiers
6.3.6 Meta Classifiers
6.3.7 Comparison between Classifiers
6.4 Conclusions and Future Work
Chapter 7: Conclusions and Recommendations
7.1 Research Contributions
7.2 Research Limitations
7.3 Recommendations for Further Work
References
Appendices
Appendix I: Relevant Detailed Background Information, Equations,
And Comparisons in Literature Review, and Relevant Tables for
Developed Corpus

Appendix Il: Additional Detailed Information, Tables and Figures
for Chapter 4

Appendix I11: Additional Detailed Information, Tables and Figures
for Implemented Root Extraction Techniques in Chapter 4

Appendix IV: Additional Detailed Information, Tables and Figures
for Chapter 5

152
158
159
163
166
169
169
174
174
177
190
190

202

211

215

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

Table 15:

Table 16:

Table 17:

Table 18:

Table 19:

Table 20:

Table 21:

List of Tables

Number of Texts and Words in AT8 collection

Source Websites and their Number of Texts in AT8 collection
Number of Texts and Words in LACC Corpus

Source Websites and their Number of Texts in the LACC Corpus

Percentage of Texts and Words in LACC Corpus under major
domains

Number of Texts and Words in LACC Corpus after Re-
categorization

Comparison between LACC and ATS8 collections in terms of
number of files according to AT8 categorization scheme

Comparison between LACC and ATS8 collections in terms of
number of Words according to AT8 categorization scheme

Comparison between LACC and ATS8 collections in terms of
number of files and Words according to LACC categorization
scheme

Final Corpus' number of files and generality among classes

Some examples of Function Word list

Performance of Rule-Based algorithm and its Correction one in all
categories using AT8 collection

Letter ranking in Al-Shalabi algorithm (derived from [17])

Weights of letter groups in Al-Shalabi algorithm (derived from
[171)

Examples of extracted roots using Al-Shalabi algorithm (from right
to left)

Percentages of Letter Appearances in Texts

Weights of Letter groups for EWBML1 algorithm
Weights of Letter groups for EWBMZ2 algorithm
Proposed weighting for Assigned Groups in algorithms

Performance of weight-based algorithms in all categories using
ATS collection

Performance of weight-based with Correction algorithm in all
categories using AT8 collection

38
39
40
41

42

43

43

44

44

46

48

58

62

62

62

65
66
68
69

70

70

Xi

Table 22:

Table 23:

Table 24:

Table 25:

Table 26:

Table 27:

Table 28:

Table 29:

Table 30:

Table 31:

Table 32:

Table 33:

Table 34:

Accuracy results for all ten algorithms (all categories) using AT8
collection

Accuracy results for Rule-Based algorithm and Adjusted Al-
Shalabi algorithm along with their Enhanced algorithms (all
categories) using AT8 collection

Variance values among categories for Rule-Based and Adjusted Al-
Shalabi algorithms along with their Enhanced algorithms using
ATS8 collection

Accuracy results for Rule-Based algorithm and Adjusted Al-
Shalabi algorithm along with their Enhanced algorithms (all
categories) using LACC Corpus

Native Arabic speaker analysis of algorithm' accuracy (all
categories) using AT8 collection

Examples of foreign Arabized words list

Number of different original implemented terms available in
feature lists processed from Corpus

A paragraph taken from Addustour newspaper: (a) original
paragraph (55 words), (b) paragraph (40 words, 19 three-word
phrases) after removal of function words, punctuation marks,
short vowels and/or numerals, (c) paragraph after words are put
into two-word phrases (60 phrases) (here phrases are put between
double quotes for illustration)

Number of different proposed terms available in feature lists
processed from Corpus

Maximum F1M values at specific features number for
implemented VSM representations along each classifier.

F1™ Improvement/Degradation by comparing implemented VSM
representations performances at feature numbers presented in
Table 31 for each classifier.

Performance of implemented classifiers along different
representations by selecting best 1000 features.

Performance of best two classifiers among types for different
representations by selecting best 1000 features.

72

74

7

7

82

90

99

100

100

132

133

135

137

Xii

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

List of Figures

The structure of the thesis and steps followed in the research
method

The structure of Chapter 2

Distribution of texts in AT8 along to (a) three major sources,
(b) region

Distribution of texts in LACC along (a) three major sources, (b)
region

Percentage in final Corpus according to LACC categorization
scheme for (a) words, (b) files

Percentage in final Corpus according to AT8 collection
categorization scheme for (a) words, (b) files

Distribution of texts in final Corpus along (a) three major
sources, (b) region

Pre-processing step before Arabic TC
A brief illustration of implemented root extraction techniques
Flowchart of Correction Algorithm

Performance of Rule-Based and Enhanced Rule-Based
algorithms

Comparison between accuracy results of all weight-based
algorithms in all categories with the ones incorporating the
Correction algorithm using AT8 collection

Comparison between average accuracy results of all weight-
based algorithms with the ones incorporating the Correction
algorithm using AT8 collection

Comparison between accuracy results of all algorithms in all
categories with the ones incorporating the Correction one using
ATS8 collection

Comparison between average accuracy results of all algorithms
with the ones incorporating the Correction one using AT8
collection

Comparison between accuracy results for Rule-Based algorithm
and Adjusted Al-Shalabi algorithm along with their Enhanced
algorithms (all categories) using AT8 collection

Variance values for all algorithms among all categories (points
were connected here by smooth curves for illustration purposes

only)

10

12

38

42

45

45

46

49
53
59

59

70

70

73

73

74

75

Xiii

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Figure 22.

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:

Comparison between total variance results for the Rule-Based
and the Adjusted Al-Shalabi algorithms

Comparison among AT8 and LACC corpora: (a) for Adjusted
Al-Shalabi algorithm in all categories, (b) for Rule-based
algorithm in all categories, (c) between two algorithms with
their enhanced algorithms on average

Investigation of performance of both Adjusted Al-Shalabi and
Rule-Based algorithms and their Enhanced algorithms as
Length of texts increases with (a) change in their Execution
time, (b) the difference in Execution time for each algorithm,
(c) the Percentage of (difference in execution time by execution
time for each algorithm)

Percentages of unidentified Words, function Words, foreign
Arabized Words in texts in all categories (points were connected
here by smooth curves for illustration purposes only)

Average percentage for function Words, unidentified Words
and foreign Arabized Words

Native Arabic speaker analysis of algorithm's accuracy

Native Arabic speaker analysis of algorithm's accuracy after
excluding number of names, transliterations, function Words
and compounds from total number of Words in texts

Percentage of wrongly extracted weak Words by all algorithms

Percentage of wrongly extracted two-letter geminated Words by
all algorithms

Percentage of wrongly extracted four-letter Words

The Flowchart of the Final Proposed Arabic Root Extraction
System

Basic Steps for Arabic TC classification

Comparison between classifiers’ performance for Root VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

Comparison between classifiers' performance for Stem VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

Comparison between classifiers' performance for Word VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

Comparison between classifiers’ performance for RRP VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

76

78

79

82

82

83

84

86

87

88

94

96

109

112

114

117

Xiv

Figure 34:

Figure 35:

Figure 36:

Figure 37:

Figure 38:

Figure 39:

Figure 40:

Figure 41:

Comparison between classifiers' performance for SSP VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

Comparison between classifiers' performance for WP VSM
representation according to their type (a) rules, (b) trees, (c)
functions, (d) Bayes-based, (e) miscellaneous, (f) meta

Performance of different VSM representations as number of
selected features varied using classifier (a) BN, (b) NBM, (c)
Compl NB, (d) SMO, (e) Simple Logistic, (f) PART, (g) JRIP,
(h) Ridor, (i) Decision Table, (j) J48, (k) LMT, (I) FT, (m)
Simple Cart, (n) Random Forest, (0) Rep Tree, (p) Hyper Pipes,
(q) END, (r) Filtered Classifier, (s) Logit Boost, (t) Random
SubSpace, (u) AdaBoost.M1, (v) Rotation Forest, (w) Bagging,
(x) Classification Via Regression

Comparison between Bayes-based classifiers' performance for
all VSM representations according to (a) time, (b) RMSE

Comparison between tree classifiers' performance for all VSM
representations according to (a) tree sizes, (b) time, (c) RMSE

Comparison between rule classifiers' performance for all VSM
representations according to (a) rule numbers, (b) time, (c)
RMSE

Comparison between meta classifiers' performance for all VSM
representations according to (a) time, (b) RMSE

Comparison between best classifiers’ performance for all VSM
representations from different types according to (a) time, (b)
RMSE

119

122

131

147

151

157

163

165

XV

ANN
ARFF
BN
DF
DM
DR
EM
FSS
1B

IE

1G

IR
KDD
KDT
K-NN
LC
LD
LDC
LSl
MlI
ML
MSA
NB
NLP
OR
RBF
SMO
SOM
SVM
TC
TFIDF
™
VSM
WEKA

List of Abbreviations

Artificial Neural Network
Attribute Relation File Format
Bayesian Network

Document Frequency

Data Mining

Dimensionality Reduction
Expectation Maximization
Feature Subset Selection
Information Bottleneck
Information Extraction
Information Gain

Information Retrieval
Knowledge Discovery from Databases
Knowledge Discovery from Text
K Nearest Network

Label Cardinality

Label Density

Linguistic Data Consortium
Latent Semantic Indexing
Mutual Information

Machine Learning

Modern Standard Arabic

Naive Bayes

Natural Language Processing
Odds Ratio

Radial Basis Function
Sequential Minimal Optimization
Self Organizing Map

Support Vector Machine

Text Classification

Term Frequency Inverse Document Frequency
Text Mining

Vector Space Model

Waikato Environment for Knowledge Analysis

XVi

Chapter 1: Introduction

1.1 Introduction

The early 90's represented a turning point for research in automatic Text
Classification (TC) due to two factors [34]. The first was when the Internet became
free to be accessed by everybody, anywhere and anytime. The second was the vast
development of hardware capabilities as well as the increased number of required
special purpose systems. Furthermore, the continuously increasing number of
internet users whose mother-tongue is not necessarily English urged researchers to
investigate new methods or improve existing ones in order to process and organize
the immense volume of online data [147]. Usually such textual data were manually
labeled to specific categories by human experts [20], which is an expensive and time

consuming process.

Arabic language is among the top ten languages (7 place) used in the Web.
Also, for Arabic users an internet penetration® was found to be 17.5% and a growth
in internet usage was 2,297.7% between the years 2000 and 2009 (further statistics
and details of number of web sites, internet users in the Arab world are shown in
appendix 1)*3. Such statistics emphasize the importance of applying Text Mining
(TM) approaches especially TC to Arabic. However, Arabic language is a complex
language and as such requires in depth investigation in terms of applying or

improving available automatic processing techniques such as Natural Language

! From: Internet World Stats, url: http://www.internetworldstats.com/stats7.htm [1/6/2010]
2 From url: http://www.labnol.org/internet/blogging/he-total-number-of-websites-on-earth/2257/ [1/6/2010]
% From Royal Pingdom, url: http://royal.pingdom.com/2010/01/22/internet-2009-innumbers/ [1/6/2010]

http://www.internetworldstats.com/stats7.htm
http://www.labnol.org/internet/blogging/he-total-number-of-websites-on-earth/2257/
http://royal.pingdom.com/2010/01/22/internet-2009-innumbers/

Processing (NLP), and/or TC. Among NLP processes that require investigation for

Arabic are morphological analysis and Machine Learning (ML) methods for TC.

Much research has been conducted for the development, improvement of Arabic
light stemmers (i.e. outputs stems only) or morphological analyzers (i.e. outputs
roots) according to the level of analysis required. Such applications were
concentrated mostly for Information Retrieval (IR) whether by building stemmers
that handle inflectional or derivational morphology. Examples of commercial
morphological systems are Sakhr's*, Xerox's’, and MORPHO3's® morphological
analyzers. Reported Morphological analysis [28] systems for Arabic can be
categorized into either systems that were implemented by individuals so as to be
used partially in their academic research, or systems that were implemented by
commercial institutes or companies as part of the market's needs for Arabic
applications such as search engines. Since work in this thesis is within the first
category, emphasis here will be on displaying its respective techniques. These
techniques can be further subcategorized into: 1- Rule-based techniques as in [1],
[18]; 2- Lexical-based techniques as in [56], [88]; and 3- Others as in [30], [15],
[36], [124] and [17]. However, such techniques are not freely accessible on line for
other researchers to use and compare except for Khoja's [111] morphological

analyzer’ or Buckwalter's stemmer® [41].

Although [26] there are many available Arabic corpora, yet there is no online
bench mark large Arabic text corpus that is freely accessible for researchers to use

for testing root extraction methods as well as ML methods.

4 Sakhr's morphological processor can be found at: http://www.sakhr.com
® Xerox's morphological processor can be found at: http://www.xrce.xerox.com/Research-Development/Historical-
projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation

® Morpho3's morphological processor can be found at: http://www.rdi-eg.com/technologies/Morpho.aspx
" This analyzer was not accwssible to author at period of implementing root extraction techniques.
8 This stemmer's performance was lower than other reported extraction techniques [159] so not tested here.

http://www.sakhr.com/
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.rdi-eg.com/technologies/Morpho.aspx

There are many [92] ML methods that are used for classification or regression.
This thesis concentrates on classification methods only. Most of these methods are
not implemented so far for Arabic TC. This thesis's aim is to investigate and
compare the performance of many TC methods for Arabic and test the effect of using
different choices of features in document representation on TC performance by first

improving and comparing the results of two root extraction methods.
1.2 Thesis Contributions

This thesis focuses on exploring different preprocessing methods and investigating
their effect on TC performance. More specifically, this thesis focuses on
investigating and improving root extraction methods. Its first contribution is that it
improves two existing root extraction techniques, namely a rule-based method that
extracts triliteral and quadriliteral roots and a weight-based one that extracts only
triliteral roots. The improvements are performed through: 1- proposing and
implementing an algorithm that handles irregular cases, 2- collecting a list of foreign
Arabized words (aforementioned rule-based and weight-based root extraction
methods do not handle), 3- proposing and adding a simple method to handle
quadriliteral roots for the weight-based technique, and 4- investigating changing the
weight options for letters in the weight-based technique on its performance. The
importance of handling irregular and foreign Arabized cases comes from the fact that
irregular words consist of weak®, two-letter geminated, hamzated, and eliminated-
long-vowel words that are available in about 34% in texts'®, whereas foreign
Arabized words are available in about 11% in texts™. This thesis compares between
these techniques in terms of their accuracy and execution time by testing their

performances using a single-labeled Arabic corpus that is developed here.

® We use here Haywood and Nahmad 1998 terminology for describing Arabic irregular forms.
10 percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection as is described in Chapter 4.

3

The second contribution of this study is that it investigates the effect of using the
outputs of the best reported accuracy root extraction technique (i.e. normalized
words, stems, and roots) as well as including other feature choices (their respective
phrases) in document representation on single-labeled TC performance using also the
developed Arabic corpus.

This chapter presents an overview of the research problem as well as its rationale,

and the organization of this study. Also, it presents a brief outline of this thesis.
1.3 Motivation and Objectives

With the vast and expanding use of the internet especially in the Arab world and the
enormous number of websites/pages that are provided in Arabic, it has become a
necessity to have online tools/search engines that automatically
classify/retrieve/translate Arabic documents/web pages according to the needs of the
respective users (whether individuals or companies such as online newspapers and
journals). Generally, available search engines that provide such services for Arabic
are limited and although the literature provides much research work that specifically
concentrated on more effective morphological analysis methods and their effect on
IR efficiency yet more research work is required to investigate and improve the
accuracy of these methods and their effect on TC performance or effective
translation.

Despite the recent research studies that investigated the effect of using roots/stems as
alternatives of words in Vector Space Model (VSM) [155] for Arabic on TC
performance such as in [148] or [154], yet there is no consensus regarding which of
features root, stem or word should be used to provide best TC results. Also, the
effect of using other feature choices on TC performance for Arabic was not

investigated. Furthermore, there is neither available Arabic benchmark corpus nor an

online corpus that is freely accessible except the recently developed small Arabic
contemporary corpus by University of Leeds (about 420 text documents). Thus, in
literature, research works use different text collections (mostly collected on ad-hoc
basis and usually small in size) for TC which makes it difficult to compare the
results of such works to reach a conclusion.

Since this thesis's aim is to test the effect of using different choices of features in
document representation on TC performance for Arabic, then a need for developing
an Arabic corpus to be tested for both root extraction and TC methods, implementing
and improving root extraction techniques performances in order to obtain roots and
stems for respective words accurately. This is performed here by improving two root
extraction methods and taking the outputs of best performing method to be used for
feature choices. Furthermore, it proposes and implements a new variant of Term
Frequency Inverse Document Frequency (TFIDF) weighting method and uses it to
all investigated representations mentioned above in order to emphasize term
presence among categories. It also, implements various TC methods using
representations that use either words, stems, roots and/or their respective phrases and
compares their performances. This work identifies the appropriate text collections,

tools and procedures to satisfy the objectives mentioned above.
1.4 Research Questions
In order to satisfy the objectives stated in this thesis, the focus here is on the
following four research questions:

e Research Question (1)
What are the steps to develop an Arabic corpus from two different small collections
to be manually classified as single-labeled corpus among eight classes?

e Research Question (2)

What are the available root extraction methods to be implemented in this research?
What are their disadvantages and how to improve and compare their performance in
order to obtain the most correctly outputted stems and/or roots for respective words
using the developed Arabic corpus?

e Research Question (3)
How varying feature choices in Vector Space Model representation of corpus will
affect the performance of various text classification methods as well as proposing
and implementing a variant of TFIDF term weighting? If there is an improvement in
text classification performance, would it be statistically significant?

e Research Question (4)
Which classifiers applied to various representations of Arabic corpus have the best
performance? Are the results obtained for such classifiers in agreement with

previously reported studies?
1.5 Research Approach and Methodology

In order to achieve the objectives of this research, the current study and contributions
are constructed in the following three phases:
1- To address the first research question, two labeled Arabic text collections are
gathered and after investigating their characteristics, their labeling is unified in
order to have a comparatively large corpus. This lead to the development of a
single-labeled Arabic corpus: described in Chapter 3.
2- To address the second research question, two available root extraction
methods are implemented and their advantages and disadvantages as well as
performances are investigated. This lead to the improvement of these two root
extraction techniques, proposing and implementing an adjustment method as well

as two expanded methods for the second root extraction method, and the validation

of such improvements/investigations by implementing these techniques using the
developed Arabic corpus and finally the proposal to develop a root extraction
system that handles foreign Arabized words: described in Chapter 4.

3- To address the third and forth research questions, the author found that not
many choices of features in document representation have been investigated.
However, for some choices that are investigated, no report of significance testing is
present to conclusively affirm which has better effect on TC performance. This is
reached after studying what has been investigated in literature for Arabic TC in
terms of feature choices, term weighting methods, and tested classifiers. Thus, the
investigation of the effect of using various features in document representation
when using a proposed variant TFIDF term weighing method on single-labeled TC
performance is presnted in this thesis. Various classifiers of all types for Arabic are
tested and the comparison and critical analysis of their performances for Arabic TC

is presented: described in Chapters 5 and 6.

The first phase involves the following: 1- acquiring two text collections (the first one
is collected by the author from various online newspapers, magazines and personal
websites where she aimed to cover different geographical regions along classes
specified, and the second was downloaded from University of Leeds website [25]),
2- investigating their characteristics and unifying their labeling under eight general
domains.

The second phase consists in: 1- the development and improvement of two available
root extraction techniques by extending their algorithms to handle irregular words, 2-
proposing and implementing an adjustment method as well as two expanded
methods of the second root extraction method that handles specific cases of

quadriliteral roots. The validation of implemented algorithms was by using two

criteria: accuracy and execution time. After critically evaluating such algorithms a
final root extraction system is proposed that would handle foreign Arabized words.

The third phase involves applying the proposed variant of TFIDF method as well as
representing features of documents in the corpus by either normalized words, stems,
roots, or a hybrid of words and word phrases, stems and stem phrases, roots and root
phrases. Then, such representations' effect on single-labeled TC performance is
investigated using the WEKA tool [181]. This is performed by: 1- applying a feature
subset selection technique for such representations in order to see if varying the
number of best selected features would improve TC performance, 2- performing
significance testing to verify whether indeed improvement/degradation in TC
performance among representations is evident, 3- comparing between the
performance of forty seven classifiers applied on above representations is presented
whether between different classifiers of the same type or between classifiers among
different types. The tested classifiers are categorized in WEKA tool among eight
types: a) Nine Rule learners where six different classifiers are tested among this
category, b) Thirteen Tree learners where eleven different classifiers are tested
among this category, ¢) Eight Bayes-based learners where six different classifiers
are tested among this category, d) Seven Function learners where five different
classifiers are tested among this category,) Two Miscellaneous learners where two
classifiers are tested among this category, f) Twenty eight Meta learners where
seventeen different classifiers are tested among this category, h) Four Lazy learners,
and finally i) Four Multi-Instance (MI) learners. No classifiers are tested among
those last two categories since either the classifiers had poor performance or are not

applicable. Thus, only six types of classifiers are investigated here.

1.6 Thesis Organization

This thesis is composed of six chapters (excluding this one) as shown in Figure 1
where:

— Chapter 2: critically reviews literature from the two main disciplines of this
research: morphological analysis methods and text classification methods for
Arabic as well as a brief description of available Arabic corpora.

— Chapter 3: focuses on describing the two text collections, the texts'
respective different classes, their characteristics, and the methodology of
unifying their classes.

— Chapter 4: presents our contributions towards improving two different
approaches for extracting roots for inputted words. It also presents the
methods for evaluating these approaches' performance, and proposes a root
extraction system that incorporates the best features among such methods and
handles foreign Arabized words.

— Chapter 5: discusses the design of proposed text representations, proposes a
variant TFIDF term weighing and implements these proposals for single-
labeled text classification Also, forty seven classifiers performances are
presented, compared, and tested for significance on implemented
representations.

— Chapter 6: critically evaluates and compares the performance of used
classifiers on implemented document representations.

— Chapter 7: presents the major conclusions of the research as well as any
research contributions. Then, the limitations of this research are discussed

along with recommended future work.

1.7 Summary

This chapter presents the overall scope of this research by providing background
information, introducing it and research aims. It then introduces the research
approach and methodology and finally it outlines the thesis structure. In the next

chapter a detailed literature review is presented.

BACKGROUND AND RELATED WORK))
Collected single-labeled Arabic
(Chapter 2) corpus:
* Arabic Morphological Analysis Methods; * Text Classification Methods 1- Description, 2- Unification of
applied to Arabic classes for Two Arabic text
\ collections
A 4
~ Pre-processing Steps:
1- Arab!c function word Ii_st
THE DEVELOPMENT OF AN ARABIC TEXT CORPUS j| & A epreprosesing
AND PRE-PROCESSING STEPS __
(Chapter 3) iule—gzzgg;;cnhnlqg_e " Contribution
* Developed Single-labeled Arabic Corpus; * Pre-processing Steps through improviﬁg this technique by
handling irregular cases and foreign

T words.

7 Weight-based Technique:

1- Description, 2- Adjustment of
THE DEVELOPMENT OF AN ARABIC ROOT K’

technique, 3- Proposed two variants, 4-
EXTRACTION SYSTEM Improving these methods by handling
(Chapter 4) words.

irregular cases 5- Handling foreign
* Rule-based Technique; * Weight-based Technique; * Evaluation and

Analysis of Techniques, * Propose Root Extraction System Sullieiten — and AelEE el

Techniques:
| 1- Evaluation through: a) Accuracy, b)
- Execution Time, 2- Analysis and

v discussion.
\
ARABIC SINGLE-LABEL TEXT CLASSICIFICATION || Pre-processing steps:
METHODS 1- Document representation, 2-
Proposing a variant TFIDF., 3.
(Chapte_r 5) < Including phrases into features and
* Pre-processing steps; VSM representations.
* Text Classification methods
TC methods:
| _ Applying 47 classifiers on six
* representaions and comparing

their results.

CRITICAL ANALYSIS OF CLASSIFICATION METHODS!

PERFORMANCES
(Chapter 6)
* Effect of using phrases on Text classification performance; * Comparison
between classifiers

v

CONCLUSIONS AND RECOMMENDATIONS
(Chapter 7)
* Research Contributions, * Research Limitations, * Future Work

Figure 1: The structure of the thesis and steps followed in the research method

10

Chapter2: Background and Related Work

2.1 Introduction

This chapter presents a brief review of the literature on the application of two
major research areas for Arabic. The two areas are morphological analysis and TC as
illustrated in Figure 2. Since the aim of this thesis is twofold, then this chapter first
briefly presents different techniques for stemming Arabic words, and decides which
of these techniques will be used and improved in order to provide more accurate
results. This chapter then discusses briefly applied TC methods for Arabic and
compares their respective results with those for English. However, since a collection
of Arabic texts, preferably large in size, is required to evaluate the performance of
both root extraction and TC methods, this chapter first briefly presents available
Arabic text corpora and which to use (if applicable) or develop in this thesis.

The remainder of this chapter is organized as follows: next a brief review of
available Arabic text corpora. Section 2.3 discusses and classifies briefly available
Arabic root extraction techniques in the literature. Section 2.4 describes briefly
applied single-label TC techniques on Arabic. Finally, summary is presented in

Section 2.5.

2.2 Arabic Text Corpora

Newspaper articles available online are the common and frequent source for
obtaining Arabic texts. Available Arabic corpora can be found for example at
Linguistic Data Consortium (LDC)™ or European Languages Resources Association

(ELRA)? websites. Further information on such corpora can be found in [26].

1 LDC, University of Pennsylvania, USA, LDC website: http://Idc.upenn.edu/ [last accessed 1/5/2011]
2 ELRA website: http://www.elra.info/ [last accessed 1/5/2011].

11

http://ldc.upenn.edu/
http://www.elra.info/

Introduction

|
v

Arabic Text Corpora

Rule-based techniques

Available Stemming Techniques Lexical-based techniaues
For Arabic

Other techniques

v

Preprocessin Document Presentation
: ’ and Term Weighing
steps before

Single-label TC Techniques Applied on v Dimensionality
Arabic Applied Reduction
)jm‘ | Specific classifiers
Classifiers NB, k-NN, SVM
classifiers

Figure 2: The Structure of Chapter 2

For example ELRA has two Arabic corpora in Modern Standard Arabic (MSA)
form. The first is An-Nahar newspaper text single-label corpus that contains about
270,000 texts and about 144 million words under 5 classes. The second is Al-Hayat
Arabic single-label corpus under 7 classes. On the other hand, LDC has larger scale
Arabic text corpora such as Arabic Newswire Part 1 corpus. This corpus, although
without any labels, contains 383,872 texts, about 76 million words and about
666,094 unique words. Another example in LDC is the Arabic Giga word corpus
with its 1%, 2", 3 and 4™ editions. Its 4™ edition has 2,716,995 texts under one of
three labels (‘story’, 'multi' (contains a series of unrelated blur*®), and ‘other' labels).
All previous Arabic corpora are not freely accessible to researchers as the English
RCV1-v2 [152], [127] or the Reuters-21578 [126] corpora. Thus, there is no
available online benchmark freely accessible Arabic corpus, whether single or multi
labeled. As such, two small text collections that are used in this thesis are described

and arranged in one corpus as is thoroughly explained in Chapter 3. The first text

13 as stated in: http://catalog.ldc.upenn.edu/LDC2003T12

12

collection was gathered from different websites and categorized into eight general
domains. The second text collection was downloaded from University of Leeds
website on January 2010 [25], originally categorized into eight other general
domains.

Thus, next a brief description of methods in literature used for choosing general
domains for manual classification of texts.

In 1996, Sinclair [165] proposed 35 domains to present texts. Later on Sharoff [163]
categorized texts into eight general domains since Sinclair's categorization list, in his
opinion, provides a too fine-grained list. The eight general domains are: 1- natural
sciences (mathematics, biology, physics, chemistry ... etc), 2- applied sciences
(agriculture, medicine, ecology, engineering, computing, transport .. etc), 3- social
sciences (law, history, philosophy, psychology, language, education .. etc), 4-
politics (inner, world), 5- commerce (finance, industry), 6- life (general domain e.g.
fiction, conversation .. etc), 7- arts (visual literature, architecture, performing), 8-
leisure (sports, travel, entertainment, fashion .. etc). However, Eibeed [64] suggested
that Arabic articles be classified according to one of 10 domains that are: 1- general,
2- philosophy and psychology, 3- religion, 4- social sciences, 5- languages, 6-
natural sciences and mathematics, 7- applied sciences, 8- arts, 9- literature, and 10-
geography and history. In [64], O. Dawood suggested to have 15 domains that are as
follows: 1- religion, 2- sports, 3- educational sciences and scientific research, 4-
medicine and health, 5- encyclopaedias, 6- philosophy and psychology, 7- languages,
8- Arabic articles translated to other languages, arts, 9- Foreign articles translated to
Arabic, 10- social sciences, 11- applied and natural sciences, 12- history and its

sciences, 13- geography and geology, 14- mathematics, and 15- others. It is clear that

13

although the topics are more or less the same, the categorization process and
numbers of general domains are different.

The enormous number of texts that is available online and is increasingly growing
explosively on the web requires for such texts to be classified into domains or topics
so that these texts can be for example retrieved easily. The determination of such
domains is crucial for the accuracy of the classification process whether there is
hierarchy in domains/genres or not. This is so since [165] if a text is to be classified
among predefined classes that are Physics, Biology among others where this text's
class is actually Bio-Physics (which is not among the predefined classes). Then, it is
expected that results of classifying this text will be lower since the boundaries
among such classes are neither fixed nor clear. The reason for this lower
performance is partially due to the fact that the classifier is designed to only choose
one class among those predefined, and then it would provide the wrong
classification. However, for the same classes, if the classifier chooses more than one
class, then it can provide a more representative answer to the classification required.
One of the criteria [161] that a corpus is characterized by is the generality of its
classes. A generality of a class c; is defined to be the percentage of documents d; in

this class to the total number of documents in the corpus Q as shown in eq. 1.

|{dj cQd(d,;,c;) :T}|
gQ(Ci) =
e

1)

Among the issues [178] related to multi-labeled data sets is how to identify the
amount of data that is multi-labeled in such sets. A method for doing so is by using
the concepts of Label Cardinality (LC) and Label Density (LD). For these concepts
eq. (2) are provided below, where D: is data set with size |D|, |L| is number of labels;
|Yi] is number of assigned labels for document d;. Multi-labeled data sets vary in

terms of their LC and LD values. An example [178] showing two data sets is for the

14

genbase and yeast sets with LC = 1.35, LD = 0.05 and LC = 4.25, LD = 0.3
respectively. From the equation for LC it is noticed that LC value does not depend
on the number of labels in corpus but rather is the average number of labels per text
in it. However, LD value depends on the number of labels assigned.

1 Lol oL)Y,|)
LC(D)_‘ ‘Z\Y\ LD(D) = ‘D‘ZM

In Chapter 3, the development of the Arabic text corpus is presented in detail where
the two collections used to develop this corpus are described. Next is a description of

stemming techniques for Arabic.
2.3 Stemming Techniques for Arabic

Large-scale morphological analyzers [49] usually outputs to the user besides the
root for the inputted word further information. Such information may be the meaning
of prefixes, suffixes, and/or root disambiguation. Reported Morphological analysis
[28] systems for Arabic can be categorized into either systems that were
implemented by individuals so as to be used partially in their academic research, or
systems that were implemented by commercial institutes or companies as part of the
market's needs for Arabic applications such as search engines.

Much research has been conducted for the development, improvement of Arabic
light stemmers (i.e. outputs stems only) or morphological analyzers (i.e. outputs
roots) according to the level of analysis required. Since the stemming techniques
implemented in this work are within the first category, emphasis will be on
displaying its respective techniques. These techniques can be further subcategorized
into: 1- Rule-based techniques; 2- Lexical-based techniques; and 3- Others as will be

described briefly in the following three subsections.

15

2.3.1 Rule-Based Techniques

Many Arabic morphological analysis approaches use rules, prefix and suffix lists
to identify the possible roots for any Arabic word in MSA. Such approaches are thus
called rule-based. However, building and implementing the rules for this analyzer is
time consuming. These methods, based on the required level of analysis, can be [29]
subcategorized into: a) one-level rules that analyze words at the stem level using
regular concatenation, b) two-level rules that analyze words as roots + patterns +
concatenation, and c) three-level rules that analyze words as roots + templates +
vocalization + concatenation for obtaining their roots. Examples of stemming
techniques that use one-level rules to produce stems are as in [120], [121], [9], [44],
[29] and [50]; whereas examples of stemming techniques that provide roots (whether
two-level or three-level rules) are as in [1], [18], [22], [3], [11], [48], [16] and [72].

Although approaches that obtain roots/stems use rules, these approaches differ
in: a) the number of patterns, prefixes, suffixes used, rules' order in the approach,
and the amount of included function words to be removed, b) applying a
normalization step for some letters in words or not and if so to what letters, and c)
applying/removing diacritics for words or not.
2.3.2 Lexical-Based Techniques

This method uses lexical databases, dictionaries, and/or thesaurus to establish,
among other things, if the possible combinations of prefix-(root + pattern)-suffix is
correct for the processed word. Some of the research works that use lexical
databases, dictionaries, and/or thesaurus, use it along with methods as finite state
transducers [35], while others use it with rules [41], [56], [87], [111] and [182].
However, such techniques are usually collected based on a corpus and so are limited.

This limitation affects the performance of such analyzers negatively.

16

2.3.3 Other Techniques

The third method of stemming approaches, which is proposed for Arabic, cannot
be in our opinion categorized into any of the previous two categories. Examples of
such approaches are as in [54], [131], [151], [160], [49], [52], [28], [30], [15], [37],
[124] and [17]. All the above research works except in [17] used either statistical or
ML methods for morphological analysis.

Al-Shalabi, et al work [17] provided a rank, order and weight for each letter in
the word according to its position and calculated the product of rank and weight.
This method then only extracted a triliteral root for that word by choosing the three
least product values for letters of word without any change in their positions.
Implementing this method on a small set of Arabic abstracts reported an accuracy of
about 90%. Most of the aforementioned ML methods are further explained and
compared in appendix I.

ML methods, especially classification methods, usually require large corpora (as
the Reuters-21578 [126] corpus) for training in order to establish good results. Next
is a comparison between the types of stemming techniques presented above.

2.3.4 Comparison between Stemming Techniques

Although much work [24] have been performed on Arabic morphological
analysis and stemming especially for IR applications, yet few of such works handled
specific cases of irregular words (i.e. weak, eliminated-long-vowel, two-letter
geminated, and hamzated words) but not all of these cases except the works in [72]
and [35]. It is noteworthy that in [72] no results were provided of the system

implemented. Also, in [35] the Xerox demo* is available, and although efficient it

% Xerox demo can be found at http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-
Demos/Arabic-Morphological-Analysis-and-Generation

17

http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation
http://www.xrce.xerox.com/Research-Development/Historical-projects/Linguistic-Demos/Arabic-Morphological-Analysis-and-Generation

requires usually a relatively long time to provide the required roots (from about 1
hour to 7 day according to number and type of words provided).

The less-studied cases of irregular words are weak words [5], [42]. The lack of
study of such irregular cases is partially expected since research works concentrated
on building various light stemmers for IR especially in more recent times. Such
concentration was due to the extensive research on whether to use stems or roots for
improving IR performance.

When developing for Arabic a stemmer or morphological analyzer, important
issues present themselves [24] such as under-stemming and over-stemming. Other
issues that require handling for stemmers are compound words, proper nouns,
foreign Arabized words, diacritization, word disambiguation and irregular forms of
words. Also, available stemmers [22] automatically stem blindly words whether
proper nouns, foreign Arabized words or others and thus perform poorly. Thus, there
is a need to build an algorithm that handles some/all of these cases.

There is no comparative study available in the literature that compares between
available Arabic stemmers and evaluates their performances except for the works in
[160], [122] and [23]. The work in [160] compares between the performances of
three different stemmers in terms of accuracy. Larkey et al work [122] compares
between the performance of their light stemmer with other stemmers for IR as the
well-known Khoja stemmer™, Buckwalter stemmer, and Diab's Lemmatizer [55].
The work in [23] compares the performance of six existing algorithms for root
extraction, four of them are rule-based [16], [84], [172], and [169], one lexical-based
[111] and the last is a weight-based one [17]. This work implemented such
algorithms and compared their performance using a corpus that was built from 3,823

triliteral roots and applying 73 patterns with 18 suffixes and producing 27.6 million

%5 The words stemmer and root extractor is used here interchangeably.

18

words. The highest obtained accuracy among these six algorithms was the one of
Ghwanmabh, et al [84] work of 39% only. The results obtained in this work are rather
interesting considering that the reported accuracy in original works were above 90%.
However, the corpus used in this work is much larger than the ones used in the
original papers stated above.

There was a discrepancy among the published studies [24] regarding which are better
for IR, using words, stems or roots as in [3], [11], [97], [9], and [48]. Larkey, et al
[121] verified that using either stems or roots improved significantly IR performance
(much better than applying stemming on English for IR). Later on, Larkey, et al
[122] concluded that the effect of using light stemming is the highest on IR for
Arabic after comparing the effect of their light stemmer with other stemmers or root
extractors. This agrees [51] with what is known that IR is more tolerant to over-
conflation (i.e. removing letters at beginning or end that are not extra letters) than
under-conflation. Also, although [158] word sense disambiguation has been reported
to decrease retrieval effectiveness, yet by improving the correctness [51] of
morphological analysis (here context sensitive which is an akin to sense
disambiguation) retrieval results improved slightly. A drawback of context-sensitive
morphological analysis is that it requires considerably more computing time than
light stemming.

It is worth noting that names of places, countries, cities, months and foreign
Arabized words compose about 11% of texts®”. A more comprehensive percentages
of words is described in [2] where the percentage of occurrence for proper nouns,
'verbs, nouns and adjectives’, broken plurals, function words, and deverbals (i.e.
infinitive forms, active and passive participles, analogous adjectives and nouns of

place and time) are 1.14%, 16.01%, 24.3%, 7.87%, 0.37%, and 58.18% respectively.

19

Such percentages are based on the analysis of two million words using AraMorph*®
and DIINAR.1Y" [57]. Thus, Arabic words are highly derivational. More specifically,
weak'®, two-letter geminated, hamzated, and eliminated-long-vowel words are
available in about 13%, 7%, 11% and 2% (12% of weak words) in texts
respectively”®. Arab linguists and consequently early research works on
morphological analysis, lexicons, and machine translation base the analysis of words
on their root + pattern structure. However, Dichy and Farghaly [57] argued that this
is not sufficient since root + pattern representation does not handle Ancient and
medieval words as ISmAEyl as well as the complex grammar-lexis relations in Arabic
words. This is so since such representation handles only verbs and deverbals. This
was also emphasized by Abbes, et al [2] which showed that using only prefix-suffix
combinations (without proclitics (i.e. letters at beginning of words as |, w, b) or
enclitics (i.e. complement pronouns)) are more ambiguous than when such clitics are
taken into consideration. On another point, Darwish, et al [51] investigated the effect
of context sensitive morphological analyzers on IR. Results of this work show that
better coverage and improved correctness have a dramatic effect on IR effectiveness.
Next is a brief description of reported applied TC methods for Arabic and the effect

of some preprocessing steps on their performances.

2.4 Text Classification Approaches Applied to Arabic Sources

TM is an interdisciplinary area [87] that involves fields as ML and Data Mining
(DM), Statistics and statistical methods, IR, and Natural Language Processing

(NLP). Researchers have explored and developed many TM and NLP techniques and

16 AraMorph can be found at: hhtp://sourceforge.net/projects/aramorph, [last accessed 1/11/2011]

¥ DIINAR.1 can be found at: http://catalog.elra.info/product_info.php?products_id=902, [last accessed 1/11/2011]

18 We use here Haywood and Nahmad 1998 [96] terminology for describing Arabic irregular forms.

19 percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection as will be described in
Chapter 4.

20

http://catalog.elra.info/product_info.php?products_id=902

algorithms especially to English language but few have been proposed for Arabic
text automatic interpretation. This is partially due to the rich morphology [96] of
Arabic language. TM methods, which are also known as DM methods for texts, are
applied [92] for basically: 1- TC (supervised learning), 2- clustering (unsupervised
learning), 3- IE, 4- association analysis, and 5- trend analysis. TC is the process of
assigning a text document to one or more predefined classes based on its content
[129].

Text processing techniques, such as TM methods, according to application, are
applied at different levels [87] at: 1- word level, 2- sentence level, 3- document level
or 4- document-collection level. If applied at word level, different processes might
be applied by: a- taking word properties (such as homonymy, polysemy, synonymy,
and hyponymy or word frequencies) into consideration, b- removal of function (stop)
words, c- using stemming or lemmatization, d- using frequent n-grams, and finally e-
using lexical relations databases such as Word Net (WN) for English or recently for
Arabic (AWN). However, if text processing is applied at document level, it would be
used, among others, for text summarization as in [138] when applied on English; and
[68], [69] when applied on Arabic. Finally, when it is applied at document-collection
level, several issues require handling such as choosing a representation of document,
deciding a similarity function to compare documents, reducing the high
dimensionality of documents by choosing an effective method to do so for
categorization or clustering. One of possible applications of using ML techniques for

Arabic is for language identification as in [162].

21

There are few available commercial tools or software that applies TM techniques
on Arabic such as Sakhr™ automatic commercial categorizer, keyword extractor,
and summarizer [153] and [66] KP-Miner system®.

In the following subsection preprocessing steps for TC will be illustrated. In
subsection 2.4.2 single-labeled TC methods applied to Arabic will be discussed.
2.4.1 Pre-Processing Steps for Text Classification

Applying TC techniques requires usually a preprocessing stage that would
remove punctuation marks, function words and might return the remaining words to
their stems (for Arabic words to their stems or roots). For English language,
researchers perform the stemming step in order to reduce the high dimensionality of
documents [161]. Since the research work on Arabic TC is rather new, many issues
need to be investigated in order to establish its effect on TC. Among such issues are:
document representation, types of features used, methods of weighting, and feature
selection or extraction. Research work investigating such issues is presented next.
2.4.1.1 Document Representation

A text document d; is usually represented [161] as a vector of term weights

(Wij), aj =W, ’W\T\J>’ where T is the set of different terms (also called

features) that occur at least once in at least one document in the training set from the
collection. Different approaches are used for document representation, where two
differences occur for text representation. The first is related to how a term is
considered (for example a word or a phrase). The second is related to which method
the weights are calculated by. For Arabic the only representation of features in texts
investigated in literature was using words, stems, or roots separately but as far as is

known, the choice of features using phrases or combining them with other forms of

% Found at: http://www.claes.sci.eg/coe_wm/kpminer/ [last accessed 1/11/2011]

22

http://www.claes.sci.eg/coe_wm/kpminer/

features was not reported for Arabic TC. As for term weighting, the TFIDF function,
besides the BOOLEAN representation of terms, is used mostly for weighting [156].

TFIDF is defined in eq. 1 as:

| Tr |

tfidf (t,,d;) =#(tk,dj)-'°9[#—(t)

jztf(tk,dj).idf(tk)

B thidf (t,.,d,)
i(tﬁdf (t.,d ;)2

Wy

Where tf(ty,d;) (called Term Frequency) = #(t,d;): number of times term t, occurs in dj,
#1.(t) (called document frequency (df(ty)): number of documents in Tr that t, occurs in,
[Tr|: number of documents in training set,

Inverse document frequency idf(ty) is given by jqf (t,) = log dlfT(:kI) ,
However, other term weighting methods are used such as the weighted inverse
document frequency Widf(ty,d;) or the recently proposed term weighting Modified
inverse document frequency Midf(i,j) [53] or the pivoted document normalization
[166], [167] weighting equation. These methods' equations are provided in appendix
I. The idf part of TFIDF function defined in eq. 1 above handles the effect of the
presence of a term in documents compared to the total number of documents in the
corpus (i.e. global weighing). So if such a term appears in different categories in
different percentages and/or the generality of such categories is not balanced (i.e. not
the same or near one another) then this part of TFIDF will not include such an effect
into weighing the term. Thus, weighing such terms by considering their presence
among categories is neither proposed nor implemented (which is called here local
weighing). Although new variants of TFIDF or other functions were proposed and
implemented on texts for English as in [45], [46], [58], [116], [128] and [176],

nevertheless such methods were not investigated for Arabic. Also, as far as we know,

the effect of local weighing was not investigated for Arabic TC.

23

1)

@)

The method described above for text representation is called Vector Space Model
(VSM) [155]. The above weighting measures have been thoroughly investigated and
compared for TC on English [161]. Many of the TC methods that were implemented
on Arabic, used tfidf for weighting but only three works [108], [171] and [173]
studied the effect of most of weighting methods for Arabic on TC performance.
Thabtah, et al [173] studied the effect of using tf(ty,d;), idf(ty), tfidf, Widf(tc), inverse
tf(te,d;) (itf(ty,d;)), and log(tf(ty,d;)) on classification performance and concluded that
using tfidf provided best results. Also, Syiam, et al [171] studied the effect of using
tf(ty,d;), Boolean, tfidf, and normalized tfidf for weighting on classification
performance and concluded that using normalized tfidf provided best results.
However, Kanaan, et al [108] used tf(t,d;), tfidf, Widf(t) for both k-NN and Rocchio
classifiers. This work showed that best results were provided: a) when using tfidf for
Rocchio classifier, b) when using Widf(ty) for k-NN classifier. It is noteworthy that
no significance testing in works mentioned above was reported. In general, such
results for TC on Arabic are in agreement with those concluded for English.
2.4.1.2 Dimensionality Reduction

In TC, the large number of terms [161] could be problematic, since such TC
methods cannot scale for large number of terms (i.e. high dimensionality). That is
why before implementing any TC algorithm, a technique to reduce the
dimensionality of the vector space from |T| to [T'| such that [T'| << |T| is often applied.

There are various Dimensionality Reduction (DR) techniques that are used in the
literature whether coming from information theory or from linear algebra. DR
methods are viewed through two different ways: 1- by performing it either locally
(per category) or globally, or 2- by performing it in terms of the nature of the

resulting terms (i.e. term selection versus term extraction). Local DR uses different

24

sets of document vectors according (e.g. the work of Apté, et al [32]) to their
respective categories. Global DR uses the same set |T'| for all categories (e.g. the
work of Yang and Pedersen [183]) such that [T'| << [T]|.

Another method that is used by some researchers for DR is stemming. For
English language, [161] researchers differ on the effectiveness of using stems in the
representation of documents in the preprocessing stage to improve TC results but
agree that the stemming step is done in order to reduce the high dimensionality of
documents. Next, DR by applying stemming on Arabic is discussed.
2.4.1.2.1 Dimensionality Reduction by Stemming

Applying different stemming techniques on Arabic texts and investigating the
effect of such techniques for DR on TC performance have been undertaken by only
few research papers [63], [108], [135], [146], [147], [148], [154] and [176]. The
research works that investigated the effect of stemming on classification
performance for Arabic are presented in appendix I. In these papers, the classifier(s)
used stems, roots or words for features and their performances were compared in
order to establish if stemming improved TC.

The works that compared the effect of using words, roots or stems for features,
although used different stemmers, classifiers, and text collections, concluded that the
performance of classifiers when using stems or roots for features outperformed that
when using only words except for the works of [108], [154] and [135]. Kanaan, et al
[108] and Mesleh, [135] papers that showed degrading effects used only light
stemming whereas the others used light stemmers and root extractors. However,
Said, et al [154] work used for stemming and root extraction two different systems:
a) Al-Stem (for stems) and Sebawai (for roots) [49], [50] b) both RDIMORPHO3

stemmer and root extractor [28]. Results show: 1- using Al-Stem with either Mutual

25

Information (MI) or Information Gain (IG) enhances TC performance for small sized
dataset, 2- using words leads to worst TC performance in small datasets while in
large datasets its performance was among the best, 3- Al-Stem gave better TC
performance results than RDI stemmer while RDI root extractor gave better TC
performance results than Sebawai one. It should be noted that none of the works
mentioned above reported significance tests to provide a conclusion whether for
improvement/degradation or no effect.

2.4.1.2.2 Dimensionality Reduction by Term Selection

In the literature, various methods [87] are used for feature subset selection
(abbreviated as FSS). Simple Filters are usually used for large number of features
and are basically either function based on Information theory or based on term or
document frequency or based on using embedded approaches.

For Arabic Information theory-based methods used for FSS are as IG, Cross
entropy for text, MI, Chi-square (%), NGL [140] and GSS coefficients [82] (named
after the initials of their founders) (NGL and GSS coefficients are two variants of
%), and Odds Ratio (OR), whereas the ones based on simply term frequency are as
in [95] or document frequency (threshold DF) as in [20]. However, [161] using the
first two approaches for simple filters are computationally easier alternatives.

Many of the reported Arabic TC methods used one or more of the well known
FSS methods as DF, %%, NGL, IG, OR, MI and GSS but mostly used DF or y>.
However, for Arabic TC only one work that is known in [95] used Singular Value
Decomposition (SVD) method for FSS. In two other research works [137], [184],
two different optimization methods were used for that purpose.

DF is an effective global and simple method that is used to select the features

with highest values among others. Examples of works that used DF for Arabic are as

26

[19], [20], [154], [171] and [184]. However, using DF in some of these studies didn’t
provide highest TC performance compared with using other FSS methods. As for
applying such FSS techniques on Arabic texts: a) IG was applied in [107], [171],
[137], [146], [151], [154] and [148], b) MI was used in [137], [154] and [136], c) y?
was used in [135], [137], [136], [7], [98], [174], [146], [147], [148] and [184] works,
d) OR was used in [171], [137] and [136], €) NGL coefficient was used in [171],
[137] and [136], and f) GSS coefficient was used in [171], [137] and [136] works.
Yet, to the best of our knowledge, only the works of [171], [136], [184], [146],
[147], [148], [154] and [137] investigated and compared the effect of FSS methods
on classification performance (for further details regarding these works, kindly refer
to appendix I). However, it is not possible here from the literature mentioned above
to conclude which FSS method(s) provides best performance for Arabic TC. This is
so for two reasons: a) such studies were conducted on different text collections, b) in
above studies, the results of applying FSS methods were rather near in values and no
significance tests were reported.

The results of the above comparative works indicate that using y% NGL or GSS
separately improved TC performance better than others. However, comparative
works on Arabic gave contradictory results regarding the effect of OR on TC
compared with those on English. Also, it is noticed that using optimization
techniques for FSS outperformed the other Information-theoretic ones on Arabic.
2.4.1.2.3 Dimensionality Reduction by Term Extraction

Term extraction is basically [161] a method that attempts to generate a set |T'|
formed of synthetic terms such that |T'| << |T| in order to maximize the effectiveness
of a classifier. There are two major methods for term extraction which are term

clustering and Latent Semantic Indexing (LSI).

27

Term clustering is a process by which features [117] with high degree of pair
wise semantic relatedness are grouped so that their representative would be used
instead of them as features in VSM. There are two types of clustering methods that
have been studied: 1- one-way clustering, and 2- co-clustering. As far as we know,
there is no research work that implements term clustering methods for Arabic TC.

LSI is a statistical [87] technique that attempts to estimate the hidden content
structure within documents where it uses SVD, and discovers statistically most
significant co-occurrences of terms. LSI was used for the unsupervised induction of
MSA verb classes in [168]. Another use of LSI for Arabic was by Brants, et al [37]
for topic analysis and segmentation. However, for TC it was implemented by Zukas
and Price?* where it reported an accuracy of 97% when LSI was used for TC.

2.4.2 Applied Text Classification Techniques on Arabic Sources

TC is [87] a three stage process. These stages are: 1- pre-processing stage, 2- the
classification stage where usually ML techniques (mainly supervised) are used, and
3- the evaluation stage. In the past few years more ML techniques have been applied
on Arabic for TC.

For Arabic texts VSM is mainly used for document representation. In [86], TC
methods were used to enhance an Arabic IR system. The work of Al-Kabi and Al-
Sinjilawi [10] investigated different measures to classify Arabic texts as Cosine,
Jaccard, Dice, and inner product measures, then compared their results with those of
using NB and Euclidean distance. Its results showed that NB surpasses the five
measures and among those five measures, the cosine measure provides best results.

The effect of pre-processing step on TC performance was discussed above. In

[161] the classification stage, besides the classifier used, the proposed corpus's size

2N Zukas and R. Price, "Document Categorization using Latent Semantic Indexing”, Found at:
http://www.contentanalyst.com/images/images/Categorization_LSI.pdf [last accessed 1/11/2011]

28

http://www.contentanalyst.com/images/images/Categorization_LSI.pdf

used for classification task, its training/validation and testing sets ratios are
important factors that affect the performance of TC. The training set (Tr) is used to
train the classifier and the validation set (Tv) is used for fine tuning its internal
parameters, while the test set Te is used for evaluating the effectiveness of the
classifier. This is called the train-and-test approach. Other approaches are the k-fold
cross-validation and the hold-out approaches.

The evaluation [161] of classifier performance is done through its effectiveness
which is the ability to take the right classification decisions. Effectiveness is thus
usually measured by Precision (P), Recall (R), Accuracy (A), and/or Error (E).
Precision and Recall [161] measures cannot be looked into separately, so a
combination of their effect is used by: 1- the eleven-point average precision, 2- the
breakeven point, or 3- the Fj function. The above measures' equations are as shown
from the contingency matrix in appendix | according to: 1- micro-averaging, 2-
macro-averaging. These two methods might provide different results depending on if
the number of documents per category is the same. Next is a brief description of ML
methods used for Arabic TC.
2.4.2.1 Specific Machine Learning Techniques

For Arabic, relatively few of ML methods have been used. Examples of
supervised ML techniques applied for Arabic TC are as: 1- decision trees [8], [94];
2- statistical as n-grams [112] or maximum entropy [70], [159] 3- Artificial Neural
Network (ANN) [95], [93], 4- distance-based [60], 5- association rule mining [27],
6- profile-based as Rocchio classifier [171], [108], and 7- more recently Rule-based
as RIPPER [6]; [175]. Most of the above mentioned works are further presented in

appendix I. Also, few other ML methods were implemented more often for Arabic as

29

parametric-based methods such as NB, example-based as k-NN, and SVM. These
last three methods will be described in the coming subsections.
2.4.2.2 Naive Bayes Classifier

NB is a simple probabilistic [92] classifier based on applying Bayes' theorem. It
is a powerful, easy and language independent method. When NB classifier is applied
in order to choose a class for a test document among predefined classes, equations

presented in appendix | are used.

NB classifier was investigated on Arabic in works as [90], [89], [7], [108], [10],
[135], [174], [146], [147], [148], [71], [141], [34], [104] and [61] as shown in details
in appendix I, where in many of these studies, tfidf was used for weighting, whereas
%, DF, and IG and/or using stemming were used for FSS. It is noteworthy that such
papers used different text collections and training-testing ratios, thus this classifier's
performance varied among such works in a wide range from 0.73 to 0.94 for F1-
measure. However, the highest performance reported for this classifier (F1 = 0.9369)
is in the work of Hadi, et al [90] which used a small corpus of 600 texts under 6
classes with 70%-30% training — testing ratios.
2.4.2.3 Example-Based Classifiers (k-NN Classifier)

K-NN is a [92] statistical learning algorithm. It is a simple yet very efficient
example-based approach for TC. Many parameters affect its performance such as the
similarity measure (as Cosine, Euclidean, Jaccard, and Dice measures) and the
choice of the number of nearest neighbors (k).

When k-NN classifier was applied for Arabic as in [135], [63], [62], [98], [20],
[90], [173], [19], [109], [171], [34], [107], [104] and [61] (detailed info are shown in
appendix 1), about 23% of such research works did not state the distance measure

used. Also, about 38% of these works used the cosine measure and the remaining

30

works used either Euclidean, Dice, and/or Jaccard measures. However, about 30% of
these works did not specify the value of k. Other issues regarding these studies are
that such papers used different text collections, FSS methods and training-testing
ratios and thus the k-NN classifier performance using F1 varied among such works
from about 0.70 for small corpus size to about 0.90 for much larger corpora. The
highest reported F1 value [19] using this classifier was 0.96. This work used Cosine
similarity, DF and light stemming, k = 21, and a small corpus of 621 texts under 6
classes, and a 90%-10% training-testing ratio.
2.4.2.4 Support Vector Machines Classifier

SVM's [105] principle is based on the structural risk minimization principle from
computational learning theory. The idea is to find a hypothesis H for which the
lowest true error is guaranteed (i.e. by searching for the maximum marginal hyper
plane). A separating hyper plane can be found usingW.X +b=0, where W is a
weight vector. SVMs learn either linear threshold or nonlinear (kernel) threshold
function(s). Examples of nonlinear functions are as polynomial classifiers, radial
basic function (RBF) networks, and three-layer sigmoid neural nets. However, using
nonlinear [92] threshold functions is expensive. One remarkable [105] property of
SVMs is that their learning ability is independent of the dimensionality of the feature
space but depend on the number of training documents. Available SVM software
online are TinySVM%, GIST® SVM, SVM""?and WEKA's Sequential Minimal
Optimization (SMO)®.

SVM classifier was investigated by few research works for Arabic (detailed info

of works applying SVM classifier on Arabic are shown in appendix 1) where 33.3%

22 Found at: http://chasen.org/~taku/software/TinySVM [last accessed 1/11/2011]
% Found at: http:/svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi [last accessed 1/11/2011]
2 gyM'"9" for single-class TC is found at: http://svmlight.joachims.org/ and for multiclass TC is found at:

http://svmlight.joachims.org/svm-multiclass.html [last accessed 1/11/2011]
% Further info on SMO can be found at: http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html [last accessed
716/2012].

31

http://chasen.org/~taku/software/TinySVM
http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi
http://svmlight.joachims.org/
http://svmlight.joachims.org/svm-multiclass.html
http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html

of such works [135], [136], [137]; used the same in-house collection composed of
1,445 documents with 9 classes, training — testing ratios (2/3-1/3), weighting using
tfidf, TinySVM tool and varied in using different FSS methods and its results for F1
varied between 0.74 for no FSS to 0.896 for ACO. Also, another 33.3% of works
applying SVM on Arabic used 7,000 documents with 7 classes, applied both ¥ and
IG for FSS and various stemming techniques for DR [146], [147] and [148]. These
works found that for 2,000 features maximum F1 value was obtained (about 0.92)
when using 3-gram for stemming and 2. However, the highest reported F1 value of
0.982 was in the work of Hmeidi, et al [98], which used GIST SVM, tfidf for
weighting, local x? for FSS, 2,237 texts and 98.6%-1.3% training-testing ratio.
2.4.2.5 Comparison between Classifiers' Performances

The most popular [161] classification methods were implemented for English on
Reuters 20 newsgroups text collection in an attempt to compare their performance.
Such implementation was performed for the following: a) total number of documents
is 12,902, b) number of training documents is 9,603, ¢) number of test documents is
3,299, and d) the number of categories is 90. Results showed that value of F1 for the
following classifiers: 0.795 using NB classifier, 0.794 using C4.5 classifier, 0.856
using k-NN classifier, 0.870 using SVM classifier, and 0.878 using boosted tree
classifier.

Since there is no bench mark corpus for Arabic, it is not possible to conclusively
decide if performance of classifiers' on Arabic is comparable with that for English.
Only few classifiers were implemented for Arabic as mentioned above. Many
classifiers that are not used for Arabic TC such as Ensemble of Nested Dichotomies

that is used in this thesis in Chapter 5 and is described fully in Chapter 6.

32

2.5 Summary

Although, lexical-based approaches are expected to provide better results, yet these
approaches require access to available lexical database(s), dictionaries, and/or
thesaurus or building them from scratch. Since such approaches were not available
for this thesis at the time of building our root extraction methods, and since building
such methods is time consuming, it was decided to work with other techniques. It
should be noted that since Buckwalter's stemmer provided the lowest performance
results among others [120], [121], [160], it was decided not to use it. Although
applying rule-based techniques is expected to provide good results, yet building and
implementing it is also time consuming. However, their building will expectedly
take less time compared to that of lexical-based approaches.

At the time of building the root extraction techniques in this work some of well
known stemmers as the Khoja's stemmer were not accessible. Also, although
statistical or ML-based techniques provided higher accuracy results than rule-based
or lexical-based methods, nevertheless these techniques will not be
used/implemented here since such methods: 1- are not available online, 2- require a
relatively large annotated corpus which is not available here. Finally, since the effect
of vowelized words had a rather small effect on root extraction performance as
presented above, it was decided not to apply vowels to words in MSA texts. Thus,
only two methods for root extraction will be implemented here. These are a rule-
based method [1] and a weight-based one [17].

The rule-based technique that is used here will be explained in chapter 4. It was
developed by Al-Ameed [1] where it was reported to have accuracy greater than
90%. However, since it did not handle many irregular cases as weak, geminated, and
hamzated words, it was enhanced by addressing such cases as will be shown in

33

Chapter 4 (i.e. by developing and adding the Correction algorithm that handles these
cases to the rule-based one). Also, in comparison with the enhanced rule-based
technique, a weight-based (also named here positional-letter-ranking) approach is
also investigated [17] along with proposing and implementing an adjustment and two
expanded weight-based methods in Chapter 4. The choice of this technique was due
to the fact that it is simple to implement and its reported accuracy value in [17] is
about 90%. Also, the Correction algorithm is added to all four weight-based
techniques and its effect on the performance of such techniques is shown in Chapter
4. The technique with best accuracy results is used further on to represent texts in
terms of their normalized words, stems or roots and investigates which of such
representations improves best TC techniques as is described in Chapter 5. However,
if a stemmer doesn’t remove efficiently/correctly prefixes and/or suffixes then the
remaining analysis to extract the root of such word would produce the wrong root.
This is called here the prefix-suffix paradigm.

The following was concluded for Arabic TC:

1- regarding document representation and term weighting: a) for document
representation VSM was used and for feature choices only words, stems, roots
were separately used, b) for term weighting methods, TFIDF was used frequently
and compared with others in terms of their effect on TC performance, but it was
not reported if such variation is statistically significant. The idf part of TFIDF
function defined above handles the effect of the term globally. So the local effect
of this part is not tested for Arabic TC.

2- for DR methods implemented and their effect on Arabic TC performance: a)
stemming was investigated but there were no reports of significance tests to
validate their results; b) term selection methods were investigated and it can be
concluded that when using DF in some research studies TC performance wasn’t
the highest and it is not possible to conclude which FSS method(s) provides best
performance for Arabic TC since different text collections were used, and results

of applying FSS methods were rather near in values and no significance tests were

34

reported; c) term extraction techniques there is no research work that
implemented any of term clustering methods for Arabic, whereas LSI was used
for TC on Arabic with a reported accuracy of 97%.

3- When applying NB, k-NN, and SVM classifiers on Arabic, no conclusive result
of their performance on Arabic can be provided since different text collections,
different FSS methods, and training-testing ratios were used. The performance of
NB classifier varied in a wide range from 0.73 to 0.94 for F1. K-NN classifier's
performance using F1 varied from about 0.70 to about 0.90. SVM classifier's
performance using F1 varied from about 0.74 to about 0.986. However, recent
results of research works presented in section 2.4.2 that compared between those
three classifiers indicate that performance of SVM classifier is highest followed
by k-NN then by NB ones.

4- Few clustering methods have been implemented for Arabic such as in [12],
[159], [85], [21], and [109]. However, since the scope of this thesis is to
investigate classification methods for Arabic, clustering techniques will not be
discussed.

5- Only a few classifiers were implemented for Arabic as mentioned above. There
is no investigation in the literature of the effect of representing texts by phrases
for Arabic (whether alone or combined with words) on TC performance. The
intent of this thesis is to study the effect of including phrases as features on TC
and compare the performance of many well performing classifiers as will be

presented in Chapter 5 and discussed in Chapter 6.

35

Chapter 3: The Development of an Arabic Text Corpus

and Pre-processing Steps

3.1 Introduction

The first aim of the work reported in this chapter is to present and describe two new
single-labeled Arabic text collections designed hereby to support the forthcoming
research on pre-processing and classifier performance study, to introduce a
comprehensive label set that unifies labeling of the two text collections, and to
integrate these two collections into one final corpus with an aim to use its texts in the
implementation of: a) root extraction techniques presented in Chapter 4, and b)
single-label TC techniques presented in Chapter 5. The second aim is to present
preprocessing steps necessary for both root extraction and TC methods. This requires
the handling of several issues such as removing function words, diacritics, non
Arabic alphabet and digits among others. Such requirements are presented in this

chapter whereas other preprocessing steps are presented in Chapter 5 for TC.

The investigation for text labelling is performed in order to classify a series of texts
into one domain from eight specified general domains namely politics, economics,
social issues, sports, music, religious issues, ‘arts, literature, and culture’, and finally
‘educational, science, and health'. The first Arabic Text collection under 8 classes
(ATB8) is gathered by the author of this thesis and contains 380 texts only, while the
second one is downloaded from Leed's University website. Leed's Arabic
Contemporary Corpus (LACC) contains 424 texts only. Since the number of texts in
each collection is small, the need to incorporate both into one final corpus and

unifying their classes is evident in order to acquire better performance results for
36

both root extraction and TC methods where the final corpus is a better representative

than each collection of available Arabic texts on the web written in MSA.

This chapter is organized as follows: Section 3.2 describes the first Arabic text
collection. In Section 3.3, the second Arabic text collection is described, where its
re-categorization process is presented in order to unify labels for both collections
among the eight domains mentioned above. The final corpus' single-labeling results
are also presented in Section 3.3. Pre-processing steps needed, for both root
extraction techniques and TC ones, are described in Section 3.4. Finally, conclusions

are presented in Section 3.5.

3.2 Description of Newly Gathered Text Collection

In order to support implementing root extraction techniques to be discussed in
Chapter 4, we have built up a new collection of Arabic texts. This was performed by
acquiring randomly from various online Arabic newspapers, academics, magazines
and other sources published online in the period 23/7/2008 - 1/2/2009. This
collection was presented in notepad text files (UTF-8).

3.2.1 Newly Gathered Text Collection

The ATS8 collection is gathered randomly according to eight general subject domains
as stated in section 3.1. In each domain close to 50 texts were chosen randomly with
a total of 380 texts in all 8 domains (about 200,000 words). On average, the number
of words per text is about 526 words. These domains were chosen here in such a way
that: 1- these domains were in general chosen by the text's respective websites, 2-
these domains would contain articles, short stories ... etc. Also, two of these
domains, which are the educational, science and health domain or the arts, literature

and culture domain, were chosen each containing three topics. This was performed

37

since although different, yet these three topics are related, and the number of texts

that is gathered from websites for each individual topic is comparatively low. The

actual number of text documents in each domain is shown in Table 1. Furthermore,

the list of source websites and number of texts chosen from each are shown in Table

2. The distribution of these texts along three different major source categories,

namely 'newspapers’, 'magazines and channels’, and 'other' websites as well as

different geographical regions are shown in Figure 3. 'Other' websites source

category presents in general personal websites that are constructed by individuals.

No. Domain # words # files
1- Politics 27,164 50
2- Economics 22,516 45
3- Religious issues 28,538 51
4- Social issues 21,562 38
5- Sports 22,266 61
6- Educational, science and health 25,538 43
7- Arts, literature and culture 33,518 50
8- Music 12,180 42
Total 193,282 380

Table 1: Number of Texts and words in AT8 collection

Distribution of texts along sources

300

250 \

200
S
£ 150
2

o0 \\

50
=N
o T T
new spapers magazines and channels w ebsites
Sources
(a)
Distribution of gathered texts according to region

5

18.68

O Middle east

O Arabic gulf

O Arab north african
B Europe and USA
B others

36.84

10.5

28.95

(b)

Figure 3: Distribution of texts in AT8 along (a) three major sources, (b) region

38

Website of Country Region Texts no Texts

Addustour newspaper Jordan 12
Al-Rai newspaper Jordan 54 (14.2%) 31
Alarabalyawm newspaper Jordan 7
uoP Jordan 4
Al-Anwar newspaper Lebanon 3
Al-Intigad newspaper Lebanon 53 1
Assafir newspaper Lebanon 7
Annahar newspaper Lebanon (13.95%) 13
Alhayat newspaper Lebanon Middle East region (36.84%) 27
Almustagbal newspaper Lebanon 2
Furat-alwehda newspaper Syria 6 (1.6%) 3
Jamahir-alwehda Syria 3
Al-Sabar magazine Palestine &
Alyaum newspaper Palestine 2
Al-ayyam newspaper Palestine 20 (5:3%) 2
Alhayat-jadida newspaper Palestine 1
Alquds newspaper Palestine 12
Fasl-almagal newspaper Israel 7 (1.8%) 7
Akhbar-alkhaleej Bahrain 1
Ommandaily newspaper Omman
Al-sharg newspaper Qatar 3
Aljazeera Channel Qatar 28
Algabas newspaper Kuwait 13
Alwatan newspaper Kuwait 99 7
Alkhaleej newspaper Emirates 1
Akhbaralarab newspaper Emirates Arabic Gulf region (28.95%) (26.05%) 1
Kul-alwatan newspaper Saudi Arabia 5
Okaz newspaper Saudi Arabia 7
Al-madina newspaper Saudi Arabia 11
Al-jazirah newspaper Saudi Arabia 1
Al-Riyadh newspaper Saudi Arabia 8
Asharqgalawsat newspaper Saudi Arabia 8
Azzaman newspaper Iraq 6 (1.6%) 6
Arabiya MBC news channel 5 (1.32%) 5
Alaswaq Al-Arabia channelsatellite 1
Alquds-alarabi newspaper UK Europe and USA 40 (10.5%) 10
BBC Arabic channel UK 16
CNN channel USA 13
Al-fadjr newspaper Algeria 23
Al-Alam newspaper Morocco 46 3
Alkhabar newspaper Algeria 13
El-massa newspaper Algeria (12.11%)
Assaheefa newspaper Libya Arab North African region 1
MAP news agency Morocco 4
(18.68%)
Al-Ahram newspaper Egypt 12
Al-Gomhuria newspaper Egypt 5
Al-Wafd newspaper Egypt 25(6.6%) 1
Arabnet Egypt 5
Watani Egypt 2
Alarab online UK (4.21%) 16
Maktoob Jordan Others (5%) (0.26%)
Jeeran Saudi Arabia (4.21) (0.26%0) 1
Hazemsakeek - (0.26%0) 1

Table 2: Source Websites and their Number of Texts in AT8 collection
Despite this text collection effort, it is observed that the AT8 text collection

remained small in size whether in terms of the number of text files or words and did

39

not represent a sufficient corpus for both the root extraction and TC methods. It is
determined that combining the newly collected text set with the existing collection at
the University of Leeds, would provide a comparatively large enough corpus for the

root extraction and TC methods.

3.3 Description of University of Leeds Arabic Contemporary Corpus

LACC corpus was downloaded on January 2010 and will be described in detail.
Section 3.3.1 discusses the properties, components of LACC. The re-categorization
of LACC is performed in Section 3.3.2 as well as a comparison between the two text
collections in terms of their domains.

3.3.1 Original Categorization of LACC

LACC corpus that is available online [25] is presented here where its written texts
were originally put into 15 categories as shown in Table 3. Such texts were put in
XML mark-up as raw UTF-8 text files (except ScienceB category where its texts
were put in notepad text files (also UTF-8)) that contained many details such as title,
original publishing organization, author name(s), date of publication, number of

words ...etc.

No. Original Category # files # words % words
1- Politics 10 44,590 5.03
2- Autobiography 72 151,687 17.13
3- Economics 28 66,354 7.49
4- Religion 19 111,199 12.56
5- Short stories 31 46,884 5.294
6- Sociology 30 88,577 10.002
7- Tourism and Travel 60 46,093 5.21
8- Recipes 9 4,972 0.56
9- Sports 4 8,809 0.995
10- Education 10 24,674 2.79
11- Health and Medicine 32 40,480 457
12- Science 45 105,206 11.88
13- Interviews 23 56,428 6.37
14- ScienceB 25 67,720 7.65
15- Children's stories 26 21,958 2.48

Total 424 885,632

Table 3: Number of Texts and words in LACC corpus

40

The target users [25] of this corpus are language teachers, language engineers,
foreign learners of Arabic and material writers. Table 4 illustrates for each original
website name, country, region, number of files and words in LACC. Figure 4 briefly

illustrates the contents of this table.

No. Magazine, newspaper, Country Region # % files # words %

website name files words
1- Alarabi magazine Kuwait 138 32.55 353,171 39.88
2- Radio Qatar Qatar 2 0.47 1,771 0.2
3- Alrai Alaam Kuwait 13 3.07 61,592 6.96
4- Islamonline website Qatar Gulf Area 45 10.61 135,037 15.25
5- Lahaonline website Saudi Arabia (84.86%) 13 3.07 2,926 0.33
6- Economic world Saudi Arabia 83 19.58 86,501 9.77

Magazine
7- Islam-online website Qatar 8 1.89 35,078 3.96
8- Al Marefah Saudi Arabia 10 2.36 24,674 2.79
9- Akalaat website UAE 8 1.89 4,620 0.52
10- Arabic Story Bahrain 30 7.08 45,831 5.18
11- Arab Medical Magazine Lebanon 27 6.37 34,395 3.88
12- Ofouq Syria Middle 12 2.83 21,667 2.45
13- Al Hourriah Syria East 2 0.47 4,639 0.52
(6.85%)
14- Sayidaty Magazine UK 7 1.65 5,599 0.63
15- BBC UK Europe 1 0.24 411 0.05
(0.68%)
16- Science And Technology (7.65%) 25 5.90 67,720 7.65
Magazine
Total 424 885,632

Table 4: Source Websites and their Number of Texts in_the LACC corpus
The small size of both collections led us to include both in one corpus. Yet, the
difference in the type of domains between the two collections led us to investigate
which type of domains to use. Figure 4a shows that large percentage of texts came
from magazines and Figure 4b shows that about 85% of texts were provided from the
Arabian Gulf region. This corpus has 424 texts and about 900,000 words. On

average, the number of words per text in LACC is about 2,089 words.

From Tables 1 and 3, the domains in LACC are different than those in AT8
collection. This is due to the fact that, among other reasons, the target users in both
collections are different. Also, a comparison between Tables 2 and 4 as well as
Figures 3 and 4 shows that AT8 collection is more spread around the regions of Arab
speaking countries compared to LACC. This is due to the fact that LACC was

limited by the number of websites (publishers) that accepted that their texts in LACC

41

be available online. Yet, the number of words in LACC is far more than ATS8

collection.
Distribution of texts along sources
350
_
300
250
I 200
IS /
§ 150 /
100 \
50
(0]
new spapers magazines and channels w ebsites
Sources
(a)

Distribution of Leeds texts according to region Middle
others; 7.65

Arabic gulf;
84.86

east; 6.85

(b)

Figure 4: Distribution of texts in LACC along (a) three major sources, (b) regions
No. Original Domain # files # words Major Domain % words Jdo (Ci)
1- Politics 10 44,590 Politics 5.03 2.36
2- Autobiography 72 151,687
3- Short stories 31 46,884 Arts 24.9 30.42
4- Children's stories 26 21,958
5- Economics 28 66,354 Commerce 7.49 6.6
6- Religion 19 111,199
7- Sociology 30 88,577 Social sciences 25.35 13.92
8- Education 10 24,674
9- Tourism and Travel 60 46,093 Leisure 6.21 15.09
10- Sports 4 8,809
11- Recipes 9 4,972 Life 6.93 7.55
12- Interviews 23 56,428
13- Science 45 105,206 Natural sciences 11.88 10.61
14- Health and Medicine 32 40,480 Applied sciences 12.22 13.44
15- ScienceB 25 67,720

Total 424 885,632

Table 5: Percentage of Texts and words in LACC corpus under major domains

42

3.3.2 Re-Categorization of LACC and Final Corpus Categorization

From Table 3, genre of domains in LACC is not as that in AT8 collection. In order to
use both collections for TC, their texts should be under the same genre of domains. It
was decided first to re-categorize the texts in LACC such that each text fits into only

one domain among eight domains of AT8 collection as shown in Table 6.

New Domain No. Original Domain # files # words % words % Words - combined
Index

1- 1- Politics 10 44,590 5.04 8.00
2- Autobiography for politics 13 26,226 2.96)

2- 3- Economics 28 66,354 7.49 7.49

3 4- Religion 19 111,199 12.55 15.08
5- Autobiography for religion 13 22,440 2.53 '
6- Sociology 30 88,577 10.00

4- 7- Tourism and Travel for Social 60 46,093 521 15.4
8- Autobiography for social 1 1652 0.19

5- 9- Sports 4 8,809 1.00 1.00
10- Education 10 24,674 2.79
11- Health and Medicine 32 40,480 4,57

6- 12- Science for educational 45 105,206 11.88 27.86
13- Autobiography for 6 8,617 0.97 '

Educational

14- ScienceB for Educational 25 67,720 7.65
15- Recipes for Arts 9 4972 0.56
16- Short stories for Arts 31 46,884 5.29

7- 17- Children's stories for Arts 26 21,958 2.48 23.69
18- Interviews for Arts 22 56,011 6.32
19- Autobiography for Arts 33 80,023 9.04

8- 20- Interviews for music 1 417 0.05 1.49
21- Autobiography for music 6 12,729 1.44)

Total 424 885,632 - -

Table 6: Number of Texts and words in LACC corpus after Re-categorization

Also, a comparison between the two collections is shown in terms of number of files
as in Table 7 and in terms of words as in Table 8. It is clear from these two tables
that number of files or words are not evenly distributed among domains in both
collections, i.e. their generality, although in LACC, this is clearer. However, as is
shown below, after combining LACC with AT8 collection, the generality of the final

corpus is more similar among domains using AT8 scheme.

No Catego # files, # files, # files, final
gory LACC gQ (Ci) LACC ATS gQ (Ci) ATS corpus gQ (Ci)
1- Politics 23 5.42 50 13.16 73 9.08
2- Economics 28 6.60 45 11.84 73 9.08
3- Religion 32 7.55 51 13.43 83 10.32
4- Social 91 21.46 38 10 129 16.04
5- Sports 4 0.94 61 16.05 65 8.08
6- Educational, 118 27.83 43 11.32 161 20.02
7- Arts, Culture 121 28.54 50 13.16 171 21.27
8- Music 7 1.65 42 11.05 49 6.10
Total 424 - 380 - 804

Table 7: Comparison between LACC and ATS8 collections in terms of number of fiI;as
according to AT8 categorization scheme

43

No. Category # words, % # words, % words, # words, % words,
LACC words, AT8 AT8 final final to
LACC corpus total
1- Politics 70,816 72.28 27,164 27.72 97,980 9.08
2- Economics 66,354 74.66 22,516 25.34 88,870 8.24
3- Religion 133,639 82.40 28,538 17.6 162,177 15.03
4- Social 136,322 86.34 21,562 13.66 157,884 14.63
5- Sports 8,809 28.56 22,266 71.65 31,075 2.88
6- Educational, 246,697 90.62 25,538 9.38 272,235 25.23
health and
medicine
7- Arts, Culture and 209,849 87.17 33,518 13.77 243,367 22.56
Literature
8- Music 13,146 51.91 12,180 48.09 25,326 2.35
Total 885,632 - 193,282 - 1,078,914 -

Table 8: Comparison between LACC and ATS8 collections in terms of number of words
according to AT8 categorization scheme

Also, AT8 collection was re-categorized according to the general domains assigned

in [163] and a comparison between LACC and AT8 collection in that regard is

shown in Table 9.

Doma ATS8 collection LACC Final corpus
in # # % # # % # # %
N N 9,(c;)
file word word file word word file word word
Politics 50 13.16 27,164 14.05 10 2.36 44,590 5.03 60 7.46 71,754 8.1
Arts 38 10 23,891 12.36 129 3042 220,529 24.9 167 20.77 244420 22.65
Appl 24 6.32 15,432 7.98 57 13.44 108200 12.22 81 10.07 123,632 11.46
science
Nat 1 0.26 308 0.16 45 10.61 105206 11.88 46 5.72 105514 9.78
science
Comm 47 12.37 22,876 11.84 28 6.6 66,354 7.49 75 9.33 89,230 10.08
erce
Social 110 34.74 62,696 32.44 59 13.92 224450 2534 191 23.76 287,146 26.61
science
S
Life - 32 7.55 61,400 6.93 32 3.98 61,400 5.69
Leisure 110 28.95 40,915 21.17 64 15.09 54,902 6.2 174 21.64 95,817 8.88
Total 380 47.26 193,28 - 424 52.74 885,63 - 804 - 1,078, -
2 2 914

Table 9: Comparison between LACC and ATS8 collections in terms of number of files
and words according to LACC categorization scheme

44

percentage of words in both corpuses
according to LACC categorization

Leisure;
588 Puolitics:

5.1

Life; 5.69

percentage of files in both corpuses
according to LACC categorization

Politics;
Leisure; 746

21.84
Life; 3.98 .

b

Social X Applied
sciences; S;[]eon8$s
26.67 Social T
Applied sciences Commer S"i?;ﬁ;z'g
sciences,; L2378 .
Commer Matural 1146 ce; 9.33 572
ce 10.08 geionces;
975
(@) (b)

Figure 5: Percentage in final corpus according to LACC categorization scheme for (a)

words, (b) files

Figures 5 and 6 illustrate the information provided in Tables 7 & 8 regarding the

effect of both categorization schemes on final corpus.

percentage of words in final corpus according percentage of files in both corpuses
to our categorization according to our categorization
b usic;
Arts, 245 -
Culture Faolitics;
and 9.08 Politi
i olitics;
thggag%re, Economics M usic; 6.1 .06
Econamic
.8.24 Arts, .
Culture s.9.08
and
Literature; X
Religion; 21 27 Religion;
15.03 10.32
Social;
14.63
E?uhceagighna Education
' and al, health
medicing; and 5 .
. . ports;
Snort medicing,
25.23 FQJDE!E!S' 20.02 8.08
(@) (b)

Figure 6: Percentage in final corpus according to AT8 collection categorization scheme
for (a) words, (b) files

Percentages in Tables 7 and 9 as well as in Figures 5 and 6, for both categorization
schemes illustrate that the generality among suggested domains is not consistent.
Also, when using the LACC categorization scheme no or nearly no texts were

available in the two domains life and natural sciences as in the AT8 collection.

The distribution of texts in the final corpus along three major source categories and
according to geographical regions is shown in Figure 7. Figure 7a illustrates that

large percentage of texts came from both magazines and newspapers sources and

45

Figure 7b illustrates that about 60% of texts were provided from the Arabian Gulf
region. Also, on average, the number of words per text in final corpus is about 1,342
words. Thus, we have decided to use the AT8 collection categorization scheme. The
final corpus characteristics are presented in Table 10. The final corpus categorization

is used for single-label TC in Chapter 5.

Distribution of texts in Final corpus along sources Distribution of Final corpus according to
region
40 Europe others;
400 \ and
350 / Usa, 9.2
5 300 Arab
a 250 naorth
§ 200 african ;
z 150 4 98
100 N\
50
0 T T
new spapers magazines and channels websites
Sources

(@) (b)
Figure 7: Distribution of texts in final corpus along (a) three major sources, (b) region

Table 10 presents the number of files in each category of the final corpus and as can
be seen from generality values that the corpus is less skewed than before. It should
be noted that through the process of manual re-categorization. Many texts could be
classified into more than one domain. This was further investigated by distributing a
questionnaire to native Arabic speakers requesting them to classify attached texts
with one or two classes among predefined eight classes to develop the first multi-

labelled Arabic corpus that is briefly presented in Chapter 7 for future work.

Domain # files do(c)
Politics 73 9.08
Economics 73 9.08
Religion 83 10.32
Social 129 16.05
Sports 65 8.08
Educational, science and 161 20.02
health
Arts, Culture and 171 21.27
Literature
Music 49 6.1
Total 804

Table 10: Final Corpus' number of files and generality among classes

46

Usually Arabic texts are available in MSA and do not contain words with short
vowels, nunnation, kasheeda or assimilation markers. Thus, in the pre-processing
stage before applying root extraction or TC techniques such markers are removed (if
available in the text) along with punctuation marks, function words, digits and
English letters. Next, the construction of function words list is presented as part of

the pre-processing stage.

3.4 Pre-processing Steps

3.4.1 Arabic Function Word List Construction

From a non-linguistic point of view, a function word is a word [87] that does not
carry information. It has mainly a functional role and is usually removed in TM
methods to help the methods to perform better.

Here we present the Arabic function words list that is formed from 2,549 words [96].
Examples of function words are the separate prepositions, personal pronouns,
demonstrative pronouns, interrogative pronouns, relative pronouns, conjunctions,
and interjections as shown in Table 11 as well as in appendix I. Imperfect verbs such
as kAn wAxwAthA standing for the verbs ‘was and its sisters' were included in the
function word list along with similar verbs such as OSbH, mAzAl, or OmsY. Also,
words as Ontm, mvlihm, Elyhn, which are derivations from Ont, mvl, EIY
respectively, whether for dual or plural forms, are added to function word list. The
function word list constructed here is used in both Chapters 4 and 5 when preparing
texts for root extraction or TC methods by removing function words from texts in the

final corpus.

47

Arabic function word Transliterated Stands for

‘W iy’ to, unto, until
‘sle’ ‘ElY’ Over, on, or against
“u ‘Ond’ I
o ‘nHn’ We
“Caf? ‘Onta’ masculine single you
‘R’ ‘hn~’ plural feminine they
€138’ ‘hA*A’ masculine single this
‘o’ ‘hAtAn’ feminine dual this
G ‘mn’ Who
‘i’ ‘L’ ‘mA*A4’, ‘mA’ What
‘Al ‘Al Who
) ‘w’ AND
< ‘Ow’ OR

Table 11: Some examples of Function Word list
3.4.2 Arabic Text Pre-processing
From Figure 8, the first process before performing root extraction or TC methods is
to remove from texts English letters, punctuation marks, nunations, assimilation
markers, short vowels, kasheeda, function words or numerals (either Hindi or
Arabic). This is performed for all texts in final corpus in preparation for applying

root extraction and/or TC methods.

3.5 Conclusions

Two Arabic text collections are fully described and manually classified into one final
corpus and their labeling is unified under eight general classes. This corpus is
composed of 804 files and about a million words. It is prepared for the
implementation of root extraction techniques as shown in Chapter 4, and single-label
TC techniques as shown in Chapter 5. The generality differs among the final corpus's

eight classes. This difference is expected to affect TC results presented in Chapter 5.

48

Collect and describe Arabic Text Corpus

‘

Remove punctuation marks, short vowels,
kasheeda, assimilation marks, nunations,
English letters, function words and numbers

[—

Apply best Root Extraction method to provi
normalized words, stems, and roots for

- respective words in Text.

Represent texts using VSM method for a
feature choises.

‘
Figure 8: Preprocessing Steps before Arabic TC

49

Chapter 4: The Development of an Arabic Root Extraction

System

4.1 Introduction

In this chapter, the focus will be on investigating two different Arabic stemming
techniques, improving them and finally comparing their performances. The two
approaches for stemming used here are based on the works of Al-Ameed's [1] and
Al-Shalabi, et al [17]. The first approach is a rule-based one [1]. The choice of the
rule-based technique was because it was reported in the original work to have an
accuracy value higher than 90% [1]. The second approach is a weight-based
technique that is introduced by Al-Shalabi, et al [17] technique. The choice of this
technique was because it is simple, easy to implement and had a reported 90%
accuracy. However, in [17] no information was provided for the reasons of choosing

the weight and rank values for the alphabetical letters.

In this Chapter, a proposed adjustment method to the weight-based technique
described in [17] and two enhancement methods (named Expanded Weight Based
Methodl (EWBM1) and Expanded Weight Based Method2 (EWBM2)) are
implemented here. Such contributions have also been reported by the author in [14].
The two original approaches [1, 17] presented here do not handle weak words, names
of places, countries, cities, months, foreign Arabized words, geminated words
(except for the rule-based one in section 4.2 where geminating is partially handled),
or broken plurals (except for the rule-based one in section 4.2). In both approaches,

the concentration of affix removal is on the letters in sOltmwnyhA.

50

Since the two approaches used here do not handle irregular words, then the first
contribution of this thesis is through proposing and implementing the Correction
algorithm (as investigated in [13]). This algorithm is included here into all root
extraction algorithms and its effectiveness in improving their performance is
investigated. The results of implementing these techniques will be compared with
those of a rule-based approach thoroughly investigated by the author of this thesis

and reported in [14].

Figure 9 summarizes the contributions provided by all implemented root extraction
techniques (described in coming subsections), and demonstrates how original
algorithms were incorporated and enriched in this thesis. The comparison between
these techniques is performed according to two criteria: 1- accuracy, and 2-

execution time.

The final contribution here addresses the case of handling foreign Arabized words
and names of places, countries, cities, and months by developing a list of such cases
as described in section 4.5. This list is incorporated in a final proposed root
extraction system that is presented in Figure 28 at the end of this chapter. Figure 28
briefly summarizes the effort of the author to combine the best features of proposed
root extraction techniques that handle weak, eliminated-long-vowel, hamzated, and
geminated words, the best choices of investigated normalization lists, and extracting
quadriliteral roots (proposed in EWBM2 method) and as such presents the first
contribution. It also includes the second contribution by handling foreign Arabized
words. Thus, Figure 28 presents an effort to combine root extraction algorithms in an

overall approach.

51

The remainder of this chapter is organized as follows: in Section 4.2 the rule-based
approach is presented along with the contribution for correcting irregular words
through our proposed Correction algorithm. In Section 4.3, the four weight-based
techniques are presented. Section 4.4 presents and analyzes the evaluation criteria
and experimental results for implementing all techniques. In Section 4.5, the list of
foreign Arabized words and names of places, countries, cities, and months is
constructed and presented. Section 4.6 presents the final proposed root extraction

system. Finally, Section 4.7 discusses conclusions and future work.

4.2 Rule-Based Approach

In this part, the concentration will be on investigating/improving a rule-based light
stemmer/root extractor technique on Arabic based on the work of Al-Ameed [1]. Al-
Ameed method was chosen here since it reported an accuracy of root extraction of
more than 90% when tested on many derivations of many roots. However, Al-
Ameed’s method was not designed to handle irregular words in the Arabic language.
Irregular words represent a significant portion of words used in standard text (about
34%)%. This limitation in Al-Ameed’s method is addressed in this thesis by
introducing an enhanced method, based on Al-Ameed original approach, which
properly handles irregular words during the root extraction step without degrading the
performance of the original rule-based method.

The performance of the original method by Al-Ameed and the performance of the
enhanced method in handling irregular words in Arabic such as weak, two-letter
geminated, hamzated, and eliminated-long-vowel words, is evaluated using first the

AT8 text collection and then LACC collection. Furthermore, their efficiencies (based

% percentage values presented here are gathered from 40 texts chosen arbitrarily in the collection.

52

Inputs: Documents in corpus,
Remove Function words,
punctuation marks...etc

| |
Rule-Based Method

apply normalizationl

outputdoc.of
normalized

words

output doc.of
stems

outputdoc.of
normalized words

output doc.of| Apply Al-

Weight-Based
Method

stems Shalabi

outputdoc.of

roots

method

roots

output doc.of]

contribution through
handling irregular cases,
apply improved Al-Shalabi
‘method

Apply
Adjusted Al-

Shalabi

contribution through
handling irregular cases,
apply improved Adjusted

GURLL dpc. J_ outputdoc.
of normalized
of roots

outputdoc.
of roots

Apply
EwBmM1

outputdoc.
of normalized

outputdoc.
of normalized

outputdoc.
of roots

outputdoc.of
roots

contribution through handling
irregular cases, apply improved

Al-S,

thod

outputdoc.

Euiputdons: of normalized

of roots

outputdoc.
ofroots

Apply
EwBmM2

outputdoc.
of normalized

contribution through handling
irregular cases, apply

Figure 9: A brief illustration of implemented root extraction techniques

method
outputdoc. R R outputdoc. outputdocof) § [L
of normalized p : of normalized normalized p :
of roots | of roots

53

on execution time) are analyzed. A similar set of evaluation steps are also performed
for the weight-based approach, which will be discussed in detail at a later stage in this
chapter.

Next a brief description of the rule-based approach is presented.

4.2.1 Description

The rule-based root extractor is implemented starting from the work of Al-Ameed
[1] and is composed of two parts. The first part is a rule-based light stemmer where
prefixes and suffixes are removed from the word also according to specific rules.
The second part is a pattern-based infix remover where infixes are removed from the
word according to also specific patterns. These two parts represent the entire original
algorithm (named here the Rule-Based algorithm). As cited in Al-Ameed’s work,
this algorithm was tested against the work of Chen and Gey [44] only due to the fact
that the later work gave better results than both Darwish's and Larkey's works [49],
[121]. In Al-Ameed's work [1], the analysis of the performance of the two algorithms
(Chen and Gey algorithm versus Al-Ameed one) showed that Al-Ameed’s algorithm
gave much better performance results. However, Al-Ameed's Rule-Based algorithm
does not handle irregular words, resulting in substantial percentage errors during root
extraction. Thus, a new algorithm that handles such cases is presented in Section
4.2.2 when it is added at the end of the Rule-Based algorithm in order to enhance its
performance. In Section 4.2.3, the results of this Rule-Based root extraction
approach will be compared with that of the enhanced Rule-based technique (i.e. with
the Correction algorithm included).

As can be seen from the algorithm below, the rule-based technique outputs, besides
to normalized words file, two files: the first file contains the stems, and the second

file contains the roots.

54

Rule-Based Algorithm

Inputs: Set of preprocessed documents D = {dl, dz, wee ., dn},
Predefined root lists

Outputs: triliteral and quadriliteral roots for each new document
new di 2 in output set DD2, stems for each new document new di 1 in
output set DDI1

START

1- For each document di do {

2- LastWord = Count No Words (di)

3- For j = 1 to LastWord in di do {

4 - LastLetter = Count No Letters(wj,c), m = 0

5- If (LastLetter <= 3) then {Final Wordj = wj, m = 1, go to *}

% output normalized words to an output document to be used later for
™

60— New Wordj = Normalize (wj)

7= Write New Wordj to output document new di 1

% Perform light sEemming algorithm for word wj_ B

8- New Wordj = Light Stemmer Algorithm(wj)

9- LastLetter = Count No Letters (New Wordj,c)

10- Write New Wordj to output document new di 2 3%output stems to
a different document to be used later for TM

11- If (LastLetter <= 3) then {Final Wordj = New Wordj, go to *}
% Perform Infix Remover algorithm

12- New Wordj = Inf Remover Algorithm(New Wordj)

13- LastLetter = Count No Letters (New Wordj,c)

14- Write Final Wordj to output document new di 3 & output roots
to an output document to be used later for TM

15- * if m == 1 then ({Write Final Wordj to output document
new di 1}

% calculate the accuracy of algorithm

16- count = Count Correct Roots(Final Wordj, count)}

17- Accuracy of document new di 2 = (count/LastWord) 100% }

END

To illustrate the performance of the algorithm above, an example of the outcome of
each part in it is provided here. For the word agbwadial transliterated "AstHsAnhm™?’,
this word becomes after the light stemmer part in step 8 is performed Glwa "HsAN"
and after the infix remover part is performed in step 12 ¢~ "Hsn™ which is the
correct root for that word.

4.2.2 Enhanced Rule-Based Technique

We contribute to enhance the Rule-Based approach by proposing an algorithm to
correct irregular words as presented in [13]. This proposed algorithm handles:

1- weak words by replacing the long vowel in it by another long vowel according
to specific rules in Arabic,

27 Arabic letters and words are presented using Buckwalter's transliteration which is available in appendix I11.

55

2- eliminated-long-vowel words where, for specific cases of these triliteral words,
when for example their tense is changed from past to present tense, the vowel is
cancelled and an extra letter is added to that word (whether at beginning or end),
3- two-letter geminated roots as "rd" when the word starts/ends with either ‘y, t,
n, or A’/ ‘t, p, or i’ respectively the extra letter must be deleted and the letter ‘d’
is doubled,
4- specific cases of Hamza (if present) in a root is corrected.
The proposed Correction algorithm includes 5,737 possible corrections of words in
71 predefined lists (collected from references [31], [33] according to specific rules
for only triliteral roots (see detailed flowchart for algorithm and samples of lists in
appendix Il)).
The accuracy of the Rule-Based algorithm is calculated by first comparing its
extracted roots with a predefined list of triliteral and quadriliteral list of 5,405 roots
(4,655 triliteral roots and 750 quadriliteral roots) gathered from [31], [33], [67] (see
sample root lists in appendix Il), then counting the roots that match the ones in the
predefined list, and finally calculating the percentage of correctly extracted roots.
The same applies when the Correction algorithm is added at the end of the Rule-
Based approach. In other words, when our Correction algorithm is added at the end
of the Rule-Based approach, the extracted root is checked whether in the predefined
root list. If not, the extracted root is checked if triliteral and if any of the rules in the
Correction algorithm apply for it. Finally, if the extracted root belongs to a

predefined list for a specific rule, then the root is corrected to the proper one and

then accuracy is calculated as above.

As can be seen from the Correction algorithm and Figure 10 that not only rules were
used to specify each case but also in following the rule the word was compared with
a predefined root list of words that do indeed follow that rule in Arabic. This
additional step was performed in order to minimize the effect of extracted roots

where the rule apply but are not the correct ones. Examples of words that this

56

algorithm handles are dwas "ySI", ai "tld", J& "gAl", or <« "tmt", these words become

-

after performing this algorithm Jwas "wSI", oy "wld", Js® "qwl”, or a<i "tmm"
respectively.

Correction Algorithm

Inputs: Arabic triliteral word, 71 predefined lists
Output: corrected triliteral Arabic word

START

1- Let chl <- first character of Word; ch2 <- second character of
Word; ch3 <- third character of Word

% handling 27 weak cases, some eliminated-long-vowel cases (6 cases
for pattern yEl, one case for yfE) and 18 hamzated word cases (e.g.
ySO becomes S$SA', some are composite with either weak or eliminated-
long-vowel cases) (total of 47 different rules)

2- If chl is either y, t, &, A, n, or } { % (hamzated, eliminated-
long-vowel cases, or both)

3- if word is in specific lists {

4- change chl according to specific cases, go to *.}}

5- If ch3 is either vy, Y, &, }, w, or A { & (weak, eliminated-long-
vowel, hamzated cases)

6- if word is in specific lists {

7= change ch3 according to specific cases, go to *.}}

8- If ch2 is either }, w, O or A { % (weak, eliminated-long-vowel,
hamzated cases)

9- if word is in specific lists {

10- change ch2 according to specific cases, go to *. }}

% handling geminated words (2 different rules)

11-If chl is either " t, y, n, or A {

12- if word is in specific lists {

13- delete chl and double ch3 according to specific cases, go to
*}}

14- If ch3 is either h, or p {

15- if word is in specific lists {
l16- delete ch3 and double ch2 according to specific cases, go
to *}}

$ handling one geminated, 6 hamzated (some are composite with
eliminated-long-vowel cases) or eliminated-long-vowel cases (18
cases for pattern fEt, 4 for flt) (23 different rules)

17- If ch3 is t {

18- if word is in specific lists {

19- either

20- delete ch3 and double ch2 according to specific cases
% (geminated cases)

21- OR replace ch3 by only one of letters A4, y, w, or Y

[

according to specific rules % (eliminated-long-vowel & hamzated
cases) }}

22— * Return corrected word

END

It should be mentioned here that during the construction of the Rule-Based method,
function words were removed before the Rule-Based algorithm was implemented

and also at its middle (i.e. after light stemming is performed). However, from

57

preliminary experiments, it was found that this second step removes words that are
not function words. Thus, it was decided to remove function words only once before
implementing this algorithm. The results of implementing this proposed algorithm

are presented next.

4.2.3 Results of Implementation

Al-Ameed method [1] reported accuracy for root extraction of more than 90% when
tested on many derivations of many roots. Al-Ameed's algorithm was tested there
using a specially customized test set which was composed of 199,584 distinct words
derived from 24 distinct triliteral roots and 119,700 words derived from 25 distinct
quadriliteral roots. Since this test set is not available to us, such accuracy values
could not be verified. However, we used the AT8 collection (described in section
3.2) to test both Al-Ameed's algorithm and the Enhanced Rule-Based technique.
The experimental results of the accuracy for the Rule-based approach and the
Enhanced Rule-Based technique are presented. In Table 12 and Figure 11 the

following stand for:

RB: Rule-Based algorithm, Enh_RB: Enhanced Rule-Based with Correction algorithm (in
some figures and tables it is abbreviated RB_corr)

Results in Table 12 show that adding our proposed Correction algorithm to the
Rule-based approach increased the latter's accuracy by about 14% and relatively
improved it by about 23%. Also, bolded values in Table 12 present maximum

accuracy values whereas italic ones present minimum accuracy values.

Category RB (%) Enh RB (%)
Politics 58.89 73.3
Economics 58.16 71.39
Religious issues 62.99 75.01
Social issues 60.56 74.79
Music 58.7 73.78
Educational ... 60.67 74.81
Sports 56.91 70.37
Arts ... 61.41 74.27
Average 59.79 73.47

Table 12: Performance of Rule-Based and Enhanced Rule-Based algorithms in all
categories using AT8 collection

58

chl <-1st character of Word;
ch2 <- 2nd character of Word;

ch3 <- 3rd character of Word

A 4

ord
specific lists

Change chl

A

word €
specific lists

word € No

specific lists

Change chl
v

Change chl
v

A

Yes ch3 is eithe

horbo

word €
specific lists

chl is either
t.v.n.orA

Change chl
v

A

ord €
specific lists

specific lists

Yes
Change chl Change chl
\ 4 A 4 >
v]
Return Final_word; 7
Figure 10: Flowchart of Correction Algorithm

80

70

60 -
S i
z >0 ERB
S 40 -
3
o 30 -
<

20

10 4 mEnh RB

0 4

& & & P & &P & 5
= <& & X A R ¥

Figure 11: Performance of Rule-Based and Enhanced Rule-Based algorithms.

59

At the start of this part, the intention was to use Buckwalter's stemmer® for
comparison. However, Sawalha and Atwell [160] reported that it used Buckwalter's
stemmer along with two other stemmers (Khoja's algorithm [111] and Al-Shalabi
weight-based [17] one). Buckwalter's stemmer provided lowest accuracy values
among stemmers used. The main limitations of Rule-Based approach were: 1- a
rather limited number of patterns used, 2- two-letter geminated roots were not
extracted as a first step, 3- couldn’t handle prefix-suffix dilemma completely and
efficiently although it used the most available prefixes and suffixes. In general, the
performance of proposed Correction algorithm can be increased by adding further

rules and restrictions.

4.3 Weight-Based Approach

In this part, the main purpose is to use and propose variants of a weight-based
approach to extract roots of words in texts as a preprocessing step for TC and to
compare the results of such techniques with those of the Rule-based one explained in
section 4.2. The weight-based work proposed by Al-Shalabi, et al [17], named here
Al-Shalabi, will be described in section 4.3.1, and a slight adjustment to it (Adjusted
Al-Shalabi) will be described in section 4.3.2. The contribution here is through
proposing two variants (Expanded Weight Based Methodl (EWBM1) and
Expanded Weight Based Method2 (EWBMZ2)) [14] that will be explained
thoroughly in sections 4.3.3 & 4.3.4 respectively.

The above techniques test at the beginning if the number of letters in the word is less
than or equal to 3 and if so take the word, except for EWBM2 technique, without

any further processing. EWBMZ2 technique tests if a two-letter word is geminated by

28 Buckwalter stemmer version 2.1 is found at URL: http://www.gamus.org/

60

comparing it to a two-letter geminated words list. If it is in the list, the EWBM?2
technique presents the two-letter word as a triliteral root by doubling its second
letter. Also, EWBM1 & EWBM2 techniques extract specific cases of quadriliteral
roots along with triliteral ones whereas Al-Shalabi and Adjusted Al-Shalabi
techniques extract only triliteral roots. Section 4.3.5 presents the outcome of
implementing these techniques. Next is a description of Al-Shalabi algorithm.

4.3.1 Description of Al-Shalabi Algorithm

Al-Shalabi algorithm [17] employs a letter weight, an order index and assigns a rank
to a letter according to its order in the word. It extracts the root for the word through
the following simple steps: 1- for each letter in the word (from right to left) it applies
weight and rank values according to Tables 13 and 14 while assigning order values,
2- calculate the product of the rank and weight for each letter, then 3- keep only the
letters with the first three smallest product values without changing their order in the
word. In order to illustrate the steps of this algorithm, two examples of words are
shown in Table 15 where the least three product values are bolded. As shown in
Table 13, the rank of a word is calculated differently when its number of letters is
odd from that when it is even (an example showing ranking is presented in Table
15). The weights of letters are numerical values provided for letters categorized into
groups (e.g. allocating the group of letters 'p, A" a weight of 5) as shown in Table 14.
Al-Shalabi, et al [17] work did not explain or clarify why or on what basis it used
such ranking or weighting only that such groups and their values were chosen after
extensive experimentation. For a native Arabic speaker it is understood why the
letters p, A are given a high weight (compared to others) since the letter p appears at
the end of a word and is a suffix and the letter A appears at any position in a word

where it is also a prefix, infix or suffix in most cases. Also, it is noted that letters b, f,

61

k are considered among the 'Rest' group, which means that these letters will always
be considered by the algorithm as original. Yet, such letters, if present at the
beginning of a word, might be extra letters. The two examples shown in Table 15 are
presented separately where the algorithm first provides an order value for each letter,
a weight value, a rank value then calculates the product and finally takes the three
letters in this word with least product values. Al-Shalabi algorithm was implemented
with/out the Correction algorithm, and in section 4.3.5 the results of its

implementation is shown and analyzed.

Letter position Rank (if word length: even) Rank (if word length: odd)
1 N N
2 N-1 N-1
3 N-2 N-2
INE2] N/2 +1 [N/2]
[N/2]+1 N/2+1-05 [N2]+1-15
[N/2] +2 Ni2+2-05 [N2]+2-15
IN/2]+3 N/2+3-05 [N/2]+3-15
N N-05 N-15

Where N: number of letters in a word

Table 13: Letter ranking in Al-Shalabi algorithm (derived from [17])

Letters Ap Yy, } tLw,Y O,I,mn I,s,h Rest
Weight 5 3.5 3 2 1 Zero

Table 14: Weights of letter groups in Al-Shalabi algorithm (derived from [17])

letters h m A d X t S |
Order 7 6 4 3 2 1
Weight 5 0 3 1 2
Rank 7.5 6.5 55 4.5 5 6 7 8
Product 7.5 13 27.5 0 0 18 7 16
Root sxd (X)
a) word IstxdAmh, correct root xdm
Letters t A m Y | E t | A
Order 9 8 7 6 5 4 3 2 \
Weight 3 5 2 3.5 1 0 3 1
Rank 7.5 6.5 55 4.5 5 6 7 8
Product 225 325 11 15.75 5 0 21 8 45
Root IEl (X)

b) word AItElymAt, correct root EIm
Table 15: Examples of extracted roots using Al-Shalabi algorithm (from right to left)

62

4.3.2 Adjustment of Al-Shalabi Algorithm

It was noticed in [17] that there was a discrepancy in some of its examples. The two
examples that caused such discrepancy were the ones when the letter | was at first or
second position in a word where the authors have assigned it a weight of 5.
However, it was given a weight of 1 when it was in other positions (as was specified
in their paper for the weight of this letter). This information was not explained or
mentioned throughout that paper except only in the two examples. So, here this is
considered as an adjustment (named Adjusted Al-Shalabi) by implementing it and
investigating its accuracy while maintaining the rest of the procedure mentioned in
[17]. Thus, the same ranking, weighting and ordering of letters in a word was
maintained, except that for letter | a different weight of 5 was given if it was in the
first or second position in the word. Following this adjustment for the weight of the
letter | when applied on the same two examples in Table 15, the expected extracted
roots would be sxd, EIm respectively. Adjusted Al-Shalabi algorithm was
implemented with and without the Correction algorithm. In section 4.3.5, the results

of its implementation is shown and analyzed.

As can be seen from the examples in the previous two techniques, it is expected that
these algorithms will not extract roots with high accuracy. However, since this
approach is very simple and easy to implement, then proposing a different weighting
scheme for the groups of letters might produce higher accuracy results. This is on the
basis of taking into consideration the characteristics of Arabic language letters. This
led us to look for any specific percentages of occurrences for letters in texts.
Throughout the process of searching for information regarding these letters, statistics

showing the percentages of such Arabic letters were found®. After close

29 From Khaled AlShamaa web site, URL: http://www.al-shamaa.com/php/arabic/index.html, [last accessed: 4/6/2010]

63

http://www.al-shamaa.com/php/arabic/index.html

examination of these percentages and including the effect of the number of letters
before and after them as shown in Table 16, it was not possible to quantitatively

reach a weight for these letters or classify them into separate distinct groups.

However, it was possible to do so qualitatively: 1- At a first analysis, it was proposed
that these letters be grouped into five groups (as Al-Shalabi algorithm or its
adjustment) where such groups are assigned classes: high, high or moderate,
moderate, moderate or low, and finally low. A high class contained letters p and A.
A high or moderate class contained letters y and }. A moderate class contained
letters t, w, and Y. A moderate or low class contained letters m and n. Finally, a low
class contained letters h, I, and s. 2- In a second analysis; it was proposed that these
letters be grouped into four groups where such groups are assigned classes: high,
high or moderate, moderate, and finally moderate or low. A high class contained
letters p, h, and A. A high or moderate class contained letters y and }. A moderate
class contained letters I, t, w, and Y. Finally, a moderate or low class contained
letters m, s, and n. 3- Finally, at a third analysis, it was proposed that these letters be
grouped into three groups where such groups are assigned classes: high, moderate,
and finally moderate or low. A high class contained letters p, h and A. A moderate
class contained letters y, }, t, w, and Y. A moderate or low class contained letters I,
m, s, and n. The reason why no conclusive number of groups was reached is the
nature of some of these letters and their similar percentages in appearing as extra and

original letters in words.

It was not possible to reach all the weights proposed by Al-Shalabi algorithm from
these statistics. However, since the initial number of groups found here are 5,
weighting letters was thus given by assigning the groups weights from 5 to 1

according to classes assigned: 5 for high, 3.5 for high or moderate, 3 for moderate, 2

64

for moderate or low, and 1 for low. In order to further explore such different choices
of the number of groups, EWBM1 method (explained next) will adapt grouping
these letters into four groups as shown in Table 17, while EWBM2 method will

group such letters into three groups as shown in Table 18.

Lette Rate Letters letters no letter letter Qualitative weight for rate values
r (%) no after, before, after before only

space not given 27 84 32 100 43.02 A 219 p not a character
A 19.65 31 96 30 940L 40.8 | 42.16 High
p 4.22 1 30L 30 840L 100 space YA 8 y moderate or low
h 1.79 14 44 22 69 0L £,V A Yo,A |-t Low
1 0.50 10 31 6 190L £),0¢ y 52.31 A Low
y 6.66 28 88 31 970L 25.49 16.07 f high or moderate
| 12.99 30 94 29 910L Y\,v¢ A Y A high
t 5.64 31 97 24 750L 22.76 2249 A moderate

w 5.70 30 94 27 84 0L ARYER Y 41.02 moderate
Y 0.91 1 30L 9 280L 100 space VY, EY | Low
m 8.52 30 94 25 78 0L 19.73 22.33 | high or moderate
n 3.86% 25 78 21 66 OL 42.57 YANY A moderate or low
S 2.48% 20 63 17 53 OL Yool YA QY | moderate or low

Where OL stands for Of Letters
Table 16: Percentages of Letter Appearances in Texts

4.3.3 First Expanded Weight Based Method

Here, it is proposed to use the same ranks of letters as that of Al-Shalabi algorithm
but to assign a different set of weights to letters as shown in Table 17 in order to
provide a triliteral root according to their order. The five groups of letters that were
proposed in [17] have been reduced to four with shown weights. The letter | was
moved to third group with weight 3. The letter s was moved to the fourth group to
give it a higher value especially when at the beginning of a word (most likely it will
be an extra letter but an original letter elsewhere) and finally the letter h was moved
to the first group with weight 5 since it is expected that when h is at the end of the
word, it is likely to be a suffix since it might be wrongly written as h where as it is
meant to be p. This algorithm is called EWBML1 (its flowchart is shown in appendix
I1). Moreover, this algorithm proposes to extract specific cases of quadriliteral-root-
based words. This is performed by counting the number of zero product values in the

word. If the number of zeros is greater than 3 and the number of letters in the word is

65

greater than or equal to 4 then this proposed variant algorithm provides the
quadriliteral root of the letters (i.e. choose the least four product values keeping the
order of letters maintained) else it provides the triliteral root. EWBM1 algorithm
shown below is a combination of the original weight-based method and rules to

handle quadriliteral roots, i.e. a hybrid method.

Letters Aph Y, } It w, Y O,l,m,n,s rest
Weight 5 35 3 2 Zero

Table 17: Weights of Letter groups for EWBM1 algorithm

EWBM1 Algorithm

Inputs: Set of ©preprocessed documents D = {dq, d,, e o, dn}y,
Predefined root lists, Predefined letter groups weight lists
Outputs: List of triliteral and some quadriliteral roots for each
new document new _d; 1 in output set DD

START

1- For each document d; do {

2- LastWord = Count No Words (d;)

3- For 7 = 1 to LastWord in d; do {

4- LastLetter = Count No Letters (ws,C)

5- If (LastLetter <= 3) then {Final Wordj; = wj, go to *}

o- Provide the order, weight values for each letter in word wy
7= Perform calculating the product of order and weight wvalues
for each letter in word wy

8- Count = Count No Zero Product Letters (wy)

3 Take least 4 product value letters keeping their order

9- If ((Count > 3) and (LastLetter >= 4)) then

10- {Final Word; = Extract 4letter with least product(wy), go
to *}

11- Else {Final Word; = Extract 3letter with least product (w;) }
12- * Write Final Word; to output document new d; 1

13- count = Count Correct Roots (Final Wordj, count)}

14- Accuracy_ of document new d; 1 = (count/LastWord) 100%}

END

So, the original two examples in Table 15 would generate when using this proposed
algorithm roots sxd, EIm. In brief, this algorithm varies from previous ones by
providing different groups of letters with different weight values and extracting four-
letter roots. EWBML1 algorithm was implemented with/out the Correction algorithm

and in section 4.3.5 results of its implementation is presented and analyzed.

66

4.3.4 Second Expanded Weight Based Method
EWBM2 technique uses the same ranks as described in Al-Shalabi technique. This
second technique performs the following steps:

1- It excludes the letter combination Al from the word if the word starts with it,

2- It replaces the letters O, I, | with A only and replaces letters }, y with Y only
and replaces letter p with h (i.e. a normalization step),

3- It presents specific two-letter geminated words as triliteral by comparing them
with a predefined list of two-letter geminated words (provided in appendix 1)
and if the two-letter word is in the list, the algorithm duplicates the second letter
and adds it to the word,

4- 1t uses a different weighting scheme from the previous three techniques as
shown in Table 18,

5- It provides a quadriliteral root by counting the number of zero product values
for letters in a word (other than the letter b) and by counting the number of
repetitions a letter occurs in a word (other than the letters b or w or A). If the
number of zeros is greater than 3 or the number of repetitions of any letter in the
word is greater than 2 and the number of letters in the word is greater than or
equal to 4, then it chooses the four-letter root with the least product values
keeping the order of letters maintained, else it chooses the three-letter root with
the least product values.
As can be noticed here, more rules were put for choosing a quadriliteral root. This is
due to the fact that in some words such as $dyd, the letter d appears twice but
separated by y and when using EWBM1 algorithm, it will be considered as a correct
root where it is not. The above steps are illustrated in EWBMZ2 algorithm (its
flowchart is shown in appendix II). Since this is also a combination of the original

weight-based method and rules, it is then a hybrid method.

As can be seen from Table 18, the five groups of letters that were proposed in Al-
Shalabi algorithm have been reduced to only three with the shown weights. Here,
the second group in Table 14 is cancelled since its letters are replaced by Y. Also, the
letters I, m, s and n are moved to the third group with weight 2, and the letters t, w
and Y were moved to the second group with weight 3. EWBM2 algorithm was

67

implemented with and without the Correction algorithm where in section 4.3.5, the

results of its implementation is shown and analyzed.

Letters Ah t,w,Y I,m,n,s Rest
Weight 5 3 2 Zero

Table 18: Weights of Letter groups for EWBM?2 algorithm

EWBM2 algorithm

Inputs: Set of ©preprocessed documents D = {d4, dy, e o, dn}y,
Predefined root lists, Predefined two-letter geminated words list, 3
Predefined Replace lists, Predefined letter groups weight lists
Outputs: List of triliteral and some quadriliteral roots for each
new document new _d; 1 in output set DD

START

1- For each document d; do {

2- LastWord = Count No Words (d;)

3- For 7 = 1 to LastWord in d; do {

4- LastLetter = Count No Letters (w5, C)

5- If (LastLetter < 3) then {Final Word; = w;, go to *}

% Remove Al from word (if it starts with it)

o- w; = Remove AL (wy)

% Replace some letters with others from word (a normalization
step)

7= wy = Replace letters (wsy)

8- Provide the order, weight values for each letter in word wj,
9- Perform calculating the product of weight and order wvalues
for each letter in word wy,

10- Count = Count No Zero Product Letters Not b(ws;) % count
number of zeros for product values for letters other than b

11- Repeat = Count No Repetitions Not b w A(w;) % counts the

number of repetitions a letter occurs in word other than the letters
b or wor A

7 Take least 4 product value letters keeping their order

12- If (((Count > 3) or (Repeat > 2)) and (LastlLetter >= 4)) then
13- {Final Word; = Extract 4letter with least product(w;), go
to *}

14- Else {Final Word; = Extract 3letter with least product (w;) }
15- * LastLetter = Count No Letters (Final Wordj, c)

1l6- If (LastLetter == 2) then

17- {cc = Compare (Final Wordj;, 2 letter list)

18- If (cc == 0) then Final Word; = Correct Word(Final Wordj) }

19- Write Final Word; to output document new d; 1

20 count = Count Correct Roots(Final Words, count)}

21- Accuracy of document new d; 1 = (count/LastWord) 100%}

END

Also, the original two examples in Table 15 would generate using this proposed
variant method roots, xdm, EIm respectively. In brief, this algorithm varies from the
previous ones in that it: 1- provides different weight values for different groups of

letters, 2- removes Al from words if these words start with it, 3- replaces specific

68

letters by others (a normalization step), 4- extracts two-letter geminated roots, and 5-
extracts four-letter roots. Table 19 illustrates briefly the various weights for letters

used in all weight-based algorithms as was explained in the sections above.

Letter Rate (%0) Al-Shalabi Adjusted Al-Shalabi EWBM1 EWBM2
A 19.65 5 5
p 4.22 5 5
h 1.79 1 1
} 0.50
y

5 if at beginning 2 positions

|
of word, 1 else

3.86 2 2
2.48 1 1

w 5 3 < = ~

Table 19: Proposed weighting for Assigned Groups in algorithms

It should be noted that Al-Shalabi, its adjustment, EWBM1 and EWBM2 techniques
do not handle weak, eliminated-long-vowel, hamzated words, names of places,
countries, cities, months, broken plurals, or foreign Arabized words (examples are
presented in page 90). So, the Correction algorithm described in section 4.2.2 is
added to all techniques in order to improve their performance and investigate its
effectiveness.

4.3.5 Results of Implementation

Here experimental results demonstrating the accuracy of implementing the weight-
based techniques with/out our proposed Correction algorithm using AT8 collection

are presented. In the following tables and figures the following stand for:

S1: Al-Shalabi algorithm, S1_corr: Al-Shalabi with Correction algorithm,
S2: Adjusted Al-Shalabi algorithm, S2_corr: Adjusted Al-Shalabi with Correction algorithm,
S3: EWBML algorithm, S3_corr: EWBML1 with Correction algorithm,

S4: EWBM2 algorithm, S4_corr: EWBM2 with Correction algorithm.

69

S1(%) S2(%) S3(%) S4(%)

Politics 55.36 62.16 59.39 58.9
Economics 52.59 60.73 58.52 57.44
Religious 53.82 61.63 57.84 59.09
Social 56.44 63.21 59.98 59
Music 55.02 60.86 59.49 60.26
Educational 53.46 62.37 59.73 59.05
Sports 55.53 61.67 57.58 57.23
Arts .. 55.67 63.22 61.38 60.42

Table 20: Performance of weight-based algorithms using AT8 collection

S1_corr(%) S2_corr (%) S3_corr (%) S4_corr (%)
Politics 62.84 72.12 67.08 69.45
Economics 58.9 70.41 65.69 68.61
Religious 61.06 70.78 64.07 68.25
Social 64.13 72.81 67.22 69.37
Music 63.97 71.48 67.1 69.18
Educational 59.85 71.59 66.33 70.11
Sports 62.19 71.53 64.61 67.46
Arts .. 63.42 72.64 67.89 69.78

Table 21: Performance of weight-based with Correction algorithm using AT8 collection

@ms1
H |®S1_corr
os2
0O S2_corr
B S3
@ S3_corr
M |WS4
L |OS4_corr

Figure 12: Comparison between accuracy results of all weight-based algorithms in all
categories with the ones incorporating the Correction algorithm using AT8 collection

Performance of four algorithms
7172
69.03
66.25
- 62.05 61.96
Q
i 59.24 58.92
3
< 54.74
S1 S1_corr S2 S2_corr S3 S3_corr sS4 S4_corr

Figure 13: Comparison between average accuracy results of all weight-based
algorithms with the ones incorporating the Correction algorithm using AT8 collection

70

Bolded values in tables above or below present maximum values whereas italic ones present minimum
accuracy values.

Figure 13 shows that Adjusted Al-Shalabi algorithm with/out Correction provides
the highest accuracy values among the other weight-based algorithms.

Accuracy of all techniques is found by each algorithm through:

1- comparing each extracted root with a predefined list of 5,405 roots that contains
lists of only triliteral and quadriliteral roots (4,655 triliteral roots and 750
quadriliteral roots) (this root list provides the roots without relating them to their
possible derived or inflected words),

2- The algorithm counts the roots that match the ones in the predefined list, and

3- Finally calculates the percentage of correct roots in each text of the collection.

A second method for calculating accuracy is performed by a native Arabic speaker
(NAS) (the author) who manually provided the root for each word. NAS compared
the root extracted by each algorithm with this root and counted the extracted roots
that matched hers and finally gave the percentage of correctly extracted roots for

each algorithm.

4.4 Analysis of Results

A comparison between the experimental results of the Rule-Based and the weight-
based approaches are presented here using the two methods of accuracy calculations
described above. Also, Rule-Based and Adjusted Al-Shalabi algorithms were
implemented using LACC corpus and a comparison between their accuracy and
execution time is presented.

4.4.1 First Accuracy Analysis Method

As has been illustrated, in the tables above and in Table 22 (samples of results of

algorithms are shown in appendix IlI), Figures 14 and 15, that among the four

71

weight-based algorithms (without Correction algorithm), Adjusted Al-Shalabi
algorithm provided the highest accuracy results. It is followed (in descending order)
by EWBM1 algorithm then by EWBM?2 algorithm and finally Al-Shalabi algorithm.
Thus, Al-Shalabi algorithm had the lowest accuracy values, for all categories, among
all four algorithms. This algorithm's accuracy values are in agreement with those
reported in [160], although implemented on a different text collection. Also, among
the four weight-based algorithms with the Correction algorithm, Adjusted Al-
Shalabi with Correction algorithm provided the highest accuracy results followed
by (in descending order) EWBM2 with Correction algorithm then by EWBM1 with
Correction algorithm and finally Al-Shalabi with Correction algorithm.

The effect of adding the Correction algorithm to the weight-based algorithms,
discussed in section 4.3.5 above and shown in Table 21, was to increase the accuracy
of these algorithms by about 7%-10%. As is clear from the results shown above, that
although the EWBML algorithm is higher in accuracy than the EWBMZ2 algorithm,
yet their algorithms with Correction give the opposite result (i.e. EWBM2 with
Correction algorithm is more accurate than EWBM1 with Correction algorithm).
This preliminary observation indicates that EWBM2 is more sensitive to irregular

words.

S1 % S1 _corr S2 % S2_co S3 % S3co S4% S4co RB% Enh_

Politics 55.36 62.84 62.16 72.12 59.39 67.08 58.9 69.45 58.89 73.3
Economi 52.59 58.9 60.73 70.41 58.52 65.69 5744 6861 5816 71.39
Religious 53.82 61.06 61.63 70.78 57.84 64.07 59.09 6825 6299 7501

Social 56.44 64.13 63.21 72.81 59.98 67.22 59 69.37 6056 74.79

Music 55.02 63.97 60.86 71.48 59.49 67.1 60.26 69.18 58.7 73.78
Educatio 53.46 59.85 62.37 71.59 59.73 66.33 59.05 70.11 60.67 74.81

Sports 55.53 62.19 61.67 71.53 57.58 6461 57.23 67.46 56.9 70.37

Arts 55.67 63.42 63.22 72.64 61.38 67.89 6042 69.78 61.4 74.27

Table 22: Accuracy results for all ten algorithms (all categories) using AT8 collection
It is noticed in Table 22 that the performances of algorithms vary among categories.
An example is the economics category which had the lowest accuracy for the first

four algorithms whereas the sports category had the lowest accuracy for five other

72

algorithms. Also, the arts, culture and literature category had the highest accuracy
for four algorithms whereas the social category had the highest accuracy for other
three algorithms. An interesting observation from Table 22 is that in general,
categories that had the lowest results for some algorithms did not have the highest
accuracy results for others. An exception for this observation is the religious issues
category. From Figure 15, the effect of adding Correction algorithm to the weight-
based algorithms was to increase the accuracy of these algorithms by about 7%-10%
(with relative improvement of about 12%-17%), whereas its effect when added to the
Rule-Based algorithm was to increase its accuracy by about 14% (with relative

improvement of about 23%).

80 Performance of all algorithms for all categories oS
20 | B S1_corr

60 os2
§-.50 | mS2_corr

§ 40 - mS3
:(2 30 - @ S3_corr

20 m sS4
10 - B S4_corr

0 A)] mRB
po\“‘; (\o\'“‘ e \\g\o‘*‘s Soc;\a\ N\us\cedu a0 590\’&9 S aRE con

Figure 14: Comparison between accuracy results of all algorithms in all categories with
the ones incorporating the Correction one using AT8 collection

71.72 73.33
62.05 61.96 66.25 oo’
> 61 59.24 58.92 59.7
| I I I I
D> o(‘ 0\‘ o\‘ S PR = o<
N 6'7,5’ c;,%f' PN o 5

Figure 15: Comparison between average accuracy results of all algorithms with the
ones incorporating the Correction one using AT8 collection

73

Table 23 and Figure 16 illustrate a comparison between Adjusted Al-Shalabi

algorithm (the highest among weight-based algorithms) and Rule-Based algorithm

along with their Correction algorithms in terms of their accuracy values. Rule-Based

algorithm is less in accuracy than Adjusted Al-Shalabi algorithm in the range

1.81%-3.82%. However, Enhanced Rule-Based algorithm's accuracy is rather

higher than Adjusted Al-Shalabi with Correction algorithm's accuracy by about 2%.

S2(%) S2 corr(%) RB(%) Enh RB (%)
Politics 62.16 72.12 58.89 73.3
Economics 60.73 70.41 58.16 71.39
Religious issues 61.63 70.78 62.99 75.01
Social 63.21 72.81 60.56 74.79
Music 60.86 71.48 58.7 73.78
Educational 62.37 71.59 60.67 74.81
Sports 61.67 71.53 56.9 70.37
Arts .. 63.22 72.64 61.4 74.27

Table 23: Accuracy results for Rule-Based algorithm and Adjusted Al-Shalabi
algorithm along with their Enhanced algorithms (all categories) using AT8 collection

80

with their Correction for all categories

Performance of Adjusted Al-Shalabi and Rule-Based algorithms along

70
60 -
50
a0 H
30 H

% Accuracy

20 1+
10

0o +

ms2
[|m52_cor
ORB

| oRrRB_co

-\ CS ACS
et Ec,oo"ﬁ“

. S
qene®”

500

@O goott®

e

Fﬂs -

Figure 16: Comparison between accuracy results for Rule-Based and Adjusted Al-
Shalabi algorithms along with their Enhanced algorithms (all categories) using AT8

collection

The difference in accuracy [129, pp. 208 — 210] between algorithms implemented is

rather small. This makes it more difficult to conclude which is really better in

performance. Thus, variance was calculated using eq. (1) for all algorithms and

categories:

Var = Zn:(xi —X)

(1)

74

Where n: number of texts, x;: accuracy of i text, x: average accuracy of n texts.

The results of obtaining all algorithms variance in all classes are shown in Figure 17.

—e— Politics —s— Economics —a— Religious issues —jll—Social —«— Music —e— Educational ... —— Sports Arts l

3100

2700 -
2300 -
1900 -
1500 -

1100 -

700 -——-———-\-/-\-/-\-/-\-
T T T T T T T T T E— |

300 S1 S1_corr s2 S2_corr S3 S3_corr sa S4_corr RB RB_corr

Figure 17: Variance values for all algorithms among all categories (points were
connected here by smooth curves for illustration purposes only)

From Figure 17 it is clear that the worst category in performance is the sports
category whereas the relatively best category in performance is the social one. Also,
the arts, culture and literature, educational, health and medicine, religious issues
and politics categories have lower variance values than the others. This is in
agreement with earlier indication that the social category gave the highest accuracy
values and that the sports category gave the lowest values. It is expected that the
high variance in such categories is partially due to the higher presence of names and

foreign Arabized words in them.

Since the two algorithms with highest accuracies are Adjusted Al-Shalabi and Rule-
Based algorithms as was explained above, the concentration here will be on the
variance values for Adjusted Al-Shalabi and Rule-Based algorithms along with their
Enhanced algorithms as illustrated in Figure 18. The variance values are very near
and cannot clarify which of the two algorithms (or with their Enhanced algorithms) is
better. Thus, [129, pp. 208 — 210] we use here the t-test (see appendix Il for SPSS

analysis results of normal distributions for these algorithms) by hypothesizing that

75

Adjusted Al-Shalabi algorithm is better than the Rule-Based algorithm (as the null

hypothesis). Then, we calculate the t-value using eq. (2) shown below:

)_(1 —)_(2
2s? 2

N

t —

Where x;: accuracy of Adjusted Al-Shalabi algorithm, x,: accuracy of Rule-Based algorithm, s?:
pooled variance of both algorithms and

g2 _ van +Vvar, 3)

n+n,—2

Where Var;: variance of Adjusted Al-Shalabi algorithm, Var,: variance of Rule-Based algorithm, n,
= n,: number of texts for both algorithms

After substituting the accuracy values of algorithms and their pooled variance, t-
value is found to be 5.56. At a probability level of o = 0.01, the critical value of t is
2.576 (using a one-tailed test with oo degrees of freedom [129, pp. 609]. Since here t
= 5.56 > 2.576 then the hypothesis is accepted. The t-test is also performed when
including Correction algorithm to the two mentioned ones above. The hypothesis
here is that Enhanced Rule-Based algorithm is better than Adjusted Al-Shalabi with
Correction algorithm. Their t value is 4.52 and at a probability level of o = 0.01, the
critical value is t = 2.576 (using a one-tailed test with oo degrees of freedom). Since

here t = 4.52 > 2.576 then the hypothesis is accepted.

12478.8

11321.1

10358.8
9807.6

sS2 S2_corr RB RB_corr
Figure 18: Comparison between total variance results for Rule-Based and Adjusted Al-
Shalabi algorithms
Thus, one concludes that the approach with the highest accuracy among all

algorithms would be Enhanced Rule-based algorithm.

76

S2 S2_corr Variance change for S2 RB Enh_RB Variance change for RB

AS2 (AS2/S2)% ARB (ARB/RB)%
Politics 1394.4 977.3 4171 29.9 14462 12111 235.1 16.3
Economics 1876.6 1747.9 128.7 6.9 17895 1521.7 267.8 15
Religious 1337.8 1084.9 252.9 18.9 942.55 746.2 196.4 20.8
Social 572.1 400.3 171.8 30 765.2 478 287.2 375
Music 1660.8 1638.6 22.2 0.1 1094.9 925.8 169.1 15.4
Educational 1403.3 1053.7 349.6 24.9 1487.1 980.3 506.8 34.1
Sports 2056.2 2114.8 -58.6 2.9 27532 2609.4 143.8 5.2
Arts .. 891.8 716.9 174.9 19.6 951.2 937.4 13.4 15
All 11321.1 9807.6 15135 13.4 12478. 10358.8 2120 17

Table 24: Variance values among categories for Rule-Based and Adjusted Al-Shalabi
algorithms along with their Enhanced algorithms using AT8 collection

From Table 24, the effect of using the Correction algorithm varied among
algorithms and categories in minimizing variance values. It was more effective in
doing so for social and educational categories. However, it varied in doing so for
other categories such as politics, music and sports. In general, such Correction
algorithm lowered variance and improved performance of all algorithms and
categories. The above results are for the implementation of algorithms on only the
AT8 collection. However, since the LACC corpus, which is described in Chapter 3,
is used in Chapter 5 for the implementation of TC methods, it was decided to
implement both Rule-Based and Adjusted Al-Shalabi algorithms and their
Enhanced algorithms on LACC corpus. These two algorithms were chosen only
since they provided the best results as was described above. The results of such
implementation are shown in Table 25 and a comparison between results of these

algorithms on AT8 and LACC corpora is shown in Figure 19.

S2 (%) S2-Corr (%) RB (%0) Enh_RB (%)
Politics 61.35 71.86 58.79 73.07
Economics 61.97 70.6 60.35 73.37
Social issues 63.22 71.88 60.28 72.92
Arts 61.16 72.2 59.68 73.52
Educational 62.86 71.6 59.98 73.28
Sports 62.69 72.04 57.91 71.41
Music 60.99 70.45 60.96 74.34
Religious issues 60.58 70.87 60.84 74.12
Average 61.85 71.44 59.85 73.25

Table 25: Accuracy results for Rule-Based algorithm and Adjusted Al-Shalabi
algorithm along with their Enhanced algorithms (all categories) using LACC corpus

77

Comparison of Accuracy results for Adjusted Al-Shalabi among
80 AT8 and LACC corpora
——S2_AT
75 8
- —m—S2_LA
3-—-; 70 cC
)
& 65 S2_co
3 m r_AT8
o 60
< S52_co
55 T T T T T T T EELA
oot g™ g0 0¥ o o @
@)
Comparison of Accuracy results for Rule-baed algorithm among
AT8 and LACC corpora
&80
—+—RB_ATS
75 —
= 70 —m—RB_LAC
g 65 c
— /0
g 60 --.-—;':_: W —| _comr_AT
8
< 55
50 T T T T T T T RB_corr
LACC
" S S &S 2 &S 2\ U -
N N O P o) o o2 O
?0\\ GO(\ o) 8 c:a\,\ 6Q @ @6\\g\
(b)
71.67 71.44 73.47 73.25
61.98 61.85 5978 5985
pIS pCC pio cC i pCC pi® pCcC
S22/ a2 > 9‘?,,00“’ 57,,°°“’\’P\ e B - cot— oo ot -

(©
Figure 19: Comparison among AT8 and LACC corpora: (a) for Adjusted Al-Shalabi in
all categories, (b) for Rule-based in all categories, (c) between two algorithms along
with their Enhanced algorithms on average

Figure 19 emphasizes our previous conclusion that Enhanced Rule-Based algorithm
provides the best results among investigated algorithms in terms of accuracy.
Another criterion that the two algorithms performances are compared by is their
execution time. This was performed using LACC corpus since this corpus has a large

range of texts' length (89 — 15,773). Figure 20 presents results of such comparison.

78

Execution Time versus Length for Two Root Extraction
Algorithms
450
__a
< 400
& 350 - A
o 300 ——
= 250 S
.g 200
= 150
§ 100
L 50 aww-@
(0] - T . T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Length
‘—0 —ET-S2 —®— ET-S2-Corr ET-RB ET-RB-Corr ‘
(@)
Correction algorithm effect on execution time for Adjusted Al-
Shalabi (S2) and rule-based (RB) algorithms versus length
c
2 80 =
g ’a Zg / DET for S2
W& so /
‘» £ 40 g
S E %0 PAWAR
% [Va4 yh/
— 20 - = —=— DET for RB
% 10 7#*! !
a o s
0 2000 4000 6000 8000 10000 12000 14000 16000
Length
(b)
Comparison between percentagevalues versus lengths for both algorithms
100
g80
%60
c
§ 40
[}
o 20
0 T ‘
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
I—O—Perc—BR —— Perc—SZ‘ Length
(©)

Figure 20: Investigation of performance of both Adjusted Al-Shalabi and Rule-Based
algorithms and their Enhanced algorithms as Length of texts increases with (a) change
in their Execution time, (b) the difference in Execution time for each algorithm, (c) the

Percentage of (difference in execution time by execution time for each algorithm)

Figure 20a shows that for lengths less than 5,000, the results of execution time for
both algorithms and their Enhanced algorithms are similar whereas as length increases

above 5,000 the difference in execution time becomes more apparent especially

79

above 8,000. This result indicates that although the Rule-based algorithm is
supposed to take longer time since it has many rules, yet the time it takes to execute
is similar to the one taken by the Adjusted Al-Shalabi algorithm. Such a result is an
indication of its efficiency. Figure 20b illustrates the effect of Correction algorithm
on execution time. For texts with length less than 7,000 the execution time is highly
similar for both algorithms. However, for length values higher than that, the effect of
Correction algorithm on execution time for Rule-Based algorithm is apparently
higher than that for Adjusted Al-Shalabi one. Finally, Figure 20c presents the
efficiency of both algorithms in terms of the effect of Correction algorithm by
finding the percentage of the difference of execution time for each algorithm (i.e.
with/out Correction one) to the execution time for that algorithm without Correction
as length increases). It indicates that the effect of Correction algorithm is similar in
both algorithms for text length less than about 5,500. However, for length range
5,500 to 8,300 the effect of Correction algorithm is more in Rule-Based algorithm
than in Adjusted Al-Shalabi algorithm since percentage is less. Nevertheless,
surprisingly so, this effect is the opposite for lengths more than 8,300. In general,
Figure 20c shows that as length increases the percentage decreases until it reaches a
rather constant value.

4.4.2 Native Arabic Speaker Accuracy Analysis

NAS manually, as a preliminary analysis, provided the roots for words in only about
40 texts (5 in each category) chosen randomly from the AT8 collection only. First,
all compound words or single letters (named here unidentified words), names of
places, countries, cities or months and foreign Arabized words, un-detected function
words were excluded and their percentages in the texts in each category was counted

then the accuracy for each algorithm was calculated.

80

The preliminary results of the NAS's analysis percentages of excluded words are
shown in Figure 21. Here, it is noticed that the percentage of names and foreign
Arabized words is highest in music, economics, politics and sports categories
whereas it is lowest in social and religious issues categories. This might explain
partially the high and low accuracy and variance values in these categories as was
shown in the above section. On average the presence of these excluded words are as
shown in Figure 22. From Figure 22, it is expected that the NAS’s accuracy results
would be less than the ones of the first method by about 14% (by excluding names
and foreign Arabized words 10.62%, unidentified words 0.57% and function words
3.42% percentages). NAS noted that the rather unexpected presence of undetected
function words was due to a main factor which is: in some texts (coming for example
from Al-Ahram news paper) most of the undetected function words were misspelled
such as the function word EIY (meaning on) was misspelled as Ely (an Arabic name
of a male person).

NAS counted the number of words in each text that has the letter b at its first or
second position in the word and found that it appeared in analyzed texts with a
percentage of about 6.22%. Such appearance may affect the accuracy of algorithms
if the special effect of b, as an extra letter when at beginning of a word, is not
handled. It is worth noting that the effect of b was not handled in any of the weight-
based algorithms as was illustrated in section 4.3 where it was given the weight zero
(i.e. it will always be considered an original letter in any word that starts with it in

these algorithms).

81

General Properties of Human anaylsis of 5 files in each category
e N\
[<5) 14 //—\\ / \ —&— Names and
2 12 — forgein
= \ \ / \ Arabized
10 w ords
o \ / \ —=— Unidentified
& 8 \/ \/ \ w ords
= 6 e\
4 A———"/——‘\A—/‘/ £ 3 —a— Stop w ords
2 W
T T T T T T T Number of
KOS xS < (S ACS N = NN Words starting
PO et o o= SO oo™ _gwne? W = with b
E\N O o
N we 0ot
P“\" C\)\‘ ed\)c’a
Categories

Figure 21: Percentages of unidentified words, function words, foreign Arabized words
in texts in all categories (points were connected here by smooth curves for illustration purposes
only)

Names
10.62%E

= Unidentified
0.57%

Function words
3.42%

Words starting with b
6.22%

Figure 22: Average percentage for function words, unidentified words and foreign
Arabized words

NAS then compared the roots she provided with those extracted by each algorithm
and calculated the accuracy of correctly identified roots for each algorithm as shown
in Table 26 and Figure 23. The accuracy values for the algorithms clearly emphasize
that the best algorithm for root extraction in terms of accuracy is Enhanced Rule-

Based algorithm followed by Adjusted Al-Shalabi with Correction algorithm.

Human expert analysis of Algorithms Accuracy %Acc

S1 S1 corr S2 S2_corr S3 S3_corr S4 S4 _corr RB Enh_RB

Politics 41.23 4321 52.07 54.84 47.39 50.44 43.68 518 51.45 58.47
Economics 40.27 42,51 49.64 52.07 47.23 48.36 4559 4836 | 5047 54.01
Religious 43.85 4753 55.52 59.1 52.53 55.86 51.56 55 56.81 61.67
Sports 42.05 43.62 53.1 56.04 4851 50.33 49.03 51.66 | 49.51 53.85
Social 4421 45.88 53.36 55.34 48.82 51.01 48.98 5093 | 54.83 59.11
Educational 41.49 4275 53.74 56.11 49.44 52.21 5051 5352 | 5565 59.73
Music 39.25 42.82 46.28 50.15 44.04 48.6 45.93 49.08 | 4552 52.45
Art, .. 45.05 46.65 55.6 57.4 52.81 54.24 51.43 5319 | 5414 57.72
Aver. 42.18 44.37 52.41 55.13 48.85 51.38 48.96 5160 | 5226 57.13
Imp. +2.19 +2.72 +2.53 +2.73 +4.87
Rel. Imp. +5.19 +5.19 +5.18 +5.58 +9.32

Table 26: Native Arabic speaker analysis of algorithms' accuracy using AT8 collection

82

Average of all categories
56.93

54.95

52.2 52.07
I ase7 °>1192 488, °51-54

a4.54 I
42 I I I I I I
<> < <V & g = > s 2 s
P SV &> ,_,u/ Q&/

Figure 23: Native Arabic speaker analysis of algorithm's accuracy
It is noticed in Table 26 that the performances of algorithms vary among categories.
However, the religious issues category had the highest accuracy for seven algorithms
whereas the music category had the lowest accuracy for six algorithms. Thus,
religious issues category is affected much more by the performance of such
algorithms. Also, the music category is affected much less by the performance of

such algorithms.

By simple comparison one can observe that the difference between the first and
second methods' accuracies is on average for: Al-Shalabi algorithm in the range
12.74%-17.51%, Adjusted Al-Shalabi algorithm in the range 9.78%-16.77%,
EWBML1 algorithm in the range 10.57%-15.06%, EWBMZ2 algorithm in the range
9.42%-18.49%, and for Rule-Based algorithm in the range 7.72%-16.54%. Such
differences are expected and are due partially to the fact that in human analysis
names, function words, and unidentified words were excluded (around 14%) before
counting the accuracy. However, for the Rule-based algorithm, the difference
between the first and second analyses is the least one (about 7%) compared to the
others. This smaller difference is partially due to the fact (as the human analyzer
observed) that the Rule-based approach did not extract a trililetral root for many

foreign Arabized words as the other approaches did.

83

From NAS's analysis, the Correction algorithm improvement on algorithms'
accuracies varied on average where for: Al-Shalabi algorithm it was 2.54%,
Adjusted Al-Shalabi algorithm about 3%, EWBM1 algorithm 2.52%, EWBM2
algorithm 2.73%, and for Rule-Based algorithm about 5%.

In order to investigate the performance of these algorithms apart from the effect of
different words (i.e. names, foreign Arabized words, function words, and compound
words), NAS recalculated the accuracy of each algorithm per category by dividing
the number of correct roots by (the total number of words in text minus the number

of such different words). The results are shown in Figure 24.

Algorithms Accuracy (after exclusion) on average

67.33

64.52
61.36 60.87 6112 —
> = 5717 9918 5737

52.07 — —

49.45

S1 S1 _corr S2 S2_corr S3 S3_corr S4 S4 corr RB RB_corr

Algorithm

Figure 24: Native Arabic speaker analysis of algorithm's accuracy after excluding no.
of names, transliterations, function words and compounds from total no. of words in
texts

From Figure 24, one can observe that there is a slight difference in the relative
improvements among algorithms based on weight-based technique (about 5.1% —
6.9%), whereas for Rule-Based algorithm the relative improvement is about 10.1%.
The above mentioned relative improvement percentage values are not near those
found from Figure 15 in section 4.4.1. This difference can be due to some limitations
such as:

1- In specific cases Correction algorithm does not check the extracted root since

it is not reached (this is due to the fact that the extracted root is found in the
predefined root list (so is considered correct even though it is actually the wrong

84

root), e.g. if an algorithm extracts a root sgl for the word IstglAl, then it checks if
this root is in root list and finds it is so even though the correct root for this word
is gll which is two-letter geminated root)),

2- In other few cases the extracted root is not found in Correction algorithm to
be corrected, although required so, since its case is not handled,

3- In other cases the extracted root is not found in the root list, although correct,
since the root list provided here does not include all roots (since Arabic roots are
estimated to be 10,000 [49]),
4- In other cases, although relatively few, a surface word might have more than
one option for correction and Correction algorithm chooses (according to its
structure) only one of them (that might be wrong), (e.g. is the word ‘<< nmt if
pronounced nemto "I slept” is thus corrected to the root nwm but if pronounced
nam~t "she gossiped" then is corrected to nmm). This limitation can be handled
by redesigning the algorithm to take such options as alternatives and to include
all possible roots in the root list,
5- In most wrongly handled cases, the original algorithm is not successful in
removing prefixes and suffixes correctly always so the extracted root is wrong
although the Correction algorithm can handle its case.
Other factors that the native Arabic speaker has studied in the algorithms'
performance were their efficiency in extracting weak, two-letter geminated roots and
four-letter roots. The results of such analysis are presented in Figures 25, 26, and 27
respectively where Figure 25 presents the percentage of wrongly detected weak roots
to the number of words in text, Figure 26 presents the percentage of wrongly

detected two-letter geminated roots to the number of words in text, and Figure 27

presents percentage of wrongly detected four-letter roots to number of words in text.

As can be seen from Figure 25, the effectiveness of algorithms in correctly extracting
weak roots can be categorized according to their percentage values. This figure
indicates the higher efficiency of Rule-based approach (with relative improvement
of about 33% when Correction algorithm is included) compared with the weight-
based-based ones except for EWBM2 algorithm (with relative improvement of about

11% for Al-Shalabi algorithm, 19% for Adjusted Al-Shalabi algorithm, 14% for

85

EWBML1 algorithm, and 18% for EWBMZ2 algorithm when Correction algorithm is
included). EWBMZ2 algorithm presented the highest algorithm in detecting weak
roots among all five original algorithms. This is due to the fact that this algorithm, as
was explained in section 4.3.4, replaced the letter y by Y in words in the text before
extracting the roots. This pre-process helped some weak words to produce the
desired root but lowered in general the accuracy. However, Rule-based algorithm is
the most sensitive among the rest since the inclusion of Correction algorithm to it in

terms of correcting weak roots had the highest relative improvement of 33%.

Average Performance of all 10 algorithms

(I
NN
»

12 99 14.09 lgb 13.49

] 11.4 —

— — 9. 06

% Average Percent of
wrong weak roots to
number of words

S1 S1 corr S2 S2 corr S3 S3 corr S4 S4 corr RB RB_corr

algorithm

Figure 25: Percentage of wrongly extracted weak words by all algorithms
As for two-letter geminated roots, Figure 26 illustrated that EWBM2 algorithm
performed better than the rest of the four weight-based algorithms, which is expected
since it is the only one among them that attempted to handle this issue. However,
Enhanced Rule-based algorithm gave the best results in extracting two-letter
geminated roots among all algorithms with a relative improvement of about 17%.
The performance of the weight-based algorithms when Correction algorithm was
included also increased with relative improvements of 9.4%-13.7%. This is another

indication of the effectiveness of the proposed Correction algorithm.

86

Average Perfomance of all 10 algorithms

5.28 5.28
>0 e 12 R)
44 ——

— 3.99 4.13

B
an

S.99

to number of words

% Average Percent of
wrong two-lettered roots

S1 S1 corr S2 S2_corr S3 S3_corr S4 S4 _corr RB RB_corr

algorithm

Figure 26: Percentage of wrongly extracted two-letter geminated words by all
algorithms

From preliminary results, only 69.23% of analyzed texts by the native Arabic
speaker had more-than-three-lettered roots with very low numbers (about only 1%).
Algorithms Al-Shalabi and Adjusted Al-Shalabi do not handle such roots. Only
EWBM1 and EWBM2 algorithms attempt to extract four-letter roots and Figure 14
shows that these algorithms succeeded to partially extract four-letter roots with about
12% improvement whereas Rule-based algorithm was successful in extracting four-
letter roots with about 37% improvement. Although both EWBM1 and EWBM2
algorithms provided the same improvement percentage, nevertheless the Arabic
speaker noticed that EWBML1 algorithm in few cases wrongly extracted three-letter
roots as four-letter ones and this increased the error. Also, although EWBM2
algorithm was not successful in extracting all four-letter roots (if available in texts)
but it did not perform as EWBM1 algorithm in wrongly extracting some three-letter
roots as four-letter ones. Still, Rule-based approach is considered the best algorithm
among all five algorithms to provide correct four-letter roots.

From the description of Correction algorithm in section 4.2.2 above, this algorithm
corrects special cases of triliteral roots and thus is expected not to change the

performance of any of the algorithms as is shown in Figure 27.

87

Average Performance for Variantl, Variant2, and Rule-based
algorithms

N0
U.0J U.0J9

0.64

roots to number of
words

% Average Percent of
wrong four-lettered

S3 S4 RB

algorithm

Figure 27: Percentage of wrongly extracted four-letter words

In brief the effectiveness of presented algorithms showed:

1)

2)

3)

In correctly extracting weak roots, Enhanced Rule-Based algorithm had the
highest percentage among all algorithms, followed by EWBM2 with Correction
algorithm. The Adjusted Al-Shalabi with Correction algorithm showed the third
highest percentage. This clearly indicates the higher efficiency of the Rule-Based
approach compared with the others.

In correctly extracting two-letter geminated words, only EWBM2 and Rule-
Based algorithms were investigated along with their Enhanced algorithms since
they are the ones that handle such cases. Here EWBM2 algorithm performed less
efficiently than Rule-Based one. By including the Correction algorithm,
Enhanced Rule-Based algorithm gave the best results in extracting two-letter
geminated roots.

In correctly extracting more-than-three-lettered roots, only EWBM1 and
EWBM?2 algorithms extract four-letter roots along with the Rule-Based one. The
proposed two algorithms succeeded in partially extracting four-letter roots with
about 12% relative improvement whereas the Rule-Based algorithm was
successful in extracting such roots with about 37% relative improvement.

From the results shown above, it is evident that the accuracy obtained here for the

non-Rule-Based approach of Al-Shalabi algorithm or its Adjusted one is not near

the accuracy claimed in that work. This is partially due to that in [17] the text

collection was a small corpus whether in terms of its texts or words numbers and

concentrated into a specific category. There is no information in Al-Shalabi's, et al

[17] work regarding availability of weak, hamzated, or geminated words in abstracts

collection.

88

Also, the accuracy of Rule-based root extraction approach of Al-Ameed work
implemented here is not near to the accuracy claimed at Al-Ameed work. This is also
partially due to the fact that at Al-Ameed's work the algorithm was tested using a
specially customized test of derived words from triliteral roots and quadriliteral
roots. Since neither the corpus used in Al-Shalabi, et al work nor the test set used in
Al-Ameed work could be acquired, the AT8 collection was used to test all

algorithms.

In all, the addition of Correction algorithm to the Rule-Based algorithm gave the
highest improvement in accuracy among all original five algorithms, yet the above
results are still preliminary. Also, the examples presented at Al-Ameed's work, as far
as was observed, did not include any weak, hamzated or geminated words. However,
AT8 and LACC collections used here contain proper nouns, foreign Arabized words
as well as weak, hamzated, or geminated words. The analysis presented here urged
the author to construct a list that handles foreign Arabized words and names of

countries, places as will be presented next.

4.5 Foreign Arabized Words List

The list presented here is composed of Foreign Arabized Words as well as Names of
Places, Countries, Continents and Cities was constructed here by gathering manually
foreign words available in Arabic texts of this corpus (named here FAW_L.ist).
Foreign words that are used in Arabic texts are of two categories. The first includes
words that obey Arabic patterns but are not Arabic while the second does not include
such cases. The gathered foreign words list here is mostly for the second category. In

future it is intended to increase this list to include the first category as well as other

89

words of Persian or Turkish origins. Examples of the constructed foreign Arabized

words, names of places, countries, cities, and month's list are presented in Table 27.

Foreign Al‘abized WOI’dS ‘nj» L)" M 53“ ; in "'i_w\.'\ul),d\" ‘n", w] \)BA:\AJ" ‘u‘; I \‘)EA:‘JLJH‘HJYJJH
M '”}_3" ‘"‘)—tj‘" M . }dn M4 o \)S" ‘"‘9_.35»‘.“" c"g._u_ﬁa" ‘"U“SJ_)—.’"
‘n~ }4" c";h_]" ‘"‘ﬂ—l‘):‘L.‘J" ‘n‘}_.‘n c"QﬁJLA" ‘n}_w\ .!“ " ‘"L.J\ .!.}9"
‘n_‘;}j ~S-X\‘5n ‘ng‘)‘}:\sﬂ‘n M <L ~)_\S\n c")_\ém" ‘HM‘}PH U ‘u‘;}uu
‘né}_}u M ¥ 9.”‘5" ulmﬁ}”" ‘ng‘_ﬂ' ~$]. .‘),_“n il " ‘)n 6"1._‘.\;‘,}".5.’”"
‘HO\ < " ‘n’; ..i \MJH ‘"EA_JG" M =~$ a" ‘HO)_;‘)éu ‘H;L_.! ~$S. ~\g\‘9n
"d—‘j" "')J.ﬁi" ‘"‘L’L'J <" ‘"é_\‘)Aﬂ" PAL I RPN P ULl " ‘"é")‘d‘"

Table 27: Examples o Foreign Arabized words list]
This list consists of 7,227 words®. Next, a description of the proposed root

extraction system is presented.

4.6 Final Proposed Root Extraction System

The two root extraction algorithms with highest accuracy values (based on the results
of all root extraction algorithms presented in section 4.4, pages 72-77), namely the
Enhanced Rule-based (Enh_RB) and the Improved Adjusted Al-Shalabi (S2-Corr)
methods, although near in their accuracy values, are selected for use. The other
methods performed lower than these two, but after analyzing their results some of
their proposed and implemented parts proved to be effective, namely the EWBM2
method. Thus, the proposed root extraction system would be composed of these two
root extraction techniques. Figure 28 is a flowchart that summarizes the proposed
root extraction system. EWBM2 algorithm included handling two-letter geminated
roots and results of analyzing its effect (shown in page 87) showed that it improved
the performance of such method by about 5%. Thus, the Enh_RB method is
improved by including at its beginning handling the extraction of two-letter

geminated roots and named here as Enhanced Rule-Based_2 method (abbreviated

% This list was gathered from: 1- http://www.bbc.co.uk/arabic/learningenglish/2010/08/801016_cojo_arabic_guide5.shtml, 2-
http://mogameh.ahlamontada.net/t9899-topic, 3- remaining words gathered by author from corpus.
® Flowchart symbols are according to the link: http://www.eng.iastate.edu/efmd/161algor.htm

90

Enh_RB_2 method). The Improved Adjusted Al-Shalabi one (S2-Corr) does not
handle quadriliteral roots or two-letter geminated roots, so it is improved by
including to it: a) handling specific cases of quadriliteral roots proposed and
implemented in EWBM2 algorithm presented in section 4.3.4 (only steps 8-15 of
this algorithm, page 68), and b) handling the extraction of two-letter geminated
roots. This improved algorithm is named Improved Adjusted Al-Shalabi_2
algorithm as shown below (abbreviated here 1AA method). Both original methods
lack handling foreign Arabized words and as such the handling of such cases are
included in the proposed root extraction system. The pseudo-code of this system is
presented (this system enables the user to choose which of these two methods to use

or both). Also, the proposed improved algorithms are briefly presented below.

The two improved root extraction algorithms output lists that are included in the
proposed system in order to be incorporated with the identified foreign Arabized
words in documents and outputted for the user as respective output documents of
normalized words, stems or roots. This proposed root extraction system algorithm is
an addition to this work where it combines the best performing implemented

algorithms in an overall one.

4.7 Conclusions and Future Work

In this part we contribute with Correction algorithm [13] in order to:

1) replace long vowels appearing in words that require to be changed in order to
have the correct root for a word according to specific rules,
2) delete an extra letter (at the beginning or end) of two-letter geminated roots,
3) handle specific cases of eliminated-long-vowel words,
4) handle specific cases of hamzated rots.
The Correction algorithm was included into two different approaches for root

extraction, a Rule-based and a weight-based one. Furthermore two contributions of

91

Proposed Root Extraction System Algorithm

Inputs: Set of n documents in Arabic corpus d i i = 1,n, Two-
letter geminated words List, FAW List, Chosen root extraction
method (s)

Outputs: List of triliteral and some quadriliteral roots, stems and
normalized words for each new document new d; 1 separately in output
set DD

START

1- For each document d; do {

2- LastWord = Count No Words (d;)

3- For 7 = 1 to LastWord in d; do {

4- LastLetter = Count No Letters (w;,C)

// Identify foreign Arabized words

5- If (wj € FAW List) then {Add wj to TEMP LIST } // word is a

foreign word

// handle 2-letter words

6- If (LastLetter == 2) then {

7- If (wj € Two-letter geminated words List) then ({Stem wj
Double 2 letter(wj), Root wj = Stem wj, Add wj to Norm Words list 1,
Add wj to Norm Words list 2, Add Stem wj to Stems list 1, Add
Root wj to Roots list 2, Add Root wj to Roots list 1, go to *}}

// apply Enh RB 2 method

8- If (Chosen root extraction method == Enh RB 2 method) ({

9- Apply Enh RB 2(di) method}

// apply IAA method

10- Else 1f (Chosen root extraction method == IAA method) then {
11- Apply IAA method(di)}

12- Else {

13- Apply Enh RB 2(di) method

14- Apply IAA(di) method}

15- * If (TEMP LIST is not Empty) then ({

// lists Norm Words_ list 1, Stems list 1, Roots_list 1 are outputs
// of Enh RB 2 method, lists Norm Words_ list 2, Roots_list 2 are
//outputs of IAA method

16- Add TEMP LIST to Norm Words list 1, Norm Words list 2,
Stems list 1, Roots list 2, Roots list 1}

17- Write all lists to respective output documents according to
chosen method (s) }

END

Enh_RB_2(document di) Algorithm

Inputs: document di, Normalization listl, Root lists,
Function words List, Correction algorithm

Outputs: Lists of triliteral and quadriliteral roots, stems and
normalized words for each new document new d; 1 separately

START

1- LastWord = Count No Words (d;)

2- For 7 = 1 to LastWord in d; do {

3- If (Numerals or non-arabic letters € wj) then remove these
4- If (wj € Function words List) then wj =""

5- LastLetter = Count No Letters (w5, C)

// apply Rule Based algorithm

o- Norm wj = Normalization Listl (w])

7= Stem wj = Light Stemmer (Norm wj)

8- Root wj = Infix Remover (Stem wj)

// apply Correction algorithm

92

9- If (Root wj 2 Root Lists) then Root wj
Correction algorithm(Root wj)

10- Add Norm wj to Norm Words list 1

11- Add Stem wj to Stems list 1

12- Add Root wj to Roots list 1})

// below lists are to be outputted to the proposed system
13- Return Norm Words list 1, Stems list 1, Roots list 1
END

IAA(document di) Algorithm

Inputs: document dj, Predefined letter groups weight 1lists,
Normalization List2, Root Lists, Function words List,
Correction algorithm

Outputs: 1lists of +triliteral and some quadriliteral roots and

normalized words

START
1- LastWord = Count No Words (d;)
2- For 7 = 1 to LastWord in d; do {

3- If (Numerals or non-arabic letters € wj) then remove these
4- If (wj € Function words List) then wj =""

5- LastLetter = Count No Letters (ws,C)

o- Norm wj = Normalization List2(wj)

// apply only steps 8-15 of EWBM2 algorithm

7= Root wj = EWBM2(Norm wj) algorithm

// apply Correction algorithm

8- If (Root wy & Root Lists) then Root wj =
Correction algorithm(Root w3j)

9- Add Norm w; to Norm Words list 2

10- Add Root w; to Roots list 2}

11- * LastLetter = Count No Letters (Root wsj,c)}

// below lists are to be outputted to the proposed system
12- Return Norm Words list 2, Roots list 2

END

variants of weight-based approach were implemented in [14] using AT8 collection.
The Adjusted Al-Shalabi method proved to be the highest in accuracy among all five
original algorithms. However, Rule-based algorithm became the approach with the
highest accuracy among all ten algorithms when Correction algorithm was included
in it. Also, Correction algorithm improved performance of all algorithms especially
Rule-based one by about 14% while it improved other algorithms' accuracy by 7% to
10%. It was observed that EWBMZ2 algorithm had the following advantages:
1) higher sensitivity to handling weak words among the five original algorithms,
2) the highest capacity to extract two-letter geminated roots among the four
original weight-based algorithms but lower than that of the Rule-Based

algorithm,
3) partial success in extracting quadriliteral roots.

93

Sta D

»
>

grablc -drFXt - Read new document di
if;p:; {di, | 7 TEMP_LIST « ¢ FAW_LIST
_/A ¢

Identify_Foreign(d;),
Store TEMP_LIST

v

Handle Two-letter-
geminated words

Two-letter-
geminated_LIST

Chosen root
extraction
algorithml(s)

Store all lists
Enh_{?B_Z) Norm_Words_list_1,
algorithm (di) Stems_list_1, Roots_list_1

>
>
A

Store all lists
IAA .) Norm_Words_list_2,
algorithm(di) Roots_list_2

\ 4 »|

»

Write all
Lists to their
respective
output
documents

End of
Corpus

Figure 28: The Flowchart of Final Proposed Root Extraction System
LACC corpus was also used, which had much more words than AT8 collection, for
implementing both Rule-based and Adjusted Al-Shalabi approaches and their
Enhanced algorithms. The accuracy results of the two algorithms agree highly, as
was shown above, with those when using AT8 collection. Execution time results for

these algorithms is interesting since the efficiency of both algorithms in terms of the

94

effect of Correction algorithm is investigated by finding the percentage of the
difference of execution time for each algorithm (i.e. with Correction one to the
execution time for that algorithm without Correction as length increases). It was
shown that the effect of Correction algorithm is similar in both algorithms for text
lengths less than about 5,500. However, for length range 5,500 - 8,300 the effect of
Correction algorithm is higher in Rule-Based algorithm than in Adjusted Al-Shalabi
one since its percentage is less. Nevertheless, this effect is the opposite for lengths

more than 8,300.

In future, the Rule-based approach can be improved by including more patterns in
the infix remover, and handling the prefix-suffix paradigm. This can be performed
by taking all possible prefix-suffix combinations and then deciding which is most
appropriate according to a previously determined statistical value. In the weight-
based algorithms, it is clear from the experimental results that the two proposed
grouping of letters and their respective weights did not provide in general higher
accuracy values. However, it was noted that for some words EWBM1 method gave
the correct root which for other words EWBM2 provided their correct roots but in
many others Adjusted Al-Shalabi method provided the correct root. This emphasizes
the fuzzy nature of some letters in sOltmwnyhA and indicates perhaps that by using
fuzzy sets to handle their grouping and weighting might provide higher accuracy and
thus handle the prefix-suffix dilemma better. Correction algorithm is a promising
efficient algorithm since it's highest reported improvement of the performance of
original algorithms was 14%,. Its improvement can be increased by adding further

rules and restrictions. Also, the proposed root extraction system is to be tested.

95

Chapter 5: Arabic Single-Label Text Classification

Methods

5.1 Introduction

This chapter investigates the effect of implementing various classifiers for six
different VSM representations on TC performance. Such representations are for the
developed single-labeled Arabic corpus (presented in Chapter 3). The features'
choices for VSM representations in this thesis are separately normalized words,
stems, roots or extending such features by including their respective phrases. Also,
such features in all representations here are weighted by a proposed TFIDF variant.
Figure 29 briefly presents the steps needed for the implementation of TC methods.
Part of the needed preprocessing steps in Figure 29 such as removing function words

and extracting stems and roots for words were presented in Chapters 3 and 4.

This chapter is organized as follows: Section 5.2 describes preprocessing steps taken
in order to provide the VSM representations of text documents and assign weights
for features used/proposed for single-label TC. Section 5.3 briefly presents
implemented classifiers as well as software tools for single-label TC. Section 5.4
presents the results of such implementations. Finally, it concludes with a brief
presentation of such results. The detailed analysis of TC results will be presented in

Chapter 6.

Pre-processing
documents &
VSM

representations

Implt_emen.ted End
classification
techniques &
evaluations

Inputs: documents
from corpus

Figure 29: Basic Steps for Arabic TC classification

96

5.2 Pre-processing Steps

Applying classifiers on text documents requires first a preparation step of the
documents. In this thesis, this is done by performing the following steps: 1- remove
function words, punctuation marks, and numerals as was explained in Chapter 3, 2-
perform a root extraction process to extract normalized words, their stems and roots
as was presented and implemented in Chapter 4, 3- include the results of step 2 into
normalized word, stem, and root lists as well as word phrases, stem phrases, and root
phrases lists in order to further assign for each feature a weight and present each
document in VSM representation, and 4- finally, present all documents in a single
Attribute Relation File Format (ARFF) to be used by the Waikato Environment for
Knowledge Analysis (WEKA) [91] software for classification (version 3.6.6). Steps
3 & 4 implemented in this thesis and mentioned above are explained next.

5.2.1 The Proposed Variant TFIDF Term Weighting Method

It was noticed that the generality among classes is not constant in the developed
single-label corpus (presented in Chapter 3). This would have an impact on the
process of developing the lists of words/stems/roots necessary to produce an ARFF
file in terms of including the number of times each feature appeared in corpus and in
each specific class. Thus, Table 28 below illustrates briefly the availability of these
words in single-labeled documents. As noticed in Table 28, many words in corpus
are not frequent. So, using the well-known TFIDF method for term weighting in
document representation (presented in subsection 2.4.1.1) will result in weighting
values of such words that do not reflect their presence among such classes. Thus, a
variant-TFIDF method for weighting terms that includes such effect is proposed and

implemented in this thesis as presented in eq. (1) below.

97

var__tfidf (t.,d;) =#(t.,d,). Iog(#L(‘t)j (1)

Where #(t,,d;): number of times term t, occurs in d;,
#ci(ty) (called document frequency (df(ty)): number of documents in class C; that t, occurs in,
N;: number of documents in class C;,

It is noteworthy that although Do and Ng [58] mentioned the N, part in

Ho, (6D
eq. (1) above as one of possible methods for weighting terms but did not implement
it. As far as is known, this proposed simple variant of TFIDF is implemented for
term weighting here for the first time to be used in Arabic single-label TC. Results of
implementing such term weighting are presented in section 5.4.

5.2.2 Document Representation

5.2.2.1 Features Implemented Using Single Terms

The works that used stemming for DR on Arabic texts, such as [63], [108], [135],
[146], [147], [148], [154] and [171], as was explained in section 2.4.1.2, compared
the effect of using words, stems or roots on Arabic TC performance. However, these
works did not reach the same conclusion regarding the effect of such features on
Arabic single-label TC performance. None of these works reported significance
testing especially those that concluded that using roots provided best results for TC
compared to that when using stems or words. Thus, here the use of different VSM
representations using separately normalized words, stems or roots for features and
the comparison of the effect of feature choice on TC performance is performed. If an

improvement occurred, then significance testing is performed.

The results of constructing the lists of normalized words, stems and roots for the
Arabic corpus 804 texts is presented in Table 28. The number of different
normalized words is 117,724, the number of different stems is 18,019, and the

number of different roots is 11,063. So, finally three ARFF files are ready to be used
98

for single-label TC with dimensions 804 x 117,724, 804 x 18,019, and 804 x 11,063

for normalized words, stems, and roots respectively.

List # Terms Ratio (%) List (DF >1) #Terms Reduction of Terms (%)
Roots 11,063 9.4 (to words list) Roots 7,294 34.1
Stems 18,019 15.3 (to words list) Stems 12,079 32.96
Words 117,724 - Words 54,140 54

Table 28: Number of different original implemented terms available in feature lists
processed from corpus

From Table 28, the ratio of roots to words is 1 to 10.64 whereas the ratio of stems to
words is 1 to 6.53. This is in agreement with the percentages presented in section
2.3.4. The results of implementing such representations are presented in section 5.4.
Also, an extension of the above VSM representations is performed in this Chapter by
adding their respective phrases and an investigation of their effect on TC
performance is conducted. This will be discussed next.

5.2.2.2 Extending VSM Representation Using Phrases

As can be seen from Table 28 DF of words in Arabic texts is relatively low. This
lead us to propose representing features in documents by phrases instead of words

and investigate this representation’ effect on single-label TC performance.

The method that was implemented in order to extract phrases is as follows: each
three consecutive normalized words in a text (after removing function words,
punctuation marks, etc) are presented by three two-word phrases. An example
presenting this idea is for the phrase " o s sed bl yuy) daSall Gus, w5 (transliterated
AstbEd r}ys AlHkwmp Al<srA}ylyp >yhwd Awlmrt) this phrase is presented by the
following Six phrases « "ssed e sSali" ¢ il yuy) G Sl ¢ " Sall aniad” ¢ Mia Sall Gui)" ¢ "Gl Saindl”
"l sl 3l ¢ M sed ads Y1 respectively (transliterated AstbEd r}ys , r}ys AlHkwmp
AstbEd AlHkwmp , AlHkwmp Al<srA}ylyp , AIHkwmp >yhwd , Al<srA}ylyp >yhwd ,

>yhwd Awlmrt) respectively. Table 29 presents an example of how two-word

99

phrases are chosen from a paragraph in a text. The same is performed for texts

presented by roots as well as those presented by stems.

Al el 8 ol Y Adledl 3 gaall g dgnl) o dyial) g lia 81 b dwaad & gan O jal ol 3 gl Aalii)) da Sa)) Saiad
ol o8 g Sl 23N Jiie e ol YT s Al o) M) Coalt of Lase ¢ gl 8 Aplalal dpnbuad) cila S0 "l (o jat Gl G
ol ddac éi 2w e S pul Jad 3) e 84 Ly e

(a)

G Jlel can) Jiasall Jil e Al 3 gandl 5 Aguadl 33iaY) g lia 31 dpmaad & san &yl g) 3 sl ALl) B sSall (i) 2l
Al Alae 35 L) pusf Jud 3 3088 Gine dlee () (5 Sundl AN (e 3,00 ol A e Line ol Aglalall dpuband) el 390 A

(b)

3" " sl o) 3 gl 13 gl Al I S gl A sSad)" AL a1 A oSl A sSad) Saginal” A sSa) it " "ty dmtinal”
Mgl & L U1 M gad) A a1 M) @ L sYIM 1 L 5N pant Mo e Y1 dpeal Ml ¢ saa M gan &yl gl M saa
My il Jiasall™ " el Al 1) G 5™ M ey AL e Ll AL 3 ganl) g 1 paall s A gaall
:‘,‘ ‘1,1 \(L ug.: 1: A(] A‘mn u;;“‘ ‘\: \(l QLAJYL\" vv&ujyu oo LAY dw‘u ") Q._I‘}A" n‘._“}; dus\n ndu‘), (W ndw‘ %\)ﬂ\"
nd_-_aA _\‘)lb.n "J‘)SL:! é" "?';:3 g._|‘};" u?;._! M ") ‘.—"}3" u_.l‘}; Ou_.du n‘._‘} L.I:.L.M" nt‘:\:m Qu_.dn HQL":‘S 3: ‘\: \(l nou_.d ZJ\~ [N ”2.1‘. (]
":";'-‘i‘i :L;\lia" "3_:135..« e "alae (éJS“"J‘" Malae ‘._"}a_“n ";.l‘}a.“ ij&ujllv "é\)ﬂ.uud\ dﬁ“" "gM\ Qalal)r maital) d&n nd:\h ?i:‘"

";LEL'\ 39533" ";\.333\ 3—}“‘5" HQ:‘L“; ...M" "...M d"-é" ".A:_iﬁ “_‘:ﬁ\)-“‘,‘" n‘ A:m)”\ d"é" "d"j 3‘_}&5" "d"-é K)n "y) 3‘:‘_‘:5" ":\.:\ﬁi Al

(c)

Table 29: A paragraph taken from Addustour newspaper: (a) original paragraph (55
words), (b) paragraph (40 words, 19 three-word phrases) after removal of function
words, punctuation marks, short vowels and/or numerals, (¢) paragraph after words
are put into two-word phrases (60 phrases) (here phrases are put between double quotes
for illustration)

After such phrases are chosen, these phrases are included in lists to investigate their
numbers in such texts and along categories and corpus. The results are presented
briefly in Table 30. Also, as conducted for the lists of roots, stems, and words, an

investigation of the document frequency for such phrases in corpus is performed.

List # Terms Ratio (%) List (DF >1) # Terms Reduction of Terms (%)
RP 655,923 83.8 (from WP) RP 39,028 9%
SP 799,314 102 (from WP) SP 25,236 96.8
WP 782,969 - WP 6,873 99
Table 30: Number of different proposed terms available in feature lists processed from
corpus

From Tables 28 & 30, the ratio of reduced roots to reduced root phrases is 1 to 5.4;
the ratio of reduced stems to reduced stem phrases is 1 to 2.1, whereas the ratio of
reduced words to reduced word phrases is 1 to 0.13. The number of phrases, stem-
phrases, or root-phrases is very large to be used instead of words, stems, or roots
respectively. Also, from Tables 28 and 30, the ratio of roots to root phrases is 1 to
59.3, the ratio of stems to stem phrases is 1 to 44.4, and the ratio of words to word

phrases is 1t0 6.7.

100

The relatively much smaller number of reduced phrases, stem-phrases, or root-
phrases (i.e. with DF>1) lead us, instead of representing documents by phrases, to
propose to extend the original representation of features in texts through including at
the end of each VSM the representation of their respective reduced phrases. An
example illustrating this proposal is suppose a VSM representation of a document
using words would be <politics, 0, 0, 1.34, 0, 3.87, 0, 0, 0, 0, 7.39> and the VSM for
the same document using only phrases with DF greater than 1 be <politics, 0, 0, 0,
3.25,11.11, 0, 0, 4>, then the proposed VSM representation for this document would
be <politics, 0, 0, 1.34, 0, 3.87, 0,0, 0, 0, 7.39, O, O, 0, 3.25, 11.11, 0, 0, 4>. So,
finally three ARFF files are ready to be used for single-label TC with dimensions
804 x 124,598, 804 x 43,256, and 804 x 50,091 for normalized words and phrases,
stems and stem phrases, and roots and root phrases respectively. The results of
implementing such representations are presented in section 5.4.

5.2.3 Implemented Feature Subset Selection Method

There was consensus among research works for Arabic TC that implemented various
FSS methods, that using Chi-square method for FSS improved single-label TC
performance [135], [137], [136], [8], [98], [174], [146], [147], [148] and [184] (as
was presented in subsection 2.4.1.2). Thus, it was decided to use this method here for
FSS. The results of using this FSS method is presented in section 5.4.

5.2.3.1 Chi-square Method

Chi-square function [161] is defined as shown in eq. 2 below

| Tr|L[P(,, ¢).P(E.5) — P(t, . &).P(& . c)I? @)
P(t).P().P(c).P(E)

}(Z(tkvci):

Where [Tr|: number of documents in training set,
p(t,,c) is Probability that k™ term of document d; occurs from class c;

101

This function is available in WEKA software and is implemented here where using
the outputs of this function, the effect of varying the number of selected features on

single-label TC performance is investigated.

5.3 Applied Text Classification Methods

Seventy five classifiers that are available in WEKA software are implemented here
where the developed Arabic corpus (presented in Chapter 3) is used. The results of
only forty seven classifiers under six types are presented here. The remaining results
are not included either because the performance of such classifiers is poor for F1-
measure (i.e. << 0.5), or couldn't be implemented due to either such classifiers are
not available in the WEKA version used or these require different representation or
binary labeling. Lazy learners such as k-NN and Multi-Instance (Ml) learners in
WEKA are not among the presented ones in this thesis since either their classifiers
were tested to have poor performance or are not applicable. Thus, only six types of
classifiers are investigated here. Examples of poor F1 values for such classifiers are
(0.1) for k-NN*? [4] classifier, and (around 0.12) for Classification Via Clustering
classifier (CVC)®.

5.3.1 Single-Label Classification Methods

In this part two experiments are conducted. The criteria of tested classifiers are
consistent in both experiments (see appendix IV for performance criteria used for
such classifiers). All used classifiers are presented briefly in this section, and these
classifiers are further presented and compared in Chapter 6 where their results in
original research works are presented in order to compare the results in this thesis

with those of such classifiers in previous works. The first experiment tests the six

%2 k-NN classifier is named in WEKA IBK, further info can be found at:
http://weka.sourceforge.net/doc/weka/classifiers/lazy/IBk.html
% Further info on CVC classifier can be found at: http://wiki.pentaho.com/display/DATAMINING/ClassificationViaClustering

102

ARFF VSM representations discussed above using forty seven classifiers (using the
explorer in WEKA software) according to their type. In this experiment, the effect of
varying the number of selected features on TC performance is investigated. This is
performed since the proposed term weighting method discussed above has not been
implemented before and as far as known many of the classifiers used here were not
performed previously for Arabic such as the rule learner NNge®* [130].

The second experiment investigates further the same forty seven classifiers (used in
first experiment), in performance to conclude which of the: a) classifiers, b) six VSM
representations provided the best performance. This is performed in three parts and
implemented using the experimenter in WEKA software and results are tested for
significance. The first part compares the performance of classifiers of same type.
FSS is performed using Chi-square on all those VSM representations and only best
1000 and 5000 selected features are maintained here. In the second part, the best two
performing classifiers among representations for each type are chosen and the
comparison among types are performed and tested for significance. The third part
presents briefly the results of significance testing for each classifier between root and
RRP representations, stem and SSP representations, and finally word and WP
representations. In this experiment, two-tail statistical (corrected) t-test is conducted
with significance level of 0.05.

5.3.1.1 Implemented Classifiers

Forty seven different classifiers are applied on the six ARFF files. Five of these
classifiers are Function classifiers, namely SMO [110]; [142], Logistic [123], Multi

Layer Perceptron® (MLP), Simple Logistic [119], and RBF network®® classifiers.

% Further info on NNge can be found at: http://weka.sourceforge.net/doc.packages/NNge/weka/classifiers/rules/NNge.html.
% Further info on MLP can be found at: http://weka.sourceforge.net/doc/weka/classifiers/functions/MultilayerPerceptron.html.

103

Six Rule classifiers are also applied, namely the Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) rule learning classifier [47] (in WEKA it is
named JRip)¥’, the rule learning algorithm [75] that builds C4.5 partial tree (named
in WEKA PART)®, Rlpple-DOwn Rule learner (named in WEKA Ridor) [80], a
classifier that builds and uses a 1R classifier (named in WEKA OneR) [102],
Nearest-Neighbor like algorithm using non-nested Generalized Exemplars (hamed in
WEKA NNge) [130], and Decision Table [114].

Another type of classifiers that is implemented here is the one based on Bayes
theory, namely Naive Bayes (NB) [106], Bayes Net (BN) [181], Naive Bayes
Multinomial (NBM) [132], Complement NB [149], NBMUpdatable [132], and
NBUpdatable [106].

Eleven Tree classifiers are also implemented, namely the Reduced Error Pruning
Tree algorithm (named in WEKA REPTree)**, the Random Forest tree learner (in
WEKA is named RandomForest)®® [38] which is a classifier that consists of a
collection of tree-structured classifiers with no pruning, the C4.5 tree classifier
(named in WEKA J48)*', Best-First decision Trees (named in WEKA BF Tree)
[164]; [77], Functional Trees (named in WEKA FT) [82], grafted C4.5 decision tree
(named in WEKA J48 graft) [180], Logit boost Alternating Decision Tree (name in

WEKA LAD Tree) [101], Logistic Model Trees (named in WEKA LMT) [118];

% further ino regarding RBFnetwork can be found at:
http://weka.sourceforge.net/doc/weka/classifiers/functions/RBFNetwork.html

%7 Further info on JRip can be found at: http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-
4/doc/weka.classifiers.rules.JRip.html [last accessed 7/5/2012].

% Further info on PART can be found at: http://weka.sourceforge.net/doc.dev/weka/classifiers/rule/PART.html [last accessed
7/5/2012].

% Further info on RepTree can be found at: http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-
4/doc/weka.classifiers.trees. REPTree.html [last accessed 7/5/2012].

“0 Further info on RandomForest can be found at: http://www.hsc.wvu.edu/mbrec/fs/Guol ab/pdfs/Software%202.pdf [last
accessed 7/5/2012].

“Further info on J48 (C4.5) can be found at: http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html [last accessed
7/5/2012]

104

http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.rules.JRip.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.rules.JRip.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/rule/PART.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.trees.REPTree.html
http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.trees.REPTree.html
http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/pdfs/Software%202.pdf
http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html

[119], Naive Bayes Tree (named in WEKA NB Tree) [115], Random Tree*, and

Classification And Regression Trees (hamed in WEKA Simple Cart) [40].

Two Miscellaneous classifiers are used here namely Voting Feature Interval

Classifier (named in WEKA VFI)*, and Hyper Pipes* (HP and used in [65]).

Finally, seventeen Meta classifiers are used here, namely AdaBoost.M1 [78],
Attribute Selected Classifier* (ASC), Bagging [39], Classification Via Regression
(CVR) [76], Dagging [177], Decorate [133]; [134], END [59]; [74], Filtered
Classifier*® (FC), Logit Boost (LB) [77], Multi Class Classifier*’, Class Balanced
Nested Dichotomies (named in WEKA ClassBalancedND) (CBND) [59]; [74],
DataNearBalanced ND (DNBND) [59]; [74], Nested Dichotomies (ND) [59]; [74],
Ordinal Class Classifier (OCC) [73], a classifier that consists of multiple trees
constructed pseudo randomly selecting subsets of components of feature vector
(named in WEKA RandomSubSpace) (RSS) [99], Random Committee*® (RC), and
Rotation Forest (RF) [150].

Results of implementing experiments are presented in section 5.4.

5.4 Results of Implementations

The implementation of single-label TC on proposed and prepared VSM
representations discussed in subsection 5.2.2 is performed through two experiments.

The first experiment applies forty seven classifiers (using the explorer of the WEKA

“2 further info on Random tree can be found at: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomTree.html.
3 Further info on VFI can be found at: http://roust.gotdns.com/weka-doc/weka/classifiers/misc/VF1.html.

“ Further info on HyperPipes can be found at: http://weka.sourceforge.net/doc/weka/classifiers/misc/HyperPipes.html.
5 further info on Attribute selected classifier can be found at:
http://weka.sourceforge.net/doc/weka/classifiers/meta/AttributeSelectedClassifier.html.

“® further info on Filtered classifier can be found at:
http://weka.sourceforge.net/doc/weka/classifiers/meta/FilteredClassifier.html.

47 further info on MultiClas Classifier is found at:
http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/MultiClassClassifier.html

“8 further info on Random committee can be found at:
http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/RandomCommittee.html.

105

software) on the six representations where the effect of varying the number of best
selected features on TC performance is investigated. The results of such application
in terms of weighted-F1 are presented in Figures 30 to 35 as well as Tables 31 and
32. The second experiment investigates further: 1- which of the forty seven
classifiers among the six representations provides the best performance, and 2-
which of representations provides best significant performance results. This is
implemented using the experimenter of the WEKA software and results are tested for
significance. Results of F1™ measure for these classifiers are presented in Tables 33
and 34.

5.4.1 Results of Implemented Single-Label Classification Methods

In the two experiments, stratified 10-fold stratified cross validation is used for all
implemented classifiers on all six representations. The choice of stratified 10-fold
cross validation is the same as some research works on Arabic TC. This method is
chosen here due to: the relatively small size of corpus, the different number of texts
among categories, and the method's relatively low bias and variance [92]. The
criteria chosen for these classifiers such as the number of epochs, stopping
criteria,..etc whether for the first experiment or second are shown in appendix IV.
For evaluation, weighted-macro average Fl-measure is used to compare the
performance of such classifiers in the first experiment (among others as training
time, root mean square error, percent correct, .. etc) whereas Macro F1-measure is
used, among others, in the second experiment. The other performance measures
effects are presented and critically analyzed in Chapter 6.

5.4.1.1 First Experiment

This experiment is composed of two parts. The first part investigates and compares

the performance of classifiers of the same type for each representation as the number

106

of best selected features is increased (presented in Figures 30-35 below), and the
second part investigates and compares the performance of each classifier among the
six representations also as the number of best selected features is increased
(presented in Figure 36 and appendix IV). As far as is known, no reports were
presented for most of these classifiers on Arabic text classification studies. Also,
among the categories and for only 1000 selected features, the performance of these
classifiers is presented in appendix IV where due to space limitations the rest of
results are not shown. The reason why only this was performed for 1000 features is
explained at end of this subsection. Further analysis of results of Figures 30-36 are
shown in Tables 31 and 32.

The performances of classifiers according to their type are introduced separately as
shown in Figures 30-35. Figure 30 presents the performance of classifiers according
to their type for Root representation, Figure 31 for Stem representation, Figure 32 for
Word representation, Figure 33 for RRP representation, Figure 34 for SSP
representation, and Figure 35 for WP representation (kindly refer to appendix IV for
the display of all classifiers performance for each representation). It can be
concluded that the performance of some of these classifiers degrade when terms are
extended by including their respective phrases while for others the performance
improve. Also, since some of the VSMs used here have high dimensionality and as
such some classifiers require extensive calculations, then such implementation of
classifiers is limited by available RAM and PC speed. This resulted in that some of
these classifiers didn’t provide results for such representations as number of selected

features was increased such as the NB Tree, Logistic, or MLP classifiers.

107

Rules-Roots

—4— JRIP
0.75 —— ——
—— .
0.7 ———— —ll— Ridor
0.65 —ic
== == =
E 0.6] = OneR
§0.55
0.5 NNge
0.45
0.4 K e e— = Decision
035 Table
0.3 | @ PART
0 2000 4000 6000 8000 10000 12000
Features#
(€)) .
. R
Trees classifiers on Roots VSM e
1 B RepTree
‘ =i BF Tree
0.9
\ ——FT
a3 ; : —— 48 graft
o # ‘ j
[@ - i il —0—LAD Tree
0.6
N B Tree
0.5 Random Tree
0.4 . : , , : ==t=Simple Cart
0 2000 4000 6000 8000 10000 1 200% 148
Features#
(b)
Functions classifiers on Roots VSM MO
0.8 X >
0.7 i I —— O
=—fli— RBF
0.6
. \
E 0.5 o == | ogistic
0.4 \
* \
0.3 ;(\ Multi-layer
erceptron
0.2 P P
0.1 : : , , , L . Simple
0 2000 4000 6000 8000 10000 12000 Logistic
Features#
(c)

108

Bayes classifiers on Roots VSM

+— BN
< S—0
—— NBM
—
: —-—7—‘*— .4 . [\ B
° - fa—e
o
(1]
= —=— Comp| NB
e N BIVI
Updat
—0— NB Updat
0 2000 4000 6000 8000 10000 12000
Features #
A S
(d)
Misc classifiers on Roots VSM
0.5
o ——
0.45 />< ——-0
I ——\V/FI
0.4
b
2 035 |
[}
=
0.3 =l Hyper
Pipes
0.25
02 M
0 2000 4000 6000 8000 10000 12000
Features#
(e)

Meta classifiers on Roots VSM

0.44 I\/
0.34 T T T T T 1
0 2000 4000 6000 8000 10000 12000
Features#
—4— AdaBoost.M1 MW Att. Sel. Classifier —d—Bagging
- Class. Via Regression =t [Dagging —@—Decorate
== END - Filt. Classifier ——Logit Boost
—&— Multiclass Classifier I Class Bal. ND -l Dat. Near Bal. ND
e N [Ord. Class Classifier Rand. Committee
——Rand. SubSpace Rotation Forest
()

Figure 30: Comparison between classifiers' performance for Root VSM representation
according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (¢)
miscellaneous, (f) meta

109

Figure 30 presents the performance of all classifiers for the Root representation.
From Figure 30a, the three classifiers with best performance among rule-learners are
JRip, Ridor, and PART respectively. In Figure 30b, the four classifiers with best
performance among tree learners are LMT, FT, Simple Cart, and RepTree
respectively. However, from Figure 30c, the best performance of function learners is
for the two classifiers Simple Logistic and SMO respectively. In Figure 31d, the
performance of Bayes-based learners is compared. The three classifiers with best
performance are BN, NBM, and Complement NB respectively. Miscellaneous
learners are presented in Figure 30e and among the two learners, HP classifier
performs better. In Figure 30f, Meta classifiers performances are presented and the

best seven classifiers in performance are END, FC, RSS, LB, AdaBoost.M1, RF, and

Bagging.
0 Rules on Stem representation —+IRIP
== Ridor
206 ——— ! === OneR
o -
EOS /)‘(’—g A —NiNge
0.4 =t [)EC S
e o
0-3 T T T T T T T T T Tab|e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 ' ART
Featurest
(@)

110

Trees on Stem representation

—4—Random
Forest

=fl—RepTree

==fr=BF Tree

&

——FT

&7
6 5 ——J48graft
{é =0—LAD Tree
0.5 e LIMIT
0.4 e N B Tree
0.3 | | | | : | : : | Random
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 T_ree
—=Simple
Features# Cart
(b)
Functions on Stems representation —e—SMO
0.9
08 He— =i 8
07 N & o —B—RBF
- 06
[=] P
5 05 \ —— Logistic
S 4 \
0.3 \\ —— Multi-layer
0.2 X \- perceptron
0.1 T T T T T T T T T) N
=t Simple
0 2000 4000 6000 8000 1000012000 140001600018000 Logistic
Features #
(©
Bayes-based on Stems representations _, g\
1
e < ¢
0.9 == NBM
0.8 - ! r
0.7 - —#&—NB
s e -
20.6
=05 == Compl| NB
0.4
03 * —t=NBM Updat
0.2 T

0

T T T T T T T T
2000 4000 6000 8000 ‘IC}%QQU;IEZSQPD 14000 16000 18000 —#—NBUpdat

(d)

111

Miscillaneous on Stems representation
0.55
——V/FI
0.45 - —
'Z'I;) \
.35
2> U —— =
(]
=0.25
* —l—Hyper
0.15 | : : : : : : ; . . Pipes
o 2000 4000 6000 8000 10000 12000 14000 16000 18000
Features #
(€)
0.9 Meta on Stem representation
—— |
e -
—r
0.3 K
o 2000 4000 6000 8000 10000 12000 14000 16000 18000
Features#
—t— AdaBoost.M1 == Att. Sel. Classifier —i—Bagging
= (Class. Via Regression e Dagging —@-—Decorate
et EN D = Filt. Classifier Logit Boost
== Nulticlass Classifier == Class Bal. ND Dat. Near Bal. ND
ND Ord. Class Classifier Rand. Committee
()

Figure 31: Comparison between classifiers' performance for Stem VSM representation
according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (¢)
miscellaneous, (f) meta

Figure 31 presents the performance of all classifiers for Stem representation. From
Figure 31a, the three classifiers with best performance among rule-learners are JRip,
Decision Table, and Ridor respectively. In Figure 31b, the four classifiers with best
performance among tree learners are LMT, FT, RepTree, and Simple Cart
respectively. However, from Figure 31c, the best performance of function learners is
for the two classifiers Simple Logistic and SMO respectively. In Figure 31d, the
performance of Bayes-based learners is compared. The three classifiers with best
performance are BN, NBM, and NBMU respectively. Miscellaneous learners are

presented in Figure 31e and among the two learners, HP classifier performs better. In

112

Figure 31f, Meta classifiers performances are presented and the best seven classifiers

in performance are END, LB, RSS, AdaBoost.M1, FC, RF, and Bagging.

=f=]R|P
Rules for Words
0.7 —= —0 Ridor
2 =K
06 —4—0neR
L
o A
g 0 —<NNge
=
0.4 === [ecision
Table
03 I T T T T T 1 . PART
0 20000 40000 60000 80000 100000 120000
i features
(€))
Trees for Words —e—Random
1 Forest
" =—RepTree
0.9
0.8 - A BF Tree
07 3 ——FT
t0.6 ’ o — e
5 Y o= L —— JRPRR) T
E0.5 = i
0.4 + —=@=LAD Tree
0.3
LMT
0.2 T T T T T 1
0 20000 40000 60000 80000 100000 120008===NB Tree
features
(b)
Functions for Words <MO
0.8
0.7
—f— RBF
o 0.6 —
Q
é 0.5 —k— Logistic
0.4
0.3 == Multi-layer
' perceptron
02 T T T T T 1
0 20000 40000 60000 80000 100000 120048 Simple Logistic
features
(c)

113

Bayes-based for Words ——BN

NBM
. o
- —i—NB
== Compl| NB

et N BV
1 1 T T T 1 Updat
0 20000 40000 60000 80000 100000 120000

=@ NB Updat

=

Q
0

©
00

e
N

©
o

Macro F1

©
i

e
~

©
w

©
M

features

(d)

Miscillaneous for Words

0.55 — *

—VFI
P —
0.5
o 0.45
S 04
S o
£ 035 \\
0.3 ~—__ y
Ealiad yper
0.25 ; — —> Pipes
0.2 T T T T T T 1
0 20000 40000 60000 20000 100000 120000
features
(e)
Meta for Words
0.8
B o
0.7 ;»eﬁ_— — -
0.6 Lo,

g
=
0.3
02 1 T T T T T 1
0 20000 40000 60000 80000 100000 120000
features
—t—AdaBoost.M1 == Att. Sel. Classifier == Bagging
=== (lass. Via Regression =t Dagging =@ Decorate
== END = Filt. Classifier Logit Boost
=—¢—Multiclass Classifier == Class Bal. ND == Dat. Near Bal. ND
ND Ord. Class Classifier Rand. Committee
()

Figure 32: Comparison between classifiers' performance for Word VSM
representation according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-
based, (e) miscellaneous, (f) meta

114

Figure 32 presents the performance of all classifiers for Stem representation. From
Figure 32a, the three classifiers with best performance among rule-learners are JRip,
Decision Table, and PART respectively. In Figure 32b, the four classifiers with best
performance among tree learners are LMT, FT, Random Forest, and Simple Cart
respectively. However, from Figure 32c, the best performance of function learners is
for the two classifiers Simple Logistic and SMO respectively. In Figure 32d, the
performance of Bayes-based learners is compared. The three classifiers with best
performance are BN, NBM, and NBMU respectively. Miscellaneous learners are
presented in Figure 32e and among the two learners, HP classifier performs better. In
Figure 32f, Meta classifiers performances are presented and the best seven classifiers
in performance are END, FC, LB, AdaBoost.M1, RSS, RF, and Decorate

respectively.

0.8 Rules classifiers on RRP \VSM —&—IRIP
0.75 —Cr
—‘44_. —m—Ridor
0.7 SIE S ——y
H0.65 = e A —de— OneR
L 06
Scs
§0.55 a =i NNge

0.45 w A +— Decision
W Table
0.4 S

0] 10000 20000 30000 40000 50000.9—PART

Features #
(@)]
ifi ——R
Trees classifiers on RRP VSM Fg:‘esct"’“
0.9 li —l— RepTree
0.8 4 e BF Tree
N S’ . -
0.7 f\:\; —FT
—) — 48 graft
Léo_s b °
e §: —e—LAD Tree
=0.5 -
LMT
0.4
— B Tree
0.3 t t t t t
0 10000 20000 30000 40000 50000 _F;a"‘do"“
ree
——Simple
Features # Cart

(b)
115

Functions classifier on RRP VSM

0.9 == SMO
0.8 K —
0.7 \an . ® —m—RBF
0.6
t \
EO 5 \.\ —h—Logistic
=04 4 \
03 7 \ > Multi-layer
0.2 ?(perceptron
0.1 . f f f f I\I .
0 10000 20000 30000 40000 50000"“?'”’_9';?
ogistic
Features#
(c)
. Bayes classifiers on RRP VSM ——BN
0.9
== NBM
0.8
.
2
P 0.6
P == Compl| NB
0.5
0.4 s N BM
Updat
03 i i i I i i i i I i i i i I i i i I
0 10000 20000 30000 40000 50002-9—NB Updat
Features#
(d)
Misc classifiers on RRP VSM
0.55
0.5 ———
0.45 i =l ——VF
E 0.4 \
E 0.35 \
0.3 \.?‘ H_\;per
Pipes
0.25 4
0.2 - 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 I
0 10000 20000 30000 40000 50000
Features#
(e)

116

Meta classifiers on RRP VSM

0.8 k
B i o
! i —
E_ 5
07 b
L ” e —— |
o | D
s
0 e e e e —
0 10000 20000 features#30000 40000 50000
=4=AdaBoost.M1 == Att. Sel. Classifier =—ir=Bagging
Class. Via Regression ==Dagging =@=Decorate
=+=END =—Filt. Classifier Logit Boost
== Multiclass Classifier == Class Bal. ND Dat. Near Bal. ND
ND Ord. Class Classifier =C=Rand. Committee

()
Figure 33: Comparison between classifiers' performance for RRP VSM representation
according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (¢)
miscellaneous, (f) meta

Figure 33 presents the performance of all classifiers for RRP representation. From
Figure 33a, the three classifiers with best performance among rule-learners are
PART, Ridor, and JRip respectively. In Figure 33b, the four classifiers with best
performance among tree learners are LMT, FT, Simple Cart, and J48 respectively.
However, from Figure 33c, the best performance of function learners is for the two
classifiers Simple Logistic and SMO respectively. In Figure 33d, the performance of
Bayes-based learners is compared. The three classifiers with best performance are
BN, NBM, and Complement NB respectively. Miscellaneous learners are presented
in Figure 33e and among the two learners, HP classifier performs better. In Figure
33f, Meta classifiers performances are presented and the best seven classifiers in

performance are LB, END, AdaBoost.M1, FC, RSS, RF, and Bagging.

117

07 -4l-Rid0r
'_p.6)ﬁ%—t—OneR
L
[=]
9.5 A NNge
=
04 === Decision
Table
0.3

0.8 Rules on SSP

=JRIP

10000 Q 00 30000 40000 PART
Features
(a)
=4=Random
Trees on SSP
1 Forest
== RepTree
0.9
o ==fr=BF Tree
9.8
=
0.7 anidl
0.6 === J48 graft
0.5 == LAD Tree
0.3 I T T T NBT
0 10000 20000 30000 40000 ree
eatures#
(b)
Functions on SSP
0.8 & SMO
3K
0.7 J . ’_._
——RBF
- 0.6) |
'
E 05 ——Logistic
g 0.
04 =M ulti-layer
perceptron
0.3
J(=t=Simple
0.2 T : . . Logistic
0 10000 20000 30000 40000
Features#

(©)

118

Bayes-based classifiers on SSP —e—BN
1
—
L
(=]
E == NBM
0.8
& g A NB
0.6
= Compl
NB
0.4
==NBM
Updat
02 1 T T T T NBU dat
0] 10000 20000 30000 40000 P
Features#
(d)
06 Miscillaneous on SSP
-
0.5 —a—.
——\/FI
_, 04
; \M
503
= —l— Hyper
0.2 = Pipes
0.1 ; : : .
0 10000 20000 30000 40000
Features#
(€)
Meta on SSP
0.9
0.8 F—%__‘i .
L, 07 ° i i
L ——
o i
E 0.6 '—"1—
205 —k o
0.4
0.3
02 1 T T T T
0 10000 20000 Features# 30000 40000
—4=— AdaBoost.M1 == Att. Sel. Classifier —f—Bagging
== (lass. Via Regression =t Dagging =@-Decorate
+ END —Filt. Classifier ——Logit Boost
—#— Multiclass Classifier == Class Bal. ND ——Dat. Near Bal. ND
= ND —=0rd. Class Classifier Rand. Committee
()

Figure 34: Comparison between classifiers' performance for SSP VSM representation
according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (e)
miscellaneous, (f) meta

119

Figure 34 presents the performance of all classifiers for SSP representation. From
Figure 34a, the three classifiers with best performance among rule-learners are JRip,
PART, and Decision Table respectively. In Figure 34b, the four classifiers with best
performance among tree learners are LMT, FT, BF Tree, and Simple Cart
respectively. However, from Figure 34c, the best performance of function learners is
for the two classifiers Simple Logistic and SMO respectively. In Figure 34d, the
performance of Bayes-based learners is compared. The three classifiers with best
performance are BN, NBM, and NBMU respectively. Miscellaneous learners are
presented in Figure 34e and among the two implemented learners, HP classifiers
performs better. In Figure 34f, Meta classifiers performance are presented and the

best seven classifiers in performance are END, FC, LB, RSS, AdaBoost.M1, RSS,

RF, and CVR.
0.8 Rules-WP ——JRIP
0.7 == Ridor
—
—
o 0.6 == K == OneR
2
2 05
= / —=—NNge
0.4
i === Decision
0.3 T T T T T T Tabhle
o} 20000 40000 60000 80000 100000 120000 PART
Features#
(a)
| Trees-WP —&— Random Forest
0.9 - =l RepTree
e BF Tree
J — il FT
o 0.7 =
o L —t— 148 graft
= i - - —&— LAD Tree
i e ———————
- — | | —
05 = e v - ® e wT
£ NB Tree
“7 Random Tree
0.3 T T T T T T
0] 20000 40000 60000 80000 100000 120000 —Simple Cart
Features# —E—J48

120

0.8

Functions-WP

=—4—SMO
0.7
I =—RBF
0.6
—
('8
S 05 o
T == Logistic
=
0.4 7
> .
0.3 > Multi-layer
perceptron
02 |x T T T T T T
0] 20000 40000 60000 80000 100000 120000 ==@=Simple
Features# Logistic
(©
1 Bayes-WP BN
0.8 == NBM
—
[T
o
50.6 e
1]
=
=== Compl NB
0.4
=—f=NBM U pdat
02 T T T T T T T
0 20000 40000 60000 80000 100000 120000 _, NB Updat
Features#
(d)
08 Miscillaneous-WP
== \/F|
— _.
[V
o
g
2 — —e
. == Hyper
0 T T T T T T Pipes
0 20000 40000 60000 80000 100000 120000
Features#
(e)

121

Meta - WP

o o

23] Ss]

5 ‘,Fhi
!

9
b g
i ‘H
0.7 I o— —
4 = —aA
=06 5;‘\4\ ~_ —
o F":'."
5 . v
1] ¥
= 05 °

/

T T
ZOOOOFeaturg'QQOO 60000 80000 100000 120000

O e — AT

—4—AdaBoost.M1 —l— Att. Sel. Classifier —d—Bagging

=== (lass. Via Regression == Dagging =@ Decorate

=t END = Filt. Classifier Logit Boost

== Multiclass Classifier == Class Bal. ND Dat. Near Bal. ND
()

Figure 35: Comparison between classifiers' performance for WP VSM representation
according to their type (a) rules, (b) trees, (c) functions, (d) Bayes-based, (¢)
miscellaneous, (f) meta

Figure 35 presents the performance of all classifiers for WP representation. From
Figure 35a, the three classifiers with best performance among rule-learners are JRip,
Ridor and Decision Table respectively. In Figure 35b, the four classifiers with best
performance among tree learners are LMT, FT, Random Forest, and Simple Cart
respectively. However, from Figure 35c, the best performance of function learners is
for the two classifiers SMO and Simple Logistic respectively. In Figure 35d, the
performance of Bayes-based learners is compared. The three classifiers with best
performance are BN, NBM, and NBMU respectively. Miscellaneous learners are
presented in Figure 35e and among the two implemented learners, HP classifiers
performs better. In Figure 35f, Meta classifiers performances are presented and the
best seven classifiers in performance are END, RSS, LB, FC, AdaBoost.M1,
Decorate, and Bagging. It is clear from previous figures that the Bayes Net classifier

has the highest weighted-F1 value among implemented classifiers for all VSM

122

representations with maximum weighted-F1™ = 98.1%. The remaining implemented
classifiers varied in their performances as the number of selected features varied for
the used VSM representations.

Figure 36 is presented in order to compare between the effect of implemented VSM
representations for each classifier on TC performance (here only highest performing

classifiers are presented and the rest of classifiers comparisons are in appendix 1V).

008 for BN classifier e Roots

0.57 \x__ —* ¥+Stems

0.96 —
= 0.95 sde=\Words
s 1\
g 024 == RRP
2093 - - °

0.92 — A o SSP

091 T T T T 1

—9—WP
0 2000 4000 g 3ty re #9000 8000 10000
(a)
for NBM classifier
08
4 Roots

07 =f=Stems
o ==he=\\oOrds

65
g
206 RRP

0.55 -SSP

0.5 * ——WP
045 T T T T T 1

0 20000 4000Q g 3¢, re 480000 80000 100000

(b)

123

Complement NB

0.8 Roots
0.75 o
0.7 == Stems
0.65
—
t 0.6 ==\ ords
S 0.55
(1]
2 05
== RRP
0.45
0.4
0.35 —==55pP
03 T T T T 1
0 20000 40000 60000 80000 100000.g—\wp
features
(c)
08 for SMO classifier
0.7 <> Roots
=f—Stems
= 0.6
2 A—Words
b
205
=—Jii— RRP
0.4 e SSP
—o—\WP
03 T T T T T 1
0 20000 40000 60000 80000 100000
Feature #
(d)
0.84 Simple Logistic
' =—¢=—Roots
0.79 — o
0.74)K—I—Stems
—0.69 o’ A
S == Words
50.64
s
0.59 ——RRP
0.54
0.49 ’ 35P
0.44 T T T 1 WP
0 10000 20000 30000 40000
features
(e)

124

08 for PART classifier

V.
7

Roots
07 ;M Stems
b
o == \Nords
g
= i RR P
0.6 ~¢
—fe= SSP
A
———WP
05 T T T T T 1
0 20000 40@&(%“9# 60000 80000 100000
(f)
08 for JRIP classifier
Roots
==l Stems
o
20.7 e \Words
=
— RRP
i S P
—o—WP
06 T T T T T 1
0 20000 400923ture# 60000 80000 100000
(9)
Ridor
0.75 Root
22 >4 = 5
0.7 r_ =f—Stem
X s
.65 - it \Wor
g ds
(1]
0.6 ! —————————BLRRP
‘_

0.55 A ssp
0.5 : : : —o—WP
0 10000 20000 30000 40000
features

(h)

125

Decision Table

Roots
068 Y Y
== Stems
0.66
2 0.64 i —d—Words
e
£0.62 — A RRP
0.6 @ =0
e SSP
0.58
056 T T T T T I=.-Wp
20000 4000% feature?oooo 80000 100000
()
for)48 classifier
0.75 =—#— Roots
=fl—Stems
b
o 0.65 == N ords
5
= RRP
—o— WP
045 T T T T T 1
0 20000 40000 60000 80000 100000
Feature
()
LMT
0.8 o +—Roots
"]
0.75 e -)K—I—Stems
t ur'/ =de="\Nords
S 0.65
[1+]
= =i RRP
0.6
0.55 et SSP
05 1 T T T T 1
0 2000 4000, . . 6000 8000 10000 WP

(k)

126

for FT classifier

0.8
_.—0— Roots
0.7 j—I—Stems
—
S —h—Words
E 0.6
= =i RRP
0.5 =SSP
—0—WP
04 T T T T T 1
0 2000 4000 6000 8000 10000
Feature #
(0
Simple Cart
0.8
Roots
0.75 % e =% a3
0.7
== Stems
0.65
$0.6 E
o ==\ ords
8.55
(1]
205
=i QR P
0.45
0.4 -
=X ——S5SP
0.35
03 T T T T T 1
0 10000 20000 30000 40000 50000 GODUG wp
features
(m)
for Random Forest classifier
0.8
=—4#—RooOts
0.7 == Stems
—
P == Words
&
= =i RRP
0.6
e S P
—o— WP
05 T T T T 1
0 20000 400?0 60000 80000 100000
eature #
(n)

127

for RepTree classifier

0.8
X —#—Roots
0.7
- == Stems
e
g 06 —K ==\ ords
—=" RRP
= = O
0.5 e GSP
—0—\WP
04 T T T T T 1
0 20000 40000 60000 80000 100000
Feature #
(0)
o Hyper Pipes Roats
0.6 .I _.—I—Stems
0.5 - A
2 ——\Words
o 0.4
&
2 03 RRP
0.2
w—pe SSP
01 I T T T T 1
0] 20000 40000 60000 80000 10000g WP
Features#
(p)
END
0.9
Roots
0.88
0.86 =l Stems
—0.84
%0.82 == \Words
2 0.8
= RRP
o ——
0.74
0.72 + T T T T T T |_.-“iNrp
0 10000 %DDDD 30000 40000
features

(@)

128

Filtered Classifier

0.88
Roots
>0 =fli—Stems
=de="\Nords
K
. —e RRP
—fe SSP
@ —@
T T T T 1 Wp
20000 40000 60000 80000 100000
features
(r
0.9 Logit Boost
Y _ =—¢—Roots
0.85 el
—e
== Stems
- 08
S — —a
&0.75 —0— =de=\Words
b= —e
0.7 i RRP
0.65
e SSP
06 T T T T T 1
0 20000 40000 60000 80000 100000
features =0—=WP
(s)
Random SubSpace
0.86
Roots
0.84 Svse —
0.82 7 == Stems
—
508
5 =de—\Words
.78
0.76 —K ——@——RRP
o
0.74 —A
—pm SSP
0.72
0.7 - ; ; ; . | —O—=WP
0 20000 40%(33,:“95 60000 80000 100000

(t)

129

AdaBoost.M1

|
0.89 Roots
—
0.84 P Stems
b
©0.79
5 X ==\ ords
=
0.74 == RRP
-
0.69 = S5P
0.64 -+ T T T T i \N\/ P
0 20000 4%01_00 60000 80000 100000
eatures
(u)
Rotation Forest
0.85 f(_—x\ Roots
0.8 = X
== Stems
EO.?S
o =W ord
® 0.7 3
=
=i RRP
0.65
0.6 = S5P
055 T T T T T T T T 1 +Wp
0 5000 10000 15000 20000 25000 30000 35000 40000
features
V)
Bagging
0.85 *\{ Roots
0.8)k =3 == Stems
b
© 075 —A— Words
& —X
0.7 RRP
0.65 T) i SSP
06 T T T T T 1 +Wp
0 20000 400?0 60000 80000 100000
teatures

(w)

130

0.85 Classification Via Regression
' Roots
0.8 e
== Stems
- 0.75 X
s
c 0.7 == \Nords
[1+]
=
0.65)
=i RRP
0.6
e S5 P
0,55 T T T T 1
0 10000 20000 30000 40000
#features —o—Wp

(x)

Figure 36: Performance of different VSM representations as number of selected
features varied using classifier (a) BN, (b) NBM, (c) Compl NB, (d) SMO, (e) Simple
Logistic, (f) PART, (g) JRIP, (h) Ridor, (i) Decision Table, (j) J48, (k) LMT, (I) FT, (m)
Simple Cart, (n) Random Forest, (0) Rep Tree, (p) Hyper Pipes, (q) END, (r) Filtered
Classifier, (s) Logit Boost, (t) Random SubSpace, (u) AdaBoost.M1, (v) Rotation
Forest, (w) Bagging, (x) Classification Via Regression

From Figure 36, BN performance is affected very slightly with choosing different
VSM representations. Such small variation indicates that representing terms by roots
or stems of respective words and including phrases in such representations have
slight effect on its performance. However, the performance of this classifier is
highest for Roots representation. Also, as the number of selected features varies the
performance of this classifier reduces by about 5% when using Words representation
while for Roots and Stems representations the reduction is about 2%. Other

classifiers in Figure 36 performed in a different way than the BN classifier.

In order to establish at which number of features each classifier has highest
performance, Table 31 is presented. From this table, 44 classifiers' performances are
highest for Root and RRP representations especially for features numbers in the
range [50, 5000]. It is noticed that most classifiers have highest performance at 1000

or 5000 features. In general, the addition of phrases to original VSM representation

131

improved/degraded TC performance slightly especially as feature numbers are above

5000.

JRip # features 10,000 5,000 1,000 1,000 500 10,000
F1M 0.759 0.698 0.695 0.757 0.71 0.619

Decision Table # features 5000 5000 5000 50 40000
FiM 0.655 0.645 0.62 0.688 0.648 0.6

RepTree # features 500 10,000 1,000 1,000 500 5,000

F1M 0.733 0.648 0.558 0.737 0.615 0.536

J48 # features 100 500 1,000 100 100 1,000
FiM 0.746 0.685 0.598 0.758 0.667 0.62

LMT # features 500 5000 5000 5000 500 5000

FiM 0.789 0.773 0.717 0.793 0.759 0.722

Simple Cart # features 5000 500 1000 40000 100 5000
FiM 0.741 0.642 0.616 0.751 0.494 0.621

Random Forest # features 500 500 1000 500 500 5000
FiM 0.753 0.694 0.69 0.744 0.691 0.689

Simple Logistic # features 10000 5000 5000 5000 500 5000
FiM 0.784 0.764 0.717 0.793 0.756 0.717

Hyper Pipes # features
FiM 0.464 0.502 0.599 0.504 0.542 0.668
END # features 1000 1000 10000 500 500 40000
FiM 0.873 0.834 0.791 0.872 0.838 0.781
Filter Classifier # features 500 100 500 50 100 50
FiM 0.863 0.845 0.799 0.858 0.858 0.84

Rand SubSpace # features
FiM 0.837 0.793 0.785 0.844 0.788 0.786
AdaBoost.M1 # features 500 500 50 500 1000 50
FiM 0.858 0.822 0.781 0.861 0.804 0.784
Rotation Forest # features 1000 1000 1000 5000 1000 5000
FiM 0.826 0.771 0.74 0.84 0.772 0.729

CVR # features 500 1000 5000 5000 1000 10000
FiM 0.812 0.742 0.681 0.795 0.745 0.666
BN # features 500 50 50 500 100 50
FiM 0.979 0.981 0.973 0.978 0.981 0.98
Complement NB # features 10000 10000 5000 5000 5000 5000
FiM 0.735 0.749 0.766 0.733 0.747 0.784

Table 31: Maximum F1" values at specific features number for implemented VSM
representations along each classifier.

Table 31 illustrates that maximum weighted-F1" values are rather similar among

most classifiers (remaining classifiers' performance comparisons are presented in

132

appendix V). Also, since the maximum weighted-F1™ values are achieved for
different number of features among different VSM representations and classifiers.
Thus, Table 32 was formed to present the amount of improvement/degradation of
each representation using best performing classifiers (remaining classifiers'

performance comparisons are presented in appendix V).

Classifier Max w-F1", Improvement/degradation of first Improvement/degradation of second
VSM type compared to second VSM type (%0) compared to first VSM type (%)

Roots, RRP Stems, SSP Words, WP Roots, Roots, RRP, RRP,
Stems Words SSP WP
J48 0.758, RRP +1.2 -1.8 +2.2 +6.1 +14.8 +9.1 +13.8
SMO 0.77, Roots -6.7 +0.2 +1.6 +5.4 +2 +1.5 -3.3
BN 0.981, Stems -0.1 0 +0.2 +0.2 -0.6 +0.3 +0.2
NBM 0.804, WP -0.2 -10.5 +0.9 +1.5 +0.3 +11.8 -0.8
RepTree 0.737, RRP +0.4 -3.3 -2.2 +8.5 HL +12.2 +20.1
JRip 0.759, Roots -0.2 +1.2 -0.4 +6.1 +6.4 +4.7 +6.6
PART 0.755, RRP +1.0 +5.8 -0.5 +9.4 +12.6 +4.6 +14.1
Decision Table 0.688, RRP +3.3 +0.3 -2 +1 +3.5 +4 +8.8
Ridor 0.721, RRP +0.3 -1.4 +2.7 +7.5 +13.5 +9.2 +11.0
LMT 0.793, RRP +0.4 -1.4 +0.5 +1.6 +7.2 +3.4 +7.1
FT 0.772, RRP +1.1 +0.5 +0.4 +3.1 +8.5 +3.7 +9.2
Simple Cart 0.751, RRP +1 -14.8 +0.5 +9.9 +12.5 +25.7 +13.0
Rand Forest 0.753, Roots -0.9 -0.3 -0.1 +5.9 +6.3 +5.3 +5.5
S Logistic 0.793, RRP +0.9 -0.9 0 +1.9 +6.7 +3.7 +7.6
Hyper Pipes 0.668, WP +4 +4 +6.8 +3.8 -13.5 +3.8 -16.4
END 0.873, Roots +0.8 +0.4 -1 +3.9 +8.2 +4.3 +9.1
Fil Classifier 0.863, Roots -0.5 +1.3 +4.1 +1.8 +6.4 0 +1.8
Logit Boost 0.871, RRP +0.3 -0.9 -0.6 +6.7 +9.3 +7.9 +10.2
RSS 0.844, RRP +0.7 -0.3 +0.1 +4.6 +5.2 +5.6 +5.8
AdaBoost.M1 0.861, RRP +0.3 -1.7 +0.3 +3.6 +7.7 +5.6 +7.7
Rotation Forest 0.84, RRP +1.4 +0.1 -1.1 7319 +8.6 +6.8 +11.1
Bagging 0.836, RRP +0.6 -1.3 +10.5 +7 +20.8 +8.9 +10.9
CVR 0.812, Roots -1.7 +0.3 -1.5 +7 +13.1 +5 +12.9
Compl NB 0.784, WP -0.2 -0.2 +1.8 -1.4 -3.1 -1.4 5.1

Table 32: F1" Improvement/Degradation by comparing implemented VSM
representations performances at feature numbers presented in Table 31 for each
classifier.

It is clear from Table 32 that using RRP representation provides highest performance
for 23 classifiers and using Roots representation provides highest performance for 11
classifiers compared to using other representations. Such improvement varies from
0.2% to 25.7%. However, improvement/degradation of performance when including
phrases for all original VSM representations varies among classifiers and such
variation is not clear to be indeed an improvement or degradation or none. This is

investigated in the second experiment.

From Table 32 and results in appendix 1V, the performance of 29 classifiers is higher

when using RRP representation than when using Roots representation. The

133

performance of 23 classifiers is higher when using SSP representation than when
using Stems representation. The performance of 30 classifiers is higher when using
WP representation than when using Words representation. Also, the performance of
42 classifiers is higher when using Roots representation than when using Stems
representation. The performance of 36 classifiers is higher when using Roots
representation than when using Words representation. The performance of 41
classifiers is higher when using RRP representation than when using SSP
representation and the performance of 37 classifiers is higher when using RRP
representation than when using WP representation. Also, the performance of most
classifiers among categories for 1000 best FSS is presented in appendix V. Next is a
detailed description of the second experiment.

5.4.1.2 Second Experiment

The second experiment performs a comparison between the forty seven classifiers in
three parts using the experimenter in WEKA and tests for significance using a two-
tailed (corrected) T test (o = 0.05) along many criteria as F-measure, and Percent
correct. The criteria chosen for these classifiers such as the number of epochs,
stopping criteria, ..etc are shown in appendix IV. As such, the experiment's inputs
are the representations used with the number of selected features required for chosen
classifiers (more specifically 1000 and 5000 features only). Stratified 10-fold cross
validation is used and the chosen number of repetitions is 5 for all parts of this
experiment. The outputs are the contingency matrix, kappa statistics, percent correct,
and macro F1 measures among others. However, only macro F1 values are shown

here.

The first part compares the performance of classifiers of same type. FSS is
performed using Chi-square on all those VSM representations and only best 1000

134

and 5000 selected features are maintained here. Results shown in Table 33 are for
best 1000 features only (for 5000 features see appendix IV). For the second part, the
best performing classifiers among representations for each type shown in Table 33
are chosen and the comparison among types is performed and tested for significance
(results are shown in Table 34). The third part presents briefly the results of
significance testing for classifiers between Root and RRP representations, Stem and
SSP representations, and finally Word and WP representations (some results are

presented in appendix 1V).

Classifiers Roots RRP Stems SSP Words WP v/ I*
Bayes based, significance relative to NBM
BN 0.99 (0.03) v 0.98 (0.03) v 0.99(0.03)v 0.99 (0.03) v 0.96 (0.06) v 0.96 (0.06) v 6/0/0
NB 0.65 (0.14) * 0.63(0.13) * 0.58 (0.13) * 0.58 (0.12) * 0.52 (0.16) * 0.52 (0.12) * 0/0/6
NBM 0.78 (0.11) 0.78 (0.11) 0.72 (0.11) 0.72 (0.10) 0.67 (0.11) 0.68 (0.12)
Complement NB 0.71(0.11) * 0.72 (0.14) 0.70 (0.13) 0.69 (0.13) 0.65 (0.13) 0.67 (0.12) 0/5/1
NBMU 0.72 (0.15) 0.71 (0.11) 0.69 (0.13) 0.68 (0.16) 0.66 (0.13) 0.68 (0.14) 0/6/0
NBU 0.65 (0.14) * 0.63 (0.13) * 0.58 (0.13) * 0.58 (0.12) * 0.52 (0.16) * 0.52 (0.12) * 0/0/6
Functions, significance relative to SMO
SMO 0.68 (0.13) 0.68 (0.11) 0.64 (0.12) 0.64 (0.11) 0.59 (0.16) 0.56 (0.15)
Simple Logistic 0.83 (0.09) v 0.83 (0.11) v 0.79 (0.13) v 0.78 (0.11) v 0.63 (0.15) 0.63 (0.14) 41210
RBF 0.64 (0.09) 0.57 (0.18) * 0.60 (0.14) 0.60 (0.17) 0.57 (0.14) 0.51 (0.14) 0/5/1
Rules, significance relative to PART
JRip 0.87 (0.09) 0.85 (0.11) 0.73 (0.14) 0.74 (0.13) 0.69 (0.16) v 0.67 (0.16) v 2/4/0
PART 0.83 (0.10) 0.84 (0.11) 0.68 (0.13) 0.70 (0.12) 0.49 (0.17) 0.50 (0.14)
Ridor 0.86 (0.08) 0.85 (0.09) 0.69 (0.11) 0.69 (0.13) 0.58 (0.15) 0.57 (0.14) 0/6/0
OneR 0.79 (0.15) 0.80 (0.14) 0.51 (0.17) * 0.52 (0.17) * 0.54 (0.20) 0.53 (0.18) 0/4/2
NNge 0.43 (0.20) * 0.42 (0.18) * 0.33(0.19) * 0.34 (0.20) * 0.31(0.19) * 0.32 (0.21) * 0/0/6
Decision Table 0.54 (0.18) * 0.55 (0.15) * 0.50 (0.17) * 0.48 (0.16) * 0.48 (0.12) 0.47 (0.16) 0/2/4
Trees, significance relative to J48
J48 0.86 (0.08) 0.87 (0.09) 0.70 (0.13) 0.69 (0.11) 0.47 (0.16) 0.46 (0.16)

Random Forest 0.69 (0.14) * 0.70 (0.13) * 0.62 (0.14) 0.63 (0.15) 0.61 (0.14) v 0.59 (0.16) 1/3/2
RepTree 0.87 (0.09) 0.86 (0.10) 0.64 (0.11) 0.67 (0.10) 0.52 (0.18) 0.53 (0.16) 0/6/0
BF Tree 0.88 (0.07) 0.88 (0.08) 0.69 (0.09) 0.68 (0.12) 0.55 (0.15) 0.52 (0.15) 0/6/0

FT 0.81(0.10) 0.81 (0.08) 0.73 (0.13) 0.72 (0.11) 0.64 (0.16) v 0.64 (0.13) v 2/4/0
J48 graft 0.89 (0.08) 0.89 (0.08) 0.71 (0.12) 0.71 (0.10) 0.50 (0.16) 0.49 (0.15) 0/6/0
LAD Tree 0.84 (0.10) 0.84 (0.10) 0.57 (0.16) 0.59 (0.15) 0.52 (0.17) 0.52 (0.16) 0/6/0
LMT 0.83 (0.10) 0.83 (0.10) 0.79 (0.13) 0.78 (0.11) 0.64 (0.15) v 0.65 (0.14) v 2/4/0
Random Tree 0.43 (0.17) * 0.40 (0.17) * 0.37 (0.14) * 0.32 (0.15) * 0.34 (0.15) 0.37 (0.16) 0/2/4
Simple Cart 0.86 (0.08) 0.85 (0.10) 0.70 (0.10) 0.68 (0.10) 0.60 (0.16) 0.57 (0.15) 0/6/0
Miscellaneous, significance relative to VFI

VFI 0.51 (0.21) 0.53 (0.15) 0.56 (0.15) 0.54 (0.18) 0.70 (0.17) 0.68 (0.14)

Hyper Pipes 0.49 (0.19) 0.52 (0.17) 0.53 (0.18) 0.56 (0.17) 0.51 (0.18) * 0.52 (0.19) 0/5/1
Meta, significance relative to AdaBoost.M1

AdaBoost. M1 0.92 (0.07) 0.93 (0.05) 0.84 (0.09) 0.82 (0.11) 0.71(0.12) 0.74 (0.11)
Attr Sel 0.84 (0.08) * 0.86 (0.09) * 0.68 (0.13) * 0.67 (0.15) * 0.54 (0.15) * 0.55 (0.12) * 0/0/6
Bagging 0.91 (0.06) 0.92 (0.07) 0.75(0.11) * 0.74 (0.11) * 0.65 (0.15) 0.67 (0.13) 0/412
Class. Via 0.90 (0.09) 0.89 (0.07) 0.76 (0.12) 0.78 (0.11) 0.63 (0.15) 0.60 (0.12) * 0/5/1
Dagging 0.50 (0.23) * 0.52 (0.18) * 0.53 (0.13) * 0.50 (0.19) * 0.48 (0.19) * 0.46 (0.19) * 0/06
Decorate 0.83 (0.09) * 0.85(0.10) * 0.74 (0.13) * 0.76 (0.12) 0.66 (0.14) 0.66 (0.11) 0/3/3
END 0.92 (0.07) 0.92 (0.06) 0.85 (0.08) 0.85 (0.09) 0.70 (0.16) 0.74 (0.12) 0/6/0
Filtered 0.83 (0.09) * 0.84 (0.08) * 0.81 (0.10) 0.81 (0.11) 0.80 (0.12) 0.80 (0.13) 0/412
Logit Boost 0.94 (0.06) 0.95 (0.05) 0.80 (0.12) 0.80 (0.10) 0.69 (0.12) 0.72 (0.12) 0/6/0
Multi Class 0.33(0.11) * 0.34 (0.13) * 0.38 (0.14) * 0.37 (0.09) * 0.27 (0.12) * 0.31(0.11) * 0/0/6
CBND 0.68 (0.16) * 0.71(0.15) * 0.64 (0.13) * 0.62 (0.14) * 0.49 (0.15) * 0.49 (0.19) * 0/0/6
DNBND 0.70 (0.16) * 0.72 (0.16) * 0.64 (0.13) * 0.63 (0.15) * 0.48 (0.14) * 0.49 (0.19) * 0/0/6
ND 0.69 (0.15) * 0.73(0.17) * 0.63 (0.15) * 0.63 (0.16) * 0.49 (0.17) * 0.47 (0.14) * 0/0/6
occ 0.70 (0.14) * 0.75(0.13) * 0.55 (0.18) * 0.57 (0.15) * 0.42 (0.19) * 0.43(0.17) * 0/0/6
Random 0.73(0.14) * 0.74 (0.12) * 0.65 (0.12) * 0.61 (0.14) * 0.60 (0.11) * 0.61(0.15) * 0/0/6
RSS 0.93 (0.07) 0.93 (0.07) 0.83 (0.08) 0.85 (0.09) 0.72 (0.14) 0.71 (0.14) 0/6/0
Rotation Forest 0.90 (0.08) 0.90 (0.09) 0.81 (0.10) 0.82 (0.11) 0.66 (0.14) 0.68 (0.13) 0/6/0

Numbers in brackets are for standard deviation, win/ tie/ loose is abbr. as v/ /*
Table 33: Performance of implemented classifiers along different representations by
selecting best 1000 features.

135

Table 33 presents the results of implementing different classifiers on all VSM
representations for only the best selected 1000 features and testing for significance

(for 5000 see appendix 1V).

Results shown in Table 33 show that:

1- For Bayes-based classifiers, BN classifier performance is significantly the best
among others (relative to NBM) for all representations (F1=99%) followed by NBM

classifier (F1=78%);

2- For Function classifiers, Simple Logistic classifier performance is significantly
the best among others (relative to SMO) for root, RRP, stem, SSP representations

(F1=83%) followed by SMO classifier (F1=68%);

3- For Rule classifiers, JRip classifier performance is significantly the best among
others (relative to PART) for word and WP representations (F1=87%) followed by

Ridor classifier (F1=86%) but with no significance, then by PART classifier (83%);

4- For Tree classifiers, LMT classifier performance is significantly the best among
others (relative to J48) for word and WP representations (F1=83%) followed by FT
classifier (F1=81%) performance is significantly the best among others also for word
and WP representations, then by BF Tree (88%) and RepTree (87%) classifiers with

no significance; and

5- For Meta classifiers, Logit boost classifier performance is the best among others
(relative to AdaBoost.M1) for all representations with no significance (F1=94%)
followed by RSS classifier (F1=93%) with no significance, then followed by END

classifier (92%) with no significance, then by AdaBoost.M1 classifier (92%).

136

It is noticed here that the performance of all best classifiers mentioned above is
better than the performance of SMO classifier. The SMO classifier implemented here
uses linear kernel. Other types of kernels, although not presented here, are tested for
this classifier and results of using these types did not improve the classifier's

performance but actually degraded it.

Table 34 re-represents best results of classifiers shown in Table 33 among types

(except Miscellaneous) and tests for significance with respect to C4.5 classifier.

Type Classifiers Roots RRP Stems SSP Words WP v/ I*
Bayes- BN 0.99(0.03) 0.98(0.03) 0.99(0.03) 0.99(0.03) 0.96(0.06) 0.96(0.06) 6/0/0
based NBM 0.78(0.11) 0.78(0.11) 0.72(0.11) 0.72(0.10) 0.67(0.11) 0.68(0.12) 2/3/1
Simple 0.83(0.09) 0.83(0.11) 079(0.13) 0.78(0.11) 0.63(0.15) 0.63(0.14) 2/4/0

Functi Logistic
ons SMO 0.68(0.13) 0.68(0.11) 064(0.12) 064(0.11) 0.59(0.16) 056 (0.15) 0/4/2
JRip 0.87(0.09) 085(0.11) 0.73(0.14) 0.74(0.13) 0.69(0.16) 0.67 (0.16) 2/4/0
Ridor 0.86(0.08) 0.85(0.09) 0.69(0.11) 0.69(0.13) 0.58(0.15) 0.57(0.14) 0/6/0
Rules PART 0.83(0.10) 0.84(0.11) 0.68(0.13) 0.70(0.12) 0.49(0.17) 0.50(0.14) 0/6/0
LMT 0.83(0.10) 0.83(0.10) 0.79(0.13) 0.78(0.11) 0.64(0.15) 0.65(0.14) 2/4/0
FT 081(0.10) 0.81(0.08) 0.73(0.13) 0.72(0.11) 0.64(0.16) 0.64(0.13) 2/4/0
Trees BF Tree 0.88(0.07) 0.88(0.08) 0.69(0.09) 0.68(0.12) 0.55(0.15) 0.52(0.15) 0/6/0
RepTree 0.87(0.09) 0.86(0.10) 0.64 (0.11) 0.67 (0.10) 0.52(0.18) 0.53(0.16) 0/6/0

J48 0.86(0.08) 0.87(0.09) 0.70(0.13) 0.69(0.11) 047(0.16) 0.46 (0.16)
Logitboost ~ 0.94(0.06) 0095(0.05) 0.80(0.12) 0.80(0.10) 0.69(0.12) 0.72(0.12) 5/1/0
RSS 0.93(0.07) 0.93(0.07) 083(0.08) 085(0.09) 0.72(0.14) 0.71(0.14) 5/1/0
Meta END 0.92(0.07) 0.92(0.06) 085(0.08) 0.85(0.09) 0.70(0.16) 0.74 (0.12) 4/2/0
AdaBoostM 0.92(0.07) 093(0.05) 084(0.09) 0.82(0.11) 071(0.12) 0.74(0.11) 4/2/0
1

Filt 0.83(0.09) 0.84(0.08) 0.81(0.10) 0.81(0.11) 0.80(0.12) 0.80(0.13) 3/3/0

Classifier

Table 34: Performance of best two classifiers among types for different representations
by selecting best 1000 features (significance results are relative to J48).

C4.5 classifier [164]; [92]; [143] is one of the frequently studied classifiers that
usually provide good results. This is why it is chosen here for significance
comparison (in appendix IV significance testing for classifiers in Table 34 relative
LMT and BN classifiers). Results in Table 34 show that BN classifier is significantly

the best classifier among those used in this thesis and for all representations.

The third part compares the performance of the classifiers between: a) Roots and

RRP representations, b) Stems and SSP representations, and c¢) Words and WP

137

representations. It tests their performance for significance. FSS is performed using
Chi-square on all those representations and best 1000 and 5000 selected features are
maintained (some results are presented in appendix 1V). It is evident that although a
slight improvement/degradation was obtained for some classifiers when the original

VSM was extended, yet such results are not significant.

5.5 Conclusions

The results of implementing the proposed variant TFIDF and VSM representations

for various classifiers have been presented in this chapter and can be briefed as:

1- The comparison between the performance results of most classifiers showed that
using Roots representation significantly improved their performance than when

using Stems or Words representations.

2- A comparison between the performances of those classifiers showed that using
RRP representation significantly improved most of their performances than when

using SSP or WP representations.

3- It is evident that although a slight improvement/degradation was obtained for
some classifiers when the original VSM was extended, as explained above, yet such

results are not significant.

4- It was noticed that the performance of BN was the best among implemented
classifiers for all representations with F1I™ = 0.99 and the effect of the variation of
the number of selected features on its performance was the minimal among all

classifiers.

138

5- Using the proposed variant of TFIDF, the classifiers' results in Table 34 showed
that the best classifier was BN, followed by, in decreasing order, Logit Boost,
Random Sub Space, END, Filtered Classifier Meta classifiers when features' number

is 1000. The same can be concluded when features' number is 5000.

6- The high improvement in classification performance for most implemented
classifiers when using roots representation compared to when using words
representation provides an increase in knowledge obtained by using roots

representation.

The overall analysis and critical review of the work and results for the two

experiments reported in this chapter are explored in the next Chapter.

139

Chapter 6: Critical Analysis of Text Classification Methods'

Performances

6.1 Introduction

This chapter provides critical analysis of the results of implementing various
classifiers for six different VSM representations on TC performance whether for the

first or second experiment as presented in Chapter 5.

This chapter is organized as follows: Section 6.2 compares the results of using
phrases in document representation on Arabic TC performance shown in Chapter 5
with those implemented for English TC and further analyzes these results. Section
6.3 further compares between the results of implemented classifiers here according
to their types in terms of their errors, training time and size (if tree learners) or
number of rules (if rule learners). It also relates to the results of the same classifiers
in other studies for English TC besides those for Arabic (if any). Finally, it

concludes with the outcome of such analysis and comparison.
6.2 Effect of Using Phrases on Classification Performance

Since there are no reports of using phrases as representatives of features for Arabic
TC, as was mentioned in subsection 2.4.1.1, this thesis extends the single term
representation, as was explained in subsection 5.2.2.2, by including phrases with
DF>1 to such representations. The results of the effect of this extension on TC
performance were presented in section 5.4.1. Such results are in agreement with
reported studies for English TC as [79]; [139]. However, in reported English TC, the

effect of such phrases on TC performance was further investigated by including [79]

140

syntactic heuristics in phrase development or the [139] syntactic category of the
word (using a POS-tagger) then extracting two levels of phrases from texts: a) proper
nouns, b) complex nominal that express domain concepts, then word senses were
used in place of simple words. In both studies [79]; [139] the detailed and explicit
investigation of each case on different and large corpora showed that the effect of

using phrases, word senses .., etc doesn't improve TC performance for English.

When word VSM representation was extended for English in (Moschitti and Basili,
2004) it seems to not improve TC. The new idea here (in this thesis) is to extend
roots and stems representations with their respective phrases and studying their
effect on TC performance. In this thesis, phrases were constructed as explained in
section 5.2 and although results of including phrases for Arabic TC is similar to
those for English TC and that the construction of Arabic phrases includes most of
above cases for English, yet such linguistic options were not separately studied. This
is due to the fact that there are no available online resources that would provide such
options for Arabic except for the AWN software that can provide word senses but
unlike WN it does not provide the percentage of each sense for a given word and as

such cannot be used here.

Although, the method of extracting phrases implemented here for Arabic is slightly
different than the method for extracting phrases for English, yet results of extending
single terms with their respective phrases for Arabic is in consensus with those for
English. Moschitti and Basili, (2004) [139] tended to explain the reasons for such
results over English due to two possible properties of phrases: 1- Loss of coverage,
and 2- poor effectiveness. The author tends to agree with such explanations here.

Also, only one Arabic corpus was used here (rather small) which would lead to the

141

conclusion that further investigation of this matter (i.e. including phrases, word

senses) is the next step on larger Arabic corpora.

6.3 Comparison between Classifiers

As far as known there is no work that investigated all WEKA classifiers for Arabic
TC. However, in order to provide indicative comparison, the results of two works are
presented here briefly. These are the works of [83] and [43]. Gelbukh and
Kolesnikova [83] reported using different classification methods for recognizing
semantic types of Spanish verb-noun collocations. Maximum reported F-measure
values for such algorithms were: 0.903 for PART, 0.903 for JRip, 0.888 for Ridor,
0.908 for BF Tree, 0.915 for Simple Cart, 0.915 for FT, 0.893 for REPTree, 0.759
for NB, 0.783 for IB1, and 0.933 for SMO algorithms. Also, Chakraborty et al, [43]
reported using various methods for classifying accounting literature. Maximum
reported Accuracy values for such algorithms were: 0.832 for BN, 0.8531 for
Complement NB, 0.8042 for NB, 0.8 for NBM, 0.6334 for NB Updatable, 0.8 for
NBM Updatable, 0.74 for J48, 0.74 for J48 graft, 0.5 for LAD Tree, 0.73 for
Random Forest, 0.57 for Random Tree, 0.8 for RepTree, 0.75 for Simple Cart, 0.64
for BF Tree, 0.65 for FT, 0.7 for LMT, 0.73 for ZeroR, 0.7136 for Ridor, 0.7136 for
PART, 0.77 for OneR, 0.7433 for JRip, 0.8 for Decision Table, 0.6 for NNge, 0.7833
for CVR, 0.4333 for Multi Class Classifier, 0.7 for Simple Logistic, 0.5667 for
SMO, 0.7833 for Attribute Selected Classifier, 0.7833 for Bagging, 0.6833 for
Dagging, 0.7833 for Decorate, 0.8167 for END, 0.8 for FC, and 0.734 for Logit

Boost.

Before comparing results obtained in this thesis with those presented above, further
analysis of results for Arabic TC of each type of classifiers is presented next.

142

6.3.1 Function Classifiers

Function classifiers are classifiers that build models that use functions such as linear
regression, logistic regression functions. The best two performing function classifiers

here are further discussed, namely Simple Logistic and SMO.

Simple Logistic classifier [119] builds a logistic regression model using LogitBoost
and incorporates attribute selection by fitting simple regression functions in
LogitBoost. In [119] this method was compared with C4.5, AdaBoost, LMT, and
two other algorithms and was tested on 32 data sets. Results show that its accuracy
values are comparable with those of C4.5 and LMT. Although not presented here,
Simple Logistic takes much less time than LMT. SMO classifier [110; 142] breaks
large quadratic programming optimization problem into a series of smallest possible

quadratic programming problems.

In [110; 142], SMO performance is better than linear SVM and faster. The SMO
classifier tested here used linear kernel. Other types of kernels, although not
presented here, were tested for this classifier and results of using these types did not
improve the classifier's performance but actually degraded it. Also, the performance
of this classifier for Arabic texts using macro-F1 in [146; 147; 148] is about 88-90%
and highly different from its performance reported here for root representations
(about 70%). In order to clarify the effect of variant TFIDF on this classifier

performance further investigations are required.

It is worth mentioning that Logistic classifier [123] uses ridge estimator to reduce the
effect of large number of covariates compared to number of observations and the

high correlation of such covariates. The use of a ridge estimator would partially

143

explain the lower performance results of this classifier compared to Simple logistic

and SMO for Arabic TC in this thesis.

Simple logistic performance in this thesis is significantly higher than the remaining
function classifiers for all representations. For Words representation, the F1 values
are 63% for Simple Logistic and 59% for SMO as is shown in Table 33, section 5.4.
This is in general agreement with results obtained in [43]. However, for root
representation the comparison between the performance of Simple Logistic with that
of LMT, C4.5 and other classifiers, as shown in Table 34, section 5.4, shows their
comparability. This conclusion is in agreement with that obtained in [119] although

for different data sets.

6.3.2 Bayes-Based Classifiers

Bayes-based classifiers [92] are statistical classifiers. Studies investigating the
performance of such classifiers found that NB classifier is comparable with decision
trees and selected neural net work ones. Bayes-based classifiers have shown high
accuracy and speed when applied on large databases. As far as known there is no
comparison between various Bayes-based classifiers on Arabic texts and here a
comparison is presented. Among the six classifiers investigated only the four highest

in performance are further described.

BN classifier is [132] a classifier that uses a model that specifies a document to be
represented by a vector of binary attributes. Thus, the number of times the word
occur in the document is not captured and as such the probability of a document is
found by multiplying the probability of all attribute values (occurring or not in

document). The distribution then is based on multi-variate Bernoulli event model.

144

Thus, this model considers "... the document to be the event and the absence or

presence of words to be attributes of the event”.

NBM classifier [132] considers a model that specifies a document to be represented
by the set of word occurrences from the document, i.e. word count in document is
captured. The probability of a document is found by multiplying the probabilities of
words that occur. In this thesis, the results of NBM and NBMU classifiers are highly

comparable in terms of F1 values, time, and RMSE for all representations.

A comparison between the performance of BN and NBM classifiers as the number of
features [132] was varied on five text corpora was investigated and it was found that
NBM performance is almost uniformly better than BN and that NBM reduces error
by an average of 27%. Also, BN had higher accuracy values than NBM for number
of features generally less than 1000 (more near to 100 features). However, NBM is
better in performance than BN above 1000 features. More specifically, in [132] BN
accuracy is slightly higher than NBM by about (3 to 9)% for features number less
than 1000 whereas in this thesis it is much higher by about 21%. Also,
precision/recall breakeven point values for BN in [132] decreased largely as number
of features increased whereas in this thesis F1 values for this classifier reduced
slightly as number of features increased. The maximum precision/recall breakeven
point values for BN in [132] for different corpora varied and were in the range 52-

98% whereas in this thesis it was around 98% for all representations.

In this thesis, the results of BN performance above 10000 for features' numbers
cannot be compared with those in [132] since it was not investigated due to hardware
limitations. Unlike in [132] both BN and NBM classifiers in this thesis maintained

an F1 value that reduced slightly as the number of features increased. Also, the FSS

145

method used in this thesis is the Chi-square method whereas in [132] it was mutual

information.

Complement NB classifier [149] modifies NBM classifier in four ways where it: 1-
introduces a complement method to estimate the probability of a document, 2-
normalizes weights of attributes, 3- uses a power law distribution to match term
frequency distributions, and 4- uses two transformation pre-processing steps to
improve the performance of NBM. This classifier was tested [149] on several text
corpora and was compared with NBM and SVM classifiers. Its performance
approaches that of SVM and outperforms NBM. Complement NB classifier
performance was in this thesis less than that for NBM for all representations

although comparable. This is different than that reported in [149].

In [43] the result of Complement NB was the highest among Bayes-based classifiers
followed by BN, then by NBM. This is different than their performances reported in

this thesis for word or WP representations.

As was presented in Table 33, section 5.4, the performance of Bayes-based
classifiers was compared in terms of F1 values where the BN classifier's
performance is significantly better than the remaining Bayes-based classifiers for all
representations. In this chapter, their performance is also compared in terms of
training time and RMSE as shown in Figure 37. Figure 37a presents the training time
(in seconds) of such classifiers for all representations and the fastest one is the
NBMU and NBM then Complement NB, and finally BN as the slowest among these
classifiers (about 2 - 2.5 seconds). Figure 37b illustrates the error in their
performance where BN classifier had the lowest error value followed by NBMU and

NBM, and finally NBU classifier had the highest error value for all representations.

146

5 Time of 5000

2.5
2 W Roots
M Stems
1.5
mWords
1 = RRP
0.5 MmSSP
WP
o}
> o
@Q
o3
(@)

RMSE for 5000

0.3
0.25
M Roots
0.2 M Stems
0.15 I\Nords
M RRP
0.1 SSP
mwpP

0.05

BN NB NBM NBM UpdataliB Updatable Compl NB

Figure 37: Comparison between Bayéts?-)based classifiers' performance for all
VSM representations according to (a) time, (b) RMSE

The results shown in Table 4 when testing Bayes-based classifiers especially the
NBM one are lower than those reported in [146; 147; 148]. It is not evident at this
stage whether the different performance of NBM classifier in [132] or that of
Complement NB classifier in [149] is different than their performance in this thesis
is due to the following factors: use of variant TFIDF weighting method, FSS method,
text corpus, or all. In order to establish the cause of such difference, further research
in future is required to study each factor separately.

6.3.3 Tree Classifiers

Decision Trees classifiers [92] are flowchart-like tree structures that are built from

labeled data. The class of an unlabelled test instance is found by testing the attribute

147

values against the tree. Decision trees are [92] popular due to: 1- their handling high
dimensionality of data, 2- their tree representation of knowledge is intuitive and easy
to relate to by humans, and 3- their classification and learning steps are generally fast
and simple. In this chapter, only the seven tree classifiers with best results are further
discussed. Some of these trees are based on logistic regression. The efficiency [164]
of tree classifiers is not only judged by their accuracy but also by other criteria as

their errors and tree sizes. In this chapter all above criteria is further analyzed.

C4.5 classifier [143] generates a decision tree from a set of labeled instances by: 1-
seeing if this set satisfies a stopping criterion, and if so the tree of this set is a leaf
associated with the most frequent class in this set, then 2- using a test to recursively
partition this set into smaller subsets. This algorithm uses the divide-and-conquer
strategy in growing decision trees and adjusts Information Gain splitting criterion.
This method was tested on 20 data sets (non-textual) and compared with its previous
releases as well as other classifiers in terms of error rate and tree size using 10-fold
cross validation. Results of this comparison [143] showed that this method produced
smaller decision trees with higher accuracies and is superior to approaches that use

global discretization.

LMT classifier [119; 170] is a method that combines linear logistic regression and
tree induction by using such functions at tree leaves. In [170] LMT was compared in
performance with AdaBoost classifier and their accuracy was in general comparable
on 13 data sets. Yet, LMT training time was found to be much higher than that for
AdaBoost. In [119] LMT was compared with C4.5, Simple Logistic, AdaBoost and

others on 32 data sets in terms of accuracy and tree size. LMT in that work

148

outperformed C4.5 and was comparable to AdaBoost, Simple logistic and other

classifiers but much lower in tree size than C4.5.

FT classifier [82; 119] is a method used for building trees that could use logistic
regression functions at inner nodes and/or leaves. In [82] a comparison between
performance of FT classifier and C4.5, linear Bayes, and Cruise [113] classifiers on
30 data sets was conducted. Results indicate that FT performance is generally
comparable with linear Bayes and Cruise (for some datasets FT significantly wins

while for others it loses).

RepTree classifier is a fast method that builds a decision/regression tree using
information gain/variance reduction, prunes it using Reduced-Error Pruning (with
back fitting), and sorts numeric attributes only once. Simple Cart is [40] a method

that builds classification trees by implementing minimal cost-complexity pruning.

BF Tree classifier [164; 77] builds a Best-First decision tree and uses binary splitting
criterion. In [164] a comparison between the performance of BF Tree method and
CART in terms of accuracy, training time and tree size on 38 data sets was
conducted. Its results showed that both CART and BF Tree are comparable in terms
of accuracy and training time but BF Tree outperforms CART in terms of having

significantly lower tree sizes on most data sets.

Random Forest classifier is [38] a method that combines tree classifiers such that
each tree depends on the values of a random vector sampled independently and with
same distribution for all trees in forest. In [38] it was found that Random Forests
give results that are competitive to boosting and adaptive bagging classification

algorithms in performance.

149

As far as known, this thesis is the first work that compares various tree learners for
Arabic TC. Here, as was presented in Table 33, section 5.4, results of tree classifiers
showed that, relative to C4.5, LMT and FT classifiers performances are significantly
the best among others for word and WP representations. However, for the remaining
representations, classifiers' performances are comparable. The maximum F1 values
for root representation are: Simple Cart (86%), LMT (83%), LAD Tree (84%), FT
(81%), BF Tree (88%), RepTree (88%) and C4.5 (86%). The maximum F1 values
for word and WP representations are: Simple Cart (60%), LMT (64%), LAD Tree
(52%), FT (64%), BF Tree (55%), RepTree (53%), Random Forest (61%), Random
Tree (37%), C4.5 graft (50%) and C4.5 (47%). Also, the performance of Random

Tree is lower than the remaining classifiers for all representations.

The above tree classifiers are further compared here in terms of their error, time and
tree sizes as presented in Figure 38. From Figure 38a, for representations used, the
least tree size was for FT method and the highest size was for Random Tree. Here,
unlike results presented in [164], Simple Cart method provided less tree size than BF
Tree method for all representations. Figure 38b showed that the method with least
error is LMT followed by FT, Random Forest, Simple Cart, LAD Tree, Rep Tree,
BF Tree, J48, and finally Random Tree. This is in general agreement with the
finding of previous works mentioned above. Figure 38c illustrated that Random Tree
method had the least training time among the tree classifiers followed by RepTree,
Random Forest, J48, Simple Cart, BF Tree, LAD Tree, FT, and finally LMT (here
time for LMT classifier is 10102.48 sec). Although, LMT provided best results in
terms of significant F1 values, RMSE values but its time was the worst. So, in this
thesis, FT classifier is better than other tree classifiers in terms of comparative F1

values, low RMSE and time values.

150

Size at 5000

800 M Roots
M Stems
600
B Words
400 B RRP
mSSP
200
mWP
0 -
LADTree BF Tree 148 FT Random Tree RepTree Simple Cart
(a)
oa RMSE of Trees at 5000
0.35 M Roots
0.3 W Stems
0.25 - B Words
0 WRRP
W SSP
0.15 -
BWP
0.1 -
QY L U & 0 =T = = ¢ R
S8 S8 S5 S 55 8% £9 3 &5
(b)
L0 Time (in sec) for 5000 without LMT __
120
W Stems
100
80 B Words
60
HRRP
40
20 H mSsP
0 T T T T 1
LAD Tree BF Tree J48graft 148 FT Random RepTree Simple Random HWP

Tree Cart Forest

(©)
Figure 38: Comparison between decision trees classifiers’ performance for all
VSM representations according to (a) size of trees, (b) RMSE, (c) time

151

Results presented in Table 34, section 5.4 for comparing the performances of CART,
C4.5, LMT, FT and BF Tree classifiers with classifiers as Simple Logistic or NB, are
in general agreement with those in [164], [119], and [82] in terms of F1 values.
Chakraborty et al, (2010) [43], although no significance testing was reported,
showed that RepTree had the highest performance among implemented tree
classifiers, followed by Simple Cart, J48, J48 graft, Random Forest, LMT, FT, BF
Tree, Random Tree, and finally by LAD Tree classifier. Such results are different
from those presented for the same classifiers in this thesis in terms of their order or
values for word representation.

6.3.4 Rule Classifiers

Rule-based classifiers [47] produce rule sets which are relatively easy for people to
understand and outperform decision tree classifiers [145]. Here, the five applied rule-

based classifiers' results are further discussed.

NNge classifier is an algorithm [130] that generalizes exemplars without nesting or
overlap and forms a generalization each time a new example is added by joining it to
its nearest neighbor of same class and adopts a heuristic that performs modifying any
generalizations in a uniform fashion, and is an extension of NGE [157] but doesn't
allow hyper rectangles to nest or overlap. This method was tested [130] on 13 data
sets (none of them are textual data sets) against CART, k-NN, Bayes, C4.5, and
Composite Learner classifiers. In [157], NNge shows an improvement over standard
NN classifier. Also, NNge tends to produce rules that test a large number of
attributes. It also reduces the number of exemplars and improves classification
accuracy while reducing classification time. In general this method was found to

either outperform most above classifiers or is comparable to their performance.

152

Ridor classifier [80] is a technique that creates a two-way dependency relation
between rules such that rule activation is investigated only in the context of other
rule activation. Thus, it forms ripple down rules that form a binary decision tree
where compound clauses are used to determine branching. Such clauses are not
required to exhaustively cover all cases so that eventually this technique results in
rule sets having minimal inter-rule interactions. This method [80] was tested on
some large medical data and compared to ID3 and manual rules results. The
comparison showed that Ridor is a simple, fast and effective method for rule

induction.

OneR classifier is [102] a technique that outputs very simple rules on datasets and
are called 1-rules since these rules classify an object on the basis of a single attribute.
This method basically ranks attributes according to error rate (from training set
results). Simple improvements presented in [102] to this method showed that it is
similar (less than by about 3%) to the accuracy of C4 classifier when tested on 16

data sets (none is textual). However, its complexity is far less than C4.

Decision Table classifier is [114] a method that produce a decision table with a
default rule mapping to the majority class. This representation has two components
schema and body. Schema is a set of features that are included in the table and body
consists of labeled instances from space defined by the features in the schema. To
build this table, the algorithm decides which features to be included in schema using
best-first search method to estimate the future prediction accuracy with k-fold cross
validation. This algorithm [114] was tested on 16 datasets with discrete features and
on 2 datasets with continuous features (non are textual). Also, this work compared

the performance of this algorithm with C4.5 and majority classifiers. For discrete

153

features, this algorithm outperformed both C4.5 and majority classifiers for some
datasets, whereas for continuous features this algorithm's performance is comparable

to C4.5 in some datasets.

PART classifier [75] is a rule-induction method that avoids global optimization but
produces accurate and compact rules. This method infers rules by repeatedly
generating partial decision trees thus combines creating rules from decision trees and
the separate-and-conquer rule-learning technique. The performance [75] of this
classifier was tested against that of C4.5, C5.0 and RIPPER classifiers on 34
datasets. It was found that PART rule sets compare favorably to those of C4.5 and
C5.0 and are more accurate, although larger, than those of RIPPER. Also, in a
comparison between the performance of C4.5, PART and RIPPER [75] classifiers, it
was found that PART has better performance than C4.5 and RIPPER in terms of

CPU time, error rate and accuracy.

RIPPER classifier is [47] a propositional rule learning algorithm that performs
efficiently on large noisy datasets (that extend naturally to first order representations)
and are competitive in generalization performance with more mature symbolic
learning methods as decision trees. It starts first with an initial model then secondly
it iteratively improves it using heuristic techniques. This classifier was [47] tested on
22 datasets (few are textual) and compared with C4.5 and other previously rule-
based algorithms in terms of generalization performance and efficiency. RIPPER
was found to be extremely competitive with C4.5 rules and on most of datasets its
error rate was lower than that for C4.5. Also, for noisy data sets, RIPPER is more
efficient than C4.5 and scales nearly linearly with number of examples. In a

comparison between the performance of C4.5 and RIPPER [47] classifiers on

154

different data sets, it was found that RIPPER has better performance than C4.5 in

terms of error rate.

For Arabic TC, only the works [175]; [6] used RIPPER, PART and OneR methods
among the rule-based algorithms in WEKA and compared their performances with
C4.5. Thabtah et al, (2011) [175] applied these methods on Leeds Corpus of
Contemporary Arabic with 427 texts among 15 categories, used Khoja's stemmer,
and employed 10-fold cross validation. On average, the results of C4.5, RIPPER,
PART, and OneR methods (using Roots for features) in terms of F1 are respectively
0.9, 0.887, 0.8877, and 0.1769. Also, it reported the methods' number of rules and
error rates. It reported the number of rules to be lowest for OneR then in increasing
order PART, RIPPER, and finally the highest for C4.5. However, the error rate was
the highest for OneR, then in decreasing order RIPPER, PART and finally C4.5. Al-
diabat (2012) [6] also applied these methods on 1526 texts with six categories, used
Chi square for FSS and selected the top 30 features (Roots), and employed 10-fold
cross validation. On average, the results of C4.5, RIPPER, PART, and OneR
methods in terms of F1 are respectively 0.6085, 0.5788, 0.621, and 0.1331. The
highest number of rules in [6] was for C4.5 then in decreasing order PART, RIPPER

and finally OneR.

As was shown in section 5.4, the results of applying the five rule-based algorithms,
namely NNge, OneR, Decision Table, Ridor, RIPPER, and PART, have shown that
the best performing classifier for Roots or RRP representations among rule learners
in terms of F1 values is the JRip classifier (87%) followed by Ridor (86%) and
PART (83%), then by OneR (79%), then by Decision Table (54%) and finally by

NNge (43%) classifiers. This is not in agreement with the results presented above for

155

Arabic TC above in [175]; [6] in terms of values or order. However, unlike results in
[175; 6], as shown in Table 34, section 5.4, RIPPER classifier is significantly better
than C4.5 for 2 representations and comparable with it for the others. In [43], the
highest best performing rule learner was the Decision Table followed by OneR, then

JRip, then Ridor and PART and finally by NNge classifiers.

In this thesis, when using words representation the performance of these classifiers is
different from those in [43] whether in order or values. In this chapter, these
algorithms' performances are further compared in terms of number of rules, building

time, and RMSE for 5000 top selected features only. This is presented in Figure 39.

It can be concluded from Figure 39a that the least number of rules was in OneR
(although not shown) followed, in increasing order, by RIPPER, PART, Decision
Table, NNge, and finally Ridor for all representations. This is in agreement with
results presented in [75] regarding the performance of RIPPER and PART in terms
of number of rules and with the results of [175] for Arabic TC in that regard. From
Figure 39b it can be seen that RMSE values are the least for RIPPER, then in
increasing order Decision Table, PART, Ridor, OneR, and finally NNge. However,
Figure 39c presents the amount of time taken for building these classifiers and the
fastest classifier among these is OneR, and then less fast comes NNge, then RIPPER,

PART, Ridor, and finally Decision Table.

TC performance in terms of accuracy for English was [79] reported to be about 78%
(no FSS) whereas for Arabic as reported here for words representation is about 69%.
Another difference that is noted here is that the number of rules and CPU time for
RIPPER is less than for PART classifier whereas the reverse was concluded [75] for

such classifiers. It is not clear here the cause of such difference and requires further

156

investigation whether on the same corpus but using other term weighting methods or

on other corpora.

500 Rule # for 5000
200 M Roots
700 ~ M Stems
600
500 - m Words
400
RRP
300 -
200 W SS5P
100 -
m WP
0 —
Ridor NNge Decision Table JRIP PART
(@)
RMSE for 5000
0.4
0.35 M Roots
0.3 - —
M Stems
0.25 —
02 - _mWords
0.15 - _mRRP
0.1 - —MSSP
0.05 ~ WP
0 -
Ridor OneR Nnge Decision JRIP PART
Table
(b)
Time (in sec) for 5000
200
W Roots
150 -+ W Stems
m Words
100 ¥ RRP
SSp
50 -
mWP
0 .
Ridor OneR NNge Decision Table JRIP PART

(©)

Figure 39: Comparison between rule-based classifiers’ performance for all
VSM representations according to (a) number of rules, (b) RMSE, (c) time

157

It is noteworthy that in [175; 6] the reported accuracy of OneR classifier (about 0.1)
is much lower than its value here (accuracy values for WP, Words, SSP, Stems,
RRP, and Roots representations are respectively 0.5833, 0.5249, 0.5323, 0.5485,
0.6294, and 0.6182). It is considered here that such large difference in accuracy
values might be partially due to the use of the proposed TFIDF variant. However,
this requires further investigation in future.

6.3.5 Miscellaneous Classifiers

The two miscellaneous classifiers applied here are VFI and HyperPipes. Both
performances for all representations were rather low but HP method had higher F1
values than VFI as was presented in section 5.4. For Arabic TC these methods have

not been implemented before.

In [65] HP classifier accuracy was compared with those of SVM, C4.5, NB and
TWCNB (a modification of NB for TC found in [149]) classifiers in WEKA
software and found that HP accuracy is comparable with TWCNB but higher than

the others.

VFI was compared with HP as well as NB classifiers*® on 35 data sets and it was
found that VFI is faster than NB but slower than HP and less in accuracy than both

NB and HP for most sets and the highest performance was for NB then HP then VFI.

In this thesis, the results of comparing VFI and HP classifiers performances in terms
of F1 are in agreement with results shown above. Also, comparing the performance
of HP, VFI with NB here shows that for only words and WP representations it is

similar to those reported in [65].

“ further info regarding results can be found at: http:/bio.informatics.indiana.edu/ml_docs/weka/weka.classifiers.VFI.html

158

6.3.6 Meta Classifiers

Meta classifiers use either ensemble of base classifiers, boosting or bagging to
improve the performance of usually a weak classifier. Here, only the best seven
performing Meta classifiers (presented in Table 33, section 5.4) are further explained

and compared.

Filtered classifier™ runs an arbitrary classifier on data that has been passed through

an arbitrary filter (here Discretize).

END classifier [74] is an Ensemble of Nested Dichotomies that chooses randomly
the nested dichotomies and repeats this process for 10 iterations then takes the
average. In [74] this method was tested on 21 data sets and its implemented base
classifiers was either C4.5 or Logistic regression. Both were tested to see if this
ensemble improvement/degradation of performance depends on the base classifier or
not. It was compared to C4.5 and logistic regression, among others, and it was found
that END produces more accurate classifications than when applying C4.5 and

logistic regression. In this thesis, the base classifier for END is C4.5.

LogitBoost classifier [77] applies additive logistic regression with Decision Stump
base classifier and best-first as the splitting strategy. For multi-class problem, direct
generalizations based on multinomial likelihood were derived and their performance
were found to be comparable to some boosting algorithms and far superior in some.
This method also performed a slight modification to boosting that reduced
computation through weight trimming. In [77] LogitBoost was tested on simulated
and real data sets (non textual) and compared with AdaBoost (based on CA4.5),

CART, and Bootstrapping algorithms as well as C4.5 for two-class and multi-class

% info on Filtered clasifier was taken from: http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/FilteredClassifier.ntml

159

problems. This classifier's performance is comparable to AdaBoost performance on
real data sets. In [77], it was tested to investigate the effect of using C4.5 and
Decision Stump (as base classifiers) on LogitBoost performance where both had the
same effect. In this thesis, although not presented here, both base classifiers were
used and their effect on Logit Boost performance is comparable which is in

agreement with results obtained in [77].

Random SubSpace classifier (RSS) [99] consists of multiple trees constructed
systematically by pseudo randomly selecting subsets of features. This method can
take advantage of high dimensionality, unlike others that suffer from it, since it
improves on generalization accuracy as it grows in complexity. In [99] this method
was tested on 4 data sets and compared with C4.5 (with/out pruning), AdaBoost, and
bootstrapping methods. Results of such tests showed that RSS is more accurate than

C4.5 and higher than boosting and bootstrapping methods in accuracy.

Rotation Forest (RF) classifier [150] is an ensemble of base classifiers (in this thesis
C4.5) where the feature set is split into subsets randomly (K is the number of subsets
and a parameter of the algorithm) and Principle Component Analysis (PCA) is
applied to each subset. K-axis rotations take place to form the new features for the
base classifier, i.e. reassembling a new extracted feature set while keeping all
components. In [150] this method was compared with Bagging, AdaBoost, and
Random Forest algorithms and tested on 33 benchmark datasets. Results were

significantly favorable to RF classifier in terms of accuracy over all others.

AdaBoost.M1 classifier [78] is a method that boosts the performance of a weak
learner (in this thesis C4.5). This method was compared with C4.5 along with the

Bagging classifier, using FindAttrTest, FindDecRule and C4.5 weak algorithms. In

160

[78] 27 data sets were used for comparing such methods' results show that when
using C4.5 as weak learner, Boosting and Bagging seem more evenly matched even

though Boosting has a slight advantage.

Bagging classifier [39] is a method for aggregating multiple versions by making
bootstrap replicates of learning set of a predictor (in this thesis C4.5) and using these
to get an aggregated predictor. This method was tested on different data sets
(whether real or simulated) and compared it with CART's performance, subset
selection in linear regression. In [39] Bagging accuracy results is substantially higher

than others.

Classification Via Regression (CVR) classifier [76] is a model tree that takes the
form of a decision tree with linear regression functions at its leaves (base classifier is
MS5P [144], [179]). In [76] this method was found to be significantly more accurate

than C5.0" and linear regression when tested on 33 datasets.

As was shown in Table 33, section 5.4, the results of applying 17 meta algorithms
showed that for Roots or RRP representations Logit Boost classifier's performance is
the best among others (relative to AdaBoost.M1) (F1=94%) followed by RSS
classifier (F1=93%), then by END classifier (92%), then by AdaBoost.M1 classifier
(92%), then Bagging (91%), CVR (90%), RF (90%), Att. selected classifier (84%),
then Dagging (83%) where the highest performances in terms of F1 of above
classifiers are not significant. This is not in agreement with the results presented
above in [43], whether in values or order, since the best performance, in decreasing
order, is for END, Filtered classifier, CVR, Decorate, Bagging, Att. selected

classifier, Logit boost, Dagging, and finally Multi Class Classifier.

161

The performance of the AdaBoost.M1 here in terms of F1™ varied among
representations in boosting C4.5 performance from about 3-4% for root
representations to about 10-12% for word representations for 5000 features. Also, as
mentioned (in subsection 2.4.2) in the work of Raheel at el, [147] the maximum F1¥
was found to be about 88.5% for root representation. However, here for roots

representation, the performance of this classifier is about 92%.

From results in Table 34, section 5.4, the comparison between the performances of
best classifiers among Meta classifiers whether among these classifiers or with other
types as C4.5 or Logistic is in agreement with reported results in [99], [74] and [77].
In this chapter, these algorithms' performances are further compared in terms of time

and RMSE for top 5000 selected features only as is presented in Figure 40.

Figure 40a presents a comparison between these classifiers in this thesis in terms of
building time. Some of these classifiers' time is small, although its macro F1 is low
such as Dagging, yet for few others that have comparatively high macro F1; their
time is still small such as RSS or FT classifiers. However, most Meta classifiers that
have high macro F1 values have a rather high time. Figure 40b presents the best
performing classifiers in terms of lowest RMSE values. Such values are in
agreement with their macro F1 values (i.e. classifiers with lowest RMSE have

highest F1 values).

162

600 Time for 5000 without Decorate

M Roots
500
I W Stems
400
300 - - W Words
200 - H !
I W RRP
100 - 3
0 - | SSp
. - b“. b’.' &_.’
S QL
® mwp

0.35

0.3 —————— M Roots

0.25

M Stems

0.2
o Words

0.1 RRP

0.05
Ssp

PR T T T NE R S mwr

?.
| . ®
Figure 40: Comparison between Meta classifiers' performance for all VSM
representations according to (a) time, (b) RMSE

Next is a comparison between the best performing classifiers of each type is further
analyzed.

6.3.7 Comparison between Classifiers:

In previous subsections, a comparison between the performances of classifiers of
same type was conducted and analyzed. Here, the best performing classifiers among

each type are compared further. Before doing that, a summary of what is reached so

far in this thesis is presented.

1- For Bayes-based: the performance of Bayes-based classifiers was compared in
terms of F1 measure where the BN classifier's performance (max. F1 is 99%) is

significantly better than the remaining Bayes-based classifiers for all representations,

163

2- For Functions: Simple logistic performance is significantly higher than the
remaining function classifiers for all representations, where for Roots representation,

the F1 values are 83% for Simple Logistic and 68% for SMO,

3- For Trees: results of tree classifiers performances showed that (max. F1 values),
relative to C4.5, LMT (83%), FT (F1=81%), BF Tree (88%), RepTree (87%), C4.5

(86%), and Simple Cart (86%) are comparable for most representations,

4- For Rules: results of applying the five rule-based algorithms have shown that the
best performing classifier for Roots or RRP representations among rule learners in
terms of F1 values is the JRip (87%) classifier followed by Ridor (86%) and PART
(83%), then by OneR (79%), then by Decision Table (54%) and finally by NNge

(43%) classifiers,

5- For Miscellaneous: results of comparing VFI and HP classifiers performances are

in agreement with previous works results,

6- For Meta: results of applying 17 meta algorithms showed that for Roots or RRP
representations Logit boost classifier's performance is the best among others (relative
to AdaBoost.M1) (F1=94%) followed by RSS classifier (F1=93%), then by END
classifier (92%), then by AdaBoost.M1 classifier (92%), then Bagging (91%), CVR
(90%), RF (90%), Att. selected classifier (84%), Decorate (83%), Filtered classifier
(83%), then Dagging (50%) where the highest performances in terms of F1 of above

classifiers are not significant.

As is shown in Table 34, section 5.4, the BN classifier (99%) is significantly the best
one among used classifiers in terms of F1 values for all representations. The second

best performance classifier is Logit Boost (94%) followed by in decreasing order,

164

RSS (93%), AdaBoost and END (92%), BF Tree (88%), RIPPER and RepTree
(87%), C4.5 and Ridor (86%), Simple logistic, PART, LMT, and FC (83%), FT tree

(81%), NBM (78%), then SMO (68%).

In order to further compare these classifiers, their training time and RMSE values are
compared. This is presented in Figure 41. From Figure 41a, in terms of least training
time, the best classifier is NBM followed by BN, RepTree, and then Logit Boost.
From Figure 41b, in terms of least RMSE values, the best classifier is BN, followed

by Logit Boost, then END and FC classifiers.

Time without LMT

400
350 M Roots
300 M Stems
250 m Words
[|
200 I mRRP
150
100 | mSSP
50 mWP
0]

0.35
0.3
0.25
0.2
0.15
0.1
0.05

(b)
Figure 41: Comparison between best classifiers' performance for all VSM
representations from different types according to (a) time, (b) RMSE
Thus, it can be concluded that the best classifier among all used ones in this thesis in

terms of F1, time, and RMSE values is BN, followed by Logit Boost for all

representations.

165

6.4 Conclusions and Future Work

The results of implementing the proposed variant TFIDF and VSM representations
for various classifiers have been presented and further analyzed and compared in this

chapter and can be briefed as:

1- The comparison between the performance results of most classifiers showed that
using Roots representation significantly improved their performance than when
using Stems or Words representations. Also, a comparison between the performances
of those classifiers showed that using RRP representation significantly improved
most of their performances than when using SSP or WP representations. However, it
is evident that although a slight improvement/degradation was obtained for some

classifiers when the original VSM was extended, yet such results are not significant.

2- The classifiers' results showed that the best classifier was BN, followed by Logit
Boost classifier when features' number is 1000 for all representations in terms of F1,
training time, and RMSE values. The same can be concluded when features' number
is 5000. However, the effect of the variation of the number of selected features on
BN performance was the minimal among all classifiers. This is so since for 5000
features the improvements were slightly less, among the implemented classifiers, the
BN classifier had the least percentage of required features to obtain the maximum
performance: about 4.5% for Roots, about 1% for RRP, about 0.28% for Stems,
about 0.23% for SSP, about 0.043% for Words, and about 0.08% for WP. This is

different from previously reported studies on English TC.

3- The high improvement in classification performance when using roots

representation compared to when using words representation suggest an increase in

166

knowledge obtained by using roots representation for most implemented classifiers
and that using BN or Logit Boost classifiers for obtaining excellent Arabic TC
results is favorable not just in terms of accuracy, F1, time values, but also in lower

error values.

4- 1t is not clear at this stage whether using the proposed variant of TFIDF does
indeed improve the performance of classifiers or not since its effect in this thesis was
not compared with that of other term weighting methods. However, results in this
work indicate that this variant improves or has no effect on TC performance. This is

so although k-NN classifier's performance in this thesis was poor.

5- The comparison between different rule learners in this work is similar to
previously reported works on other data sets but rather different than those for
Arabic TC in terms of F1, time, RMSE values and number of rules. The comparison
between different tree learners in this work is rather similar to those of previously
reported works on other languages in terms of F1, time, RMSE values and size of
trees. The same applies to the comparison between the results of Meta learners here
in terms of F1, time, and RMSE values. However, the comparison between different
Bayes-based learners in this work is different than previously reported works on

other languages in terms of F1, time, and RMSE values.

6- It is noteworthy that, for 1000 features, the amount of improvement in
classification performance that AdaBoost.M1 provided for C4.5 classifier varied
among VSM representations from about 6% for roots or RRP to about 24-28% for
words or WP. Also, for 1000 features the amount of improvement in classification
performance that RSS provided for RepTree classifier varied among VSM

representations from about 6-7% for roots or RRP to about 18-20% for words or WP.

167

For 1000 features, the amount of improvement in classification performance that
END provided for C4.5 classifier varied among VSM representations from about 5-
6% for roots or RRP to about 23-28% for words or WP. For Logit Boost, the effect
of the base classifier choice on its performance is tested among representations and
although not presented but was found to be negligible. In general, the small
differences in the performance of Meta classifiers are not significant among

representations.

7- The high improvement in classification performance when using roots
representation compared to when using words representation suggest an increase in

knowledge obtained by using roots representation for most implemented classifiers.

In future, further work is expected to compare the performance of such classifiers on
other Arabic corpora (once acquired) and to investigate the effect of the proposed
variant of TFIDF method by comparing its effect on TC performance with other
weighting methods on different Arabic corpora. Also, further work is expected to
investigate the effect of other different VSM representations for Arabic on TC

performance and include further feature choices as word senses.

168

Chapter 7: Conclusions and Recommendations

This thesis explores and improves different preprocessing methods and investigates
their effect on TC performance for Arabic text. The preprocessing methods for TC
that are investigated are concentrated in two areas: morphological analysis and
document representations. More specifically, this thesis improves two existing root
extraction techniques by proposing and implementing an algorithm that handles
irregular words and compares between these techniques in terms of their accuracy
and execution time [13], [14]. It also proposes and implements an adjustment and
two expanded weight-based techniques and compares their performance with the
original ones [14]. Throughout the process of analyzing the results of root extraction
techniques, further modifications are presented such as handling foreign Arabized
words to establish a root extraction system.

This thesis investigates the effect of using the outputs of the best reported accuracy
root extraction technique among those implemented here (i.e. roots or stems as
alternatives of their respective words in document representation) on single-labeled
TC performance as well as including other feature choices such as phrases in
document representation. It also proposes and implements a variant TFIDF for
weighting features in VSM representation. Finally, in this thesis, such six VSM
representations and the proposed weighting method are used in the implementation
of various single-label TC techniques and a comparison and analysis of their

performances is conducted.

7.1 Research Contributions

This section presents the contributions for each research question introduced in

Chapter 1.

169

Research contributions regarding the first research question

"What are the steps to develop an Arabic corpus from two different small
collections to be manually classified as single-labeled corpus among eight

classes?"

This thesis contributes to the literature of Arabic corpora by reviewing briefly
available corpora and emphasizes the necessity for developing an Arabic

corpus that eventually will be available online (Chapter 3).

This thesis contributes to the literature of corpus development in developing
an Arabic corpus. This corpus was developed after collecting texts from
various online newspapers and downloading the LACC corpus that were all
single-labeled. Then, a re-categorization process of the LACC corpus among
eight pre-defined classes was performed in order to unify the labeling of the
developed corpus. This resulted in a final corpus of 804 documents and about
a million words. The generality differs among categories for this corpus

(Chapter 3).

Research contributions regarding the second research question

"What are the available root extraction methods to be implemented in this
research? What are their disadvantages and how to improve and compare
their performance in order to obtain the most correctly outputted stems
and/or roots for respective words using the developed Arabic corpus in order

to finally propose to develop a root extraction system?"

170

This thesis contributes to the literature of available root extraction techniques
applied to Arabic by providing a brief review of these techniques and
compares them in terms of their performance, availability and advantages
and/or disadvantages (Chapter 2).

This thesis identified specific disadvantages of two available different root
extraction techniques, namely their lack of extracting roots for irregular
words, contributed by improving the performance of these two techniques
through the development and implementation of an algorithm that handles
such irregular cases (Chapter 4). The implementation of this algorithm
reported improvement of the performance of original two root extraction
techniques or their proposed Expanded methods was in the range of 7% -
14%, and its efficiency was also presented in terms of its execution time
where in general, its space and time complexity is linear as long as the
number of words in documents was less than 8,000. This algorithm can easily
be included in any root extraction technique that does not handle such cases.
Results of such improvements were published in [13] and [14]. Also, after
critically analyzing the results of these techniques, handling the effect of
foreign Arabized words was performed by developing a list that includes
7,227 foreign words and names of places, countries, and cities. Also, a
proposed root extraction system is developed that gathers advantages of some
of the implemented algorithms as well as handling the foreign words.

Research contributions regarding the third research question

"How varying feature choices in Vector Space Model representation of
corpus will affect the performance of various text classification methods as
well as proposing and implementing a variant of TFIDF term weighting? If

171

there is an improvement in text classification performance, would it be

statistically significant?"

This thesis identified a problem in the frequently implemented term
weighting method TFIDF and proposed a variant TFIDF method that takes
into consideration the effect of the presence of a term among different
classes. It represented the developed corpus using three different
representation schemes, words, stems and roots. It also proposed three
different VSM representations by extending the original representations
through including their respective phrases. The comparison between the
performance results of forty seven different classifiers showed that using
Roots representation significantly improved their performance than when
using Stems or Words representations for most classifiers. Also, comparing
the performance results of those classifiers showed that using RRP
representation significantly improved classifiers performance than when
using SSP or WP representations for most classifiers. However, although a
slight improvement/degradation was obtained for most classifiers when the
original VSM was extended, yet such results are not significant (Chapter 5).
Research contributions regarding the fourth research question

"Which classifiers applied to various representations of Arabic corpus have
the best performance? Are the results obtained for such classifiers in

agreement with previously reported studies?"

This thesis contributes to the literature of available classification techniques
applied to Arabic by providing a brief review of these techniques and

compares them in terms of their performance, availability, and advantages

172

and disadvantages (Chapter 2). Also, it contributes to the literature of
classification techniques by providing a brief review of those techniques that
are used for Arabic TC in this thesis and compares their performances in
terms of their F-measure, training time, and root mean square error values
(Chapter 6).

e This thesis identified the lack of using all well-performing classifiers for
Arabic TC. Thus, it used 47 classifiers that are available in WEKA software
and tested these classifiers on all VSM representations of the developed
Arabic corpus. It compared between the performances of these classifiers in
terms of their F1 values and tested for significance (Chapter 5). This thesis
further analyzed the results of such classifiers by comparing these results
with those of previous works and comparing between these classifiers'
performances by their training time and root mean square error values
(Chapter 6). From these classifiers' performances, it is concluded here that
the best one among them is the Bayes Net classifier (with F1™ = 99%,
training time about 2.5 seconds, RMSE value about 0.1 when using the Roots

representation).

This research provided unique contributions in that it developed the first Arabic
corpus that can be used in both single-labeled and multi-labeled TC although here it
was used only for single-label TC. It also proposed a simple and efficient algorithm
that handles the less visited irregular words in Arabic. Furthermore, it handles
foreign Arabized words. It then explored extending the usual VSM representation of
documents by including phrases, stem phrases, or root phrases in such
representations and compared such extension with the usual choice of features in

terms of words, stems, and roots, as well as proposed a variant of the well-known

173

TFIDF weighting method and implemented and compared various classifiers to

investigate the effect of such preprocessing methods on TC performance.

7.2 Research Limitations

Although the results can be considered promising and positive, the research has
some limitations that should be highlighted.
e The first limitation of this study is in the small length of corpus developed.
e The second limitation of this study is the lack of available efficient online
processing tools for Arabic.
e The third limitation of this study includes the length of time for the study
where a short time frame especially for the last portion of thesis resulted in

the most of the limitations.

7.3 Recommendations for Further Work

This research essentially covered two main areas of research: the development,
improvement, and comparison between two techniques for root extraction to finally
propose a root extraction system, and the investigation of the effect of preprocessing
methods on improving TC performance for Arabic.

Throughout the development of Arabic corpus and the re-categorization of its texts
among eight classes, as briefly mentioned in Chapter 3, some of such texts were hard
to categorize to only one class. This led to distributing a questionnaire on native
Arabic speakers in Petra university and other working environments in Amman,
Jordan took place throughout the period 4/11/2010 — 1/2/2011. The objective of the
questionnaire was to obtain a text collection with multi-labels (at least for some of its

texts when applicable). It was requested that each text be classified by at least two

174

participants. The total number of texts that were classified was 1,985. Also, Hooper's
measure of consistency [100] was used for some texts to find the consistency among
participants' choices. Preliminary results of applying Hooper equation support the
results of our procedure. Thus, 36.82% of the files in the combined text collection
are multi-labeled. Also, the final corpus's LC and LD are found to be 1.4 and 0.175
respectively. Such values are relatively low compared to other multi-labeled data
collections as those shown in [178]. Examples of other factors [125] that were
reported to affect the results of indexing (here labeling) are indexer's education,
experience in indexing, and document length. Their effects, except the "experience

in indexing" factor, were investigated.

Further to the work reported in this thesis, it is suggested that there could be
advances for further research and development:

1. Further research regarding the developed Arabic corpus is to increase the size of
this corpus so that the generality among classes becomes similar in values. Also,
although Arabic TC was conducted and tested in this thesis on the developed Arabic
corpus with the eight chosen classes, yet further research regarding performing the
same classifications on the same corpus but with the eight classes chosen by LACC
is required in order to compare the effect of such choices of classes on TC
performance. Further research regarding the developed Arabic corpus is to increase
its size and investigate the presence of texts with multi labels so that eventually the
label cardinality as well as the number of texts and words will be higher in it. This
would be carried out through collecting much more texts in MSA from various
Arabic websites and performing active learning techniques to further classify these

texts by one or more labels among the eight classes.

175

2. Further research regarding the investigated root extraction techniques, discussed

in Chapter 4, is through: a- improvement of the rule-based technique by adding more
rules, b- improvement of the proposed and implemented algorithm for correcting
irregular words by adding more special cases, c- investigation of improving the
weight-based technique through weighting the letters in sOltmwnyhA by using fuzzy
sets to handle their grouping, and d- further testing the efficiency of proposed root

extraction system.
3. Further research to that discussed in Chapters 5 and 6 regarding the investigation

of the effect of other VSM representations on TC performance is through
investigating other possible combinations of features (i.e. combining for example
words with roots, .. etc) on single-label TC performance as well as comparing the

effect of variant TFIDF with other term weighting methods on TC performance.

176

10.

11.

12.

13.

14.

References

H.K Al-Ameed, A Proposed New Model using a light stemmer for increasing the
success of search in Arabic terms, PhD Thesis, 2006. Bradford: University of
Bradford, UK.

R. Abbes, J. Dichy and M. Hassoun, "Morph-lexical ambiguities in the recognition
of written Arabic word-forms, evidence from the DIINAR.1 lexical resource™ in
proceedings of The second International Conference on Machine Intelligence
ACIDCA-ICMi'05, 5-7 Nov, Tozeur, Tunisia, 2005.

H. Abu-Salem, M. Al-Omari, and M. W. Evens, "Stemming methodologies over
individual query words for an Arabic IR system" Journal of the American Society
for Information Science and Technology JASIST, 50(6): 524-529, 1999. ASIS&T.

D. Aha, D. Kibler, and M. Albert, "Instance-Based learning algorithms™ in Machine
Learning, 6: 37-66, 1991. Kluwer Acadmic Publishers. Boston.

Z. Ahmed, "Arabic weak verb formulation and computation” in 7" Annual
Computational Linguistics in UK CLUK research colloquium, 6-7 Jan,
Birmingham, UK, 2004.

M. Al-diabat, "Arabic text categorization using classification rule mining" Applied
Mathematical Sciences, 6(81): 4033-4046, 2012.

N. Al Fe'ar, E. Al Turki, A. Al Zaid, M. Al Duwais, M. Al Sheddi, N. Al Khamees,
and N. Al Drees, "E-Classifier: A bilingual email classification system™ in
proceedings of International Symposium on IT, ITSim'08, 26-28 Aug, Kuala
Lumpur, Malasyia, 3: 1-4, 2008. IEEE Xplore.

S Al-Harbi, A. Almuhareb, A. Al-Thubaity, M. S. Khorsheed and A. Al-Rajeh,
"Automatic Arabic TC" 9% Journees internationals d'Analyse statistique des
Donnees Textuelles JADT'08, pp. 77-83, 12-14 March, Lyon, France, 2008. Presses
Universitaires de Lyon.

M. Aljlayl and O. Frieder, "On Arabic search: Improving the retrieval effectiveness
via light stemming approach” in proceedings of the eleventh ACM International
Conference on Information and Knowledge Management CIKM'02, pp. 340-347,
4-9 November, Illinois Institute of Technology, Mclean, Virginia, USA, 2002.
ACM.

M. N. Al-Kabi and S. I. Al-Sinjilawi, "A comparative study of the efficiency of
different measures to classify Arabic Text" University. of Sharjah Journal of pure
and applied sciences, 4(2): 13-25, June, 2007. University of Sharjah: Sharjah,
UAE.

I. A. Al-Kharashi and Martha W. Evens, "Comparing words, stems, and roots as
index terms in an Arabic IR system™ Journal of the American Society for
Information Science and Technology JASIST, 45(8): 548-560, 1994. ASIS&T.

A. Al-Marghilani, H. Zedan and A. Ayesh, "TM based on Self-Organizing Map
method for Arabic-English documents” in proceedings of the 19" Midwest
Artificial Intelligence and Cognitive Science Conference MAICS'08, pp. 174-181,
12-13 April, Cincinnati, USA, 2008. AAAIL.

M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "An improved root extraction
technique for Arabic words" in proceedings of 2" International Conference on
Computer Technology and Development ICCTD 2010, S. Mahmoud and Z. Lian
(Eds.), pp. 264-269, 2-4 Nov, Cairo, Egypt, 2010a. IEEE Xplore.

M. Y. Al-Nashashibi, A. Yaghi, and D. Neagu, "Stemming Techniques for Arabic
Words: A Comparative Study" in proceedings of 2" International Conference on
Computer Technology and Development ICCTD 2010, S. Mahmoud and Z. Lian

177

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25

26.

27.

28.

29.

(Eds.), pp. 270-276, 2-4 Nov, Cairo, Egypt, 2010b. IEEE Xplore.

H. Al-Serhan and A. Ayesh, "A Triliteral word roots extraction using Neural
Network for Arabic" in proceedings of the 2006 International Conference on
Computer Engineering and Systems, 5-7 Nov, Ain Shams University, Cairo, Egypt,
pp. 436-440, 2006. IEEE.

R. Al-Shalabi and Martha Evens, "A Computational Morphology System for
Arabic"” in proceedings of The workshop on computational approaches to Semitic
languages, Montreal, Quebec, Canada, pp. 6672, 1998. ACL.

R. Al-Shalabi, G. Kanaan and H. Al-Serhan, "New approach for extracting Arabic
roots” in proceedings of 2003 International Arab conference on Information
Technology (ACIT’2003), pp. 42-59, 20-23 Dec, Alexandria, Egypt, 2003. Arab
Academy for Science and Technology and Maritime Transport, Egypt.

R. Al-Shalabi, "Pattern-based stemmer for finding Arabic roots" Information
Technology Journal, 4(1), pp. 38-43, 2005.

R. Al-Shalabi, G. Kanaan and M. H. Gharaibeh, "Arabic TC using kNN algorithm"
in proceedings of The 4™ Int Multiconference on Computer Science and
Information Technology CSIT'06, pp. 1-9, April, Amman, Jordan, 2006. Applied
Science Private University, Amman, Jordan.

R. Al-Shalabi and R. Obeidat, "Improving KNN Arabic TC with n-grams based
document indexing" in proceedings of the 6th International Conference on
Informatics and Systems INFOS'08, pp. 108-112, 27-29 March, Cairo, Egypt,
2008. Faculty of Computers and Information-Cairo University: Cairo, Egypt.

E. Al-Shammari and J. Lin, "A novel Arabic lemmatization algorithm™ in
proceedings of 2nd Workshop on Analytics for Noisy unstructured text Data
AND'08, pp. 113-118, 24 July, Singapore, 2008a. ACM.

E. Al-Shammari and J. Lin, "Towards an Error-Free Arabic Stemming” in
proceedings of 2nd ACM International Workshop on Improving Non English Web
Searching INEWS'08, pp. 9-15, 30 Oct, Napa Valley, California, USA, 2008b.
ACM.

E. Al-Shawakfa, A. Al-Badarneh, S. Shatnawi, K. Al-Raba'ah, and B. Bani-Ismail,
"A comparison study of some Arabic root finding algorithms” Journal of the
American Society for Information Science and Technology JASIST, 61(5): 1015-
1024, 2010. ASIS&T.

I.A. Al-Sughaiyer and I.A Al-Kharashi, "Arabic Morphology Analysis Techniques:
A Comprehensive Survey" Journal of the American Society for Information
Science and Technology JASIST, 55(3): pp. 189-213, Feb. 2004. ASIS&T.

L. Al-Sulaiti Home page, URL:
http://www.comp.leeds.ac.uk/eric/latifa/research.nhtm, 2009. University of Leeds,
UK.

L. Al-Sulaiti and E. Atwell, "The design of a corpus of Contemporary Arabic"
International Journal of Corpus Linguistics, 11(1): 1-36, 2006. John Benjamins
Publishing Company.

A. Al-Zoghby, A. S. Eldin, N. A. Ismail, and T. Hamza, "Mining Arabic text using
soft-matching association rules™ in proceedings of International Conference on
Computer Engineering and systems, ICCES '07, pp. 421-426, 27-29 Nov, Cairo,
Egypt, 2007. IEEE Xplore.

M. Attia, A large-scale computational processor of the Arabic morphology, and
applications, M.Sc. Thesis, January 2000. Faculty of Engineering- Cairo
University: Giza, Egypt.

M. Attia, "Developing robust Arabic morphological transducer using Finite state

178

http://rea.teimes.gr/lazarinf/iNEWS08/
http://rea.teimes.gr/lazarinf/iNEWS08/
http://www.comp.leeds.ac.uk/eric/latifa/research.htm

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

technology”, in 8" Annual Computational Linguistics in UK CLUK Research
Colloquium, Manchester, UK, 2005.

M. Attia, "Arabic tokenization system" in proceedings of the workshop on
Computational Approaches to Semitic Languages: Common Issues and Resources
(Semitic'07), Prague, Czech Republic, pp. 65-72, June, 2007. ACL: Stroudburg,
PA, USA.

Imam Mohammed Ibn Abi Baker Ar-Rhazi, Mukhtar us-Sihah. 1986. Beirut:
Librairie du Liban Publishers. (in Arabic).

C. Apté, F.J. Damerau, and S.M. Weiss, "Automated learning of decision rules for
text categorization” ACM Transactions on Information Systems, 12(3): 233-251,
July, 1994. ACM.

H. Bayyomee, Kh. Kolfat, and A. Al-Shafe'e, Lexicon for Arabic Verbs morphology.
1989. Cairo: Dar llias Modern Publishing Comp. (in Arabic).

M. J. Bawaneh, M. S. Alkoffash and A. I. Al Rabea, "Arabic TC using k-NN and
NB" Journal of Computer Science, 4(7): 600-605, 2008. Science Publications.

K.R. Beesley, "Finite-State Morphological Analysis and Generation of Arabic at
Xerox Research: Status and Plans in 2001" in proceedings of ARABIC NLP
Workshop: Status and Prospects ACL-EACL2001, pp. 1-8, 6 July, Toulouse,
France, 2001. ACL.

A. Boudlal, R. Belahbib, A. Lakhouaja, A. Mazroui, A. Meziane, and M. Ould
Abdallahi Ould Bebah, "A markovian approach for Arabic root extraction” in
proceedings of The international Arab conference on information technology ACIT
2008, University of Sfax, Tunisia, Dec. 16-18, 2008.

T. Brants, F. Chen, and A. Farahat, "Arabic document analysis" in proceedings of
workshop Arabic Language Resources and Evaluation Conference LREC'02, Las
Palmas, Spain, 2002.

L. Breiman, "Random Forests" Machine Learning, 45(1): 5-32, Oct 2001. Kluwer
Academic Publishers, The Netherlands.

L. Breiman, "Bagging predictors" Machine Learning, 24(2): 123-140, 1996. Kluwer
Academic Publishers, The Netherlands.

L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone, Classification and
Regression Trees, 1984. Wadsworth Int Group, Belmont, California.

T. Buckwalter, "Buckwalter Arabic morphological analyzer Version 1.0, Linguistic
Data Consortium, Philadelphia, 2002, available online at URL:
http://www.gamus.org/. [Accessed 22/12/2010].

L. Cahill, "A syllable approach to verbal morphology in Arabic" in proceedings of
Language Resources and Evaluation LREC workshop on Semitic languages, pp.
19-26, 17" May, Malta, 2010.

V. Chakraborty, M. Vasarhelyi, and V. Chiu, "Automatic classification of
accounting literature” in proceedings of 19™ Annual Strategic and Emerging
Technologies Research workshop, San Francisco, CA, USA, 31 July, 2010.

A. Chen and F. Gey, "Building an Arabic Stemmer for Information Retrieval™ in
proceedings of NIST Special Publication: The Eleventh Text REtrieval Conference
TREC'02, Voorhees, E.M. & Harman, D.K. (Eds.), 19-22 Nov, Gaithersburg,
Maryland, 2002. NIST: Gaithersburg, Maryland.

Long-Sheng Chen and Chai-Wei Chang, "A new term weighting method by
introducing class information for sentiment classification of textual data” in
proceedings of International MultiConference of Engineers and Computer
Scientists Vol 1 IMECS'11, 16-18 March, Hong Kong, 2011.

Ding-An Chiang, Huan-Chao Keh, Hui-Hua Huang, and D. Chyr, "The Chinese text

179

http://www.qamus.org/

47.

48.

49,

50.

o1,

52.

53.

54.

55.

56.

S57.

58.

59.

categorization system with association rule and category priority” Expert Systems
with Applications, 35: 102-110, 2008. EISEVIER.

William W. Cohen, "Fast effective rule induction™ in proceedings of the twelfth
international conference on Machine Learning ML95, pp. 115-123, 9-12 July,
Tahoe City, California, USA, 1995. Morgan Kaufmann Publishers, San Francisco,
CA, USA.

K. Darwish, D. Doermann, R. Jones, D.W. Oard, and M. Rautiainen, "TREC-10
Experiments at University of Maryland CLIR and Video" in proceedings of NIST
Special Publication: The Tenth Text REtrieval Conference TREC'01, pp. 549-562,
USA. 2001. NIST: Gaithersburg, Maryland.

K. Darwish, "Building a Shallow Arabic Morphological Analyzer in one day" in
proceedings of workshop on computational approaches to Semitic languages
ACL'02, Philadelphia, PA, USA, 2002a. ACL.

K. Darwish, "Al-stem: A Light Arabic Stemmer"”, As part of Dissertation Work
Probabilistic Methods for Searching OCR-Degraded Arabic Text, University of
Maryland, College Park, 2002b.

K. Darwish, H. Hassan, and O. Emam, "Examining the effect of improved context
sensitive morphology information retrieval™ in proceedings of of the ACL
workshop on Computational approaches to Semitic languages, pp. 25-30, June,
Ann Arbor, MI, USA, 2005. ACL.

E. Daya, D. Roth and S. Wintner, "Identifying Semitic Roots: Machine Learning
with Linguistic Constraints” Computational Linguistics, 34(3): 429-448, 2008.
ACL.

C. Deisy, M. Gowri, S. Baskar, S.M.A. Kalairasi and N. Ramraj, "A Novel term
weighting scheme MIDF for Text Categorization" Journal of Engineering Science
and Technology, 5(1): 94-107, March, 2010. School of Engineering, Taylor's
University College.

A. N. DE Roeck and W. Al-Fares, "A Morphologically sensitive clustering
algorithm for identifying Arabic roots" in proceedings of 38™ Annual meeting of
ACL, Hong Kong, pp. 199-206, 2000. ACL.

M. Diab, K. Hacioglu and D. Jurafsky, "Automatic tagging of Arabic text: from raw
text to base phrase chunks" in proceedings of 5™ meeting of the North American
chapter of the Association for Computational Linguistics/Human Language
Technologies conference (HLT-NAACL 04), pp. 149-156, Boston, MA, USA, 2-7
May, 2004. ACL.

J. Dichy, A. Braham, S. Ghazali, M. Hassoun, "La Base de connaissances
linguistiques DIINAR.1 (Dlctionnaire INformatise de I'Arabe, version 1)"., in
Colloque international sur le traitement automatique de | ’‘arabe — proceedings of
the International Symposium on The Processing of Arabic, A. Braham (Ed.),
Université de la Manouba, Tunis (en Arabe, Frangais et Anglais) 18-20 April,
2002.

J. Dichy, and A. Farghaly, "Roots and patterns vs. stems plus grammar-lexis
specifications: on what basis should a multilingual lexical database centred on
Arabic be built?" in proceedings of workshop on Machine Translation for Semitic
languages MT-summit IX, 23 Sept, New Orleans, USA, 2003.

Chuong B. Do and Andrew Y. Ng, "Transfer learning for text classification" in
proceedings of Advances in Neural Information Processing Systems NIPS, 2006.

L. Dong, E. Frank, and S. Kramer, "Ensembles of balanced nested dichotomies for
multiclass problems" in proceedings of 9" European conference on Principles and
Practice of Knowledge Discovery in Databases: PKDD'05, LNCS -3721, pp 84-95,

180

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74,

Porto, Portugal, October 3-7, 2005. Springer.

R.M. Duwairi, "Machine Learning for Arabic Text Categorization™ Journal of the
American Society for Information Science and Technology JASIST, 57(8): 1005-
1010, April, 2006. ASIS&T.

R. Duwairi, "Arabic Text Categorization” in The International Journal of
Information Technology, 4(2): 125-131, March, 2007. ASIS&T.

R. M. Duwairi, M. N. Al-Refai and N. Khasawneh, "Stemming versus light
stemming as feature selection techniques for Arabic text" in proceedings of 4th
International Conference on Innovations in Information Technology, 2007. lIT '07,
pp. 446-450, 18-20 Nov, Dubia, UAE, 2008. IEEE Xplore.

R. M. Duwairi, M. N. Al-Refai and N. Khasawneh, "Feature Reduction Techniques
for Arabic TC" Journal of the American Society for Information Science and
Technology, 60(11): 2347-2352, Nov, 2009. ASIS&T.

E. Eibeed, "Suggestions for the best way to classify articles in Knol-Google" (in
Arabic), URL.: http://knol.google.com/k/ [last accessed 16/2/2011].

J. Eisenstein and R. Davis, "Visual and linguistic information in gesture
classification™ in proceedings of the 6th International Conference on Multimodal
Interfaces ICMI'04, pp. 113-120, 13-15 Oct, Pennsylvania, USA, 2004. ACM.

S. El-Beltagy and A. Rafea, "KP-Miner: A Key phrase Extraction System for
English and Arabic documents™ in Information Systems Journal, 34(1): 132-144,
20009. Elsevier.

A. El-Dahdah, A Dictionary of Arabic Grammar in Charts and Tables, 2008. Beirut:
Librairie du Liban Publishers. Revised by: Dr. GM Abdul-Massih (in Arabic).

M. El-Haj, U. Kruschwitz, and C. Fox, "Experimenting with automatic text
summarization for Arabic" in proceedings of Human Language Technology LTC-
09, 2009. Revised selected papers, volume 6562 of Lecture Notes in Computer
Science, pp. 490-499. Springer: Berlin, Heidelberg, 2011.

M. El-Haj, U. Kruschwitz, and C. Fox, "Using mechanical turk to create a corpus of
Arabic summaries"”, in proceedings of the Language Resources (LRs) and Human
Language Technologies (HLT) for Semitic languages workshop held in conjunction
with the 7" International Language Resources and Evaluation Conference
(LREC'10), pp. 36-39, Valletta, Malta, 2010.

A. M. El-Halees, "Arabic TC using maximum entropy" The Islamic University
Journal (Series of Natural studies and engineering), 15(1): 157-167, 2007. The
Islamic University, Gaza, Palestine. URL.:
http://www.iugaza.edu.ps/ar/periodical/articles/natural15(1)2007pp157-167.pdf
[last accessed 22/12/2010].

M. El-Kourdi, A. Bensaid, and T. Rachidi, "Automatic Arabic documents
categorization based on the Naive Bayes algorithm™ in proceedings of the
workshop on Computational Approaches to Arabic Script-Based Languages, The
20th International Conference on Computational Linguistics COLING'04, pp. 51-
58, 23-27 August, University of Geneva, Switzerland, 2004. ACL. URL:
http://acl.ldc.upenn.edu/coling2004/W5/index.html [last accessed 22/12/2010].

T. A. EI-Sadany and M. A. Hashish, "An Arabic morphological system" IBM Systems
Journal, 28(4): 600-612, 1989. IBM, IEEE Xplore.

Eibe Frank and M. Hall, "A simple approach to ordinal classification" in proceedings
of 12th European Conference on Machine Learning ECML'01, pp. 145-156,
Freiburg, Germany, September 5-7, 2001. Berlin: Springer-Verlag.

Eibe Frank and S. Kramer, "Ensembles of nested dichotomies for multiclass
problems" in proceedings of 21% International Conference on Machine Learning

181

http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://knol.google.com/k/
http://www.iugaza.edu.ps/ar/periodical/articles/natural15(1)2007pp157-167.pdf
http://acl.ldc.upenn.edu/coling2004/W5/index.html

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

ICML'04, pp. 39, Banff, Alberta, Canada, 2004.

Eibe Frank and I. H. Witten, "Generating accurate rule sets without global
optimization™ in proceedings of fifteenth International conference on Machine
Learning, Shalvik, J. (Ed.), pp. 152-160, 24-27, Madison, Wisconsin, USA, 1998.
Morgan Kaufmann Publishers, San Francisco, CA, USA.

Eibe Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, "Using model trees for
classification” Machine Learning, 32: 63-76, 1998. Kluwer Academic Publishers,
The Netherlands.

J. Friedman, T. Hastie, R. Tibshirani, "Additive logistic regression: A statistical view
of boosting™ Annals of Statistics, 28(2): 337-407, 2000.

Y. Freund and R.E. Schapire, "Experiments with a new Boosting algorithm™ in
proceedings of 13" International Conference on Machine Learning (ICML-96), p.
148-156, Bari, Italy, 3-6 July, 1996.

J. Firnkranz, T. Mitchell, and E. Riloff, "A case study in using linguistic phrases for
text categorization on the WWW?", AAAI technical report W5-98-05, 1998. AAAL.
B. Gaines and P. Compton, "Induction of Ripple-DOwn Rules applied to modeling
large databases” Journal of Intelligent Information Systems November, 5(3): 211-

228, 1995. Springer.

L. Galavotti, F. Sebastiani and M. Simi, "Experiments on the use of feature selection
and negative evidence in automated TC" in proceedings of 4" European
conference on research and advanced technology for Digital Libraries ECDL-00,
pp. 59-68, Sept, Lisbon, Portugal, 2000. Springer-Verlag: Berlin, Heidelberg.

J. Gama, "Functional Trees" Machine Learning, 55(3): 219-250, 2004. Kluwer
Academic Publishers, The Netherlands.

A. Gelbukh and O. Kolesnikova, "Supervised learning algorithms evaluation on
recognizing semantic types of Spanish verb-noun collocations" Computacion y
Sistemas, 16(3): 297-308, 2012.

S. Ghwanmeh, R. Al-Shalabi, G. Kanaan, K. Khanfar, and S. Rabab'ah, "An
algorithm for extracting the root for the Arabic language” in proceedings of 5
International Business Information Management Association Conference IBIMA
on the Internet and Information Technology in Modern Organizations, 13-15 Dec,
Cairo, Egypt, 2005.

S.H. Ghwanmeh, "Applying Clustering of Hierarchical K-means-like Algorithm on
Arabic Language" Inernational. Journal of Information Technology, 3(3): 168—
172, July, 2006. Singapore Computer Society.

S. Ghwanmeh, G. Kanaan, R. Al-Shalabi and A. Ababneh, "Enhanced Arabic IR
system based on Arabic TC" in proceedings of 4™ International conference on
Innovations in Information Technology, 2007, IIT'07, pp. 461-465, 18-20 Nov,
Dubai, UAE, 2008. IEEE Xplore.

M. Grobelnik and D. Mladenic "Tutorial on Text Mining™ 2004. Available online at
URL: http://eprints.pascal-network.org/archive/00000017/01/Tutorial_Marko.pdf.
[Accessed 27/12/2010].

N. Habash "Large Scale Lexeme Based Arabic Morphological Generation”, in
proceedings of Session Tritement Automatique de I’Arabe, Les conférences JEP
("Journées d'Etude sur la Parole™) et TALN ("Traitement Automatique des
Langues Naturelles™) JEP-TALN, Fez, pp.1-6, April, 20, 2004.

W. Hadi, M. Salam and J. Al-Widian, "Performance of NB and SVM classifiers in
Islamic Arabic data" in proceedings of The International Conference on Intelligent
Semantic Web — Services and Applications ISWSA'10, 14-16 June, Amman, Jordan,
2010. ACM.

182

http://eprints.pascal-network.org/archive/00000017/01/Tutorial_Marko.pdf

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

10C

101.
102.
103.
104.

105.

W. Hadi, F. Thabtah and G. Kanaan, "NB and K-nearest neighbor to categorize
Arabic text data" in proceedings of The European multidisciplinary society for
modeling and simulation technology ESM'08, pp. 196-200, 27 — 29 Oct, Universite
du Havre, Le Havre, France, 2008. EUROSIS-ETI.

Mark Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, "The
WEKA data mining software: an update” Special Interest Group Knowledge
Discovery and Data Mining SIGKDD explorations, 11(1), 2009.

J. Han and M. Kamber, Data Mining Concepts and Techniques, 2" edition. 2006.
San Francisco: Morgan Kaufmann Publishers (an imprint of ELSEVIER), CA,
USA.

F. Harrag, A.M. Al-Salman, and M. Ben Mohammed, "A comparative study of
neural networks architectures on Arabic text categorization using feature
extraction” in proceedings of International Conference on Machine and Web
Intelligence ICMWI'10, 3-5 Oct, Algiers, Algeria, pp. 102-107, 2010. IEEE.

F. Harrag, E. EI-Qawasmeh and P. Pichappan, "Improving Arabic TC using decision
trees” in proceedings of First International conference on Networked Digital
Technologies NDT'09, pp. 110-115, 28 — 31 July, Ostrava, The Czech Republic,
2009a. IEEE Xplore.

F. Harrag and E. EI-Qawasmeh, "Neural Network for Arabic TC" in proceedings of
2" International conference on Application of Digital information and Web
technologies, ICADIWT'09, pp. 778-783, 4-6 August, London, UK. 2009b. IEEE
Xplore.

J.A. Haywood and H.M. Nahmad, A New Arabic Grammar of Written Language.
1998. London: Lund Humphries Publishers, UK.

I. Hmeidi, G. Kanaan, and M. Evens, "Design and Implementation for Information
Retrieval with Arabic Documents” Journal of the American Society for Information
Science and Technology JASIST, 48(10): 867—881, 1997. ASIS&T.

I. Hmeidi, B. Hawasashin and E. El-Qawasmeh, "Performance of KNN and SVM
classifiers on full word Arabic articles" Advanced Engineering Informatics 22:
106-111, August, 2008. ELSEVIER.

T.K. Ho, "The random subspace method for constructing decision forests" IEEE
transactions on pattern analysis and machine intelligence, 20(8): 832-844, 1998.
IEEE.

R.S. Hooper, "Indexer consistency tests-Origin” Measurements, results and
utilization, 1965. IBM, Bethesda.

G. Holmes, B. Pfahringer, R. Kirkby, E. Frank and M. Hall, "Multiclass alternating
decision trees" in proceedings of 13" European Conference on Machine Learning
ECML'02, pp. 161-172, 19-23 Aug, Hilsinki, Finland, 2002. LNCS 2430, Springer.

R.C. Holte, "Very simple classification rules perform well on most commonly used
datasets™ in Machine Learning, 11, p. 63-91, 1993.

A. Hotho, A. Nurnberger and G. Paap, "A brief survey of Text Mining" in
LDV_Forum, 20(1): 19-62, May, 2005. Text Mininglmpressum. Found at URL.:
http://www.jlcl.org/2005 Heft1/19-62_ HothoNuernbergerPaass.pdf . [last accessed
27/12/2010].

M. Hussien, F. Olayah, M. Al-dwan, and A. Shamsan, "Arabic text classification
using SMO, Naive Bayesian, J48 algorithms™ International Journal of Research
and Reviews in Applied Sciences 1JRRAS, 9(2): 306-316, Nov 2011.

T. Joachims, "Text Categorization with Support Vector Machines: Learning with
Many Relevant Features” in proceedings of 10" European Conference on Machine
Learning ECML'98, pp. 137-142, 21-23 April, Chemnitz, Germany, LNCS, vol

183

http://www.jlcl.org/2005_Heft1/19-62_HothoNuernbergerPaass.pdf

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

1398, 1998. Springer.

G. H. John and P. Langley, "Estimating continuous distributions in Bayesian
classifiers” in proceedings of eleventh conference on uncertainty in artificial
intelligence, pp. 338-345, 18-20 August, Montreal, Quebec, Canada, 1995. Morgan
Kaufmann Publishers, San Mateo.

G. Kanaan, R. Al-Shalabi, and A. Al-Akhras, "KNN Arabic TC using IG Feature
selection” in proceedings of the 4™ international multi-conference on Computer
Science and Information Technology CSIT'06, pp. 1-9, April, Amman, Jordan,
2006. Applied Science Private University, Amman, Jordan.

G. Kanaan, R. Al-Shalabi, S. Ghwanmeh and H. Al-Ma'adeed, "A comparison of TC
techniques applied to Arabic text" Journal of the American Society for Information
Science and Technology, 60(9): 18361844, July, 2009a. ASIS&T.

G. Kanaan, M. Yaseen, R. Al-Shalabi, B. Al-Sarayreh and A. B. Mustafa, "Using
EM for Text Classification on Arabic Documents” in proceedings of the Second
International Conference on Arabic Language Resources and Tools, pp. 9-11, 22-23
April, Cairo, Egypt, 2009b. The MEDAR Consortium.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, K. Murthy, "Improvements to Platt's
SMO algorithm for SVM classifier design” Technical report CD-99-14, control
division, Dept. of Mechanical and Production Engineering, National University of
Singapore, 1999. Also published in Neural Computation, 13(3): 637-649, 2001.

S. Khoja, "Stemming Arabic Text" 1999. Available online at URL:
http://zeus.cs.pacificu.edu/shereen/research.htm#stemming [accessed 27/12/2010].

L. Khreisat, "A machine learning approach for Arabic text classification using N-
gram frequency statistics” Journal of Informatics 3: 72-77, Nov, 2009. ELSEVIER.

H. Kim and W-Y. Loh, "Classification trees with unbiased multi way splits" Journal
of the American Statistical Association, 96: 589-604, 2001.

R. Kohavi, "The power of decision tables" in proceedings of European conference
on machine learning ECML'95, pp. 174-189, Crete, Greece, April 25-27, 1995.

Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree
Hybrid" in proceedings of 2nd International Conference on Knowledge Discovery
and Data Mining KDDM'96, pp. 202-207, Portland, OR, August 2-4, 1996.

Q. Kuang and X. Xu, "Improvement and application of TF*IDF method based on
text classification” in proceedings of 2010 International conference on Internet
Technology and Applications ITAP'10, 21-23 Aug, Wuhan, China, 2010. IEEE
Xplore.

A. Kyriakopoulou, "Text classification aided by clustering: a literature review"
Chapter 14 in Tools in Artificial Intelligence, Paula Fritzsche (Ed.), August, pp.
233-252, 2008. InTech. URL:
http://www.intechopen.com/articles/showt/title/text classification_aided by clusteri
ng__a_literature review [accessed 27/12/2010].

N. Landwehr, Logistic model trees, Diploma thesis, University of Freiburg, Freiburg,

Germany, 2003

N. Landwehr, M. Hall, and E. Frank, "Logistic Model Trees" Machine Learning,

95(1-2):161-205, 2005.

L.S. Larkey and Margaret E. Connell, "Arabic Information Retrieval: at UMass in
TREC-10" in proceedings of Text REtrieval Conference TREC'10, NIST, Nov, pp.
562-570, 2001. NIST: Gaithersburg, Maryland.

L.S. Larkey, L. Ballesteros, M.E. Connell, "Improving Stemming for Arabic
Information Retrieval: Light Stemming and Co-occurrence Analysis” in proceedings
of Special Interest Group on Information Retrevial SIGIR 02, pp. 275-282, August,

184

http://zeus.cs.pacificu.edu/shereen/research.htm#stemming
http://www.intechopen.com/articles/show/title/text_classification_aided_by_clustering__a_literature_review
http://www.intechopen.com/articles/show/title/text_classification_aided_by_clustering__a_literature_review

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

Tampere, Finland, 2002. ACM.

L.S. Larkey, Lisa Ballesteros, and Margaret E. Connell, "Light stemming for Arabic
Information retrieval”, Arabic computational morphology knowledge-based and
empirical methods, text, speech and language technology series, Abdelhadi Soudi,
Antal van den Bosch and Gunter Neumann (Eds.), Vol. 38, Part 1V, pp. 221-243,
2007. The Netherlands: Springer.

S. le Cessie, J.C. van Houwelingen, "Ridge Estimators in Logistic Regression”
Applied Statistics, 41(1): 191-201, 1992.

Young-Suk Lee, K. Papineini, S. Roukos, O. Emam, and H. Hassan, "Language
model based Arabic word segmentation”, in proceedings of the 41% annual meeting
of the Association for Computational Linguistics, Vol. 1, pp. 399-406, July,
Sapporo, Japan, 2003. ACL.

L.E. Leonard, "Inter-indexer consistency studies, 1954-1975: a review of the literature
and summary of study results" in The Library of University of Illinois at Urbana-
Champaign (occasional papers), Dec, no. 131, 1977.

D. Lewis, Reuters-21578 corpus, 2004. Available at:
http://www.daviddlewis.com/resources/testcollections/reuters21578/ [last accessed
1/5/2011].

D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A new benchmark collection for Text
Categorization research™ Journal of Machine Learning Research, 5: 361-397, 2004.
Ying Liu, H.T. Loh, and A. Sun, "Imbalanced text classification: a term weighting

approach” Expert Systems with Applications, 36: 690-701, 2009. EISEVIER.

C.D. Manning and H. Schiitze, Foundations of Statistical Natural Language
Processing. 1999. Massachusetts: MIT press, USA.

Brent Martin, "Instance-Based learning: Nearest Neighbour with Generalization™
M.Sc. Thesis, 1995. Hamilton, New Zealand: University of Waikato.

E. Marsi, A. van den Bosch and A. Soudi "Memory-based morphological analysis
generation and part-of-speech tagging of Arabic" in proceedings of ACL workshop
on computational approaches to Semitic languages, Ann Arbor, Michigan, pp. 1-8,
2005. ACL.

A. McCallum and K. Nigam, "A comparison of event models for Naive Bayes text
classification" in proceedings of AAAI-98 workshop on learning for text
categorization, pp. 41-48, 26-27 July, Madison, Wisconsin, USA, 1998

P. Melville and R.J. Mooney, "Constructing diverse classifier ensembles using
artificial training examples™ in proceedings of 18™ International Joint Conference
on Artificial Intelligence IJCAI '03, pp. 505-510, Acapulco, Mexico, 9-15 Aug,
2003.

P. Melville and R.J. Mooney, "Creating diversity in ensembles using artificial data"
Information Fusion: Special issue on diversity in multi classifier systems, 6(1): 99-
111, 2005. ELSEVIER.

A. M. Mesleh, "Chi Square Feature Extraction based SVMs Arabic language text
categorization system" Journal Computer Science, 3(6): 430-435, 2007. Science
Publications.

A. M. Mesleh, "SVM based Arabic language TC system: feature selection
comparative study” International Joint Conferences on Computer, Information and
Systems Sciences and Engineering CISSE'07, pp. 11-16, 3 — 12 Dec, University of
Bridgeport, USA. Advances in Computer and Information Sciences and
Engineering, 2008a. Springer Science + Business Media B.V.2008.

A. M. Mesleh and G. Kanaan, "SVM TC system: using Ant colony optimization based
feature subset selection” in proceedings of International conference on computer

185

http://www.daviddlewis.com/resources/testcollections/reuters21578/

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

engineering and systems ICCES'08, pp. 143-148, 25-27 Nov, Cairo, Egypt, 2008b.
IEEE Xplore.

R. Milhalcea and P. Tarau, "A language independent algorithm for single and multiple
document summarization” in proceedings of second international joint conference
on natural language processing IJCNLP'05, 11 — 13 Oct, Jejo Island, Korea, 2005.

A. Moschitti and R. Basili, "Complex linguistic features for text classification: a
comprehensive study” Advances in Information Retreival, LNCS, 2997:181-196,
2004. Springer.

H. Ng, W.B. Goh, and K.L. Low, "Feature term selection, perceptron learning, and a
usability case study for TC"™ in proceedings of Special Interest Group on
Information Retrevial SIGIR'97, 20" ACM International conference on Research
and Development in IF, pp. 67-73, December, Philadelphia, PA, 1997. ACM.

H. M. Noaman, S. EImougy, A. Ghoneim, and T. Hamza, "NB classifier based Arabic
TC" in proceedings of The 7" International conference on Informatics and Systems,
INFOS '10, pp. 1-5, 28-30 March, Cairo, Egypt, 2010. IEEE Xplore.

J. Platt, "Fast training of SVM using Sequential Minimal Optimization” Advances in
kernel methods - support vector learning, 1998. MIT press.

J.R. Quinlan, "Improved use of continuous attributes in C4.5" Journal of Artificial
Intelligence Research, 4:77-90, 1996. Journal of Artificial Intelligence Research and
Morgan Kaufmann Publishers.

J.R. Quinlan, "Learning with continuous classes" in proceedings of Australian Joint
Conference on Artificial Intelligence AJCAI'92, pp. 343-348, 1992. World
Scientific, Singapore.

J.R. Quinlan, "Simplifying decision trees" International Journal of Man-Machine
Studies, 27: 221-234, 1987.

S. Raheel and J. Dichy, "Reducing data sparsity in a Ian%uage dependent automatic
classification of Arabic documents" in proceedings of 7" Conference of the French
chapter of ISKO'09, 24-26 June, Lyon, France, 2009a.

S. Raheel, J. Dichy, and M. Hassoun, "The Automatic Categorization of Arabic
Documents by Boosting Decision Trees" in proceedings of 5" International
Conference on Signal-Image Technology and Internet-based Systems SITIS'09, pp.
294-301, 29 Nov — 4 Dec, Marrakech, Morocco, 2009b. IEEE Xplore. Found from
URL: http://www.raheels.net/includess/RAHEEL _SAEED_SITI1S2009.pdf.
[Accessed 27/12/2010].

S. Raheel and J. Dichy, "An empirical study on the feature's type effect on the
automatic classification of Arabic documents” in proceedings of Conference on
Intelligent Text Processing and Computational Linguistics CICLing'10, LNCS 6008,
pp. 675-686, 2010. Springer- Verlag: Berlin, Heidelberg.

J.D.M. Rennie, L. Shih, J. Teevan, and D. Karger, "Tackling the poor assumptions of
Naive Bayes text classifiers" in proceedings of 20" International Conference on
Machine Learning ICML'03, pp. 616-623, 21 -24 Aug, Washington DC, 2003.
AAAI press.

J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, "Rotation forest: A new classifier
ensemble method" IEEE transactions on pattern analysis and machine intelligence,
28(10): 1619-1630, 2006. IEEE.

M. Rogati, S. McCarley and Y. Yang, "Unsupervised learning of Arabic stemming
using parallel corpus” in proceedings of 41% Annual meeting of ACL, Sapporo,
Japan, pp. 391-398, 2003. ACL: Morristown, NJ, USA.

T. G. Rose, M. Stevenson and M. Whitehead, "The Reuters corpus volume | — from
yesterday's news to tomorrow's language resources™ in proceedings of Third

186

http://www.raheels.net/includes/RAHEEL_SAEED_SITIS2009.pdf
http://www.cicling.org/contact.html
http://www.cicling.org/contact.html

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

International Conference on Language Resources and Evaluation LREC'02, pp.827-
833, 29-31 May, 2002.
http://about.reuters.com/researchandstandards/corpus/LREC _camera_ready.pdf [last
accessed 22/2/2011].

Sakhr software company. 2004. URL.: http://www.textmining.sakhr.com/ [accessed
27/12/2010].

D. Said, N. M. Wanas, N. Darwish, and N. Hegazy, "A study of text preprocessing
tools for Arabic Text Categorization" in proceedings of the 2™ International
Conference on Arabic Language Resources and Tools MEDAR'09, pp. 230-236, 22-
23 April, Cairo, Egypt, 2009.

G. Salton, A. Wong, and C. Yang, "A Vector Space Model for automatic indexing”
Communication ACM, 18, 11, pp. 613-620, Nov, 1975. ACM. Also, reprinted in
Spark Jones and Willett [1997], pp. 273-280.

G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval”
Information Processing and Management, 24(5): 513-523, January, 1988. Pergamon
press, UK.

S. Salzberg, "A nearest hyper rectangle learning method" Machine Learning, 6: 277-
309, 1991.

M. Sanderson, "Word Sense Disambiguation and Information Retrieval™ in
proceedings of 17"Anual International ACM SIGIR conference, pp. 142-151,
Dublin, Ireland, 1994. Springer-Verlag: New York, USA.

H. Sawaf, J. Zaplo and H. Ney, "Statistical classification methods for Arabic news
articles” in proceedings of workshop on Arabic natural language processing,
ACL'01, 6 July, Toulouse, France, 2001. ACL: Morriston, NJ, USA. Online:
http://www.elsnet.org/acl2001-arabic.html [last accessed 27/12/2010].

M. Sawalha and E. Atwell, "Comparative Evaluation of Arabic Language
Morphological Analyzers and Stemmers” in proceedings of International
Conference on Computational Linguistics COLING'08: Companion volume -
Posters and Demonstrations, pp. 107-110, 18-22 August, Manchester, UK, 2008.
ACL: Morriston, NJ, USA.

F. Sebastiani, "Machine Learning in Automated Text Categorization” ACM
Computing Survey, 34(1): 1-47, March, 2002. ACM.

A. Selamat and Ng C. Ching, "Arabic script documents language identifications using
Fuzzy ART" in proceedings of Second Asia International Conference on Modeling
and Simulation, pp. 528-533, Kuala Lumpur, Malaysia, 13-15 May, 2008. IEEE
Computer society.

S. Sharoff, "Towards basic categories for describing properties of texts in a corpus”,
in proceedings of Language Resources and Evaluation Conference LREC04
(volume V), M. T. Lino, M. F. Xavier, F. Ferreira, R. Costa, R. Silva, C. Pereira, F.
Cervalho, M. Lopes, M. Catarino & S. Barros (Eds.), pp. 1743-1746, Lisbon,
Portugal, 2004.

H. Shi, Best-first decision tree learning, Master thesis, University of Waikato,
Hamilton, NZ. 2007.

J. Sinclair, "Preliminary recommendations on text typology" Eagles document EAG-
TCWG-TTYP/P, URL: http://ilc.cnr.it/tEAGLES96/texttyp/texttyp.html, 1996, [last
accessed 16/2/2011].

A. Singhal, C. Buckley and M. Mitra, "Pivoted document length normalization™ in
proceedings of 19™ annual International ACM SIGIR conference on Research and
Development in Information Retrieval SIGIR 96, pp. 21-29, 18-22 August, Zurich,
Switzerland, 1996a. ACM.

187

http://about.reuters.com/researchandstandards/corpus/LREC_camera_ready.pdf
http://www.textmining.sakhr.com/
http://www.elsnet.org/acl2001-arabic.html
http://ilc.cnr.it/EAGLES96/texttyp/texttyp.html

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

A. Singhal, G. Salton, M. Mitra, and C. Buckley, "Document length normalization™
Information Processing and Management, 32(5): 619-633, Sept, 1996b.
ELSEVIER.

N. Snider and M. Diab, "Unsupervised induction of Modern Standard Arabic verb
classes using syntactic frames and LSA" in proceedings of International Conference
on Computational Linguistics - Association of Computational Linguistics
COLING/ACL'06 main conference poster sessions, pp.795-802, Sydney, July, 2006.
ACL.

R. Sonbol, N. Ghneim, and M.S. Desouki, "Arabic morphological analysis: a new
approach” in proceedings of 3™ International Conference on Information and
Communication Technologies: from Theory to Applications ICTTA'08, pp. 1-6, 7-11
April, Damascus, Syria, 2008. NJ:IEEE.

Marc Sumner, Eibe Frank, and Mark Hall, "Speeding up Logistic Model Tree
Induction"” in proceedings of 9" European Conference on Principles and Practice of
Knowledge Discovery in Databases, pp 675-683, Porto, Portugal, October 3-7,
2005.

M. M., Syiam, Z. T. Fayed and M. B. Habib, "An intelligent system for Arabic TC"
International Journal of Intelligent Computing and Information Sciences 1JICIS,
6(1): 1-19, 2006. World Sci. Publ. Co.

K. Taghva, R. Elkhouri, and J. Coombs, "Arabic stemming without a root dictionary"
in proceedings of the International Conference on Information Technology: Coding
and Computing ITCC'05, Vol. 1, pp. 152-157, 4-6 April, Las Vegas, NV, USA,
2005. NJ:IEEE.

F. Thabtah, W. M. Hadi and G. Al-Shammare, "VSMs with k-nearest neighbor to
categorize Arabic text data" in proceedings of the World Congress on Engineering
and Computer Science WCECS'08, pp. 778-781, 22 — 24 Oct, San Francisco, USA,
2008. IAENG International Association of Engineers, Hong Kong.

F. Thabtah, M. Eljinini, M. Zamzeer and W. M. Hadi, "Naive Bayesian based on Chi
square to categorize Arabic data” Communications of the IBIMA, 10:158-163, 20009.
F. Thabtah, Omar Gharaibeh and H. Abdeljaber, "Comparison of Rule-based
classification techniques for the Arabic textual data" in proceedings of 4"
International Symposium on Innovation in Information and Communication
Technology ISIICT'11, 29 Nov-1 Dec, Philadelphia Univ, Amman, Jordan, pp.105-
111, 2011. IEEE.

T. Theeramunkong and V. Lertnattee, "Improving centroid-based text classification
using term-distribution-based weighting system and clustering” in proceedings of
2" International Symposium on Communication and Information Technology
ISCIT'01, pp. 1167-1182, Nov, Cheingmai, Thailand, 2001.

K.M. Ting and I.H. Witten, "Stacking bagged and dagged models” in proceedings of
14™ International Conference on Machine Learning ICML'97, pp.367-375,
Nashville, Tennessee, USA, 8-12 July, 1997. Morgan Kaufmann, San Francisco,
CA.

G. Tsoumakes and |I. Katakis, "Multi-Label Classification: An Overview"
International Journal of Data Warehousing and Mining, 3(3): 1-13, 2007. IGI
Global.

Y. Wang and I.H. Witten, "Induction of model trees for predicting continuous
classes” in proceedings of the poster papers of the 9" European Conference on
Machine Learning ECML'97, 23-25 April, Prague, Czech Republic, 1997. Springer.
G. Webb, "Decision Tree grafting from the all-tests-but-one-partition™ in proceedings
of 16" International Joint Conference on Al, pp. 702-707, 31 July - 6 Aug,

188

181.

182.

183.

184.

Stockholm, Sweden, 1999. Morgan Kaufmann, San Francisco, CA.

WEKA manual, version 3.6.6, "Bayesian Network classifiers", pp. 115-157, 1998.
Found at: http://etudiant.istic.univ-rennesl.fr/current/esir2/aci/weka-3-6-

6/WekaManual.pdf [last accessed 2/7/2012].

Jinxi Xu, Alexander Fraser and Ralph Weischedel, "TREC 2001 Cross-lingual
Retrieval at BBN" in proceedings of Text REtrieval Conference TREC'01, Nov,

2001. NIST: Gaithersburg, Maryland.

Y. Yang and J.O. Pedersen, "A comparative study on feature selection in text
categorization" in proceedings of 14" International Conference on Machine
Learning ICML'97, pp. 412-420, 8-12 July, Nashville, TN, USA, 1997. Morgan

Kaufmann.

B. M. Zahran and G. Kanaan, "Text Feature Selection using Particle Swarm
Optimization Algorithm™ World Applied Sciences Journal, 7 (special issue of

Computer and IT), pp. 69-74, 2009. IDOSI Publications.

189

Appendix I: Relevant Detailed Background

Information, Equations, and Comparisons in Literature

Review, and Relevant Tables for Developed Corpus

For Chapter 2:
Number of Web sites, Internet users in Arab Countries per World
Country # Web % Total # Internet Population Internet users ~ Websites to
sites™ websites in Users (CIA's | (CIA's World to Population internet
Arabic World Fact Fact book)® (%) users (%)
Countries book)>2
Jordan 2,582 3.92 1.13 million 6.34 million 17.82 0.23
Emirates 7,435 11.28 2.3 million 4.8 million 47.92 0.32
Bahrain 1,753 2.66 250,000 727,785 34.35 0.7
Algeria 4,372 6.63 3.5 million 34.18 million 10.24 0.125
Saudi Arabia 9,575 14.53 6.2 million 28.69 million 21.61 0.154
Sudan 1,472 223 1.5 million 41.09 million 3.65 0.98
Somalia 146 0.22 98,000 9.83 million 0.997 0.15
Iraq 1,872 2.84 54,000 28.95 million 0.187 3.47
Kuwait 2,354 3.57 900,000 2.69 million 33.46 0.26
Morocco 4,024 6.11 7.3 million 34.86 million 20.94 0.06
Yemen 999 152 320,000 22.82 million 1.402 0.312
Tunisia 2,672 4.05 1.72 million 10.49 million 16.397 0.155
Comoros 33 0.05 21,000 731,438 2.87 0.157
Djibouti 36 0.05 11,000 516,055 213 0.33
Syria 3,882 5.89 3.47 million 20.18 million 17.195 0.112
Oman 1,098 1.67 340,000 3.42 million 9.94 0.323
Palestine 355,500 (2009%) 2.461 million
(West Bank) (2009°)
Palestine - 1.55 million
(Gaza Strip) (2009°)
Qatar 1,006 1.53 351,000 833,285 42.12 0.287
Lebanon 5,725 8.69 950,000 4.02 million 23.63 0.603
Libya 1,567 2.38 260,000 6.31 million 412 0.603
Egypt 12,656 19.2 8.62 million 83.08 million 10.38 0.147
Mauritania - - 30,000 3.13 million 0.96 -
Total 65,917 39.325 million 347.377 million Average is 14.65 Average is
(1.15% only of (18.98% of 0.168

Indication of Availability of Infrastructure needed for Internet

Usage in Arab World>*

No Service Statistics Country
7.5 Jordan
of PC (per 100 of 4 Bl
1. 4 Egypt
population) (2008) 75 Bahrain
6 Morocco
70 Saudi Arabia

51 Collected from: http://www.arabo.com. Last accessed 8/6/2010.

52 Collected from: http://www.clickz.com/tats/web_worldwide. last accessed 8/6/2010.

%3 From http://www.internetworldstats.com/stats5.htm. Last accessed 8/6/2010

5 Collected from UNDP http://www.arabstats.org/indicator.asp?ind=249&gid=4&sqid=35. [last accessed

8/6/2010] (in Arabic).

190

http://www.arabo.com/
http://www.clickz.com/tats/web_worldwide
http://www.internetworldstats.com/stats5.htm
http://www.arabstats.org/indicator.asp?ind=249&gid=4&sgid=35

Expenditure from total local
income per person on IT and

communications (2007) (%)

Expenditure per person on IT

and communications in US$

(2007) (%)

Expenses of using internet

(monthly in US$) (2006)

Percent of internet users to

population (2006) (%)

of safe servers per million

person (2008)

10
8.9
2.5
5.8
4.5
8.3
4.7

258.7
100.1
95.2
1906.9
202.3
743.9
206.3
2236.4
10.9
9.31
4.98
13.72
5.33
3.1
5.44
9.22
5.18
52.48
5.47
10
22.05
7.9

12.7
41.01
16.02
11.71
35.09
20.67

5.7
10.55
7.8

5.64

0.13
25.64

15.1

1.03

9.2
2.9
11
5.64
9.99
7.9
26.57
15.36
3.3
6.9
0.5
8.8
125.8
78.2
0.5
8.3

Tunisia
Jordan
Algeria
Egypt
Kuwait
Morocco
Saudi Arabia
Tunisia
Jordan
Algeria
Egypt
Kuwait
Morocco
Saudi Arabia
Tunisia
Emirates
Jordan
Algeria
Egypt
Kuwait
Saudi Arabia
Tunisia
Emirates
Syria
Oman
Sudan
Qatar
Lebanon
Libya
Bahrain
Yemen
Comoros
Djibouti
Mauritania
Jordan
Emirates
Bahrain
Algeria
Saudi Arabia
Sudan
Somalia
Iraq
Kuwait
Morocco
Yemen
Tunisia
Comoros
Djibouti
Syria
Oman
Palestine
Qatar
Lebanon
Libya
Egypt
Mauritania
Jordan
Emirates
Bahrain
Algeria
Saudi Arabia

191

Internet users per 100,000 of

population (2002)

Approximate # of internet

users (2006)

Indicator to internet

readiness (2008)

0
0.1
64.9
14
0.2
10.7
1.6
1.2
0.1
11.5
13
50.7
13
0.5
1
1.6
7.73
139.4
19.93
0.26
6.73
13.79
0.9
0.06
0.35
0.16
7.59
0.01
2.66
2.55
21.08
0.15
0.45
0.29
797,000
1,708,000
210,000
2,460,000
4,700,000
3,500,000
94,000
817,000
6,100,000
270,000
1,295,000
21,000
11,000
1,500,000
319,000
266,000
290,000
950,000
6,000,000
30,000
4.18551
4.76199
4.37571
3.14429
4.28148
3.28168
3.12229

Sudan
Somalia
Kuwait
Morocco
Yemen
Tunisia
Comoros
Djibouti
Syria
Oman
Palestine
Qatar
Lebanon
Libya
Egypt
Mauritania
Jordan
Emirates
Bahrain
Algeria
Saudi Arabia
Kuwait
Morocco
Yemen
Tunisia
Comoros
DJibouti
Syria
Oman
Qatar
Lebanon
Libya
Egypt
Mauritania
Jordan
Emirates
Bahrain
Algeria
Saudi Arabia
Sudan
Somalia
Kuwait
Morocco
Yemen
Tunisia
Comoros
DJibouti
Syria
Oman
Palestine
Qatar
Lebanon
Egypt
Mauritania
Jordan
Emirates
Bahrain
Algeria
Saudi Arabia
Libya
Mauritania

192

10.

(defined as the degree of a
country or local community

to participate or to benefit

of prescribers in broadband
service per 100 person

(2008)

3.75747
3.97924
3.59132
4.34095
3.40690
4.08312
4.68134
2.2
11.8
121
4.2
0.2
0.9
15
2.2
0.1
11
8.1

Egypt
Kuwait
Morocco
Tunisia
Syria
Oman
Qatar
Jordan
Emirates
Bahrain
Saudi Arabia
Mauritania
Egypt
Morocco
Tunisia
Syria
Oman
Qatar

ML based Works Used for Morphological Analysis

No Reference # ML technique used Training/text collections Performance Results

1- [54] a clustering technique by which they used five small data sets to accurate clustering up to
used 2-grams, unique 2-grams and a extract roots for some 94.06%.
modified version of it irregular cases as weak and

hamzated words

2- [151] unsupervised ML based on statistical a small parallel corpus as its unsupervised stemmer

MT, and an English stemmer whole training resources performance was
then a monolingual un- compared with a GOLD
annotated text was used to one and was found to
further improve the stemmer. have 87.5% agreement

3- [131] Buckwalter's analyzer and tables that LDC collection when using also the two
outputted only stems then such stems are filters F-measure values
used as inputs for training k-NN for increased to about 57.5%.
morphological analysis then using two
filters

4- [160] used three existing stemming methods: a) Collected news texts The Khoja stemmer
Khoja's stemmer (for root extraction), b) achieved the highest
Buckwalter's Morphological Analyzer, c) accuracy among used
Al-Shalabi et, al (2003) root extraction stemmers. The voting
algorithm. Then, it compared between algorithm achieved about
their accuracy and looked into improving 70% accuracy for
it using majority voting technique (if no newspaper texts but
agreement on a specific root by slightly less than the
aforementioned methods). Khoja stemmer.

5- [52] SNoW package was used to tune state- This work used the When the classifiers were
of-the-art versions of three linear following resources: 1- a list combined using linguistic
classifiers. The purpose of using such of roots, 2- lists of common knowledge pertaining to
classifiers was to identify only triliteral prefixes and suffixes, 3- word formation processes
roots in Arabic. the following were corpora annotated with roots in Arabic by
investigated: the features number, using Buckwalter's implementing a scoring
linguistic constrains, variable size feature morphological analyzer, 4- function that
representation, and handling only two knowledge of word- approximates the
types of irregular forms: 1- weak formation processes and in likelihood of a given
(including eliminated-long-vowels cases) particular the behavior of candidate to the root, F
and 2- geminated roots. weak roots in certain value became 80.44%.

paradigms.

6- [15] Used Back-Propagation Neural Network Implementing this approach Accuracy rate of 94%.
(BPNN) for extracting Arabic triliteral required to train it first on a
roots only. Inputted word size was set of 500 5-letter words
limited to a maximum of five letters and ~ with roots attached then
each letter was encoded to three binary testing it on other 200 5-
digits where letters in sOltmwnyhA are letter words.
provided specific encoding of 1, 2, or 3
whereas other letters are encoded to zero
value.

7- [124] work an unsupervised algorithm to build the It used training set as: 1- a This method achieved

was the first ~ Arabic word segmenter from a large un- small manually segmented around 97% exact match
one that segmented Arabic corpus where this Arabic corpus of about accuracy on test set when

193

analyzed
Arabic words
within their
content

8- [36] work
was the
second one
that analyzed
Arabic words
within their

work performed the following steps: 1-
the algorithm uses a Trigram Language
Model (3-gram LM) to determine the
most probable morpheme sequence for a
given input by calculating the
probabilities of morphemes (here finding
the stem of the word not its root), 2- the
task of a decoder used was to find the
morpheme sequence which maximizes
the trigram probability of the input
sentence (i.e. morphological analysis of
word within its context), finally 3- the
unsupervised acquisition of new stems
from an automatically segmented new
corpus is done through three steps: a)
select new stem candidates on the basis
of a frequency threshold, b) filter out
new stem candidates containing a sub-
string with a high likelihood of being a
prefix, a suffix or prefix-suffix (PS), c)
further filter out new stem candidates on
the basis of contextual information.

It used Hidden Markov Model (HMM)
approach for choosing the proper root for
each word in text among possible roots.
This step was performed after extracting
possible roots for such word out-of-
context using a rule-based method.

110,000 words, 2- a large
un-segmented Arabic corpus
of about 155 million words,
whereas it's testing set: was
about 28,449 word tokens.

This was

NEMLAR.

performed by
training this classifier using
an annotated corpus from

context.

including 3-gram LM, PS
filter and/or new stems
acquisition.

Results show that more
than 98% of roots were
correctly chosen by
system in ftraining set
while 94% of roots were
correctly chosen in test
set.

Other Used Term Weighting Methods

tf (t,..d,
Widf (t,.,d;) = (e ’i)

>t (g, D)

ieD

Midf (d,.c,) = L+ log(tf (d,,c,»]

ieD

DFR(d,)

St (L. D)

Where
which belong to category c;

Evaluation Metrics for TC

DFR(d;) stand for the number of non-zero values of document dj, tf(d;,ci) is the frequency of term t, in document d;

The contingency matrix for category c;

Category Expert Judgments
Yes No
C
Classifier Yes TP; FNi
No FPi TN;
Judgments
TP TP
Pi = 7' Rl = 7‘
TP +FP TP +FN,
TP +TN,

A E,=1-A

TP +FP +TN, + FN,

<]

P,u — i:l-l-l:Ji
C
S ap +FR)

Micro-averaging

194

||

R,u — i=1
(TP, +FN,)

i=1

TP,

||
pM _ i(::lpi
|

RM — Z‘.i‘l Ri
~[C]

Macro-averaging

(B2 +1)PR

F,=-t""7 =
B°P +R
2PR

|:1 _ @ When =1
P+ R

B e 0.

Fg function

Naive Bayes Classifiers Equations

p(c;) p(d;/c;)
p(d;)

Where: p(c, /d,-) : Probability that a given document d; belongs to a given class c;, p(dj)5 Probability of document dj, this

p(ci/dj):

probability is a constant, thus can be ignored especially if not possible to calculate, p(c;): Probability of class c;, it is
computed usually by the percentage of documents in ¢; to documents number in all categories, p(dj Ic;): Probability of
document d; given class c;, and since documents are modeled as sets of words.

According to Bayes theorem, such words are assumed independent, thus p(dj /Ci) can be written as:

p(dj /Ci):Hp(Wk/Ci)
So:

p(Ci /dj) = p(Ci)H p(Wk /Ci)

Where: p(w, /C;) is Probability that k" word of document d; occurs from class c;, and this can be computed using info taken
from training set (Thabtah, et al 2009) as follows:

T, +A4

P (Wk / C;) = <

N, + AV

Where T: Number of times the word occurs in class ci, Ni: Number of words in class ¢;, V: Size of the vocabulary table, A:
Positive constant, usually 1, or 0.5 to avoid zero probability.

TC Methods that used Stemming Techniques for DR on Arabic

No TC Method Stemming method Compared

Did not give detailed results but reported

1. SVM, k-NN, NB [135] Light stemmer Larkey et al [121] work that it degraded SVM performance

a- Al-Shalabi root extractor Al methods improved effectiveness of
[17] - classifier compared to word, the best
2. k-NN [63] b- Aljlayl light stemmer [9] improvement was for light stemming, then
c- Word clustering method word clustering, then root extraction
methods.

Both Aljlayl and Frieder [9] and with stemming, for both k-NN and Rocchio:
Larkey, et al [121] light stemmers (no for k-NN with tf or tfidf, performance
details) improved but others it degraded, No

k-NN, Rocchio, NB
[108]

195

k-NN, Rocchio [171]

AdaBoost.M1 with C4.5,
[147]

SVM, NBN classifiers
[146]

SVM, NBN classifiers
[148]

SVM light, [154]

a- root-based (simple
explanation but no ref)

b- light stemmer (no info)

c- statistical (n-gram, 2 or 3)
d- hybrid (statistical + light
stemmer)

DIINAR.1 lexicon [56]

DIINAR.1 lexicon [56]

a- DIINAR.1 lexicon [56]

b- Statistical 3-gram and 4-gram

For stemming and root extraction used
2 different systems: a) Al-Stem for
finding stems and Sebawai for roots
[49], [108]

stemming for NB

(all methods gave better results than words
only but the hybrid method gave the best
improvement in classifiers performance.

This part was performed after
experimenting on 1250 doc among 5 classes
using only Boosted C4.5 classifier and 3
feature selection methods x?, 1G, Gain Ratio
(GR) and compared with no selection for
original words, lemmas and roots
separately. Macro average F1 results
showed that for roots best value for F1 =
88.46% using 161 terms and 1G.

Both SVM and NBN were used on vector
representation of 7034 doc among 7 classes
representing words, lemmas, roots
separately using tfidf and studied the effect
of those VSM on classification and used for
FS separately IG and x’. Evaluation was by
F1, R, P, accuracy and results show that
using roots outperformed others in terms of
F1 and accuracy values.

Both SVM and NBN were used on vector
representation of 7034 doc among 7 classes
representing words, lemmas, roots word 3-
gram, word 4-gram separately using tfidf
and studied the effect of those VSM on
classification and used for FS both
separately 1G and y’. Evaluation was by
macro-averaging F1, R, P and Accuracy and
results show that using word 3-gram
outperformed others in terms of F1 (92.4%)
and accuracy (92.3%) values.

Results show: 1- using Al-Stem + Ml or I1G
enhances the performance for small sized
dataset, 2- using the words leads to worst
performance in small datasets while in large
datasets its performance was the among the
best, 3- Al-Stem performed better than RDI

stemmer while RDI root extractor
b) both RDIMORPHO3 stemmer and performed better than Sebawai one.
root extractor [28]. However, no significance tests were
provided.

FSS Main Functions (derived from (Sebastiani, 2002) [161], d:
constant damping factor)

Function Denoted by Mathematical form
DIA association factor 2(t, Ci) P(cil t)
P(, c
Information Gain 1G(ty, ci) Z, Z, P (. c).log #ID()C)
ce{c; ,c; 3tef{t; 4}
Mutual Information MI(t, i) og M
P(,).P(c;)
Chi_square Zz(tky Ci) |Tr | '[P(tklci)'P(t_lei) - P(tk !Ci)'P(t_k !Ci)]2
P(t,)-P(t,).P(c;).P(c)
NGL coefficient NGL(L 6) JITrLIP@, . ¢).PE . &) — P(t, . &).P(E,.c))]

JPt).PE)-P(c,).P()

196

Relevancy Score

Odds Ratio

GSS coefficient

RS(tk, Ci)

OR(tk, Ci)

GSS(tk, Ci)

log

P, lc)+d

P, Ic)+d

P 1c)-A-—P(15))

A—P(, |c;))-P(t, |S)

P(t..c;).P(..S)—P(..%).P{,..c)

TC Methods that used FSS methods for DR on Arabic

No Reference FSS methods Classifiers used Results
#

1- [171] used for global k-NN and Rocchio classifiers Using DF thresholding and a hybrid of DF
selection the methods and IG gave the best results when using k-
DF, IG, % NGL, OR NN or Rocchio classifiers
and GSS

2- [136] used MI, x%, NGL, OR, SVM classifier Using %2 NGL or GSS gave better results.
and GSS This work showed that when using MI for

160 features provided better results
compared to when using OR.

3- [147] IG and y° AdaBoost.M1 to boost a weak Results show that when using IG, both
classifier (here a decision trees SVM and NBM classifiers outperformed
one C4.5) and compared its NB and C4.5 but slightly higher than
performance with other four AdaBoost.M1 (but still comparable). It was
classifiers (C4.5 alone, SVM, also found, when using ¥ that both SVM
NB, and NB Multinomial and NBM outperformed NB and C4.5 but
(NBM). slightly higher than AdaBoost.M1.

4- [137] used Ant Colony SVM classifier Using ACO based on y* for FSS
Optimization (ACO) outperformed others when using SVM
based on x* and classifier.
compared its effect
with %% NGL, GSS,

OR, IG, and Ml

5- [184] used Particle Swarm Radial Basis Function (RBF) Using PSO for FSS outperforms the rest
Optimization ~ (PSO) Neural Networks (NN) FSS methods used for this text classifier.
and compared its effect classifier
with ¥2 DF, tfidf as
well as no selection

Specific Classifiers Implemented for Arabic
No Reference # Classifier Classifier FSS methods, Training/testing Results
Type texts
1- [94] Decision ID3 using IG on 2 small data sets average F1 about 0.70
trees with different classes, tf for FSS,
light stemming, with 2/3-1/3
training-testing ratios
2- [147] Decision C4.5, AdaBoost.M1 average F1 about 0.80,
trees to boost C4.5 and for boosting F1 is
about 0.84.
3- [112] Statistical n-gram Used embeddings to map each using tri-gram with Dice
document into R representing the outperforms that with
tri-gram freq. statistics profiles Manhattan distance
for that document. Also, it used
both the Dice measure and
Manhattan distance to compute
the distance between the text to
be classified and training texts

4- [70] Statistical Maximum entropy text set with 6 classes, used F1=0.8041

stemming

5- [159] statistical Maximum entropy LDC Arabic newswire (7M F1 has a max value of

words, 1994 part) and used n- 0.627 after number of
gram (either on word level or on iterations (5 — 250)
character level) as a step towards
stemming, used 80%-20% for
training-testing ratio
6- [95] used ANN ANN back- 453 documents with 14 classes, SVD increased F1 to

197

ANN back-
propagation

propagation classifier

used Al-Stem for stemming, used
SVD for FSS (i.e. reducing

0.88 compared to 0.85
without it

classifier features to 200), limited number
of unique words to 739, used 2/3
-1/3 for training-testing ratio
7- [60] distance- Dice similarity 1000 documents with 10 classes, micro R =0.628, P =
based used Al-Shalabi, et al [17] 0.74
algorithm for stemming, used
50%-50% for training-testing
ratio
8- [171] profile- Rocchio classifier B=1.6,y=0.4,used 1,132 macro-average F1 has a
based documents with 39,468 words max value of about 0.94
with leaving-one-out method, when applying a hybrid
applied different types of method for stemming and
stemming techniques and FSS another hybrid method
functions for FSS by using DF
thresholding and IG
9- [27] association ~ Apriori and CHARM Frequent Closed Item sets where It induced accurate
rule mining algorithms to find used, used the RDI predictive rules of
Frequent Closed Item morphological analyzer for implemented system
sets and Frequent stemming, used a min. threshold despite the variation of
Item sets, CHARM for Support and Confidence of automatically extracted
for soft-matching 15% and 70% respectively, textual databases. It also
Association rules proposed a semantic similarity illustrate the excellence
function, tested on an Arabic of soft-matching over
textual database of 5,524 records hard exact-matching
NB Classifier Implemented for Arabic
No Reference# Weighing, FSS Prob. eq ST LLEIIL S Results
! ' class testing
1. [90] -, - Mod 600 + 6 70-30% F1=93.69%
2. [89] .- - 2244 +5 1?;?&‘;5;%55 Average F1 = 0.884
e (7] T col:;?:'i?oiﬂ i Accuracy 60%
4. [108] Boolean, - - 1445+9 k\;;?:gai{gris Micro average F1=84%
5. [10] tt;ﬁfs'hglz mod 12412 1241 F1=85%
tfidf, local %, #
6. “[135] terms = 162 mod 1445+9 2/3-1/3 Macro F1=84.54% "
gave best
results
local 2, #
7. *x[174] e =L mod 1562+6 70-30% Macro F1 =72.8% ™
gave best
results
Used NB when using 1239 features, 1- for
' and NBM Stratified NQM classifier: a) using 1G max
- tfidf, roots, %2, F1 is about 88% , b) using y® max
8 [147] IG . i 13;?&152%55 F1 = 87.5%. 2- for NB classifier:
(using a) using IG F1 is 75%. b) using y°
Weka) F1 is 81%. ™
For features no = 2000, when
tfidf, roots, using Lemma (highest value but
stems, # e still comparable to using root):
9 [146] selected Us(efsi':gB . 7034+7 1osf‘rcfltc;ﬂc$gss for accuracy =87.79% when
: features varied Weka) validation using x? and 87.63% when using
from 400 - IG (about the same), whereas
2000, ¥4 1G for F1= 0.878 when using y? and
0.876 when using IG.
tfidf, roots, For features no = 2000, when
stems, 3-gram, Used N||<3 Stratified husing_3—g|r_am (highest va)lu]:s
4-gram # networ than using Lemma or root): for
4. [l segiected (using o 10"]9? tc_:ross accuracy = 89.49% when using
features varied Weka) valiation x* and 89.62% when using IG,
from 400 — whereas for F1=0.894 when

198

2000, 2, IG

using x® and 0.896 when using
1G. Comparing this with those

for Lemma there is an

improvement of about 2%

1/3-2/3
tfidf, rooted
features 1/2-1/2
selected from .
11 [71] 50 -> 2000 mod 155045 Accuracyéz—o/GstS% fo(; trained,
e @ 2/3-1/3 o for teste
highest tfidf
values Leave-one-
12. [141] -, roots mod 300 + 10 Accuracy about 62.2%
Norm ftfidf, k-fold cross 73.6% (not stated if provided
L [34] light stemming) B validation value is for F1, P, R or other)
Feature vector
composed of _
14. “[61] words, their tf mod 1000+10 50-50% R
. 80%.
and idf,
stemming
™" this mark means that values shown were calculated by me from figures shown in paper so an estimate.
k-NN Classifier Implemented for Arabic
No Paper K value Similarity FSS Corpus training - Results
used size + testing
classes
1. T[135] - - here k-NN 1445+ 9 2/3-1/3 F1=72.72% "
results shown
for
comparison
2. [63] 10 - Stemming, 15,000 + 3 (60-40)% P = 92%, R = 91% for
weighting tf light stemming (highest
among other stemming
methods)

3. "[62] - - Stemming 15,000 + 3 60-40% Results of micro P, R
shown (I cal. Micro
average F1 = 91.5% for
light stemming & 88%
for stemming)

4. T[98] 29 Cosine Local y? 2206 + 2 (99-1)% Max F1 = 93.6% at 250
terms

5. [20] - Cosine Based on DF 1445+ 4 (60-40)% F1 = 73.57% for using

>3 n-gram & 66.88% for
single terms

6. [90] - Cosine - 600 + 6 (70-30)% F1 =90.93%

7. [173] 11 Cosine, - Small + 6 (70-30)% F1 = 94.91% for both

Dice, Dice and Jaccard when
Jaccard using tfidf
8. [19] Varied, 18, Cosine Based on DF 621 + 6 (90-10)% Both Micro recall &
effectiveness + light precision = 95% at k=18,
started to stemming but 96% at k = 21,
decline at
k>24
9. [109] 13 Jaccard Light 1445 +9 k-fold cross using tfidf F=78% & tf
stemming validation F=69% had improved
k=4 with stemming, while
using Widf was 80% and
lowered to 73% with
stemming
10. T[171] 1-19 Euclidean Hybrid 1132 +6 Leave-one- Macro F1=52% for k=1,
distance stemming out lower for higher k as no
using tri-gram of features about 5000 ™
+ light
stemming,
hybrid of DF
threshold + IG
11, [34] 1-20 but as Euclidean Light 600 + 6 k-fold cross 84.2% (not mentioned

199

k> 15 distance stemming validation ~ which F, P, R or else)
effectiveness
of classifier
decreased
12. 7 [107] 19 Jaccard Light 600 + 6 Varied Macro max F1 = 75.8%
stemming + (shown for at 360 training doc ™~
IG 60-40%)
13. T [61] Change k: Dice Stemming 1000 + 10 50-50% On average P=R=66%.
10, 20, 50, ™ (results shown here for
100 k=50)
" this mark means that values shown were calculated by me from figures shown in paper so an estimate.
SVM Classifier Implemented on Arabic Texts
No Ref. # SVM type weighting FSS Corpus training - Results
size + testing
classes
1. T[137] TinySVM tfidf Used ACO based on 1445+9 966 — 479 Macro F1 for: no FSS is
local 2 algorithm, (2/3-1/3) 74.04, for y* is 87.54, for
compared with other NGL is 86.5, for GSS is
FSS methods (NGL, 86.5, for OR is 78.75, for
GSS, OR, IG, Ml MI is 7853, for IG is
Max. performance at 7881, for ACO is
160 terms. 89.61%. ™
2. T[135] TinySVM tfidf Local x> Max. 1445+9 2/3-1/3 Macro average F1 =
performance at 162 88.11%
terms.
3. T[136] TinySVM tfidf ¥’ NGL, GSS, OR, 1445+9 2/3-1/3 Macro average F1 about
M. 87.5% for y? at 160
features. ™
4. [8] RapidMiner Boolean Local y* applied on 7 data sets 70-30 Average Accuracy
DF. Top 30 terms of (17,658 68.65%
each class document
s) each
has its
different
no of
classes
5 7[98] Gist SVM tfidf Local y? varied 50 -> 2235-2 2206-29 Micro F1, max at 450
and kernel 500 features terms is 98.2% but all its
principal value at all terms selected
components is higher than k-NN ones.
analysis o
software
toolkit
6. 147 SMO (from tfidf v 1G 6825+7 Stratified 10- Results show that when
Weka) fold cross using 1239 features:
validation using 1G for SVM max
F1 is about 88% and
when using y? it is about
88%.
7. [146] SMO (from tfidf 1% 1G 7034+7 Stratified 10- For features no = 2000,
Weka) fold cross when using root (highest
validation value but slightly higher
to using Lemma): for
accuracy = 87.97% when
using y* and 87.80% when
using IG, whereas for F1=
0.880 when using x* and
0.878 when using IG.
8. [148] SMO (from tfidf 1% 1G 7034+7 Stratified 10- For features no = 2000,
Weka) fold cross when using 3-gram
validation (highest value than using

Lemma or root): for
accuracy = 92.41% when
using y? and 92.28% when
using IG, whereas for F1=
0.924 when using x® and
0.923 when using IG.
Compared to when using
root there is an
improvement of about
4%

200

9- [89] From Weka - - 2244 +5 10-fold cross Average F1=0.954
validation

™ this mark means that values shown were calculated by me from figures shown in paper so an estimate.

For Chapter 3:

Samples of Function Words

Samples Of Function WOI’dS o {" M S\" ‘114_:‘1!" ‘nqw‘u?ﬁjyv Al ..l‘\n‘nL«_Alﬁ:u ‘HLG_A‘JM M 'S“ LA NLG_’J“H‘H&“V ‘NE!
M S\)" 4"&\4" néun "Lr“J" " L,‘u M ._]\" " S’ i om 5..“'1 c"uﬂ_._dl" "'uﬂ_..\l‘\" Al S.j;\" M 5.. S!V!‘V! ‘5’ S“n‘n n 1"
< ”}u VluSJuH AL DX A SS\A" "d_tﬂﬁ" nd_du:u ndi\}n urﬁs_duu nes_d\}n c”&_\ﬂj” "e@—\su" Pl !1_5|" "e@—\su" n Sun
:}H ||‘ s'" "y :Jll ll&)ll n :ll n E :ll n 5 :" " E :ll " s :ll n :" n :Yl "4—\19” "‘HGH "L)S-du"
"_A.Iiﬂ" "_A.lu" l|_€_,ull "4_|1£" "MU"‘"uLB" n LS" "4_|‘" "LG—"" "I_AJ‘" "I-A.I\" "I-A.I\"‘"u " ll Yl n !H " : " H S
"‘;SJ‘" ‘"LASJ‘" "‘J_“ll ll¢\}ll "‘;SJ‘)" ‘"L)-S-“j" "FLSJ‘J" "F&SJ\J" "‘;SJ‘J" "I_ASJ\J" ‘"LJ_!‘J"‘" ULSSH "“_lu" "LG.JG" Ylu‘u"
nL«Jn ndjn "AJ" ‘ "MY" ‘"u@;b" ‘n*_‘n nLFLIn "4_|L1" "4_\L‘." " ‘u " un "LC—"" nd_l\n H‘;SJ‘H "u.SJ‘" anSJn anSJin
"«JJ}"& HU_SJ\H ”?‘S"‘" "é.:\" HLG_JLJH Masyn Mo tan "L)'GJ}" ‘udju ‘IILGJJH "E-GJJ"‘ "L)GJ" ”L)'g" n?_én n?ﬁn nu@n LI
M ‘}u YL n\y\}u n\y\}u n\y\}u n\y\u PAUNALPLN LTV ALI n an "U-Sl;" " 18" ¢ "?'SSJ" n n M Sbn "L@Jﬂ"
M P \}u M P i}u M 2" M P in Miaald" (" - {an ‘n PAFUIPRLICH - {an M A|}n nv A\) "y "‘j
"‘Omﬁm” &"Q\-ﬁéﬁu}" numun n\)mwu n\)muju n\)muu ‘n AUl su ‘n)n oM "oy AL P Bn
I<aslaa" ‘n&\u"n M<ai" nd‘u\mn "L_XAJ“.A}" nd‘un‘n . LAE" M LAJ" PRI | IS u.\.\SJLAS" M oia LAJ" ‘nu_‘muu
ol !""\.A "ol el (Ml g'- Laé" nsl 8 L“.S" nsl g Lq" " - CLaLad" M- S84% ‘L.AJ" " - <LaiiL " "\)Ss.a\l_d" "\)SSJ‘L_AJ" "‘)SSJ“__A"
”. "A-S" 5"(‘.\.|A.S" "LAJA.S" ‘"‘;JLS" ll ‘ 5! _A}" ll\ 5! 1_A" ‘"LSS.ULAS" ‘"LSS.ULAJ" "LSS.ULA" “'ISS.\JLAE” ‘"LSS.ULAJ" HISSJJLA" "Asﬁ
||l_‘:“)5}" ||l_‘:“)5" ‘HL_‘-“)SBII ‘"k“—UJS_’" ‘"k“—UJS" ll‘y‘)sall "‘)—’)S)" ‘"“9:’)5" "l_.l)Ss" :IL:‘)SJII YII?)SH ‘"&._I‘)Ss” ‘"&._I)‘Sj” ‘"&_I)S‘”
”Og‘)_Sé" ‘”O{)—S}” uu_I)_Su M)_Su nu_u‘)sn "L:.:)S" "L\.\)SA" ‘ ‘HLS_&JEH ‘HLS_‘:)\}H ‘HLS_&)\H né_&)un HM}‘}H n‘ﬂ_‘;}pv
s"U)gi\" s"_;a)g;\.ﬂ" HL{)_U‘JH "L.a).u\" ‘"h_i‘)JJLE" ‘ u‘)_.u\}" ‘lvu)_u|vq ‘nd)fﬁuu ‘"LS‘)-:U.‘J" "'Lg)_u\" ¢ u‘u " "u\A_u\)" "u\A.u‘"
"Qg)._ii\.é" ‘”Qﬂ)-}-’"}” "u—’)-”‘" "\})44\.5" V||J)“\} ‘HU‘)_}&‘" "LI‘),ULE" "U‘):U.‘J"}

201

Appendix I1: Additional Detailed Informations, Tables and

Figures of Chapter 4

TIM BUCKWALTER'S ARABIC TRANSLITERATION

| developed my transliteration system before XML days. To make it XML-friendly | would:
replace < with | (for hamza-under-alif)

replace > with O (for hamza-over-alif—the A is already used for bare alif)

replace & with W (for hamza-on-waw)

- T

—
¥
v [

O a

- =y m

R 3 = - T o |
2 & o= s h
1T = L 5 S
= X L b3 5 s
' A L= D - T
1 b b = =
= is = |
S O = B = K
[l T '& e § a
= 3 — 2
ol H (S x — i
&= A o - ~
I | PELIEE T 2 o

Examples of Two Letter Geminated Words

TWO Ietter gemlnated WOI’dS |ISt - {ll "{j" ¢ nun ‘HOAH ‘"dA" IIO_EII n ! Pl "&..'a" udjn HJ_L" PP LK AP KN

I " ‘"M" ‘|| " ‘llu;H ‘llé" ‘H Ul ‘"@‘H ‘"}H ‘"u:u" ‘H " ‘"u" ‘H@" Hds" "J)" ¢ " st =n ‘" M ‘”)A" ‘Yl i " ‘Yl ""
L] ‘IICA” ‘H n ‘H n ‘"(x_l" "J_I" ‘ll)JIV ‘llJJll ‘" aan ‘”d;” ‘"e" ”t‘” ‘”LJ" ”LJ” ‘" " ‘Nu‘uﬂ ‘")_‘N ‘"_\.\” "__‘N ‘HG‘N ‘"QJ
i n ‘ll n ‘ll Pl ‘IV)AII ‘"_\;ll ‘"é‘ll ‘quJlV ‘llu_'" ‘llJJH ‘”(_34” ‘H}" ‘Hh" ‘”CA”", LA ‘" n ‘ll n ‘ll . n ‘ll n ‘ll
‘Hé_"’ﬂ ‘ll)jll ‘H n ‘"(‘A" ll n " n ‘" n ‘" " ‘H n ‘”P” ‘"_\;H ‘"?H ‘" " ‘N n ‘"P” lld;" ‘N I " ‘NéA
t)ll ‘Hc)ll ‘”k_|)” "uA" ¢ ﬁ-’" ¢ A_LI"" " " " ll " ‘H " ‘H " ‘H " ‘H oan ‘H " ‘N n ‘ll " ‘"AA” "_\A" ‘NCA

|| II‘QJII ‘"‘—qJ” n " "Cé" H J" "dd" "dd" ‘thﬂ ‘llu‘JH ‘"wdﬂ ‘"Jd" ‘”Cd" ‘”Cd" ‘H - d"
|||' " n " n 1" "« 1" n " n 1" n " " " " " " " " " " n " " " " e " A\l " "
", MO E T M@ Q@ @ e) M) dpa! RN G) M M) Ny Myt A
¢ ‘—i—h.a" 5”“" ‘"H" ‘"u)" ‘"))ll ‘"C)" GHJA" 6"‘—‘)" L"t_ld" ‘lluéll ‘Hda" ‘Hu_mll ‘H " "J—AA]” "d—h&l” ‘")—M” ‘"G“l” ""—_M

.]aj" ‘IICJII n n "ua\" 5"ua\" AL n_k\n ‘u)\n ‘u)\n ‘u)|n ¢)|n ¢ u‘n My ‘"(""a" lléml'l}

UL

e ¢ CJ" 3 ud" ¢! UA

202

Detailed Correction Algorithm Flowchart

h1 <-1st character of Word;
ch2 <- 2nd character of Word;

ch3 <- 3rd character of Word

1 is either y, T
& ch3 is either A
oy O

word €
Sroots82_wa
w list

) 4

No

Change chl to w and ch3 to O

<+ v
Yes chl is word € chl is either y; word :
either y, t, Sroots84_ t,&ch3is y Sroots82_ale
&ch3is y yae2 list f list
Change chltow Change ch3to O
« ¥ ¥
v 'word e chl is word € chl is either y, Yes
—P>- Sroots86_ either y, t, Sroots87_w t & ch3 is
ae2 list & ch2is } aw list eitheryor}
Yes
Change chl to w Change chl to w and ch2 to O
< A
word € word € :
$rootsd9_y chlis either y, $roots90_w
ae list t,&ch3is } aw list
Change ch1l to ch2, ch2 to A, ch3 to Hamza Change chl to w and ch2 to O
p v ¥
v word € word € Yes
—> Sroots68_w Sroots71_y or O or Hamza
aw list ae list and ch3 is w
Change chl to [/, ch2 to ch3,
word = chl.ch2 Change chl to [, ch2 to ch3,
word = chl.ch2
\ 4 B < \ 4

203

‘word

€

No Ch2 is either Sroots29_
A or O and Sroots30_mah mah_ain_w
ch3isy _ain_waw li aw list
B
j Change ch3to Y, ch2to O Change ch3to Y, ch2to O Change ch2 to }, word = chl.ch2
: v v ¥
\ word € word € word € word €
Srootsl7_w Srootsl8 w Sroots19_w Sroots31_
aw list aw list aw list ah_ain_)
No
Change ch3to A Change ch3to A Change ch3to A Changech3toY
y v v v ¥
No

word
Sroots22_
yae list

word €
Sroots23_
ae list

word €
Sroots21_
ae list

Change ch3to Y Change ch3toy

Change ch3toy

A

v v

ch3

either Y or

is

word €
Sroots62_w
aw list

Change ch3to A

17

word
Sroots33_

word €
Sroots24_
ae list

word €
Srootsd42_
han list

word €
Sroots43_
ae list

Change ch3 tow Change ch3toY

Change ch3to Y

Change ch3to Y

Sroots84_
ael list

Sroots85_
ael list

Sroots86_
ael list

Sroots90_
ael list

y v v v v
No word € word € word € word €
Sroots70_ Sroots66_ Sroots65_ Sroots52_
ae list alef list ae list aq list
Change ch3toy Change ch3to A Change ch3toy Change ch3to A
. v v v ¥
\ word € word € word € word €

Change ch3toy Change ch3to Y

Change ch3toy

Change ch3toy

v v

v

v

204

No word
Sroots15_

ah lam1

€ Yes

No

word
Sroots13_
ah lam

€

No

Change ch3to O

Change ch3to O

A \U

L 2

word €
Sroots98_
ae list

Yes

Change ch3toy

17

word €
Sroots15_h
am_lam2

No

Change ch3to O

No

word
Sroots27_
ah_ain

€ word
Sroots89_

ah_ain

€

v

A

Change ch2to O Change ch2to }

v _ v

No word €
Sroots45_

ae list

Yes

Change ch2to y

v

A

word €
Sroots25_
ah_ain

word €
Sroots100_
aah_ain

Change ch2to O

Yes *

Change ch2to O

v

word €
Sroots34_3

word S
Sroots38_
aw list

word S
Sroots39_
aq list

Change ch2 to w

Change ch2 to w and ch3 to

(o] Change ch3to A

v

v

v

Yes

either y or
tornorA

word €
Sroots81_
aw list

word €
Sroots74_7

Ch1 is
either y or

Change chltow

Change chltow

p v v
ch3 s $roots8_12 Yes
\ Sroots8_12 either p _79_80_en
79_80_mo orh d haa
¥ No
"\ Word = ch2.ch3.ch3 Change ch3 to ch2
F e v *

205

No word

No

A

aq list

€ Yes word € Yes word €
Sroots19_n Sroots18_n Sroots17_
a naq list
No No Yes
F
/ Change ch3to A Change ch3to A Change ch3to A
v word e word € Yes
> $roots21_n Sroots22_n

aq list

Change ch3toy

Change ch3toy

v

v

No

word €
Sroots34_
7_ajw list

Yes

word €
Sroots24_

Ch3 = ch2, Change ch2 to w

word €
Sroots23_n

Change ch3 to w

v

A

Change ch3to Y

v

v

word €
Sroots38_aj

Change ch2 to w, ch3 to O

v

word €
Sroots42_
aq list

Change ch3to Y

v

word €
Sroots44
_haq

Change ch3to A

word €
Sroots43_n

Change ch3to Y

No

Yes

No

Change ch3 to ch2,ch2toy

A

v

Yes

Change ch3 to ch2,ch2to A

v

206

No

No word €
Sroots65_n

word €
Sroots6
2_naq

Change ch3 to y, chlto O

Change ch3to A, chl1to O

v

v

word

Yes

Sroots66_n
aqlist

€

Change ch3toy, chlto O

\

word €
Sroots84_n

word €
Sroots70_n
aq list

Change ch3 toy, chlto O

v

Change ch3toy

17

Yes

word €
Sroots86_

word €
Sroots85_

Change ch3toy

Change ch3to Y, chlto O

v

v

No
Sroots8_12_79_

Change ch3 to ch2

17

\ word € ord
Sroots90_n
a 8Q_end_taa
Change ch3toy
p v
\ 4

\ 4

A

Return word

No

207

No

Flowchart for EWBM1 Algorithm

For each

document

v

For each word w;
No_letters = Count_NO_letters(w;)

Yes

Final_word;= w;

No_letters<=3

Provide the order, weight values for each letter in word w;
Calculate product of order and weight values for each letter in word w;
Count = Count_No_Zero_Product_Letters(w;)

A\ 4

(No_letters >=4)

Final_word; =
Extract_4letter_wi
th_least_product(
w;))

Final_word; =
Extract_3letter_with_least_produ
ct(w;)

A 4

Write Final_word; to output document new_di_1
Calculate Accuracy_of _document_ new_di_1

208

Flowchart for EWBM2 Algorithm

For each
| document

v

For each word w;
No_letters = Count_NO_letters(w;)

A

Final_word;=w; No_letters<=3

Remove_Al(wj)
Replace_letters(wij)
Provide the order, weight values for each letter in word w;

Count = Count_No_Zero_Product_Letters(w;)
Repeat = Count_No_Repetitions_Not_b_w_A(wj)

Calculate product of order and weight values for each letter in word w;

((Count > 3) or
(Repeat > 2)) and
(No_letters >=4)

Yes

Final_word; =
Extract_4letter_wi
th_least_product(
w))

Final_word, = Extract_3letter_with_least_product(w;)

y

No_letters = Count_NO_letters(Final_word;)

!

No Yes

No_letters ==

A

Final_Word;=Correct_Word(Final_Word;)

y »ld
Lt

\ 4

cc = Compare
(Final_Word,
2_letter_list)

No

\ 4

Write Final_word; to output document new_di_1
Calculate Accuracy_of _document_new_di_1

209

Samples of Lists used in Correction Algorithm

No

Comments on List

List

/I from 8 - 12 3-letter root
MODDA'AF (root8eg 3
35- root9eg (umi- Jia
root 10 eg 8x-3a root
11 eg &ai- da root 12 eg
lami- e) remove first
then check 2 letter roots

/[from 79 - 80 3-letter root
METHAL WAWEE
MODDA'AF

/I root 79 eg uay O=3

/I root 80 eg 3%-%

Il root 13 eg 535- 155 return
to |

/I root 15 eg I><5-sm
returnendinlorin2 to &

Il root 17 eg s=- 123 return
endto !

/I root 18 eg dii-l35
return end to !
/I root 19 eg A&-is
return end to !

$|'00t58 12 79 80 mod = { T M M 3 M JE ¢ MO . Rt M M
MG (Mo nJ&u Ma I N AL (M A N MR (Ml (M gl ¢ At (oAt MJast
ML gt (M gt (M MM G (Mo (MBS (M

.\}J‘L)JGC}J‘L)A‘,JSL)JSC}J‘UM }

$|'00t58 12 79 80 end | taa = {u el (e " n;dsu ne ke A MELET e

M M ¢ MEKEN (M AT (M N (MR (M XY M " ¢ M AT (M AN (M AN (e s
PRV P RO [CAION S ey L ey L e i ‘uLU\n e i ‘HL'J\H Mg (e K

il M N MCaa uu}

$roots8 12 79 80 end haa = {u SMalat (Maliat Maaat MatdE ¢ mallat ¢ At MendEMe Moda

My ;":_;;TU'A__AS” CMod M ¢ MASEN (MAGAM (Mo y oMt (Mada Ml Maa g ¢ Moaal (Masal (Malat

Q‘L}u g":\;}" ‘":\-ﬁd}" s “}n " a)a" M (" uu}

$roots13_mah_lam = {" x5

$r00t515 ham laml = {n U NUPUPRORAL 1N aal (M M M ¢ M M

TP TP U S N Lan Mg AT ‘”t;da" ‘u "o

$r00t515 ham lam2 = {n Mot ‘"L;A'A” oM "on. 1M G (Mgt (M Mg ! 'S

L;\A” ‘"(ﬁ‘)A” ‘ndMH M @_’" e " "‘Lﬁ);" ‘”Lﬁhn e ||"}

$T00t517 waw = {" H)Lll ‘H}u" ‘H‘,hﬂ M " ‘”J)—l“ ‘IIJ)_III "‘5.-\—“‘ ‘IIJA_III A"}A.l" ‘u}_;_’
n "}LA" o "o Pn ‘"},j" ‘n}bu ‘n})_’" 5”‘5;1" n}hn M u"}

$r00t517 naq = {u Mg (M lag (e M 3 M MEA (M (A (Meae

i aa T AT (AT AT (I aa o L (M T (I I (T

Caa" (Ml ,nn}

$roots18_waw = {" s ;"}

$roots18_nag = {"<» "}

$r00t519 waw = {n AP ")_l;" M gEAN (M gaat (M LAt M geal (M 11 gttty Sl 1 il

UL A T UL "}é-‘" ‘uJAgv M @ (M F)u ‘"}4)" A ‘“PJ" Mgy g

$r00tslg naq {" AUt M Meaaa (MCaa (¢ "o e "o e "o e " ‘IIQ)_I PRGN
NS (M g (" 31 (MCadt (Mg 5"C_:).c ‘HC_}AJH ‘n -)vv ‘u -)" ‘nc_‘_“)n AR

2@ (ML (M S (M xull}

Samples of Root L.ists

No

Comments on List

List

/I from 1 - 7 3-letter root
SALEM .
/lToot1eg Hali- Sial

Il T00t 2 69 i mi-)i

/l'root 3 eg s - Cuad

Il root 4 eg g% - £ 4

I/ root 9 eg Juzi - Ja

$r00t51 = {u nJ_L‘u ‘n‘)mu ‘"C'L'" OGP o oD (T ! "o "M ‘ué_wuu AOSTONT
C.)'IH ‘"(’_)‘I” ‘lld)ll ‘”(_3)-‘" ‘”L)‘_)J” ‘"J_)J ‘"J‘)JH ‘"C)J" ‘“C)"“ "("u“" " ud)_}u ‘ll&)_}u ‘"J)-’
a)&u oM RPN SR “ (UL TIPS "o " MGt MY "o " ‘“?J"
S "o S " ‘n‘)&vv ‘" - S " L"JAJ" "LAJ"" " "dL” ‘"c_hll ||_L‘AJ|| ‘ll 1y ||ﬂa|| ‘lléau ‘IIJS_\
A" (M Jea" (M EEAN (MaEAM (MCwdd! M Lan oyt n"}
$r00t52 - {u ‘"u-\-‘" N >I "on " ‘n " ‘n§ a0 ‘"Lé-‘:”" ‘uru_uu ‘”(";"" ‘ud_uu “J.u" ‘uuu)“
A (MAa" (Ma G ‘"(“J‘\" o i "LLJJ" ‘vve)ju ‘I'u)_"I ‘||u4_""|| ‘"d—‘:" A"UAS“ M AN ‘IIJ)_'|'||'I
" n)‘hn "J&;” ‘”?).43" ‘”d_);” ‘"“—‘_)3” ‘"(’_P” ‘"L}"_P” ‘"L)‘“);“ "("\;“ ‘"k_i.l;“ ‘"A_Ih" £“th
Lhad" (M ear" ‘H‘)“A;Hu --Mu}
$r00ts3 - {ll ”&.‘u" ‘"C‘L‘" ‘Hé';_‘ﬂ ‘"e_‘ﬂ M "o " ‘||‘)>_||| ‘ll‘);_lll ME " A“é\.\" A“&:\a_l
"o 1t ‘”C‘u" o] "on " ‘”C-)"’” ‘"t)"’“ "CL’" Mooy , "G Ml ’
o MM ‘"QJ‘” ue_’u vuuLvu HCSJH u \LAPLLI] ‘u‘)a_‘u ‘u‘)_uu LU ‘ ud_'_-‘u "da._\"

u—@” ‘n_L‘_«_‘n ‘n 41 "'uie—'" ‘"u-'-@-*" M @G—.’"" " ‘”é‘)_h" “tM“ u&ku "Q_}A“ "ﬂ.@.’\" c"‘_':,.@_'l
c_wn uc_wn HCAA" ”CAA" Metlat ¢ "cSA" "c&h" HCLAH "E}""}

none L mon () "o n A UAERSIE AT G USAT)

$rootsd = {" Moy ¢ g " Mo ¢ " dat rday Mo g Mad M E C)s

aga! My ‘n(ddn HCJJH n?&u u&un Mg Moy u‘)_h;u M yaay ‘uéu_—“u ut‘_—“u" "M

"'CJA" "&)A" Moa " ¢ MJan "J.QJ' M (Mt (Mo it (M ! ‘"C)_‘ A U'c_ﬁ"

" MMei ‘n(‘hn uc_hu KAt u "N gaa" ‘"L_?)A”"}

$I’00t39 = {" P il ‘u‘))_v‘u ‘"P"" ‘vuu_uvv ‘vuu“vu "lJLH ‘uds_\u ‘uuMu ‘u‘))du ‘umu c"dLa
6""" kit " uEJ" "(.wJ" oAt M Mot M ‘"cﬂ” kit ¢ "c;;" Mo &“(;A:“

Pn et ‘"d“"}

210

Appendix I11: Additional Detailed Informations, Tables and
Figures of Implemented Root Extraction Techniques in

Chapter 4

Samples of Accuracy Results for All Ten Algorithms using AT8 corpus

Category: Politics

Name of Text il S1 corr S2 S2_corr S3 S3 corr S4 S4_corr RB Enh_RB
*.xt
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%0)

algabasl 53.90 60.86 58.54 67.66 57.05 63.02 57.05 66.83 57.38 70.98
algabas2 60.87 65.22 66.96 73.48 61.30 67.39 61.52 68.48 66.30 73.04
ahraml 60.30 66.25 65.51 77.67 64.52 73.20 62.78 74.69 60.30 76.92
addustourl 57.98 63.81 62.65 69.26 59.53 64.59 57.98 68.48 61.87 71.21
alwafd2 60.42 63.54 69.79 76.04 60.42 64.58 61.46 73.96 57.29 69.79
maktoobl 53.37 60.80 58.87 69.60 56.53 65.06 55.98 64.92 53.65 70.15

Category: Economics

S1_co S2 S2_corr S3_cor S4 S4_corr RB Enh_RB

Name of Text ~ S1 (%) S3 (%)
*
o o) (%) (%) r%)) %) (%) (%)
ahram2 59.07 66.51 67.91 77.21 63.26 72.56 61.86 72.09 63.72 77.21
addustour2 52.16 60.30 59.80 69.98 57.76 67.68 55.98 71.25 54.45 70.74
alwatan5 55.66 60.70 65.18 73.55 63.76 69.88 63.46 71.71 63.76 73.85
cnn9 56.63 63.25 58.43 67.47 56.33 60.84 58.13 64.76 56.93 70.18
okaz4 44.04 51.38 49.54 63.30 49.54 61.47 42.20 58.72 44,95 60.55
Category: Religious issues

Name of S1 S1 cor S2_cor S3 cor S4 corr RB Enh_R

Text S2 (%) S3 (%) S4 (%)

*txt (%) r (%) r (%) r (%) (%) (%) B (%)
addustour3 53.49 63.00 63.85 75.48 62.16 71.04 61.10 71.67 64.48 79.49
al-madina9 53.13 60 62.02 73.13 60.40 67.07 62.83 71.31 61.82 74.95

algabasll 60.61 64.99 66.74 73.30 61.27 67.40 61.71 68.71 66.30 73.09
bbc16 55.68 63.74 65.93 76.56 64.84 70.70 60.07 69.23 55.31 70.33
alquds- 59.23 65.24 63.95 72.53 62.66 68.24 55.79 68.67 58.16 72.75
alarabi4
Category: Educational And Health
Name of Text S1 cor S2_cor S3 cor S4 cor RB Enh_R
*txt S1 (%) S2 (%) S3 (%) S4 (%)
r (%) r (%) r (%) r (%) (%0) B (%)
ahram5 52.75 64.90 60 75.88 55.69 66.08 54.71 66.67 53.33 71.18
ahram6 57.83 66.86 63.86 74.70 66.27 72.89 56.02 66.27 69.88 82.53
alquds10 60.42 65.28 64.58 72.22 65.28 73.61 59.72 70.83 62.5 75
alquds11 55.25 62.98 62.98 73.48 65.75 70.72 54.14 68.51 59.67 76.80
alquds12 60 62.73 72.73 79.09 72.73 75.45 62.27 80.91 65.45 79.09
Category: Social
Name of Text S1 S1_cor S2_cor S3_cor S4 cor RB Enh_RB
*.txt S2 (%) S3 (%) S4 (%)
(%) (%) r (%) r (%) r@) (%) (%)
addustour5 56.39 67.12 57.31 71.01 54.57 64.61 58.68 68.49 56.39 71.01
al-fadjré 51.28 58.69 60.11 70.94 58.41 64.94 57.27 65.53 58.69 72.08
al-fadjr7 61.78 68.15 63.38 72.93 62.10 68.47 61.15 73.25 66.24 77.07
alkhabar12 55.84 64.04 60.88 71.29 58.36 65.30 57.41 66.88 62.46 75.39
cnnl0 50 60.09 58.26 67.89 49.54 58.26 54.59 68.81 59.63 75.69
algabasl12 57.27 64.55 61.82 74.55 60.91 69.09 55.45 70.91 58.18 80
Category: Music
Name of Text S1 co S2_cor S8 S3_corr S4 S4 _corr RB Enh_RB
* txt S1 (%) S2 (%)
rr (%) r) (%) (%) (%) (%) (%0) (%)

addustourl12 48.86 62.60 58.02 7252 56.49 67.94 59.54 70.99 51.91 73.28
al-fadjr10 54.07 61.05 59.30 68.61 55.81 64.53 65.12 71.51 57.56 78.49
el-massa2 54.52 61.56 62.81 71.11 59.80 68.82 60.30 68.34 58.54 77.39

alyaum2 62.10 70.16 70.16 8145 66.94 75 75.81 82.26 62.10 74.19
algabas10 56.30 66.87 60.34 7216 60.34 67.34 58.63 67.03 62.99 73.87

Category: Sports

Name of Text S1 cor S4 cor RB Enh_

S3_cor
S1 (9
* txt 1 (%)

2 SO s3(9%0) S4 (%)
r (%) r (%) r (%) r (%) (%) RB

211

ahram3 58.96 66.23 67.53 75.84 58.18 66.49 58.96 67.01 60.78 68.83
ahram10 57.58 65.15 65.15 74.62 58.71 64.52 58.71 67.80 59.72 72.48
alanwar?2 57.59 63.80 64.90 73.31 59.60 66.36 57.95 67.82 52.65 67.46
algabas7 52.88 60.47 56.55 67.02 50.26 59.42 52.62 61.78 54.97 67.02
ommandaily3 69.79 75.51 69.18 73.72 60.12 64.35 66.47 70.09 64.95 74.92
cnnl 52.69 58.60 66.16 74.19 60.75 66.13 53.76 69.89 65.52 70.97
assaheefal 51.84 55.88 55.88 59.93 51.10 57.35 55.52 63.24 60.29 72.43
Category: Art, Culture and Literature
Nam:gftText S1 (%) S1 cor $2 (%) S2_cor $3 (%) S3 cor $4 (%) S4 cor RB Enh_R
r (%) r (%) r (%) r (%) (%) B (%)
ahram4 52.51 59.32 61.59 71.31 58.83 65.80 58.67 69.04 64.51 73.26
alalam3 48.28 51.72 54.02 63.22 56.32 57.47 55.17 60.92 65.52 78.16
azzamanb 58.17 64.78 64.92 73.09 62.74 69.21 60.49 69.62 64.24 76.43
alguds-alarabi8 55.11 63.78 60.68 72.14 58.36 65.65 60.22 71.36 56.81 68.89
jeeranl 50.43 53.85 64.10 67.95 61.97 62.39 58.55 62.82 55.13 64.53

Analysis using SPSS for rule_based, Enh_rule_based, Adjusted Al-
Shalabi, Adjusted Al-Shalabi-corr algorithms (All categories)

Histogram for Enh_rule_based algorithm:

Histogram for rule_based algorithm:

s0-{

g

Frequency

b

RB-A

Histogram for Adjusted Al-Shalabi:

60

s0-{

a0

Frequency

70l00
RB-A-vow

Histogram for Adjusted Al-Shalabi-corr:

g
Model Description
Model Name MOD_1 MOD_2 MOD_3 MOD_4
Series or |1 RB Enh_RB S2 S2-corr
Sequence
Transformation None None None None
Non-Seasonal Differencing 0 0 0 0
Seasonal Differencing 0 0 0 0
Length of Seasonal Period No periodicity | No No No periodicity
periodicity periodicity
Standardization Not applied Not applied Not applied Not applied
Distribution Type Normal Normal Normal Normal
Location estimated estimated estimated estimated
Scale estimated estimated estimated estimated
Fractional Rank Estimation | Blom's Blom's Blom's Blom's
Method
Rank Assigned to Ties Mean rank Mean rank Mean rank Mean rank
of tied values of tied values | of tied values | of tied values
Applying the model | MOD_1 MOD_2 MOD_3 MOD _4

212

specifications from

Case Processing Summary
RB Enh_RB S2 S2-
corr
Series or Sequence Length 380 380 381 381
Number of Missing | User-Missing 0 0 0 0
Values in the Plot System-Missing 0 0 1 1
The cases are unweighted
Estimated Distribution Parameters
RB Enh_RB S2 S2-corr
Normal Location 59.7016 73.3325 61.9559 71.6429
Distribution Scale 5.73808 5.22792 | 5.45823 5.08720
The cases are unweighted.
P-P plot for Rule-based algorithm:
Normal P-P Plot of RB-A
oox] - &

s ot . f e d

£ I Ak et = T F

£ ¥ £

8 0.4 = ?

& 2 ool s o Gm f

H S 5o V-4
oz o0n] ® Wog © ® 5
& w

Observed Cum Prob

P-P plot for Enh_Rule-based algorithm:

Normal P-P Plot of RB-A-vow

Observed Cum Prob

Detrended Normal P-P Plot of RB-A-vow

0s
!
&%
®
0oz 1
0.8 — @ a
P fae,
2 5 % %ﬁa
a Z 000
< o e %
3 2 g
2 s 8
g 0.4 § 002 & o
3 H ® ﬁ S
& H PPy o W &% S
4 o F
N /o 1y
%ﬁ@g’
o. g T T T y T 0. T y y T
0.0 02 04 06 08 1.0 0.0 0.2 0.4 0.6 08 1.0
Observed Cum Prob Observed Cum Prob
P-P plot for Adjusted Al-Shalabi algorithm:
Detrended Normal P-P Plot of S1-adj
Normal P-P Plot of S1-adj ° S
& _d
001 °§> o8 o 9 Sof8
S o
] . S, 4
5 °°T% ° S &2
= ® 9 ° € S
8 £ o © S 8 © o
£ et 8 oor - % ﬁg 3 S
H E B S S8 g O #
: g o o g 5o Se 8
g0 2 & °55 8o 88
: ® EA 9
. “0.05-{ B °&8
s

Observed Cum Prob

P-P plot for Adjusted Al-Shalabi-corr algorithm:

Observed Cum Prob

213

Normal P-P Plot of S1-adj-vow

Detrended Normal P-P Plot of S1-adj-vow

Ao

7o T
P E
%D i é 001 S ° =) %g? S
02 3 ool ‘%gj ﬁ@{@) @g %@
& £ - &
o] 88
04 06 0.4 @ 06
K-S (NORM) test:
One-Sample Kolmogorov-Smirnov Test
RB Enh_RB S2 S2-corr
N 380 380 380 380
Normal Mean 59.7016 73.3325 61.9559 71.6429
Parameters®®
Std. Deviation | 5.73808 5.22792 5.45823 5.08720
Most Extreme | Absolute 0.042 0.060 0.033 0.040
Differences
Positive 0.025 0.036 0.019 0.031
Negative -0.042 -0.060 -0.033 -0.040
Kolmogorov-Smirnov Z 0.820 1.164 0.648 0.780
Asymp. Sig. (2-tailed) 0.511 0.133 0.796 0.578
a. Test distribution is Normal.
b. Calculated from data.

214

Appendix 1V: Additional Detailed Informations, Tables and

Figures of Chapter 5

Criteria of Applied Classifiers here in WEKA

Type Classifier Criteria
BN uses various search algorithms and quality measures. debug = F, estimator =
SimpleEstimator A-0.5, searchAlgorithm = k2-P1-S Bayes, useAD Tree = F.
Bayes-Based NBM Class for building gnd using a multin_omial Ngive Bayes classifier. debug = F.
Learners NB C_Iass for a Naive Bayes classifier using estimator c_Iasses. debug = F,
displayModelInOldFormat = F, useKernelEstimator = F,
useSupervisedDiscritization = F.
Complement NB builds and uses a Complement class Naive Bayes classifier. debug = F,
normalizeWordWeights = F, smoothingParameter = 1.
NBMU As NBM
NBU As NB
Random Forest Class for constructing a forest of random trees. debug = F, maxDepth = 0,
numFeatures = 0, numTrees = 10, seed = 1.
RepTree Fast decision tree learner. debug = F, maxDepth = -1, minNum = 2,
minVarianceProp = 0.0010, noPruning = F, numFolds = 3, seed = 1.
BF Tree Class for building a best-first decision tree classifier. debug = F, heurestic = T,
minNumObj = 2, numFoldsPruning = 5, pruningStrategy = Post-Pruning, seed = 1,
sizePer = 1, useErrorRate = T, useGini = T, useOneSE = F.
NB Tree Class for generating a decision tree with naive Bayes classifiers at the leaves., debug
=F.
FT Classifier for building 'Functional trees', which are classification trees that could
Tree Learners have logistic regression functions at the inner nodes and/or leaves. binSplit = F,
debug = F, errorOnProbabilities = F, minNumInstances = 15, modelType = FT,
numBoostinglterations = 15, useAlIC = F, weightTrimBeta = 0.
J48 Class for generating a pruned or unpruned C4. binarySplits = F, confidenceFactor =
0.25, debug = F, minNumObj = 2, numFolds =3, reducedErrorPruning = F,
savelnstanceData = F, seed = 1, subTraaRaising = T, unpruned = F, useLaplace = F.
J48 graft Class for generating a grafted pruned or unpruned C4. (as J48).
LAD Tree Class for generating a multi-class alternating decision tree using the LogitBoost
strategy. dbug = F, numOfBoostinglterations = 10.
LMT Classifier for building 'logistic model trees', which are classification trees with
logistic regression functions at the leaves. convertNominal = F, debug = F,
errorOnProbabilities = F, fastRegression = T, minNuminstances = 15,
numBoostinglterations = -1, splitOnResiduals = F, useAIC = F, weightTrimBeta = 0.
Random Tree Class for constructing a tree that considers K randomly chosen attributes at each
node. kValue = 0, allowUnclassifiedInstances = F, debug = F, maxDepth = 0,
minNum = 1, numFolds = 0, seed = 1.
Simple Cart Class implementing minimal cost-complexity pruning. debug = F, heuristic = T,
minNumObj = 2, numFoldsPruning = 5, seed = 1, sizePer = 1, useOneSE = F,
usePrune = T.
JRip This class implements a propositional rule learner, Repeated Incremental Pruning to
Produce Error Reduction (RIPPER), which was proposed by William W.
checkErrorRate = T, debug = F, folds = 3, minNo = 2, optimizations = 2, seed = 1,
usePruning = T.
PART Class for generating a PART decision list. binarySplits = F, confidenceFactor = 0.25,
debug = F, minNumObj = 2, numFolds = 3, reducedErrorPruning = F, seed = 1,
unpruned = F.
Ridor An implementation of a Rlpple-DOwn Rule learner. debug = F, folds = 3,
majorityClass = F, minNo = 2, seed = 1, shuffle = 1, wholeDataErr = F.
OneR Class for building and using a 1R classifier; in other words, uses the minimum-error
attribute for prediction, discretizing numeric attributes. debug = F, minBucketSize =
6.
NNge Nearest-neighbor-like algorithm using non-nested generalized exemplars (which are

Decision Table

hyperrectangles that can be viewed as if-then rules). debug = F,
numAttemptsOfGeneOption = 5, numFoldersMIOption = 5.

Class for building and using a simple decision table majority classifier. crossVal = 1,
debug = F, displayRules = F, evaluationMeasure = Default: accuracy(discrete class);
RMSE (numeric class), search = BestFirst -D 1-N 5, uselbk = F.

SMO

Implements John Platt's sequential minimal optimization algorithm for training a
support vector classifier. buildLogisticModel = F, ¢ = 1, checksTurnedOff = F,
debug = F, epsilon = 1.0E-12, filterType = Normalize training data, kernel = Poly
kernel-C 250007-E1.0, numFolds = -1, randomSeed = 1, toleranceParameter =
0.0010.

215

Function

Learners Logistic Cla_lss for building and using a mu_ItinomiaI logistic regression model with a ridge
estimator. debug = F, maxlts = -1, ridge = 1.0E-8.
MLP A Classifier that uses backpropagation to classify instances. GUI = F, autoBuild = T,
debug = F, decay = F, hiddenLayers = a, learningRate = 0.3, momentum = 0.2,
nominalToBinaryFilter = T, normalizeAttributes = T, NormalizeNumericClass = T,
reset = T, seed = 0, trainingTime = 500, validationSetSize = 0, validationThreshold
=20.

Simple Logistic Classifier for building linear logistic regression models. debug = F,
errorOnProbabilities = F, heuristicStop = 50, maxBoostinglterations = 500,
numBoostinglterations = 0, useAIC = F, useCrossValidation = T, weightTrimBeta =
0.

Learners
Hyper Pipes Class implementing a HyperPipe classifier. debug = F.
AdaBoost.M1 Class for boosting a nominal class classifier using the Adaboost M1 method.

classifier = J48 -C 0.25 -M 2, debug = F, numiterations = 10, seed = 1,
useResampling = F, weightThreshold = 100.
Attribute Selected Dimensionality of training and test data is reduced by attribute selection before

Classifier being passed on to a classifier. classifier = J48 -C 0.25 -M 2, debug = F, evaluator =
CfsSubsetEval, search = BestFirst - D 1- N 5.
Bagging Class for bagging a classifier to reduce variance. bagSizePercent = 100,
calOutOfBag = F, classifier = J48 -C 0.25 -M 2, debug = F, numlterations = 10,
seed = 1.
Classification Via Class for doing classification using regression methods. classifier = M5P --M 4.0,
Regression debug = F.
Dagging This meta classifier creates a number of disjoint, stratified folds out of the data and

feeds each chunk of data to a copy of the supplied base classifier. classifier = SMO -
C 1.0 - L 0.0010 - P 1.0E-12 -N 0 -V -1, debug = F, numFolds = 10, seed = 1,
verbose = F.

Decorate is a meta-learner for building diverse ensembles of classifiers by using specially
constructed artificial training examples. Atrtificial Size = 1, classifier = J48 - C0.25-
M2, debug = F, desiredSize = 10, numlterations = 10.

END A meta classifier for handling multi-class datasets with 2-class classifiers by
building an ensemble of nested dichotomies. classifier = ND -S1 -W
weka.classifiers.trees.j48-- C 0.25 M 2, debug = F, numlterations = 10, seed = 1.

Filtered Classifier ~ Class for running an arbitrary classifier on data that has been passed through an
arbitrary filter. classifier = J48 -C 0.25 -M 2, debug = F, filter = Discritize -R first-
last.

Logit Boost Class for performing additive logistic regression. classifier = DecisionStump, dbug =
F, likelihoodThreshold = -1.7976931348623157E308, numFolds = 0, numlterations
=10, numRuns = 1, seed = 1, shrinkage = 1.0, useResampling = F, weightThreshold

=100.
Multi Class A metaclassifier for handling multi-class datasets with 2-class classifiers. classifier
Classifier = Logistic -R 1.0E-8 -M -1, debug = F, method = 1-against-all, randomWidthFactor
= 2.0, seed = 1, usePairwiseCoupling = F.
CBND A meta classifier for handling multi-class datasets with 2-class classifiers by
building a random class-balanced tree structure. (as ND).
DNBND A meta classifier for handling multi-class datasets with 2-class classifiers by
building a random data-balanced tree structure. (as ND)
ND A meta classifier for handling multi-class datasets with 2-class classifiers by
building a random tree structure. classifier = J48 -C 0.25 -M 2, debug = F, seed = 1.
Ordinal Class Meta classifier that allows standard classification algorithms to be applied to ordinal
Classifier class problems. classifier = J48 -C 0.25 -M 2, debug = F.
Random Class for building an ensemble of randomizable base classifiers. classifier =
Committee RandomTree - k 0 -M 1.0 -S1, debug = F, numlterations = 10, seed = 1.

Random SubSpace This method constructs a decision tree based classifier that maintains highest
accuracy on training data and improves on generalization accuracy as it grows in
complexity. classifier = RepTree - M2 -V 0.0010 - N3 - S1 -L-1, debug = F,
numlterations = 10, seed = 1, subSpaceSize = 0.5.
Rotation Forest Class for construction a Rotation Forest. classifier = J48 -C 0.25 -M 2, debug = F,
maxGroup = 3, minGroup = 3, numlterations = 10, numberOfGroups = F,
projectionFilter = PrincipleComponents -R 1.0 -A5 -M-1, removedPercentage = 50,
seed = 1.

216

Performance of all classifiers of corpus as number of selected features increased among a) Roots, b) Stems, ¢) Words, d) RRP,

e) SSP, f) WP representations

g g *

0.2

0.1

QLe—BN

—8—NB Updat

2000 —8—NBM 4000 —e—NEB 6000
== Random Forest

10000—nBMUpdat 12000
RepTree = BF Tree ——FT

T
—8%¥0npINB

@)

217

01 T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
—¢—BN =l—=NBM =—i—NB == Compl NB == NBM Updat
=8—NB Updat ===Random Forest RepTree == BF Tree ——FT
==)48 graft w=fe=| AD Tree i | MIT =t NB Tree =@®—Random Tree
—+=Simple Cart — 48 = JRIP —4—Ridor =—0neR
—a—NNge == Decision Tahle ====PART =0=SMO == RBF

(b)

218

Words-all classifiers

1
0.9
0.8 : T
07 ¢ + s
2 ¢ LSS
L
E — Al
gG N T
E — L ——a
0.5
0.4

~—0-
0.3 ®
—i— O
02 T T T 1
0 20000 40000 60000 80000 100000 120000
#features

—4—BN == NBM =d—NB = Compl| NB == NBM Updat

=8—NB Updat ==Random Forest RepTree == BF Tree =——FT

=48 graft =de=—AD Tree —— | MIT =t NB Tree =—0-—Random Tree

—t=Simple Cart — 48 e |RIP —4—Ridor —fl— OneR

=fe=NNge == Decision Tahle e PART =0 SMO et RBF

Logistic Multi-layer perceptron —4—Simple Logistic == VFI == Hyper Pipes
=== AdaBoost.M1 === Att. Sel. Classifier ~~Bagging === (Class. Via Regression = Dagging
Decorate ~——END ~—Filt. Classifier Logit Boost Multiclass Classifier
(©

219

0.4

0.3

0.2

0.1 T T T T T T
0 10000 20000 30000 40000 50000

=——BN =—NBM —a—NB === ComplNB == NBM Updat
—8—NB Updat == Random Forest RepTree = BF Tree =——FT

(d)

220

0 10000 20000 30000 40000
—4—BN == NBM == NB = Compl| NB === NBM Updat
=8—NB Updat ===Random Forest RepTree =—BF Tree ——FT
=48 graft w=fe=| AD Tree i | MIT == NB Tree =@®—Random Tree
—+=Simple Cart — 48 e JRIP —&—Ridor == 0neR
=d==NNge == Decision Tahle et PART =0—SMO e RBF

Logistic Multi-layer perceptron —4—Simple Logistic == VFI —=Hyper Pipes
()

221

WP-all classifiers

- —ill
02 1 T T T T T
0 20000 40000 60000 80000 100000 120000
Features#
=——BN =—NBM =i—NB === ComplNB ==NBM Updat
—8—NB Updat == Random Forest RepTree = BF Tree ——FT
—l—]48 graft =de=—AD Tree | MT =t NB Tree =@—Random Tree
==Simple Cart —]48 = RIP == Ridor == 0neR
—a—NNge === Decision Tahle ====PART =0=SMO === RBF
Logistic Multi-layer perceptron =—&—Simple Logistic == VFI —==Hyper Pipes
= AdaBoost.M1 == Att. Sel. Classifier ~~Bagging = Class. Via Regression ——Dagging
Decorate ~==END ——Filt. Classifier Logit Boost Multiclass Classifier
Class Bal. ND Dat. Near Bal. ND ND Ord. Class Classifier Rand. Committee
Rand. SubSpace Rotation Forest
®)

222

Performance of most Classifiers among categories for all representations at 1000 best selected features

BN, F1 values for 1000 features NB, F1 values for 1000 features NBM, F1 values for 1000 features
Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.986 0.986 0.972 0.986 0.986 0.972 0.675 0.63 0.486 0.663 0.562 0.519 || 0.779 | 0.722 | 0.659 | 0.771 | 0.718 | 0.679
Religious 0.956 0.956 0.915 0.949 0.955 0.915 0.406 0.371 0.433 0.333 0.377 0.441 || 0.648 | 0.649 | 0.658 | 0.657 | 0.636 | 0.645
Arts 0.988 0.988 0.973 0.988 0.988 0.976 0.678 0.663 0.681 0.657 0.688 0.714 || 0.793 | 0.783 | 0.762 | 0.796 | 0.779 | 0.771
Social 0.988 0.976 0.968 0.988 0.976 0.964 0.406 0.39 0.403 0.414 0.362 0.385 || 0.627 | 0.602 0.47 0.615 | 0.606 | 0.457
Economics || 0.986 0.979 0.902 0.986 0.979 0.909 0.556 0.52 0.457 0.586 0.495 0.436 || 0.846 | 0.782 | 0.671 | 0.824 | 0.792 | 0.686
Sports 0.909 0.844 0.643 0.935 0.844 0.653 0.806 0.784 0.701 0.803 0.835 0.672 || 0.934 | 0.927 | 0.869 | 0.943 | 0.918 | 0.893
Music 0.916 0.942 0.968 0.875 0.951 0.98 0.915 0.86 0.791 0.928 0.867 0.782 1 0.99 0.915 1 0.979 | 0.896
Educational || 0.981 0.975 0.93 0.981 0.978 0.93 0.695 0.694 0.695 0.671 0.693 0.693 (| 0.857 | 0.863 0.83 0.854 | 0.856 | 0.839
SMO, F1 values for 1000 features Simple Logistic, F1 values for 1000 features Decision Table, F1 values for 1000 features
Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.69 0.639 0.604 0.723 0.621 0.562 0.818 0.832 0.649 0.816 0.766 0.667 || 0.562 | 0.473 0.488 0.57 | 0.528 | 0.503
Religious 0.638 0.57 0.587 0.642 0.519 0.606 0.765 0.69 0.539 0.835 0.675 0.575 || 0.662 | 0.564 0.564 | 0.702 | 0.569 | 0.454
Arts 0.754 0.741 0.693 0.744 0.731 0.726 0.761 0.719 0.689 0.752 0.749 0.688 || 0.628 | 0.565 0.614 0.67 | 0.565 | 0.567
Social 0.591 0.568 0.467 0.576 0.541 0.494 0.551 0.575 0.466 0.581 0.552 0.484 || 0.579 | 0.714 0.5 0.68 | 0.667 | 0.524
Economics | 0.774 0.738 0.667 0.739 0.719 0.634 0.825 0.783 0.647 0.849 0.713 0.567 || 0.661 | 0.476 0.614 | 0.678 | 0.59 | 0.564
Sports 0.696 0.693 0.667 0.688 0.703 0.656 0.889 0.912 0.821 0.894 0.956 0.814 || 0.512 | 0.532 0.593 | 0.534 | 0.619 | 0.589
Music 0.926 0.94 0.818 0.925 0.922 0.8 0.923 0.96 0.866 0.923 0.96 0.914 (| 0.819 | 0.619 0.684 | 0.847 | 0.624 | 0.592
Educational | 0.848 0.828 0.751 0.838 0.821 0.746 0.822 0.81 0.804 0.814 0.82 0.799 | 0.743 0.8 0.76 0.718 | 0.822 | 0.74
JRIP, F1 values for 1000 features PART, F1 values for 1000 features J48, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.873 0.734 0.699 0.851 0.667 0.624 0.808 0.692 0.532 0.863 0.639 0.513 || 0.797 | 0.696 0.477 | 0.883 | 0.681 | 0.474
Religious 0.841 0.611 0.709 0.818 0.646 0.646 0.743 0.619 0.658 0.707 0.537 0.596 || 0.736 | 0.602 0.577 | 0.746 | 0.536 | 0.671
Arts 0.63 0.589 0.595 0.661 0.584 0.571 0.712 0.634 0.619 0.704 0.613 0.648 || 0.667 | 0.637 0.614 | 0.674 | 0.582 | 0.65
Social 0.603 0.563 0.728 0.632 0.535 0.715 0.603 0.506 0.453 0.579 0.498 0.482 | 0.552 0.54 0.432 | 0.579 | 0.453 | 0.438
Economics || 0.809 0.685 0.563 0.808 0.644 0.565 0.816 0.632 0.475 0.831 0.65 0.5 0.841 | 0.623 0.455 | 0.835 | 0.675 | 0.452
Sports 0.875 0.829 0.836 0.87 0.809 0.814 0.923 0.815 0.797 0.902 0.853 0.75 || 0.908 | 0.842 0.748 | 0919 | 0.853 | 0.672
Music 0.851 0.878 0.857 0.878 0.827 0.903 0.86 0.835 0.811 0.909 0.84 0.73 || 0.911 | 0.884 0.825 | 0.929 | 0.874 | 0.845
Educational || 0.738 0.685 0.721 0.782 0.727 0.731 0.725 0.661 0.706 0.722 0.612 0.699 || 0.731 | 0.673 0.717 | 0.697 | 0.627 | 0.761

223

Random Forest, F1 values for 1000 features

FT, F1 values for 1000 features

RepTree, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP | Roots | Stems | Words | RRP | SSP WP
Politics 0.636 0.646 0.551 0.658 0.585 0.561 0.815 0.732 0.662 0.797 0.706 0.646 || 0.865 | 0.654 | 0.549 | 0.865 | 0.647 | 0.507
Religious 0.566 0.55 0.581 0.645 0.606 0.612 0.717 0.615 0.548 0.725 0.611 0.556 || 0.824 | 0.589 0.56 0.779 | 0.593 | 0.506
Arts 0.739 0.723 0.753 0.726 0.735 0.734 0.738 0.675 0.703 0.698 0.736 0.691 || 0.639 | 0.603 0.621 0.65 | 0.589 | 0.566
Social 0.581 0.524 0.571 0.641 0.548 0.525 0.58 0.496 0.471 0.554 0.569 0.476 || 0.567 | 0.415 | 0.359 | 0.559 | 0.425 | 0.422
Economics 0.693 0.624 0.621 0.634 0.608 0.625 0.791 0.748 0.618 0.797 0.733 0.644 (| 0.803 0.63 0.378 0.809 | 0.611 | 0.321
Sports 0.853 0.837 0.851 0.862 0.857 0.837 0.871 0.91 0.776 0.863 0.892 0.835 || 0.914 | 0.879 0.654 | 0.928 | 0.827 | 0.657
Music 0.97 0.949 0.884 0.98 0.949 0.839 0.906 0.941 0.752 0.841 0.923 0.793 || 0.918 0.9 0.723 | 0.928 | 0.882 | 0.66
Educational | 0.764 0.697 0.746 0.704 0.712 0.775 0.81 0.797 0.747 0.812 0.824 0.784 || 0.643 | 0.602 | 0.648 | 0.728 | 0.598 | 0.622
BF Tree, F1 values for 1000 features Random Tree, F1 values for 1000 features Decorate, F1 values for 1000 features
Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.863 0.726 0.533 0.865 0.689 0.553 0.524 0.731 0.344 0.456 0.315 0.413 [[0.826 | 0.707 | 0.654 | 0.823 | 0.699 | 0.667
Religious 0.793 0.522 0.548 0.825 0.577 0.588 0.552 0.577 0.433 0.356 0.268 0.397 |[0.813 | 0.687 | 0.651 | 0.763 | 0.675 | 0.605
Arts 0.635 0.588 0.667 0.644 0.636 0.671 0.523 0.59 0.558 0.51 0.516 0.513 |[0.75 | 0.717 0.71 0.739 | 0.705 | 0.731
Social 0.55 0.478 0.392 0.543 0.598 0.49 0.259 0.486 0.316 0.361 0.335 0.332 |[0.649 | 0.586 | 0.578 0.69 | 0.638 | 0.659
Economics || 0.803 0.642 0.511 0.818 0.667 0.444 0.432 0.656 0.323 0.44 0.301 0.288 | 0.761 | 0.676 | 0.613 | 0.797 | 0.718 | 0.636
Sports 0.91 0.887 0.627 0.881 0.863 0.627 0.471 0.881 0.609 0.713 0.532 0.631 [0.896 | 0.871 | 0.872 | 0.916 | 0.881 | 0.813
Music 0.911 0.871 0.734 0.92 0.9 0.879 0.32 0.843 0.587 0.863 0.685 0.624 [0.939 0.9 0.837 | 0.939 | 0.874 | 0.874
Educational || 0.725 0.632 0.629 0.702 0.705 0.692 0.505 0.644 0.522 0.513 0.518 0.44 || 0.764 | 0.735 | 0.787 | 0.773 | 0.751 | 0.753
Rotation Forest, F1 values for 1000 features Ridor, F1 values for 1000 features OneR, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.899 0.789 0.694 0.902 0.797 0.671 0.904 0.696 0.62 0.871 0.684 0.564 [0.823 | 0481 | 0556 | 0.791 | 0.519 | 0.556
Religious 0.863 0.748 0.765 0.859 0.72 0.743 0.775 0.645 0.614 0.736 0.67 0.636 [[0.649 | 0.511 | 0.486 | 0.635 | 0.496 | 0.486
Arts 0.797 0.754 0.716 0.818 0.742 0.747 0.607 0.61 0.635 0.637 0.581 0.669 [0.703 | 0.563 0.63 0.728 | 0.546 | 0.548
Social 0.685 0.597 0.586 0.715 0.616 0.516 0.533 0.509 0.417 0.559 0.402 0.522 [0.627 | 0.607 0.38 0.676 | 0.593 | 0.43
Economics | 0.895 0.844 0.705 0.878 0.855 0.616 0.822 0.569 0.477 0.834 0.582 0.42 || 0591 | 0.388 | 0.404 | 0.554 | 0.306 | 0.408
Sports 0.955 0.905 0.855 0.963 0.938 0.828 0.94 0.849 0.709 0.894 0.845 0.63 0.41 | 0.354 | 0.286 0.41 | 0.415 | 0.282
Music 0.929 0.887 0.854 0.938 0.902 0.893 0.929 0.86 0.636 0.939 0.909 0.774 0 0 0.537 0 0.154 | 0.551
Educational | 0.801 0.811 0.831 0.824 0.8 0.798 0.667 0.645 0.614 0.637 0.57 0.644 [0.742 | 0.681 0.71 0.769 | 0.684 | 0.71

224

LAD Tree, F1 values for 1000 features

Simple Cart, F1 values for 1000 features

Complement NB, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.819 0.583 0.538 0.825 0.638 0.5 0.83 0.731 0.623 0.848 0.699 0.581 [0.722 | 0.713 | 0.637 | 0.729 | 0.694 | 0.663
Religious 0.792 0.63 0.616 0.791 0.641 0.585 0.824 0.577 0.566 0.848 0.615 0.591 [0.563 | 0.538 | 0.641 0.4 | 0.524 | 0.653
Arts 0.654 0.631 0.647 0.627 0.633 0.571 0.653 0.59 0.661 0.667 0.625 0.688 || 0.733 | 0.718 0.731 0.674 | 0.71 0.74
Social 0.516 0.357 0.235 0.557 0.378 0.351 0.553 0.486 0.449 0.555 0.544 0.47 || 0517 | 0.435 | 0.328 | 0591 | 0.465 | 0.331
Economics 0.847 0.667 0.412 0.841 0.713 0.395 0.8 0.656 0.593 0.811 0.698 0.403 || 0.686 | 0.649 0.578 0.706 | 0.63 | 0.593
Sports 0.779 0.763 0.546 0.767 0.78 0.546 0.902 0.881 0.722 0.902 0.859 0.715 || 0.908 | 0.881 0.874 0.725 | 0.87 | 0.876
Music 0.905 0.874 0.571 0.891 0.88 0.46 0.893 0.843 0.787 0.911 0.832 0.872 [0.936 | 0.913 | 0.841 | 0.833 | 0.923 | 0.867
Educational |[0.701 0.687 0.677 0.697 0.727 0.671 0.715 0.644 0.644 0.811 0.663 0.667 | 0.786 | 0.774 0.79 0.701 | 0.781 | 0.794
AdaBoost.M1, F1 values for 1000 features Attribute Selected Classifier, F1 values for 1000 features Bagging, F1 values for 1000 features
Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP Roots | Stems | Words | RRP | SSP WP
Politics 0.905 0.841 0.662 0.933 0.848 0.709 0.821 0.743 0.491 0.892 0.623 0.564 | 0.905 | 0.754 | 0.657 | 0.933 | 0.725 | 0.676
Religious 0.857 0.805 0.72 0.877 0.766 0.725 0.76 0.588 0.454 0.807 0.703 0.5 0.843 | 0.654 | 0.739 | 0.859 | 0.653 | 0.691
Arts 0.836 0.828 0.794 0.848 0.81 0.793 0.685 0.611 0.618 0.716 0.617 0.622 | 0.803 | 0.766 | 0.745 | 0.822 | 0.761 | 0.793
Social 0.727 0.703 0.621 0.719 0.68 0.614 0.552 0.566 0.403 0.622 0.442 0.447 || 0.643 | 0.597 | 0.541 | 0.683 | 0.589 | 0.544
Economics | 0.871 0.826 0.729 091 0.811 0.68 0.855 0.614 0.427 0.855 0.658 0.411 |f 0.869 | 0.731 | 0.647 | 0.889 | 0.717 | 0.606
Sports 0.963 0.902 0.844 0.962 0.899 0.848 0.882 0.866 0.61 0.901 0.866 0.65 0928 | 0.887 | 0.848 | 0.914 | 0.882 | 0.833
Music 0.959 0.917 0.863 0.959 0.94 0.868 0.893 0.92 0.549 0.911 0.868 0.673 || 0.938 | 0.905 | 0.837 | 0.938 | 0.882 | 0.869
Educational | 0.854 0.833 0.857 0.855 0.817 0.827 0.63 0.605 0.634 0.748 0.627 0.632 || 0.796 | 0.791 | 0.818 | 0.831 | 0.806 | 0.813
Classification Via Regression, F1 values for 1000 features Dagging, F1 values for 1000 features END, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP |[Roots | Stems | Words | RRP | SSP WP

Politics 0.907 0.784 0.699 0.893 0.774 0.634 0.547 0.53 0.528 0.569 0.475 0.491 [0.918 | 0.861 | 0.691 | 0.903 | 0.873 | 0.733
Religious 0.907 0.78 0.667 0.843 0.725 0.586 0.477 0.469 0.48 0.46 0.381 0.417 |[0.897 | 0.831 | 0.717 091 | 081 | 0.733
Arts 0.774 0.749 0.714 0.755 0.774 0.691 0.694 0.663 0.651 0.671 0.678 0.671 |[0.847 | 0.846 | 0.808 | 0.802 | 0.813 | 0.795
Social 0.65 0.597 0.494 0.624 0.55 0.523 0.38 0.4 0.368 0.433 0.423 0.385 [[0.795 | 0.726 | 0.654 | 0.738 | 0.661 | 0.639
Economics 0.832 0.759 0.533 0.861 0.792 0.595 0.574 0.523 0.451 0.49 0.462 0.433 [[0.905 | 0.841 | 0.772 | 0.919 | 0.792 | 0.657
Sports 0.903 0.836 0.764 0.894 0.825 0.721 0.414 0.451 0.496 0.419 0.447 0.443 |[0.913 | 0.924 0.87 0.934 | 0.892 | 0.885
Music 0.926 0.891 0.745 0.946 0.907 0.796 0.851 0.754 0.517 0.865 0.778 0.624 [0.928 | 0.928 | 0.905 | 0.948 | 0.929 | 0.936
Educational || 0.795 0.721 0.731 0.773 0.768 0.73 0.722 0.749 0.727 0.76 0.748 0.723 |[0.881 | 0.828 | 0.828 | 0.825 | 0.827 | 0.818

225

Filtered Classifier, F1 values for 1000 features Logit Boost, F1 values for 1000 features Ordinal Class Classifier, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP SSP WP

Politics 0.837 0.816 0.835 0.837 0.766 0.835 0.947 0.808 0.727 0.939 0.789 0.698 || 0.688 | 0.591 | 0.446 | 0.753 | 0.553 | 0.463
Religious 0.889 0.821 0.735 0.888 0.81 0.747 0.907 0.838 0.769 0.874 0.815 0.81 || 0465 | 0438 | 0492 | 0.571 | 0.492 | 0.468
Arts 0.829 0.806 0.825 0.824 0.773 0.854 0.83 0.746 0.738 0.801 0.753 0.774 || 0.577 | 0.574 0.552 0.581 0.62 0.556
Social 0.84 0.726 0.72 0.767 0.788 0.709 0.75 0.677 0.529 0.727 0.558 059 || 0434 | 0.354 | 0.374 | 0454 | 0.424 | 0.378
Economics 0.881 0.814 0.739 0.87 0.788 0.797 0.923 0.819 0.713 0.939 0.725 0.778 || 0.438 | 0.555 0.389 0.767 0.615 0.377
Sports 0.929 0.756 0.765 0.922 0.813 0.752 0.962 0.896 0.868 0.934 0.899 0.851 0.62 0.448 0.535 0.549 0.49 0.596
Music 0.948 0.865 0.756 0.948 0.869 0.826 0.931 0.917 0.863 0.938 0.941 0.878 || 0.694 | 0.805 | 0.692 | 0.795 | 0.814 | 0.684
Educational || 0.856 0.791 0.869 0.824 0.806 0.885 0.864 0.82 0.835 0.857 0.82 0.849 || 0.557 | 0.585 0.58 0.669 0.61 0.567

Random Committee, F1 values for 1000 features Random Sub Space, F1 values for 1000 features LMT, F1 values for 1000 features

Roots Stems Words RRP SSP WP Roots Stems Words RRP SSP WP || Roots | Stems | Words | RRP | SSP WP
Politics 0.711 0.688 0.606 0.732 0.588 0.652 0.921 0.859 0.732 0.927 0.842 0.685 | 0.899 0.35 0.68 0.816 | 0.766 | 0.703
Religious 0.658 0.595 0.637 0.65 0.608 0.675 0.846 0.797 0.671 0.88 0.797 0.658 || 0.863 | 0.345 | 0.563 | 0.835 | 0.675 | 0.573
Arts 0.746 0.772 0.72 0.794 0.771 0.776 0.798 0.784 0.763 0.821 0.779 0.741 |[0.797 | 0.505 | 0.693 | 0.752 | 0.749 | 0.696
Social 0.598 0.5 0.573 0.608 0.55 0.561 0.669 0.605 0.61 0.702 0.629 0.632 |[0.685 | 0.402 | 0.487 | 0.581 | 0.552 | 0.474
Economics 0.73 0.667 0.571 0.752 0.653 0.657 0.887 0.76 0.699 0.922 0.827 0.585 || 0.895 | 0.35 0.662 | 0.849 | 0.713 | 0.61
Sports 0.894 0.929 0.901 091 0.859 0.872 0.942 0.892 0.8 0.934 0.859 0.797 || 0.955 | 0.612 | 0.813 | 0.894 | 0.956 | 0.824
Music 0.98 0.949 0.817 0.979 0.96 0.896 0.928 0.913 0.845 0.96 0.904 0.869 | 0.929 0.74 0.887 | 0923 | 0.96 | 0.883
Educational | 0.776 0.762 0.767 0.736 0.731 0.789 0.819 0.785 0.832 0.818 0.814 0.791 | 0.801 0.55 0.806 | 0.814 | 0.82 | 0.796

226

Performance of different VSM representations as number of selected
features varied using (a) NB, (b) NBMU, (c) NBU, (d) Logistic, () RBF,
(f) MLP, (g) NNge, (h) OneR, (i) Random Tree, (j) J48 graft, (k) LAD
Tree, (I) BF Tree, (m) NB Tree, (n) VFI, (0) Attribute Selected Classifier,
(p) Dagging, (q) Decorate, (r) Multi Class Classifier, (s) CBND, (t)
DNBND, (u) ND, (v) Ordinal Class Classifier, (w) Random Committee

For NB classifier

.
0.7 4\ —o— Roots
0.6 =l Stems
s e \Nords
° 0.5
= R RP
= 0.4 f SSP
—— WP
0.3 T 1
20000 4DDDPeature#GDDDD 80000 100000
CY)
NBM Updatable
0.8 +— Roots
_—g 2
0.7 S ——Stems
0.6
o e "\Nords
20.5
=
0.4 RRP
0.3 =SSP
0.2 T T T 1
20000 40000 60000 80000 1000W0 WP
features
0 NB Updatable
. ;. — Roots
0.65
0.6 —fll—Stems
o 0.55
= —ae—\Words
2 0.5
=
0.45 —— RRP
0.4
—m—SSP
0.35
0.3 T T T 1 —— WP
20000 49Q00 .. 60000 80000 100000
(c)
0.64 Logistic Root
s
0.59 K\ ——Stem
s
= \ —tr—\NOor
§.49 ds
= e RRP
044 ‘Xﬁﬁe—ﬁé(
SsP
0.39 W{/ |
—o— WP
0.34 :
o 200 400 , e tures 500 800 1000

227

RBF netweork Classifier

0.8 Roots
/\ —l—Stems
.7 —
o ——Word
o s
(=3
T0.6 —@&
= oK \ T RRP
0.5 \<+SSP
—— WP
.4 T T T |
o] 10000 20000 30000 40000
Features #
(e)
0.76 MLP
—— Roots
0.66
\ —l—Stems
—0.56
[.
o
E 0.46 —e— W ords
= \\
0.26 | RRP
0.26 —e—SSP
0.16 . T 1 ' ' —e— WP
o 100 200 300 400 500 600

features

()

NNge Roots
Stems
—e—\Words
—— RRP
0.3 fe—SSP
0.25 - : . : : .
0 2000 4000 6000 8000 10000~ WP
features
9)
OneR
0.7 Roots
0.65 == Stems
- FH—€ rad
(W
o =—de—\Nords
9.6
=
= RRP
0.55
- Z
05 T T T T T 1 Wp
0 20000 40000 60000 80000 100050
features

(h)

228

Random Tree

features

0.55 —d—Roots
0.5 —fll—5tems
o
20.45 e\ ords
b}
=
04 —~<—RRP
0.35
\‘+55p
0.3 T T T T |
0 20000 40000 60000 80000 10000%— WP
features
(i)
J48 graft
—f—Roots
0.75
== Stems
— 0.65
3 e \Nords
2
=
0.55 RRP
_.
=—fe—S5P
0.45
5000 10000 15000 20000 25000 30000 35000 400 E WP
features
LAD Tree
0.8 —— Roots
—ll—Stems
0.7
E t =l —h—Words
2 0.6
=
= RRP
%ﬂ @ - 3
0.5
—e—SSP
0.4 -+ T T T T WP
20000 4099903tures 60000 80000 100000
(K)
BF Tree
0.75 F Roots
0.7 M —l—Stems
= —i =
S0.65 e\ ord
[x+] _- s
= —— =
0.6 RRP
A
0.55 —a—SSP
0.5 T T T T , ——\WP
o] 2000 4000 6000 8000 10000

(0

229

NB Tree

—&— Roots
.95 —
0.9 —l—5tems
_ \(
w 0.85
e \\ e \NOrds
(=3
i} 0.8
=
0.75 i RR P
0.7
\.+Ssp
0.65
0.6 ; ; . ; , Te—WP
8] 200 40[; 6800 800 1000
features
(m)
VFI
0.55 —&— Roots
0.5 —l—Stems
0.45
= 0.4 \ e N Ords
o
E 0.35
= —<—RRP
0.3
0.25 + SSP
—0
0.2 T T T T 1 WP
] 20000 40000 Featurgggoo 80000 100000 ®

(n)

Attribute Selected Classifier

0.8 Root
/-)
075 I —=—ste
ms

3 —abe—\Wor
§)65 —i - ds
—e— A& RRP
0.6
—fe—SSP
0.55 =5
0.5 4 = WP
0 2000 4000 6000 8000 10000
features
(0)
Dagging
0.66 Roots
061 ——
== Stems
0.56
. X
'S 0.51 i e W ords
S 0.46
[+ \.
= 0.41 RRP
0.36
0.31 5P
0.26 T T T T T 1 . Wp
0] 20000 40000 60000 80000 100000
features

()

230

Decorate

0.9 —&—Roots
p
0.85
—fll—5tems
o 08
g N ords
(]
= 0.75
0.7 —.._____¥¢ i RR P
—)
0.65 =SSP
0.6 T T T T T 1 . Wp
0] 20000 40000 60000 80000 100000
features
Multi Class Classifier
0.7 Roots
0.6 3
il Stems
0.5
b
§04 N)—# s——Words
=
0.3 -
i RRP
0.2
0.1 j—SSP
6] T T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100CE— WP
features
(r)
Class Balancd ND
0.7
Roots
HO.65 —< =l Stems
% A Sk —le— N ords
=06 -
0.55 o —
e eSS P
0.5 - . : : . =0—WP
(s} 20000 40000 60000 80000 100000
features
(s)
Data Near Balanced ND
0.7 Roots
f\ ——Stem
0.65 -~ N
—
[N
= —e— W ord
Z06 —X s
— .@-@RRP
0.55 o —e—sSSP
0.5 - : : : : Te—wPh
9] 20000 40000 60000 280000 100000

features

(©

231

ND
0.75
0.7 X
Roots
—
:‘.)-65 IS —ll—Stems
= —a—Words
= ‘//_‘
g.6 e —— RRP
" \ __.#-'-——_ /
@—5SsP
0.55 * —— WP
0.5 T T T T 1
o] 20000 40000 60000 20000 100000
features
(u)
Ordinal Class Classifier
Roots
0.65
—l—Stem
5
0.6
e e\ ord
= . s
%'55 F(—RRP
0.5 = SSP
0.45 - . . . Te—wp
o 10000 20000 30000 40000
features
(V)
Random Committee
0.8 Root
| s
0.75 =l Stem
5
b
S0 7 e\ Oor
S ds
=
0.65 —— RRP
——SSP
0.6 B ——
—o— WP
0.55 T T T T 1
e] 20000 48909 res 60000 80000 100000

(w)

Maximum F1M values at specific features number for implemented
VSM representations along each classifier.

features 10000 10000 5000 40000 10000 10000
FiM 0.676 0.656 0.695 0.674 0.691 0.721

features 10000 5000 5000 40000 10000 10000
FiM 0.678 0.657 0.693 0.67 0.692 0.722

RBF # features 1000 1000 5000 5000 5000 5000
FaM 0.613 0.621 0.718 0.653 0.637 0.757

MLP # features 100 100 50 100 100 50
FiM 0.511 0.737 0.417 0.493 0.44 0.41

NNge # features 10000 10000 10000 5000 10000 10000

FiM 0.445 0.484 0.509 0.487 0.494 0.533

Random Tree # features

232

FiM 0.545 0.483 0.464 0.558 0.494 0.478

J48 graft # features 100 500 1000 100 100 1000
FiM 0.761 0.701 0.618 0.78 0.675 0.624

LAD Tree # features 1000 500 500 1000 1000 500
FiM 0.714 0.647 0.556 0.712 0.646 0.539

NB Tree # features 100 100 50 50 100 100
FiM 0.953 0.981 0.963 0.947 0.981 0.973

VFI # features 500 500 500 500 5000 500
FiM 0.486 0.503 0.531 0.501 0.496 0.534

Atribute Selected # features 100 500 5000 1000 100 50
Classifier FiM 0.746 0.69 0.558 0.772 0.665 0.625
Decorate # features

FiM 0.841 0.82 0.73 0.867 0.805 0.716
Multi Class Classifier # features 50 5000 5000 50 50 5000
FiM 0.567 0.521 0.498 0.595 0.529 0.522
CBND # features 500 1000 1000 500 500 1000

FiM

ND # features 100 5000 5000 500 5000

FiM 0.717 0.638 0.618 0.709 0.663 0.61
Ordinal Class Classifier # features 100 50 50 100 50 40000
FiM 0.581 0.623 0.561 0.658 0.652 0.558

Random Committee # features 100 500 1000 500 500 1000
FaM 0.779 0.721 0.694 0.778 0.718 0.727

F1™ Improvement/Degradation by comparing implemented VSM
representations performances at feature numbers presented above
for each classifier.

Classifier Max w-F1™, Improvement/degradation of first compared Improvement/degradation of second compared to
VSM type to second VSM type first VSM type
Roots, RRP Stems, SSP Words, WP Roots, Roots, RRP, RRP,
(%) (%) (%) Stems (%) Words (%) SSP (%) WP (%)
NB 0.721, WP -0.2 +3.5 +2.6 +2 -1.9 -1.7 -4.7
NBMU 0.793, WP -0.5 +0.2 +1.2 -1.6 -3.7 -2.3 -6.4
|

Logistic 0.607, RRP +2.4 +0.5 +3 +4 +12.2 +5.9 +11.6
RBF 0.757, WP +4 +1.5 +3.5 -0.8 -10.5 +1.6 -10.4
MLP 0.737, Stems -1.8 -29.7 -0.6 -22.6 +9.4 +5.3 +8.3
NNge 0.533, WP +4.2 +1 +2.4 +3.9 -6.4 +0.7 -4.6
OneR 0.638, RRP +1.1 +0.3 -0.9 +11.3 +9.6 +12.1 +11.6
Random Tree 0.558, RRP +1.3 +1.1 +1.4 +6.2 +8.1 +6.4 +8.0
J48 graft 0.78, RRP +1.9 -2.6 +0.6 +6 +14.3 +10.5 +15.6
LAD Tree 0.714, Roots -0.2 -0.1 -1.7 +6.7 +15.8 +6.6 +17.3
BF Tree 0.742, Roots -0.5 +2.5 +3.3 +8.7 +15.9 +5.7 +12.1
NB Tree 0.981, Stems -0.6 0 +1.0 +2.8 -1 +3.4 -2.6
VFI 0.534, WP +1.5 -0.7 +0.3 +1.7 -4.5 +0.5 -3.3
Attrib.Sel.Cla 0.772, RRP +2.6 -2.5 +6.7 +5.6 +18.8 +10.7 +14.7
Dagging 0.643, SSP +2 +2.8 -1.4 +0.9 -1.6 +1.7 +18
Decorate 0.867, RRP +2.6 -1.5 -1.4 +2.1 +11.1 +6.6 +15.1
MuliClassClas 0.595, RRP +2.8 +1.4 +2.4 +4.6 +6.9 +6.6 +7.3
CBND 0.683, Roots -0.3 -15 +0.6 +7.8 +10.2 +5.5 +9.3
DNBND 0.68, RRP +0.8 -0.1 +0.7 +4.3 +9.6 +5.2 +9.7
ND 0.717, Roots -0.8 +2.5 -0.8 +7.9 +9.9 +4.6 +9.9
Ord.ClaaClass 0.658, RRP +7.7 +2.9 -0.3 -4.2 +2 -0.6 +10.0
Rand.Comm. 0.779, Roots -0.1 -0.3 +3.3 +5.8 +8.5 +8 +5.1

Performance of implemented classifiers along different
representations by selecting best 5000 features with significance

testing.
_ Classifiers Roots RRP__ Stems S Words WP v//*

Bayes based, significance relative to NBM
BN 0.99(0.03)v 0.98(0.03)v 0.99 (0.03Vv) 0.99 (0.03) v 0.97 (0.05) v 0.98 (0.05) v 6/0/0

233

NB 071(0.15) 0.68(0.12)* 0.64 (0.13) 0.66 (0.12) 0.64 (0.16) 0.67 (0.12) 0/5/1

NBM 0.74 (0.11) 0.76 (0.10) 0.71 (0.10) 0.73 (0.10) 0.72 (0.11) 0.74 (0.11)

ComplementNB 0.71 (0.10) 0.74 (0.12) 0.73 (0.10) 0.74 (0.13) 0.74 (0.12) 0.76 (0.12) 0/6/0

NBMU 0.73 (0.13) 0.72 (0.12) 0.72 (0.11) 0.68 (0.15) 0.72 (0.13) 0.73 (0.11) 0/6/0
NBU 071(015) 0.68(0.12)* 0.64(0.13) 0.66 (0.12) 0.64 (0.16) 0.67 (0.12) 0/5/1
Functions, significance relative to SMO

SMO 0.64 (0.12) 0.71 (0.12) 0.67 (0.15) 0.67 (0.14) 0.69 (0.14) 0.69 (0.15)
Simple Logistic ~ 0.85(0.09)v 0.85(0.10)v 079(012) 077(012)v 068 (0.13) 0.73 (0.12) 3/310
RBF 037(0.16)* 063(0.14) 048(0.14)* 059 (0.15) 0.68 (0.14) 0.73 (0.12) 0/412

Rules, significance relative to PART

JRip 0.86 (0.11) 0.89 (0.10) 0.73(0.12) v 0.72 (0.13) 0.66 (0.15) 0.66 (0.13) 1/5/0

PART 0.82 (0.09) 0.85 (0.10) 0.60 (0.12) 0.64 (0.12) 0.56 (0.12) 0.58 (0.17)
Ridor 0.85 (0.09) 0.85 (0.09) 0.68 (0.11) 0.68 (0.18) 0.60 (0.15) 0.56 (0.17) 0/6/0
OneR 0.79 (0.15) 0.80 (0.14) 0.51(0.17) 0.52 (0.17) 0.54 (0.20) 053 (0.18) 0/6/0
NNge 0.45(0.16)* 0.48 (0.19) * 0.46 (0.20) 0.45 (0.20) * 0.52 (0.20) 0.55 (0.16) 0/3/3
Decision Table 0.49(0.16)* 051(0.45)* 047(0.15) 0.46(0.15)* 0.45(0.13)* 0.4 (0.15) 0/2/4

Trees, significance relative to J48

J48 0.87 (0.09) 0.88 (0.08) 0.69 (0.11) 0.69 (0.16) 0.57 (0.14) 0.57 (0.13)

Random Forest ~ 0.62(0.16)* 0.62(0.12)* 0.0 (0.13) 0.60 (0.13) 0.60 (0.15) 0.62 (0.16) 0/412
RepTree 0.87 (0.09) 0.86 (0.10) 0.64 (0.11) 0.68 (0.11) 0.52 (0.15) 0.51 (0.16) 0/6/0
BF Tree 0.89 (0.07) 0.88 (0.08) 0.68 (0.12) 0.70 (0.12) 0.52 (0.17) 051 (0.13) 0/6/0

FT 0.78 (0.11) 0.81 (0.12) 0.71 (0.14) 0.73 (0.12) 0.67 (0.12) 0.67 (0.12) 0/6/0
LAD Tree 0.84 (0.10) 0.84 (0.10) 0.57 (0.16) 0.60 (0.13) 0.54 (0.15) 0.52 (0.15) 0/6/0
Random Tree 035(0.17)* 0.34(0.19)* 0.33(0.15)* 030(0.18)* 0.38(0.14)* 0.37 (0.14) * 0/0/6
Simple Cart 0.86 (0.08) 0.85 (0.10) 0.70 (0.10) 0.68 (0.10) 0.56 (0.18) 0.53 (0.15) 0/6/0
Miscillanueousm significance relative to VFI

VFI 0.36 (0.18) 059 (0.14) 0.36 (0.17) 0.53 (0.15) 0.59 (0.18) 054 (0.17)

Hyper Pipes 0.46 (0.19) 056 (0.19) 057(0.18)v___ 0.64(0.19) 0.65 (0.19) 0.74 (0.15) v 2/4/0
Meta, significance relative to AdaBoost.M1

AdaBoost.M1 0.90 (0.07) 0.92 (0.07) 0.79 (0.10) 0.81 (0.12) 0.72 (0.13) 0.70 (0.14)
Attr Sel Classifier 084 (0.09) 0.86(0.10) 066(0.14)* 067(0.15* 050(0.16)* 0.52(0.14) * 0/2/4
Bagging 0.91 (0.06) 0.91 (0.07) 0.75 (0.09) 0.75 (0.10) 0.68 (0.12) 0.68 (0.17) 0/6/0
CVR 0.90 (0.09) 0.88 (0.08) 0.76 (0.12) 0.76 (0.11 0.64 (0.16) 0.61(0.13) 0/6/0
Dagging 044 (024)* 058(0.16)* 056(0.17)* 062(0.17)* 0.58 (0.17) * 0.56 (0.18) 0/1/5
END 0.92 (0.08) 0.92 (0.06) 0.83 (0.09) 0.84 (0.10) 0.73 (0.14) 0.73 (0.14) 0/6/0
Filtered Classifier ~ 0.83(0.09)* 0.82(0.08)* 0.75(0.13) 076 (0.13) 076 (0.11) 0.74 (0.16) 0/412
Logit Boost 0.94 (0.05) 0.94 (0.06) 0.82 (0.12) 0.81 (0.11) 0.70 (0.12) 0.70 (0.15) 0/6/0
CBND 073(0.16)* 0.72(0.16)* 0.62(0.16)* 058(0.14)* 045(0.19)* 0.50(0.16)* 0/0/6
DNBND 073(015)* 0.74(0.47)* 0.62(0.17)* 058(0.13)* 047 (0.18)* 0.50(0.15)* 0/0/6
ND 069 (0.14)* 0.71(0.17)* 0.65(0.15)* 058(0.18)* 051(0.16)* 0.51(0.16)* 0/0/6
Ordinal Class 072(014)* 071(0.12)* 056(0.19)* 051(019)* 050(0.19)* 0.53(0.18)* 0/0/6

Classifier
Random 0.64(0.15)* 0.62(0.13) * 057 (0.15)* 0.58(0.16) * 0.65 (0.12) 0.66 (0.13) 0/2/4
Committee

RSS 0.93 (0.05) 0.93 (0.06) 0.83 (0.09) 0.85 (0.08) 0.69 (0.16) 0.69 (0.15) 0/6/0
Rotation Forest 0.91 (0.06) 0.90 (0.08) 0.73 (0.12) 0.78 (0.11) 0.69 (0.13) 0.70 (0.15) 0/6/0

Numbers in brackets are for standard deviation, win/tie/loose is abbr. by v/ /*

Significance tests to compare results of some classifiers on Roots and RRP

representations
For 1000 features:

Tester: weka.experiment.PairedCorrected T Tester
Analysing: F_measure

Datasets: 7

Resultsets: 2

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 20/06/12 04:17 »

base test: roots

Dataset (1) 'root2-classe | (2) 'RootsAndR

rules.PART -M 2 -C 0.25 (50) 0.83(0.10) | 0.84(0.11)
rules.JRip -F 3-N 2.0 - (50) 0.87(0.09) | 0.85(0.11)
trees.J48 -C 0.25 -M 2' (50) 0.86(0.08) | 0.87(0.09)
trees.REPTree -M 2 -V 0. (50) 0.87(0.09) | 0.86(0.10)
functions.SMO -C 1.0 -L (50) 0.68(0.13) | 0.68(0.11)
bayes.NaiveBayesMultinomi (50) 0.78(0.11) | 0.78(0.11)
bayes.BayesNet -D -Q wek (50) 0.99(0.03) | 0.98(0.03)

v/ %) | (0r7/0)
Key:
(1) 'root2-classes - 804 - 11063-supervised.attribute. AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-
unsupervised.attribute.Remove-R10001-11063-unsupervised.attribute.Remove-R1001-10000'
(2) 'RootsAndRootPhrases-supervised.attribute. AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-
unsupervised.attribute.Remove-R40001-50091-unsupervised.attribute. Remove-R5001-40000-unsupervised.attribute. Remove-R1001-5000"

Significance tests to compare results of few classifiers on Stems and SSP
representations

234

For 1000 features:

Tester: weka.experiment.PairedCorrected T Tester
Analysing: F_measure

Datasets: 7

Resultsets: 2

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 20/06/12 03:57 ~

Base test: Stems

Dataset (1) 'Stems-superv | (2) 'StemsAndS

bayes.BayesNet -D -Q wek (50) 0.99(0.03) | 0.99(0.03)
bayes.NaiveBayesMultinomi (50) 0.72(0.11) | 0.72(0.10)
functions.SMO '-C 1.0 -L (50) 0.64(0.12) | 0.64(0.11)
rules.JRip -F 3-N 2.0 - (50) 0.73(0.14) | 0.74(0.13)
rules.PART -M 2 -C 0.25 (50) 0.68(0.13)| 0.70(0.12)
trees.J48 '-C 0.25 -M 2' (50) 0.70(0.13) | 0.69(0.11)
trees.REPTree -M 2 -V 0. (50) 0.64(0.11) | 0.67(0.10)

v/ 1%) | (0/7/0)
Key:
(1) 'Stems-supervised.attribute. AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-
unsupervised.attribute.Remove-R10001-14945,14947-18019-unsupervised.attribute.Remove-R10001-unsupervised.attribute. Remove-R1001-
10000
(2) 'StemsAndStemPhrases-supervised.attribute. AttributeSelection-EChiSquaredAttributeEval-SRanker -T -1.7976931348623157E308 -N -1-
unsupervised.attribute.Remove-R40001-40016,42600-43255-unsupervised.attribute.Remove-R40001-42583-unsupervised.attribute. Remove-
R5001-40000-unsupervised.attribute.Remove-R1001-5000'

Significance Testing among Best Performing Classifiers for 1000 features
relative to LMT then BN classifiers
Significance Testing-1000-best classifiers from different types (rel to LMT):

Tester: weka.experiment.PairedCorrected T Tester
Analysing: F_measure

Datasets: 6

Resultsets: 17

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 28/04/13 03:14 »

Dataset (8) trees.LMT '-1 | (1) bayes.Baye (2) bayes.Naiv (3) functions. (4) functions. (5) rules.JRip (6) rules.Rido (7) rules.PART (9)
trees.J48 (10) trees.FT (11) trees.BFT (12) trees.REP (13) meta.AdaB (14) meta.Logi (15) meta.END (16) meta.Rand (17) meta.Filt

‘root2-classes - 804 - 11 (50) 0.83(0.10)| 0.99(0.03) v 0.78(0.11) 0.83(0.09) 0.68(0.13)* 0.87(0.09) 0.86(0.08) 0.83(0.10)
0.86(0.08) 0.81(0.10) 0.88(0.07) 0.87(0.09) 0.92(0.07)v 0.94(0.06) v 0.92(0.07) v 0.93(0.07)v 0.83(0.09)
‘RootsAndRootPhrases-weka (50) 0.83(0.10) | 0.98(0.03) v 0.78(0.11) 0.83(0.11) 0.68(0.11)* 0.85(0.11) 0.85(0.09) 0.84(0.11)
0.87(0.09) 0.81(0.08) 0.88(0.08) 0.86(0.10) 0.93(0.05)v 0.95(0.05)v 0.92(0.06) v 0.93(0.07)v 0.84(0.08)

'Stems-weka. filters.super (50) 0.79(0.13)| 0.99(0.03)v 0.72(0.11) 0.79(0.13) 0.64(0.12)* 0.73(0.14) 0.69(0.11) 0.68(0.13)
0.70(0.13) 0.73(0.13) 0.69(0.09) 0.64(0.11) * 0.84(0.09) 0.80(0.12) 0.85(0.08) 0.83(0.08) 0.81(0.10)
'StemsAndStemPhrases-weka (50) 0.78(0.11) | 0.99(0.03) v 0.72(0.10) 0.78(0.11) 0.64(0.11)* 0.74(0.13) 0.69(0.13) 0.70(0.12)
0.69(0.11) 0.72(0.11) 0.68(0.12) 0.67(0.10) 0.82(0.11) 0.80(0.10) 0.85(0.09) 0.85(0.09) 0.81(0.11)
"Words-weka.filters.super (50) 0.64(0.15)| 0.96(0.06)v 0.67(0.11) 0.63(0.15) 0.59(0.16) 0.69(0.16) 0.58(0.15) 0.49(0.17) *
0.47(0.16) * 0.64(0.16) 0.55(0.15) 0.52(0.18) 0.71(0.12) 0.69(0.12) 0.70(0.16) 0.72(0.14) 0.80(0.12) v
‘WordsAndPhrases-weka.fil (50) 0.65(0.14) | 0.96(0.06)v 0.68(0.12) 0.63(0.14) 0.56(0.15) 0.67(0.16) 0.57(0.14) 0.50(0.14) *
0.46(0.16) * 0.64(0.13) 0.52(0.15) 0.53(0.16) 0.74(0.11) 0.72(0.12) 0.74(0.12) 0.71(0.14) 0.80(0.13) v

(VII%)] (6/0/0) (0/6/0) (0/6/0) (0/2/4) (0/6/0) (0/6/0) (0/42) (0/4/2) (0/B/O)
(0/6/0) (0/5/1) (2/4/0) (2/4/0) (2/4/0) (2/4/0) (2/4/0)

Key:

(1) bayes.BayesNet -D -Q bayes.net.search.local.K2 -- -P 1 -S BAYES -E bayes.net.estimate.SimpleEstimator -- -A 0.5' 746037443258775954
(2) bayes.NaiveBayesMultinomial " 5932177440181257085

(3) functions.SimpleLogistic *-1 0 -M 500 -H 50 -W 0.0' 7397710626304705059

(4) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"functions.supportVector.PolyKernel -C 250007 -E 1.0\"" -
6585883636378691736

(5) rules.JRip -F 3-N 2.0 -O 2 -S 1' -6589312996832147161

(6) rules.Ridor -F 3 -S 1 -N 2.0' -7261533075088314436

(7) rules.PART M 2 -C 0.25 -Q 1' 8121455039782598361

(8) trees.LMT -1 -1 -M 15 -W 0.0' -1113212459618104943

(9) trees.J48 -C 0.25 -M 2' -217733168393644444

(10) trees.FT -1 15 -F 0 -M 15 -W 0.0" -1113212459618105000

(11) trees.BFTree -S1-M 2 -N 5 -C 1.0 -P POSTPRUNED' -7035607375962528217

(12) trees.REPTree '-M 2 -V 0.0010 -N 3-S 1 -L -1' -9216785998198681299

(13) meta.AdaBoostM1 '-P 100 -S 1 -1 10 -W trees.J48 -- -C 0.25 -M 2'-7378107808933117974

(14) meta.LogitBoost '-P 100 -F 0 -R 1 -L -1.7976931348623157E308 -H 1.0 -S 1 -1 10 -W trees.DecisionStump' -3905660358715833753
(15) meta.END *-S 1 -1 10 -W meta.nestedDichotomies.ND -- -S 1 -W trees.J48 -- -C 0.25 -M 2'-4143242362912214956

(16) meta.RandomSubSpace '-P 0.5 -S 1 -1 10 -W trees.REPTree -- -M 2 -V 0.0010 -N 3 -S 1 -L -1' 1278172513912424947

(17) meta.FilteredClassifier '-F \"supervised.attribute.Discretize -R first-last\" -W trees.J48 -- -C 0.25 -M 2' -4523450618538717400

Significance Testing-1000-best classifiers from different types (rel to BN):
Tester: weka.experiment.PairedCorrectedT Tester
Analysing: F_measure
Datasets: 6
Resultsets: 17

235

Confidence: 0.05 (two tailed)
Sorted by: -
Date: 28/04/13 03:15

Dataset (1) bayes.BayesNe | (2) bayes.Naiv (3) functions. (4) functions. (5) rules.JRip (6) rules.Rido (7) rules.PART (8) trees.LMT
(9) trees.J48 (10) trees.FT (11) trees.BFT (12) trees.REP (13) meta.AdaB (14) meta.Logi (15) meta.END (16) meta.Rand (17) meta.Filt

‘root2-classes - 804 - 11 (50) 0.99(0.03) | 0.78(0.11) * 0.83(0.09) * 0.68(0.13) * 0.87(0.09) * 0.86(0.08) * 0.83(0.10) * 0.83(0.10) *
0.86(0.08) * 0.81(0.10) * 0.88(0.07) * 0.87(0.09) * 0.92(0.07)* 0.94(0.06) 0.92(0.07) * 0.93(0.07) = 0.83(0.09) *
'RootsAndRootPhrases-weka (50) 0.98(0.03) | 0.78(0.11) * 0.83(0.11) * 0.68(0.11) * 0.85(0.11) * 0.85(0.09) * 0.84(0.11)* 0.83(0.10)
* 0.87(0.09) * 0.81(0.08) * 0.88(0.08) * 0.86(0.10) * 0.93(0.05)* 0.95(0.05) 0.92(0.06) * 0.93(0.07) * 0.84(0.08) *

'Stems-weka. filters.super (50) 0.99(0.03) | 0.72(0.11) * 0.79(0.13) * 0.64(0.12) * 0.73(0.14) * 0.69(0.11) * 0.68(0.13) * 0.79(0.13) *
0.70(0.13) * 0.73(0.13) * 0.69(0.09) * 0.64(0.11) * 0.84(0.09) * 0.80(0.12) * 0.85(0.08) * 0.83(0.08) * 0.81(0.10) *
'StemsAndStemPhrases-weka (50) 0.99(0.03) | 0.72(0.10) * 0.78(0.11) * 0.64(0.11) * 0.74(0.13) * 0.69(0.13) * 0.70(0.12) * 0.78(0.11)
* 0.69(0.11) * 0.72(0.11) * 0.68(0.12) * 0.67(0.10) * 0.82(0.11) * 0.80(0.10) * 0.85(0.09) * 0.85(0.09) * 0.81(0.11) *
"Words-weka.filters.super (50) 0.96(0.06) | 0.67(0.11) * 0.63(0.15)* 0.59(0.16) * 0.69(0.16) * 0.58(0.15) * 0.49(0.17) * 0.64(0.15) *
0.47(0.16) * 0.64(0.16) * 0.55(0.15) * 0.52(0.18) * 0.71(0.12) * 0.69(0.12) * 0.70(0.16) * 0.72(0.14) * 0.80(0.12) *
'WordsAndPhrases-weka.fil (50) 0.96(0.06) | 0.68(0.12) * 0.63(0.14) * 0.56(0.15) * 0.67(0.16) * 0.57(0.14) * 0.50(0.14) * 0.65(0.14) *
0.46(0.16) * 0.64(0.13)* 0.52(0.15) * 0.53(0.16) * 0.74(0.11) * 0.72(0.12) * 0.74(0.12)* 0.71(0.14) * 0.80(0.13) *

(VI1%)] (0/ol6) (0f0/6) (0/O/6) (0/Of6) (0/O/6) (0/O/6) (0/0/6) (0/O/6) (0/O/6)
(0/0f6) (0/0/8) (0/0/6) (0/2/4) (0/O/6) (O/L/S) (0I0f6)

Key:

(1) bayes.BayesNet -D -Q bayes.net.search.local.K2 -- -P 1 -S BAYES -E bayes.net.estimate.SimpleEstimator -- -A 0.5' 746037443258775954
(2) bayes.NaiveBayesMultinomial " 5932177440181257085

(3) functions.SimpleLogistic -1 0 -M 500 -H 50 -W 0.0’ 7397710626304705059

(4) functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"functions.supportVector.PolyKernel -C 250007 -E 1.0\"" -
6585883636378691736

(5) rules.JRip -F 3-N 2.0 -O 2 -S 1' -6589312996832147161

(6) rules.Ridor '-F 3 -S 1 -N 2.0' -7261533075088314436

(7) rules.PART -M 2 -C 0.25 -Q 1' 8121455039782598361

(8) trees.LMT -1 -1 -M 15 -W 0.0' -1113212459618104943

(9) trees.J48 -C 0.25 -M 2' -217733168393644444

(10) trees.FT -1 15 -F 0 -M 15 -W 0.0" -1113212459618105000

(11) trees.BFTree -S1-M 2 -N 5 -C 1.0 -P POSTPRUNED' -7035607375962528217

(12) trees.REPTree -M 2 -V 0.0010 -N 3-S 1 -L -1'-9216785998198681299

(13) meta.AdaBoostM1 '-P 100 -S 1 -1 10 -W trees.J48 -- -C 0.25 -M 2'-7378107808933117974

(14) meta.LogitBoost '-P 100 -F 0 -R 1 -L -1.7976931348623157E308 -H 1.0 -S 1 -1 10 -W trees.DecisionStump' -3905660358715833753
(15) meta.END "-S 1 -1 10 -W meta.nestedDichotomies.ND -- -S 1 -W trees.J48 -- -C 0.25 -M 2' -4143242362912214956

(16) meta.RandomSubSpace '-P 0.5 -S 1 -1 10 -W trees.REPTree -- -M 2 -V 0.0010 -N 3 -S 1 -L -1' 1278172513912424947

(17) meta.FilteredClassifier '-F \"supervised.attribute.Discretize -R first-last\" -W trees.J48 -- -C 0.25 -M 2' -4523450618538717400

236

	cover_sheet_thesis
	University of Bradford eThesis

	MYA AL-Nashashibi-PhD Thesis-Final Submision

