University of Bradford eThesis

This thesis is hosted in Bradford Scholars - The University of Bradford Open Access repository. Visit the repository for full metadata or to contact the repository team
© University of Bradford. This work is licenced for reuse under a Creative Commons Licence.

THE SCHEDULING OF MANUFACTURING SYSTEMS USING ARTIFICIAL INTELLIGENCE (AI) TECHNIQUES IN ORDER TO FIND OPTIMAL/NEAR-OPTIMAL SOLUTIONS

SHAHID MAQSOOD

PhD

UNIVERSITY OF BRADFORD

THE SCHEDULING OF MANUFACTURING SYSTEMS USING ARTIFICIAL INTELLIGENCE (AI) TECHNIQUES IN ORDER TO FIND OPTIMAL/NEAR-OPTIMAL SOLUTIONS

Keywords: Job Shop Scheduling Problem (JSSP), Genetic Algorithm (GA), Heuristics, Optimisation, Benchmark Problems

Abstract

This thesis aims to review and analyze the scheduling problem in general and Job Shop Scheduling Problem (JSSP) in particular and the solution techniques applied to these problems. The JSSP is the most general and popular hard combinational optimization problem in manufacturing systems. For the past sixty years, an enormous amount of research has been carried out to solve these problems. The literature review showed the inherent shortcomings of solutions to scheduling problems. This has directed researchers to develop hybrid approaches, as no single technique for scheduling has yet been successful in providing optimal solutions to these difficult problems, with much potential for improvements in the existing techniques.

The hybrid approach complements and compensates for the limitations of each individual solution technique for better performance and improves results in solving both static and dynamic production scheduling environments. Over the past years, hybrid approaches have generally outperformed simple Genetic Algorithms (GAs). Therefore, two novel priority heuristic rules are developed: Index Based Heuristic and Hybrid Heuristic. These rules are applied to benchmark JSSP and compared with popular traditional rules. The results show that these new heuristic rules have outperformed the traditional heuristic rules over a wide range of benchmark JSSPs. Furthermore, a hybrid GA is developed as an alternate scheduling approach. The hybrid GA uses the novel heuristic rules in its key steps. The hybrid GA is applied to benchmark JSSPs. The hybrid GA is also tested on benchmark flow shop scheduling problems and industrial case studies. The hybrid GA successfully found solutions to JSSPs and is not problem dependent. The hybrid GA performance across the case studies has proved that the developed scheduling model can be applied to any realworld scheduling problem for achieving optimal or near-optimal solutions. This shows the effectiveness of the hybrid GA in real-world scheduling problems.

In conclusion, all the research objectives are achieved. Finaly, the future work for the developed heuristic rules and the hybrid GA are discussed and recommendations are made on the basis of the results.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

Praise be to Allah, Lord of the Universe, that I am able to complete this work. Peace and prayer be upon His last Prophet and Messenger, Muhammad SAW.

With my deepest gratitude and appreciation, I sincerely thank my Supervisors, Dr. M. K. Khan (Associate Dean) and Professor Alastair Wood (Dean) in the School of Engineering, Design and Technology, University of Bradford. I am particularly indebted to Dr. Khan for his endless motivation, cooperation, patient guidance, practical suggestions and, most importantly, his precious time for making this thesis possible.

A debt of gratitude to the experts in manufacturing systems and my colleagues Professor Dr. Iftikhar Hussain and Professor Dr. Sahar Noor at Department of Industrial Engineering, KPK University of Engineering and Technology (UET), Peshawar, Pakistan for their support and cooperation during the GA model development.

I would also like to thank the Board of Trustees, Endowment Fund Project, KPK University of Engineering and Technology (UET), Peshawar and Higher Education Commission (HEC), Pakistan for their financial support for the research.

There is a long list of friends who have been very supportive and encouraging. I am thankful to all of them.

Finally, this thesis is dedicated to my parents, wife, children, family members and my teachers for all their support, patience, encouragement, good wishes and prayers.

TABLE OF CONTENTS

ABSTRACT I
ACKNOWLEDGEMENTS II
TABLE OF CONTENTS III
LIST OF FIGURES IX
LIST OF TABLES XII
GLOSSARY XIV
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 The Research Problem 2
1.3 ReSEARCH ObJectives 5
1.4 Conceptual Approach to the Problem 6
1.5 Organization of the Thesis 8
1.6 SUMMARY 9
CHAPTER 2 INTRODUCTION TO MANUFACTURING SCHEDULING 10
2.1 Introduction 10
2.2 SCHEDULING IN MANUFACTURING SYSTEMS 11
2.3 MANUFACTURING SCHEDULING ENVIRONMENT 13
2.3.1 Job Shop Manufacturing 13
2.3.1.1 Flexible Job Shop Manufacturing 14
2.3.2 Flow Shop Manufacturing 14
2.3.2.1 Flexible Flow Shop 15
2.3.3 Open Shop Manufacturing 16
2.3.4 Summary 16
2.4 Notation for Scheduling Problems 17
2.5 Job Shop Scheduling Model 19
2.5.1 Mathematical Formulation of JSSP 21
2.5.2 Justification for choosing Makespan as Objective Function 22
2.6 Scheduling Criteria 23
2.6.1 Efficient utilization of resources 25
2.6.2 Rapid Response to demand 25
2.6.3 Close Conformance to prescribed deadline 25
2.7 Complexity of JSSP 26
2.8 Benchmark Problems 28
2.9 Solution Representation 28
2.10 CONCLUSION 29
CHAPTER 3 LITERATURE REVIEW 30
3.1 Introduction 30
3.2 Solution Approaches to Manufacturing Scheduling Problems 30
3.3 Reviews of Optimization methods 31
3.3.1 Efficient Algorithms 32
3.3.2 Mathematical Formulations 33
3.3.3 Decomposition strategies 34
3.3.4 Enumerative Techniques and Lagrangian Relaxation 35
3.4 APPROXIMATION BASED APPROACHES 38
3.4.1 Conventional Heuristics for JSP 38
3.4.2 Heuristics Rules 39
3.4.2.1 Heuristics Rules and their Classification 40
3.4.2.2 Priority Rule Based Algorithms 42
3.4.2.2.1 Active Schedule 42
3.4.2.2.2 Non-Delay Schedule 43
3.4.2.3 Heuristic Rules in Scheduling 45
3.4.3 Review of Artificial Intelligence 50
3.4.3.1 Expert Systems (ES) /Knowledge Based System (KBS) 52
3.4.3.2 Fuzzy Logic (FL) 55
3.4.3.3 Simulated Annealing 59
3.4.3.4 Artificial Neural Networks 63
3.4.3.5 Evolutionary Computation. 67
3.4.3.5.1 Genetic Algorithm 67
3.4.3.5.2 Encoding Problem 69
3.4.3.5.3 Genetic Representation of JSSP 71
3.5 Literature Review Conclusion 79
CHAPTER 4 DEVELOPMENT OF NOVEL HEURISTIC RULE 81
4.1 Introduction 81
4.2 Development of New Heuristic Rules 82
4.3 ANALYSIS AND SYnthesis of THE HEURISTICS RULES 87
4.3.1 Analysis of Example Problem 89
4.3.1.1 Attempt 01 91
4.3.1.1.1 Attempt 01 - Conclusion 94
4.3.1.2 Attempt 02 94
4.3.1.2.1 Attempt 02 - Conclusion 96
4.3.1.3 Attempt 03 96
4.3.1.3.1 Attempt 03 - Conclusion 98
4.3.1.4 Attempt 04 98
4.3.1.4.1 Attempt 04 - Conclusion 99
4.3.1.5 Attempt 05 100
4.3.1.5.1 Attempt 05 - Conclusion 101
4.3.1.6 Other Attempts 102
4.3.2 Development of Logic used for heuristic rule development 106
4.4 OUTCOME OF THE ANALYSIS AND Synthesis 107
4.4.1 Consideration of Swap technique to SPT 108
4.4.2 Consideration of Swap technique with Normalized Processing Time 111
4.5 CONCLUSION OF THE STUDY 112
4.6 Novel Heuristics 113
4.6.1 Index Based Heuristic Rule 113
4.6.1.1 Example Problem 116
4.6.2 Hybrid Heuristics 121
4.6.2.1 Example Problem 123
4.7 Conclusion 125
CHAPTER 5 HYBRID GENETIC ALGORITHM FOR JOB SHOP SCHEDULING PROBLEMS 127
5.1 InTRODUCTION 127
5.2 GENETIC AlGORITHMS (GAs) FOR SCHEDULING 127
5.3 Hybrid Genetic Approach to the Job Shop Scheduling Problem 128
5.4 Development of Hybrid Genetic Algorithm for the JSSP. 129
5.4.1 Genetic Algorithm (GA) 131
5.4.1.1 Chromosome Representation and Initialization 131
5.4.1.2 Legality and Feasibility of Chromosomes 133
5.4.1.3 Evaluation and fitness 134
5.4.1.4 Initial Population 136
5.4.1.5 Selection 137
5.4.1.6 Crossover. 138
5.4.1.7 Mutation 139
5.4.1.8 Evaluation and selection of the final solution 140
5.4.2 Sensitivity analysis: 140
5.5 Important Features of HGA 145
5.5.1 Statistics for Each Machine 146
5.5.2 Modular Approach 146
5.6 SUMMARY 146
CHAPTER 6 RESULTS AND DISCUSSIONS 148
6.1 INTRODUCTION 148
6.2 Performance Analysis of Novel Heuristics. 148
6.2.1 Performance Analysis of the HybH 150
6.2.1.1 Computational experiments and results for HybH 150
6.2.1.2 Summary of HybH Results 154
6.2.2 Performance Analysis of IBH. 155
6.2.2.1 Computational experiments and results 155
6.2.2.2 Summary of IBH Results 159
6.3 AnAlysis of the developed Hybrid Genetic Algorithm (HGA) 159
6.3.1 JSSP benchmark problems for HGA 161
6.3.2 Computational experiments and results for JSSP 163
6.3.2.1 Average CPU time vs. Problem Size 168
6.3.2.2 Makespan achieved by HGA vs. known optimal values 169
6.3.2.3 Percent GAP between the calculated Makespan by HGA and optimum 171
6.3.2.4 Effect of generation on Makespan 173
6.3.2.5 Summary of HGA Results for JSSP. 175
6.4.1 Benchmark FSSPs for HGA 175
6.4.2 Computational experiments and results for FSSPs 177
6.4.3 Result Comparison with Other Developed Models from Literature. 180
6.4.4 Summary of HGA Results for FSSPs 182
6.5 Application of HGA in Industrial Case Studies. 182
6.5.1 Industrial Case Study 1: Shauful Alam Steel Mills (SASM) 182
6.5.2 Industrial Case Study 2: Pilkington PLC 185
6.5.3 Industrial Case Study 3: Match Factory Peshawar, Pakistan (MFPP) 188
6.5.4 Results and Discussion of the Industrial Case Studies 189
6.6 SUMMARY OF THE Chapter 192
CHAPTER 7 CONCLUSION AND FUTURE WORK 193
7.1 Introduction 193
7.2 Research Achievement 193
7.3 Novel Heuristics for scheduling problems 196
7.3.1 Index Based Heuristic (IBH) Rule for scheduling problem 196
7.3.1.1 Performance of IBH 196
7.3.2 Hybrid Heuristic (HybH) for scheduling problems 197
7.3.2.1 Performance of HybH 197
7.3.3 Future Recommendations regarding IBH and HybH 197
7.4 Hybrid Genetic Algorithm for scheduling problems 198
7.4.1 Performance of HGA 198
7.4.2 Recommendations for future work in HGA 199
7.5 Reflection of the Research Work 200
7.6 CONCLUSION 201
References 203
APPENDIX A: SET OF BENCHMARK JSSP A1
APPENDIX B: LIST OF BENCHMARK FSSP B1
APPENDIX C: CASE STUDY 1 - RESULT SASM PROBLEMS C1
APPENDIX D: CASE STUDY 2 - PILKINGTON PLC PROBLEMS D1
APPENDIX E: CASE STUDY 3 - MFPP PROBLEMS E1
APPENDIX F: ATTEMPTS F1
APPENDIX G: LIST OF PUBLICATION FROM THIS RESEARCH G1

LIST OF FIGURES

Figure 1. 1: Conceptual approach for the proposed research 7
Figure 2. 1: Information flow diagram of a Manufacturing System (Pinedo et al., 1998) .. 12
Figure 2. 2: Flexible Job Shop Layout 14
Figure 2. 3: Flow Shop 15
Figure 2. 4: Flexible Flow Shop 15
FIGURE 2. 5: ReLATIONSHIP BETWEEN DIFFERENT MACHINE SHOP ENVIRONMENTS 16
Figure 2. 6: Time Charts for Constraint. 22
Figure 3. 1: Solution approaches to JSSP (Jain, 1998) 31
Figure 3. 2: Pyramid model, the hierarchy of data, information, knowledge and wisdom 53 53
Figure 3. 3: Range of values in (a) Boolean and (b) Fuzzy Logic. 56
Figure 3.4: ARChitecture of a typical artificial neural network. 64
Figure 3. 5: Coding spaces and solution spaces (Chang et al., 1996) 69
Figure 3. 6: Feasibility and Legality (Chang et al., 1996) 70
Figure 4. 1: Phases of development of new heuristics 84
Figure 4. 2: Analysis and synthesis of stage of heuristic rules 88
Figure 4. 3: Machine Gantt chart for example problem using SPT 91
Figure 4. 4: Attempt 01 - Changing Job 1's Operation $1\left(\mathrm{O}_{111}\right)$ position on Machine 1 92
Figure 4. 5: DELAY TECHNIQUE APPLIED TO $\left(\mathrm{O}_{331}\right)$ THE PROBLEM 92
Figure 4. 6: ILLEGAL MOVE AND INFEASIBLE SCHEDULE 93
Figure 4. 7: IlLEGAL MOVE AND INFEASIBLE SCHEDULE 93
Figure 4. 8: Attempt $01 \mathrm{O}_{123}$ MOVEMENT 93
Figure 4. 9: Attempt $01 \mathrm{O}_{132}$ MOVEMENT 94
Figure 4. 10: Attempt $1\left(\mathrm{O}_{123}\right)$ ON THE EXAMPLE PROBLEM SOLUTION (GANTT CHART) 95
Figure 4. 11: DELAY TECHNIQUE APPLIED TO O_{233} 95
Figure 4. 12: Final schedule from Attempt 02 96
Figure 4. 13: Attempt 03 swapping or exchange priority on M_{1} 97
Figure 4. 14: SwApping of O_{123} AND O_{233} 97
Figure 4. 15: Swapping of O_{222} AND O_{132} 98
FIGURE 4. 16: ATTEMPT 04 CHANGING PRIORITY IN CASE OF TIE FOR FIRST OPERATION 99
Figure 4. 17: Final Schedule attempt 04 99
Figure 4. 18: AtTEMPT 06 FIRST STEP 100
Figure 4. 19: Attempt 05 delay procedure to overlapped operations 101
Figure 4. 20: Attempt 05 insertion on Machine M_{2} 101
Figure 4. 21: Attempt 05 Final schedule 101
Figure 4. 22: FT06 solution machine Gantt chart using SPT rule 104
Figure 4. 23: FT06 solution machine Gantt chart using Attempt 04 105
Figure 4. 24: BLOCK DIAGRAM OF THE LOGIC FOR DEVELOPMENT OF HEURISTIC RULES 106
Figure 4. 25: SPT with Swap rule 109
Figure 4. 26: SCHEDULE ObTAINED FROM SWAP $2^{\text {ND }}$ ITERATION 110
Figure 4. 27: Proposed IBH algorithm For the Job shop scheduling problem 115
Figure 4. 28: Gantt chart For IBH rule. 120
Figure 4. 29: FINAL SCHEDULE AFTER SWAP TECHNIQUE 121
Figure 4. 30: Proposed hybrid heuristic (HYBH) FOR Job SChEDULING Problem 123
Figure 4. 31: Gantt chart for HybH 125
Figure 5. 1: Proposed hybrid Genetic Algorithm 131
Figure 5. 2: An example of Job-based Chromosome 133
Figure 5. 3: Gantt chart for job-based representation (Gen at al., 2008) 134
Figure 5. 4: Evaluation Procedure 136
Figure 5. 5: Stochastic Universal Sampling 138
Figure 5. 6: Job Based Crossover Scheme 139
Figure 5. 7: Mutation Process. 140
Figure 5. 8: FT 06 BENCHMARK PROBLEM [OPTIMUM = 55] 142
Figure 5. 9: FT 10 Benchmark Problem [Optimum = 930] 142
Figure 5. 10: LA 01 Benchmark Problem [Optimum = 666] 143
Figure 5. 11: LA 06 Benchmark Problem [Optimum = 926] 143
Figure 5. 12: LA 11 Benchmark Problem [Optimum = 1222] 143
Figure 5. 13: LA12 Benchmark Problem [Optimum = 1039] 144
Figure 5. 14: LA26 Benchmark Problem Optimum [1218] 144
Figure 5. 15: LA 36 Benchmark Problem [1268] 144
Figure 6. 1: Makespan values achieved by HGA and Optimum values vs. problem 170
Figure 6. 2: \% GAP vs. Problem 172
Figure 6. 3: No. of Generation vs problem 174
Figure 6. 4: Flow Shop Environment 176
Figure 6. 5: Process Flowchart of Local Match Industry (Hussain et al., 2010) 188
Figure 7. 1: Summary of research activities 194

LIST OF TABLES

Table 3. 1: Well known conventional dispatching rules used to solve JSSP 46
Table 3. 2: AI Function and Techniques for Manufacturing (Teti et al., 1997) 51
Table 3. 3: Comparison of Human Experts, ES and other Computing Programs] 54
TABLE 3. 4: CLASSIFICATION OF REPRESENTATION AND RECENT RESEARCH IN JSSP 72
TABLE 3. 5: COMPARATIVE ANALYSIS OF GA FOR FT06, FT10 AND FT20 PROBLEMS 78
TABLE 4. 1: LIST OF SOME BETTER KNOWN HEURISTIC RULES 87
TABLE 4. 2: EXAMPLE PROCESS PLAN 90
TABLE 4. 3: EXAMPLE PROCESS PLAN 98
TABLE 4. 4: FT06 PROCESS PLAN 102
Table 4. 5: PERFORMANCE COMPARISON OF SPT VS SPT wITH SwAP. 110
TABLE 4. 6: PERFORMANCE COMPARISON OF SPT VS SPT wITH SWAP. 111
TABLE 4. 7: PROCESS PLAN FOR THREE JOBS AND THREE MACHINES (3x3) 117
TABLE 4. 8: Index Based representation of process plan 117
TABLE 4. 9: TRACE TABLE FOR EXAMPLE PROBLEM 119
TABLE 4. 10: TRACE TABLE FOR EXAMPLE PROBLEM 124
Table 5. 1: Selected Benchmark problems from literature. 141
Table 5. 2A: Typical JSSP Flow Pattern 5.2B: TyPICAL FSSP FLOW PATTERN 145
Table 6. 1: Selected Benchmark problem from literature 149
Table 6. 2: HybH vs. Traditional Heuristics for FT Benchmark Problems 151
Table 6. 3: HybH vs. Traditional Heuristics for LA Benchmark Problems 153
Table 6. 4: IBH vs. Traditional Heuristics for FT Benchmark Problems 156
Table 6. 5: IBH vs. Traditional Heuristics for LA Benchmark Problems 158
TABLE 6. 6: DATA COLLECTED FOR TEN DIFFERENT RUNS OF HGA wITH SAME PARAMETERS 160
TABLE 6. 7: LIST OF BENCHMARK PROBLEMS, PROBLEM SIZE AND OPTIMUM MAKESPAN 162
Table 6. 8: EXPERIMENTAL RESULTS HGA FOR JSSP 165
Table 6. 9: Benchmark Flow Shop Scheduling Problems 176
Table 6. 10: Experimental Results of Flow Shop Scheduling Problem (FSSP) 179
TABLE 6. 11: HGA RESULT COMPARISON OF GENERAL FSSPS wITH OTHER MODELS 181
Table 6. 12: SASM Scheduling Problems [Morshed (2006)] 183
Table 6. 13: Machine Sequences and Processing Times for SASM's JSSPs [Case study 1].. 184
Table 6. 14: Processing time for SASM's FSSPs [Case Study 1] 185
Table 6. 15: Various Scheduling Problems at Pilkington PLC [Morshed (2006] 186
Table 6. 16: Processing Times for Various Scheduling Problems at Pilkington PLC 187
Table 6. 17: PRocessing times For MFPP [CASE Study 3] 189
Table 6. 18: Computational results from HGA for SASSM [Case Study 1] 190
Table 6. 19: Computational results from HGA for Pilkington’s PLC [CASE Study 2] 191
Table 6. 20: Computational results from HGA for MFPP [Case Study 3] 192

GLOSSARY

ANN	Artificial Neural Networks
CM	Cellular Manufacturing
CR	Critical Ratio
ES	Expert Systems
EDD	Earliest Due Date
FIFO	First In First Out
FL	Fuzzy Logic
FSSP	Flow Shop Scheduling Problem
GA	Genetic Algorithm
GAP	Relative deviation from optimum
HGA	Hybrid Genetic Algorithm
HybH	Hybrid Heuristic Rule
IBH	Index Based Heuristic Rule
JSSP	Job Shop Scheduling Problem
KB	Knowledge Base
MP	Management Priority
MS	Minimum Slack
MSE	Mean Square Error
OSSP	Open Shop Scheduling Problem
PDR	Production Dispatching Rules
Process	an Sequences of machines for operations of parts
PT	Processing Times for each job
SA	Simulated Annealing
SASM	Shauful Alam Steel Mills

CHAPTER 1

INTRODUCTION

1.1 Introduction

In current manufacturing environments, low unit cost and high quality products no longer solely define an efficient manufacturing system (Wu et al., 2000; Maqsood et al., 2011). To maintain market share, a manufacturing system must be responsive (Jain et al., 1999). Manufacturing systems with characteristics such as fluctuating demand, product varieties and priorities, imbalanced capacity, job re-entry into machines, alternative machines with unequal capacity, and shifting bottlenecks make scheduling a very difficult task (Chen, 2009). These conflicting requirements demand efficient, effective, and accurate scheduling that is complex in all but the simplest of production environments. As a result, there is a great need for effective scheduling algorithms and heuristics to find feasible solutions to such complexities (Jain and Meeran, 1999; Chen, 2009).

Scheduling consists of allocating and sequencing activities that need to be performed within a set of limited available resources (Low et al., 2009). In a successful manufacturing system, several key functions are embodied within manufacturing. The scheduling activity is used to optimize the utilization of resources and has become an essential contributor to manufacturing systems. The contemporary business environment can be characterized by expanding the global competition and customer individualism leading to a high variety of products made in relatively low volumes (Tariq, 2008; Low and Yeh, 2009; Mohamed et al., 2011). It has been estimated that more than 75% of manufacturing occurs in batches of less than 50 items (Askin et al., 1993). Therefore, recently manufacturing systems have been kept
under constant pressure by the unpredictability in demand and the ever-decreasing product life-cycle, and are finding it increasingly challenging to meet these demands. These are the main challenges that low-volume manufacturing sectors are facing. The job shop manufacturing environment suits the aforementioned challenges and is widely used to provide immediate benefits.

For the past 40 years, researchers have applied different techniques, particularly Artificial Intelligence (AI) based techniques, to manufacturing scheduling problems due to their abilities to resolve the complexities involved. Jain and Meeran (1999) carried out a detailed literature review of the solution techniques that are used to solve JSSPs, and recently Maqsood et al. (2010) carried out a detailed review of Artificial Intelligence (AI) techniques used for manufacturing scheduling. These reviews concluded that the discipline of scheduling remains open to significant research and development.

In this chapter, the research problem and its scope is defined, together with the objectives of the research and the proposed systematic approach for achieving the objectives. Sub-sections of the approach are elaborated in the final section of this chapter.

1.2 The Research Problem

The classic $n \times m$ Job Shop Scheduling Problem (JSSP) is to schedule production times for n different jobs on m different machines (Askin and Standridge, 1993). The JSSP concerns the determination of the operation sequences on the resources in order that the Makespan is minimized, i.e. the time required to complete all jobs (Gen et al., 2008). JSSP consists of several assumptions (Cheng et al., 1996):

- At time 0 , a set of n jobs is available;
- Each machine processes only one job at a time;
- Each job processes on one machine at a time and the job does not visit the same machine twice;
- The processing time of each operation is known;
- There are no precedence constraints amongst the operations of different jobs;
- Operations are non-preemptive, i.e. a running operation is executed until completion;
- Neither release times nor due dates are specified.

A JSSP is the most general and popular hard combinational optimization problem in manufacturing systems (Park et al., 2003; Pan et al., 2009; Lei, 2010; Yusof et al., 2010). This is because of its large solution space, which is very difficult to handle. For example, if n different jobs are to be processed on m different machines, then there are $(n!)^{m}$ alternatives amongst which an optimal solution for a certain measure of performance exists. For example, a very simple problem of 20 jobs and 20 machines will give 5.27×10^{367} possible alternative solutions. From amongst these alternative solutions an optimal and feasible solution is to be determined. With a high performance computer that could evaluate one alternative in one microsecond, It could take more than 1000 years to find the optimal solution with exact approaches, (Hitomi, 1996; Morshed, 2006). The computational requirements of analysis and classification of instances as "hard" or "easy" is known as complexity theory (Garey and Johnson, 1979). According to Garey and Johnson (1979), JSSP belongs to class of NP decision problems that can be solved in polynomial time by a non-deterministic computer. NP stands for non-deterministic polynomial. Historically the NP term was introduced in certain computational devices called nondeterministic Turing machines (Turing, 1936). NP means that it is not possible to
solve an arbitrary instance in polynomial time unless $\mathrm{P}=\mathrm{NP}$, where P is a sub-class of NP and consists of sets of problems that can be solved deterministically by a polynomial time algorithm (polynomial time is a synonym for "tractable", "feasible", "efficient", or "fast"). NP problems can be NP-complete and NP-hard. The NPcomplete problem belongs to set of NP for which no efficient solution algorithm has been found. According to Blazewicz et al. (1996), if there is a polynomial algorithm for any NP-complete problem then there are polynomial algorithms for NP-complete problems. The NP-hard problem is class of NP problems that are at least as hard as the hardest problems in NP. Most of the special cases of JSSP are NP-hard, which makes the JSSP one of the most stubborn members of NP (Zhou, 2001; Yamada, 1992).

In JSSP, each job comprises a set of operations. The operation order on machines is pre-specified, and each operation is characterized by a required machine and a fixed processing time (Jain and Meeran, 1999; Gen et al., 2008). However, there remains a lot of potential for improvement in existing techniques.

According to Noor (2007), the inherent shortcomings of solutions to scheduling problems has directed researchers to develop hybrid approaches as no single AI tool for scheduling has yet been successful in providing an optimal solution. The hybrid approach complements the merits of, and compensates for the limitations of, each individual AI technique towards better performance and improved results in solving both static and dynamic production scheduling environments. Over the years, hybrid approaches have generally outperformed single techniques such as the simple Genetic Algorithm (GA). It is anticipated that future AI hybrid approaches will solve real-world dynamic scheduling problems and will provide a reliable and efficient tool for solving scheduling problems.

Realizing the fact that real-world scheduling problems are mostly dynamic and multi-objective in nature, a framework for a job shop scheduling system is needed for providing an optimal or near-optimal solution and to achieve certain objectives.

1.3 Research Objectives

The main objective of this research is to develop a hybrid scheduling methodology using Genetic Algorithms (GAs) for solving JSSPs in order to find an optimal or near optimal solution for the selected performance criteria (makespan, flow times, earliness, tardiness).

More explicitly, the objectives are as follows:
a. A detailed review of scheduling problems and solution approaches in order to ascertain the contemporary knowledge and information relating to scheduling, with the aim of acquiring knowledge in this area for designing conceptual and actual simulation models for production scheduling.
b. Study of existing scheduling solution techniques, such as the traditional heuristic approaches, Branch and Bound (B\&B), Genetic Algorithm (GA), Artificial Neural Networks (ANN), Knowledge Based Systems or Expert Systems, Fuzzy Logic (FL), Simulated Annealing (SA), Approximation Based Techniques, Mathematical methods, etc., to ascertain recent knowledge and information related to scheduling, and to find suitable techniques after comparing their strengths and weaknesses. This literature study will identify the area of research to focus upon.
c. To develop an intelligent search algorithm based upon new heuristic approaches and GA:
a) Develop new heuristic rules for the initial solution generation, check their performance, and compare results with traditional heuristic rules for selected scheduling problems;
b) Incorporate newly developed heuristic rules within the GA and design the Hybrid Genetic Algorithm (HGA). The GA representation, operators and parameters will be selected based on literature review;
c) Validate and test the performance of the new heuristics and HGA by applying these techniques to benchmark JSSPs and comparing the results and algorithm performance with existing solution methods;
d) Apply the developed HGA to industrial case studies available in the literature to gauge its strength and to check its performance on real-world scheduling problems;
e) Identify future work.

1.4 Conceptual Approach to the Problem

To achieve the research objectives a conceptual approach is adopted as shown in Figure 1.1.

This research is divided into three stages. In the first stage a detailed literature review is carried out regarding scheduling problems, approaches to their solutions, and the current trends in scheduling theories. The second stage forms the main part of this research in which novel heuristic rules and hybrid GAs approaches are developed. The developed heuristics and HGA are tested on several benchmark problems and industrial case studies in order to check their performance and to gauge their strengths and weaknesses. In the third stage a detailed analysis of the results of the computational experiments is carried out.

Figure 1. 1: Conceptual approach for the proposed research

The classic $n \times m$ minimum-makespan Job Shop Scheduling Problem (JSSP) is a hard combinatorial problem. The performance of a JSSP depends upon the significance of selecting the best heuristic methods and meta-heuristic techniques with few or no assumptions about the problem and which can search very large candidate solution spaces. The heuristic method has provided quick solutions and active schedules for scheduling problems during the past 60 years. These heuristics
have been used in combination with meta-heuristics in order to achieve improved Makespan solutions. From the literature, it is evident that the better the initial solution from heuristic rules, or any other method, the better the final solutions from meta-heuristics techniques. Therefore, there is a need for novel heuristic rules that can perform effectively across all sizes of scheduling problem, and, novel heuristics will be proposed in this research with their results being compared to traditional heuristic rules in order to evaluate their performance. After the development of the heuristic rules, they will be combined with a meta-heuristic tool such as GA. The evaluation process in the case of a GA, for the JSSP, is a key step that determines the fitness of the objective function. The developed novel heuristics will be used in the key step of the GA, i.e., for evaluation and the initial solution set.

1.5 Organization of the Thesis

This thesis consists of seven chapters. Chapter 1 covers an introduction to the research problem, research objectives, and their justification. Chapter 2 focuses upon an introduction to various manufacturing environments, a literature review of solution techniques, and consideration of different scheduling criteria and notations used in scheduling theory. Chapter 3 provides a literature review of AI techniques applied to solve JSSPs, including an updated review of the hybrid approaches. Chapter 4 provides a development and design of two novel heuristic rules for scheduling problems: The Index Based Heuristic (IBH) and the Hybrid Heuristics Rule (HybH). The proposed heuristic rules are applied to several benchmark JSSPs and industrial case studies from the literature in order to check the validity and effectiveness of the proposed heuristics. Chapter 5 highlights a proposed Hybrid Genetic Algorithm (HGA) with the aim of achieving optimal (or near-optimal) solutions for the benchmark JSSPs. The chapter presents a detailed description of a
genetic algorithm used to encode the job shop schedule (different genetic parameters and parameter analysis (sensitivity analysis) for a wide range of benchmark JSSPs). Chapter 6 presents results for the job shop and flow shop scheduling problems, for the two novel heuristic rules, i.e. HybH and IBH (developed in Chapter 4) and for the HGA (developed in Chapter 5). The chapter also presents HGA results from a computational test-bed consisting of benchmark JSSPs of various sizes, and presents a discussion of the results from the proposed heuristics and HGA for industrial case studies. Chapter 7 details conclusions and recommendations for future work, both for the proposed heuristics and HGA.

1.6 Summary

This chapter has provided a brief background to scheduling problems and the research objectives. It also covered the main contributions of this research to the area of scheduling, which are the development of the novel heuristics and HGA for JSSPs and FSSPs and their application to real test cases.

CHAPTER 2

INTRODUCTION TO MANUFACTURING SCHEDULING

2.1 Introduction

According to Pinedo et al. (1998) scheduling deals with the allocation of scarce resources to tasks over time. It is a decision making process with the aim of optimizing one or more objectives such as Makespan, due-dates, and completion time. A resource may be the machines in a workshop, the work center in a factory, the CPU of a computer, airport gates and runways, etc. The task may be a production process, boarding, execution of different computer programs, landing or take-off at an airport, with a certain priority level, start time, finish time, etc.

This scheduling is an important element that has a major impact upon the efficiency of manufacturing and production systems since system performance depends upon optimal (or good) schedules. Companies must therefore have an efficient scheduling framework at their disposal that can provide the production system with a quick and efficient schedule (Bai, 1998).

Scheduling problems are often complicated by a large number of constraints such as time restrictions (deadlines, precedence etc.) and resource envelopes (Lopez et al., 2008). For example, there may be precedence constraints connecting activities that specify those activities that must precede other activities, and by what delay and/or by how much allowed overlap. Resource constraints may be unavailability for a specific interval of time due to planned maintenance. These constraints and complex inter-relationships can make an exact or an optimal solution of a large scheduling problem very difficult to obtain. These issues have arisen in a large number of scheduling models.

Past researchers carried out significant amounts of investigation into polynomial time algorithms for deterministic scheduling problems with the assumption that there are a finite numbers of jobs with known processing times, and with one or more objective functions. However, many scheduling problems are NP-hard, which do not have polynomial time algorithms. The difficulty level of an NP-hard scheduling optimization problem is similar to combinatorial optimization and stochastic modelling. In stochastic models it is assumed that jobs are finite, and that there are no known job data such as processing time, start time, due date, etc.; only their distributions are known in advance. These models are single objective optimization problems. Researchers in the past have focused on the borderline between polynomial time solvable problems and NP-hard problems (Pinedo et al., 1998). Real time scheduling frameworks or models also face problems in implementation due to input data reliability issues.

2.2 Scheduling in Manufacturing Systems

In manufacturing environments, released orders normally have to be translated into jobs with associated due dates. These jobs often have to be processed on one or more machines in a Work Centre (WC), in a given sequence, for a certain amount of processing time. The processing of jobs may take longer in queues mainly due to the three Ms (Man, Machine and Materials). Lesser-skilled labour may result in longer than expected processing time. Machine breakdowns, or a late supply of raw or semi finished items from vendors or other work centers, may cause delays in completion time.

The shop floor is not the only part of the organization that impacts the scheduling process. It is also affected by the production planning process that handles the medium-term to long-term planning for the entire organization (Pinedo et al., 1998).

The scheduling function has to interact with other decision-making functions. A decision made at higher planning levels may impact the scheduling process directly. Figure 2.1 shows the information flow diagram for a generic manufacturing environment and the role of manufacturing scheduling in the system. In cases where a facility does not have a scheduling system, the MRP system may be used for the production planning purposes (Pinedo et al., 1998).

Figure 2. 1: Information flow diagram of a Manufacturing System (Pinedo et al., 1998)

In the following sections of this chapter, brief introductions are presented to various manufacturing scheduling environments, their notations, several classes of manufacturing schedules, and complexity of scheduling problems. The manufacturing environments range from small, complex, and custom job shops to high speed, low product, variety transfer lines; from discrete parts manufacturing to
continuous process flows. Although several key functions are embodied within manufacturing, the scheduling activity has become an essential contributor to a successful manufacturing system.

2.3 Manufacturing Scheduling Environment

In defining a scheduling problem, constraints on jobs that are determined principally by the flow pattern of the jobs on machines and the scheduling objective must be specified. In this context, some well-known scheduling environment definitions are as follows:

2.3.1 Job Shop Manufacturing

In job shop manufacturing, there are m machines. For a finite number of jobs, each job has a predefined route to follow. Each job visits each machine once. The main aim of the job shop is to achieve a higher degree of flexibility so that products having a wide range of variation in size and shape can be produced in small lot sizes and in a single facility (Tariq, 2008). The distinguishing feature of the job shop is the manufacturing of products that may have different processing sequences and variations in processing times. Operations are performed sequentially on a single lot of parts that travel either in batches or together through the entire shop. There are no shop floor inventories that are not identified with a single activity. Job shop manufacturing is highly complicated and does not repeat in any simple way. The main dictating force in the selection of machines is the variety of products and smaller lot sizes. This is the reason that in job shop manufacturing, general-purpose machines are mainly utilized as they can perform a variety of operations. The grouping of machines in a job shop environment is carried out on the basis of functions, e.g. lathe machines are placed in one Work Centre (WC), milling
machines in another and so on. In Figure 2.2 the environment will be a job shop if there is a single machine in each WC.

Figure 2. 2: Flexible Job Shop Layout

2.3.1.1 Flexible Job Shop Manufacturing

In flexible job shop manufacturing, instead of m machines, there are c WCs with a number of identical machines in parallel as shown in Figure 2.2. Each job has its own route and has to be processed on a single machine in each WC.

2.3.2 Flow Shop Manufacturing

In flow shop manufacturing, there are m machines in the series. Each job from a finite number of n jobs has to be processed on each one of the m machines. All jobs follow the same sequence in a series of m machines, i.e. machine 1 (Lathe), then machine 2 (Grinding), etc. For the simplest case, each job consists of the same set of activities to be performed sequentially on the same set of machines in multiple sets of machines, as shown in Figure 2.3.

Figure 2. 3: Flow Shop

In flow shop manufacturing, all queues are usually assumed to operate on the basis of the First In First Out (FIFO) rule, i.e. the first job in the queue will be processed first, always followed by the second, then the third, and so on.

2.3.2.1 Flexible Flow Shop

The flexible flow shop manufacturing is a generalized form of flow shop manufacturing. Instead of m machines in the series there are c WCs in series. Each WC consists of a number of identical machines in parallel. Each job has to be processed on each WC. At every stage, a job requires processing on only one machine in a WC. A typical flexible flow shop manufacturing layout is shown in Figure 2.4.

Figure 2. 4: Flexible Flow Shop

2.3.3 Open Shop Manufacturing

The open shop is similar to the job shop with the exception that there are no precedence constraints between the operations of each job. The work in process inventories, or nearly finished products, are also high in order to provide jobs to high priority customers.

2.3.4 Summary

Figure 2.5 illustrates the relationship between the previously mentioned manufacturing machine shop environments. These scheduling environments can be solved for various objectives.

Figure 2. 5: Relationship between different machine shop environments

In a job shop, each job has its own individual flow pattern or predefined constrained route through which the job must pass. In a flow shop, however, each job has an identical flow pattern, whereas an open shop has no specific flow pattern. The
flexible job shop and flexible flow shop environments have parallel identical machines and parallel work centres, respectively.

2.4 Notation for Scheduling Problems

Conway et al. (1967) provided a classification scheme for scheduling problems based upon descriptors $A / B / C / D$, which has since been followed by a number of researchers (Maccarthy et al., 1993). The meaning of each letter is described in Table 2.1.

Table 2.1 Four letter classification schemes

S. No.	Letter	Meaning
1	A	Any positive integer N, represents number of jobs
2	B	Any positive integer M, represents a number of machines $M:$ Single machine, $J:$ Job Shop, $F:$ Flow Shop, $P:$ Permutation Flow Shop $O:$ Open Shop
	D	
4	Represents Scheduling criteria to be optimized (discussed in detail in Section 2.6) such as: $C_{\text {max }: \text { Minimization of Makespan }}$ $F_{\text {max }: \text { Minimization of Maximum Flow Time }}$	

For example, $n / m / J / C_{\max }$ is a Job Shop Scheduling Problem (JSSP) with n jobs to be processed on m machines, which attempts to minimize makespan. Mccarthy and Liu (1993) state that the four field notation has been used widely by researchers and they suggested several modifications for the C descriptor:
$C \in\left\{k\right.$-parallel, r_{j}, Str, Prec,prmt, unit,eq, depend, setup $\}$

Table 2.2 shows the meaning of each descriptor.

Table 2.2: C Letter Descriptor's Meanings

S. No.	Descriptor	Meaning
1	$k-$ paralle	k machines in parallel
2	r_{j}	Jobs with ready time
3	Str	Strings jobs
4	Prec	Precedence constraints
5	prmt	Pre-emption is allowed
6	unit	Unit processing time
7	eq	Equal processing time for all jobs
8	depend	Dependent jobs
9	setup	Sequence-dependent setup times

According to Graham et al. (1979) all scheduling problems are described by a triple $\alpha|\beta| \gamma . \alpha$ describes the machine shop environment and contains a single entry, β provides details of processing constraints (may have no entry or multiple entries), and γ describes the objective function to be optimized (may be single or multiple). The number of jobs is usually denoted by n and the number of machines by m. Subscript j refers to a job and subscript i refers to a machine. If a job requires a number of processing steps or operations, the ordered pair (i, j) refers to the processing step (operation of job j on machine i). For example, $p_{i j}$ represents the processing time of job j on machine i. If the processing time of j is independent of the machines, then i is omitted. Release date $\left(r_{j}\right)$ of job j is also known as the ready date or job arrival time to the system. d_{j} represents the due date of job j or the promised date with the customers. w_{j}, the weight of job j, represents its importance over other jobs.

Table 2.3 lists a summary of the most common scheduling environments specified by α in the manufacturing scheduling problem $(\alpha|\beta| \gamma)$.

Table 2.3: Manufacturing scheduling environments (Pinedo et al., 1998)

	Type	A	Characteristics
1	Single Machines	1	Continuous flow, Single Machines, simplest machine environment
2	Identical Machines in parallel	P_{m}	Discrete or continuous, linear or complex, grouping
3	Flow Shop	F_{m}	Discrete or continuous, linear flow, jobs all highly similar, grouping and lotting important
4	Job Shop	J_{m}	Discrete, complex flow, unique jobs, no multi-use parts
5	Open Shop	O_{m}	Discrete, complex flow, some repetitive jobs and/or multi-use parts
6	Batch Shop	B_{m}	Discrete or continuous, less complex flow, many repetitive jobs and multi-use parts, grouping and lotting important
7	Manufacturing Cell	$M C_{c}$	Discrete, automated grouped version of open job shop or batch shop

2.5 Job Shop Scheduling Model

According to Blazewicz et al. (1996) scheduling problems can be broadly defined as "the problems of the allocation of resources over time to perform a set of tasks". The literature of manufacturing scheduling is full of very diverse scheduling problems (French, 1982; Sidney, 1983; Pinedo et al., 1998; Brucker, 2007). The Job Shop Scheduling Problem (JSSP) concerns the determination of the operation sequences on the resources so that the Makespan is minimized, i.e. the time required to complete all jobs (Gen et al., 2008). JSSP consists of several assumptions as follows (Cheng et al., 1996):

- Each machine processes only one job at a time;
- Each job processes on one machine at a time and the job does not visit the same machine twice;
- The processing time of each operation is known;
- There are no precedence constraints among the operations of different jobs;
- Operations are non-preemptive, i.e. a running operation is executed until completion;
- Neither release times nor due dates are specified.

The JSSP is considered to be one of the most difficult problems to handle due to its large solution space. For example, if n different jobs are to be processed on m different machines, then there are $(n!)^{m}$ alternatives amongst which an optimal solution for a certain measure of performance exists and theoretically can be found in a finite number of computational iterations. However, it is practically difficult because of the combinatorial increase of the problem size. This is why the JSSP is considered to be a member of a large class of intractable numerical problems known as NP-hard (NP stands for non-deterministic polynomial) problem and is difficult to solve optimally. For example, a very simple problem of 20 jobs and 20 machines will give 5.27×10^{367} numbers of alternatives. It will therefore need over 1000 years to find its optimal solution using a high-performance computer evaluating one alternative per microsecond (Hitomi, 1996; Morshed, 2006). Furthermore, each job is composed of a set of operations, the operation order on machines is pre-specified, and each operation is characterized by required machine and fixed processing times (Jain and Meeran, 1999; Gen et al., 2008).

Roy and Sussmann (1964) proposed the current form of JSSP and were first to propose the disjunctive graph representation. Balas (1970) was the first to apply an enumerative approach to the disjunctive graph. Since then many researchers have discussed mathematical models and tried various strategies for solving this problem (Adams et al., 1988; Blazewicz et al., 1996; Cheng et al., 1996; Jain et al., 1998; Park et al., 2000; Noor and Khan, 2007; Gen et al., 2008). Grabot et al. (1994) applied heuristic rules to JSSP. Jain and Meeran (1998) applied neural networks to JSSPs and Yang et al. (2000) used neural networks combined with an heuristic approach to solve these problems. Moreover some researchers, especially Cheng et
al. (1999), using hybrid Genetic Algorithms (GAs), also obtained optimal Makespan solutions for a set of JSSPs.

2.5.1 Mathematical Formulation of JSSP

Notation

Indices

i, l : index of jobs, $i, l=1,2, \cdots, n$
j, h : index of machines, $j, h=1,2, \cdots, m$
k : index of operations, $k=1,2, \cdots, m$

Parameters

n : Total number of jobs
m : Total number of machines
$C_{\text {max }}$: Makespan
M_{j} : the $\mathrm{j}^{\text {th }}$ machine
$J_{i}:$ the $\mathrm{i}^{\text {th }} \mathrm{job}$
where $i=1,2, \cdots, n$
$O_{i k j}$: the $k^{t h}$ operation of job J_{i} operated on machine M_{j}
$P_{i k j}$: Processing time of operation $O_{i k j}$

Decision Variables

$t_{i k j}$: Completion time of operation $O_{i k j}$ on machine M_{j} for each job J_{i}

The JSSP are treating is to minimize the Makespan, so the problem could be described as an n-job m-machine JSSP by simple equations as follows:

$$
\begin{align*}
& \min C_{\max }=\max _{i k j}\left\{t_{i k j}\right\} \tag{2.1}\\
& \text { s. t. } t_{i, k-1, h}+P_{i k j} \leq t_{i j}, \forall i, k, h, j \tag{2.2}\\
& t_{i k j} \geq 0, \forall i, k, j \tag{2.3}
\end{align*}
$$

The objective in Eq. (2.1) is to minimize the Makespan. The constraint in Eq. (2.2) is the operation precedence constraint; the $(k-1)^{t h}$ operation of job i should be processed before the $k^{t h}$ operation of the same job. The time chart for this model is illustrated in Figure 2.6.

Figure 2. 6: Time Charts for Constraint

2.5.2 Justification for choosing Makespan as Objective Function

The well known Travelling Salesman Problem (a salesman travels to a number of cities) schedules the route with the objective of minimum travel distance. This is the same problem as a production scheduling problem with the objective of minimizing the Makespan.

Makespan minimization is considered to be the main driving objective function due to the fact that this criterion was the first objective considered by researchers since the post World War II industrial revolution. The problem was normally single
machine or parallel machine at that time. Mathematically the $C_{\max }$ problem was easy to formulate. Consequently, it has been the principal criterion for academic research as it is able to capture the fundamental computational difficulty that exists implicitly in determining an optimal schedule. Nevertheless, this criterion is also widely used in industry because it provides a good deal of flexibility. A solution for $C_{\max }$ is likely to perform well on average with respect to the criteria of total completion time, total tardiness, total flow time, and maximum lateness (Liaw, 2000; Kis, 2003; Morshed, 2006; Zhang et al., 2009).

2.6 Scheduling Criteria

Scheduling criteria, the performance measure indicator, is defined as the goodness of (a set of) scheduling rules. Schedules are generally evaluated by aggregate quantities, involving information about a number of jobs, resulting in onedimensional performance measures (Momim, 1999). The broad objectives of Job Shop Scheduling (White, 1987) are:

- Minimize Work-In-Process (WIP) inventory;
- Maximize utilization of resources;
- Maximize service to customers;

These objectives are usually in conflict. For example, minimization of WIP can increase capacity but can reduce utilization. Similarly, minimization of inventory will lead to under utilization of resources and an unsatisfactory service to customers. To find a satisfactory compromise on objectives in any given situation, the following criteria depending upon processing times, due dates, utilization, and inventory are commonly used for scheduling (White, 1987; Halshal, 1995):

For the $\mathrm{j}^{\text {th }}$ Job, define the following measures:

$$
\begin{aligned}
& C_{j}=\text { Completion time of Job } j \\
& d_{j}=\text { Due date of Job } j \\
& O_{j}=\text { Operation of Job } j \\
& r_{j}=\text { Release / ready date of Job } j \\
& C_{j}=\text { Completion time of Job } j \\
& a_{j}=\text { Allowence time of Job } j=d_{j}-r_{j} \\
& L_{j}=\text { Lateness of Job } j=C_{j}-d_{j} \\
& T_{j}=\text { Tardiness of Job } j=E_{j}=\text { Earliness of Job } j=\text { max }\left\{-L_{j}, 0\right\} \\
& N=\text { Number of Job completed } \\
& n T=\text { Number of Tardy Jobs } \\
& F_{j}=\text { Flow Time of Job } j
\end{aligned}
$$

The objective to be minimized will always be a function of the total completion time of a job and which depends upon the schedule (Pinedo et al., 1998). Moller (1966), listed 27 different objectives and Baker (1974), classified scheduling problems for a single objective function. The completion time for job j on machine i is denoted as $\boldsymbol{C}_{i j}$. Maccarthy and Liu (1993), referring to Baker's (Baker, 1974), classification, listed three types of decision making goals that have dominated the research in scheduling, and indicated commonly used measures for scheduling performance that are associated with them:

2.6.1 Efficient utilization of resources:

i) Maximum Completion Time (Makespan)

$$
\begin{equation*}
\mathbf{C}_{\max }=\min (\{0, \mathrm{Cj}\}) \tag{2.4}
\end{equation*}
$$

in which
$\mathbf{C}_{\mathrm{j}}=$ Time of the last job released and has left the shop

2.6.2 Rapid Response to demand

i) Flow Time: Total time taken by a job on the shop floor.

$$
\mathrm{F}=\sum_{\mathrm{j}=1}^{\mathrm{N}}\left(\mathrm{c}_{\mathrm{j}}-\mathrm{r}_{\mathrm{j}}\right)
$$

ii) Mean Flow Time

$$
\begin{equation*}
\overline{\mathrm{F}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{N}}\left(\mathrm{c}_{\mathrm{j}}-\mathrm{r}_{\mathrm{j}}\right)}{\mathrm{N}} \tag{2.6}
\end{equation*}
$$

2.6.3 Close Conformance to prescribed deadline

i) Mean Earliness

$$
\begin{equation*}
\overline{\mathrm{E}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{N}} \max \left\{0,-\mathrm{L}_{\mathrm{j}}\right\}}{\mathrm{N}} \tag{2.7}
\end{equation*}
$$

ii) Mean Tardiness

$$
\overline{\mathrm{T}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{N}} \max \left\{0, \mathrm{~L}_{\mathrm{j}}\right\}}{\mathrm{N}}
$$

Equation (2.8)
iii) Mean Lateness

$$
\begin{equation*}
\overline{\mathrm{L}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{~L}_{\mathrm{j}}}{\mathrm{~N}} \tag{2.9}
\end{equation*}
$$

iv) Mean Absolute Lateness

$$
\begin{equation*}
\overline{\mathrm{L}}=|\overline{\mathrm{L}}|=\frac{\sum_{\mathrm{j}=1}^{\mathrm{N}}\left|\mathrm{~L}_{\mathrm{j}}\right|}{\mathrm{N}} \tag{2.10}
\end{equation*}
$$

v) Percent Tardiness

$$
\% \mathrm{~T}=\frac{\mathrm{nT}}{\mathrm{~N}} \times 100 \%
$$

Equation (2.11)
vi) Maximum Tardiness

$$
\begin{align*}
\mathrm{T}_{\max }= & \max \left\{\max \left(\mathrm{o}, \mathrm{~L}_{\mathrm{j}}\right)\right\} \tag{2.12}\\
& \text { where } 0<j<N+1
\end{align*}
$$

vii) Maximum Earliness

$$
\begin{aligned}
\mathrm{E}_{\max }= & \max \left\{\max \left(\mathrm{o}, \mathrm{~L}_{\mathrm{j}}\right)\right\} \\
& \text { in which } 0<j<N+1
\end{aligned}
$$

Equation (2.13)

In most scheduling systems, one of the above scheduling criteria is either minimized or maximized, but in the real world a trade-off between these criteria is desired for an optimal output of the system. The problem becomes more complex by increasing the number of objectives and consequently an effective trade-off between them becomes difficult. Therefore, an optimal solution in real time applications is unlikely to be achieved.

2.7 Complexity of JSSP

The JSSP has already been confirmed amongst the worst members of the class of NP-complete problems in manufacturing systems (Jones et al., 1998; Vela et al., 2010). Most variants of the deterministic JSSP, except for a few formulations with the number of machines or jobs limited to 1 or 2, are known to be NP-hard (Brucker, 1988; Brucker, 2007). In particular, JSSPs with the number of machines m fixed (m
≥ 2) using the $\mathrm{C}_{\text {max }}$ performance criteria are NP-hard in the strong sense (Garey et al., 1978; Gonzalez et al., 1978; Gen et al., 2008).

For JSSP with deteriorating jobs, i.e. jobs whose processing times are an increasing function of their starting time results in NP hardness. Mosheiov (2002) presents NP hardness for flow shop and open shop with three or more machines and for job shops with two or more machines. Recently, Thornblad et al. (2011) presented a correction in Mosheiov's (Mosheiov, 2002) theorem 2 and proved that flow shop is NP-hard even for three machines.

Gen, Lin et al. (2008) also referred to French's (French, 1982) theorem 11.6 and Garey and Johnson's (Garey and Johnson, 1978) theorem 1 and stated that strong NP-hardness of a problem implies that it is impossible to create a search heuristic which guarantees to find a solution for which the relative error ε is bounded by

$$
\frac{\text { performance measure of found solution }}{\text { performance measure of optimum solution }} \leq 1+\varepsilon
$$

and which runs in polynomial time both in the problem size and $1 / \varepsilon$. This result shows that efficient approximation algorithms with guaranteed performances should not be expected for these problems unless $P=N P$. Therefore, most research focused on finding (near) optimal schedules has been turned towards implicit enumeration algorithms (B\&B techniques), local improvement methods (shifting bottleneck), and heuristic search methods such as genetic algorithms, tabu search and simulated annealing.

The JSSPs are not only NP-hard but are also very difficult to solve heuristically. For example, the Fisher and Thompson's FT-10 (10-job x 10-machines) problem (Fisher
et al., 1963) remained open for 25 years until Adam et al. (1988) published an optimal solution.

2.8 Benchmark Problems

In the field of evolutionary computation, different algorithms are used to compare using large sets of data, especially when the test involves function optimization (Gordon et al., 1993). However, comparing two algorithms with all possible functions, the performance of any two will be the same (on average) (Oltean, 2004). Therefore, there is a need for benchmark problems that are perfect test sets, where all the functions are present, and allowing conclusions to be obtained from the performance of algorithms.

For JSSP the benchmark problems are developed by various researchers (Fisher and Thompson (1963) - FT; Carlier (1978)- CAR; Lawrence (1984) - LA; Adams et al., (1988) - ABZ; Applegate and Cook (1991) - ORB; Storer et al., (1992) - SWV; Yamada and Nakano (Yamada et al., 1992) - YN and Taillard (1993) - TD. The FT problems received the greatest analysis of all these problems (Morshed, 2006).

In these benchmark problems (See Appendix A and Appendix B) the precedence order and processing times for operations are generated randomly. The latter is drawn from a discrete uniform distribution (except for the ORB instances) and the objective in each problem is to minimize the Makespan (Jain and Meeran, 1999).

2.9 Solution Representation

A common charting technique, Gantt Chart, the first revolutionary technique to represent scheduling solutions, was named after Henry Gantt (Gantt, 1919). This method has been used since the early 19th century and has traditionally been the most popular method of solution representation. Blazewicz et al. (1996), indicate that
the disjunctive graph model, $G\{N, A, E\}$ (Roy and Sussmann, 1964) is now more prevalent.

2.10 Conclusion

In this chapter a brief introduction to different manufacturing environments in manufacturing systems is presented, followed by an introduction, mathematical model, scheduling criteria, and complexity issues of JSSP. The sources and types of benchmark problems are presented at the end of the chapter. In Chapter 3, details of the literature review and analysis are discussed.

CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

In this chapter a detailed literature review of scheduling problems is carried out, in order to ascertain the contemporary knowledge and information relating to scheduling. The main emphasis in this chapter is to review solution approaches to scheduling problems, and identify gaps that require further research. The effort is therefore devoted to the review of literature in the scheduling area with the aim of acquiring knowledge for designing conceptual and actual simulation models for manufacturing scheduling problems.

3.2 Solution Approaches to Manufacturing Scheduling Problems

Study of scheduling theory began in the early 50s and Johnson's (1954) article is acknowledged as a pioneering work (Maccarthy and Liu, 1993). In this section, various approaches reported in the literature to solve the scheduling problem since Johnson's first efficient algorithm are reviewed. In the literature these approaches have been categorized in various ways. Gonzalez (1978), and Momin (1999), have categorized these approaches as Mathematical, Priority Rules, Heuristics and Artificial Intelligence (AI). Jain et al. (1999), broadly categorized them as an approximation and optimization approaches, that have been further divided into a number of branches as shown in Figure 3.1.

Figure 3. 1: Solution approaches to JSSP (Jain, 1998)

Optimization-based techniques are further classified as efficient techniques and enumerative techniques. The enumerative approach has two further subclasses: B\&B algorithms and mathematical optimization (mixed and linear integer programming) based algorithms. Approximation techniques, on the other hand, are initially classified as general algorithms and tailored algorithms. Tailored algorithms are either dispatching rules or heuristic based algorithms, whereas general algorithms are classified as AI-based techniques (ANN, GA and Expert Systems) and local searchbased algorithms. A literature review of optimization and approximation approaches is given below.

3.3 Reviews of Optimization methods

A method using an optimization criterion is exact if it guarantees optimality of the solutions found. Exact procedures are computationally expensive and, with an
increase in the problem size, the computation time for finding a solution increases exponentially.

3.3.1 Efficient Algorithms

Johnson's article (Johnson, 1954) in the area of scheduling theory is acknowledged as pioneering, presenting an efficient optimal algorithm for $n / 2 / F / C \max$. He generalized the algorithm and applied it to $n / 3 / F / C \max$ scheduling problem. According to Conway et al. (1967), this early work had a great influence on subsequent research in the area of scheduling theory. Later Jackson (1956) and Smith (1956), developed various optimal rules for single machine problems. According to Maccarthy and Liu (1993), these early works formed the basis for much of the development of classical scheduling theory. Giglio et al. (1964), applied Johnson's method to a six-jobs, three-machine flow shop problem. In the early 1980s, Hefetz et al. (1982), developed an efficient method for n Jobs and 2 machines, where all operations are of unit processing time. Brucker (1988), developed an efficient algorithm for two jobs and m machines with the shortest processing time. Kubiak et al. (Kubiak et al., 1995), developed an efficient algorithm with an objective of minimizing the Makespan in two machines with respect to a succinct encoding of the problem instances. This was an improved form of the proposed earlier algorithms for the problem of Hefetz et al., (1982), Timkovskiy (1985) and Brucker (1988). Recently, Baptiste et al. (2004) switched the focus to minimization of total completion time and presented a shortest path optimization algorithm for scheduling jobs with release dates. They also conjectured that there always exist schedules minimizing both maximum completion time and total completion time for jobs with release dates. This is true in case of non pre-emptive schedules (Coffman, 1972) and pre-emptive schedules (Coffman et al., 2003). More
recently Coffman et al. (2012) presented an efficient algorithm based on the work of Baptiste and Timkovskiy (2004) and resolved the conjecture discussed. They proved that an ideal schedule does not exist in general when pre-emptions are allowed. On the other hand, when pre-emptions are not allowed, then ideal schedules do exist for general precedence constraints.

In conclusion, despite the progress made by the recent methods described above, efficient methods could not be found for JSSP instances where $m>3$ and $n>3$ (Morshed, 2006). French (1982), predicts that no efficient algorithms will ever be developed for the majority of scheduling problems. This is the reason that researchers have turned their focus to mathematical formulations and enumerative approaches.

3.3.2 Mathematical Formulations

Mathematical programming has been extensively applied to the JSSP. These problems are formulated using linear programming, integer programming (Balas, 1965; Balas, 1967), mixed-integer programming (Balas, 1967; Balas, 1970), and dynamic programming (Srinivas, 1971).

The problem of solving a system of linear inequalities can be classified as a linear equation. Kantorovich (1940), developed the earliest linear programming in 1939 for finding optimal solutions. If some or all of the unknown variables are required to be integers, then the problem is called an Integer Programming (IP) or integer linear programming. (ILP) problem. If only some of the unknown variables are required to be integers, then the problem is called a mixed integer programming (MIP) problem. These are generally also NP-hard. Balas' work was focused on the configuration of the integer and mixed integer programming using computational power. Dantzig (1963) and Minoux (1986), described the simplex method and integer programming,
two classes of solution technique based upon linear programming. In the early 90 's Blazewicz et al. (1991) provided a survey of scheduling formulations.

Various researchers (Bowman, 1959; Giffler et al., 1960; Manne, 1960; French, 1982; Blazewicz et al., 1991) are of the view that integer programming formulations of scheduling problems are computationally infeasible and yet to achieve a breakthrough.

Due to these facts and to the combinatorial nature of the JSSP, a group of researchers began to decompose the scheduling problem into a number of sub-problems, proposing a number of techniques to solve them. Recently, the larger and hard scheduling problems have been subjected to recent advances such as parallel computing facilities in order to achieved solution quickly. Some new solution approaches are also applied to these problems. However, researchers still face difficulties in the formulation of material flow constraints as mathematical inequalities.

More recently, Akcora et al. (2005), discussed Integer Programming (IP) for job shop scheduling for varying reward structures where IP is used to optimally minimize the penalty reward based upon the completion time of the task. Pan and Chen (2005) reported on mixed Binary Integer Programming (BIP) formulations for the re-entrant (multiple visits to the machine groups) JSSP. In order to improve the solution speed of the BIP formulations, two-layer division procedures have been developed and incorporated in the BIP model of four new formulations.

3.3.3 Decomposition strategies

Davis and Jones (1988), proposed a methodology based upon the decomposition of mathematical programming, that used both 60s Benders type decomposition
[republished (Benders, 2005)] and Dantzig and Wolfe's (Dantzig et al., 1960) type decompositions. The methodology was part of a closed-loop, real-time, two-level hierarchical shop floor control system (Jones and Rabelo, 1998). The top-level scheduler, i.e. the supernal, specified the earliest start time and the latest finish time for each job. The lower level scheduling modules, i.e. the infimums, would refine these limit times for each job by detailed sequencing of all operations. A multicriteria objective function was specified that included tardiness, throughput, and process utilization costs. The decomposition was achieved by first reordering the constraints of the original problem to generate a block angular form, then transforming that block angular form into a hierarchical tree structure (Jones and Rabelo, 1998).

3.3.4 Enumerative Techniques and Lagrangian Relaxation

An exact optimization is a procedure whereby applying a mathematical analytical method determines a global optimum of the decision problem (Morshed, 2006). Two popular solution techniques for IP problems are Branch and Bound ($B \& B$) and Lagrangian Relaxation (LR). Lagrangian Relaxation (LR), which has been used for more than 30 years, is also used to solve JSSP (Nowicki et al., 1996). IP problems can be solved by LR by omitting specific integer valued constraints and adding the corresponding costs (due to these omissions and/or relaxations) to the objective function (Jones and Rabelo, 1998). However, for large scheduling problem, both techniques the $B \& B$ and $L R$ are computationally very expensive. However, the main focus of various researchers' for enumerative approaches to the JSSP is a B\&B technique due to the fact that mathematical approaches are inadequate for the JSSP. $\mathrm{B} \& \mathrm{~B}$ is one of the most well-known enumerative techniques (Garey et al., 1979; Baptiste and Timkovsky, 2004). Summarizing Morton and Pentico (1993), "The
basic idea of branching is to conceptualise the problem as a decision tree. Each decision choice point - a node - corresponds to a partial solution. For each node, there grow a number of new branches, one for each possible decision. This branching process continues until leaf nodes, that cannot branch any further, are reached. These leaf nodes are solutions to the scheduling problem". Although efficient bounding and pruning procedures have been developed to speed up the search, this is still a very computationally intensive procedure for solving large scheduling problems. The first B\&B was applied to JSSP using the disjunctive graph model by (Balas, 1970). This method only considers critical operations. Florian et al. (2003), also presented a B\&B algorithm for minimum-makespan JSSP reached a value of 972 for the 10×10 (10 machines and 10 jobs) benchmark problem. Moreover, they were the first to solve the Fisher and Thompson 20×5 benchmark to optimality. Lageweg et al. (2012), were first to use the one-machine lower bound, hence extending the previously used lower bounds. They generated all active schedules branching over the conflict set in Giffler and Thompson's algorithm (1960). A priority rule at each node of the search tree delivers an upper bound. There is no report on the 10×10 benchmark problem. Barker and McMahon (1985), associated with each node in their enumeration tree sub-problem whose solutions are a subset to the solution set of the original problem; a complete schedule; a critical block in the schedule which is used to determine the descendant subproblems; and a lower bound on the value of the solutions of the subproblem. The lower bound is a single-machine lower bound as computed in McMahon and Florian (1975). Barker and McMahon (1985), have not achieved the optimal results for FT10 (10 x 10) and FT20 (20 x 5) benchmark problems. The reached Makespan value of 960 and 1303 for FT10 and FT20 respectively. Brucker et al. (1996), calculated different lower
bounds: one machine relaxation and two jobs relaxation. They were able to improve Carlier and Pinson's (Demirkol et al., 1997) B\&B algorithm and accelerate substantially and easily found an optimal schedule for the 10×10 problem. However, they were unable to find an optimal solution for the 20×5 problem within a reasonable amount of time. Perregaard and Clausen (2010), applied parallel B\&B to JSSP and achieved an optimal solution to the 10×10 and 20×5 problems much less than one minute. According to Jain and Meeran (1999), in their comparative study of B\&B techniques indicate that Martin's (Martin, 1996) time based oriented representation of the decision variant of JSSP performed better than other B\&B techniques. Pan et al. (2006), applied B\&B to a single machine sequencing problem. They based their algorithm on Carlier's (1982) B\&B algorithm. The result indicated overall improvement through their algorithm. However, it was unable to find optimal solutions to larger problems. Recently, Nababan et al., (Nababan et al., 2008), applied the $\mathrm{B} \& \mathrm{~B}$ method using the disjunctive programming approach minimummakespan JSSPs. They tested their algorithm against selected benchmark JSSPs (FT, LA, ABZ, ORB, YN and SWV) of different size and hardness such as 50×15 and 50×20 problems in order to gauge the strength and weakness of the technology. The algorithm failed to achieve optimum results for most of the problems, but they did achieved near-optimal results comparatively in lesser computational time.

In conclusion, $\mathrm{B} \& \mathrm{~B}$ methods are able to produce good solutions but cannot guarantee optimal solutions. Specifically, in larger problems the method suffers from memory overflow and becomes computationally expensive. To address this issue, parallel techniques can be applied. The parallel technique results for larger problems are still very disappointing.

Therefore, researchers have shifted their focus towards approximation-based techniques and have developed many techniques in recent years in order to achieve quality solutions in lesser time. In the following section a detailed review of these techniques is carried out.

3.4 Approximation Based Approaches

A method using an optimization criterion is exact if it guarantees optimality of the solutions found, otherwise it will be called approximation or heuristic when it empirically provides 'good' solutions (Maccarthy and Liu, 1993). The main advantage of these heuristic techniques is the ease with which they can be implemented in practice.

In this analysis, the two main categories of approximation technique Tailaord Algorithms (Priority Dispatch Rules (PDR) and Heuristics) and Artificial Intelligence (AI) techniques (See Figure 3.1). These techniques have been discussed in the past six decades and made their contributions in the field of scheduling. The aim of the review is to acquire knowledge and identify the gap in research. The findings from the review are also presented at the end of this section.

3.4.1 Conventional Heuristics for JSP

The JSSP is one of the hardest combinatorial optimization problems to tackle. Since JSSP is a very important everyday practical problem, it is therefore natural to look for approximation methods that produce a feasible schedule in useful time. Gen, Lin et al. (2008), have classified heuristic procedures for a JSSP into two classes:

- One-pass heuristic
- Multi-pass heuristic

In a one-pass heuristic the decision as to which job is to be loaded on a machine and when the machine will be free, is normally done with the help of PDR (Holthaus et al., 1997). An approach to the JSSP is that the main problem can be broken down into a number of sub-problems. Sub-problems are scheduled separately. There are many rules for choosing an operation from a specified subset to be scheduled next. Such methods are easy to implement and substantially reduce the computational requirements, and are very popular techniques (Morshed, 2006). These methods may not produce guaranteed optimal solutions but definitely present a feasible solution evaluated through a particular performance factor. In addition, one-pass heuristic may be used repeatedly to build more sophisticated multi-pass heuristic in order to obtain better schedules at some extra computational cost (Gen et al., 2008).

3.4.2 Heuristics Rules

In scheduling literature, the term such as scheduling rules, heuristic rules, dispatching rules, or priority rules are often used synonymously. In the past six decades there has been a substantial growth in the field of sequencing and scheduling research. The heuristic scheduling rules deal with the complexities of manufacturing under global competition are currently much sought after. These heuristics prioritize all jobs that are waiting to be processed on a resource. It is increasingly recognized that all the strengths of traditional operations research, knowledge based systems, heuristic rules, AI and sophisticated user interfaces will be necessary to build the needed system, which can fulfil the future needs. Such successful integration of approaches has not really occurred yet, despite the fact that many systems has been built by researchers that attempt some integration.

According to Panwalkar and Iskander (1976), scheduling research can be divided into two main categories: theoretical research dealing with optimizing procedure
limited to the static problems and experimental research dealing with scheduling rules in static and dynamic cases. Pinedo (1998), called this experimentation research in scheduling as scheduling in practice. He categories heuristic in general purpose procedure rules along with SA, TS and GAs.

In this section a number of general purpose procedures (existing and new) that are useful in dealing with scheduling problems in practice is presented. These procedures can be easily implemented with relative ease in industrial scheduling systems. All the procedures described are heuristics that do not guarantee an optimal solution; instead they aim to find reasonably good solutions in a relatively short time. These heuristics are fairly generic and can be adopted easily to a large variety of scheduling.

3.4.2.1 Heuristics Rules and their Classification

The heuristic rules research has been active for several decades and many different rules have been studied in the literature. Giffler and Thompson (1960), have laid foundation for heuristic rules. These rules are now probably the most frequently applied heuristics for solving scheduling problems in practice because of their ease of implementation and their low time complexity (Storer et al., 1992; Gen et al., 2008). These rules can be classified in various ways. For example, according to Jackson (1957) a distinction can be made between static and dynamic rules. Static rules are not time dependent or in which priority value does not change as a function of the passage of time. They are just a function of the job and/or of the machine data, for instance, Weighted Shortest Processing Time (WSPT). Dynamic rules are time dependent. One example of a dynamic rule is the Minimum Slack (MS) first rule that orders jobs according to max $\left(d_{j}-p_{j}-t, 0\right)$, which is time dependent. This implies
that at some point in time job j may have a higher priority than job k and at some later point in time jobs j and k may have the same priority.

A second way of classifying rules is according to the information they are based upon. For example Conway and Maxwell (1962) classification. The describe "local" heuristic rule which uses only information related to either the queue where the job is waiting or to the machine where the job is queued. Most of the traditional heuristic rules such as FIFO, SPT can be used as local rules. A global rule may use information regarding other machines, such as the processing time of the job on the next machine on its route. An example of a global rule is the LAPT rule for the two machine open shop. Moore and Wilson (1967), have classified a few dispatching rules by a two dimensional way of showing whether a specific rule is static or dynamic and whether it is local or global.

Panwalker and Iskander (1976), categorized scheduling rules as simple, combined simple, weighted priority rules and heuristic scheduling rule. The simple priority rules are usually based on information related to a specific job such as its due date, processing time, remaining number of operations, etc. Sub-classification is based on information related to (i) processing times, (ii) due dates, (iii) number of operations, (iv) costs, (v) setup times, (vi) arrival times (and random), (vii) slack (based on processing times and due dates), (viii) machines (machine-oriented rules), and (ix) miscellaneous information. The combination of simple priority rules in many cases works by dividing a queue into two or more rules apply to the same queue under different circumstances. The weighted priority indexes combine simple and combined priority rules with different weights. The heuristic scheduling rules involve a more complex consideration such as anticipated machine loading, the effect of alternate routing, scheduling alternate operation, etc. These rules are usually
used in conjunction with the former three priority rule groups. In some cases a heuristic rule may involve nonmathematical aspects of human intelligence, such as inserting a job in an idle time slot by visual inspection of a schedule.

3.4.2.2 Priority Rule Based Algorithms

The algorithms of Giffler and Thompson can be considered as the common basis of all priority rule based algorithm. Giffler and Thompson (1960), have proposed two algorithms to generate schedule: active schedule and non-delay schedule generation procedures.

3.4.2.2.1 Active Schedule

Generation procedures operate with a set of schedulable operations (operations unscheduled yet with immediately scheduled predecessors) determined from constraints or precedence structure. The number of stages for a one-pass procedure is equal to the number of operations $m \times n$. At each stage, one operation is selected to add into partial schedule (in progress schedule) and the conflicts among operations are solved by priority heuristic rules. Following the notations of Baker (1974), Then
$P S_{t}=$ is a partial schedule containing t scheduled operations,
$S_{t}=$ is the set of schedulable operations at stage t , corresponding to a given $P S_{t}$,
$\sigma_{i}=$ is the earliest time at which operation $i \in S_{t}$ could be started,
$\varphi_{i}=$ is the earliest time at which operation $i \in S_{t}$ could be completed.

For a given active partial schedule, the potential start time σ_{i} is determined by the completion time of the direct predecessor of operation i and the latest completion time on the machine required by operation i. The larger of these two quantities is σ_{i}.

The potential finishing time φ_{i} is simply $\sigma_{i}+t_{i}$, where t_{i} is the processing time of operation i. The procedure to generate an active schedule works as follows:

Procedure Priority Dispatching Heuristic (active schedule generation)
Input: JSSP data

Output: a complete schedule
Step 1: Let $t=0$ and begin with $P S_{t}$ as the null partial schedule.
Initially S_{t} includes all operations with no predecessors.

Step 2: Determine $\varphi_{t}^{*}=\min _{i \in S_{t}}\{\varphi i\}$ and the machine $m *$ on which φ_{t}^{*} could be realized.

Step 3: For each operation $i \in S_{t}$ that requires machine $m *$ and for which
$\sigma_{i}<\varphi_{t}^{*}$, calculate a priority index according to a specific priority rule. Find the operations with the smallest index and add this operation to $P S_{t}$ as early as possible, thus creating a new partial schedule $P S_{t+1}$.

Step 4: For $P S_{t+1}$, update the data set as follows:
i). Remove operations i from S_{t}
ii). Form S_{t+1} by adding the direct successor of operation j to S_{t}
iii). Increment t by one

Step 5: Return to step 2 until a complete schedule is generated.

3.4.2.2.2 Non-Delay Schedule

A non-delay schedules can be generated by replacing the earliest finish time with the earliest start time in step 2 and step 3 of the above algorithm as shown below:

Procedure Priority Dispatching Heuristic (non-delay schedule generation)
Input: JSSP data

Output: a complete schedule
Step 1: Let $t=0$ and begin with $P S_{t}$ as the null partial schedule.

Initially S_{t} includes all operations with no predecessors.

Step 2: Determine $\sigma_{t}^{*}=\min _{i \in S_{t}}\{\sigma i\}$ and the machine $m *$ on which σ_{t}^{*} could be realized.

Step 3: For each operation $i \in S_{t}$ that requires machine $m *$ and for which $\sigma_{i}<\sigma_{t}^{*}$, calculate a priority index according to a specific priority rule. Find the operations with the smallest index and add this operation to $P S_{t}$ as early as possible, thus creating a new partial schedule $P S_{t+1}$.

Step 4: For $P S_{t+1}$, update the data set as follows:
i). Remove operations i from S_{t}
ii). Form S_{t+1} by adding the direct successor of operation j to S_{t}
iii). Increment t by one

Step 5: Return to step 2 until a complete schedule is generated.

In theory and practice both of these scheduling types are applied to JSSPs (See Section 3.4.2).

The recent comparative study by Chang et al. (1996) evaluates the performance of 42 PDRs using a linear programming model. Their analysis indicates hat the shortest processing time (SPT) related rules consistently perform well while he longest processing time (LPT) based rules consistently perform badly.

In some cases a heuristic rule Morshed (2006), reports that in the analyses based on the Relative Deviation (RD) from optimum, the traditional heuristics achieve results extremely quickly but are of very poor quality (the RD from the optimum schedule can be as great as 74%), and in general, the solution quality degrades as the problem's dimensionality increases. However, still these rules are most popular and commonly used in scheduling in practice. The researchers also came up with different hybrid approaches including combination of different heuristic rules and addressed these problems (Maqsood et al., 2011) because no single rule shows clear dominance in order to find the best solution from a combination of different heuristics. However, more computing time is required by a combination of heuristic rules in comparison with the their simple rules. In order to overcome achieve overcome the deficiencies of the conventional heuristics two novel heuristic rules are proposed: Index Based Heuristic (IBH) and a Hybrid Heuristic (HybH). The design and development phase of theses new heuristic rules is discussed in the following section.

3.4.2.3 Heuristic Rules in Scheduling

In scheduling theory, priority rules are the most frequently applied heuristics for solving scheduling problems. Due to their ease of implementation and low time complexity these rules are also common in practice. The early work of Giffler and Thompson (1960), is considered to be the common basis of all priority rule based heuristics (Storer et al., 1992; Gen et al., 2008). They proposed two algorithms to generate active and non-delay schedule. In non-delay schedule no machine remains idle if a job is available for processing and inactive schedule no operation can be started earlier without delaying another job. Non-delay schedules is a subset of active schedules. Giffler and Thompson (1960), proposed at a tree-structured
generation procedure approach. The nodes in the tree correspond to partial schedules, the arcs represent the possible choices and the leaves of the tree are the set of enumerated schedules. For a given partial schedule, the algorithm identifies all processing conflicts (i.e. Operations competing for the same machine), and at each stage these conflicts are resolved through an enumeration procedure. In contrast, heuristics resolve these conflicts with priority dispatching rules, i.e., specify a priority rule for selecting one operation among the conflicting operations (Gen et al., 2008).

Table 3. 1: Well known conventional dispatching rules used to solve JSSP

Rule	Description
SPT	Select the operation with the Shortest Processing Time (SPT)
LPT	Select an operation with Longest Processing Time (LPT)
LRT	Select the operation belonging to the job with the (Longest Remaining Processing Time) longest remaining processing time
SRT	Select the operation belonging to the job with the (Shortest Remaining Processing Time) shortest remaining processing time
LRM	Select the operation belonging to the job with the (LRT excludes the operation longest remaining processing time excluding the under consideration) operation under consideration
EDD	A schedule is developed on the basis of Earlier Due Dates (EDD) of a job. A schedule starts with a job having the EDD in the first position followed by the job having the EDD amongst the remaining unscheduled jobs. The schedule ends when all the jobs are scheduled.
FIFO	First in, first out (The operation that arrived the earliest is processed first or served first)
CR	The job sequencing priority is the ratio between the time remaining in the work remaining and is known as the critical ratio. Therefore, a job having the lowest critical ratio is sequenced first and vice-versa. Being a dynamic rule, it is mostly used in practice (Baker et al., 1960; Noor, 2007). The objectives that may be achieved by implementing this rule are the minimization of lateness and tardiness.
MP	According to this rule, jobs are sequenced according to the priority list provided by the management. That priority may be according to the importance level of a client with the management. According to Momin (1999), priority related to jobs is set in advance and provided as an input in the beginning of a schedule.

Over the years, many researchers (Baker and Dzielinski, 1960; Adam et al., 1980; Anderson et al., 1990; Holthaus et al., 1997; Dominic et al., 2004; Chiang et al., 2007) proposed heuristic dispatching rules for scheduling. Panwalkar et al. (1977), have carried out a comprehensive survey of scheduling heuristics. They presented reviewed and classified 113 dispatching rules. Chang et al. (1996), evaluates the performance of 42 dispatching rules using a linear programming. They found that the shortest processing time (SPT) rule consistently perform well and the longest processing time (LPT) consistently performs badly. In Table 3.1 most prominent heuristics used in the literature to solve real life scheduling problems are briefly described.

Rachamadugu et al. (1990), studied the performance SPT, FIFO, First in System (FIS), Least Work Remaining (LWR) and Fewest Remaining Operations (FRS) on important criteria such as the mean flow time and work-in-process inventory for FMS environment. Their comparative results indicate LWR performs better than the other rules. Grabot and Geneste, (1994), studied dispatching rules and proposed a hybrid rule by combining SPT and slack time rule. The combined rule has performed better than the single rule for all objectives. Holthaus et al. (1997), present two new dispatching rules for JSSP. These rules combine the process time and work content in the queue for the next operation on a candidate's job, by making use of additive and alternative approaches. After an extensive simulation study they concluded that It has been found that no single rule is effective in minimizing all measures of performance and recommended hybrid process time based rules in future work. Canbolat et al. (2004), combined SPT and CR rules for JSSP and used fuzzy logic in combination with these rules and named it fuzzy priority rule. They considered generalized JSSPs with 15 machines and 50 jobs, whose operation numbers are
between 3 and 6 . The comparative results for mean flow time, mean tardiness, WIP, total production value indicated that the hybrid methodology performed better than traditional rules. Dominic, Kaliyamoorthy et al. (2004), attempts to provide efficient dispatching rules for dynamic JSSP by combining (MWKR - FIFO and TWKR SPT) different dispatching rules. Their results also show that combined rules perform well under most conditions. Jayamohan et al. (2004), proposed five dispatching rules for JSSP with the aim to optimize different weights or penalties for different jobs. They tested the performance of their rules using the one-way ANOVA and Duncan's multiple range tests. One the basis of statistical analysis of the absolute values, they found that $\mathrm{PT}+\mathrm{PW}(\mathrm{WF}+\mathrm{WT})$ performed well for minimization of the weighted mean flowtime and weighted mean tardiness, weighted flowtime and weighted tardiness of jobs followed by the $\mathrm{W}(\mathrm{PT}+\mathrm{PW}+\mathrm{ODD})$ rule. For the maximum and standard deviation of weighted flowtime and weighted tardiness of jobs, the WSLACK, WODD, WCOVERT and WATC rules performed well. However, the choice of a dispatching rule is influenced by shop parameters such as due-date setting and utilization levels, and hence, the shop floor manager can evaluate. Chiang and Fu (2004), proposed a dispatching rule, Enhanced Critical Ratio (ECR), which uses 'group information' to prioritize jobs. Which is a combine concepts of SPT and EDD and LRT. They applied the rule to JSSP with an objetive of minimizing the tardy rate. However, this combined principle is only applicable to non-tardy jobs in ECR. Later, Chiang and Fu (2007), proposed an extension to their work (Chiang et al., 2004). This extended ECR rule is applicable to all jobs by introducing a due date extension procedure. Demirkol et al. (1998) JSSP benchmark cases were used for result comparison with 18 existing rules. The experimental result showed the advantage of the proposed rule on multiple criteria in different shop
conditions, especially when the tardy rate and the mean tardiness are the major concerns.

Kawai et al., (2005), proposed new dispatching rules based on SPT, LPT, MWKR (Most WorK Remaining), LOPN (Least OPeration Numbers) and SLACK (shortest due date). They applied three combined rules to 13 benchmark JSSPs. The first rule is the rule that combines two simple dispatch rules which are often adopted in actual production systems. These proposed rules results comparison with any single dispatch rule shows improved result.

Restrepo et al. (2008), proposed two fuzzy based dispatching strategies: fuzzy-job and fuzzy-machine is proposed and their performance is compared to two well known dispatching rules such as SPT and WEED (Weighted Earliest Due Date). On the basis of results from a total of thirty batches, they claimed that proposed fuzzybased methodologies especially fuzzy-job shows a superior performance compared to the traditional dispatching rules considered.

According to Morshed (2006), PDRs achieve results extremely quickly, however, the quality (deviations from optimum can be as great as 74\%) is very poor. Despite the deficiencies of dispatching rules, these are still most commonly applied techniques to the scheduling problems in practice, as they may provide good solutions in less time to complex problems in real-time.

One thing that can be concluded from the above discussion is that every rule is suitable for a certain condition and can achieve a certain objective, but when it comes to practice, there are a number of other related objectives too, that have to be taken into consideration. Combining these different rules or utilizing different
information about jobs, most effective approaches for scheduling can be developed which can fulfil multiple objectives. Hence there is a need for development of new heuristics which overcomes the deficiencies of traditional heuristics and more importantly perform well across different size of problems.

In chapter 4, two new heuristic rules are proposed for JSSP and are compared with traditional heuristics. Literature shows that the dispatching rules are suitable as an initial solution techniques therefore the proposed techniques are also for the initial solution generation of JSSP in the proposed Hybrid Genetic Algorithm (HGA) in chapter 5.

3.4.3 Review of Artificial Intelligence

Intelligence is the ability to learn, understand, solve problems and to make decisions (Negnevitsky, 2002). Before reaching this level, human thought process started with data, information and knowledge. Data are unprocessed facts and when assembled together, it becomes information. The interpretation of that information will then become knowledge, and adding experience to it will make the person intelligent. Artificial Intelligence (AI) is a field of knowledge in computer application development that attempt to imitate the human behavior in completing tasks . AI emerged as a computer science discipline in the mid 1950s and has since produced a number of powerful tools, many of which are of practical use in engineering in order to solve difficult problems normally associated with human intelligence (Pham et al., 1999). AI covers a range of applications. Some researchers have coupled Information Technology (IT) with AI for achieving a quick response to the market (Cheng et al., 1998).

Table 3. 2: AI Function and Techniques for Manufacturing (Teti et al., 1997)

Artificial Intelligence in Manufacturing		
AI Function	AI Techniques	Manufacturing Sectors
Advice	Genetic Algorithm	Design
Control	Neural Network	Production
Learning	Fuzzy logic	Planning
Knowledge	Neuro-Fuzzy	Scheduling System
Reasoning	Simulated annealing	Control
Goal Keeping	Expert System	Assembly
Communication	Knowledge Based System	Monitoring
Decision Making	Hybrid System	Inspection
Pattern Recognition	Multi Agent	Maintenance
Self-Improvement		
Self-Maintenance		
Self-Organized		

In AI, JSSP are represented analogously instead of mapping information to a number of subjective arithmetic computations (Morshed, 2006). Noronha and Sarnia (1991) presented a survey of several existing AI techniques and applied some approaches to planning and scheduling systems. Tati et al. (1997) categorized AI into its functions, techniques and manufacturing sectors as shown in Table 3.2. From Table 3.2 it is clearly evident that AI has been applied to a wide range of problems in the manufacturing environment including scheduling.

This section describes how AI techniques have been applied to JSSP, to ascertain the recent knowledge and information relating to scheduling, with the aim of acquiring knowledge in this area for the future design of a conceptual and actual scheduling model for manufacturing environment.

In the past ten years Al techniques, such as Knowledge Base System (KBS), Neural Networks (NN), Fuzzy Logic (FL), and Genetic Algorithms (GAs) have been extensively applied to scheduling problems. Three main methodologies (FL, NN and GA) are reviewed (basic and detailed) and analyzed in the following section. Many other Al techniques, such as Expert Systems (ES) / Knowledge Based Systems (KBS), Simulated Annealing (SA), Case Based Reasoning (CBR), Frame Based Systems (FBS), are also being applied to scheduling problems. However, the effect of these techniques applied to JSSP is limited.

3.4.3.1 Expert Systems (ES) /Knowledge Based System (KBS)

KBS or ES is a branch of AI. These are computer programs that require a specialized expertise without the assistance of a common sense knowledge for the day-to-day operations of all areas of industries (Rich et al., 1991). According to Awad (1995) "knowledge is understanding gained through experience or study which is the accumulation of facts, procedural rules, or heuristics". It requires familiarization in dealing with something in order for a person to perform a task. Andersson (2008) added that the definition of knowledge has been debated long before it was used in engineering back in the era of the ancient Greek Plato as "justified true belief". According to Andersson, knowledge can be arranged in the hierarchical form of a pyramid model as shown in Figure 3.2.

Figure 3. 2: Pyramid model, the hierarchy of data, information, knowledge and wisdom (Andersson, 2008)

Data are unprocessed facts, are static and have no meaning (for example, "the building is 800 meter heigh"). This data becomes informed after a certain assembling of facts process such as "it took two years to build the building". This information when interpreted by a person will become knowledge and adding experience to it, the person will have wisdom. As for the above example, it is not profitable to have this kind of building if the company wants to rent the building in one year time. In addition, tacit knowledge or explicit knowledge is a kind of knowledge that is difficult to express (Lintern, 2006) and is normally known to an individual, such as the painting skills. On the other hand, explicit knowledge is the knowledge that you are able to express, such as in manuals and procedures. Therefore, it is important to transform tacit knowledge into explicit knowledge in order to accommodate the transfer of knowledge, especially in building an expert system.

According to Mohamed and Khan (2011), an ES makes a decision in a narrow domain on the basis of input information (factual and domain knowledge) in a similar way to the human experts who decide on the basis of experience,
observation, knowledge and reasoning. Table 3.3 gives a brief comparison of human experts, ES and conventional programs.

Table 3. 3: Comparison of Human Experts, ES and other Computing Programs [Hussain 1998]

Human Experts	Expert System	Conventional programs
Knowledge exists in a compiled form.	Knowledge and compilation are separated.	Knowledge exists in the control structure for compilation.
Use knowledge in the form of a rule of thumb or heuristics in the given domain for a solution of the given problem.	Knowledge, in the form of rules is processed for reasoning in the given domain for s solution of the problem.	Data is processed through a series of well-defined algorithms to solve general numerical problem.
Capable of explaining the reasoning	Limited explanation of how a particular rule was fired and why a particular data was used.	Is unable to explain anything.
Can use inexact reasoning and deal with incomplete and fuzzy data.	The limited capabilities of inexact reasoning and can deal with uncertain and fuzzy data	Cannot deal with incomplete data and/or reasoning.
The quality of a solution can be better by learning from experience over a period of time, but the process is not cost effective and is inefficient.	The knowledge base can be easily broadened by the addition of new rules with the passage of time.	The quality of a solution can be improved over a period of time by rewriting the code and knowledge and the data, which becomes difficult.
Work with a parallel thinking mechanism and thus the conclusion is more realistic.	Cannot work with a parallel thinking Mechanism and thus solutions are not real world solutions.	Cannot think.

O'Kane (2000) used ES to provide decision making and control across FMS and recommended shift of emphasis from predictive scheduling to reactive scheduling. In a dynamic scheduling environment, Priore et al. (2001) used ES in the decision making stage i.e. select the most appropriate dispatching rule at each moment in
time. They also reviewed man-machine learning-based scheduling approaches. Metaxiotis et al. (2002) used ES for to select the most appropriate algorithm from a library of many candidate algorithms for scheduling. Benavides and Prado (2002) used ES for detailed scheduling problems. They used ES as a support tool for obtaining static system and optimize solutions of complex problems particularly when the developed system operates together with MRP II. Varela et al. (2003) presented the ES evolutionary strategy with bottleneck for scheduling problems where they introduce specific knowledge in the initial solution. Soyuer et al. (2007) developed ES for a scheduling system that is realistic and applicable to real life situations. They considered Job specification, machine competence, due date, earliest completion and minimum setup time factors. The algorithm achieves applicability and optimality of the solution. Recently, in job shop environment, the reduction of the standard deviation generated through the routing of production orders in manufacturing resources, Zattar et al. (2008) presented an ES which obtained this objective through the suggestion of the best machining route for each job order in a simulation, based upon historic simulation data (base of facts) and a set of rules.

3.4.3.2 Fuzzy Logic (FL)

Fuzzy Logic (FL) was introduced in 1930 by Jan Lukasiewicz, a Polish logician who studied the mathematical representation of fuzziness based on such terms as tall, old and hot (Negnevitsky, 2002). He introduced the extended range of truth values version of logic to all real numbers in the interval between 0 and 1 , contrary to the classical version which operates with only two values, 1 (true) and 0 (false), and used a number to represent a possibility that a given statement was true or false. This work led to an inexact reasoning technique, often called the possibility theory. Lukasiewicz's main contribution was the presentation of a simple fuzzy set (in his
paper appendix), which outlined the operation of the fuzzy set operations [republished by Pogorzelski, (1965)].

Black (1937), argued that a continuum implies degrees. "Imagine", he said, "a line of countless chairs." At one end is a Chippendale chair (a famous furniture designer in the mid $18^{\text {th }}$ century). Next to it is a near-Chippendale, in fact indistinguishable from the first item. Succeeding 'chairs' are less and less chair-like, until the line ends with a log. When does a chair become a log? The concept chair does not permit us to draw a clear line distinguishing a chair from not a chair. Black also stated that if a continuum is discrete, a number could be allocated to each element. This number would indicate a degree. But the question is, degree of what? Black used the number to show the percentage of people who would call an element in a line of 'chairs' a chair; in other words, he accepted vagueness as a matter of probability (Negnevitsky, 2002).

Zadeh (1965), rediscovered, identified, explored, and promoted fuzziness. Apart from a formal mathematical logic, he introduced a concept of applying natural language terms. This new logic of representation and manipulating fuzzy terms was called FL (Negnevitsky, 2002). According to Zedan (1965), "Fuzzy Logic is determined as a set of mathematical principles for knowledge representation based on degrees of membership rather than that on crisp membership of classical binary logic".

Figure 3. 3: Range of values in (a) Boolean and (b) Fuzzy Logic

Unlike two-valued Boolean logic, fuzzy logic is multi-valued, which deals with the degrees of membership and uses the continuum of logical values between 0 (completely false) and 1 (completely true). Instead of just black and white, it employs the spectrum of colors, accepting that things can be partly true and partly false at the same time, as shown in Figure 3.3.

Recently, Fuzzy scheduling models have attracted an increased interest among the scheduling research community (Petrovic et al., 2008) (Słowiński et al., 2000; Petrovic et al., 2008). Inexact scheduling parameters have been represented as fuzzy numbers and operations on them have involved fuzzy arithmetic. Parameters that are most often represented as fuzzy numbers are processing times and due dates (Ishibuchi et al., 1994; Ishii et al., 1995; Kuroda et al., 1996). However, there are models that deal with the Fuzzy job precedence relation and breakdown parameters of scheduling by employing fuzzy sets (Luh et al., 1994). Fuzzy sets have also been used to represent flexible constraints, the violation of which has to be minimized. Most often, the models included flexible temporary constraints, where the best schedule requested the least relaxation of release dates or due date constraints (Fargier, 1996). The discussed cases for scheduling were simple one-machine cases, while few authors in literature attempted complex cases such as job shop.

Sakawa and Kubota (2000) considered the fuzzy nature of the data in real-world scheduling problems with fuzzy processing time and fuzzy due-date. They formulated a multi-objective JSSP for six jobs, six machines and ten jobs, ten machines. This formulation was on the basis of the agreement index of fuzzy duedate and fuzzy completion time and these objectives not only maximize the minimum agreement index but also maximize the average agreement index and minimize the maximum fuzzy completion time. Chan et al. (2003) presented a real-
time fuzzy expert system to scheduling parts in a flexible manufacturing system (FMS). They applied FL to improve the system performance by considering multiple performance measures in scheduling rules by focusing on characteristics of the system's status, instead of parts, to assign priorities to the parts waiting to be processed. Canbolat and Gundogar (2004) presented a fuzzy priority rule (FPR) for JSSP. They used fuzzy logic to combine SPT, CR priority rules, and next machine's load (NML) in order to satisfy all objectives. They used fuzzy logic to calculate a priority value by considering SPT, CR, and NML. The FPR select job with the highest priority value of process. Chang et al. (2006) presents a fuzzy extension of the economic lot-size scheduling problem (ELSP) for fuzzy demands of their work. Also, a genetic algorithm governed by the fuzzy total cost function and fuzzy feasibility constraints is designed and assists the ELSP in search for the optimal or near-optimal solution of the binary variables.

Some recent successful implementation to operational or shop scheduling problems, which got satisfactory results and feasible solutions, follow, Petrovic, Fayad et al. (2008) used fuzzy rule based system logic for determining the lot-sizes of jobs in a real-world JSSP in the presence of uncertainty, using the following premise variables: size of the job, the static slack of the job, the workload on the shop floor and the priority of the job. The determined lots' sizes were input to a fuzzy multiobjective genetic algorithm for the JSSP. They modelled the imprecise jobs' processing times and due dates using fuzzy sets, with objectives as average weighted tardiness of jobs, the number of tardy jobs, the total setup time, the total idle time of machines and the total flow time of jobs for quality measure of the generated schedules. Mehrabad et al. (2009) successfully applied FL to a single machine scheduling problem. They aim to improve it to a real-world application. They
defined processing times and due dates of jobs are defined as fuzzy numbers and considered two objectives: average tardiness and number of tardy jobs for minimization. Lai and Wu (2009) obtained feasible results for flow shop scheduling problems with fuzzy processing times. They present a computational procedure to obtain the approximated membership function of the fuzzy completion time. With a ranking concept among fuzzy numbers, an objective to minimize the fuzzy makespan and total weighted fuzzy completion, the best schedule was searched; the processing times were assumed as fuzzy numbers. Zhang and Wu (2010) obtained a nearoptimal solution using decomposition based hybrid optimization algorithm for a large-scale JSSP, with the objective of minimizing the total weighted tardiness. They constructed a fuzzy inference system to calculate the jobs' bottleneck characteristic values that are used to guide the process of sub-problem solving in an immune mechanism in order to promote the optimum efficiency. Li et al. (2010) consider a single machine due date assignment scheduling problem with uncertain processing times and general precedence constraint among the jobs. They assumed processing times of the jobs as fuzzy numbers and presented the precedence constraint is a tree or a collection of trees (Petrovic et al., 2008).

Scheduling problem with uncertain processing times and general precedence constraint among the jobs. They assumed processing times of the jobs as fuzzy numbers and presented the precedence constraint is a tree or a collection of trees.

3.4.3.3 Simulated Annealing

In the early 1980s, Simulating Annealing (SA) was one of the popular algorithms used to tackle the combinational optimization problems. The ideas that form the basis of SA was Metropolis et al.'s (1953), an early work. He developed an algorithm to simulate the cooling process of metals in a heat bath known as
annealing. In annealing or cooling process of heated metals, the atoms align in an ordered manner and form a crystal, which is the state of minimum energy in the system or the global minimum. This method was independently described by Kirkpatrick, Gelatt et al. (1983). To adopt this analogy, SA uses temperature as the control parameter that is decreased by iterations until it gets close to zero (Teti and Kumara, 1997). Specifically, SA is a stochastic local search technique based upon principles of physics.

SA is a random search technique i.e. starts with initial random population and proceed until optimization is achieved. By comparison, both SA and GA start with an initial random population and proceed until optimization is achieved. SA simulates the metal cooling and freezing processes, whereas GA is based on the genetic processes. According to Bureerat and Limtragool (2008) the searching procedure of GA starts with an initial solution (known as a parent), which would be mutated during the process, leading to a set of children. Only the best offspring would then become a candidate for challenging its own parent. For minimization purposes, the parent would be replaced by the offspring if it had a lower objective value than that of the parent. The offspring, however, even though having a higher objective function value than that of its parent could still challenge its parent, provided that the Boltzmann probability accepted it. The best solutions and the parent are initially the same but they can be different during the optimization process. The iteration stops when the system is frozen or has reached the crystallized state.

The SA application is also being studied to solve the manufacturing cell formation problems (Wu et al., 2008). In cellular manufacturing, machines are allocated to process one or more part components so that each cell is operated independently to
minimize part movement. However, the problem with this type of manufacturing is to achieve the timing optimization (Wu et al., 2008). The allocation of machines in the cellular manufacturing normally depends on the parts' assignments. Therefore, the SA approach uses the strategy of searching for better neighborhood solutions to improve the current solution aiming to optimize quality. A neighborhood solution is defined as the possible movements among the cells.

Vanlaarhooven et al. (1992) describe an approximation algorithm (based on SA) for the problem of finding the minimum makespan in a JSSP. The generalization involves the acceptance of cost-increasing transitions with a nonzero probability to avoid getting stuck in local minima. The algorithm asymptotically converges in probability to a globally minimal solution. They compared the computational experiments and concluded that SA found shorter Makespan solutions than Adams, Balas et al. (1998), shifting bottleneck procedure at a higher computational cost. Yamada, Rosen et al. (1994), applied SA to JSSP. They used permutation procedure to generate new schedules from existing schedules. The SA probabilistically chooses, accepts or rejects the new schedule, allowing importance sampling search over the JSSP space. Their experimental results show that SA can find near optimal schedules and often outperforms previous SA adjacent swapping approach. Sadeh et al. (1996), applied SA to JSSP with tardiness and inventory costs. The algorithm shows significant increase in schedule quality reduced scheduled cost by 28% over the combination of thirty-nine traditional dispatching rules and release policies, though at the expense of intense computational efforts. The SA for some well-known analytical results on the convergence of simulated annealing (SA) do not hold on the application to the JSSP. To overcome this issue Kolonko (1999), proposed a new SAGen approach that uses a small population of SA runs in a GA framework, and
allow reheating in SA through an adaptive temperature control. They compared their results with Vanlaarhoven, Aarts et al. (1992), and found improvement in most of the considered JSSP benchmark problems. Ponnambalam et al. (1999) applied SA to JSSP with an objective of minimization of Makespan. Later Ponnambalam et al. (1999) SA (adjacent swapping: pairwise exchange, insertion, and random insertion based) to JSSP with an objective of minimization of Makespan. They compared their results and claimed that SA often gives better results with random insertion perturbation scheme (RIPS). Cruz-Chavez et al. (2004) proposed SAR (SA with restart) for the JSSP, which restarts with a new value every time the previous algorithm finishes with the condition that the initial value of the makespan of the schedule would not surpass a previously established upper bound. They considered FT10 and LA40 problem from The experimentation and compared their result with literature. The author claimed that for both the problem, the SAR is starting with the best schedules that do not surpass a UB, improves the solution considerably. Steinhofel et al. (2003) present a solution to the JSSP using a local search algorithm based on a simulated annealing method with the aim to optimize the $C_{\max }$ criterion. They found that a non-uniform sampling SA performed better than a uniform sampling SA when tested on JSSPs.

They attempted to experimentally analyze the energy landscape in order to avoid the local minima and find the optimum solution. They used what they called a nonuniform neighborhood', in which more than one swap was allowed to create neighborhoods. They found that the non-uniform neighborhood' performs better in finding the optimum than the uniform neighborhood' in which only one swap is allowed to find the next neighbor. The authors report some moderate success in improving the known upper bounds. However, their algorithm did not provide any
new optimal solution. Varadharjan et al. (2005) have discussed the Multi-Objective SA (MOSA) algorithm for flow shop scheduling problems to minimize the makespan and the total flow time. Two varieties of the proposed algorithm, called MOSA-I and MOSA-II, with different parameter settings with respect to temperature and epoch length, are considered in the performance evaluation of algorithms. Bozejko et al. (2009) presented two parallel SA (adjacent swap based) for the JSSP with the sum of job completion times criterion.

Most of the SA literature is a hybrid approach by using SA with some other techniques. Recently, Zhang and Wu (2010) presented a hybrid simulated annealing algorithm based on a novel immune mechanism for JSSP and Jamili et al. (2011) also presented a hybrid approach based on SA and particle swarm optimization. They conclude that the hybrid algorithms are more efficient and produce better results compared to the conventional SA.

3.4.3.4 Artificial Neural Networks

An ANN is a reasoning based computational model of human brain (Teti and Kumara, 1997; Negnevitsky, 2002). The ANN consists of a number of very simple and highly interconnected processors called neurons, operate in parallel and are analogous to the biological neurons in the brain (Noor, 2007). The neurons are connected by weighted links that pass signals from one neuron to the other. A neuron produces only one signal as an output, although it receives more than one input signal. A neuron which receives signals from its input links, computes a new activation level and sends it as an output signal which can be either a final solution or an input to another neuron (Negnevitsky, 2002). Figure 3.4 represents connections of a typical ANN.

Figure 3. 4: Architecture of a typical artificial neural network

McCulloch et al. (1943 \& 1990) proposed a very simple idea that is still the basis for most artificial neural networks. The neuron computes the weighted sum of the input signals and compares the result with a threshold value θ. If the net input is less than the threshold, the neuron output is -1 , but if the net input is greater than or equal to the threshold, the neuron becomes activated and its output attains a value of +1 .

ANNs are preferred over time consuming simulation approaches in some cases of manufacturing systems design. Manufacturing scheduling systems are not completely exposed to the ANN learning, capturing and predicting complex relationships between input and output variables' qualities (Akyol et al., 2008).

Negnevitsky (2002) described main ANN architectures in his book: Error correcting networks or Multilayer neural networks (Back-Propagation and Forward Propagation), Hopfield network, Bidirectional Meeran associative memory network and self-organising NN. Wang and Brunn (Wang et al., 1995) also provided analysis and review of these methods for JSSP. Jain and Meeran (Jain and Meeran, 1998) presented investigation and review of Back Error Propagation (BEP). They also introduced modified BEP Neural Networks (BEPNN) and applied it to JSSPs. Recently, Akyol et al. (2007) also presented an extensive review of these techniques and their characteristics.

Yang and Wang (2000) developed the first Constraint-Adaptive Neural Network (CSANN). They applied CSANN to JSSP. The author claimed that CSANN performed well when the expected makespan is suitably chosen. And when the specification of the expected makespan is too loose, the feasible solution searched may be not good enough, and when too tight or shorter than the optimum, the feasible solution cannot be obtained. Yang and Wang (2001) extended their work (Yang and Wang, 2000) of CSANN. They applied a combine CSANN with a new heuristic to JSSP for obtaining a non-delay schedule. Chen and Huang (2001) proposed a competitive network (fuzzy Hopfield neural network clustering technique) for JSSP. They referred and considered their previous work and considered the same problem (Cheng et al., 1999). Simulation results illustrate that imposing the fuzzy Hopfield neural network onto the proposed energy function provides an appropriate approach to solving JSSP. However, this method is not good for larger problems. Sabuncuoglu and Touhami (2002) examined robustness of using ANN as a simulation BPNs based meta-model to estimate manufacturing system performances. The JSSP model was simulated and the effects of various performance factors were studied. Their study shows that the meta-models were successful in discriminating between dispatching policies in this same context and the success of meta-modelling with NN depends on the combination of the system characteristics and the error assessment criteria, as well as the purpose of simulation applications. Akyol (2004), and Solimanpur et al. (2004), successfully applied NN to FSSP with minimization of Makespan as an objective function.

Shugang et al. (2005) applied hybrid Neuro-Fuzzy approach to JSSP with minimizing total weighted quadratic tardiness of all jobs as an objective. They used GA to train the hybrid network (EANN).

Zhao et al. (2005) applied hybrid ANN-GA approach to JSSP with minimization of Makespan as a criterion. They developed a Constraint Neural Network (CNN) to represent processing restriction resulting in higher speed and efficient algorithm compared to previous hybrid systems. To improve the accuracy of the fluctuation smoothing rules Chen (2009) proposed a hybrid fuzzy c-means (FCM)-BPNs for JSSP. They modified the well-known fluctuation smoothing rules with some innovative treatments. Their algorithm outperforms some previous existing approaches in reducing the average cycle time and cycle time variation at the same time.

Recently Yang, Wang et al. (2010), (Yang et al., 2010) applied CSANN-II, an extension of their original CSANN algorithm discussed earlier in this section, to JSSP. In CSANN-II, the topology corresponding to the resource constraints is simplified according to the online resource constraint satisfaction situation when it is running via a simple sorting algorithm. Consequently, CSANN-II's computational time per schedule is reduced over the original CSANN model. The algorithm outperforms three classical heuristic algorithms, which are widely used as the fundamental tools for advanced JSSP systems (Hart et al., 2005).

In essence, as the majority of NN methods are combined with other methods. The ANN alone is mainly successful in small problem sizes (Akyol and Bayhan, 2007; Maqsood et al., 2010). However, for optimization of larger problems and even in hybrid approaches NN usually not performed very well and but instead outperformed by other techniques. Consequently, NNs are not considered to be competitive with the best heuristics for larger optimization problems.

3.4.3.5 Evolutionary Computation

In operations research, Evolutionary Computation (EC) is a subfield of AI (more particularly computational intelligence) that involves combinatorial optimization problems. EC deals with Genetic Algorithms (GA), Evolution Strategies and Genetic Programming (GP). This approach is based on the computational models of natural selection and genetics. The following steps are followed in evolutionary computations (Goldberg, 1989; Negnevitsky, 2002).

- Create a population of individuals
- Evaluate their fitness
- Generate new population by applying genetic operators
- Repeat this process a number of times

In the following section, a general discussion about how the GA works and its application in the field of manufacturing scheduling is discussed.

3.4.3.5.1 Genetic Algorithm

Genetic Algorithms are a class of stochastic search algorithms based on biological evolution (Negnevitsky, 2002). A GA is inspired by Darwin's theory of evolution (Yeh et al., 2007) and refers to a model introduced and investigated by Holland (1975) and his students (e.g. DeJong, 1975), and later, other researchers (Goldberg, 1989; Davis, 1991) adapted these algorithms for designing solution methods for optimization problems. GAs are still one of the most popular optimization tools and are capable of being applied to an extremely wide range of problems. Jong (1993) in a paper "GAs are NOT Function Optimizers", tried to prove that GAs are potentially far more than just a robust method for estimating a series of unknown parameters within a model of a physical system. In literature, some researchers used GAs from
an experimental perspective and some focused on GAs as an optimization tool. Recently, GAs have been preferred over traditional methods for optimization problems due to their proven capabilities of solving many large problems. Coley (2005) has listed a range of practical optimization problems in his book "An Introduction to GAs for Scientists and Engineers", to which GAs have been successfully applied. A typical GA may consist of the following:
a) A population of solution 'guesses' to the problem. Rather than starting from a single point (or guess), GAs are initialized with a population of guesses. The population is normally random and spread throughout the search space. The initial guesses (or chromosomes) are held as binary encodings (or strings) of the true variables, although an increasing number of GAs use "real valued" (base-10) encodings.
b) A procedure to calculate the goodness or badness of individual solutions within the population. This is known as a selection procedure. For the selection of chromosomes, many methods are used such as the roulette wheel selection, tournament selection, rank selection and steady state selection.
c) A way of mixing fragments of the better solutions to form a better new solution.
d) A mutation operator to avoid permanent loss of diversity within the solutions.

As discussed earlier, GAs use a stochastic search method; the fitness of a population may remain stable for a number of generations (or iteration) before a superior chromosome appears. In such cases, the use of conventional terminating criteria is
problematic (Negnevitsky, 2002). Therefore, it is common practice to terminate a GA after a specified number of iterations. After termination, the chromosomes are examined for the best chromosome in the population and the GA is restarted if no satisfactory solution is found.

3.4.3.5.2 Encoding Problem

One basic feature of genetic algorithms is that it works on the coding space (chromosomes) and on the solution space (Evaluation) as shown in Fig. 3.5. Natural selection is the link between chromosomes and the performance of their decoded solutions (Cheng et al., 1996). In Holland's work, encoding is carried out using binary strings, since then various non-string encoding techniques have been created for JSSP, to which classical GA was difficult to apply directly (Ying and Liao 2004).

Figure 3. 5: Coding spaces and solution spaces (Chang et al., 1996)

Encoding of solutions to chromosomes is considered to be a key feature in GAs. There are three critical issues emerged concerned with the encoding and decoding between chromosomes and solutions in non-string coding approach as follows:

- The feasibility of a chromosome
- The legality of a chromosome
- The uniqueness of mapping.

The feasibility means that whether or not a solution decoded from a chromosome lies in the feasible region of a given problem. The legality means that whether or not a chromosome represents a solution to a given problem as shown in Figure 3.6.

Figure 3. 6: Feasibility and Legality (Chang et al., 1996)
The feasible region can be represented as a system of equalities or inequalities (linear or non-linear). In JSSP, the infeasibility of chromosomes is due to the precedence constraints and for which there is no better representation with a system of inequalities. Therefore, it also makes difficult to apply the penalty approach, which are not easily applied to handle such kind of constraints (Cheng et al., 1996). In JSSPs, the optimum typically occurs at the boundary between feasible and infeasible area. The penalty approach forces genetic search to approach to optimum from both feasible and infeasible regions.

The problem-specific encoding techniques normally causes the illegality of chromosomes, and such encodings usually yield illegal offspring. Hence, the chromosome cannot be decoded to a solution or evaluated. The penalty techniques are also inapplicable in such situation. Orvosh and Davis (1994) have shown that it is
relatively easy to repair an infeasible or illegal chromosome and these repair strategies which converts an illegal chromosome to a legal one, surpass other strategies such as rejecting strategy or penalizing strategy.

3.4.3.5.3 Genetic Representation of JSSP

In development of GA for JSSP, representation of solutions together with problem specific genetic operations are the key steps. Cheng et al. (1996), have classified representation scheme for JSSP and are still in used. Recently, Gen, Lin et al.(2008), discussed these nine schemes as shown in Table 3.4.

These representations can be classified into the following two basic encoding approaches: Direct approach and Indirect approach. In the direct approach, a schedule (the solution of JSSP) is encoded into a chromosome and GAs are used to evolve those chromosomes to find a better schedule. In the indirect approach, such as priority rule-based representation, a sequence of dispatching rules for job assignment, but not a schedule, is encoded into a chromosome and GAs are used to evolve those chromosomes to find a better sequence of dispatching rules. A schedule is than constructed through the sequence of dispatching rules. Table 3.4 , shows these schemes and research work related to each scheme in since their use. Moreover, new representation schemes and hybrid schemes, which are not listed in the table, are also discussed in this section.

Table 3. 4: Classification of representation (Cheng et al., 1996) and recent research in JSSP

Approach	Representation Strategy	Literature
Direct	Operation-based	(Fang et al., 1993), (Gen et al., 1994), (Liaw, 2000), (Wang et al., 2001), (Zhou et al., 2001; Zhou et al., 2004), (Park et al., 2003),(Pezzella et al., 2008),
	Job-based	(Bierwirth, 1995), (Bierwirth et al., 1996), (Ono et al., 1996), (Shi, 1997), (Braune et al., 2005), (Chang et al., 2006), (Noor and Khan, 2007), (Tariq, 2008), (Pan and Huang, 2009), (Tseng et al., 2009),(Maqsood et al., 2011)
	Job pair relation-based	(Yamada et al., 1991), (Pesch, 1993)
	Completion time-based	(Yamada and Nakano, 1992)
	Random keys	(Bean, 1994), (Norman et al., 1996) (Rothlauf et al., 2002), Goncalves et al. (2005), (Snyder et al., 2006), (Samanlioglu et al., 2008), (Chaudhry et al., 2008), (Kachitvichyanukul et al., 2011)
Indirect	Preference list-based	(Davis, 1985), (Falkenauer et al., 1991), (Croce et al., 1995), (Kobayashi et al., 1995)
	Priority rule-based	(Dorndorf et al., 1995), (Wu and Zhao, 2000), (Gao et al., 2007), (Gao et al., 2009)
	Disjunctive graph-based	(Tamaki et al., 1992)
	Machine-based	(Dorndorf and Pesch, 1995)

Biegel et al. (1990) successfully applied GAs to the JSSP (n jobs, 2 machines and n jobs, m machines) with a specific goal is to increase the throughput. They used string type representation. Their research indicates that GAs could be the appropriate tool to bring JSSP into a manageable arena. They identified future areas in the field and GAs limitations. The earliest direct approach, binary encoding based representation of precedence relationships of operations on the same machine was presented by Yamada and Nakano (1991). The tested their algorithm against FT06,

FT10 and FT20 benchmark JSSPs. Later on they presented an improved version (Yamada and Nakano, 1992) of their work based on Giffler and Thompson's (Giffler and Thompson, 1960) algorithm.They improved their work (Yamada and Nakano, 1992). They successfully found optimal for FT06 and FT10. However, FT20 results were 1184 compared to optimum result of 1165 at that time found by McMahon (1975). Fang et al. (1993) used operations-based representation of their Evolving Heuristic Choice (EHC). They applied EHC to open shop problem for minimization of Makespan, which performed better than Tabu Search on benchmark problems. Pesch (1993) combined a local search heuristics with GA (with job-pair based representation) to control sub-problem selections in his decomposition approach. The sub-problems are solved by a constraint propagation approach, which finds good solutions by fixing arc directions to FT problems.

The operation-based representation encodes a schedule as a sequence of operations and each gene stands for one operation. There are two possible ways to name each operation. One natural way is to use natural numbers to name each operation, like the permutation representation for TSP. Unfortunately because of the existence of the precedence constraints, not all the permutations of natural numbers define feasible schedules (Gen et al., 2008). Gen et al. (1994) proposed an alternative: they name all operations for a job with the same symbol and then interpret them according to the order of occurrence in the sequence for a given chromosome. They used GA in combination with B\&B methods for JSSP and successfully test (achieved optimum) their algorithm against FT06, FT10 and FT20 benchmark problem. Their FT20 result was 1175 with a relative deviation of 0.0085 . However, the solution in GA approach was the best at that time.

Bierwirth (1995) introduced job-based representation technique - mathematically known as "permutation with repetition" which was used to sequence the tasks of a JSSP on a number of machines related to the technological machine order of jobs. This single chromosome representation produces operation sequences with no illegality issues. As a consequence of the representation scheme the new crossover operator preserving the absolute order of a permutation. He applied his GA to FT, LA and ABZ problems. The results were encouraging and found near optimal for all problems and optimum for FT06 and LA30 problem. Later Bierwirth et al. (1996) analysis of three crossover operators and the behaviour was similar to the well known Order-Crossover for simple permutation schemes. They algorithm this time found more optimal solution of benchmark problems.

Ono (1996) propose a GA for JSSP and used a job sequence matrix. This Job based Order Crossover (JOX), preserve characteristics, the order of each job on all machines between parents and their children, and take account of the dependency among machines. The JOX's offspring are not always feasible, therefore they propose a technique to transform them into active schedules by using the Giffler and Thompson method (Giffler and Thompson, 1960). Recently (Tariq, 2008) has also used the same approach to JSSP. Shi (1997) presented a crossover technique which randomly divided an arbitrarily chosen mate into two subsets. This resulted offspring from this job based representation overcame the the problem of infeasibility in genetic generation. The applied to FT10 and FT20 benchmark problem and found optimum results. Recently, Noor (2007) applied using job-based developed by (Braun et al., 2004) in for GA and applied to JSSP.

Bean (1994) first introduced random key representation for GAs. With this technique, genetic operations can produce feasible offspring without creating
additional overhead for a wide variety of sequencing and optimization problems. Later, in their work (Norman and Bean, 1996) they successfully generalized the approach to the JSSP. Goncalves et al. (2005) used a random key alphabet and an evolutionary strategy identical to the one proposed by Bean (1994) in their HGA for the JSSP. The schedules are constructed using a priority rules in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained, a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches.

The first indirect approach, preference list-based representation was originally proposed by Davis (Davis, 1985) for a kind of scheduling problem. Falkenauer and Bouffoix (1991), used it for JSSP with release times and due dates. Croce et al. (1995) used this representation and applied to classical JSSP. They argued that the deduction procedure only generates non-delay schedules, and cannot guarantee it that the optimal solution is encoded. They gave a rather complex lookahead evaluation procedure to help the deduction procedure get an active schedule. However, Chen et al. (1996) referred to Baker (Baker, 1974) and claimed that the argument is not true, because when generating a non-delay schedule, the critical machine must first be identified. A critical machine is one which can start earlier and then select an operation which can be processed earliest on the critical machine. Kobayashi et al. (1995) also adopted a similar kind of representation in their work. The difference with the above method is that they use Gifller and Thompson's heuristic to decode a chromosome into a schedule.

Dorndorf and Pesch (1995) proposed a priority rule-based GA. They encoded the chromosome as a sequence of dispatching rules for job assignment and a schedule is
constructed with a priority dispatching heuristic based on the sequence of dispatching rules. GAs were used to evolve those chromosomes to find out a better sequence of dispatching rules. Dispatching rules are most frequently applied to solve JSSP.

Tamaki and Nishikawa (1992) proposed a disjunctive graph-based representation in their algorithm. Its resemblance is with job pair-based representation. Dorndorf and Pesch (1995) also proposed a machine-based genetic algorithm, where a chromosome is encoded as a sequence of machines and a schedule is constructed with Adam's (Adams et al., 1988) shifting bottleneck heuristic based on the sequence. They proposed a genetic strategy instead of enumerative tree search for JSSP. The GA was used to evolve a chromosome from a list of chromosome in machine order.

Matta (2009) used Liaw's (Liaw, 2000) approach for the basic open shop scheduling problem i.e. a chromosome was represented as a string of operations rather than as a string of jobs. That is, each gene stands for one operation and each operation is listed in the order in which they are scheduled. Matta (2009) used operations-based chromosome representation with the added dimension of a stage element or defined a gene as a two-dimensional array with the first element indicating the operation and the second element indicating the stage on which the operation is to be scheduled.

Gao et al. (2007) used Priority-based representation for GA and applied their algorithm to FJJSP three objectives: min Makespan, min maximal machine workload and min total workload. Later in another work Gao et al. (2009) applied their algorithm to a multi-objective scheduling problem.

Chaudhry and Drake (2008) used the permutation representation to a solution scheduling problem, i.e., a list of jobs is itself taken as a chromosome. For example, if in a flow shop scenario there are five jobs A-B-C-D-E, one chromosome according to permutation representation can be ABCED, while another could be DECAB. On the other hand, in a job-shop scenario if there are two jobs, each having three operations then the chromosome representation keeping in view the technological constraints (i.e., operation 2 of job 1 cannot be done unless operation 1 is finished and so on). Pan and Huang (2009) proposed HGA for No-wait JSSP with the objective of minimizing total completion time. A Job-based representation is used and genetic operation is defined by cutting out a section of genes of a chromosome and treated as a sub-problem, and is then transformed into an asymmetric travelling salesman problem (ATSP) and solved by Johnson et al.'s (Johnson et al., 2002) Nearest Neighbor (NN) algorithm and Patching (PA) .

Zhang and Wu (2010) successfully implemented a decomposition based hybrid optimization algorithm is presented for large-scale job shop scheduling problems in which the total weighted tardiness must be minimized. They used SA and GA to solve JSSP. They also used a fuzzy inference system to calculate the jobs' bottleneck characteristic values which depict the characteristic information in different optimization stages.

More recently Kachitvichyanukul and Sitthitham (2011) presented a two-stage GA (2S-GA) for multi-objective JSSP. The 2 S-GA is proposed with three criteria: min Makespan, min Total Weighted Earliness, and min Total Weighted Tardiness. In Stage 1 they applied parallel GA to find the best solution of each individual objective function with migration among populations. While in Stage 2 it combines the
populations and the evolution is based on Steady-State GA using the weighted aggregating objective function. The random keys representation is applied to the problem and the schedules produced using a permutation with m-repetitions of job numbers. 2S-GA performance was tested against benchmark instances. It shows that it has outperformed some of published traditional GA approaches.

Table 3. 5: comparative analysis of GA for FT06, FT10 and FT20 problems

Papers (GA)	FT06 Optimum $=$ 55	FT10 Optimum $=$ 930	FT20 Optimum $=$ 1165
Nakano (1991)	55	965	1215
Yamada (1992)	55	930	1184
Pesch (1993) - 2J-GA	55	937	1193
Pesch (1993) - JC-GA	55	937	1175
Pesch (1993)	55	937	1165
Storer/Wu/Park (1993)	55	954	1180
Gen et al., (1994)	55	962	1175
Mattfeld et al. (1994)	55	930	1135
Birewirth (1995)	55	936	1181
Dorondorf/Pesch (1995) - P-GA	55	960	1249
Dorondorf/Pesch (1995) - SB-GA	55	938	1178
Mattfeld (1996)	55	930	1165
Norman \& Bean (1997)	55	937	1165
Shi (1997)	55	930	1165
Cai et al., (2000)	55	930	1165
Wang and Zheng (2001) GA	55	997	1247
Park et al. (2003) PGA	55	936	1178
Goncalves et al. (2005) GA-PDR	55	930	1165
Baune et al. (2005)	55	930	1165
Morshed (2006) - GA-TS	55	930	1165
Noor and Khan (2007)	55	930	1165
Tariq (2008)	55	930	1165

The GAs have been applied to many benchmark problems. FT problems are common among almost all researchers. Therefore an overview of results from GAs applied to minimum-makespan JSSPs with different representation for the past years is
presented in Table 3.5. $1^{\text {st }}$ Column shows the author, $2^{\text {nd }} 3^{\text {rd }}$ and $4^{\text {th }}$ Column shows the result obtained by GAs for FT06, FT10 and FT20 benchmark JSSPs.

3.5 Literature Review Conclusion

The primary objective of this research is to study scheduling problems and their solution approaches in order to identify the area where useful concepts and techniques can be developed and their implementation can significantly contribute to performance improvement of these scheduling problems. The review indicates that computational intelligent techniques dominated literature on scheduling and considerable developments have been made in the recent years. However, these developments faced the inherent difficulty and still there is no heuristic with a guaranteed performance across all sizes of problem specially large problems. This is the reason that scheduling problems are considered to be the hardest optimization problems and there is a need of new approximation techniques which can guarantee that the approach produces optimum results.

The study of solution approaches applied to JSSP over the past few decades shows that GAs are dominating due to their search capabilities among all approaches. However, GA requires fine tuning in order to yield optimum result. Therefore, researchers shifted their focus mainly on hybrid approaches mainly combining GA with other AI techniques or introducing heuristics to main GA loops such as local search heuristics. The initial solution in GA or HGA can significantly effect the JSSP solutions. The fitter the initial solution the faster the GA will converge with a better solution. It is therefore recommended that a new heuristic rule-based systems must be developed which can provide stable results across the problem sizes and can be incorporated with AI techniques such as GA. Such heuristic rules and hybrid
approaches would not only be applicable to JSSP but also to solve other complex combinatorial and real life problems.

In the following chapter two new heuristics developed for scheduling problems are discussed and in chapter 6 their comparative analysis with other conventional heuristics is carried out.

CHAPTER 4

DEVELOPMENT OF NOVEL HEURISTIC RULES

4.1 Introduction

In scheduling literature, the terms such as scheduling rules, heuristic rules, dispatching rules, or priority rules are often used synonymously (Panwalkar and Iskander, 1977). In the past six decades, there has been a substantial growth in the field of sequencing and scheduling research. The heuristic scheduling rules that deal with the complexities of manufacturing under global competition are currently much sought after. These heuristics prioritize all jobs that are waiting to be processed on a resource. It is increasingly recognized that all the strengths of traditional operations' research, knowledge based systems, heuristic rules, Artificial Intelligence (AI) and sophisticated user interfaces will be necessary to build the needed system which can fulfil the future needs. Such successful integration of approaches has not really occurred yet, despite the fact that many systems have been built by researchers that attempt some integration.

According to Panwalkar and Iskander (1976), scheduling research can be divided into two main categories: theoretical research dealing with optimizing procedures limited to the static problems and experimental research dealing with scheduling rules in static and dynamic cases. Pinedo (1998), called this experimentation research in scheduling as scheduling in practice. He categorizes heuristic in general purpose procedure rules along with simulated annealing, tabu search, and Genetic Algorithm (GA).

This chapter describes a number of general purpose procedures (existing and new) that are useful in dealing with scheduling problems in practice is presented. These
procedures can be easily implemented with relative ease in industrial scheduling systems. All the procedures described are heuristics that do not always guarantee an optimal solution; instead they aim to find reasonably good solutions in a relatively short time. These heuristics are fairly generic and can be adopted easily to a large variety of scheduling.

The first section of this chapter gives a generalized heuristic, heuristic classifications and an overview of some selected traditional heuristic rules. In the second section, a procedure is developed and presented which is used to developed new heuristics and can be used in future for development of more heuristic rules. The procedure is based on human intelligience which analyzes and synthesizes existing rules followed by experiments on these rules with a view to improvement through techniques such as swap and delay. In the third section, the outcome of the analysis and the need for the new heuristic has been discussed. The final section, present two novel heuristics that have been developed, based on the literature review and experimental study conducted during this research.

The proposed heuristic rules are applied to selected benchmark JSSPs of different hardness in order to check their validity and effectiveness. The development of Hybrid Genetic Algorithm (HGA) based on the novel heuristic rules are discussed in Chapter 5 and Chapter 6 then covers the detailed performance analysis of the heuristic rules and HGA developed in Chapter 4 and Chapter 6 respectively.

4.2 Development of New Heuristic Rules

Every quality optimization model has certain common characteristics. They are developed in such a way that they can be applied as criteria of efficiency for any
existing or new optimization problems. The quality of optimization model is normally evaluated through its ability to fulfil the following common requirements:

- Validity
- Reliability
- Ease of testing
- Ability to interpret and compare
- Cost effectiveness

These features and a certain level of generalization of the rules and procedures must be fulfilled for the particular optimization problem to be sufficiently. In such generalizations, one should always keep in mind the need to foresee as many limitations as possible and the need to ensure the ability to upgrade as well as the flexibility of the model itself.

Figure 4.1 shows the research and development stages which led to the development of the two novel heuristics. As can be seen in the figure, the development process is divided into three main phases (i) need identification (ii) analysis and synthesis and (iii) new heuristic rules. The need identification is further divided into literature review of scheduling problems and their solution techniques (see Chapter 3 for detail). The analysis and synthesis are divided into study of existing heuristic rules, modification in existing rules using human intelligence, manual procedures, result comparison of the existing rules and modified rules. The new heuristic rules discussion is also divided into the procedure and validations of the two new heuristic rules.

Figure 4. 1: Phases of development of new heuristics

From the literature review, it has been concluded that AI tools have been the most extensively applied to scheduling problems. Mostly, the hybrid scheduling optimization models perform better than single tools. It was also noted that most GAs are combined either with another AI tool such as Artificial Neural Networks (ANN), Fuzzy Logic (FL), Simulated Annealing (SA) or with heuristic rules.

One of the research project objectives is to create a new heuristic based algorithm based on the conclusion of the literature review. Rather than using the existing AI tools and heuristic rules, which researchers have extensively applied to JSSPs, it was decided to develop new heuristic rules, which could perform better than the current rules. Therefore, a substantial amount of literature material was gathered and reviewed related to scheduling techniques applied to JSSP (see Chapter 3).

The processing time based heuristic rules applied to JSSP were mainly focused on the selection of objective function i.e. Makespan, from which it was identified that there is still need of some models which could be reliable, fast, effective and can easily be implemented to scheduling problems of any hardness and size.

As discussed the heuristics are normally intended to minimize the inventory and/or tardiness costs and therefore it is natural that they have a direct proportionality to the time period of flow time and tardiness of jobs respectively. They are also applied to JSSPs for minimization of total completion time and better machine utilization. On the basis of their nature of operation the heuristic rules can be classified into five categories:
(i) Processing time based rules e.g SPT
(ii) Due date based rules e.g EDD
(iii) Simple rules based on shopfloor condition in certain machine environments e.g Shortest Queue (SQ) first rule, which is a time dependent or dynamic rule
(iv) Combined rule i.e. combination of any rule in (i), (ii) and (iii).

The general processing time based rules perform better under tight load condition, whilst due date based rules perform better under light load condition (Conway, 1964; Chang et al., 1996; Rajendran et al., 1999). The choice of heuristic depends upon which criterion is to be met, for example, Makespan, mean flowtime or tardiness.

The typical processing time based SPT rule has often been used as a benchmark since this rule was developed and has been ranked on the top (Chang et al., 1996). These rules have been used by many practitioners and researchers (Conway, 1964; Panwalkar and Iskander, 1977; Pinedo et al., 1998; Rajendran and Holthaus, 1999; Zhou et al., 2001; Weckman et al., 2008) in their review and research for minimization of Makespan, whilst the due date or slack-related rules performed well in tardiness measures (Pinedo et al., 1998). The combined processing time and due date based rules are also used in minimization of Makespan and tardiness e.g. Minimum Slack (MS) rule, Critical Ratio (CR) rule etc. Ramasesh (1990), has presented an excellent report on some of these dynamic and popular heuristics.

In deterministic scheduling problems, it is common practice for researchers to assume that all jobs are available at the beginning of a scheduling period. Therefore, it is natural that many optimizations and heuristic algorithms have been developed for minimization of Makespan or total flow time or both. Many of the studies have therefore considered processing time based rules such as SPT, LPT, FIFO (Rajendran and Holthaus, 1999). In this research of deterministic scheduling problems, the optimization objective function selected is Makespan (for detail see Chapter 2). These heuristic rules are useful in finding optimal or near optimal schedules with a single objective. Therefore, the research analysis is narrowed down to processing time based and due date rules (with all releases and due dates zero) rules as they have proven to provide better solution comparatively and have been listed as key factors by Chang et al., (1996) in their performance review of 42 heuristic rules. Table 4.1 lists some of the better known heuristic rules or traditional rules applied to JSSPs.

Table 4. 1: List of some better known heuristic rules

S No.	Heuristic Rule
$\mathbf{1}$	FIFO - First In First Out
$\mathbf{2}$	LPT - Largest Processing Times
$\mathbf{3}$	SPT - Shortest Processing Time
$\mathbf{4}$	CR - Critical Ration
$\mathbf{5}$	EDD - Earlist Due Date
$\mathbf{6}$	MS - Minimum Slack
$\mathbf{7}$	WSPT - Weighted Shortest Processing Time

In literature, the Makespan comparisons or performance comparisons are made using the Relative Deviation (RD) measure or the Mean Relative Error (MRE), also known as the percent GAP (\% GAP). The measure \% GAP is the deviation of the Makespan value obtained by a particular heuristic from the optimum or the global Makespan. It represents a measure of the quality of the best global Makespan. The \% GAP for a particular heuristic is calculated from the best-known global or Lower Bound (LB) (or optimum Makespan) and the Makespan obtained from particular algorithm using the following relative deviation formula:

$$
\% G A P=\left[\frac{\text { Makespan found-Makespan optimum }}{\text { Makespan Optimum }}\right\rfloor \times 100 \quad \text { Equation } 4.1
$$

4.3 Analysis and Synthesis of the heuristics rules

During the development phase, an extensive literature review resulted in knowledge of existing heuristic rules and the procedures. This knowledge helped in avoiding any repetition of the work already covered in the literature. Figure 4.2 shows the next development phase or analysis phase after need identification phase. In the analysis phase, solutions obtained from existing rules in the form of Gantt charts are considered. Then gaps or idle machine times and the poor jobs, which are mostly
affecting the Makespan of the problems are identified. The poor jobs might be the last assigned job on a machine or the job with large waiting time on a machine.

Figure 4. 2: Analysis and synthesis of stage of heuristic rules

Once the identification procedure ends, some manual procedures or additional steps are applied to the solutions of the existing rules. These procedures naturally alter the solutions of the problems such as Makespan, tardiness or machine utilization. The impact of these procedures and results are recorded during the process. These results
from new procedure are then compared and best procedures are selected on the basis of the comparison. This selection process is called synthesis.

Manual procedures are carried out using drawing sheets, colour pencils and solutions in the shape of Gantt charts. In literature, these kinds of procedures or techniques are applied to solutions and are known as a human intelligence procedures. Each new technique or additional step applied to the existing solution is called an attempt in this research. These attempts are different in number depending upon the problem size. In small problems, the possibility of changes in either job's priority order or delaying a job for another is limited as compared to a larger problem. This argument is supported with detail examples in the next subsections. The manual procedure results are recorded and a comparison with the original solution for any improvement in the objective.

An important step in the analysis phase is determining which procedure is logical and can be formulated or put into the form of an algorithm. All the attempts are then assessed and formulated. Some attempts were found not logical, which were either discarded or further modified in order to transform it to a logical procedure. In the following subsections, the analysis phase is explained with an example problem. The Shortest Processing Time (SPT) rule is applied to this problem, which is considered the most commonly used rule for JSSP in literature and is found to be very effective in Makespan minimization of average measures (Chang et al., 1996).

4.3.1 Analysis of Example Problem

A simple three jobs and three machine example problem with best known optimum Makespan of 63 is selected initially for experimentation, as shown in Table 4.2. As discussed the main objective function is the minimization of the Makespan.

Therefore, the analysis carried out during development stages are focused on how to minimize the Makespan. In the example problem, each job consists of three operations and the machines' constraints are given. For example J_{1}, must be processed on Machines $\mathrm{M}_{1}, \mathrm{M}_{3}$ and M_{2} for 16, 21 and 12 units of time respectively. As mentioned, the analysis was carried out manually with the help of drawing sheets, rulers and colour pencils initially in order to study the effect of each step and modification by considering additional steps or techniques through human intelligence, with a view to develop a new heuristic rule.

Table 4. 2: Example process plan

Process Plan						
$\mathbf{J o b s}$	$\mathbf{O}_{\mathbf{1}}$		$\mathbf{O}_{\mathbf{2}}$		$\mathbf{O}_{\mathbf{3}}$	
	\mathbf{M}	PT	\mathbf{M}	$\mathbf{P T}$	\mathbf{M}	PT
$\mathbf{J}_{\mathbf{1}}$	1	16	3	21	2	12
$\mathbf{J}_{\mathbf{2}}$	1	15	2	20	3	9
$\mathbf{J}_{\mathbf{3}}$	2	8	3	18	1	22

Using the SPT rule the example problem is evaluated and the final schedule is shown in Figure 4.3. The X -axis of the figure shows time and the Y -axis shows different machines. The first, second and third subscript of Operation O, represents job number, operation number and machine number respectively. For example, O_{132} mean that Machine 2 loaded with Job 1 for Operation 3. This operation starts at time 84 and finish at time 97 , which is also the Makespan of the problem.

Figure 4. 3: Machine Gantt chart for example problem using SPT

By viewing the schedule or machine Gantt chart generated from SPT, visible gaps or idle machine intervals can be seen between the operations of batch jobs on each machine. For example, on Machine M_{2} a gap can be seen in between Operations O_{222} and O_{123}. This gap is actually representing an idle time of the machine or the time when a machine is not in use. An ideal heuristic must generate a gapless schedule i.e. each machine's utilization is 100%. Obviously, the Makespan will be equal to an optimal or lower bound. In order to achieve such a schedule, the sequencing of operations should be changed on one or all machines in order to look for all possible schedules. This process of 'playing' with operations on a machine is termed as experimentation in this research and each change or application of new or modified rule is called an attempt in this research.

4.3.1.1 Attempt 01

The first attempt is made by selecting J_{1} because its third operation $\left(\mathrm{O}_{123}\right)$ finish time is the Makespan time and the idle time in Machine M_{2} between O_{222} and O_{123} is the largest on the chart as shown in Figure 4.4. In order to reduce the idle time and improve the starting time of O_{123} its first Operation O_{111} is inserted in the gap between O_{211} and O_{331}, resulting in changing of O_{111} starting at 48 to 15 time units, as shown in Figure 4.4.

Figure 4. 4: Attempt 01 - Changing Job 1's Operation $1\left(\mathrm{O}_{111}\right)$ position on Machine 1

This kind of move always causes complexities in the procedures. These complexities can be one or more than one depending on the size of problems. In this particular problem, the move causes O_{111} to overlap with O_{331}. This problem can be sorted in many ways such as introducing a technique called delay. The delay technique will delay O_{331} a number of time units equal to the overlapped time units. For example in this problem, O_{331} is delayed by 5 time units as shown in Figure 4.5.

Figure 4. 5: Delay technique applied to $\left(\mathrm{O}_{331}\right)$ the problem

In such move, it is very important to check the legality and feasibility issues i.e. it should not violate the precedence constraints on any machine. In this case, the delay of O_{331} and movement of O_{111} to an early time position or starting time position does not affect the precedence constraints. Therefore, this experiment step is legal and can yield a feasible schedule. However, the O_{132} or O_{123} cannot be inserted in the void in between O_{312} and O_{222} or O_{323} and O_{233} respectively, because it will violate the precedence constraints as shown in Figures 4.6 and 4.7.

Figure 4. 6: Illegal move and infeasible schedule

Figure 4. 7: Illegal move and infeasible schedule

In Figure 4.8, the O_{111} affects the rest of the operation on Job 1. The O_{123} is moved to the position 44 time units as its starting point. Hence, O_{123} ends at 65.

Figure 4. 8: Attempt $01 \mathrm{O}_{123}$ movement
The O_{132} can also start early at 65 instead of 85 time units as shown in Figure 4.9. As a result, the overall completion time on Machine M_{2} is reduced to 77 time units, which is an improvement as compared to the actual 97 by SPT.

Figure 4. 9: Attempt $01 \mathrm{O}_{132}$ movement

4.3.1.1.1 Attempt 01 - Conclusion

From the illustrated example, with manual procedure or human intelligence, a reduction in the Makespan of the example problem is achieved. The insertion technique creates complexities such as overlapping of jobs on a single machine. As pre-emption is not allowed in JSSPs, so therefore an alternated procedure of delay technique is used in order to resolve the overlapping issue. The delay technique is effective and helps in improvement of Makespan solution and to produce a feasible solution.

It is also observed during the procedure that to identify a job for movement or insertion in a gap there is a need for few parameters, which are to be calculated, such as start time and finish time of each job on Gantt chart, idle times on each machine, waiting times of each job, processing times of each job, precedence constraints of each job, and current and next machine for each job during the process. Hence, there is a need of a procedure that can calculate this information and list in a table (array) form.

4.3.1.2 Attempt 02

Consider the same example initial problem solution shown in Figure 4.3 for a second attempt to reduce the Makespan. In this attempt, the initial first three steps are the same i.e. selecting J_{1}, and inserting its first Operation O_{111} in the gap between O_{211}
and O_{331} resulting changes in O_{111} starting 48 to 15 time units as shown in Figure 4.5. The third step is also the same as in Attempt 01 i.e. the delaying of O_{331} for O_{111} in order to avoid the violation of the given precedence constraints.

In this attempt, rather than moving O_{123} to a position of 44 unit of time it is inserted in the gap between O_{323} and O_{233}. In this case, the overlapping of operations can be seen on Machine M_{3} as shown in Figure 4.10.

Figure 4. 10: Attempt 1 (O_{123}) on the example problem solution (Gantt chart)

In JSSPs, the pre-emption is not allowed, therefore the delay technique is applied in order to resolve the tie between Job J_{2} and J_{1} for O_{123} and O_{233}, respectively. Hence, the O_{233} is delayed for 17 unit of time i.e. the end of O_{123} as shown in Figure 4.11.

Figure 4. 11: Delay technique applied to O_{233}
In the final step, the O_{132} is moved to a starting point of 52 time units, which is the only option left. Hence, this results in new lower Makespan value for the problem.

The new lower Makespan value is 64 on the final feasible schedule and is shown in Figure 4.12.

Figure 4. 12: Final schedule from Attempt 02

4.3.1.2.1 Attempt 02 - Conclusion

In this attempt, a similar procedure is used initially on machine i.e. M_{1}. For the second machine, rather than just moving rest of J_{1} operation to new starting points, O_{123} was inserted in between O_{323} and O_{233}. This resulted in overlapping and of jobs on a M_{3}. Since, pre-emption is not allowed in JSSPs, therefore a delay technique is used to resolve overlapping issue on M_{3}. On Machine M_{2} the only option of movement is applied and hence, a final feasible schedule is developed and with a better Makespan solution shown in Figures 4.10 to 4.12.

This attempt is also legal and can produce feasible schedules. However, it important that all the parameter should be available at the start of attempt as mentioned in Attempt 01 conclusions.

4.3.1.3 Attempt 03

Consider the same example problem solution shown in Figure 4.3 for another attempt to reduce the Makespan. Job J_{1}, is selected for this attempt the same way as mentioned in Attempts 01 and 02, for the first operation. In this attempt, instead of inserting a job in a gap, and its priority was changed. Instead of assigning it at the
end, O_{111}, it is assigned first and O_{211} is assigned last as shown in Figure 4.13. In other words, the positions of these two job Operations O_{111} and O_{211} was exchanged or swapped.

Figure 4. 13: Attempt 03 swapping or exchange priority on M_{1}

This swapping resulted in violation of precedence constraints. Therefore, the rest of the operations on each machines were also swapped i.e. the O_{123} and O_{233} were swapped on Machine M_{3}, as shown in Figure 4.14.

Figure 4. 14: Swapping of O_{123} and O_{233}
The schedule is still feasible and logical. However, if the same step is applied to the Operations O_{222} and O_{132}, it causes complications and the schedule will be illegal because the O_{132} (third operation of J_{1}) is executed before O_{123} (second operation of \mathbf{J}_{1}) as shown in Figure 4.15.

Figure 4. 15: Swapping of O_{222} and O_{132}

4.3.1.3.1 Attempt 03 - Conclusion

In this attempt a swapping or exchange priority procedure was applied to the problem. The exchange works fine for two steps, however, the final step, results in overlapping and violation of precedence constraints. Hence, a final schedule is not feasible and the swapping priorities turned out to be illegal.

Table 4. 3: Example process plan

Process Plan						
$\mathbf{J o b s}$	$\mathbf{O}_{\mathbf{1}}$		$\mathbf{O}_{\mathbf{2}}$		$\mathbf{O}_{\mathbf{3}}$	
	\mathbf{M}	PT	\mathbf{M}	PT	\mathbf{M}	PT
$\mathbf{J}_{\mathbf{1}}$	1	16	3	21	2	12
$\mathbf{J}_{\mathbf{2}}$	1	15	2	20	3	9
$\mathbf{J}_{\mathbf{3}}$	2	8	3	18	1	22

4.3.1.4 Attempt 04

Consider the same example problem solution shown in Figure 4.3 for another attempt to reduce the Makespan. Table 4.3 shows \mathbf{J}_{3} was assigned first because the processing time was the shortest among all and there was no tie of this job with others on the same M_{2} as well. However, for the first Operation O_{1} on Machine M_{1} there is a tie, the between Jobs J_{1} and J_{2}. To resolve the tie, the SPT rule selected J_{2} (Processing time 15) because its processing time was shorter than J_{1} (processing time
16). In this attempt, a procedure is developed and applied if there is tie of jobs on the same machine, the tie should be resolved in a way such that the longer processing time job should be assigned first. However, if there is no tie the jobs should be assigned using the SPT rule. Figure 4.16 shows that $\mathrm{Job}^{\mathrm{J}_{3}}$ with shortest processing time of 8 is assigned first. The tie on Machine M_{1} is resolved using larger instead of shorter processing times. Hence, J_{1} having processing time of 16 is assigned before J_{2} having processing time of 15 time units.

Figure 4. 16: Attempt 04 changing priority in case of tie for first operation

In Figure 4.17, the final schedule is shown with J_{2} assigned in last. The schedule is feasible, the procedure is legal, and it has shown some improvement in the Makespan.

Figure 4. 17: Final Schedule attempt 04

4.3.1.4.1 Attempt 04 - Conclusion

In this attempt rather than looking at the final schedule Gantt chart, the problem data was considered for evaluation of the schedule. The procedure resolved ties
between two or more than two job for same operation on a machine using larger processing time rule instead of SPT.. An improvement in the Makespan value is recorded. This attempt is legal and can produce feasible schedules. However, it important that all the parameter should be available at the start of an attempt, as mentioned in Attempt 01 conclusion.

4.3.1.5 Attempt 05

Consider the same example problem solution and the solution achieved by Attempt 04 as shown in Figure 4.17 and combine it with another procedure (Attempt 01) in order to reduce the Makespan. In this attempt, insert the O_{211} the gap between O_{111} and O_{331} as shown in Figure 4.18. The new starting time of O_{211} changed from 48 to 16 time units.

Figure 4. 18: Attempt 06 first step

This insertion move causes O_{211} to overlap with O_{331}. The delay technique is used to delay O_{331} a number of time units equal to the overlapped time units. For example in this problem, O_{331} is delayed by 5 time units as shown in Figure 4.19.

Figure 4. 19: Attempt 05 delay procedure to overlapped operations

The insertion and delay procedure is repeating on M_{2}, as shown in Figure 4.20. The start time for O_{222} is now 31 and O_{132} is delayed by 4 time units.

Figure 4. 20: Attempt 05 insertion on Machine \mathbf{M}_{2}

The only option left on M_{3} is the movement of O_{233} on M_{3} to a new starting position, which is exactly the ending time of O_{222}. The combined procedure reduced the Makespan and the process is legal. The final schedule is shown in Figure 4.21.

Figure 4. 21: Attempt 05 final schedule

4.3.1.5.1 Attempt 05 - Conclusion

In this attempt, a combined procedure of SPT, swap (resolve ties on longer processing time on same machine) and delay. The procedure yields a feasible
schedule and is legal. Here, again the need for availability of all parameters rose, which should be kept in consideration in the algorithm development.

4.3.1.6 Other Attempts

Similar kind of attempts have also been made on other problems with different size and hardness level. In Appendix F shows the Makespan or the result (Gantt charts) for FT06 and LA02 benchmark job shop scheduling problem with some of the new and the discussed legal procedures. The appendix shows results achieved (shown in Gantt charts) and briefly discussed. The appendix also shows applied to some selected benchmark JSSPs. During the attempts, it was observed that the complexities are larger in larger problem. Despite the fact that the attempts lead to better results in the case of smaller problems. The same procedures may lead to poor solutions or almost impossible processes, which make the procedure hard to be programmed. For example, when a simple procedure (Attempt 04) is applied Fisher and Thompsons (1968) - FT06, a six job and six machine problem, it yields a poor solution. Table 4.4 shows process plan of the FT06 problem.

Table 4. 4: FT06 process plan

Process Plan for FT06												
Jobs	O_{1}		O_{2}		O_{3}		O_{4}		O_{5}		O_{6}	
	M	PT										
J_{1}	3	1	1	3	2	6	4	7	6	3	5	6
J_{2}	2	8	3	5	5	10	6	10	1	10	4	4
J_{3}	3	5	4	4	6	8	1	9	2	1	5	7
J_{4}	2	5	1	5	3	5	4	3	5	8	6	9
J_{5}	3	9	2	3	5	5	6	4	1	3	4	1
J6	2	3	4	3	6	9	1	10	5	4	3	1

Figure 4.22 shows possible solution obtained using SPT rule. The Makespan achieved by SPT is 73 . Attempt 04 is applied to this problem. From Table 4.3 shows,
that there are six numbers of jobs are to be processed on six machines. For Operation 1 on Machine M_{3} three of the jobs $\mathrm{J}_{1}, \mathrm{~J}_{3}$ and J_{5} have a tie and $\mathrm{J}_{2}, \mathrm{~J}_{4}$ and J_{6} have tie on Machine M_{2}. According to the procedure used in attempt $04, \mathrm{~J}_{1}$ is to be assigned first to Machine M_{3} followed by J_{5} and J_{3} because J_{5} has larger processing time than J_{3}. Hence, the sequencing order will be J_{1} (having processing time of 1 unit), J_{5} (having processing time of 9 units), and J_{3} (having processing time of 5 units).

In next step, the $\mathbf{J}_{2}, \mathrm{~J}_{4}$, and J_{6} and ties for the same operation are resolved using the same technique. J_{6} (having processing time 3 units) will be assigned first followed by J_{2} (having processing time 8 units) and J_{4} (having processing time 5 units). In Figure 4.23 shows, the final schedule evaluated with Attempt 04 procedure. The resulted makespan value is poor as compare to the result achieved by SPT. The J2 is still the poor job and finished last.

Figure 4. 22: FT06 solution machine Gantt chart using SPT rule

Figure 4. 23: FT06 solution machine Gantt chart using Attempt 04

4.3.2 Development of Logic used for heuristic rule development

In Figure 4.24, a block diagram is given which shows the logical flow for development of heuristic rule algorithms. It shows that general solution procedure for JSSPs.

Figure 4. 24: Block diagram of the logic for development of heuristic rules

The algorithm, initially generates a feasible schedule using existing rules and record are the statistics i.e. processing time, in process current machine number, machine idles time, process starting time, process ending time, waiting time of a job for next machine, next machine number for operation. These statistics are used to identify the
'poor' job and in different step of procedure. The option for identifying poor job are listed as follow:
(i) job with maximum total completion time
(ii) Job with highest total processing time
(iii) Job with lowest processing time
(iv) Job with highest waiting time
(v) Job with lowest waiting time

Once the job is identified, a new single procedure or combined procedures are applied to the problem and checked for any improvement. If the schedule is feasible, the Makespan is recorded and the procedure is terminated.

4.4 Outcome of the Analysis and Synthesis

The existing need identification, followed by brainstorming of ideas, and subsequent experimentations with existing rules resulted in ideas and techniques for the development of new heuristic rules. These new techniques were then incorporated in the existing techniques and their solutions were analysed. With the implementation of the new techniques, improvements were recorded in the solution of the problems compared to the solution of the existing heuristics.

It was also observed that the newly developed procedure yielded mostly valid results. However, in the case of large scheduling problems the complexities increase. To resolve these complexities different procedures are combined to evaluate a feasible schedule. For example, the overlapping issue is resolved by introducing the delay technique in the procedure, the logic of which is shown in Figure 4.24. However, programming this logic for a new procedure was very difficult and in few cases (such as the delay technique) is not practically possible. Thus the program should be able to identify when and where to use these techniques.

In the above section, the attempts were explained with an example 3×3 JSSP for performance analysis and potential improvement. The objective function selected was Makespan minimization. The known Makespan value of the problem is 63 units of time. The SPT rule initially achieved a Makespan value of 97 with a \%GAP of 53.96 with the best known optimum result. In the process, different techniques such as swapping, inserting in gap, changing priority, and delay were applied individually and in combination. Most of the procedures are legal and yielded feasible schedules. However, the combination of two procedures is key to improvement in the Makespan of a problem. For smaller problems the procedure are simple and are easily implemented. While in the case of larger problems the complexity and implementation of the procedure become very hard.

Among the techniques, 'filling' gap or inserting and changing priorities share a common ground and the programming of these techniques are comparatively easy than programming delay. Therefore, a combined technique of filling gaps, inserting and changing priority was termed as swap technique. The swap technique exchanges the position on the same machine, akin to a changing priority procedure and 'fills' gaps like inserting procedure. Another procedure was also incorporated which sorts job on the basis of processing time in ascending order, opposite to the SPT rule. In the following section, the swap technique is applied to the same problem cited earlier in order to check its performance and gauge its performance.

4.4.1 Consideration of Swap technique to SPT

In order to understand how the swap technique works, consider the same example problem (3x3 JSSP) cited earlier in Table 4.2. For Operation O_{1}, the candidate jobs are J_{1} (with processing time as 16), J_{2} (with processing time as 15), and J_{3} (with processing time as 8). In simple SPT rule, J_{3} with processing time of 8 should be
assigned first. Instead, J_{2} with processing time 15 , which is greater than J_{3} and lesser than J_{1} will be selected and assigned first to the respective machine, followed by J_{1} and J_{3}, will be assigned in the last. Hence, the procedure ignores the job with shortest processing time and assigns rest of the jobs based on SPT rule. The ignored job was then assign last in operation one. A similar pattern is followed for the rest of the operations. The final schedule obtained from this swapping technique with SPT is shown in Figure 4.25

Figure 4. 25: SPT with Swap rule

In Table 4.4 comparisons of the performance of SPT and SPT with the swap is shown. The results for SPT with the swap is obtained through the procedure described and are listed in the third column. The results show that there is an improvement in the Makespan value by 3 units of time. The new Makespan value is 92 with a $\%$ GAP of 46.31 from the optimum result.

Table 4. 5: Performance comparison of SPT VS SPT with Swap

Performance parameters	SPT	SPT with Swap
LB	53	53
Best Known Optimum	63	63
Makespan found by SPT $\left(\boldsymbol{C}_{\max }\right)$	97	92
Maximum Tardiness $\left(\boldsymbol{T}_{\max }\right)$	97	92
Total Flow Time $\left(\sum C_{j}\right)$	189	235
Number of Late Jobs	53.96	3
\% GAP with Best Known Optimum		46.31

The algorithm is allowed to swap again and this time the algorithm ignors the first two job with shortest processing time and prioritizes with the third job with shorted processing time among all candidate jobs. For example consider the same example, for Operation O_{1}, the candidate jobs are J_{1} (with processing time as 16), J_{2} (with processing time as 15), and J_{3} (with processing time as 8). In simple SPT rule, the sequencing order will be J_{3} with processing time of 8 will be assigned first followed by J_{2} and then J_{3}. However, in second iteration of the swap technique first J_{3} is assigned followed by J_{2} and J_{1}. The final schedule obtained from this additional iteration is shown in Figure 4.26.

Figure 4. 26: Schedule obtained from swap $2^{\text {nd }}$ iteration
In Table 4.5 comparisons of the performance of SPT and SPT with the swap is shown in $1^{\text {st }}$ and $2^{\text {nd }}$ column. The results for SPT with the swap for $2^{\text {nd }}$ iteration is
obtained through a similar procedure and are listed in the $3^{\text {rd }}$ column. The results show that the Makespan in first iteration was 92 with a $\%$ GAP of 46.31 from the optimum result and 63 with 0% GAP from optimum. To conclude, the SPT rule with swapping technique is an effective rule. This technique can be applied in order to achieve better Makespan value because it allows the practitioner or researcher to search in the solution space for a number of iterations equal to the number of jobs. Hence, the chance of achieving optimal or near-optimal solution increases. The computational cost is also very low and this algorithm can easily be adopted to any scheduling problem.

Table 4. 6: Performance comparison of SPT VS SPT with Swap

Performance parameters	SPT	SPT with Swap	SPT with Swap (2 nd Iteration)
LB	53	53	53
Best Known Optimum	63	63	63
Makespan found by SPT $\left(\boldsymbol{C}_{\max }\right)$	97	92	63
Maximum Tardiness $\left(\boldsymbol{T}_{\max }\right)$	97	92	63
Total Flow Time $\left(\sum C_{j}\right)$	3	3	176
Number of Late Jobs	53.96	46.31	0.00
\% GAP with Best Known Optimum			

4.4.2 Consideration of Swap technique with Normalized Processing Time

During the analysis it was observed that all the heuristic rules directly take the processing time and do not incorporate the effect of other processing times for remaining of operations. Therefore, it was decided to normalize the processing time and convert them into a range of values from 0 to 1 . These values are called IVals in this research. The IVal are then sorted in ascending order and the schedules are developed with the help of these values, which has eventually led to a novel
heuristics i.e. Index Based Heuristic (IBH). IBH is explained in detail in the coming sections with and without swap technique.

4.5 Conclusion of the study

In this section, one existing heuristic SPT rule was selected and applied to the same 3 x 3 JSSP for performance analysis and potential improvement. The objective function selected was Makespan minimization. The known Makespan value of the problem is 63 with a LB (calculation shown) of 53 units of time. The SPT initially, achieved a Makespan value of 97 with a \%GAP of 53.96 with the best known optimum result. In the process, a swapping technique was applied to the SPT and the performance parameter Makespan was recorded. An improvement was recorded in Makespan when the swap technique was applied with SPT and in second iteration, it found the optimum result. This achievement of the optimum result is due to the characteristics of the swap technique, which actually do a local search with number of iterations equal to the number of jobs. Hence, the swap technique is an effective tool.

During the experimentation and analysis procedure it was observed that the processing based heuristic rules normally do not consider the effect of remaining operation's processing time of the same job. During the brainstorming phase a need for a heuristic arose which should consider the effect of all operation's of a job. This idea led to the development of Index Based Heursitc (IBH) rule. This rule normalizes the processing times and assigns a normalized values or index values to processing times. The rule uses the normalized values and prioritises the jobs on the basis of these values. The effect was studied and improvement was recorded. The swap technique was also tried with IBH in order to do a local search, which yielded improved results.

This IBH rule was developed and implemented alone and with a swap techniques (see Section 4.6.1 for details). The shortcoming of the IBH rule, discussed in the next section led to the development of a combined or Hybrid Heuristic (HybH) Rule. The HybH rule combines the IBH with Finished Job Based (FJB) rule. The success of the benchmark JSSPs of different sizes using these new heuristic rules determinied their final algorithm steps.. A detail performance analysis of both these two heuristics is presented in Chapter 6 (see Sections 6.2 and 6.3).

4.6 Novel Heuristics

The processing time based heuristic rules normally do not consider the effect of remaining operation's processing time of the same job. In the above sections of the development phases, during the analysis and synthesis phase a need for a heuristic arose which could consider the effect of all operation's of a job into account. This idea lead to the development of Index Based Heursitc (IBH) rule. This rule was developed and implemented alone and with a swap techniques (see Section 4.6.1 for detail). The performance of this rule was check against a test-bed of JSSPs of different sizes and hardness (see Section 6.2). The shortcoming of IBH rule discussed in next section lead to develop a Hybrid Heuristic (HybH) Rule which combines IBH with Finished Job Based (FJB) rule (see Section 4.6.2). The performance of HybH is also check against the same test-bed of JSSPs used for IBH.

In the following sections, the procedure for both IBH and HybH is explained in detail with the same example, used to illustrate the earlier algorithms.

4.6.1 Index Based Heuristic Rule

In this section, the Index Based Heuristic (IBH), a novel approach for solving scheduling problems with an objective of minimizing the overall Makespan $\left(\mathrm{C}_{\max }\right)$ is
presented. The proposed heuristic calculates the indices, called Index Values (IVal) of the candidate jobs and then assigns the jobs to the available machine in the ascending order of the index values, i.e., jobs with lower index values are assigned first. This assigning process is similar SPT, in that the SPT rule selects the operation on the basis of the shortest processing time whereas, the IBH selects the operation on the basis of lower IVal. To minimize the idle time between jobs, a swap technique is introduced at a later stage if the algorithm initially fails to achieve the optimum value, when all candidate jobs have been assigned. The swap technique takes the candidate jobs for a machine and swaps them without violating the precedence constraint (explained in the next section). Several benchmark JSSPs from the literature are solved in order to check the validity and effectiveness of the proposed heuristic. Results show that the proposed IBH based algorithm has outperformed the traditional heuristics and is a valid methodology for scheduling optimization.

Figure 4. 27: Proposed IBH algorithm for the job shop scheduling problem

Figure 4.27 shows a flowchart which represents the proposed novel IBH algorithm. The IBH algorithm consists of the following steps:

Step 1: The IBH based algorithm for a given processing plan and Processing Times (PT), initially converts the PTs to Index Based Values (IVal) for each candidate job. Once the conversion is completed, the jobs for each operation are sorted in an ascending order with respect to their IVal.

Step 2: The sorted jobs are then assigned to the respective machines in an ascending order for all the operations. For example, the candidate jobs for the Operation O_{1} will
be assigned on the basis of the ascending order of the IVal, followed by the remaining jobs for operations.

Step 3: When all the candidate jobs on the respective machines are allocated, the algorithm records the maximum time taken by a machine amongst all the machines as the minimum Makespan value.

Step 4: The calculated Makespan Value is then compared with the known Global Makespan Value. If the calculated Makespan is greater than the global Makespan value, the swap algorithm is used to attempt calculate a better schedule. This swap technique swaps two jobs on the same machine without violating the precedence constraint of jobs by selecting the next second lowest IVal (see example in next subsection).

Step 5: The output data from the schedule for each job is in terms of its PT, start time, end time, waiting time, next machine, idle time and flow time. These outputs are then used to produce the final Gantt chart with the minimum Makespan.

4.6.1.1 Example Problem

A same simple example cited earlier is taken from literature (Gen et al., 2008) of 3jobs and 3-machines with Makespan 63, given in Table 4.7, is used to illustrate the IBH. Gen et. al. (2008), have used this example and compared few well known conventional techniques. The result from the IBH is compared with the conventional heuristics rules results.

Table 4. 7: Process plan for three jobs and three machines (3x3)

Process Plan						
$\mathbf{J o b s}$	$\mathbf{O}_{\mathbf{1}}$		$\mathbf{O}_{\mathbf{2}}$		$\mathbf{O}_{\mathbf{3}}$	
	\mathbf{M}	PT	\mathbf{M}	PT	\mathbf{M}	PT
$\mathbf{J}_{\mathbf{1}}$	1	16	3	21	2	12
$\mathbf{J}_{\mathbf{2}}$	1	15	2	20	3	9
$\mathbf{J}_{\mathbf{3}}$	2	8	3	18	1	22

Table 4.7 shows the process plan for JSSP. For example, J_{1} that has three Operations $\mathrm{O}_{1}, \mathrm{O}_{2}$, and O_{3}, on M_{1} (with a Processing Time (PT) unit of 16), M_{3} (with a PT unit of 21), and M_{2} (with a PT unit of 12) respectively.

The IBH initially takes and converts the PT to Index Based Values (IVal). Table 4.8 shows the index-based representation of the problem.

Table 4. 8: Index Based representation of process plan

Process Plan: Index Value Based									
Jobs	O_{1}			O_{2}			O_{3}		
	M	PT	IVal	M	PT	IVal	M	PT	IVal
J_{1}	1	16	0.32	3	21	0.63	2	12	1
J_{2}	1	15	0.34	2	20	0.68	3	9	1
J_{3}	2	8	0.16	3	18	0.45	1	22	1

The IVal (which is a normalized value) for any job is calculated by adding all the processing times for the job and then dividing the sum by the processing time of the remaining operations. For example, in \mathbf{J}_{2}, the index value is $\mathbf{0 . 3 4}[15 /(15+20+9)]$ for Operation $\mathrm{O}_{1}, \mathbf{0 . 6 8}[20 /(20+9)]$ for O_{2}, and $\mathbf{1}[9 /(9)]$ for O_{3}.

Table 4.9 shows trace table. In $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ columns it shows the task, operations for jobs, and respective IVals for each job. The $4^{\text {th }}$ column shows the job, operation number and the machine on which the candidate job is to be processed prioritized by

IBH. In $O_{i k j}$ index i represents job number, k represents an operation number and j represents machines number. $5^{\text {th }}$ column represents the corresponding processing time for each candidate job, and in the $6^{\text {th }}$ column the scheduled operations are shown.

Using trace table (See Table 4.9) for the operation selection process, the schedule can be constructed by using equation 4.2 as follows, and Figure 4.28 illustrates a Gantt Chart showing the schedule for IBH dispatching rule.

Schedule $S=\left\{\left(O_{i k j}\left(t_{i j k}-t_{\mathrm{ijk}}^{F}\right)\right\} \quad\right.$ Equation 4.2

Where
$t_{i j k}$ Shows starting time of an Job's (J_{i}) Operation j on Machine M_{k}.
t_{ijk}^{F} Shows ending time of an Job's $\left(J_{i}\right)$ Operation j on Machine M_{k}.

$$
\begin{aligned}
& S=\left\{O _ { 3 1 2 } \left(t_{312}-\right.\right.\left.t_{312}^{F}\right), O_{111\left(t_{111}-t_{111}^{F}\right)}, O_{211}\left(t_{211}-t_{211}^{F}\right), O_{323}\left(t_{323}-t_{323}^{F}\right), O_{123}\left(t_{123}\right. \\
&\left.\left.-t_{123}^{F}\right), O_{222}\left(t_{222}-t_{222}^{F}\right), O_{132}\left(t_{132}-t_{132}^{F}\right), O_{233}\left(t_{233}-t_{233}^{F}\right), O_{331}\left(t_{331}-t_{331}^{F}\right)\right\} \\
& S=\left\{O_{312}(0-8), O_{111}(0-16), O_{211}(16-31), O_{323}(8-24), O_{123}(24-45), O_{222}(31\right. \\
&\left.-51), O_{132}(51-63), O_{233}(51-58), O_{331}(31-53)\right\}
\end{aligned}
$$

Table 4. 9: Trace table for example problem

Task	Operation Number	Index Values	Selected Operation to be processes	PT for selected operation	Scheduled Jobs
l	$\boldsymbol{O}_{\boldsymbol{i}}$	$\boldsymbol{I V a l}=V_{i j k}=V_{\text {(job)(operation)(mach) }}$	$\boldsymbol{O}_{\boldsymbol{i k j}}$	$\boldsymbol{p}_{\text {ikj }}$	$\boldsymbol{S}(\boldsymbol{l})$
1	$\left\{O_{111}, O_{211}, O_{312}\right\}$	$\begin{gathered} V_{111}=.32 V_{211}=0.34 \\ V_{312}=0.16 \end{gathered}$	O_{312}	8	$\left\{0_{312}\right\}$
2	$\left\{O_{111}, O_{211}, O_{323}\right\}$	$\begin{gathered} V_{111}=0.32 V_{211}=0.34 \\ V_{323}=0.45 \end{gathered}$	O_{111}	16	$\left\{O_{312}, O_{111}\right\}$
3	$\left\{O_{211}, O_{323}, O_{123}\right\}$	$\begin{gathered} V_{211}=0.34 V_{323}=0.45 \\ V_{123}=0.63 \end{gathered}$	O_{211}	15	$\left\{O_{312}, O_{111}, O_{211}\right\}$
4	$\left\{O_{323}, O_{123}, O_{222}\right\}$	$\begin{gathered} V_{323}=0.45 V_{123}=0.63 \\ V_{222}=0.68 \end{gathered}$	0_{323}	18	$\left\{O_{312}, O_{111}, O_{211}, O_{323}\right\}$
5	$\left\{O_{123}, O_{222}, O_{331}\right\}$	$V_{123}=0.63 V_{222}=0.68 V_{331}=1$	0_{123}	21	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}\right\}$
6	$\left\{O_{222}, O_{331}, O_{132}\right\}$	$V_{222}=0.68 V_{331}=1 \quad V_{132}=1$	O_{222}	20	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}\right\}$
7	$\left\{O_{331}, O_{132}, O_{233}\right\}$	$V_{331}=1 V_{132}=1 V_{233}=1$	O_{132}	12	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}\right\}$
8	$\left\{0_{331}, O_{233}\right\}$	$V_{331}=1 V_{233}=1$	O_{233}	9	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}, O_{233}\right\}$
9	$\left\{0_{331}\right\}$	$V_{331}=1$	O_{331}	22	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}, O_{233}, O_{331}\right\}$

The Makespan achieved by IBH for the problem is 63 as shown in Figure 4.28. Gen et al. (2008), have applied SPT, Longest Processing Time (LPT), Longest Remaining Time (LRT), Shortest Remaining Time (SRT), and LRM rules to the same problem and the reported Makespan values for each of the heuristic rules are 77, 100, 63, 97, and 63 respectively. The SPT, LPT and SRT rules failed to achieve the optimal result of a simple problem, where as IBH performed, well and archived the optimum value. Thus shows that the IBH rule is an efficient and reliable new technique and has a tendency to achieve optimal results.

Figure 4. 28: Gantt chart for IBH rule

In case the IBH failed to achieve the Makespan optimum value, the decision module will allow it to generating another schedule by re-constructing a schedule on the basis of the $2^{\text {nd }}$ lower IVal in the assignment of task. The procedure is the same as shown in Table 4.9. For example, instead of an operation O_{312} the schedule will start constructing from Operation O_{111}. This result from the IBH is illustrated in the Gantt chart shown in Figure 4.29. In Figure 4.28, the IBH has achieved the optimal value therefore, the second iteration result is poor than the first iteration shown in Figure 4.29. The IBH algorithm terminates when it reaches global optimum.

Figure 4. 29: Final schedule after swap technique
The IBH is applied to a set of selected benchmark JSSPs in order to test its performance (see Chapter 6, Section 6.2).

4.6.2 Hybrid Heuristics

The IBH technique alone without swap techniques often yields larger Makespan and with swap technique IBH take longer time in the convergence. Therefore, a Hybrid Heuristic (HybH) solution approach for scheduling problems is developed to overcome the deficiencies of IBH. The proposed HybH is a combination of the IBH and the Finished Job Based (FJB) Heuristic. Various techniques are tried in a hit and trial process, in order to develop a stable hybrid heuristic which would not only yield (near) optimum results but also converge quickly. The HybH or IBH-FJB performed better on different size of the problem (See Chapter 6, Section 6.2.1). The HybH assigns the first operation to a job using the IBH and the remaining operations on the basis of FJB. The FJB gives priority to the job with the earliest finished operations i.e. the first idle job among candidate jobs is prioritized, without violating the constraints of process order. The proposed HybH is explained with the help of a detailed example (see Section 4.6.2.1). Several benchmark problems from the literature are solved to check the validity and effectiveness of the proposed heuristic in Chapter 6.

The algorithm steps that are followed in the proposed heuristic is summarized in the flowchart shown in Figure 4.30. The proposed HybH consists of five steps as follows:

Step 1: For the first operation, assign jobs to machines using IBH.

Step 2: Using IBH for the first operation, attempt different combinations (equal to the number of operations) for the best possible schedule and therefore evolves a schedule for each combination. During a schedule evaluation, record output data such as the job processed, next process due, start time for each process and finish time for each process. When an operation is completed, delete that operation from the list of all possible operations for a job.

Step 3: For the remaining operations, use the HybH to assign jobs to machines using the proposed FBJ schedule. The FBJ takes candidate job and assigns it to the available machine for the next operation, keeping the precedence constraint.

Step 4: Repeat the procedure until all the jobs are processed for all the operations on the basis of the earliest finished time.

Step 5: Find the maximum from amongst the highest of finish times for all the processes, i.e., Makespan.

Figure 4. 30: Proposed hybrid heuristic (HYBH) for job scheduling problem

4.6.2.1 Example Problem

Consider the same example used for IBH i.e. 3 jobs and 3 machine JSSP with Makespan of 63, given in Table 4.10 is used to illustrate the HybH. Table 4.9 shows trace table for the example using HybH techniques.

Table 4. 10: Trace table for example problem

Task	Operation Number	Index Values	Selected Operation to be processes	PT for selected operation	Scheduled Jobs
l	$\boldsymbol{O}_{\boldsymbol{i}}$	$I V a l=V_{i j k}=V_{(j o b)(o p e r a t i o n)(\text { mach })}$	$\boldsymbol{O}_{\boldsymbol{i k j}}$	$p_{i k j}$	$\boldsymbol{S}(\boldsymbol{l})$
1	$\left\{O_{111}, O_{211}, O_{312}\right\}$	$V_{111}=.32 V_{211}=0.34 V_{312}=0.16$	O_{312}	8	$\left\{0_{312}\right\}$
2	$\left\{O_{111}, O_{211}, O_{323}\right\}$	$V_{111}=0.32 V_{211}=0.34 V_{323}=0.45$	O_{111}	16	$\left\{O_{312}, O_{111}\right\}$
3	$\left\{O_{211}, O_{323}, O_{123}\right\}$	$V_{211}=0.34 V_{323}=0.45 V_{123}=0.63$	O_{211}	15	$\left\{O_{312}, O_{111}, O_{211}\right\}$
4	$\left\{O_{323}, O_{123}, O_{222}\right\}$	O_{312} finished assign Next	O_{323}	18	$\left\{O_{312}, O_{111}, O_{211}, O_{323}\right\}$
5	$\left\{O_{123}, O_{222}, O_{331}\right\}$	O_{111} finished assign Next	0_{123}	21	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}\right\}$
6	$\left\{O_{222}, O_{331}, O_{132}\right\}$	O_{211} finished assign Next	O_{222}	20	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}\right\}$
7	$\left\{O_{331}, O_{132}, O_{233}\right\}$	0_{123} finihed assign Next	O_{132}	12	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}\right\}$
8	$\left\{O_{331}, O_{233}\right\}$	O_{211} finished assign Next	O_{233}	9	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}, O_{233}\right\}$
9	$\left\{O_{331}\right\}$	O_{323} finished Assign Next	0_{331}	22	$\left\{O_{312}, O_{111}, O_{211}, O_{323}, O_{123}, O_{222}, O_{132}, O_{233}, O_{331}\right\}$

The Makespan achieved by HybH for the problem is 63 as shown in Figure 4.31. The result indicates that HybH also has a tendency to achieve optimal results. It can be observed that the result from HybH resemble IBH in this particular example. However, its results from benchmark JSSPs are quite encouraging and discussed in detail in Chapter 6.

Figure 4. 31: Gantt chart for HybH

4.7 Conclusion

In this chapter, development stages for two novel heuristic rules are presented in detail. In the analysis and synthesis phase, it was also observed that the newlydeveloped procedures yield mostly valid results. However, in the case of larger problems the complexities increase. To resolve these complexities different procedures are combined to evaluate a feasible schedule. For example, the overlapping issue is sorted by introducing the delay technique in the procedure. The logic or algorithm seems very simple. However, to program this logic for new procedures was very difficult and few of the problem are not practically possible to solve.

During the analysis and synthesis phase, it was observed that the swap technique is easy to implement and can be programmed easily. Experimentation on the swapping technique showed improvement in the Makespan value and was also the most
effective of all the procedures tried in the analysis phase. During the experimentation phase, it was also observed that the existing rules do not take the effect of other operations or their processing time into consideration. Thus, led to the concept of normalization and finally IBH. This IBH showed encouraging results and with the introduction of the swapping and FJB techniques, it outperformed many existing heuristic rules.

The chapter has covered the development of these heuristic rules is explained with the help of examples. However, a detailed performance analysis is carried out on a test bed of JSSPs with different sizes and hardness in Chapter 6 (see Sections 6.2 and 6.3). The proposed heuristic rules overcome the deficiencies in the traditional existing heuristics for manufacturing process scheduling.

In this research, only the HybH has been used in the main GA loop because of the reason that HybH performed better than IBH on benchmark problem JSSPs. The HybHis used in the evaluation process and the calculating initial solution of the benchmark problems. The evaluation process in a GA for the JSSP is a key step that determines the fitness of the objective function. The IBH can also be applied in combination with GA for the evaluation process. Therefore, future work shall focus on hybridization of IBH with other optimization techniques. The IBH shall also be applied to some larger size benchmark problems and real scheduling scenarios.

CHAPTER 5

HYBRID GENETIC ALGORITHM FOR JOB SHOP SCHEDULING PROBLEMS

5.1 Introduction

The Job Shop Scheduling Problem (JSSP) is a difficult combinatorial optimization problem. In the past, exact methods have been used to provide optimal solutions for scheduling problems. However, these methods are very expensive and difficult to solve in real time, especially in larger scheduling problems where the computational complexity grows exponentially. Therefore, in the past four decades, researchers have been developing novel intelligent optimization techniques in order to solve these types of problems. Despite the recent progress in optimization techniques, there are still many instances in which intelligent optimization techniques become trapped in local minima. Therefore, there is a need to develop algorithms that effectively explore and navigate the solution space and provide optimal solutions. This chapter highlights a novel heuristic based Genetic Algorithm (GA) or a Hybrid Genetic algorithm (HGA) with the aim of achieving optimal or near-optimal solutions for benchmark JSSPs. The chapter also presents the detailed GA approach used to encode the JSSP, different genetic parameters and parametric analysis (sensitivity analysis) for a wide range of benchmark JSSPs. The results from the HGA evaluation and their analyses are provided in the final section.

5.2 Genetic Algorithms (GAs) for scheduling

A GA has been one of the most popular optimization tools and is capable of being applied to an extremely wide range of problems (Goldberg, 1989; Gen et al., 2008; Low and Yeh, 2009; Pan and Huang, 2009), although some researchers have used GAs with an experimental perspective. According to Low and Yeh (2009), a GA is
especially suitable for combinatorial optimization problems since it can simulate more phenomena of living systems than any other evolutionary algorithm. Moreover, unlike other popular conventional search techniques that start a global search from only one initial point and search sequentially, the GA starts its global search simultaneously from many initial points or a set of initial solutions called a population, satisfying boundary and/or system constraints to the problem (Gen et al., 2008; Xu et al., 2011). Hence, compared with the other optimization techniques, a GA probably has the highest possibility of reaching the global optima in a defined time interval and makes the best compromise between solution effectiveness and efficiency. However, in the case of NP-hard scheduling problems such as the JSSP, it is widely accepted that any single tool may not be able to find optimal or nearoptimal solutions.

5.3 Hybrid Genetic Approach to the Job Shop Scheduling Problem

From the review of each AI techniques in Chapter 3, it was concluded that each technique has strengths and weaknesses in scheduling NP-hard problems. Therefore, many recent works are based on hybrid frameworks consisting of GAs which have performed better than simple GAs. The GA can be hybridized either with another AI technique or with a conventional heuristic algorithm (Noor, 2007). In Chapter 3, hybrid genetic algorithms based on heuristics, local search and AI for JSSPs were also reviewed in detail.

From the literature review, it was concluded that solutions to deterministic JSSPs depend on the significance of selecting the best heuristic rules and meta-heuristic techniques with few or no assumptions about the problem and which can search very large spaces of candidate solutions. The novel heuristic rule HybH and metaheuristic tools such as the GA have been proposed as search tools for the hybrid
model. Although a GA is simple to describe and program, its behavior can be complicated due to its exploitation features. GA solutions are based on various elements that are not separated, but enclosed within the original elements. The proposed HybH rule is used to generate the initial solutions and store the chromosomes with the fittest value in the initial solution pool. The computational experiments showed that the HybH yield fitter the initial solutions compared to other conventional heuristic rules (See Chapter 6 for results and performance analysis) which enables GA to provide better overall solutions.

5.4 Development of Hybrid Genetic Algorithm for the JSSP

The GA is hybridized by introducing a novel heuristic HybH into the loop of the GA as shown in Figure 5.1. The development of the proposed HybH has been covered in Chapter 4 in detail. It has outperformed the traditional heuristics and produced comparatively stable results across the benchmark JSSPs [Chapters 6 and (Maqsood et al., 2011)]. The HybH is incorporated in the GA loop in such a way that it evolves and records each generation's best chromosome, schedule and Makespan.

The process terminates when the solution reaches the best known Makespan value or reaches the set number of generations. This procedure for $H G A$ is explained with the help of a flow chart in the following steps that are further explored in the sections to follow:
i. Initialize the population randomly.
ii. Decode each solution and calculate its fitness value using the HybH .
iii. IF the initial search (HybH) achieves the best known Makespan value THEN Stop, ELSE repeat for number of iterations equal to the number of jobs.
iv. IF the initial search terminates THEN place the fittest in the initial chromosome in the population pool.
v. Select the best chromosomes for crossover. The best chromosome is the one which is with a best Makespan value among chromosomes generated in the initial solutions by HybH and stored in the population pool.
vi. IF children are illegal THEN repair, ELSE go to next step.
vii. Evaluate the children and place them into the population.
viii. Randomly select a chromosome and carry out mutation.
ix. Evaluate the mutated chromosome and place it into the population.
x. Select the next generation by Stochastic Universal Sampling (SUS).
xi. Select the best chromosome of the generation.
xii. Evaluate each recorded chromosome using the HybH and record the events and statistical data for the Number of Parts, Number of Operations, Arrival Time, Waiting Time, Start Time, Processing Time, Machine Idle Time, Finish Time and the Next Machine on which the job is to be processed.
xiii. Using the data obtained in Step xii, record the Makespan $\left(\mathrm{C}_{\text {max }}\right)$ of each machine.
xiv. Add Increment to the value of 'Gen $=K$ ' $($ Gen $\leftarrow G e n+1)$.
xv. IF Gen < Max Gen (Maximum number of generations, i.e., 200 discussed in Chapter 6), THEN repeat Step v to Step xiv, ELSE go to the next step. xvi. Stop.

Figure 5. 1: Proposed hybrid Genetic Algorithm

5.4.1 Genetic Algorithm (GA)

This section covers the concepts of GA coding, representation of a JSSP in GA and its evaluation strategy with the help of examples.

5.4.1.1 Chromosome Representation and Initialization

Because of the existence of the precedence constraints of operations, JSSP is not as easy as the Traveling Salesmen Problem (TSP) to find a representation (Gen et al., 2008). A key step in building a GA for JSSP is to devise an appropriate representation of solutions together with problem-specific genetic operations in order that all chromosomes generated in either initial phase or evolutionary process will produce feasible schedules. This is a crucial phase that conditions all the subsequent
steps of GAs. In the past twenty years, the following nine representations for JSSPs have been proposed:

- Operation-based representation
- Job-based representation
- Job pair relation-based representation
- Preference list-based representation
- Priority rule-based representation
- Completion time-based representation
- Random key-based representation
- Disjunctive graph-based representation
- Machine-based representation

The sequence and precedence constraint among operations for a job must be maintained in the schedule. According to Gen et al. (2008), in a job-based representation a list of n jobs and a schedule is constructed according to the sequence of jobs. For a given sequence of jobs, all operations of the first job in the list are scheduled first, and then the operations of the second job in the list are considered. The first operation of the candidate job is allocated as the best available processing time for the corresponding machine that the operation requires, then the second operation, and so on until all operations of the job are scheduled. The process is repeated with each of the jobs in the list considered in the appropriate sequence. Any permutation of jobs corresponds to a feasible schedule. If there are n jobs, the permutations of n will give the job sequence. For example, if there are three jobs $(1,2,3)$, one of the chromosomes is represented as [2 311] which is a permutation of 3 jobs. Many researchers (listed in Table 3.4) have used this representation for static scheduling.

2	3	1

Figure 5. 2: An example of Job-based Chromosome

Consider the same three-job three-machine problem given in Table 4.1. Suppose a chromosome is given as shown in Figure 5.2, where 1 stands for $\mathbf{J o b}_{1}, 2$ for $\mathbf{J o b}_{\mathbf{2}}$ and 3 for Job J_{3}. The first job to be processed is Job J_{2} with the operation precedence constraint for J_{2} is [M1, M2, M3] and the corresponding processing time for each machine is $[15,20,9]$. First, Job_{2} is scheduled as shown in Figure 5.3a. Then Job J_{3} is processed. Its operation precedence among machines is [M2, M3, M1] and the corresponding processing time for each machine is [8, 18, 22]. Each of its operations is scheduled in the best available processing time for the corresponding machine the operation required as shown in Figure 5.3b. Finally, Job J_{1} is scheduled as shown in Figure 5.3c.

5.4.1.2 Legality and Feasibility of Chromosomes

During the chromosome generation process, it is very important to look into the legality and feasibility of each chromosome. Legality refers to whether or not the chromosome represents a solution to the problem; feasibility refers to whether the chromosome gives a feasible solution to the problem when decoded. According to Cheng et al., (1996), any permutation of jobs corresponds to a feasible schedule and in this representation every chromosome is a permutation of n as discussed in an earlier section, therefore there are no legality or feasibility issues. The chromosome can be easily decoded to an active schedule through any heuristic/dispatching rule. In
this research, chromosomes are decoded by the developed HybH within GA loop, explained in the next Section.

Figure 5. 3: Gantt chart for job-based representation (Gen at al., 2008)

5.4.1.3 Evaluation and fitness

For the purpose of evaluation, the Makespan $\left(C_{\max }\right)$ is chosen as the measure of performance or fitness of an individual chromosome in the problem domain. The fitness function establishes the basis for selecting chromosomes that will be used in the reproduction process. Each chromosome is decoded using the novel heuristic

HybH and its Makespan $\left(C_{\max }\right)$ is calculated. The evaluation procedure employed during this research is shown in Figure 5.4 and explained in the form of a stepwise procedure as follows:
i. Start by reading the benchmark problem for processing time and sequencing order.
ii. Convert the obtained data to IVals and sort the job order for the HybH.
iii. Identify the candidate job, its operation number and the machine on which the operation is to be performed.
iv. IF the candidate job is for the operation O_{1} on the machine AND also has the lowest IVal, THEN assign that job to the respective machine with an assumption of arrival time value as zero, followed by the next lower IVal job to be assigned until all jobs for O_{1} are assigned, ELSE go to step 6.
v. Record the statistical data for the first operation as discussed in Section 5.4, in 9 columns, and using this data, assign the rest of the jobs on the basis of FJB heuristic.
vi. Calculate the overall completion time for all the operations and determine the maximum completion time $\left(C_{m a x}\right)$ from amongst the completion times from individual machines.
vii. 'IF Calculated $C_{\max }>C_{\max }$, THEN $i \leftarrow i+1$, ELSE record Calculated $C_{\max }$ and Go to Step x.
viii. IF $i<$ Population Size, THEN repeat Steps iii through vii, ELSE go to the next step.
ix. Makespan $\leftarrow C_{m a x}$.
x. Stop.

Figure 5. 4: Evaluation Procedure

5.4.1.4 Initial Population

A GA is a parallel search tool and requires an initial set of chromosomes in order to start the search. In the published literature, various heuristic or dispatching rules such as the FIFO, SPT are used to generate the initial set of chromosomes. In this research, HybH rule is used to generate the initial set of solutions as discussed in Chapter 4 and (Maqsood et al., 2011). The total number of chromosomes created by using the HybH is equal to the number of jobs. From the results of the HybH rule
(see Chapter 6, Section 6.2.1), it can be seen that it has outperformed the traditional heuristics and performed well across a range of problems, producing high quality solutions. Therefore, seeding these initial populations will yield high-quality solutions and experiments have shown it helps the search tools in finding optimal or near-optimal solutions.

5.4.1.5 Selection

In literature, there are many selection techniques based on the Darwin's Theory of Evolution for the selection of parent from a finite number of chromosomes. The parent chromosome is selected with a probability related to their fitness. Highly fit chromosomes have a higher probability of being selected for mating than the less fit. In this research, Stochastic Universal Sampling (SUS) technique developed by Baker (Baker, 1987) is used for selection of choromsome because in the reproduction of offspring SUS exhibits no bias and minimal spread. It uses a single random value to sample all of the solutions by choosing them at evenly spaced intervals, which simply means that this gives a chance to poor members of the population (on fitness basis) to have a chance to be chosen. Hence, SUS helps in reducing the unfair nature of fitness-proportional selection methods (Baker, 1987). Recently, Chipperfield et al. (2011) and Pohlhein (2009) have used SUS in their work and applied it to JSSPs. Other methods like a roulette wheel performs poorly if the population has a really large fitness in comparison with other members.

Using a comb-like ruler, SUS starts from a small random number, and choose next candidates from the rest of population remaining, not giving the fittest members to saturate the candidate space. In the SUS technique, initially the chromosomes with their fitness values obtained from the HybH are mapped over a line. Then, equally spaced pointers are placed for the selection of N chromosomes. The distance
between the pointers is given by $1 / \mathrm{N}$ and the position of the first pointer is given by a randomly generated number in the range $[0,1 / \mathrm{N}]$ (Noor and Khan, 2007).

Figure 5. 5: Stochastic Universal Sampling

Consider the random number in the range $[0,0.167]$ to be 0.1 , and the first pointer falls on 0.1 , which is between $0.0-0.18$ as shown in Figure 5.5. Thus, select Chromosome No. 1. Then the next pointer will fall on $0.267(0.1+0.167)$, between 0.18-0.34, and hence select Chromosome No. 2, and so on. The chromosomes selected through the SUS method will be $\{1,2,3,4,6$, and 8$\}$ as shown by the pointers.

5.4.1.6 Crossover

Once a pair of chromosomes is selected for mating from the current population, the crossover operator is used for the reproduction of the child chromosomes for the next generation. There are various types of crossover operators as discussed in Chapter 3 (Section 3.6). In this research, due to the job-based representation a job-based crossover technique proposed by Braune et al. (2005) is applied to the selected parent chromosomes for the production of offspring or child chromosomes with different identities from those of the parents as shown in Figure 5.6. Noor (2007) applied the same crossover technique in his research.

Figure 5. 6: Job Based Crossover Scheme

In the crossover process, initially two parents (P_{1} and P_{2}) are randomly selected. The genes (\leq total number of gene/2) are randomly selected, which will be preserved in the child from one of the parents and the remaining genes will be replaced by those from the second parent. For example Genes 3,5 and 7 have to be preserved in the child and are copied to the offspring chromosome Child C1 in the same absolute positions as in its Parent P_{1}. The remaining vacant positions will be copied from the Parent P_{2} and are shown as underlined. A similar procedure is adopted for the Child C_{2}.

5.4.1.7 Mutation

The crossover and mutation operators of the GA complement each other for the effective exploration of the solution space. For the mutation operation, a randomly selected gene (but not the last one) is exchanged with the next adjacent gene. This kind of the mutation process suits the job-based representation and yields a feasible mutated offspring. For example consider Child C_{1}, where the genes or Job 5 and Job 1 are randomly selected and are then mutated as shown in Figure 5.7.

Figure 5. 7: Mutation Process

The process continues until 10% randomly selected genes of the total number of genes in the population get mutated.

5.4.1.8 Evaluation and selection of the final solution

For each offspring chromosome, the HybH is applied to record the final statistical data for generating the Gantt chart and records the Makespan value. The process will terminate once the condition is satisfied, i.e., either the calculated Makespan value equals global Makespan or the HybH runs for the maximum number of generations.

5.4.2 Sensitivity analysis:

The performance of the GA technique is mostly dependant on a few critical parameters such as the number of generations, population size and crossover and mutation rates. No technique is yet known to find the best combination of the parameter set for optimum output of the a GA (Maqsood et al., 2011). However, exploring more solution space or, in other words, large numbers of population and generation, tend to provide the optimal or near-optimal solutions at high computational costs, with a large number of these two characteristics, it will be very difficult to find the best combination of crossover and mutation probability. For these reasons, the generation number and population size for all the benchmark problems have been taken as 100 and 50 respectively, based on literature recommendations (Morshed, 2006; Tariq, 2008). These suggested values have not only reduced the computational costs but have also helped in finding the best possible combinations of Crossover Rates (XR) and Mutation Rates (MR). The best
combinations of XR and MR are very important parameters which enable schedulers to save time in producing schedules.

To carry out the sensitivity analysis of the developed HGA, a set of benchmark problems is selected, from literature as shown in Table 5.1.

Table 5. 1: Selected Benchmark problems from literature

Problem Code	Source	Instances Machs \times Jobs	Known Optimum Value
FT 06	Fisher and Thompson, (1963)	6×6	55
FT 10	Fisher and Thompson, (1963)	10×10	930
LA 01	Lawrence, (1984)	10×5	666
LA 06	Lawrence, (1984)	15×5	926
LA 11	Lawrence, (1984)	20×5	1222
LA 12	Lawrence, (1984)	20×5	1039
LA 26	Lawrence, (1984)	20×10	1218
LA36	Lawrence, (1984)	15×15	1268

For each experiment, a wide range of the Crossover Rates (XR) of 0.1 to 1.0 and Mutation Rates (MR) of 0.01 to 0.10 are taken. The experimental results are shown in bar charts in Figures 5.8 to 5.15 . Each bar chart represents the MR on x-axis and the Makespan on y-axis. As it can be seen in Figures 5.8 to 5.15 , the HGA has achieved the global Makespan value in most of the cases. For cases FT06, LA06, LA11 and LA12, the GA has achieved the optimal values. However, the XR-MR combinations for the cases LA06, LA11, and LA 12 show no effect. This is due to the fact that LA06 and LA12 are computationally easy problems. Thus, the HybH has found the optimal values of Makespan for LA06 for each of the cases and the algorithm terminates, and therefore, there is no role of the GA and its parameters.

The other reason is that the type of operator used for the crossover, mutation and selection suits the LA11 and LA12 problems and consequently the solution rapidly converges (see results in Figures 5. 8 and 5. 9). For difficult problems like FT06, FT10 and LA01, the XR-MR combinations play their role. The XR-MR combinations ($0.6,0.7-0.03,0.04$) achieve minimum Makespan values as shown for all the cases.

Figure 5. 8: FT 06 benchmark problem [Optimum = 55]

Figure 5. 9: FT 10 Benchmark Problem [Optimum = 930]

Figure 5. 10: LA 01 Benchmark Problem [Optimum = 666]

Figure 5. 11: LA 06 Benchmark Problem [Optimum = 926]

Figure 5. 12: LA 11 Benchmark Problem [Optimum = 1222]

Figure 5. 13: LA12 Benchmark Problem [Optimum = 1039]

Figure 5. 14: LA26 Benchmark Problem Optimum [1218]

Figure 5. 15: LA 36 Benchmark Problem [1268]

To decide which parameter combination should be used in GAs is a very difficult job. Although, the sensitivity analysis has shown that the GA can provide some good results on certain range combination such as at XR-MR combinations (0.6, 0.7 $0.03,0.04)$ the algorithm is achieving minimum Makespan values. Therefore, it is recommended that further experimentation is required with more benchmark problems and various types of genetic operators.

5.5 Important Features of HGA

The developed HGA can be applied to Flow Shop Scheduling Problems (FSSPs) along with JSSPs. The performance of HGA on both these scheduling problems has been covered in detail in Chapter 6 by testing benchmark JSSPs and FSSPs. The only difference in both the environments is with regards to the flow pattern (discussed in detail in Chapter 2). The HGA reads the processing time and the process plan from spreadsheets. The only difference in spreadsheets is the data set with different flow patterns. For example, consider a simple 3 jobs and 3 machines problem as shown in Table 5.2. The Table 5.2a shows a typical JSSP flow pattern whereas Table 5.2 b shows a typical FSSP flow pattern. The HGA can read both the patterns with the corresponding processing from spreadsheets and can produce active schedules and optimal values.

Table 5. 2a: Typical JSSP Flow Pattern

Jobs	$\boldsymbol{O}_{\boldsymbol{I}}$	\boldsymbol{O}_{2}	\boldsymbol{O}_{3}
$\boldsymbol{J}_{\boldsymbol{I}}$	M_{1}	M_{3}	M_{2}
\boldsymbol{J}_{2}	M_{2}	M_{3}	M_{1}
\boldsymbol{J}_{3}	M_{3}	M_{1}	M_{2}

5.2b: Typical FSSP Flow Pattern

Jobs	$\boldsymbol{O}_{\boldsymbol{1}}$	\boldsymbol{O}_{2}	\boldsymbol{O}_{3}
\boldsymbol{J}_{1}	M_{1}	M_{2}	M_{3}
\boldsymbol{J}_{2}	M_{1}	M_{2}	M_{3}
\boldsymbol{J}_{3}	M_{1}	M_{2}	M_{3}

In Chapter 6, the results of HGA for both types of problems (JSSP and FSSP) have been discussed in detail.

5.5.1 Statistics for Each Machine

The HGA is designed in such a way that it can produce and record statistics in the evaluation process for the initial solution and the final active schedule. It provides the status of each machine for each job. These statistics are very useful and various charts such as the Gantt Chart can easily be constructed.

5.5.2 Modular Approach

A modular approach has been adopted in the code development. Various functions have been first generated and tested independently and then incorporated in the main GA loop. This means that any function can be replaced by another function. For example, the function chromosome.m (MATLAB function) is a job-based representation of chromosomes. This function is called during the main loop of the GA. This function can easily be replaced by operation based representation function (MATLAB function) with the same variables and function name as chromosome.m. So instead of job-based representation function, the main GA loop can call operation-based representation function.

5.6 Summary

This chapter proposes a heuristic based hybrid GA or HGA for JSSPs. The operational performance of the HGA was tested in detail with various sizes of benchmark problems in order to provide a reference for future research in this area and to fill the gap for a parametric analysis or sensitivity analysis for GAs. The GA in combination with a hybrid heuristic for the evaluation of the schedule performed
well across the benchmark test-bed problems. The HybH was used for the initial evaluation of job shop schedule from which the fitness value (Makespan) was determined and used for final evaluation of the schedule after the GA application. The novel combination of a HybH and a GA is a contribution in this area of research. The HGA results (\%GAP between the calculated Makespan values and Global Makespan Values) were as low as zero across the test bed for most of the benchmark problems and 36 industrial case studies (see Chapter 6, Section 6.5).

This chapter also discussed the study of XR-MR combinations for JSSPs in order to achieve optimum combinations of these two parameters, while keeping the generation number and the population size constant. The findings from the parametric study of the best possible XR-MR combinations were then used in the HGA. The results (optimum XR-MR values) achieved from the study can be used as a platform for the selection of the XR-MR combinations in the optimization of JSSPs. In the future, it is recommended that the similar sensitivity analysis procedure should be carried out, while applying GA to real scheduling problems in order to find more cost-effective XR-MR combinations for GAs.

CHAPTER 6

RESULTS AND DISCUSSIONS

6.1 Introduction

This chapter presents the results from the two novel heuristic rules, the HybH and the IBH, which were discussed in Chapter 4 for job shop scheduling problems. It also presents the results of the Hybrid Genetic Algorithm (HGA) for job shop scheduling problems developed during this research as described in Chapter 5. To determine the strengths of the proposed heuristics and the HGA, they are applied to a computational test-bed consisting of benchmark job shop and flow shop scheduling problems of various sizes and hardness. The developed HGA is also compared with other models developed in the literature. The details and sources of the selected benchmark job shop and flow shop scheduling problems, case studies, their solutions, analysis of results and comparisons with other techniques are also described in this chapter.

6.2 Performance Analysis of Novel Heuristics

The developed novel heuristics are tested against published benchmark scheduling problems to gauge the strengths and comparative merits of these methods. These benchmark problems are developed by various researchers and are listed and reviewed in Chapter 3. In this section, the selected benchmark instances, FT $(06,10)$ and LA ($01,06,11,12,26$ and 36), are used as test-beds to check the performance and gauge the effectiveness of the developed heuristic rules compared with those of the traditional heuristics. Table 6.1 shows the test-bed problems, their sizes and the best-known optimum values for the performance analysis. The selected problems are of different sizes and hardness, ranging from 6×6 (6 jobs and 6 machines) to 15×15
(15 jobs and 15 machines) so that the performance of the developed approaches could be tested on various datasets.

The heuristic rules were implemented in MATLAB on an Intel (R) Core 2 Duo processor $(2.00 \mathrm{GHz})$. Each problem was solved ten times using the developed heuristics. For each run, the objective value (Makespan) was observed and recorded. The data required for the algorithm was in the form of processing times and process plans recorded in spreadsheets. These spreadsheets were used for inputting this data into MATLAB. The traditional heuristics used for the comparison, are taken from literature (Maqsood et al., 2011; Maqsood et al., 2011) and are also simulated in the LAKIN scheduling software.

Table 6. 1: Selected Benchmark problem from literature

Problem Code	Source	Instances Jobs x Machines	Best Known Optimum Makespan
FT 06	Fisher and Thompson (1963)	6×6	55
FT 10	Fisher and Thompson (1963)	10×10	930
LA 01	Lawrence (1984)	10×5	666
LA 06	Lawrence (1984)	15×5	926
LA 11	Lawrence (1984)	20×5	1222
LA 12	Lawrence (1984)	20×5	1039
LA 26	Lawrence (1984)	20×10	1218
LA36	Lawrence (1984)	15×15	1268

6.2.1 Performance Analysis of the HybH

Tables 6.2 and 6.3 present the computational results of the proposed HybH. These also provide comparative analysis of the HybH with the following well-known traditional heuristics from literature: Shortest Processing Time (SPT), Longest Processing Time (LPT), First In First Out (FIFO), Earliest Due Date (EDD), Critical Ratio (CR), Minimum Slack (MS) and Weighted Shortest Processing Time (WSPT). These comparisons are made using the Relative Deviation (RD) measure or the Mean Relative Error (MRE), also known as the percent GAP (\% GAP). The measure \% GAP is the deviation of the Makespan value obtained by a particular heuristic from the optimum or the global Makespan. It represents a measure of the quality of the best global Makespan.

The \% GAP for a particular heuristic is calculated from the best-known global Lower Bound (LB) or optimum Makespan and the Makespan obtained from particular algorithm using the following relative deviation formula:

$$
\begin{equation*}
\% ~ G A P=\left\lfloor\frac{\text { Makespan found-Makespan Optimum }}{\text { Makespan Optimum }}\right\rfloor \times 100 \tag{Equation 6.1}
\end{equation*}
$$

Morshed (2006), reports that in the analyses based on the \% GAP, the traditional heuristics achieve results extremely quickly but are of very poor quality (the \%GAP from the optimum schedule can be as great as 74%), and in general, the solution quality degrades as the problems' dimensionality increase.

6.2.1.1 Computational experiments and results for $\mathbf{H y b H}$

Using the proposed HybH and the traditional heuristics, the Makespan values were obtained for the defined benchmark problem sets of Fisher and Thompson (1963) for

FT and Lawrence (1984) for LA as shown in Table 6.2. For example, the Makespan value obtained by the FIFO heuristic for FT06 (6×6 - six jobs and six operations) case is 65 with a 18.2 \% GAP or relative deviation from the optimum. Although, the traditional heuristics are computationally fast, yet none of them achieved the optimum or near-optimum Makespan. Thus the \% GAP for the FIFO rule is 18.2% of the optimal value and clearly indicates that it is inefficient for FT06. Looking at the FT06 results, it can be seen that the average Makespan for the seven heuristic rules is 70 with an average GAP of 27%. The best result recorded is the Makespan of 63 with a GAP of 14.5% (with the EDD rule), whilst the worst result is the Makespan of 81 with a GAP of 47.3% (with the CR rule). For the FT10 (10x10) benchmark problem, the heuristic rule's performance was different. The best Makespan achieved for FT10 was 1168 with 25.6% GAP (with the LPT rule) and the worst result achieved was 1338 with 43.87% GAP (with the SPT and WSPT rules). The Proposed HybH , in comparison with the traditional heuristics, has performed much better against all test-bed problems except the FT10.

Table 6. 2: HybH vs. Traditional Heuristics for FT Benchmark Problems

Test Bed Problem Instances	Fisher and Thompson (1963) - FT				Overall Mean GAP\%
	FT06 (*Opt=55)		FT10 (Opt=930)		
	6x6	Mean GAP\%	10x10	MeanGAP\%	
FIFO	65	18.2\%	1184	27.3\%	22.7\%
LPT	67	21.8\%	1168	25.6\%	23.7\%
SPT	73	32.7\%	1338	43.9\%	38.3\%
CR	81	47.3\%	1181	27.0\%	37.1\%
EDD	63	14.5\%	1246	34.0\%	24.3\%
MS	67	21.8\%	1168	25.6\%	23.7\%
WSPT	73	32.7\%	1338	43.9\%	38.3\%
Average	70	27.0\%	1232	32.5\%	29.7\%
Minimum	63	14.5\%	1168	25.6\%	20.1\%
Maximum	81	47.3\%	1338	43.9\%	45.6\%
HybH	61	10.9\%	1175	26.3\%	18.6\%

* Optimum Makespan value

For the FT06 problem, the HybH achieved a Makespan of 61 with 10.9% GAP against the best performing traditional heuristic, the EDD with Makespan of 63 and 14.5% GAP). For the FT10 (10x10) results, HybH did not exhibit the best performance achieving a Makespan of 1175 with 26.3% GAP. The LPT and the MS showed the best results (Makespan of 1168 with 25.6% GAP). This is due to the fact that the LPT and the MS heuristics suit the FT10 because of two main reasons. Firstly, Fisher and Thompson (1963) assigned lower number of machines to the earlier operations and higher number of machines for the later ones. Secondly, the first operation has comparatively larger processing times and the HybH sorts the first operation on the basis of ascending index values. Hence, the FT10 is reported in literature as "notoriously" hard because it is different from other benchmark cases. It might be fruitful if the proposed heuristic solves this FT10 problem with the first operation job order sorted on the basis of larger index values.

However, the HybH was close to the minimum value and certainly performed better than the traditional heuristics, as shown in Table 6.3. To further explore the strengths and weaknesses of the proposed heuristic, the HybH was tested against benchmark cases developed by Lawrence (1984). These are of various instances (10x5, 15x5, $20 \times 5,15 \times 10$ and 15×15) as shown in Table 6.1. Referring to the results in Table 6.3, the traditional heuristic FIFO, achieved the optimum in two cases, the LA06 and the LA12, whereas the LPT and the MS achieved the optimum in LA06 and the EDD achieved it in LA12. In comparison, the proposed HybH not only achieved the optimum values for LA06 and LA12, but also comparatively the best Makespan values for all the test-bed cases.

Table 6. 3: HybH vs. Traditional Heuristics for LA Benchmark Problems (Lawrence, 1984)

Test Bed Problem Instances	Lawrence (1984) - LA												Overall Mean GAP\%
	La01 (Opt=666)		La06 (Opt=926)		La11 (Opt=1222)		La12 (Opt=1039)		La26 (Opt=1218)		La36 ((Opt=1268)		
	10x5	GAP\%	15x5	GAP\%	20x5	GAP\%	20x5	GAP\%	20x10	GAP\%	15x15	GAP\%	
FIFO	772	15.9\%	$\underline{926}$	0.0\%	1272	4.1\%	$\underline{1039}$	0.0\%	1505	23.6\%	1516	19.6\%	10.5\%
LPT	752	12.9\%	$\underline{926}$	0.0\%	1300	6.4\%	1167	12.3\%	1394	14.4\%	1480	16.7\%	10.5\%
SPT	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	1993	63.6\%	2250	77.4\%	59.1\%
CR	979	47.0\%	1140	23.1\%	1792	46.6\%	1401	34.8\%	2069	69.9\%	2229	75.8\%	49.5\%
EDD	865	29.9\%	1024	10.6\%	1272	4.1\%	1039	0.0\%	1430	17.4\%	1550	22.2\%	14.0\%
MS	752	12.9\%	$\underline{926}$	0.0\%	1300	6.4\%	1167	12.3\%	1394	14.4\%	1480	16.7\%	10.5\%
WSPT	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	1993	63.6\%	2250	77.4\%	59.1\%
Average	909	36.5\%	1127	21.7\%	1506	23.2\%	1242	19.5\%	1683	38.1\%	1822	43.7\%	30.5\%
Minimum	752	12.9\%	926	0.0\%	1272	4.1\%	1039	0.0\%	1394	14.4\%	1480	16.7\%	8.0\%
Maximum	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	2069	69.9\%	2229	75.8\%	59.9\%
HybH	700	5.1\%	$\underline{926}$	0.0\%	1272	4.1\%	$\underline{1039}$	0.0\%	1358	11.5\%	1453	14.6\%	5.9\%

Table 6.3 also shows the overall mean \% GAP taken across the LA-problems. The proposed HybH has a lesser \% GAP value of 6% in comparison with that of the best of the traditional heuristics, which have an overall mean GAP value of 10.5% (the LPT and the MS rules). Hence, the HybH reduced the overall \% GAP by 77.9%, which reflects a considerable gain in the process efficiency.

In summary, the proposed HybH performed well consistently across the test-bed FT and LA benchmark problems and can be applied to any size of a problem. However, in the case of traditional heuristics, the performance of each heuristic depended on the type and size of the benchmark problem.

6.2.1.2 Summary of HybH Results

The majority of the processing time based heuristics reported in the literature, which have Makespan optimization as the objective function, is computationally very fast but their relative difference (\% GAP) from the optimum is as large as 75%. Furthermore, for the traditional heuristics, no single rule performed well across all the test-bed problems. The proposed HybH overcame the deficiencies in the traditional heuristics for manufacturing scheduling. The novel HybH performed well across all the test-bed benchmark problems and successfully achieved new optimal or near-optimal solutions for the job scheduling problems. It reduced the \% GAP in each test-bed problem and the overall mean \% GAP by considerable amount.

For the evaluation process, the HybH is applied in combination with Genetic Algorithms (GA). The evaluation process in the GA for JSSPs is a key step that determines the fitness of the objective function and the final solution of the problem.

6.2.2 Performance Analysis of IBH

Tables 6.4 and 6.5 present the computational results of the proposed IBH. These tables also provide comparative analyses of the IBH with the same known traditional heuristics used in Tables 6.2 and 6.3. These comparisons are also made using the Mean Relative Error (MRE) or the \% GAP.

6.2.2.1 Computational experiments and results

Using the proposed IBH algorithm and the traditional heuristics, the Makespan values are obtained for the defined benchmark problem sets of Fisher and Thompson (1963) - FT and Lawrence (1984) - LA as shown in Tables 6.4 and 6.5. For example, in Table 6.4, the Makespan value obtained by the FIFO heuristic for the FT06 ($6 \times 6-6$ jobs and 6 operations) case is 65 with an 18.2% GAP or relative deviation from the optimum. Although, the traditional heuristics are computationally fast, yet none of them have achieved the optimum or near-optimum Makespan. Thus, the \% GAP for the FIFO rule is 18.2% from the best known optimum Makespan value and clearly indicates that the FIFO rule for FT06 is inefficient. Looking at the FT06 results, it can be seen that the average Makespan for the seven heuristic rules is 70 with a GAP of 27%. The best result recorded a Makespan of 63 and a GAP of 14.5% for the EDD rule, whilst the worst result is a Makespan of 81 and a GAP of 47.3% for CR rule. For the FT10 (10x10) benchmark problem though, the heuristic rule's performance was different. The best Makespan was achieved for FT10 and was 1168 with 25.6% GAP (by the LPT rule) and the worst result achieved was 1338 with 43.87% GAP (by the SPT and WSPT rules).

The proposed IBH in comparison with the traditional heuristics, performed much better. For the FT06 problem, it achieved a Makespan of 59 with 7.3% GAP,
whereas the EDD rule, being the best amongst the traditional heuristics, achieved a Makespan of 63 with 14.5% GAP. For the FT10 (10x10), the IBH achieved a better Makespan value of 1136 with 22.1% GAP compared to that achieved by the LPT, where the Makespan is 1168 with 25.6% GAP. Although the values are not equal to the global optimal Makespan values, the IBH algorithm achieved a better Makespan in both the cases with the results being close to the minimum value. The IBH therefore, has performed better than the traditional heuristics as shown in Table 6.4.

Table 6. 4: IBH vs. Traditional Heuristics for FT Benchmark Problems (FT06 (Fisher and Thompson, 1963))

Test Bed	Fisher and Thompson (1963) - FT			Overall Mean		
Problem	FT06 (*Opt=55)		FT10 (Opt=930)		GAP\%	
Instances	$\mathbf{6 x 6}$	Mean GAP\%	$\mathbf{1 0 x 1 0}$		Mean GAP\%	GAP
FIFO	$\mathbf{6 5}$	$\mathbf{1 8 . 2 \%}$	1184	27.3%	22.7%	
LPT	67	21.8%	$\mathbf{1 1 6 8}$	$\mathbf{2 5 . 6 \%}$	23.7%	
SPT	73	32.7%	1338	43.9%	38.3%	
EDD	63	14.5%	1246	34.0%	24.3%	
CR	81	47.3%	1181	27.0%	37.1%	
MS	67	21.8%	1168	25.6%	23.7%	
WSPT	73	32.7%	1338	43.9%	38.3%	
Average	$\mathbf{7 0}$	27.0%	$\mathbf{1 2 3 2}$	32.5%	29.7%	
Minimum	$\mathbf{6 5}$	14.5%	$\mathbf{1 1 6 8}$	25.6%	20.1%	
Maximum	$\mathbf{8 1}$	47.3%	$\mathbf{1 3 3 8}$	43.9%	45.6%	
IBH	$\mathbf{5 9}$	7.3%	$\mathbf{1 1 3 6}$	22.1%	14.7%	

* Optimum Makespan value

To further explore the strengths and weaknesses of the proposed heuristic, the IBH was tested against the benchmark cases developed by Lawrence (1984), the same as were used for the HybH , the results of which are shown in Table 6.5. This table shows that from amongst the traditional heuristics, the FIFO achieved the optimum for two cases: the LA06 and the LA12, the LPT and the MS achieved it for the LA06: whereas the EDD achieved the optimum for the LA12 case. The proposed

IBH on the other hand, not only achieved the optimum values for LA06 and LA12, it also achieved better Makespan values for all the test-bed cases.

Table 6.5 also shows the overall mean \% GAP taken across the six LA-problems. The proposed IBH has a lesser \% GAP value of 5.4% in comparison with that of the best traditional heuristics (LPT and MS rules) that have an overall mean GAP value of 10.5%. Hence, the IBH reduced the overall \% GAP by 94.6%, which is again a significant increase in process efficiency.

In summary, the proposed IBH performed well consistently across the test-bed for a range of problem data sets and can be applied to any size of a problem. However, in the cases of traditional heuristics, the performance of each heuristic depended on the type and size of the benchmark problem.

Table 6. 5: IBH vs. Traditional Heuristics for LA Benchmark Problems (Lawrence, 1984)

Test Bed	Lawrence (1984) - LA												Overall Mean GAP\%
Problem	La01 (Opt=666)		La06 (Opt=926)		La11 (Opt=1222)		La12 (Opt=1039)		La26 (Opt=1218)		La36 (Opt=1268)		
Instances	10x5	GAP\%	15x5	GAP\%	20x5	GAP\%	20x5	GAP\%	20x10	GAP\%	15x15	GAP\%	
FIFO	772	15.9\%	926	0.0\%	1272	4.1\%	1039	0.0\%	1505	23.6\%	1516	19.6\%	10.5\%
LPT	752	12.9\%	926	0.0\%	1300	6.4\%	1167	12.3\%	1394	14.4\%	1480	16.7\%	10.5\%
SPT	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	1993	63.6\%	2250	77.4\%	59.1\%
CR	979	47.0\%	1140	23.1\%	1792	46.6\%	1401	34.8\%	2069	69.9\%	2229	75.8\%	49.5\%
EDD	865	29.9\%	1024	10.6\%	1272	4.1\%	$\underline{1039}$	0.0\%	1430	17.4\%	1550	22.2\%	14.0\%
MS	752	12.9\%	$\underline{926}$	0.0\%	1300	6.4\%	1167	12.3\%	1394	14.4\%	1480	16.7\%	10.5\%
WSPT	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	1993	63.6\%	2250	77.4\%	59.1\%
Average	909	36.5\%	1127	21.7\%	1506	23.2\%	1242	19.5\%	1683	38.1\%	1822	43.7\%	30.5\%
Minimum	752	12.9\%	926	0.0\%	1272	4.1\%	1039	0.0\%	1394	14.4\%	1480	16.7\%	8.0\%
Maximum	1122	68.5\%	1475	59.3\%	1802	47.5\%	1439	38.5\%	2069	69.9\%	2229	75.8\%	59.9\%
IBH	700	5.1\%	926	0.0\%	1272	4.1\%	1039	0.0\%	1324	8.7\%	1453	14.6\%	5.4\%

6.2.2.2 Summary of IBH Results

The IBH heuristics has also overcome the deficiencies in the traditional heuristics for the Job Shop Scheduling Problems. This heuristic has performed well across all the test-bed benchmark problems and successfully achieved new optimal or near-optimal solutions for the JSSPs. The IBH reduced the \% GAP in each test-bed problem and the overall mean \% GAP by a considerable amount.

For the future, this proposed IBH could be applied in combination with Genetic Algorithms (GA) for the evaluation process. The evaluation process in the GA for a JSSP is a key step that determines the fitness of the objective function. Therefore, future work could focus on the hybridization of IBH with other optimization techniques. The IBH may also be applied to some large sized benchmark and real scheduling problems.

6.3 Analysis of the developed Hybrid Genetic Algorithm (HGA)

The performance of the HGA is analyzed based on the example problem as discussed in detail in Chapter 5. In the following section, the HGA is analyzed for the benchmark problems listed in Table 6.7 in order to gauge the different performance measures of the developed scheduling technique. The results and conclusions are discussed in Section 6.3. The inherent randomness of the selection, crossover, and mutation operators allows a GA to explore the solution space to find new solutions. Introducing random changes to the current best solutions is a trade-off between exploration (find new valleys in search or solution space) of new territory in the solution space and exploitation (digging into a given valley in solution space) of the currently-known best solutions (local optima) (Messenger and Dove, 2012). The mutation operator is normally applied much less often than a crossover, but
importantly helps the GA avoid getting entrenched in local optima. The repeated runs with the same data set usually results in the same best solution being discovered. The reason for this may be that many data sets have a similar solution value, and it only takes a minor change in chromosome to produce similar best solution value offspring. However, it is possible that the average Makespan may be different from the best among all trials. This inherent randomness also affects the number of generation and CPU time for in each trial simulation. For example, consider a simple benchmark problem LA01 - a 10 jobs 5 machine problems. This problem was solved ten times without changing GA parameter. The parameters were population size $=100$, generation $=50, \mathrm{c}$ Rate $=0.80 \%$, mutation Rate $=0.070 \%$. The solutions are listed in Table 6.6. The HGA results in different Makespan values, number of generations and CPU time.

Table 6. 6: Data collected for ten different runs of HGA with same parameters

HGA Run No.	Global Makespan	Makespan by HGA	\%GAP	CPU Time $($ Sec $)$	Number of generations
1	666	666	0.00	166.8	50
2	666	666	0.00	166.1	50
3	666	666	0.00	168.4	50
4	666	666	0.00	166.4	50
5	666	666	0.00	167.1	50
6	666	666	0.00	166.2	50
7	666	671	0.75	167.6	50
8	666	666	0.00	168.0	50
9	666	666	0.00	168.4	50
10	666	666	0.00	168.7	50
Mean $=$	$\mathbf{6 6 6}$	$\mathbf{6 7 5 . 2}$	$\mathbf{0 . 7 5}$	$\mathbf{1 6 7 . 3 8}$	$\mathbf{5 0}$

Table 6.6 shows that the HGA has gone to its maximum generation number '50' for searching of the optimal Makespan value of 666 units of time, although it has
achieved this most of the time, it could not achieve optimum results for run number 7. This run, which was adaptively determined, was the highest of all of the runs. It is likely that the system state became caught in a deep local minimum, allowing few if any new states to be explored. Nine optimum results achieved by HGA are due to the reason that the data sets have a similar solution value (LA01 is an easy problem), and it only takes a minor change in chromosome to produce similar best solution value offspring. However, in NP-hard problems, the GA with same GA parameters might result in poor Makespan values for more number of runs than compared to this example or easy problems. The CPU time varied in each run from 166.1 to 168.7 seconds with an average CPU time of 167.38 seconds.

6.3.1 JSSP benchmark problems for HGA

To gauge the strengths and comparative merits of the HGA, it is tested against published benchmark problems. Theses benchmark problems are developed by various researchers (Fisher and Thompson (1963) - FT; Carlier (1978) - CAR; Lawrence (1984) - LA; Adams et al., (1988) - ABZ; Applegate and Cook (1991)ORB; Storer et al., (1992) - SWV; Yamada and Nakano (1992) - YN and Taillard (1993)). Jain and Meeran (1999) have presented a list of the 242 important benchmark problems of various sizes and hardness level. According to Jain and Meeran (1999) a problem is said to be hard if the total number of operations is greater or equal to 200 , number of jobs (N) greater than or equal to 15 , machines (M) greater than or equal to 15 , and N / M is less than 2.5 . The problem types Taillard 'TA01', for example, obey this structure and that is why they are hard and are still not yet solved optimally.

Table 6. 7: List of benchmark problems, problem size and best-known optimum Makespan

$\begin{gathered} \text { Prob } \\ \text { No. } \\ \hline \end{gathered}$	Source	Prob Code	$\begin{aligned} & \mathbf{N} / \\ & \mathbf{M} \\ & \hline \end{aligned}$	Prob. Size $\mathbf{N x M}$	$\mathrm{C}_{\text {max }}$	$\begin{gathered} \text { Prob } \\ \text { No. } \\ \hline \end{gathered}$	Source	Prob Code	$\begin{aligned} & \mathbf{N} / \\ & \mathbf{M} \\ & \hline \end{aligned}$	$\underset{\mathbf{N}_{\mathbf{x}}}{\text { Prob. Size }}$	$\mathrm{C}_{\text {max }}$
1		FT 06	1	6×6	55	32		LA 29	2	20x 10	1152
2		FT 10	1	10×10	930	33		LA 30	2	20x 10	1355
3		FT 20	4	20×5	1165	34		LA 31	3	30x10	1784
4		LA 01	2	10×5	666	35		LA 32	3	30x10	1850
5		LA 02	2	10×5	655	36		LA 33	3	30x10	1719
6		LA 03	2	10×5	597	37		LA 34	3	30x 10	1721
7		LA 04	2	10×5	590	38		LA 35	3	30x10	1888
8		LA 05	2	10×5	593	39		LA 36	1	15×15	1268
9		LA 06	3	15×5	926	40		LA 37	1	15×15	1397
10		LA 07	3	15×5	890	41		LA 38	1	15x15	1196
11		LA 08	3	15×5	863	42		LA 39	1	15×15	1233
12		LA 09	3	15×5	951	43		LA 40	1	15×15	1222
13		LA 10	3	15×5	958	44	∞	ABZ5	1	10×10	1234
14		LA 11	4	20×5	1222	45	\pm	ABZ6	1	10×10	943
15		LA 12	4	20×5	1039	46	\pm	ABZ7	1.33	20×15	656
16		LA 13	4	20×5	1150	47	E	ABZ8	1.33	20×15	665
17		LA 14	4	20×5	1292	48	<	ABZ9	1.33	20×15	679
18		LA 15	4	20×5	1207	49		ORBI	1	10×10	1059
19		LA 16	1	10×10	945	50	Ξ	ORB2	1	10×10	888
20		LA 17	1	10×10	748	51	¢	ORB3	1	10×10	1050
21		LA 18	1	10×10	848	52		ORB4	1	10×10	1005
22		LA 19	1	10×10	842	53		ORB5	1	10×10	887
23		LA 20	1	10×10	902	54	$\begin{aligned} & \bar{\pi} \\ & \vdots \end{aligned}$	TA01	1	15x15	1005
24		LA 21	1.5	15×10	1046	55		TA02	1	15×15	953
25		LA 22	1.5	15×10	927	56		TA06	1	15×15	1134
26		LA 23	1.5	15×10	1032	57		TA11	1.33	20x15	1254
27		LA 24	1.5	15×10	935	58		TA12	1.33	20x15	1267
28		LA 25	1.5	15×10	977	59		TA13	1.33	20x15	1243
29		LA 26	2	20x10	1218	60		TA16	1.33	20x15	1211
30		LA 27	2	20x10	1235	61		TA31	2	30x15	1764
31		LA 28	2	20x10	1216	62		TA37	2	30x15	1771

Table 6.7 shows 62 selected benchmark JSSPs, author (s), problem code, its size (number of jobs and the number of machines) and the three important hardness parameters (N/M, number of machines and the number of operations for the
problems). The processing times and machines' order for each problem is shown in Appendix A.

6.3.2 Computational experiments and results for JSSP

Table 6.8 presents the computational results of the proposed HGA for the benchmark JSSPs. The HGA was implemented in MATLAB on an Intel (R) Core 2 Duo processor (2.00 GHz). Each problem was solved twenty times and for each run time, the Makespan value and the number of generations were computed and recorded for the best evolved schedule under the following GA parameters:

- Population Size $=30$ to 200
- Generation $=10$ to 200
- Crossover Rate $=70$ to 80%
- Mutation Rate = 1 to 10%
- Iterations $=20$ to 100
- Job number $=6$ to 30
- Machine Number $=5$ to 20

The algorithm stops when either the best known optimal solution is proven or the number of generations reaches the predefined maximum number. For each generation, the objective value (Makespan) was observed and recorded. The input data required for the algorithm was recorded in spreadsheets, in the form of processing times and process plans. These spreadsheets were then used for inputting the data into MATLAB. Table 6.8 provides the comparisons between the Makespan found by HGA and the global known Makespan values using the percent GAP (\% GAP).

Table 6.8 shows the experimental results of the HGA for the benchmark JSSPs. The results obtained are tabulated for the calculated Makespan results from the HGA and their corresponding deviations from the known optimum values using the tabulated \%GAP.

Columns 1 through to 5 show the benchmark JSSP number, problem source, problem code, problem size and the best-known optimum Makespan respectively. The $6^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$ column show the initial solution obtained from the HybH and the relative $\%$ GAP from the optimum respectively. The $7^{\text {th }}$ column also shows the optimum that has been initially achieved using the HybH . Hence, the best solution with zero percent GAP for some problems can be seen in the $7^{\text {th }}$ column. Columns 9 and 10 show the optimum or near-optimum Makespan achieved by the HGA, their relative \% GAP, number of generations at which it achieved the best Makespan. Columns 11, 12 and 13 show average Makespan, each average Makespan's \%GAP from optimum result and the average CPU time (seconds) of 20 runs respectively. The HGA has been able to achieve the optimal solutions for a considerable number of benchmark problems in reasonable computational time. In general, most of the squared problems are found to be harder than non-squared hard problems. In the following sub-sections the chapter provides an analysis of the performance of the HGA in graphs showing Makespan and best known Makespan or LB, Makespan \%GAP from optimal, effect of number of generations on Makespan, and average CPU time for each problem. The comparison of HGA with some of the published models from literature is given in Section 6.4.3.

Table 6. 8: Experimental Results HGA for JSSP

					HybH			HGA Best			HGA Average		
Prob. No	Source	Prob Code	Prob. Size NxM	$\mathrm{C}_{\text {max }}$	Best Makespan	$\begin{aligned} & \text { \%age } \\ & \text { GAP } \end{aligned}$	GenNo.	Best Makespan	$\begin{aligned} & \text { \%age } \\ & \text { GAP } \end{aligned}$	Gen No.	Average Makespan	$\begin{aligned} & \text { \% age } \\ & \text { GAP } \end{aligned}$	Average CPU Time (Sec)
1	$\begin{aligned} & \text { IN } \\ & \text { 気 } \\ & \text { N } \\ & \text { No } \\ & \text { N } \end{aligned}$	FT 06	6×6	55	61	10.91	0	55	0	1	55	0	3.86
2		FT 10	10×10	930	1175	26.34	0	930	0	80	930	0	28.3
3		FT 20	20×5	1165	1570	34.76	0	1165	0	28	1165	0	13.8
4		LA 01	10×5	666	700	5.11	0	666	0	9	666	0	15.84
5		LA 02	10×5	655	808	23.36	0	655	0	14	655	0	17.4
6		LA 03	10×5	597	726	21.61	0	597	0	18	597	0	19.2
7		LA 04	10×5	590	660	11.86	0	590	0	7	590	0	22.9
8		LA 05	10×5	593	593	0	0	593	0	0	593	0	0.16
9		LA 06	15×5	926	926	0	0	926	0	0	926	0	0.13
10		LA 07	15×5	890	976	9.66	0	890	0	17	890	0	12.2
11		LA 08	15×5	863	925	7.18	0	863	0	9	863	0	11.1
12		LA 09	15×5	951	951	0	0	951	0	0	951	0	0.26
13		LA 10	15×5	958	958	0	0	958	0	0	958	0	0.19
14		LA 11	20×5	1222	1272	4.09	0	1222	0	1	1222	0	6.39
15		LA 12	20×5	1039	1039	0	0	1039	0	0	1039	0	0.5
16		LA 13	20×5	1150	1153	0.26	0	1150	0	1	1150	0	0.22
17		LA 14	20×5	1292	1292	0	0	1292	0	0	1292	0	8.11
18		LA 15	20×5	1207	1466	21.46	0	1207	0	29	1207	0	168.6
19		LA 16	10×10	945	1093	15.66	0	945	0	63	945	0	188.4
20		LA 17	10×10	748	907	21.26	0	748	0	67	748	0	129.1

21		LA 18	10×10	848	988	16.51	0	848	0	86	848	0	126.7
22		LA 19	10×10	842	968	14.96	0	842	0	92	842	0	133.8
23		LA 20	10×10	902	902	0	0	902	0	0	902	0	0.14
24		LA 21	15×10	1046	1265	20.94	0	1046	0	107	1046	0	221.2
25		LA 22	15×10	927	1171	26.32	0	927	0	92	927	0	148
26		LA 23	15×10	1032	1130	9.5	0	1032	0	32	1032	0	178.8
27		LA 24	15×10	935	1138	21.71	0	935	0	79	935	0	219.34
28		LA 25	15×10	977	1215	24.36	0	977	0	86	977	0	188.22
29		LA 26	20x10	1218	1358	11.49	0	1218	0	94	1218	0	211.78
30		LA 27	20x10	1235	1538	24.53	0	1235	0	109	1235	0	306.01
31		LA 28	20x10	1216	1471	20.97	0	1216	0	74	1216	0	604.95
32		LA 29	20x10	1152	1448	25.69	0	1152	0	95	1152	0	648.41
33		LA 30	20x10	1355	1550	14.39	0	1355	0	82	1355	0	719.08
34		LA 31	30x10	1784	1897	6.33	0	1784	0	75	1784	0	1433.21
35		LA 32	30x10	1850	1950	5.41	0	1850	0	81	1850	0	1467.25
36		LA 33	30x10	1719	1830	6.46	0	1719	0	96	1719	0	1481.39
37		LA 34	30x10	1721	1876	9.01	0	1721	0	72	1721	0	1495.52
38		LA 35	30×10	1888	2008	6.36	0	1888	0	83	1888	0	1505.23
39		LA 36	15x15	1268	1453	14.59	0	1268	0	79	1268	0	1514.37
40		LA 37	15x15	1397	1588	13.67	0	1397	0	84	1397	0	1533.21
41		LA 38	15x15	1196	1466	22.58	0	1196	0	104	1196	0	1482.39
42		LA 39	15x15	1233	1491	20.92	0	1233	0	92	1233	0	1608.38
43		LA 40	15x15	1222	1441	17.92	0	1222	0	79	1222	0	1642.9
44	$\pm \infty$	ABZ5	10×10	1234	1351	9.48	0	1234	0	94	1234	0	1782.45
45	E	ABZ6	10×10	943	1014	7.53	0	943	0	86	943	0	1813.7
46	\mathbb{B}	ABZ7	20×15	656	778	18.6	0	656	0	127	657.2	0.11	1054.18

47		ABZ8	20×15	665	790	18.8	0	665	0	116	665	0	1755.24
48		ABZ9	20×15	679	875	28.87	0	679	0	102	679	0	1410.72
49		ORBI	10×10	1059	1251	18.13	0	1059	0	75	1059	0	1496.58
50		ORB2	10×10	888	983	10.7	0	888	0	81	888	0	1529.56
51		ORB3	10×10	1050	1365	30	0	1050	0	106	1050	0	1664.85
52		ORB4	10×10	1005	1225	21.89	0	1005	0	76	1005	0	1493.7
53		ORB5	10×10	887	1013	14.21	0	887	0	87	887	0	1548.41
54	$\begin{aligned} & \bar{\sim} \\ & \hat{\Omega} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	TA01	15×15	1231	1451	17.87	0	1231	0	169	1231	0	6552.13
55		TA02	15x15	1244	1442	15.92	0	1244	0	182	1248	0.322	6814.92
56		TA06	15x15	1240	1462	17.9	0	1281	3.31	200 (171)	1410	12.06	8317.28
57		TA11	20x15	1364	1688	23.75	0	1364	0	149	1591	14.27	6183.51
58		TA12	20x15	1367	1657	21.21	0	1367	0	168	1403	2.57	5706.26
59		TA13	20x15	1350	1798	33.19	0	1350	0	181	1512	10.71	6958.08
60		TA16	20x15	1368	1678	22.66	0	1368	0	192	1537	11.00	6452.49
61		TA31	30x15	1766	2213	25.31	0	1837	4.02	200 (139)	2127	16.97	9846.98
62		TA37	30x15	1784	2233	25.17	0	1871	4.88	200 (162)	2018	11.60	8041.47
Overall Mean GAP						15.31	Overall Mean GAP		0.2				

6.3.2.1 Average CPU time vs. Problem Size

Table 6.8 shows that the average CPU time for easy problems such as FT06, LA01 to LA15 is as high as 29 seconds. For hard problems. For FT10 a well known hard problem it took 28.3 seconds to converge. The problems 'LA36-LA40', 'ABZ5ABZ10' and 'ORB1-ORB5' are comparatively difficult problems, the CPU time shows an increase in comparison to easy problems. While the well known hardest TA problems show a considerable increase in the mean CPU solution time. Again, it is likely that the algorithms trapped in the local search and the system is allowed for extra iterations and the system spent excessive amount of time. Hence, the CPU time and the number of function evaluations performed during the execution of the runs was very high as compared to the rest of problems which successfully convereged.

The trend in CPU solution time shows that it does not depend on N / M ratio (hardness ratio) but it rather depends on the size and nature of the problem, population size and number of generations. The termination criteria, which is algorithm, will stop if the best known optimum value or maximum number of generation arrives. In case, the problem is solved optimally before the maximum number of generations, the CPU solution time is saved. As shown in Table 6.8, the optimal solutions for the benchmark Problems LA01 to LA20 have been found in a maximum of two generations because of the less hardness of the problems.

Similarly, explanations to the question that why different groups of problems have a larger CPU solution time with same hardness level and same number of generations and population is that there is an increase in the number of total operations from problem to problem and the way the problems are created by the author.

6.3.2.2 Makespan achieved by HGA vs. known optimal values

Figure 6.1 shows the experimental results of HGA for 62 benchmark job shop scheduling problems. The problems are along x-axis and Makespan values are along y-axis. The first line (dark blue) shows the global known optimum value, while $2^{\text {nd }}$ (red) and $3^{\text {rd }}$ (light blue) lines show HGA results at zero generation and final result respectively. Table 6.8 and Figure 6.1 shows that the HGA achieved optimum results $(\% \mathrm{GAP}=0)$ for 59 out of 62 problems with an overall Mean GAP of 0.20% of all 62 problems. The HGA achieved the optimal results for seven (LA5, LA6, LA9, LA10, LA12, La14, LA20) benchmark problems in zero generation. The overall mean GAP for solutions at zero generation is 15.31% which indicates the quality of initial solution produced by HybH in HGA loop. For eight problems (LA21, LA27, LA38, LA40, ABZ7, ABZ8, ABZ9 and ORB3), the HGA found optimum results, however, it exceeded the generation number 100 .

The HGA behavior on Taillard's hard problems is also encouraging. Nine problems generated from Taillard's algorithm (Taillard, 1993) are tested on HGA. HGA successfully achieved the best known optimal results (reported by Jain and Meeran, 1999). For three problems (TA06, TA31 and TA37), the HGA was unable to achieve the optimal values of the problems. However, the results of these three problems are near optimal solutions with a \%GAP of 3.31 (TA06), 4.02 (TA31), and 4.88 (TA37).

Hence, the HGA results are encouraging and it has the ability to produce optimal results even for a larger set of NP hard scheduling problems. In Section 6.5, results are presented of the HGA applied to real world scheduling problems (36 case studies) from literature.

Figure 6. 1: Makespan values achieved by HGA and Optimum values vs. problem

6.3.2.3 Percent GAP between the calculated Makespan by HGA and optimum

Figure 6.2 shows the \% GAP between the optimum Makespan results: in zero generation and optimum or near optimum achieved by HGA. The green line represents the \% GAP of solution for initial solution obtained by HybH , while the orange and light blue line represents the \% GAP of solution achieved by HGA and overall mean \%GAP repectively. Figure 6.2 shows that the initial solution depends on the size and hardness of problems. For easy problems such as LA5, LA6, LA9, LA10, LA12, La14, LA20 HybH achieved the optimum makespan. For comparitivly hard problem than easy problems such as FT06, LA24, LA26, LA31, LA32, LA33, LA34, LA35, LA36, ABZ5, ABZ6 and ORB3 HybH achieved near optimal results with less than \% GAP of 10 . For hard problem the HybH \%GAP reaches a value of 33.19. Which is encouraging and helped HGA in achieving optimum or near optimum Makespan results. The HGA has achieved optimal for 59 problems and near optimal results for remaining 3 problems. The HGA near optimal results are for the problems TA06, TA31 and TA37 with a $\%$ GAP of 3.31, 4.02 and 4.88.

Figure 6. 2: \% GAP vs. Problem

6.3.2.4 Effect of generation on Makespan

Figure 6.3 shows that the behavior of HGA is following a trend such as larger and harder problem size resulting in the high number of generations although few exceptions are there such as LA23 and LA28. The dark blue line represents the Makespan achieved by HGA and light blue line represents the generation number. The figure also shows that most of the squared problems result comparatively in a higher number of generations than non squared problems due to the fact that in square problems the resources are limited and the jobs take longer time in waiting or in queue. Seven problems (LA05, LA06, LA09, LA10, LA12, LA14 and LA20) converged in the initial solution search at the zero generation which are 7.8% of the problems. The FT06, LA11, and LA13 problems converged at first generation. A total 65.21% (46 problems) problems converged in 100 generations in which 4.16\% (12 easy problems) problems converged in just 32 generations. For 4.08% (13 hard problems) problems including eight Taillzard's problems covered in more than 100 generations. For three problems TA06, TA31 and TA37, that found near optimal solutions at the end of 200 generations. Hence, the problems convergence tendency increases if the algorithm is allowed to iterate for more generations.

Figure 6. 3: No. of generation vs problem

6.3.2.5 Summary of HGA Results for JSSP

In this section, the results of the developed HGA for JSSP were discussed. The operational performance of the HGA was tested in detail with various sizes of benchmark problems. The GA in combination with a hybrid heuristic for evaluation of the schedule performed well across the data of benchmark problems of various sizes. The HGA results (\%GAP between the calculated Makespan values and Global Makespan Values) were as low as zero across the test bed for 59 out of 62 problems. In Section 6.5, HGA was further tested against case studies from literature. The results from case studies were also discussed in the same section.

6.4.1 Benchmark FSSPs for HGA

The flow shop type of a flow pattern is a typical one of mass production, i.e., high rate of production and lower manufacturing cost as explained in Chapter 2, Section 2.4. The experimental results of the flow shop benchmark problems applied to the HGA are discussed in this section. Here, unlike the job shop, specialized machines are used. Each flow line is organized according to the processing requirements of a product. In the simplest case, each job consists of the same set of activities to be performed sequentially on the same set of machines within multiple sets of machines as shown in Figure 6.4.

Figure 6. 4: Flow Shop Environment
The same GA parameters are used in the computational tests for the flow shop benchmark problems as proposed by Carlier (1978). The HGA was also test on Taillard's (Taillard, 1993) problems. These benchmark problems are tabulated in Table 6.9 and in Appendix B their respective dimensions are given. The range of processing times for each of these problems is higher than that of the benchmark JSSPs. The optimum results and deviation from the optimum for different flow shop problems are shown in Table 6.9.

Table 6. 9: Benchmark Flow Shop Scheduling Problems

Problem No	Source	Problem Code	$\begin{gathered} \text { Problem Size } \\ \mathbf{N x M}^{2} \end{gathered}$	$\mathrm{C}_{\text {max }}$
1	Carlier (1978)	CAR1	11×5	7038
2		CAR2	13×4	7166
3		CAR3	12×5	7312
4		CAR4	14×4	8003
5		CAR5	12×5	7702
6		CAR6	8×9	8313
7		CAR7	7×7	6558
8		CAR8	8×8	8264
9	Taillard (1993)	TA01	20x5	1278
10		TA02	20x5	1359
11		TA03	20x5	1081

6.4.2 Computational experiments and results for FSSPs

Table 6.10 shows the experimental results of the HGA for the benchmark FSSPs (See Appendix B for the processing times and process plan for each of these problems). The results are tabulated for the calculated Makespans obtained from the HGA and their corresponding deviations from the known optimum values and tabulated as \%GAPs.

Columns 1 through 5 show the benchmark FSSP number, problem source, problem code, problem size and the best-known optimum Makespan respectively. The $6^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$ columns show the results from the initial solution and columns 9,10 and 11 show the results for the FSSPs using HGA. Columns 12, 13 and 14 show the mean Makespan value, mean generations and mean CPU time for the problems. Each problem was solved twenty times and for each run time, the Makespan value and the number of generations were computed and recorded for the best evolved schedule under the following GA parameters:

- Population Size $=30$ to 200
- Generation $=10$ to 200
- Crossover Rate $=70$ to 80%
- Mutation Rate $=1$ to 10%
- Iterations $=20$ to 100
- Job number $=6$ to 30
- Machine Number $=5$ to 20

Table 6.10 shows an overall \%GAP of 10.40 for the initial solution using HybH. The smallest deviation in the initial solution is for CAR7 and is 6.92%. The HGA
achieved optimum results for all of the problems. However, the average Makespan is with an overall $\%$ GAP of 0.1621 . It is likely that the system state became trapped in a deep local minimum, allowing few more generation may help in exploring new states. For CAR1 to CAR8, the average generation numbers on which the HGA achieved optimum or near-optimum results were $17,60,21,9,52,29,17,21$. In CAR2 and CAR5, although the HGA did not achieve the mean optimum with 0.0 \%GAP but the mean near-optimum results with small relative deviations of 0.32% and 0.91% were recorded respectively.

The average CPU time ranged from 3797.12-5288.2 seconds for problems whose mean optimum is equal to the best known optimum results. In the case of problem CAR02 and CAR05 it is likely that the system spent excessive amount of time in local random search. Hence, the CPU time and the number of function evaluations performed during the execution of the runs was quite comparable with those of the successful cases such as CAR01, CAR03.

The HGA has also achieved optimum Makespan results for all three TA problems. However, the computation time is higher due to the size and hardness of the problems. The average CPU time ranges from 4162.12 to 7209.22 . The Overall $\%$ GAP for initial solution of TA problems achieved by HybH is almost similar to the CAR problems, which further supports the good HybH performance. Although, the average Makespan is comparatively higher for TA01, TA02 and TA03 FSSPs, but still the \%GAPs are less than 5.

Table 6. 10: Experimental Results of Flow Shop Scheduling Problem (FSSP)

Benchmark FSSPs					Makespan Achieved by HGA									
					Makespan	at Gene 0 (zero)	ation No.	Makesp \qquad	n at Res ration		verage M	espan wit	\% GAP	
Prob. No	Source	Prob Code	Prob. Size N x M	$\mathrm{C}_{\text {max }}$	$\mathrm{C}_{\text {max }}$	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Gen. No.	$\mathrm{C}_{\text {max }}$	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	$\begin{gathered} \text { Gen. } \\ \text { No. } \\ \hline \end{gathered}$	$\mathrm{C}_{\text {max }}$	Average \% GAP	$\begin{gathered} \hline \text { Average } \\ \text { CPU } \\ \text { Time } \\ \hline \end{gathered}$	
1	$\begin{aligned} & \text { Carlier } \\ & \text { (1978) } \\ & \hline \end{aligned}$	CAR1	11×5	7038	7718	9.66	0	7038	0	17	7038	0	3797.12	
2		CAR2	13×4	7166	7741	8.02	0	7166	0	60	7176	0.32	13532.4	
3		CAR3	12×5	7312	8237	12.65	0	7312	0	21	7312	0	4628.61	
4		CAR4	14×4	8003	8679	8.45	0	8003	0	9	8003	0	4097.52	
5		CAR5	10×6	7702	8416	9.27	0	7702	0	52	7767	0.98	11915.8	
6		CAR6	8×9	8313	9811	18.02	0	8313	0	29	8313	0	8288.2	
7		CAR7	7×7	6558	7012	6.92	0	6558	0	17	6558	0	3935.33	
8		CAR8	8×8	8264	9109	10.23	0	8264	0	21	8264	0	4663.89	
Overall \% Mean GAP						10.4	Overall \% Mean GAP		0	Overall Mean\% GAP		0.1621		
Prob. No	Source	Prob Code	Prob. Size N x M	$\mathrm{C}_{\text {max }}$	$\mathrm{C}_{\text {max }}$	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Gen. No.	$\mathrm{C}_{\text {max }}$	\%GAP	$\begin{aligned} & \text { Gen. } \\ & \text { No. } \\ & \hline \end{aligned}$	$\mathrm{C}_{\text {max }}$	Average \% GAP	Average CPU Time	
9	Taillard(1993)	TA01	20x5	1278	1381	8.059	0	1278	0	86	1297	1.487	4162.12	\%
10		TA02	20x5	1359	1426	4.930	0	1359	0	117	1402	3.164	5323.49	흘
11		TA03	20x5	1081	1293	19.611	0	1081	0	172	1132	4.718	7209.22	
Overall \% Mean GAP						10.867	Overall \% Mean GAP		0	Overall Mean\% GAP		3.123		

6.4.3 Result Comparison with Other Developed Models from Literature

Table 6.11 shows the results comparison of the developed HGA with some developed models from the literature (Morshed, 2006). The comparison is made on the basis of mean Makespan and overall mean \% GAP for each of the benchmark FSSPs. Table 6.11 shows that HGA has performed overall better than Nowicki and Smutnicki (1996) - NS96 and Demirkol et al. (1997)- DMU97. The overall mean \%GAP of HGA is 0.1621 while NS96 and DMU97 are having overall mean \% GAP of 1.0148 and 5.6529 respectively. Jain and Meeran (2002) - JM02 has achieved optimum results for 7 out of 8 problems with an overall mean GAP in 0.0343 . However, Morshed (2006), has achieved the result for all 8 problems with 0.00% GAP. He has not provided CPU times for his models and therefore the HGA cannot be compared on the basis of CPU times with his work. However, the HGA convergence is a lesser number of generations than Morshed's model and it can be concluded that the HGA is faster than Morshid's model. In conclusion, the HGA has outperformed some well known models available in the literature.

Table 6. 11: HGA result comparison of general FSSPs with other models

Probs	$\underset{(\mathrm{Opt}=7038)}{\text { CAR1 }}$		$\underset{(\mathrm{Opt}=7166)}{\text { CAR2 }}$		$\underset{(\mathrm{Opt}=7312)}{\text { CAR3 }}$		$\underset{(\mathrm{Opt}=\mathbf{8 0 0 3})}{\text { CAR4 }}$		CAR5 (Opt=7702)		$\underset{(\mathrm{Opt}=8313)}{\text { CAR6 }}$		$\underset{(\mathrm{Opt}=6558)}{\text { CAR7 }}$		$\underset{(\mathrm{Opt}=8264)}{\text { CAR8 }}$		Overall Mean GAP
	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	Result	$\begin{gathered} \% \\ \text { GAP } \end{gathered}$	
Nowicki and Smutnicki (1996)	7038	$\underline{0}$	7376	2.93	7531	3	8003	$\underline{0}$	7720	0.23	8313	$\underline{0}$	6573	0.23	8407	1.73	$\underline{1.0148}$
Demirkol et al. (1997)	7220	2.59	7741	8.02	8237	12.7	8423	5.25	8380	8.8	8739	5.12	6617	0.9	8420	1.89	$\underline{5.6529}$
Jain and Meeran (2000)	7038	$\underline{0}$	7166	$\underline{0}$	7312	$\underline{0}$	8003	$\underline{0}$	7702	$\underline{0}$	8313	$\underline{0}$	6576	0.27	8264	$\underline{0}$	0.0343
Morshed (2006)	7038	$\underline{0}$	7166	$\underline{0}$	7312	$\underline{0}$	8003	$\underline{0}$	7702	$\underline{0}$	8313	$\underline{0}$	6576	$\underline{0}$	8264	$\underline{0}$	0.00
HGA	7038	$\underline{0}$	7176	0.14	7312	$\underline{0}$	8003	$\underline{0}$	7767	0.84	8313	$\underline{0}$	6558	$\underline{0}$	8264	$\underline{0}$	0.1621

6.4.4 Summary of HGA Results for FSSPs

In this section, the results of the developed HGA for FSSPs are discussed. The operational performance of the HGA was tested in detail with various sizes of benchmark FSSPs. The HGA performed well across the benchmark problems and has achieved optimal values for six out of the eight benchmark problems and nearoptimal for the rest of the problems. The initial solution is very good as compared to the other models developed in the literature, which is very encouraging.

The HGA was also compared with the other developed models from literature and performed better in more than two-third of the models.

6.5 Application of HGA in Industrial Case Studies

Three industrial case studies were taken from the literature for the purpose of validating HGA. Two of these cases were taken from Morshed (2006) and one from Altaf et al., (2010). A brief introduction of the case studies is presented in the following sections.

6.5.1 Industrial Case Study 1: Shauful Alam Steel Mills (SASM)

The Shauful Alam Steel Mills (SASM) is a Bangladesh based local factory established in 1986. The SASM produces various products such as torsion steel bars, plain round bars, equal angles, channels, low carbon steel wire, pipes and spare parts. For the production of these products, numbers of related operations are performed on jobs on various types of machines. These include cutting, shaper, grinding, milling, turning, drilling/boring, polishing, painting, drying and other special turning machines.

Table 6. 12: SASM Scheduling Problems [Morshed (2006)]

Problem Name	Description	Size
SASM JSSP1	8 jobs and 6 machines Job shop problem	8×6
SASM JSSP2	6 jobs and 6 machines Job shop problem	6×6
SASM JSSP3	6 jobs and 6 machines Job shop problem	6×6
SASM FSSP1	7 jobs and 6 machines flow shop problem	7×6
SASM FSSP2	6 jobs and 6 machines flow shop problem	6×6

Jobs are processed through different routes on these machines and hence result in a variety of JSSPs and FSSPs on the shop floor. Some of these problems are shown in Table 6.12.

Tables 6.13 and 6.14 , show the processing times and process plans for three JSSPs and two FSSPs (shown in Table 6.12) respectively. The $1^{\text {st }}$ Column shows the number of jobs, whereas in columns 2 through 13, all the six operations are listed along with the corresponding processing times and the machines on which each job is to be executed. The SASM JSSP1 has eight jobs and six operations while the SASM JSSP2 and JSSP3 have six jobs and six operations. The flow shop scheduling problems FSSP1 and FSSP2 both have seven jobs and six operations.

Table 6. 13: Machine Sequences and Processing Times for SASM's JSSPs [Case study 1]

SASM JSSP1												
Jobs	O1		O 2		O3		O4		O5		O6	
	M	PT										
J1	1	10	2	32	3	21	4	40	5	53	6	23
J2	2	35	1	0	3	29	4	51	5	48	6	20
J3	4	54	1	0	5	53	3	0	6	21	2	0
J4	3	38	2	23	4	65	5	61	6	21	1	0
J5	1	15	2	30	3	31	4	54	5	53	6	18
J6	1	16	2	25	3	17	4	68	5	64	6	0
J7	4	54	1	0	5	53	3	0	6	21	2	0
J8	2	28	1	16	3	22	4	55	5	59	6	20
SASM JSSP2												
Jobs	O1		O2		O3		O4		O5		O6	
	M	PT										
J1	3	25	1	12	2	18	4	56	6	23	5	65
J2	2	20	3	32	5	67	6	24	1	13	4	46
J3	3	21	4	43	6	19	1	10	2	23	5	55
J4	2	24	1	15	3	40	4	61	5	68	6	21
J5	3	35	2	27	5	71	6	19	1	12	4	55
J6	2	30	4	65	6	18	1	15	5	66	3	35
SASM JSSP3												
Jobs	O1		O 2		O3		O4		O5		O6	
	M	PT										
J1	3	21	1	10	2	32	4	40	6	23	5	53
J2	2	15	3	8	5	61	6	35	1	14	4	45
J3	3	21	4	55	6	22	1	10	2	30	5	58
J4	2	34	1	9	3	19	4	50	5	52	6	20
J5	3	23	2	35	5	63	6	25	1	11	4	48
J6	2	38	4	41	6	18	1	10	5	65	3	43

Table 6. 14: Processing time for SASM's FSSPs [Case Study 1]

FSSP1												
Job No	O1		O 2		O3		O4		O5		O6	
	M	PT										
J1	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J2	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J3	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J4	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J5	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J6	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J7	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23

FSSP2												
Job No	O1		O2		O3		O4		O5		O6	
	M	PT										
J1	M1	10	M2	32	M3	21	M4	40	M5	53	M6	23
J2	M1	14	M2	15	M3	8	M4	45	M5	61	M6	35
J3	M1	10	M2	30	M3	21	M4	55	M5	58	M6	22
J4	M1	9	M2	34	M3	19	M4	50	M5	52	M6	20
J5	M1	11	M2	35	M3	23	M4	48	M5	63	M6	25
J6	M1	10	M2	38	M3	43	M4	41	M5	65	M6	18

6.5.2 Industrial Case Study 2: Pilkington PLC

A part manufacturing and supplier company, Pilkington PLC supply glazing products for building and automotive industries. The company supplies two main types of products: (a) building products and (b) automotive glass replacement (AGR) products. Scheduling problems at the King Norton's site of Pilkington PLC are presented in Table 6.15.

Table 6. 15: Various Scheduling Problems at Pilkington PLC [Morshed (2006]

Problem Name	Descriptions	Line	Size $N \times M$
L319 heated	Land Rover Dsicovery-L319 Heated windscreen	B	10×2
L319 Non heated	Land Rover Dsicovery-L319 Non-heated windscreen	B	10×3
CB40	Land Rover free Lander- CB40 Windscreen	A	10×3
Honda CRV	Honda Civic-Honda CRV Windscreen	B	10×4
R3 (AGR) Rover 200	Rover-R3 (AGR) Rover 200 Bagged windscreen	A	10×2
HHR (AGR) Rover 400	Rover-HHR (AGR) Rover 400 Bagged windscreen	A	10×5

These are flow shop problems during the production of various types of windscreens. Therefore, parts are processed in a typical FSSP fashion, i.e., in a sequence of the machines $\left(\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \ldots\right)$, depending on the number of operations on a job. The operation O_{1} is performed on the machine $\mathrm{M}_{1}, \mathrm{O}_{2}$ on M_{2} and so on. The processing times of operations for each type of problem are given in Table 6.16.

Table 6.16 shows only 10 parts for each problem, though each type of problem has various numbers of parts, ranging from 10 to 100, and therefore, the processing times may extend accordingly.

Table 6. 16: Processing Times for Various Scheduling Problems at Pilkington PLC

$\begin{gathered} \text { Job } \\ \text { No } \end{gathered}$	L319 heated		L319 Non heated		CB40			Honda CRV				R3 (AGR) Rover 200		HHR(AGR)Rover 400				
	Processing Times		Processing Times		Processing Times			Processing Times				Processing Times		Processing Times				
	01	02	01	02	01	02	03	01	02	03	04	01	02	01	02	03	04	05
1	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
2	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
3	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
4	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
5	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
6	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
7	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
8	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
9	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42
10	68	68	54	54	47	44	42	43	34	34	47	37	28	34	36	37	43	42

6.5.3 Industrial Case Study 3: Match Factory Peshawar, Pakistan (MFPP)

Figure 6.5 shows the flow line of a local match factory in Peshawar, Pakistan. The raw material, i.e., wood logs, are cut along the cross-section in $18^{\prime \prime}$ long segments and peeled with a peeler machine, after which, they are converted into thin sheets and then stacked. These stacks of sheets are then chopped into sticks with the chopper machine, followed by drying, polishing and cleaning. The sticks are then processed for the match-head-chemical. Matchboxes, produced in a parallel process, are then filled. A pack of a boxing lot of ten is termed "Dozen", and is produced through the box filling machine. The final process is called the grossing operation in which a pallet of a hundred dozens is produced.

Figure 6. 5: Process Flowchart of Local Match Industry (Hussain et al., 2010)

The scheduling problem of match making is shown in Table 6.17.

Table 6. 17: Processing times for MFPP [Case Study 3]

Job No	O1 (Box Making 1)		O2 Making 2)		O3 (Box Filling 1)		O4 (Box Filling 2)		O5 (Dozenining)		O6 (Grossing)	
	M1	66.4	M2	PT	M	PT	M	PT	M	PT	M	PT
	M1	66.4	M2	0	M3	31	M4	0	M5	0	M6	3.6
J3	M1	66.4	M2	0	M3	31	M4	0	M5	0	M6	3.6
J4	M1	66.4	M2	0	M3	31	M4	0	M5	0	M6	3.6
J5	M1	0	M2	20.2	M3	0	M4	27.8	M5	27.8	M6	3.6
J6	M1	0	M2	20.2	M3	0	M4	27.8	M5	27.8	M6	3.6
J7	M1	0	M2	20.2	M3	0	M4	27.8	M5	27.8	M6	3.6
J8	M2	0	M3	20.2	M4	0	M5	27.8	M6	27.8	M7	3.6

6.5.4 Results and Discussion of the Industrial Case Studies

Using the same combination of the GA parameters as discussed in Section 6.3, the HGA is applied to all the industrial case studies given in Tables 6.13 to 6.17 .

Table 6.18 shows the computational result summary for the SASM's five scheduling problems to which the HGA was applied. The HGA obtained optimal solutions for all the problems for which the solution gap is 0% with Morshed's (Morshed, 2006) results at zero generation for all cases except two FSSPs in Case Study 1. The optimum result for these two problems is then achieved through HGA. All results (for 36 cases) are shown in Appendix C. Morshed (2006), claimed time savings of 3 to 4 folds with his scheduling system as compared to the traditional and current practices in industries. Achieving almost similar results with the HGA, the same amount of time reduction is claimed. However, the advantage of the HGA is that it achieved three solutions at zero generation number. Two problems, the JSSP2 and
the JSSP3, for which achieving the optimal solutions with the HybH proved to be hard, were then achieved with HGA with generation numbers of 9 and 15 respectively.

Table 6. 18: Computational results from HGA for SASSM [Case Study 1]

Problem Name	Size	Makespan Reported by Morshed (2006)	HybH	\% GAP	Makespan by HGA	\% GAP
SASM JSSP1	8×6	505	505	0	-	-
SASM JSSP2	6×6	444	514		444	0
SASM JSSP3	6×6	379	425		379	0
SASM FSSP1	7×6	497	497	0	-	-
SASM FSSP2	6×6	452	452	0	-	-

Table 6.19 shows the summary of computational results of Pilkington PLC's 30 scheduling problems. The $1^{\text {st }}$ and $2^{\text {nd }}$ columns give information about the name of the problem and its size and the $3^{\text {rd }}$ column shows the Makespan reported in literature by Morshed (2006). The $4^{\text {th }}$ column shows the Makespan achieved by the HGA, where the \% GAP is shown in the last column after comparing the HGA results with Morshed's (2006). The HGA obtained the optimum solution at zero generation number for all the problems with 0% solution gap. Hence, the computational cost is considerably low. The results are encouraging as the HGA achieved all the Makespans reported in literature, with 0 \%GAP. Hence the HGA results show the usefulness of the developed module in the real-world environment.

Table 6. 19: Computational results from HGA for Pilkington's PLC [Case Study 2]

Problem Name	Prob. Size (N x M)	Makespan reported by Morshed (2006) and Noor (2007)	Makespan by HybH (Initial Solution)	\% GAP
Honda CRV 1	5×4	346	346	0
Honda CRV 2	10×4	581	581	0
Honda CRV 3	25×4	1286	1286	0
Honda CRV 4	75×4	2461	2461	0
Honda CRV 5	3636	3636	0	
Honda CRV 6	100×4	4811	4811	0
HHR (AGVR) Rover 400-1	5×5	364	364	0
HHR (AGVR) Rover 400-2	10×5	579	579	0
HHR (AGVR) Rover 400-3	25×5	1224	1224	0
HHR (AGVR) Rover 400-4	50×5	2299	2299	0
HHR (AGVR) Rover 400-5	75×5	3374	3374	0
HHR (AGVR) Rover 400-6	100×5	4449	4449	0
L319 heated-1	5×2	408	408	0
L319 heated-2	10×2	748	748	0
L319 heated-3	25×2	1768	1768	0
L319 heated-4	50×2	3468	3468	0
L319 heated-5	75×2	5168	5168	0
L319 heated-6	100×2	6868	6868	0
L319 non heated-1	5×2	324	324	0
L319 non heated-2	10×2	594	594	0
L319 non heated-3	25×2	1404	1404	0
L319 non heated-4	50×2	2754	2754	0
L319 non heated-5	75×2	4104	4104	0
L319 non heated-6	100×2	5454	5454	0
CB 40-1	5×3	321	321	0
CB 41-2	10×3	556	556	0
CB 42-3	25×3	1261	1261	0
CB 43-4	50×3	2436	2436	0
CB 44-5	75×3	3611	3611	0
CB 45-6	100×3	4786	4786	0

Table 6.20 shows MFPP FSSP results. The $1^{\text {st }}$ and the $2^{\text {nd }}$ columns show the problem name and size respectively and the $3^{\text {rd }}$ Column shows the Makespan recorded in
literature by Altaf et al. (2010). The $4^{\text {th }}$ and the $5^{\text {th }}$ columns respectively show the Makespan achieved by HGA and the \%GAP between the HGA and those from the results by Altaf et al. (2010). The \%GAP is zero and once again the HGA proved to be an effective and viable scheduling model for real scheduling problems.

Table 6. 20: Computational results from HGA for MFPP [Case Study 3]

Problem Name	Size	Makespan Reported by Altaf et al., (2008)	Makespan by HGA	\% GAP
MFPP	8×6	307.62	300.20	Improved

6.6 Summary of the Chapter

This chapter presents the results for the two developed novel heuristics (HybH and IBH) and the HGA. This chapter also covered in detailed the performance of the developed heuristics and HGA and showed that they performed extremely well for the benchmark JSSPs and FSSPs. The combined results of the job shop and flow shop benchmark problems are able to achieve the average \%GAP of 0.08%. The HGA can be applied not only to JSSPs but also to other combinatorial scheduling problems such as FSSPs and batch-shop or process scheduling problems without any modifications. In most of the benchmark cases, the HGA obtained the optimum only 6 cases out of 61 benchmark JSSPs and FSSPs could not be solved optimally, but where it achieved near-optimal values showing the feasibility of the schedules. The HGA performance across the three different practical case studies (36 problems) has proved that the developed scheduling model can be applied to real-world scheduling problem for achieving optimal or near-optimal solutions. This shows the usefulness of the HGA in real-world scheduling problems. However, its performance may be improved further by incorporating some other evaluation and local search techniques.

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Introduction

The main objective of the research was to develop a hybrid scheduling model based on AI techniques for JSSPs in order to find optimal or near-optimal solutions. In this research, novel heuristic rules have been developed. These rules were then combined with the GA in order to improve the GA's performance. The developed HGA was then applied to benchmark JSSPs for verification and validation. Details regarding the development of the heuristic rules, the HGA and their validation were described in Chapters 4, 5 and 6. This chapter describes the outcome of the techniques developed during this research. It also presents the future work recommendations both for the novel heuristics and the hybrid GA.

7.2 Research Achievement

The main objective of this research was to develop a hybrid scheduling model for solving JSSPs in order to find optimal or near optimal solution for the selected performance criteria of Makespan. The objectives of this research as outlined in Chapter 1, have successfully been achieved with the development, implementation, verification and validation of two new priority heuristic rules and their interfacing with GAs.

The scheduling problems and their solution approaches are thoroughly assessed before the development and implementation of the approaches. The developed approaches addressed the inherent difficulties of the scheduling problems due to which no heuristic can guarantee optimal or near optimal results for all problem sizes. The performance of IBH, HybH and HGA successfully addressed these issues
to some extent by achieving optimal, near-optimal and better initial generation results and is therefore a significant contribution to performance improvement of the scheduling problems in general and JSSPs in particular (see Chapter 6). A summary of the research activities is shown in Figure 7.1

Figure 7. 1: Summary of research activities

Chapters 1, 2 and 3 of the research have proceeded from an introduction to the background of manufacturing scheduling a well known and common problem in all industries followed by an introductory literature review to manufacturing problems in general and JSSPs in particular. The techniques used to solve these problems were also reviewed to gain knowledge and fulfill the main objective: the development of hybrid technique using Artificial Intelligence (AI) to achieve optimal or near-optimal solutions. In Chapter 2, an introduction to different manufacturing environments in manufacturing systems was presented, followed by introduction, mathematical model, scheduling criteria and complexity issues of JSSPs. The sources and types of benchmark problems are presented in the chapter. In Chapter 3, details of the literature review and analysis revealed many solution approaches applied to JSSP over the past few decades and also showed that GAs are dominating in the list due to their search capabilities among all approaches.

However, GA fine tuning problems shifted researcher's focus to hybrid approaches mainly combining GA with other AI techniques or introducing heuristics to main GA loops such as local search heuristics. The review also indicated that the initial solution in GA or HGA can significantly effect the JSSP solutions. The fitter the initial solution the faster the GA will converge with a better solution. It is therefore recommended that a new heuristic rule-based systems must be developed which can provide stable results across the problem sizes and can be incorporated with AI techniques such as GA. Such heuristic rules and hybrid approaches would not only be applicable to JSSP but also to solve other complex combinatorial and real life problems.

7.3 Novel Heuristics for scheduling problems

In Chapter 4 of the research, the design and development process for two novel heuristic rules: the Index Based Heuristic (IBH) and the Hybrid Heuristics Rule (HybH) was presented. The proposed heuristic rules were applied to benchmark JSSPs from the literature and case studies in order to check the validity and effectiveness of the proposed heuristics (see Chapter 6).

7.3.1 Index Based Heuristic (IBH) Rule for scheduling problem

An IBH was developed for scheduling problems (see Chapter 4, Section 4.2). The developed IBH was tested against minimum-Makespan JSSPs. The heuristic calculates the indices, called as Index Values (IVal) of the candidate jobs and then assigns the jobs to the available machine in the ascending order of the index values, i.e., jobs with lower or shorter index values are assigned first. To minimize the idle time between jobs, a swap technique was introduced at a later stage, when the algorithm initially fails to achieve optimum value, after all candidate jobs had been assigned. The swap technique takes the candidate jobs for a machine and swaps them without violating the precedence constraint.

7.3.1.1 Performance of IBH

The proposed IBH overcame the deficiencies in the traditional heuristics and yielding solutions with greater \%GAP from optimal results. The IBH performed well across all the test-bed benchmark problems (see Chapter 6, Section 6.2.2) and successfully achieved new optimal or near-optimal solutions for the JSSPs. For example, it had lesser \% GAP value of 5.4% in comparison with that of the best traditional heuristics (LPT and MS rules) that have an overall mean GAP value of
10.5%. Hence, the IBH reduced the overall \% GAP by 94.4%, which is again a significant increase in process efficiency.

7.3.2 Hybrid Heuristic (HybH) for scheduling problems

The Hybrid Heuristic (HybH) solution approach for scheduling problems is presented with the objective of optimizing the overall Makespan ($\mathrm{C}_{\max }$). The proposed HybH is a combination of the IBH and the Finished Job-Based (FJB) Heuristic. The HybH assigned candidate job's first operation on a machine using the IBH and the remaining operations on the basis the FJB.

7.3.2.1 Performance of $\mathbf{H y b H}$

The HybH results indicated that it performed well and consistently across the testbed benchmark problems. For example, the overall mean \% GAP taken across the LA-problems, HybH had a lesser \% GAP value of 6% in comparison with best results from traditional heuristics (the LPT and the MS rules), which have an overall mean GAP value of 10.5%. The HybH reduced the overall \% GAP by 77.9% in comparison to traditional heuristics on selected benchmark cases, which reflected a considerable gain in the efficiency (see section 6.2.1).

Some of the observations and conclusions regarding the individual models and recommendations for future work are presented in the following sections.

7.3.3 Future Recommendations regarding IBH and HybH

Both the heuristics, i.e., the IBH and the HybH, have shown encouraging results and are valid methodologies for scheduling optimization. The proposed heuristic rules overcame the deficiencies of the traditional heuristics for manufacturing scheduling and performed well across all the test-bed benchmark problems and successfully achieved optimal or near-optimal solutions for the same.

The evaluation process in the GA for a JSSP is a key step that determines the fitness of the objective function. In this research, only the HybH is used in the main GA loop in the evaluation process and initial solution of the benchmark problems (Chapter 5). However, the IBH was not used for the same purpose. In the future, the IBH may be applied to the evaluation process in combination with GA as well. Therefore, future work may focus on the hybridization of the IBH with other optimization techniques. The IBH may also be applied to some larger benchmark and real scheduling problems.

7.4 Hybrid Genetic Algorithm for scheduling problems

The hybrid GA-based approach towards solving scheduling problems was developed during this research. The GA uses the job-based chromosome representation, a multipoint crossover, mutation and permutation technique for the selection of chromosomes. The operational performance of the HGA was tested in detail using benchmark problems of various sizes and 36 industrial case studies from the literature with problem size ranging from 5×6 (five jobs and six machines) to 100×5, in order to gauge its capabilities, provide a reference for future research in this area and to fill the gap for parametric analysis for GAs. The performance of the HGA was satisfactory and obtained optimal solutions for almost all benchmark problems and industrial case studies.

7.4.1 Performance of HGA

The developed HGA was tested against 62 of minimum-Makespan benchmark JSSPs. It successfully achieved optimum results for 59 (out of 62) problems. The HGA was also tested on 36 case studies from literature, and it achieved the optimum results for 35 cases with \% GAP and record improvement in one case study. This showed the usefulness of the HGA in real-world scheduling problems.

7.4.2 Recommendations for future work in HGA

(i) The initial solution can be generated by various methods such as heuristics and dispatching rules. Only the HybH is used in this research for producing the initial set of chromosomes due to the reason that it has performed well across a wide range of problems and produced better initial solutions, which may increase the chances of hitting the global optimum with lesser searching efforts, i.e., low computational costs. However, it may be fruitful to use the IBH and some other evaluation techniques in order to improve the performance.
(ii) Scheduling problems are a multi-objectives problems. The HGA in this research is limited to only the Makespan as an objective function. However, the HGA can provide a useful platform for future studies to treat scheduling as a multi-objective problem.
(iii) The present HGA is developed for a deterministic scheduling problem. However, in the future, this model may be extended to stochastic scheduling, where the arrival of a job will have some probability distribution.
(iv) The HGA may be coupled with local search techniques for fine-tuning of the HGA solutions in certain problems, which may enable the HGA to achieve optimal solutions that the current HGA could not achieve.
(v) There are many chromosome representations available in literature. However, a job-based representation of chromosomes is used in this research. In the future, other chromosome representations may be used in order to improve the performance.
(vi) The performance of the HGA also depends on the selection of the crossover and mutation operators. The operators that have been selected and used in this research need further investigation.
(vii) At present, the developed HGA is not user friendly due to weak GUI functions in MATLAB. In the future, a suitable front-end is needed to make it more user friendly.
(viii) The HGA is developed in MATLAB environment and the poor GUI interface with no built-in functions for charts, make it really hard to produce some fine colour schedule charts. However, a code for the Gantt chart is developed separately in MATLAB. Currently, these functions are good for small-sized scheduling problems. In the future, these functions may be used to produce better machine or job Gantt charts by adding more functions and options.

7.5 Reflection of the Research Work

The learning, research work, and writing process were a genuine learning experience. The research work is an addition to the knowledge of manufacturing scheduling. Although a number of algorithms and heuristics are available to address the scheduling problems; whether a job shop or a flow shop, but in this research work an effort is made to improve the performance criterion (Makespan), which is mainly considered for such scenarios. Considering the importance of the scheduling problem, both scenarios (job shop and flow shop) were considered and three new techniques (HGA, $\mathrm{IBH}, \mathrm{HybH}$) and new process for developing heuristic rules were developed and their results compared with the benchmark problems. In some cases (problems), the improvement is witnessed whilst in some cases the same results are achieved. Still, one feels, the large size and hard problems are far from being
completely solved due to a large number of combinations and exponential complexities of computational time. Considering such large sized problems, this research work looks as an addition of a drop to the ocean of scheduling knowledge. There is definitely a room to improve the performance of AI techniques, local search algorithms and heuristics.

In this research, as a global search tool GA was selected. For local search, researchers have used many techniques such as Artificial Neural Networks (ANN), Fuzzy Logic (FL), Simulated Annealing (SA), Expert Systems (ES), Tabu Search (TS), Perti net, and Heuristic rules. All these techniques have been extensively applied to the problems with GA in order to improve the single objective. However, they can be combined either with each other or the developed new heuristic rules in order to check for any improvement in single or multi objectives. For example, development in ANN techniques such as Feedforward ANN and Hopfield ANN methods can be utilized in global or in local search in combination with GAs.

The two new heuristics that have been developed during the current research can also be used in combination with existing techniques such as ANN, FL, ES, TS, etc. and their strength and weaknesses can be gauged by applying them to large and hard problems.

7.6 Conclusion

The chapter has highlighted the discussion regarding the two news priority heuristic rules and the hybrid genetic algorithm. The developed algorithms focused on solving minimum-Makespan scheduling problems. The chapter also reviews the achievement of the objectives of the research as outlined in Chapter 1. Furthermore, the performance of the new developed algorithms, limitation and the recommendations
for the future work have been discussed. As shown, the algorithms on the basis of their performance, offers an alternate reliable and a potential optimization technique for scheduling problems. The shortcomings of the Heuristics and the HGA are discussed and recommendations are made for future work.

References

Adam, N. R. and Surkis, J. (1980). "Priority Updates Intervals and Anomalies in Dynamic Ratio Type Jop Shop Scheduling Rules." Management Science 26(12): 1227-1237.
Adams, J., Balas, E. and Zawack, D. (1988). "The shifting bottleneck procedure for job shop scheduling." Management Science 34(3): 391-401.
Adams, J., Balas, E. and Zawack, D. (1998). "The shifting Bottleneck Procedure for Job Shop Scheduling, ." Management Science 34,391-401.
Akyol, D. E. (2004). "Application of neural networks to heuristic scheduling algorithms." Computers \& Industrial Engineering 46(4): 679-696.
Akyol, D. E. and Bayhan, G. M. (2007). "A review on evolution of production scheduling with neural networks." Computers \& Industrial Engineering 53(1): 95-122.
Akyol, D. E. and Bayhan, G. M. (2008). "Multi-machine earliness and tardiness scheduling problem: an interconnected neural network approach." International Journal of Advanced Manufacturing Technology 37(5-6): 576588.

Anderson, E. J. and Nyirenda, J. C. (1990). "2 New Rules for Minimze Tardiness in a job Shop." International Journal of Production Research 28(12): 2277-2292.
Andersson, P. (2008). Reuse of manufacturing experience in product and process definitions Department of Applied Physics and Mechanical Engineering. Luleå, Luleå University of Technology, Sweden.
Applegate, D. and Cook, W. (1991). "A computational study of the job-shop scheduling problem." Informs Journal of Computing 3(2): 149-156.
Askin, R. G. and Standridge, C. R. (1993). Modeling and Manufacturing System, John Wiley.
AWAD, E. M. (1995). Building expert systems : principles, procedures, and applications, New York, West Publishing Company.
Bai, S. (1998). "NSF Workshop on supply chain management in eletronic commerce, ." Final Report http://www.ise.ufl.edu/Supplychain/.
Baker, C. T. and Dzielinski, B. P. (1960). "Simulation of a Simplified Job Shop." Management Science 6(3): 311-323.
Baker, J. E. (1987). Reducing Bias and Inefficiency in the Selection Algorithm. Proceedings of the Second International Conference on Genetic Algorithms and their Application New Jersey, Hillsdale.
Baker, K. R. (1974). Introduction to Sequencing and Scheduling, John Wiley \& Sons Inc
Balas, E. (1965). "An additive algorithm for solving linear programs with zero-one variables." Operations Research 13: 517-546.
Balas, E. (1967). "Discrete programming by the filter method." Operations Research 15: 915-957.
Balas, E. (1970). "Machine Sequencing - Disjunctive Graph and Degree Constrained Subgraphs." Naval Research Logistics Quarterly 17(1): 1-\&.
Baptiste, P. and Timkovsky, V. G. (2004). "Shortest path to nonpreemptive schedules of unit-time jobs on two identical parallel machines with minimum total completion time." Mathematical Methods of Operations Research $\mathbf{6 0}(1)$: 145-153.
Barker, J. R. and McMahon, G. B. (1985). "Scheduling The General Job Shop." Management Science 31(5): 594-598.

Bean, J. (1994). "Genetic Algorithms and Random Keys for Sequencing and Optimization." Journal on Computing Spring 6(2): 154-160.
Benavides, J. A. C. and Prado, J. C. (2002). "Creating an expert system for detailed scheduling." International Journal of Operations \& Production Management 22(7-8): 806-819.
Benders, J. F. (2005). "Partitioning procedures for solving mixed-variables programming problems." Computational Management Science 2(1): 3-19.
Biegel, J. E. and Davern, J. J. (1990). "Genetic Algorithm and Job Shop Scheduling." Computers \& Industrial Engineering 19(1-4): 81-91.
Bierwirth, C. (1995). "A Generalized Permutation Approach to Job Shop Scheduling with GAs." Or Spektrum 17(2-3): 87-92.
Bierwirth, C., Mattfeld, D. C. and Kopfer, I. (1996). On Permutation Representations for Scheduling Problems. PPSN'IV Parallel Problem Solving from Nature, , Berlin, Heidelberg, Germany, Springer-Verlag.
Black, M. (1937). "Vagueness. An Exercise in Logical Analysis." Philosophy of Science 4(4): 427-455.
Blazewicz, J., Dror, M. and Weglarz, J. (1991). "Mathematical Programming Formulations for Machine Scheduling: A Survey." European Journal of Operational Research, Invited Review 51(3): 283-300.
Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G. and Weglarz, J. (1996). "Job Shop Scheduling, Scheduling Computer and Manufacturing Processes, ." Springer, Germany: 16-20 and 265-317.
Bowman, E. H. (1959). "The Schedule-Sequencing Problem." Operations Research 7(621-624).
Bozejko, W., Pempera, J. and Smutnicki, C. (2009). Parallel Simulated Annealing for the Job Shop Scheduling Problem. Computational Science - Iccs 2009, Part I. G. Allen, J. Nabrzyski, E. Seidel, J. Dongarra, G. D. VanAlbada and P. M. A. Sloot. Berlin, Springer-Verlag Berlin. 5544: 631-640.

Braune, R., Wagner, S. and Affenzeller, M. (2005). On the Analysis of Crossover Schemes for Genetic Algorithms Applied to the Job Shop Scheduling Problem. Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI), International Institute of Informatics and Systemics, 2005.
Brucker, P. (1988). "An Efficient algorithm for the job Shop Problem with 2 jobs." Computing 40(4): 353-359.
Brucker, P. (2007). Scheduling Algorithms, Springer-Verlag New York, Inc.
Bureerat, S. and Limtragool, J. (2008). "Structural topology optimisation using simulated annealing with multiresolution design variables." Finite Elements in Analysis and Design 44(12-13): 738-747.
Canbolat, Y. B. and Gundogar, E. (2004). "Fuzzy priority rule for job shop scheduling." Journal of Intelligent Manufacturing 15(4): 527-533.
Carlier, J. (1978). "Ordonnancements-A Constraints Disjunctives." Rairo-Recherche Operationnelle-Operations Research 12(4): 333-351.
Chan, F. T. S., Chan, H. K. and Kazerooni, A. (2003). "Real time fuzzy scheduling rules in FMS." Journal of Intelligent Manufacturing 14(3-4): 341-350.
Chang, P. T., Yao, M. J., Huang, S. F. and Chen, C. T. (2006). "A genetic algorithm for solving a fuzzy economic lot-size scheduling problem." International Journal of Production Economics 102(2): 265-288.

Chang, Y. L., Sueyoshi, T. and Sullivan, R. S. (1996). "Ranking dispatching rules by data envelopment analysis in a job shop environment." Iie Transactions 28(8): 631-642.
Chaudhry, I. A. and Drake, P. R. (2008). "Minimizing flow-time variance in a single-machine system using genetic algorithms." International Journal of Advanced Manufacturing Technology 39(3-4): 355-366.
Chen, R. M. and Huang, Y. M. (2001). "Multiprocessor task assignment with fuzzy Hopfield neural network clustering technique." Neural Computing \& Applications 10(1): 12-21.
Chen, T. (2009). "Dynamic fuzzy-neural fluctuation smoothing rule for jobs scheduling in a wafer fabrication factory." Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 223(I8): 1081-1094.
Cheng, K., Harrison, D. K. and Pan, P. Y. (1998). "Implementation of agile manufacturing - an AI and Internet based approach." Journal of Materials Processing Technology 76(1-3): 96-101.
Cheng, R. W., Gen, M. and Tsujimura, Y. (1996). "A tutorial survey of job-shop scheduling problems using genetic algorithms .1. Representation." Computers \& Industrial Engineering 30(4): 983-997.
Cheng, R. W., Gen, M. and Tsujimura, Y. (1999). "A tutorial survey of job-shop scheduling problems using genetic algorithms: Part II. Hybrid genetic search strategies." Computers \& Industrial Engineering 37(1-2): 51-55.
Chiang, T. C. and Fu, L. C. (2004). Solving the FMS scheduling problem by critical ratio-based heuristics and the genetic algorithm, . IEEE Conference on Robotics and Automation.
Chiang, T. C. and Fu, L. C. (2007). "Using dispatching rules for job shop scheduling with due date-based objectives." International Journal of Production Research 45(14): 3245-3262.
Coffman, E. G., Dereniowski, D. and Kubiak, W. (2012). "An efficient algorithm for finding ideal schedules." Acta Informatica 49(1): 1-14.
Coffman, E. G., Sethuraman, J. and Timkovsky, V. G. (2003). "Ideal preemptive schedules on two processors." Acta Informatica 39(8): 597-612.
Conway, R. W. (1964). "An Experimental Investigation of Priority Assignment in a Job Shop." Santa Monica, CA: RAND Corporation, 1964. (RM-3789-PR).
Conway, R. W., Maxwell, W. L. and Miller, L. W. (1967). Theory of Scheduling, Adison Wesley,Reading, MA.
Croce, F., Tadei, R. and Volta, G. (1995). "A genetic algorithm for the job shop problem." Complex Systems 22: 15-24.
Cruz-Chavez, M. A. and Frausto-Solis, J. (2004). Simulated annealing with restart to job shop scheduling problem using upper bounds. Artificial Intelligence and Soft Computing - Icaisc 2004. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh. Berlin, Springer-Verlag Berlin. 3070: 860-865.
Dantzig, G. (1963). Linear Programming and Extensions, Princeton University Press and the RAND Corporation.
Dantzig, G. B. and Wolfe, P. (1960). "Decomposition Principle for Linear Programs " Operations Research 8: 101-111.
Davis, L. (1985). Job Shop Scheduling with Genetic Algorithms. Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates Inc.: 136-140.
Davis, L. (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold.

De Jong, K. A. (1993). Genetic Algorithms are not function optimizers, Computer Science Department George Mason University Fairfax, VA 22030, USA.
Demirkol, E., Mehta, S. and Uzsoy, R. (1997). "A Computational Study of Shifting Bottleneck Procedures for Shop Scheduling Problems." Journal of Heuristics 3(2): 111-137.
Devillers, J. (1996). Genetic Algorithms in Molecular Modeling, Elsevier.
Dominic, P. D. D., Kaliyamoorthy, S. and Kumar, M. S. (2004). "Efficient dispatching rules for dynamic job shop scheduling." International Journal of Advanced Manufacturing Technology 24(1-2): 70-75.
Dorndorf, U. and Pesch, E. (1995). "Evolution Based Learning in A Job Shop Scheduling Environment." Computers \& Operations Research 22(1): 25-40.
Falkenauer, E. and Bouffoix, S. (1991). A genetic algorithm for job shop. . IEEE International Conference on Robotics and Automation, Sacrement, California, USA.
Fang, H. L., Ross, P. and Corne, D. (1993). "A Promising Genetic Algorithm approach to Job-Shop Scheduling Rescheduling, and Open -Shop Scheduling Problem." Proceedings of the Fifth International Conference on Genetic Algorithms: 375-382.
Fargier, H. (1996). Fuzzy scheduling: Principles and experiments. New York, Wiley.
Fisher, H. and Thompson, G. L. (1963). Probabilistic learning combinations of local job shop scheduling rules. Industrial Scheduling. J. F. Muth and G. L. Thompson Eds. Englewood Cliffs, New Jersey., Prentice Hall. 15.
French, S. (1982). Sequencing and Scheduling. Mathematics and its applications, Ellis Hor-wood Limited.
Gantt, H. (1919). "Efficiency and Democracy, ." Transactions of the American Society OF Mechanical Engineer 40: 799-808.
Gao, J., Gen, M., Sun, L. and Zhao, X. (2007). "A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems." Computers \& Industrial Engineering 53(1): 149-162.
Gao, J. Q., He, G. X. and Wang, Y. S. (2009). "A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint." International Journal of Advanced Manufacturing Technology 43(1-2): 151-160.
Garey, M. R. and Johnson, D. S. (1978). "Strong NP-Completeness Results Motivation, Examples, and Implications." Journal of the Acm 25(3): 499508.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York, W.H. Freeman and Company.
Gen, M., Lin, L. and Cheng, R. (2008). Network Models and Optimization: Multiobjective Genetic Algorithm Approach, Springer-Verlag London Limited.
Gen, M., Tsujimura, Y., Kubota, E. and Ieee (1994). Solving Job Shop Schduling Problems by GA. New York, I E E E.
Giffler, B. and Thompson, G. L. (1960). "Algorithms for Solving ProductionScheduling Problems." Operations Research 8(4): 487-503.
Giglio, R. J. and Wagner, H. M. (1964). "Approximate Solutions to the ThreeMachine Scheduling Problem." Operations Research 12(2): 305-324.
Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization and Machine Learning Addisson Wesley.

Goncalves, J. F., Mendes, J. and Resende, M. G. C. (2005). "A hybrid genetic algorithm for the job shop scheduling problem." European Journal of Operational Research 167(1): 77-95.
Gonzalez, T. and Sahni, S. (1978). "Flow Shop and Job Shop Schedules Complexities and Approximation " Operations Research 26(1): 36-52.
Gordon, V. S. and Whitley, D. (1993). Serial and Parallel GAs as Function Optimizers.
Grabot, B. and Geneste, L. (1994). "Dispatching Rules in Scheduling - A Fuzzy Approach." International Journal of Production Research 32(4): 903-915.
Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics. E. L. J. P.L. Hammer and B. H. Korte, Elsevier. Volume 5: 287-326.
Halshal, D. N. (1995). A Resource Scheduling Framework for Small Manufacturing Enterprises, University of Bradford, Uk. PhD.
Hart, E., Ross, P. and Corne, D. (2005). "Evolutionary Scheduling: A Review." Genetic Programming and Evolvable Machines 6(2): 191-220.
Hefetz, N. and Adiri, I. (1982). "An Efficient Optimal Algorithm for the TwoMachines Unit-Time Jobshop Schedule-Length Problem." MATHEMATICS OF OPERATIONS RESEARCH 7(3): 354-360.
Hitomi, K. (1996). Manufacturing Systems engineering - A unified approach to manufacturing technology, production management, and industrial economics, Taylor and Francis Ltd, London UK,.
Holland, J. (1975). Adaptation in Neural and Artificial Systems, The University of Micihigan Press, Ann Arbor.
Holthaus, O. and Rajendran, C. (1997). "Efficient dispatching rules for scheduling in a job shop." International Journal of Production Economics 48(1): 87-105.
Holthaus, O. and Rajendran, C. (1997). "New dispatching rules for scheduling in a job shop - An experimental study." International Journal of Advanced Manufacturing Technology 13(2): 148-153.
Hussain, A., Shakoor, Q., Abid, H., Omair, M. and Noor, S. (2010). Intelligent Scheduling System for Flow Shop and Job Shop Scheduling Problems in Discrete Manufacturing. Peshawar, NWFP University of Engineering Science and Technology.
Ishibuchi, H., Yamamoto, N., Misaki, S. and Tanaka, H. (1994). "Local Search Algorithm for Flow Shop Scheduling with Fuzzy Due-Dates." International Journal of Production Economics 33(1-3): 53-66.
Ishii, H. and Tada, M. (1995). "single Machines Scheduling Problem with Fuzzy Precedence Relation." European Journal of Operational Research 87(2): 284288.

Jackson, J. R. (1956). "An extension of Johnson's result on job lot scheduling. Naval Research Logistics Quarterly 3 (3), 201-203." Naval Research Logistics Quarterly 3(3): 201-203.

Jain, A. S. and Meeran, S. (1998). "Job-shop scheduling using neural networks." International Journal of Production Research 36(5): 1249-1272.
Jain, A. S. and Meeran, S. (1999). "Deterministic job-shop scheduling: Past, present and future." European Journal of Operational Research 113(2): 390-434.
Jain, A. S. and Meeran, S. (2002). "A Multi-level Hybrid Framework Applied to the General Flow-shop Scheduling Problem." Computers and Operations Research, 29(13): 873-1901.

Jamili, A., Shafia, M. A. and Tavakkoli-Moghaddam, R. (2011). "A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem." International Journal of Advanced Manufacturing Technology 54(1-4): 309-322.
Jayamohan, M. S. and Rajendran, C. (2004). "Development and analysis of costbased dispatching rules for job shop scheduling." European Journal of Operational Research 157(2): 307-321.
Johnson, D. S., Gutin, L. A., McGeoch, L. A., Yeo, A., Zhang, W. and Zverovich, A. (2002). Experimental analysis of heuristics for the ATSP. The traveling salesman problem and its variations, Dordrecht, Kluwer Academic Publishers.
Johnson, S. M. (1954). "Optimal two- and three-stage production schedules with setup times included." Naval Research Logistics Quarterly 1(1): 61-68.
Jones, A. and Rabelo, J. C. (1998) "Survey of job shop scheduling techniques." NISTIR, National Institute of Standards and Technology, Gaithersburg, MD.
Kachitvichyanukul, V. and Sitthitham, S. (2011). "A two-stage genetic algorithm for multi-objective job shop scheduling problems." Journal of Intelligent Manufacturing 22(3): 355-365.
Kantorovich, L. V. (1940). " A new method of solving some classes of extremal problems." Doklady Akad Sci USSR 28: 211-214.
Kawai, T., Fujimoto, Y. and Ieee (2005). An efficient combination of dispatch rules for Job-Shop Scheduling Problem. New York, Ieee.
Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). "optimization by Simulated Annealing " Science 220(4598): 671-680.
Kis, T. (2003). Job-shop scheduling with processing alternatives. 18th EURO Summer-Winter-Institute on Meta-Heuristics in Combinatorial Optimization (ESWI XVIII), Switzerland, Elsevier Science Bv.
Kobayashi, S., Ono, I. and Yamamura, M. (1995). An Efficient Genetic Algorithm for Job Shop Scheduling Problems,. Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco, CA, USA, Morgan Kaufmann
Kolonko, M. (1999). "Some new results on simulated annealing applied to the job shop scheduling problem." European Journal of Operational Research 113(1): 123-136.
Kubiak, W., Sethi, S. and Sriskandarajah, C. (1995). "An Efficient Algorithm for Job Shop Scheduling." Annals of Operations Research 57: 203-216.
Kuroda, M. and Wang, Z. (1996). "Fuzzy job shop scheduling." International Journal of Production Economics 44(1-2): 45-51.
Lai, P. J. and Wu, H. C. (2009). "Using Ant Colony Optimization to Minimze the Fuzzy Makespan and Total Weighted Fuzzy Completion Time in Flow Shop Scheduling Problem." International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 17(4): 559-584.
Lawrence, S. (1984). "Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement), ." Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburg, 1984.

Lawrence, S. (1984). "Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (Supplement)." Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburg.

Lei, D. M. (2010). "A genetic algorithm for flexible job shop scheduling with fuzzy processing time." International Journal of Production Research 48(10): 29953013.

Li, J. Q., Sun, K. B., Xu, D. H. and Li, H. X. (2010). "Single machine due date assignment scheduling problem with customer service level in fuzzy environment." Applied Soft Computing 10(3): 849-858.
Liaw, C. F. (2000). "A hybrid genetic algorithm for the open shop scheduling problem." European Journal of Operational Research 124(1): 28-42.
Lintern, R. R. H. a. G. (2006). Eliciting and representing the knowledge of experts. Cambridge handbook of expertise and expert performance. K. A. In Ericsson, Charness, N., Feltovich, P., \& Hoffman, R. New York:, Cambridge University Press.: 203-222.
Lopez, P. and Roubellat, F., Eds. (2008). Production Scheduling. London, John Wiley.
Low, C. Y. and Yeh, Y. L. (2009). "Genetic algorithm-based heuristics for an open shop scheduling problem with setup, processing, and removal times separated." Robotics and Computer-Integrated Manufacturing 25(2): 314322.

Luh, Y. L. and Guan, P. B. X. (1994). Fuzzy optimization-based scheduling of identical machines with possible breakdown. IEEE International Conference on Robotics and Automation.
Maccarthy, B. L. and Liu, J. (1993). "Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling." International Journal of Production Research 31(1): 59-79.
Manne, A. S. (1960). "Job-Shop Scheduling Problem." Operations Research 8: 219223.

Maqsood, S., Hussain, I., Khan, M. K. and Wood, A. S. (2011). A Novel Index Based Heuristic for JSSP. 26th International Conference of CAD/CAM, Robotics \& Factories of the Future. Kuala Lumpur, Malaysia.
Maqsood, S., Khan, M. K. and Wood, A. S. (2010). A Review of AI techniques for Manufacturing Scheduling. The 25th International conference of CAD/CAM, Robotics \& Factories of the Future. Pretoria, South Africa.
Maqsood, S., Khan, M. K. and Wood, A. S. (2011). A novel heuristic for low batch manufacturing process scheduling optimization Computer Aided Process Engineering (CAPE) Forum. School of Engineering, Design \& Technology. University of Bradford, UK.
Maqsood, S., Khan, M. K. and Wood, A. S. (2011). "A novel heuristic for low batch manufacturing process scheduling optimization with reference to process engineering." Chemical Product and Process Modeling 6(2).
Maqsood, S., Noor, S., Khan, M. and Wood, A. (2011). Sensitivity analysis of genetic algorithms for job shop scheduling problems. 26th International Conference of CAD/CAM, Robotics \& Factories of the Future. Kuala Lumpur, Malaysia.
Martin, B. (1996). A Time-Oriented Approach to Computing Optimal Schedules for the Job-Shop Scheduling Problem. School of Operations Research \& Industrial Engineering. New York, Cornell University, USA. PhD.
Matta, M. E. (2009). "A genetic algorithm for the proportionate multiprocessor open shop." Computers \& Operations Research 36(9): 2601-2618.
McCulloch, W. S. and Pitts, W. (1943 \& 1990). "A Logical Calulus of the Ideas Immanent in Nervous Activity (Reprinted from Bulletin of Mathematical

BioPhysics, VOL 5, PG 115-133, 1943)." Bulletin of Mathematical Biology 52(1-2): 99-115.
Mehrabad, M. S. and Pahlavani, A. (2009). "A fuzzy multi-objective programming for scheduling of weighted jobs on a single machine." International Journal of Advanced Manufacturing Technology 45(1-2): 122-139.
Messenger, R. and Dove, R. (2012). Basic Genetic Algorithm pattern for use in selforganizing agile security. Security Technology (ICCST), 2012 IEEE International Carnahan Conference on.
Metaxiotis, K. S., Psarras, J. E. and Askounis, D. T. (2002). "GENESYS: an expert system for production scheduling." Industrial Management \& Data Systems 102(5-6): 309-317.
Minoux, M. (1986). Mathematical programming: Theory and algorithms. Chichester W. Sussex and New York, Wiley

Mohamed, N. M. Z. N. and Khan, M. K. (2011). "Knowledge Based System Implementation for Lean Process in Low Volume Automotive Manufacturing (LVAM) with Reference to Process Manufacturing." Chemical Product and Process Modeling 6(2).
Momim, M. (1999). A knowledge-Based Approach for the Dynamic Scheduling and Sequencing in Manufacturing Cells, University of Bradford, UK. PhD.
Morshed, M. S. (2006). A hybrid model for job shop scheduling. Department of Mechanical and Manufacturing, University of Birmingham, UK. PhD.
Morton, T. E. and Pentico, D. W. (1993). Heuristic Scheduling Systems with Applications to Production Systems and Project Management. . New York, John Wiley and Sons.
Mosheiov, G. (2002). "Complexity analysis of job-shop scheduling with deteriorating jobs." Discrete Applied Mathematics 117(1-3): 195-209.
Nababan, E. B., Abdullah, S., Hamdan, A. R. and Zakaria, M. S. (2008). A Branch and Bound Algorithm in Optimizing Job Shop Scheduling Problems.
Negnevitsky, M. (2002). Artificial Intelligence: A Guide to Intelligent Systems Essex, Addison Wesley.
Noor, S. (2007). Operational scheduling of traditional and flexible manufacturing system using genetic algorithms, artificial neural networks and simulation. School of Engineering Design and Technology. Bradford, University of Bradford. PhD.
Noor, S. and Khan, M. K. (2007). Hybrid scheduling system for flow shop and job shop scheduling problem. $23^{\text {rd }}$ International Conference of CAD/CAM, Robotics \& Factories of the Future Conference. Bogota, Colombia.
Norman, B. A. and Bean, J. C. (1996) "A random keys GA for JSSP."
Noronha, S. and Sarma, V. (1991). "Knowledge-Based Approaches for Scheduling Problems: A Survey." IEEE Transactions on Knowledge and Data Engineering 3(2): 160-171.
Nowicki, E. and Smutnicki, C. (1996). "A fast taboo search algorithm for the job shop problem." Manage. Sci. 42(6): 797-813.
O'Kane, J. F. (2000). "A knowledge-based system for reactive scheduling decisionmaking in FMS." Journal of Intelligent Manufacturing 11(5): 461-474.
Oltean, M. (2004). Searching for a practical evidence of the no free lunch theorems. Biologically Inspired Approaches to Advanced Information Technology. A. J. Ijspeert, M. Murata and N. Wakamiya. 3141: 472-483.

Ono, I., Yamamura, M., Kobayashi, S. and Ieee (1996). A genetic algorithm for jobshop scheduling problems using job-based order crossover. New York, IEEE.

Orvosh, D. and Davis, L. (1994). Using a genetic algorithm to optimize problems with Feasibility constrains. Proceedings of the First IEEE Conference on Evolutionary Computation,, Orlando, FL, IEEE Press.
Pan, J. C. H. and Huang, H. C. (2009). "A hybrid genetic algorithm for no-wait job shop scheduling problems." Expert Systems with Applications 36(3): 58005806.

Pan, Y. P. and Shi, L. Y. (2006). "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem." European Journal of Operational Research 168(3): 1030-1039.
Panwalkar, S. S. and Iskander, W. (1977). "A Survey of Scheduling Rules." Operations Research 25(1): 45-61.
Park, B. J., Choi, H. R. and Kim, H. S. (2003). "A hybrid genetic algorithm for the job shop scheduling problems." Computers \& Industrial Engineering 45(4): 597-613.
Park, Y. S., Kim, S. Y. and Lee, Y. H. (2000). "Scheduling jobs on parallel machines applying neural network and heuristic rules." Computers \& Industrial Engineering 38(1): 189-202.
Pesch, E. (1993). Machine Learning by Schedule Decomposition, „ Faculty of Economics and Business Administration, University of Limburg, Maastricht.
Petrovic, S., Fayad, C., Petrovic, D., Burke, E. and Kendall, G. (2008). "Fuzzy job shop scheduling with lot-sizing." Annals of Operations Research 159(1): 275-292.
Pezzella, F., Morganti, G. and Ciaschetti, G. (2008). "A genetic algorithm for the Flexible Job-shop Scheduling Problem." Computers \& Operations Research 35(10): 3202-3212.
Pham, D. T. and Pham, P. T. N. (1999). "Artificial intelligence in engineering." International Journal of Machine Tools \& Manufacture 39(6): 937-949.
Pinedo, M., Chao, X. and Pinedo, M. L., Eds. (1998). Operations scheduling with applications in manufacturing and services. Singapore, McGraw-Hill.
Pogorzelski, H. A. (1965). "Reviewed work(s): Remarks on Nicod's Axiom and on "Generalizing Deductio." The Journal of Symbolic Logic 30(3): 376-377.
Ponnambalam, S. G., Jawahar, N. and Aravindan, P. (1999). "A simulated annealing algorithm for job shop scheduling." Production Planning \& Control 10(8): 767-777.
Priore, P., De La Fuente, D., Gomez, A. and Puente, J. (2001). "A review of machine learning in dynamic scheduling of flexible manufacturing systems." Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing 15(3): 251-263.
Rachamadugu, R. and Schriber, T. J. (1990). Performance of Dispatching Rules Under Perfect Sequencing Flexibility. 1990 Winter Simulation Conference (Wsc 90), New Orleans, La, I E E E.
Rajendran, C. and Holthaus, O. (1999). "A comparative study of dispatching rules in dynamic flowshops and jobshops." European Journal of Operational Research 116(1): 156-170.
Ramasesh, R. (1990). "Dynamic job shop scheduling: A survey of simulation research." Omega 18(1): 43-57.
Restrepo, I. M. and Balakrishnan, S. (2008). "Fuzzy-based methodology for multiobjective scheduling in a robot-centered flexible manufacturing cell." Journal of Intelligent Manufacturing 19(4): 421-432.
Rich, E. and Knight, K. (1991). Artificial Inetlligence, MGraw-Hill, Inc.

Rothlauf, F., Goldberg, D. E. and Heinzl, A. (2002). "Network random keys - A tree representation scheme for genetic and evolutionary algorithms." Evolutionary Computation 10(1): 75-97.
Roy, B. and Sussmann, B. (1964). "Les Problems d'Ordonnancement avec Contraintes Disjonctives." Note D. S. no. 9 bis, SEMA, Paris, France.
Sabuncuoglu, I. and Touhami, S. (2002). "Simulation metamodelling with neural networks: an experimental investigation." International Journal of Production Research 40(11): 2483-2505.
Sadeh, N. M. and Nakakuki, Y. (1996). "Focused simulated annealing search: An application to job shop scheduling." Annals of Operations Research 63: 77103.

Sakawa, M. and Kubota, R. (2000). "Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms." European Journal of Operational Research 120(2): 393-407.
Samanlioglu, F., Ferrell, W. G. and Kurz, M. E. (2008). "A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem." Computers \& Industrial Engineering 55(2): 439-449.
Shi, G. (1997). "A genetic algorithm applied to a classic job-shop scheduling problem." International Journal of Systems Science 28(1): 25-32.
Shugang, L., Zhiming, W. and Xiaohong, P. (2005). "Job shop scheduling in realtime cases." International Journal of Advanced Manufacturing Technology 26(7-8): 870-875.
Sidney, J. B. (1983). "Sequencing and scheduling-an introduction to the mathematics of the job-shop, by Simon French, Wiley, 1982, 245 pp. Price: $\$ 49.95 . "$ Networks 13(2): 310-311.
Słowiński, R. and Hapke, M. (2000). "Scheduling under Fuzziness." Physica-Verlag: 308.

Smith, W. E. (1956). "Various optimizers for single stage production." Naval Research Logistics Quarterly 3: 59-66.
Snyder, L. V. and Daskin, M. S. (2006). "A random-key genetic algorithm for the generalized traveling salesman problem." European Journal of Operational Research 174(1): 38-53.
Solimanpur, M., Vrat, P. and Shankar, R. (2004). "A neuro-tabu search heuristic for the flow shop scheduling problem." Computers \& Operations Research 31(13): 2151-2164.
Soyuer, H., Kocamaz, M. and Kazancoglu, Y. (2007). "Scheduling jobs through multiple parallel channels using an expert system." Production Planning \& Control 18(1): 35-43.
Srinivas, V. (1971). "Hybrid Algorithm for One Machine Sequencing Problem to Minize Total Tardiness." Naval Research Logistics Quarterly 18(3): 317-.
Steinhofel, K., Albrecht, A. and Wong, C. K. (2003). "An experimental analysis of local minima to improve neighbourhood search." Computers \& Operations Research 30(14): 2157-2173.
Storer, R. H., Wu, S. D. and Vaccari, R. (1992). "New search spaces for sequencing problems with application to job shop scheduling." Management Science 38(10): 1495-1509.
Taillard, E. (1993). "Benchmarks for basic job shop scheduling problems." European Journal of Operational Research 64(2): 278-285.
Tamaki, H. and Nishikawa, Y. (1992). A Paralleled GA Based on A Neighborhood Model and Its Application to the Job Shop Scheduling.

Tariq, A. (2008). Operational design of a Cellular Manufacturing System (CMS). Deptt. of Industrial and Manufacturing Islamabad, NUST, Pakistan. PhD.
Teti, R. and Kumara, S. R. T. (1997). "Intelligent computing methods for manufacturing systems." Cirp Annals 1997 - Manufacturing Technology, Volume 46/2/1997: 629-652.
Thornblad, K. and Patriksson, M. (2011). "A note on the complexity of flow-shop scheduling with deteriorating jobs." Discrete Applied Mathematics 159(4): 251-253.
Timkovskiy, V. G. (1985). "On The Complexity of Scheduling An Arbitaray System " Soviet Journal of Computer and Systems Sciences 23(5): 46-52.
Tseng, L. Y. and Lin, Y. T. (2009). "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem." European Journal of Operational Research 198(1): 84-92.
Vanlaarhoven, P. J. M., Aarts, E. H. L. and Lenstra, J. K. (1992). "Job Shop Scheduling Problem by Simulated Annealing." Operations Research 40(1): 113-125.
Varadharajan, T. K. and Rajendran, C. (2005). "A multi-objective simulatedannealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs." European Journal of Operational Research 167(3): 772-795.
Varela, R., Vela, C. R., Puente, J. P. and Gomez, A. (2003). "A Knowledge Based Evolutionary Strategy for Scheduling Problems with Bottlenecks." European Journal of Operational Research 145: 57-71.
Vela, C. R., Varela, R. and Gonzalez, M. A. (2010). "Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times." Journal of Heuristics 16(2): 139-165.
Wang, L. and Zheng, D.-Z. (2001). "An effective hybrid optimization strategy for job-shop scheduling problems." Computers \& Operations Research 28(6): 585-596.
Wang, W. and Brunn, P. (1995). Production Scheduling and Neural Networks. Operations Research Proceedings, Germany, Springer.
Weckman, G. R., Ganduri, C. V. and Koonce, D. A. (2008). "A neural network jobshop scheduler." Journal of Intelligent Manufacturing 19(2): 191-201.
White, J. A. (1987). Production Hand Book, John Wiley and Sons Inc.
Wu, T. H., Chang, C. C. and Chung, S. H. (2008). "A simulated annealing algorithm for manufacturing cell formation problems." Expert Systems with Applications 34(3): 1609-1617.
Wu, Z. M. and Zhao, C. W. (2000). "Genetic algorithm approach to job shop scheduling and its use in real-time cases." International Journal of Computer Integrated Manufacturing 13(5): 422-429.
Xu, X. A., Xu, Z. H. and Gu, X. S. (2011). "An asynchronous genetic local search algorithm for the permutation flowshop scheduling problem with total flowtime minimization." Expert Systems with Applications 38(7): 79707979.

Yamada, T. and Nakano, R. (1991). Conventional Genetic Algorithm for JSSP. 4th Internation Conference on Genetic Algorithms and their Applications, , San Diego, USA.
Yamada, T. and Nakano, R. (1992). "A genetic algorithm application to large scale job shop problems." Parallel Problem Solving from Nature, 2: 281-290.

Yamada, T., Rosen, B. E., Nakano, R. and Ieee (1994). A Simulated Annealing Approach to Job Shop Scheduling Using Critical Block Transition Operators. New York, IEEE.
Yang, S. X. and Wang, D. W. (2000). "Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling." Ieee Transactions on Neural Networks 11(2): 474-486.
Yang, S. X. and Wang, D. W. (2001). "A new adaptive neural network and heuristics hybrid approach for job-shop scheduling." Computers \& Operations Research 28(10): 955-971.
Yang, S. X., Wang, D. W., Chai, T. Y. and Kendall, G. (2010). "An improved constraint satisfaction adaptive neural network for job-shop scheduling." Journal of Scheduling 13(1): 17-38.
Yeh, J. Y. and Lin, W. S. (2007). "Using simulation technique and genetic algorithm to improve the quality care of a hospital emergency department." Expert Systems with Applications 32(4): 1073-1083.
Yusof, R., Khalid, M. and San, T. C. (2010). "Solving Industrial Based Job-Shop Scheduling Problem by Distributed Micro-Genetic Algorithm with Local Search." Knowledge-Based and Intelligent Information and Engineering Systems, Pt I 6276: 69-79.
Zadeh, L. A. (1965). "Fuzzy sets." Information and Control 8(3): 338-353.
Zattar, I. C., Ferreira, J. C. E. and Botura, P. E. D. (2008). Reducing the Standard Deviation When Integrating Process Planning and Production Scheduling Through the Use of Expert Systems in an Agent-based Environment. Collaborative Productive and Service Life Cycle Management for a Sustainable World. R. Curran, S. Y. Chou and A. Trappey. Berlin, SpringerVerlag Berlin: 305-312.
Zhang, R. and Wu, C. (2010). "A hybrid approach to large-scale job shop scheduling." Applied Intelligence 32(1): 47-59.
Zhang, R. and Wu, C. (2010). "A hybrid immune simulated annealing algorithm for the job shop scheduling problem." Applied Soft Computing 10(1): 79-89.
Zhang, Y., Li, X. P. and Wang, Q. (2009). "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization." European Journal of Operational Research 196(3): 869-876.
Zhao, F. Q., Hong, Y., Yu, D. M. and Yang, Y. H. (2005). A hybrid approach based on artificial neural network and genetic algorithm for job-shop scheduling problem. International Conference on Neural Networks and Brain (ICNN\&B 2005), Beijing, PEOPLES R CHINA, IEEE.

Zhou, H., Feng, Y. C. and Han, L. M. (2001). "The hybrid heuristic genetic algorithm for job shop scheduling." Computers \& Industrial Engineering 40(3): 191-200.
Zhou, H. and Shi, R. F. (2004). "A multi-objective optimization method based on genetic algorithm and local search with applications to scheduling." Management Sciences and Global Strategies in the 21st Century, Vols 1 and 2: 177-183.

APPENDIX A: SET OF BENCHMARK JSSP

This appendix contains a set of selected 50 JSSP test instances.
(Note: If the table splits, continue to next page).
These instances are contributed to the OR-Library by
Dirk C. Mattfeld (email dirk @uni-bremen.de) and
Rob J.M. Vaessens (email robv@win.tue.nl).
o abz5-abz9 are from
J. Adams, E. Balas and D. Zawack (1988),

The shifting bottleneck procedure for job shop scheduling,
Management Science 34, 391-401.
o ft06, ft10, and ft20 are from
H. Fisher, G.L. Thompson (1963),

Probabilistic learning combinations of local job-shop scheduling rules,
J.F. Muth, G.L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, 225-251.
o la01-la40 are from
S. Lawrence (1984),

Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques (Supplement),
Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.
o orb01-orb05 are from
D. Applegate, W. Cook (1991),

A computational study of the job-shop scheduling instance, ORSA Journal on Computing 3, 149-156. (they were generated in Bonn in 1986)
o TA01,TA02,TA11,TA12,TA13,TA16,TA31, and TA37 are from
E. D. Taillard, (1994)

Parallel taboo search techniques for the job shop scheduling problem,
ORSA Journal on Computing 6, 108117.
Results also reported in:
E. D. Taillard (1993),

Benchmarks for basic scheduling problems,
EJOR 64, 278-285.
++
+++++++++++++++
Each instance consists of a line of description, a line containing the number of jobs and the number of machines, and then one line for each job, listing the machine number and processing time for each step of the job. The machines are numbered starting with 0 .

1010
488868694599167289977799086392
572350669475294866092182794963 983861083165664585778485255377 794268161499354675566076963867 794268161499354675566076963867 199481564666880280769962379088 750186497396095897266599652971 7567382251171594785062895979 498673382251171594785062895979 094671381785166290476558893997 350059182867756996658481559296

instance abz6

Adams, and Zawack 10x 10 instance (Table 1, instance 6) 1010
762824525384447638282093924166 547297892922193429756380078667
145746622226938069440333875596 485876568988336675256135077785 860920725363481052130598654286 387973551295465186622858080765 581253757671981043426854358169 4856551879962234027181730346 968666598886766056382195447278 968666598886766056382195447278 030350734258177534884440946644
++++++++++++++++++++++++++++

instance abz7

\qquad
Adams, Balas, and Zawack 15×20 instance (Table 1, instance 7) 2015
224312917427021625827726130531111814161339101912 26
630315122011191241315102823652671501182314209264 28
635022132373222031212191023917114516112981642214 22
920629119714123343003252111291024142522931382013
182313201286327165188249233241034224024142812154
18411914211337346355401036323226415928133812130
25 132733062181912124272399131412536102111171290177
3343062181912124272399131412536102111171290177
527419629920321104081414391339227136121211377220
13
133211298243275404219260271427616221101372812281
123511153914187230343241311830113141510152289266 33
102853712291317258131414420327925133111146252390 36
022112552813354318219201419229732101811831112176 15
123953223681432813370386207191112142213641593210 828129144012234345336271017020728112122113209333 27
921143433012380111116214514134833423134010126237 27 13144073641701353382513241023336229118111363312 13 . 21 . 21
122210140122205121181117839143133173292013294136 26
518103073814221315112091631711221312406178304380 13
931839122711453333111221336016711141442962822210 17

instance abz8

Adal
Adams, Balas, and Zawack 15×20 instance (Table 1, instance 8) 2015
01993323213181039834625436114012331311430334526 713

826
3258171124134010321416539919024139417235738620
1231 2

1422336234121743013121136259127181031039540826
1137
12321415135713832112362242103823834010315111337 916
10231238811142791162551441222711267293281321020 130
63983801512271022927232440312132014211122517738 127
11111324103881591914135300262296331221115321428 733

82061752633492301621843512241016112671214131327 119
11873714279405406178223171030038421123211241324 230
11190221336618522317143510347238192291221217433 939
63232212245134131110111325813215103311171416938 724
1416131613782522631193441402063612125291025732
1112
82010241127938534123973343723113151434333626136
014
83101791312110177191314340532112523414236131240 426
8381217314131741213563501910367199292315261135 1437
1420316033101452773181663112289374372291138130 1336
11183371416615814121113325121111029719412918226 039
11112111222935142073141933952863310341380201317 828
2121225523821627930142311393261334717124412019 1036

instance abz9

+++++++++++++++

Adams, Balas, and Zawack 15×20 instance (Table 1, instance 9)
2015
61452181341111114351320111710181211223313015711 935
13553101332661491773812201019131281643411151412 214
03043524010356301423829133773834092612111401136 517
74051841282302391413161214102331261614321401125 229
23531512311128632430102772903813111231417527937 829
53333361912401019033132623111287364381211425940 835
13250321133121843262851533591423472310321171426 819
2161233934113013408121426526615321140432014730 1035
21710161420624826336122201413119207231291123415 540
42793734011141325730034211515123213610121428831 623
1325022327814525620141871411921742792212221127
1021
14341015022329133464071723212205394311116137833 913
61212274172248115191411317925111113113337311012 022
52214150168327204229111319130123362911183341032 218
52732610286374181212111113267279401419124218012 834
8155289256321137381111234425020103232312141416 1320
11541383731410225241226722934142211191332029213 635
7365331328920103043314290343221112630812135213 1235
1426113153523813191035427829339913614726017122
1215
1367341133817143863951632713292160164199401235 1039
instance ft06
+++++++++++++++++++++++++++++++
Fisher and Thompson 6x6 instance, alternate name (mt06)
66
210316375346
182541051001034
253458091147
150525334859
291345540331
1333590104421
instance ft10
+++++++++++++++++++++++++++

Fisher and Thompson 10x 10 instance, alternate name (mt10)
1010
02917829336449511662756844921
043290475911369128646546772830
191085339274890510712689945433
18129507149969852785398922543
21406122561326469821749972653
2841255239584897204766546725
146037361213632521932889730455
231086146574432688819948736379
076169376551285911640789426874
18501326167864976547352490745

+++++++++++++++++++++++++++++	$\begin{aligned} & 105 \\ & 172087495266360 \end{aligned}$
instance ft20	45335048239154
	146320221097455
+++++++++++++++++++++++++++++	059319446134237
Fisher and Thompson 20x5 instance, alternate name (mt20)	423273325124028
205	32804545178283
02919249362444	053371137429212
043175369246472	412287333155038
191039290412345	24938314004847
18107149285322	265317090427123
214122026321472	+++++++++++++++++++++++++++++
28415244804736	
146061232332430	instance la06
231146032319436	
076376285140426	+++++++++++++++++++++++++++++
185261064347490	Lawrence 15x5 instance (Table 4, instance 1); also called (setg1) or (G1)
178336011456221	155
290011128346430	121234495053355
085274110389433	352416171226021
295099152398443	231012142339498
06161469249353	37717747905566
12095372465225	437334264119083
037213121389455	243154092362479
086174488248379	093369187477287
169251011389474	060141238483324
01317276352445	298317425044149
+++++++++++++++++++++++++++++	096477379175243
	42823509537617
instance la01	06141029519335
	459316191259046
+++++++++++++++++++++++++++++	443152028227350
Lawrence 10x5 instance (Table 3, instance 1); also called (setf1) or (F1)	08714523949341
105	+++++++++++++++++++++++++++++
121053495355234	
021352416226171	instance la07
339498142231012	
177055479266377	+++++++++++++++++++++++++++++
083334264119437	Lawrence 15x5 instance (Table 4, instance 2); also called (setg2) or (G2)
154243479092362	155
369477187287093	047457171396214
238060141324483	075160422379265
317149425044298	332033269131458
477379243175096	044134451358247
+++++++++++++++++++++++++++++	32914406221748
	115240097438366
instance la02	258139057420350
	257332487063121
+++++++++++++++++++++++++++++	456084290185361
Lawrence 10x5 instance (Table 3, instance 2); also called (setf2) or (F2)	415020167330270
105	484082123245338
020387131476217	350221018441129
425232024118381	416152052238354
172223428058399	437054357274162
286176497045390	457161081230368
427042348217146	+++++++++++++++++++++++++++++
167098448327262	
428112319080250	instance la08
163094298350480	
414075250141355	+++++++++++++++++++++++++++++
472218137379061	Lawrence 15x5 instance (Table 4, instance 3); also called (setg3) or (G3)
+++++++++++++++++++++++++++++	155
	39229401249117
instance la03	221119087311466
	114313075416220
+++++++++++++++++++++++++++++	2954660717737
Lawrence 10x5 instance (Table 3, instance 3); also called (setf3) or (F3)	23448936145015
105	48837722153076
123245082484338	49327052188274
221129018441350	369252062188498
238354416052152	39006249261152
437054274162357	45254359088115
457081161368230	041150478353223
481079189289311	038472291368171
333220091420166	04539545222516
42418403225538	330166023436217
45607354264139	29507137618488
4401830192837	+++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++	
	instance la09
instance la04	
	+++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++	Lawrence 15x5 instance (Table 4, instance 4); also called (setg4) or (G4)
Lawrence 10x5 instance (Table 3, instance 4); also called (setf4) or (F4)	155
105	166385284062419
01229439249117	359164246413025
193311466221087	488380173253041
114075313416220	014167257374447
2954660737177	084464241384178
14536489015234	063328146226452
377220076488153	310217473111064
27418805232749	267197395438085
188369062498252	295446059165393
26149062152390	243485332185060
25445359115088	449341261066190
+++++++++++++++++++++++++++++	117023370499249
	440373073198268
instance la05	3571927013498
	037185217479341
Lawrence 10×5 instance (Table 3, instance 5); also called (setf5) or (F5)	+++++++++++++++++++++++++++++

Lawrence $15 x 5$ instance (Table 4, instance 5); also called (setg5) or (G5) 155
1582443509458
189097496377284
077187281439385
357121231015473
248040149370471
334482280010122
19147505521737
262347172435011
064375450190294
267420315012171
052493368229157
27005819347377
32728216346095
187256436026348
37623603641518
+
instance la11

Lawrence 20x5 instance (Table 5, instance 1); also called (seth1) or H1 205
234121053355495
021352171416226
012142231498339
266377479055177
083437334119264
479243092362154
093477287187369
483324141238060
425149044298317
096175243477379
09537617428235
41029506119335
191259459046316
227152443028350
49087341239145
154020443314271
433128326078237
18903328366442
484069294174327
481245178369096
++++++++++++++++++++++++++++
instance la12

Lawrence 20×5 instance (Table 5, instance 2); also called (seth2) or H2 205
123082484245338
350441129018221
416354152238052
162357437274054
368161230081457
189289311079481
166091333420220
38424255032184
07264139456354
0194403728183
06326439144016
142361415298074
18002637546287
239422075324144
11537948012220
326243080422161
262136063396440
13331802245210
264464089196395
264631513808
21842331513808
instance la13
+++++++++++++++ + +++++ + +++
Lawrence 20x5 instance (Table 5, instance 3); also called (seth3) or (H3 205
360087172495266
15404823933545
320146097221455
237059319134446
273325124028423
17832828304545
371137212429053
412333155287038
04814024938347
04814024938347
090427265317123
090427265317123
06238516628419
359246413164025
253173380488041
257447014167374
241464384178084
452328226063146
111064310473217
438395085197267
393165295059446
060185243485332
instance la14

Lawrence 20x5 instance (Table 5, instance 4); also called (seth4) or (H4) 205
3545824409158
189496097284377
281385187439077
015357473121231
248471370040149
24841270121
0104823528012
21705519147537
34726217243501
190294450064375
315267012420171
493229052157368
37719305827047
16332709546282
43602634825618
23618415376036
478184341030276
178075488313281
054440213182329
1264820523626
35416405423248
++++++++++++++++++++++++++++++
instance la15
++++++++++++++++++++++++++++++
Lawrence 20×5 instance (Table 5, instance 5); also called (seth5) or (H5) 205
06240181337419
24033205548119
146465270355077
221465064325115
285040144324437
089429183331284
45933818023008
080256177441397
456091350271117
14008845927380
04512928477358
23605439619410
028273198392487
070386227199496
19505945638524
181292432552
18129243205233
17422212088360
34509269491
182134271099
+++++++++++++++++++++++++++++++
instance la16
+++++++++++++++++++++++++++++++
Lawrence 10x10 instance (Table 6, instance 1); also called (seta1) or (A1) 1010
121671916852726234053421355595
455231598979012766142877677339
33426486211949297974365408353
187369287738824983641093577460
298044525675743149496977317879
2353765289104616909583517795
316259046191943850652559428727 316259046191943850652559428727 43323786653332678128689942078 869981294496327069745678174584
++++++++++++++++++++++++++++++
instance la17
++++++++++++++++++++++++++++++++
Lawrence 10x10 instance (Table 6, instance 2); also called (seta2) or (A2) 1010
418721941245338850584629123082
857516152774238354662937454052 230479368161811689789081981557 09188333755520220432684166924 940074198768326455635478139
39126454006379847486116642915
18073982437547556644026287922
11574322001282666137992258480
26239642295063633710818136540
19608956439592371881526463848
+++++++++++++++++++++++++++++++
instance la18
++++++++++++++++++++++++++++
Lawrence 10x10 instance (Table 6, instance 3); also called (seta3) or (A3) 1010
65408744836073983517259526695
320946634555097819459221737146
44512482802878367852332595273
912137438371833212655053787529
38324962392776504849057140817
166425062284913664746859519385

173380041253947757874414667588 564384646178084726828952241463 111064767485310573938895697217 460832295393165685743985546059
++++++++++++++++++++++++++++++++
instance la19
+++++++++++++++++++++++++++++++
Lawrence 10×10 instance (Table 6, instance 4); also called (seta4) or (A4) 1010
2443555849709784877996158689
415731187857077385281539973621
982622410370149040834248780571 19121776257584741137672935055 671190375064294815412767920550 77059387722945869336815797052 68716342656282327756848936095 03651584197837668443077623618 588281313682454713829940178075 9884546647320522685458236126
++++++++++++++++++++++++++++++++
instance la20

Lawrence 10x10 instance (Table 6, instance 5); also called (seta5) or (A5)
1010
6918145524083233706519981740
721270965464146565825077355615 285537040324144683489831784929 48067775608230559338180941897 09164048811727135095988055677 2869358577129896045910454736 470392198587699727886996028273 195792385452681932839059241556 36084508821217522493949769627 021261368526682971844499733184 +++++++++++++++++++++++++++++++
instance la21

Lawrence 15×10 instance (Table 7, instance 1); also called (setb1) or (B1) 1510
234355595916421671053852121726 339231012142979877677598455766 119083334492654979862537264743 460287824577369738187641983093 879977298496317044743675149525 875795691023517528461095376 85855916943046850652727259191 595016941457710873419591 595330783262377886689942433 12853307832623778866689942433 294584678981174327869069745496 131424020217925881576387732618 528997058445676399223172890786 527948827762498667348042146217 112850080250980319528663494798 461355637514250879141972718075

instance la22

Lawrence 15×10 instance (Table 7, instance 2); also called (setb2) or (B2) 1510
96659148729472139217012811619 3132204711496607567751679587 87772023401598858965336145476 32727468846275286959998052188 4886151522617540628595939095 671041438353791868150578223972 39593666655204583042322571716 46518885071765628588376927295 93713742835188629655073751590 339215683944753016446524125882 17244808726695654739835595360 146320097221946737819459634555 52332567812402878382895273445 137053787438371529912833655212 49081724938314062376592757048 +++++++++++++++++++++++++++++
instance la23

Lawrence 15x10 instance (Table 7, instance 3); also called (setb3) or (B3) 1510
7845588772444976893515899609 621187415539281385731857973077 040571834982370622410780248149 57521737672411762847935191055 920412671767064294815550375190 69359315777087745805222997368 75609584842628216393632768756 75609584842628216393632768756
37651597818841236430684036776 075713281829454682588178940313 2612673266445405258236988854 86226753206276936113547295693 27899008517286466331178258847

42891175068804453122716684933 21453965646239796676917847076 118893758647369957241553479064 +++++++++++++++++++++++++++++++
instance la24
++++++++++++++++++++++++++++

Lawrence 15×10 instance (Table 7, instance 4); also called (setb4) or (B4) 1510
78975072674430843238598126319 61987334302318543951392626779 15039358047055261657872942746 168743499660568091811396911272 78423484057170674312043969430 86004945957296316979964532729 67129186519099848750075537317 86279059833129143897219072649 435039974525747352263821635180 95805350852188620268524453757 79939143351921863802493514989 068360277710860515972118690418 979160356691240886772080589451 41029252364684077236123095934 22452994985504767737778128448 +++++++++++++++++++++++++++++++
instance la25
++++++++++++++++++++++4 + +
Lawrence 15×10 instance (Table 7, instance 5); also called (setb5) or (B5) 1510
814475312238076597912129744666 538382285458687989043180769892 951840436484877341561866214 2421809651945979797384337464 6552703758424377231485593807 89272731079573395425643960156 09726437852149493185361678617 386785963061265430532133844659 244316411645130984893060561790 736831447652032511228935320149 820649774410517334085277968184 18557871659476017329217748913 215687711139439843019332916564 63229253388218375799949139908 48877827138391269621962539048
++++++++++++++++++++++++++++++
instance la26

++1+1++++1+1++1+1+1+1+1+1+

Lawrence 20x10 instance (Table 8, instance 1); also called (setc1) or (C1) 2010
852726671916234121595421053355 455598339979012877677766231142 537492264654119743083334979862 187577093369287738824641983460 298525675977149317879044743496 1746109523591083552837679569 559943046428652316259191850727 59943814771420654341087145239 12886607823794232653368943378 49632767858429486917498174506 424732925217387881576618131020 890528172786223399676997445058 217498348146827667762042948527 080850319798528250494663112980 080850319798528250494663112980 972075461879637250514355718141 396214557047765475879171660922 14474028332445863403326997 2583504639870576217578321395 185084556361915770830290667420
instance la27

Lawrence 20x10 instance (Table 8, instance 2); also called (setc2) or (C2) 2010
36044859508717295835739654266 737634097555221320459946819146 44527312482802832552378395678 053212912137833371655529787438 49024992776557623048383817140 385425284664913166746859062519 588667414041173757253380947874 178564463646384084828952726241 178564463646384084828952726241 111064697938217485573310895767 393295743165832059685546985460 4137719885707337326854099869 4137719885707337326854099869
986676414341185037819217754579 986676414341185037819217754579
140253797587896484316666952095 140253797587896484316666952095
633133387018255813477760942574 633133387018255813477760942574
792591879254469679333161939016 792591879254469679333161939016
68214142856427837676849947058 68214142856427837676849947058 052542824991347688491752228135 582276386693484738895937121023 97748642764070245845528367186

```
instance la28
```

Lawrence 20x10 instance (Table 8, instance 3); also called (setc3) or (C3) 2010
8321814557400651998133724069
270355721464146825965077565615
2703557214644682595656515
7845590823067733818075691897
4805590823067738180756941897
64027109157954803505117488
7369100456945489628577129358
699886392028198470587996273727 195385556452059241681839932792 17769493627522088845360949212 733261844526184682368021971499 84307243059897512678674319238 61926787318592643979023513343 87274658039326147942150055657 499091911568743396272811660168 96904331284017067423457430784 79932745957229645049963169860 07531729175086553799819067148 97219331649291862790072598438 435263525635821747352180039974 26852495885205620350757188453
+++++++++++++++++++++++++++++
instance la29
+++++++++++++++++++++++++++++
Lawrence 20×10 instance (Table 8, instance 4); also called (setc4) or (C4) 2010
814238744076597312475666912129 043285382538458989892687769180 341779504321448561184866648 24237445964118973843096519797 7238424376550755270938375148 89643731425573395079272960156 17521853616494097378264786931 265659785133430844061386963532 645244561893130790984411316060 447736831149320228652935511032 277410968517085184820649774334 01757185329217476659871913748 687439843711215332564019139916 53339963249188229299975718308 539153926982777621138962488048 367780324088418144845964580638 2677803470841814484596580638 9503162087614074303258895477 370231620871 4475495797512632880214694 5592960577983447532669923111
instance la30

Lawrence 20x10 instance (Table 8, instance 5); also called (setc5) or (C5) 2010
632316133812770410975082588220 839481391556969145659086236768 38425774157348108883891768315 42056215819130094645717318988 92464951641136075863125215045 186850277654948093332792545471 586690378988257032757886471139 586318931441720583865054694169 2593189314417058385554694169 0592894107453855468882097162 5636947733725813979124710082 56364131754292010351552 07455106159437694198865333775 28595106159943769419885333775 0513245863071282327417935181 171542868231629363465970727093 128538451770233878945390654072 018290425692885535729181980359 567296138486097394786635982845 29285145965258970175354760033 39878057808227989169451879662
instance la31

Lawrence 30×10 instance (Table 9, instance 1); also called (setd1) or (D1) 3010
421726916234355852595671121053 877598142766231339677979455012 264492334119862654743083979537 093824369738577287460641187983 977044496879675298525317743149 3762355280957954618351769910 191727850316428559652046259943 14577123908781465434194359420 23732643394207868978866128533 174069584327981745869294678496 576732618020387217925424131881 997890528786058172223676399445 948527667762498042146827348217

980319528112494663798850080250 250141461879514972718355637075 922557475214765396171047879660 332269444131951033634558747858 86674021706293858615329144497 350258621463757832520987057139 3505862146375783250987057139 420667185290770084830556361915 629082418338721850123584245941 354937662516052857454238774152 479161811081789689557368981230 9241664323338220684091755520 354264683940780741955613987 16474063264915642798861540391 18037502628792273982447564456 58379661115012743826922220480 13606371042239654095818633262 48815264395196638718923564089
instance la32
+++++++++++++++++++++++++++++++ 301
6891584972448773509558996784 731281973415187539857077385621 248571040370149622410834780982 41167276205521757537191935847 064671412190294375920815550767 064671412190294375920815550767 22969336859315787705297458770 42632716356687756848936095282 18776376430684978841036236515 313829075281178588454940713682 0522636582664988854454732126 86213547276906253295361267693 27831178247172864990085588663 750428335166227849911688531044 46253907621465639717769966847 647241064758957893369553118479 776981076661477826274522158378 630872343065116492595929299764 13537451648507281686861935734 197743472688517043894364922242 799284899598120631374092923489 8320645551998118174069337240 615270825146965464721077565355 831784537324285489929144040683 48008941559756338230897677180 95008941559756338230897677180 9590913508801176402715564887 7363584545772869045910129896 02819238581241839792059556452 9215356124183979205056452 49321252262784562360133184 261526971844021682368733184499
instance la33

Lawrence 30x10 instance (Table 9, instance 3); also called (setd3) or (D3) 3010
238475912597076129814666744312 043538180382285458687892989769 648488667721434156104318495 51937464145984324297379718096 3755527084272365514893843707 27273139507942515689960573643 93137861649478652109785317264 386265659844133785061532963430 411561984316790130060893244645 5112619327368313006093244645 517334649184085820774968410277 87157329185476659217017913748 871573418546659217017913748 13991643968311332215019564843 53388229218363239999949108757 77048962488621539827391138269 964845324780267418638088580144 215372440721852051959124647543 47774314023187662058837095032 214758985564126694032349880447 9231118344757793262960569559 07522081036664373719983468552 85412647978868406254959328542 456929336040686868269723562116 75315617959259878364082413512 97662790583185369016481258866 724265169542982682083346872433 110827743520471965273699024364 93539203853573084528482134621 53394974856011525269438306 523784978586015252938366
+++++++++++++++++++++++++++++
instance la34
+++++++++++++++++++++++++++++++
Lawrence 30x10 instance (Table 9, instance 4); also called (setd4) or (D4) 3010
251759135573965027613381832474
464733575233810028338653949155
6831232723797206439552890721

382123293478688753928865521061 44161291237717072408157326286 498328642972015815594233151799 03282299641567833157194223786 793297343573024868988142435672 21404481356716334975417685966 78291537242608168621845299527 493623051854349196256936553752 493623051854349196256936553752 860014409515235338247548 062715895281826264553312237 67219715528892912059364487273 05011479054637448280961824644 022994516373254854446197661775 9553676774307613284759326040 1303987790226792783693659492 83777225243118295457682373049 173383745276443929035592839628 258026148852734696570498380994 170823526414690293321042718936 428676725017184267887343988584 73039185248002158937215612192 12847746692277315969854047539 95054426483849363377504112435 794017687221892928161463334577 3728989542829595664143050796 085285839198724371560455922635 37864924611109052093476470874
++++++++++++++++++++++++++++++

instance la35

++++++++++++++++++++++++++++

Lawrence 30x10 instance (Table 9, instance 5); also called (setd5) or (D5) 3010
06628432672999469887598145443 33209765528889398812045071755 443368847968157620581260794062 15754007869249917332430887777 052430348548126917693897749289 79503315617570357434261862939 797592131852794536705978660
27946720845634324926568116046
758950219893649325585450093126
98167157139216842071484356799
8908696371697585416242781181
472324030856243161782640559943 943113670793095812415278597314 014626171346880531437927792267 01204359667345720113929460833
 178550115813093650932559310235 45701768130535397325310235 12504776083453811360450233797 084683171568989811360450233797 11403868855477792824273952371
76291963831586426448161019533
23354647405668498381978332197
45037165029798017719892554152
832179397538949476676056278754
51335225086195928678824710439
74825902097531697189432325841
587018948243130697747865369427 671520820178339017750244942438 05094237257177758478289670836 332995213073697824449557168794 ++++++++++++++++++++++++++++++

instance la36

++++++++++++++++++++1+++++++

Lawrence 15×15 instance (Table 10, instance 1); also called (seti1) or (I1)
1515
4213556711498101223491612105372685259512311142
1339
11544831777648341479124305537761993757910921362 266
9835772877384601298093131764110443691149824187 1425
5770969286749513357358761191295243175106114103 79
10874288502590461145149943652727191134131655912 39
02027147813663141281442628154933118982673710335 43
86949612170697451131678102032713871745841476294 981
45813901176381723928118232128689914970241045672 525
5271466678271319108021734876211121428498042948 1250
11375804758557500949146411472350106113792981218 163
76539604747512691458103317192213325578792141131 660
13424735855146264498717109782911151366124004414 38
35075713615201185129025846310841399876211456832 057
98474551514411018482112927016733013506230201221 838
93710811161145785705277466212301522381368454354 516
instance la37

Lawrence 15×15 instance (Table 10, instance 2); also called (seti2) or (I2)
1515
51966411739132841488385104112531380166746859425
062
1673747412571452014964884678547132848410631226
1146
69789506493810591295217116513933105731114851446 767
10231249332466243060841761137094911176901851499 585
9988573736907377198413134154011851037268147912
17
11667535866400143191396495254108412978161452176 987
4772559425741491133310161254018387760813633133 1161
64153911829641447102877813491794582923791260698 76
11215429912280526881276138610231357524913471482 824
11421933951345928147708410874547053768612648672 38
4971281158784558091187352441385689107799614398 77
12801211010573870649231133444011220151482357971 748
21776257593519114503710641375129405567284741111
90
11936571711270993520315137710580122678681477294
1376327426936118103609584828268756163756123614 15
instance la38

Lawrence 15×15 instance (Table 10, instance 3); also called (seti3) or (I3) 1515
12612670726741413843430319102311855981343238789 75
1442039455124611989398052610765011573732976113
72
39649912346607431471312811117010430911689115682
396
72
14
14631145449174827030972791299136056966928434010
14
59
2910759983171072133111914987505374886519012916
71
11356804393621474572103592514985276329013211247 038
14197571024139135005114912189585248521882686204 53
77714725351190468618390338601018121013601382999 15
13688624097912921123589109569177208016035645114 23
14662853411774470101449877104872412827213559293
1022489127907915161130638511852320751492201328 5731456237322132565818793488817129116910719850 55
98514583468642496371334305260201374107712991156 721
10173244895151160142898264139206375212546751423 938
38517115679314269626710880971724382913351287457
+++++++++++++++++++++++++++++
instance la39
+++++++++++++++++++++++++++++++++
Lawrence 15×15 instance (Table 10, instance 4); also called (seti4) or (I4) 1515
10511443780418638324267121511241372845580964144 088
64098810775591120352870040432137612437312211451 47
03234910556475888069411111261326145998544712962 14
52369075123711432794753347201310148310689528661 9
12699593281462133612668411168545422540610407884 79
13781253111752948222391286418675965368145910130 56
10831346971265116966201625886658379014424813691
85
77310718646109201199424146558237212431821327224 033
4821343922803884562153512529351115142310613837 30
284
2845796610642813276797700851943601480123986611 29
344
34465813148651725141252421925051151761145510422 36

14431072578111212170469276512631798797914491326 393
74904947157894410411291138489162111471428361270 193
3254850662451095122188452495376769111111332130 1489
39279309914010371269566657142294487313971118269 441

instance la40

+1 $+1+1+1+1+1+1+1+1$

Lawrence 15×15 instance (Table 10, instance 5); also called (seti5) or (I5) 1515
96510284741233251147557383261338113575913381155 027
0641531183233469521472871390122162331010395497 72
14733821231262688521865117075310812931377061928 478
11265173341514721098994512114222413158283612990 41
12975799641514731343032822114219422378667810243 31
17258829313134441466663714967101711850353681258 49
91578262114533721349299426125684516810510852711 96
354
35472441483853625214551237114809313601070123623 983
31286962692314281825334451364715119127310592370 62
08751278045010481290172132461487111449462151461 392
25402266144637351612699414931367854775113210401 97
10921436422993471771279133663089811797755526030 04913833736821821492117343110359545783777225212 76
1098123413524261283398805299700436487582451494 1196
17010176901267414823321718134311845269362931484 042

instance orb01

++++++++++++++++++++++++++++
trivial 10×10 instance from Bill Cook (BIC2)
1010
07216425533145359561175286984 061327488278149583891674729987 086332135237518448691752960830 0818242739967459233920759898 15009454336245574825836947636 0536302731216888742897074557 22939609911443471457676857976 290019387451184545984658781896 297199493038713596340964632845 24406082935674185434795951547
++++++++++++++++++++++++++++++
instance orb02
++++++++++++++++++++++++++++++
doomed 10x 10 instance from Monika (MON2)
1010
07215423338647551669677899976 016388448852960629718589280176 047711314256616483110561824958 049131317850563235465723650929 05566128396586299914770864424 446023670819254322985787579193 476360076998276150886714627557 493627957387886254724549020147 22861187878546398131019546032 222976589813688310775498178017
++++++++++++++++++++++++++++++
instance orb03
$++++++++++4++++++++++++++++$
deadier 10x 10 instance from Bruce Gamble (BRG1)
1010
09616922535455515688711817982
011148267338418724662592996881 267163093485325572651781858915 230135027482344792625549928877 153083473326277633592999838738 120044481388266670591937855796 121293422056334640753946529863 132263436026317585715855916682 07324638942419969277951519814 052220370498123515781871924681 ++++++++++++++++++++++++++++++
instance orb04
deadly 10x10 instance from Bruce Shepherd (BRS1)

1010
08110235344415592670789850912 063839380522288139985627774469 052622133368827268525434724984 031185455880558711669956373225 097598987847777490398280139640 197568044967244885378690733481 19756804496724488537869073348 03445548151558779295648386873 04495485151558779295648386873 0241254096014658854372629794 05125440960146558854372629794
instance orb05
+++++++++++++++++++++++++++++++++ 10×10 instance from George Steiner (GES1) 1010
911893048776613571359290410165 852976084773556410626243339149 92884472666646857432721416021 01815836224662546560728880930 078147729516429657378287839973 966851312764567415666226120098 823976645775524318483215188017 956883780616431593330229166028 979869282416562341691735034175 9798692841652361691735034175 05119220312494560699731896

Instance TA01 (15x15)

Times

946610532615658210279392967083 7431885157788791791851189933 4824086505421654688220393568 73233030539458933291305627929 782321603629959979769342524296 296188701631658378265087621430 18752049168195485734324378766 3252949613599626627803577 85309691138782837856858668815 5593060411766897888694582613 902718918089493228909363573 4743758513843428606945675887 6562972031333377508048907596 656297203133337750804890759644 2821517517895956631817301673 5716423437266873581287832097 Machines
713584311129151014612 568151491210711141323 291013712146138115415 631071111458151291324 897115103151362141214 641314125158321111079 134891572125631111410 126181314152395410711 11127151236135981014 712103911441182131556 581416137915114212103 315113711869101424125 691134710114521213815 691551467102138121143 11913752141512184310 11913752141512184310
instance TA02 (15x15)

Times
86601059659471259849438902173 682838369335372862866511208223 336796918381608820622279384082 1314738824167870536873905874 935263131941715919608599739519 626093161072886958414663768362 5068903444582570537892628570 60649244639121196195912411194 934651379190634068131683492423 535211466369863647694176237 35426268732752394125934504198 2332351029682085862393283391 2332351029682085862393283391 283132866592445818444222353 11932759622323777646097365372 36983824844772191856842203030 Machines

101551411489162313712 | 11 | 9121541410853726131 | |
| :--- | :--- | :--- |
| 8 | 1 | 7 | 817615143125132104119 1012151229611135144783 $\begin{array}{llllllllllll}12 & 5 & 144 & 9 & 21113 & 315781106 \\ 6 & 3 & 211 & 1 & 5 & 915 & 7 & 4 & 10 & 8121314\end{array}$ 632111591574108121314 611141109212158133754 131104147683151291125 121161421098471315135

315411721141256981310 121514651027131391148 134119581412152316710 914611210513211738154 365410212148711151913 211531871012136154149
instance TA03 (15×15)

Times

6981816280338625466888231288 83514715897652182285263058922 83514758976182285263058922 6249354387871961933447190921 33828030963111264155121092375 364910436972196537573211738912 83326138794367646305662325272 297821271743141516497219993864 127443156250384925185557127 691333478631974825409422615916 27435804946844696721823967423 3617816747551238235967549238 7858624315676498026799242442 388638388336111799145764589617 10869363616275904077827966964 73121471347848453589587906875 Machines
812941321411571053116 132121074356914151118 2
2 10144695151113148712 141173158512161049213 495157643101114812113 615313112125710114948 631291512118107135144 581121093151246714131 151211011641391472835 101411131462715912385 832134155761091411112 191513106711812452143 913111215472561101438 143121151142135678109 214112311594687101315
instance TA11 (20x15)

Times
25757576386238591413463157923 67511114034774235962255212916 22988355931134652221819642970 99422351192889721561743271923 5055971473982351223942526535 5055971473982351223942526535
485752606486351263439456354 40435071469967346956754293060 593856464958218714879626576 655581153252976982896987227163 707452941481241432396759187750 18696533599391814906481894880 447512137459717530932630849193 39561329556926755482246509617 57148139553782492906887437594 939218282740568351159748537839 47344228111130141042092195928 698264402782274356171820984368 84268761952388894984125134420 435418727028202259368513732945 797422744562956614402379348 Machines

412152113581136107149 $\begin{array}{llll}61449 & 5 & 2131578113101412\end{array}$ $\begin{array}{llllllll}3 & 4 & 15 & 1 & 10 & 13 & 6 & 5 \\ 8 & 11 & 9 & 1214 & 2 & 7\end{array}$ 911214451510361281713 159231110135761144128 411267198121431513105 311213918715145461012 213581412413671510911 561011873213414191512 254111517141296138103 411211091575831361214 387946155211011141213 181591311104725312146 134105211176315148912 415761410211383511912 615713935101214428111 615113915101214428111 | 4 | 811 | 15 | 1 | 9 | 212 | 614513 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 9 | 3 | 1214 | 7 | 15 | 4 |

 121567111014259141338 121567111014259141338
instance TA12 (20×15)

Times

55664859821647805598911181 8676407692380514648685115582 849726703331203942337084235455

6082143622213118292528577389 83331536969981245989111326918 5120899995417677745749187155 3571473477688527299918283392 76583728809697928468186336620 171118905795173361493638627325 828487449664685765894277437638 54668488415939457166413626353 21704229835167667466783462926 9642495458841143597416506945 699017184548312927857192201186 4124825024753480715454283593 6348553615416185432488677941 173756705624951296275536416523 7968969165681981219883366774 387647218097354574929854917946 345626628238893350623963881342 Machines
362945158111412101371 159135124710111214386 813293114121415671105 296128743510131411511 951324153101476111281 315118412141071213569 151429111271036138415 133121091114561574281 84561411211102971315 8151376101114532914 8151376101114553291412 1511413685715321513 151141368578311410129 121162414108915137135 851511426125911310315 351561814101172 615138414110117239512 159211121381431014675 631141357121149158210 110115371424158961312 313109571115862124114
instance TA13 (20x15)

> 9117463673087809514172218541 7777977248646121371769586 9231227586699337789630542388 194565243030493278313259222 84613544371697855126137641296 8555265529781822599552856413 6494413982632209728632231462 5698562819627384194776363816 63986437899688137228579911896 17718033878244148526072276366 4742611765596479201011869065 6691837999016891798878403337 99222121362304425561044253965 35625284302506964544538907037 73401621501046248165837123082 76402191486917579515181706519 49559407470844725867526513215 11186608364852152493056312531 83421164449083572677255438835 195380892134568950281527748379 Machines
> 131291081411135674152 361115214124157910138 437106131148111525912 101568141113349271215 497214110615313851211 491412132515761018113 123175261310849141115 13451292611471110315 698113142751511104312 741093213861515121411 715159141312112108643 17549312210614131115 310613415514128211971 12811591574106214313 914111311037122415685 158127111031213945146 914810121365341571112 915612218413310111475 97212813151111045614 142516847139123111510

instance TA21 (20x20)

Times
Times 6457819859879362201485454799491566194 39968883775883378686497332547447604291 9666886022926214893994661053261565821027
 93929670837431885157788791791851189933
48240865054216546882203935687323303053 48240865054216546882203935687323303053
945893329130562792978232160362995997976 945893329130562792978232160362995997976 9342524296296188701631658378265087621430 18752049168195485734324378766325294961 359962662780357785309691138782837856 8586688155593060411766897888694582613 902718918089493228909363573474375851

384342860694567588765629720313333775080 489075964428215175178959566318173016735 5716423437266873581287832097208561936 6311451033541479743335781222448971086 336021966934941523841655505593512571151 7242462152716348508512485254081466725 83922540214433860243288668559197197320 839245402143860243886859197197320 288146984629961271326439169799497577980 71911844793826497249213868034753529 Machines
7216320141719413156118910118125 9711102021183128141916515641713 2451311582011126191416179103187 1916112201031351141715124691878 3111316815186921414175101219720 1171110189642012163155131427819 1212201011918191754138716615314 1749111982152031376121851410161 1819161211131542117107208953146 1064312517158142199161371820111 6101914177231216208951113181514 1261054161881920142713111151739 1645819142010311121571813171926 1411179523201513191816108741216 1652015921716111331278191441810 1217181116131659481421910207153 8961420171221519117416531101813 1811166515919147204210123131781 154171111952620131012161481897 14114152941172057101263818131619 ++++++++++++++++++++++++++++
instance TA22 (20x20)

Times
946112684084301634925355616730881220165 2275298747482146773510929754089863321 328991441539719392091549779212293671784 134397414356933235254779971045817637 267033583877865347207169954238987206765 86739326983767873366816125338796468789 33429667373050842737899268208076741138 6097427328699044275424368213338044998082 79623127721244113583571980201696246493 618646582194650798414167689858660442863 104426619230192722862262751078397881046 21513948226835786618081255753816205052 1786649748286268046947272697142731282 46211998322242617917676172499138283414 5049406358070362435839526871866153197 535125169193376141492024588723015863140 727734458385195777561897744328640233557 33166070673742247512232213697753643415 5855685208891795516538416614831965430 5855685208891795516538416614831965430
80819493219926588644687921849266518396 Machines
432012111417162113181910681559 1513518831116910471714122162019 1918114821220643171659151013117 1811913617151272105201191643148 9132111416618108194513152012177 7110171519181131412820294516136 1327151216411102061835919811417 6132029141910113184167178151215 394111716118814615131020719125 1838201217141116267910413191515 8139121716541510203141872111961 5181217161915207861114141039213 9171336161118814521420101915127 2919121810111720613547831511416 1485120315412181711210137169619 1611917956158182411207314131012 4123101621182069141871171513195 1871261751310191111584162920314 679133101714192818116204125151 4161151921710138121320141518679 +++++++++++++++++++++++++++++++
instance TA22 (20×20)

Times
338816828919174771950655399069505813 6910581091537993944655992895944515910 797035823584348791691231946513163946474 5040814796679453221723246615568479251372 781625091773210787821782110882392348848 66715525432487599063902265091819528366 663910805538294163329127727161351726426 113384121857432477856249546938592306477 3830312590793528730874574355213017275 94991394059202767222479111709778691740 57326726235514777782341649037472754394 25331227324935573328544532539985861399 6477823275326816638131587312256498724784 179899397382143486244504472894544217960 87638208888778846304442844174522587437 3993442375760457149368562035879214843 75928348799439463448603316349983118043 978023731375811248410309789473773119054

1976887723850423254943152762029563616 29314991737867521464711629478152449579 Machines
8511118191716412671020139151432 4201815122381714106911911751613 1615931519138671718121114201024 1881310114215317111995716206412 2076161453194171215218910811131 1516191231387145201624111718109 9151987421218111620531714101613 1819141669201713842101215711513 1211019220171371181516951418634 191951415282016171147126131810 1774911220181143561310168191215 5817111011922091531412761316418 1314319109111841618717156512220 1819693510168114131417152171220 1381131952015144726171691011218 1416217141581911612720318910135 4162531214181915171791361020811 3181122013791615610419121415178 1242021615975171614111831913810 3181011462117151613129195142078

APPENDIX B: LIST OF BENCHMARK FSSP

This appendix contains a set of 8 (CAR01 to CAR08) problems from Carlicr (1978) - CAR problems. (Note: If the table splits, continue to next page).
+++++++++++++++++++++++++++++

instance CAR01

++++++++++++++++++++++++++++++
11x5 instance from JACQUES CARLIER (Instance
CAR1)
11x5
instance CAR07
+++++++++++++++++++++++++++++
7x7 instance from JACQUES CARLIER (Instance CAR7)
7x7

0692131028323630425851476255
058115822143214414757536806
04751475278535784852526699
023119626963214458653566877
0158132525303785432555656412
0796187422143236489658986302
0542120525783963432558006120
+++++++++++++++++++++++++++++++
instance CAR07
++++++++++++++++++++++++++++++++
8x8 instance from JACQUES CARLIER (Instance CAR8)
8x8

04561654285231454632542562147654
07891123236936784581539661237789
06541123263239654475532564567654
0321145625813421432514767897123
04561789247233654536585266547123
0789165425863824432551263217456
06541321232037584863545264567789
0789114721203639421586367897654

APPENDIX C: CASE STUDY 1 - RESULT SASM PROBLEMS

This appendix contains a results statistics for case studies.
Column 1: Shows current job number which seizes the machines Job Number

Column 2: Shows operation number of jobs in process in column 1

Column 3: Shows Arrival Time of job in column 1

Column 4: Shows Waiting Time for a job to be loaded on the machine

Column 5: Shows start time of process

Column 6: Shows Processing Time of job on machines

Column 7: Shows Machine Idle Time

Column 8: Shows Finish time

Column 9: Shows Next Machine on which finished job to be processed
(Note: If the table splits, continue to next page).

Cmax $=505$	$\begin{array}{llllllllll}1 & 1 & 0 & 56 & 56 & 25 & 0 & 81 & 1\end{array}$
$\mathrm{MC1}=$	2225031813201135
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 10 & 0 & 10 & 2\end{array}$	
$\begin{array}{llllllllll}5 & 1 & 0 & 10 & 10 & 15 & 0 & 25 & 2\end{array}$	$\begin{array}{lllllllllllllllll}6 & 6 & 360 & 0 & 360 & 35 & 395\end{array}$
$\begin{array}{llllllllll}6 & 1 & 0 & 25 & 25 & 16 & 0 & 41 & 2\end{array}$	$\mathrm{MC} 4=$
882288134116	
$\begin{array}{lllllllll}3 & 2 & 54 & 3 & 57 & 0 & 0 & 57 & 5\end{array}$	
$2 \begin{array}{lllllllll}2 & 63 & 0 & 63 & 0 & 6 & 63 & 3\end{array}$	
	$4 \begin{array}{llllllllll}4 & 153 & 32 & 185 & 61 & 0 & 246 & 5\end{array}$
46640500405002974050	5662034324655033010
$\mathrm{MC} 2=$	26627625301460347
	MC5 $=$
$2 \begin{array}{lllllllll}2 & 1 & 0 & 28 & 28 & 35 & 0 & 63 & 1\end{array}$	
	45524617942568104936
	MC6 =
MC3 =	$\begin{array}{llllllllll}3 & 3 & 64 & 0 & 64 & 19 & 64 & 83 & 1\end{array}$
$4 \begin{array}{lllllllll}4 & 1 & 0 & 0 & 0 & 38 & 0 & 38 & 2\end{array}$	
8835700572219794	
	$1 \begin{array}{llllllllll}185 & 6191 & 23 & 0 & 214 & 5\end{array}$
	2442391023924252631
	46649300493212305140
$\begin{array}{llllllllll}5 & 3 & 125 & 4 & 129 & 31 & 0 & 160 & 4\end{array}$	SASM JSSP 03
$7 \begin{array}{lllllllll}7 & 4 & 163 & 0 & 163 & 0 & 3 & 163 & 6\end{array}$	
$\mathrm{MC} 4=$	Cmax $=425$
$\begin{array}{lllllllll}3 & 1 & 0 & 0 & 0 & 54 & 0 & 54 & 1\end{array}$	$\mathrm{MC} 1=$
	$\begin{array}{lllllllll}1 & 2 & 65 & 0 & 65 & 10 & 65 & 75 & 2\end{array}$
$84479291085500163 \quad 5$	$\begin{array}{llllllllll}4 & 2 & 87 & 0 & 87 & 9 & 12 & 96 & 3\end{array}$
	$\begin{array}{llllllllll}3 & 4 & 98 & 0 & 98 & 10 & 2 & 108 & 2\end{array}$
	$5 \begin{array}{lllllllllll}5 & 222 & 0 & 222 & 11 & 38 & 233 & 4\end{array}$
	MC2 $=$
MC5 =	$\begin{array}{lllllllll}6 & 1 & 0 & 0 & 0 & 38 & 0 & 38 & 4\end{array}$
31357005753571103	$\begin{array}{llllllllll}2 & 1 & 0 & 38 & 38 & 15 & 0 & 53 & 3\end{array}$
$\begin{array}{llllllllll}7 & 3 & 108 & 2 & 110 & 53 & 0 & 163 & 3\end{array}$	$\begin{array}{lllllllllll}4 & 1 & 0 & 53 & 53 & 34 & 0 & 87 & 1\end{array}$
8851630163391002226	
25521482224802706	
1552541627053033236	
4443194332361038846	MC3 $=$
	$3 \begin{array}{lllllllll}3 & 1 & 0 & 0 & 0 & 21 & 0 & 21 & 4\end{array}$
655441044416445056	$\begin{array}{llllllllll}5 & 1 & 0 & 21 & 21 & 23 & 0 & 44 & 2\end{array}$
MC6 =	$\begin{array}{llllllllll}1 & 1 & 0 & 44 & 44 & 21 & 0 & 65 & 1\end{array}$
	$\begin{array}{llllllllll}2 & 2 & 53 & 12 & 65 & 8 & 0 & 73 & 5\end{array}$
	$\begin{array}{lllllllllllll}4 & 3 & 96 & 0 & 96 & 19 & 23 & 115 & 4\end{array}$
866222022220382420	
	MC4 $=$
6650505050505050	
SASM JSSP 02	2661842320745002520
	562331925248033000
	MC5 $=$
Cmax $=514$	$\begin{array}{lllllllll}2 & 3 & 73 & 0 & 73 & 61 & 73 & 134 & 6\end{array}$
$\mathrm{MC1}=$	
$\begin{array}{llllllllll}4 & 2 & 74 & 0 & 74 & 15 & 74 & 89 & 3\end{array}$	
	455167952625203146
	16624512737253104250
	MC6 $=$
	$\begin{array}{llllllllll}3 & 3 & 76 & 0 & 76 & 22 & 76 & 98 & 1\end{array}$
MC2 $=$	
$\begin{array}{lllllllll}6 & 1 & 0 & 0 & 0 & 30 & 0 & 30 & 4\end{array}$	
$2 \begin{array}{lllllllll}2 & 1 & 0 & 30 & 30 & 20 & 0 & 50 & 3\end{array}$	
$\begin{array}{llllllllll}4 & 1 & 0 & 50 & 50 & 24 & 0 & 74 & 1\end{array}$	$1 \begin{array}{lllllllll}1 & 207 & 15 & 222 & 23 & 0 & 245 & 5\end{array}$
	$466314 \quad 031420693340$
	SASM FSSP 01

```
MCl =
    1 2 65 0 65 106575 2
    4 2 87 0 87 9 12 96 3
```



```
    6
    2 5 5 170 0 170 14 25 184 4
    5
MC2 =
    6
    2
    4 1 0 53 53 34 0 87 1
```



```
    3 75 47 122 32 0 154 4
    5 108 46 154 30 0 184 5
MC3 =
```



```
    5}11002121 23 0 44 2,
    1 0 44 44 21 0 65 1
    2 53 12 65 8 0 73 5
    3}39
    6 6 262 0 262 43 147 305 0
MC4 =
    3 2 21 0 21 55 21 76 6
    6 2 38 38 76 41 0 117 6
    4}
    1 4 154 13 167 40 0 207 6
    2 6 184 23 207 45 0 252 0
5}662331925248 0 300 0
MC5 =
    2
    5
    6
    4 5 167 95 262 52 0 314 6
    3 6 184 130 314 58 0 372 0
    1
MC6 =
    3
    6
    2 4 134 1 135 35 0 170 1
    5
    1 5 207 15 222 23 0 245 5
    4 6}314\mp@code{0}314 20 69 334 0
SASM FSSP 02
```

Cmax $=$		
$\mathrm{MC1}=$		
$\begin{array}{llllllllll}6 & 1 & 0 & 0 & 0 & 10 & 0 & 10 & 2\end{array}$		
$\begin{array}{llllllll}1 & 0 & 19 & 19 & 10 & 0 & 29 & 2\end{array}$		
$\begin{array}{lllllllll}1 & 1 & 0 & 29 & 29 & 10 & 0 & 39 & 2\end{array}$		
$\begin{array}{llllllllll}5 & 1 & 0 & 39 & 39 & 11 & 0 & 50 & 2\end{array}$		
2110050501410064		
$\mathrm{MC} 2=$		
$\begin{array}{llllllllllll}2 & 10 & 0 & 10 & 38 & 10 & 48\end{array}$		
$\begin{array}{lllllllll}4 & 2 & 19 & 29 & 48 & 34 & 0 & 82 & 3\end{array}$		
$\begin{array}{llllllllll}2 & 29 & 53 & 82 & 30 & 0 & 112\end{array}$		
$2397311232 \begin{array}{llllll} & 3 & 144\end{array}$		
522509414435001793		
MC3 $=$		
3480488434891		
$\begin{array}{llllllll}3 & 82 & 9 & 91 & 19 & 0 & 110 & 4\end{array}$		
31120111221121334		
$\mathrm{MC} 4=$		
6491009141911325		
$41102213250 \quad 0182$		
413349182550237		
416572237400277		
4202752774803255		
2421011532545033705		
MC5 $=$		
52371224958033076		
5277303075303606		
2537053423610484		
MC6 =		
6661970019718197215		
46624902492034269		
63070330722383290		
636003602331383		
$\begin{array}{lllllll}6 & 423 & 0 & 423 & 25 & 40 & 448 \\ 6 & 484 & 0 & 484 & 35 & 36 & 519\end{array}$		

APPENDIX D: CASE STUDY 2 - PILKINGTON PLC PROBLEMS

This appendix contains a results statistics for case studies.
Column 1: Shows current job number which seizes the machines Job Number

Column 2: Shows operation number of jobs in process in column 1

Column 3: Shows Arrival Time of job in column 1

Column 4: Shows Waiting Time for a job to be loaded on the machine

Column 5: Shows start time of process
Column 6: Shows Processing Time of job on machines

Column 7: Shows Machine Idle Time

Column 8: Shows Finish time

Column 9: Shows Next Machine on which finished job to be processed

Honda CRV 01

Cmax $=346$								
$\mathrm{MC1}=$								
1110000430432								
21004343430862								
$\begin{array}{llllllllllll}5 & 1 & 0 & 172 & 1724310215\end{array}$								
2430433443773								
228860863491203								
52215MC3								
1337707734771114								
433206002063492404								
532490249349283								
$\mathrm{MC} 4=$								
1411110111471111580								
2415441584702050								
44240122524702990								
54283162994703460								
Honda CRV 02								
Cmax $=581$								
$\mathrm{MC1}=$								
$1 \begin{array}{lllllllll}1 & 0 & 0 & 0 & 43 & 0 & 43 & 2\end{array}$								
21104343430862								
0258258430301								
910334434443038872								
$\mathrm{MC} 2=$								
2228600863491203								
$\begin{array}{lllllllllll}3 & 2 & 129 & 0 & 129 & 34 & 9 & 163 & 3\end{array}$								
51221502153492493								
$\begin{array}{llllllllll}7 & 2 & 301 & 0 & 301 & 34 & 935\end{array}$								
234403344349378								
MC3 $=$								
$\begin{array}{llllllll} 1 & 3 & 77 & 0 & 77 & 34 & 77 & 111 \end{array}$								
2 3 120 0 120 34 9 154								
$\begin{array}{lllllllll} 3 & 3 & 163 & 0 & 163 & 34 & 9 & 197 & 4 \end{array}$								
320602063492404								
$\begin{array}{lllllll}3 & 249 & 0 & 249 & 34 & 9 & 283\end{array}$								
$\begin{array}{lllllllll} 6 & 3 & 292 & 0 & 292 & 34 & 9 & 326 & 4 \end{array}$								
$\begin{array}{lllllllll}7 & 3 & 335 & 0 & 335 & 34 & 9 & 369 & 4\end{array}$								
8337833783494124								
$9 \begin{array}{llllllll} 9 & 3 & 421 & 0 & 421 & 34 & 9 & 455 \end{array}$								
$\begin{array}{llllllll}10 & 3 & 464 & 0 & 464 & 34 & 9 & 498\end{array}$								
MC4=								
1411110111471111580								
2415441584702050								
3419782054702520								
44240122524702990								
5428316299470346								
643262034647033930								
7436924393470440								
84412284404704870								
94455324874705340								
104498365344705810								
Honda CRV 03								
$\mathrm{Cmax}=1286$								
$\mathrm{MC1}=$								
	$1 \begin{array}{lllllll}1 & 0 & 0 & 0 & 43 & 0 & 43\end{array}$							
$\begin{array}{llllll}0 & 43 & 43 & 43 & 0 & 86\end{array}$								
$\begin{array}{llllllllll}3 & 1 & 0 & 86 & 86 & 43 & 0 & 129 & 2\end{array}$								
$\begin{array}{llllll}0 & 129 & 129 & 43 & 0 & 172 \\ 0 & 172 & 172 & 43 & 0 & 215\end{array}$								
$\begin{array}{lllll}258 & 258 & 43 & 0 & 301\end{array}$								
$\begin{array}{lllll}258 & 258 & 43 & 0 & 301 \\ 301 & 301 & 43 & 0 & 344\end{array}$								
	$\begin{array}{lllllllll}9 & 1 & 0 & 344 & 344 & 43 & 0 & 387\end{array}$							
$\begin{array}{lllllllll}10 & 1 & 0 & 387 & 387 & 43 & 0 & 430\end{array}$								
	$\begin{array}{lllllllll}11 & 1 & 0 & 430 & 430 & 43 & 0 & 473\end{array}$							
$\begin{array}{llllllllll}12 & 1 & 0 & 473 & 473 & 43 & 0 & 516 & 2\end{array}$								
$13 \begin{array}{lllllllll}13 & 1 & 0 & 516 & 516 & 43 & 0 & 559 & 2\end{array}$								
14 1 0 559 559 43 0 602 2 15 1 0 602 602 43 0 645 2 16 1 0 645 645 43 0 688 2 17 1 0 688 688 43 0 731 2								

$\begin{array}{clllllllll}\mathrm{MC} 3= \\ 1 & = & 3 & 77 & 0 & 77 & 34 & 77 & 111 & 4\end{array}$

$\begin{array}{lllllllll}74 & 4 & 3250 & 292 & 3542 & 47 & 0 & 3589 & 0 \\ 75 & 4 & 3293 & 296 & 3589 & 47 & 0 & 3636 & 0\end{array}$ Honda CRV 06
$\mathrm{Cmax}=$
$\mathrm{MC1}=$
$\begin{array}{cccccccc}1 & 0 & 0 & 0 & 43 & 0 & 43 & 2 \\ 1 & 0 & 43 & 43 & 43 & 0 & 86 & 2\end{array}$ $\begin{array}{lllllllll}2 & 1 & 0 & 43 & 43 & 43 & 0 & 86 & 2 \\ 3 & 1 & 0 & 86 & 86 & 43 & 0 & 129 & 2\end{array}$ $\begin{array}{llllllllll}3 & 1 & 0 & 86 & 86 & 43 & 0 & 129 & 2 & \\ 4 & 1 & 0 & 129 & 129 & 43 & 0 & 172 & 2\end{array}$ $\begin{array}{ll}5 & 1 \\ 6 & 1 \\ 7 & 1 \\ 8 & 1\end{array}$

$\begin{array}{llllll}172 & 172 & 43 & 0 & 215 & 2 \\ 215 & 215 & 43 & 0 & 258 & 2 \\ 258 & 258 & 43 & 0 & 301 & 2 \\ 301 & 301 & 43 & 0 & 344 & 2\end{array}$ $\begin{array}{llllll}0 & 301 & 301 & 43 & 0 & 344 \\ 0 & 344 & 344 & 43 & 0 & 387\end{array}$
\rightarrow
$\begin{array}{llllllll}4 & 111 & 0 & 111 & 47 & 111 & 158 & 0\end{array}$
$\begin{array}{ll}4 & 154 \\ 4 & 197\end{array}$
0

		NNNNNNNNNNNNNNNNNNNNNNNN
-		-
	ث	
+ + + +		Wু w
®an		

[^0]

$\begin{array}{lllllllll}46 & 1 & 0 & 3060 & 3060 & 68 & 0 & 3128 & 2\end{array}$

L319 non heated-
Cmax $=324$
$\mathrm{MC1}=$
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 54 & 0 & 54 & 2 \\ 2 & 1 & 0 & 54 & 54 & 54 & 0 & 108\end{array}$

$\begin{array}{lllllllll}3 & 1 & 0 & 108 & 108 & 54 & 0 & 162 & 2\end{array}$
$\begin{array}{lllllllll}4 & 1 & 0 & 162 & 162 & 54 & 0 & 216 & 2 \\ 5 & 1 & 0 & 216 & 216 & 54 & 0 & 270 & 2\end{array}$
MC2
$\begin{array}{llllllll}1 & 2 & 54 & 0 & 54 & 54 & 54 & 108\end{array} 0$
$\begin{array}{llllllll}2 & 2 & 108 & 0 & 108 & 54 & 0 & 162\end{array} 0$
$\begin{array}{lllllllll}2 & 2 & 108 & 0 & 108 & 54 & 0 & 162 & 0 \\ 3 & 2 & 162 & 0 & 162 & 54 & 0 & 216 & 0\end{array}$
$\begin{array}{lllllllll}3 & 2 & 162 & 0 & 162 & 54 & 0 & 216 & 0 \\ 4 & 2 & 216 & 0 & 216 & 54 & 0 & 270 & 0\end{array}$
$\begin{array}{lllllllll}4 & 2 & 216 & 0 & 216 & 54 & 0 & 270 & 0 \\ 5 & 2 & 270 & 0 & 270 & 54 & 0 & 324 & 0\end{array}$
L319 non heated-2
Cmax $=594$
$\mathrm{MC1}=$
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 54 & 0 & 54 & 2\end{array}$
$\begin{array}{llllllll}2 & 1 & 0 & 54 & 54 & 54 & 0 & 108 \\ 2\end{array}$
$\begin{array}{lllllllll}3 & 1 & 0 & 108 & 108 & 54 & 0 & 162 & 2\end{array}$
$\begin{array}{lllllllll}4 & 1 & 0 & 162 & 162 & 54 & 0 & 216 & 2 \\ 5 & 1 & 0 & 216 & 216 & 54 & 0 & 270 & 2\end{array}$
$\begin{array}{llllllll}5 & 1 & 0 & 216 & 216 & 54 & 0 & 270 \\ 2\end{array}$
$\begin{array}{lllllllll}6 & 1 & 0 & 270 & 270 & 54 & 0 & 324 & 2\end{array}$
$710324324540378 \quad 2$
$\begin{array}{llllllllll}8 & 1 & 0 & 378 & 378 & 54 & 0 & 432 & 2 \\ 9 & 1 & 0 & 432 & 432 & 54 & 0 & 486 & 2\end{array}$
$\begin{array}{ccccccccc}9 & 1 & 0 & 432 & 432 & 54 & 0 & 486 & 2 \\ 10 & 1 & 0 & 486 & 486 & 54 & 0 & 540 & \end{array}$
$\mathrm{MC} 2=$
$\begin{array}{llllllll}1 & 2 & 54 & 0 & 54 & 54 & 54 & 108\end{array} 0$
$\begin{array}{llllllll}2 & 2 & 108 & 0 & 108 & 54 & 0 & 162\end{array} 0$
$\begin{array}{lllllllll}3 & 2 & 162 & 0 & 162 & 54 & 0 & 216 & 0\end{array}$
$\begin{array}{lllllllll}3 & 2 & 162 & 0 & 162 & 54 & 0 & 216 & 0 \\ 4 & 2 & 216 & 0 & 216 & 54 & 0 & 270 & 0\end{array}$
$\begin{array}{lllllllll}4 & 2 & 216 & 0 & 216 & 54 & 0 & 270 & 0\end{array}$
$\begin{array}{lllllllll}5 & 2 & 270 & 0 & 270 & 54 & 0 & 324 & 0 \\ 6 & 2 & 324 & 0 & 324 & 54 & 0 & 378 & 0\end{array}$

$\begin{array}{lllllllll}9 & 2 & 486 & 0 & 486 & 54 & 0 & 540 & 0\end{array}$
$\begin{array}{ccccccccc}9 & 2 & 486 & 0 & 486 & 54 & 0 & 540 & 0 \\ 10 & 2 & 540 & 0 & 540 & 54 & 0 & 594 & 0\end{array}$
L319 non heated-3
Cmax $=1404$
$\mathrm{MC1}=$
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 54 & 0 & 54 & 2 \\ 2 & 1 & 0 & 54 & 54 & 54 & 0 & 108 & 2\end{array}$

000000000000000000000

MC3 $=$
$\begin{array}{llllllll}1 & 3 & 91 & 0 & 91 & 42 & 91 & 133\end{array}$
$\begin{array}{llllllllll}1 & 3 & 91 & 0 & 91 & 42 & 91 & 133 & 0 \\ 2 & 3 & 138 & 0 & 138 & 42 & 5 & 180 & 0 \\ 3 & 3 & 185 & 0 & 185 & 42 & 5 & 227 & 0\end{array}$
$\begin{array}{lllllllll}2 & 3 & 138 & 0 & 138 & 42 & 5 & 180 & 0 \\ 3 & 3 & 185 & 0 & 185 & 42 & 5 & 227 & 0\end{array}$
$\begin{array}{llllllll}3 & 3 & 185 & 0 & 185 & 42 & 5 & 227 \\ 4 & 3 & 232 & 0 & 232 & 42 & 5 & 274 \\ 5 & 3 & 279 & 0 & 279 & 42 & 5 & 321\end{array}$
$\begin{array}{llllllll}6 & 3 & 326 & 0 & 326 & 42 & 5 & 368 \\ 7 & 3 & 373 & 0 & 373 & 42 & 5 & 415 \\ 8 & 3 & 420 & 0 & 420 & 42 & 5 & 462\end{array}$
$\begin{array}{cccccccc}9 & 3 & 467 & 0 & 467 & 42 & 5 & 509 \\ 10 & 3 & 514 & 0 & 514 & 42 & 5 & 556\end{array}$
こ
12
14
15
16
16
$\begin{array}{ll}16 & 3 \\ 17 & 3 \\ 18 & 3\end{array}$
$\begin{array}{lllllllll}19 & 3 & 937 & 0 & 890 & 42 & 5 & 932 & 0 \\ 20 & 3 & 984 & 0 & 937 & 42 & 5 & 979 & 0\end{array}$
$\begin{array}{llllllll}3 & 984 & 0 & 984 & 42 & 5 & 1026 & 0\end{array}$
$\begin{array}{lllllll}1031 & 0 & 1031 & 42 & 5 & 1073 & 0 \\ 1078 & 0 & 1078 & 42 & 5 & 1120 & 0\end{array}$
1078
1125
11720
$\begin{array}{llllll}1266 & 0 & 1219 & 42 & 5 & 5 \\ 1214 \\ 1261 \\ 1266 & 42 & 5 & 1308\end{array}$
$\begin{array}{llllllll}1266 & 0 & 1266 & 42 & 5 & 1308 & 0 \\ 1313 & 0 & 1313 & 42 & 5 & 1355 & 0\end{array}$
$\begin{array}{lllllll}1313 & 0 & 1313 & 42 & 5 & 1355 & 0 \\ 1360 & 0 & 1360 & 42 & 5 & 1402 & 0\end{array}$
$\begin{array}{lllllll}1407 & 0 & 1407 & 42 & 5 & 1449 & 0 \\ 1454 & 0 & 1454 & 42 & 5 & 1496 & 0\end{array}$

U_{0}^{c},
0
0
0
1595
1642
1689
$\begin{array}{lllllll}1783 & 0 & 1736 & 42 & 5 & 1731 & 0 \\ 1783 & 0 & 1783 & 42 & 5 & 1825 & 0\end{array}$
$\begin{array}{lllllll}1783 & 0 & 1783 & 42 & 5 & 1825 & 0\end{array}$
$\begin{array}{lllllll}1830 & 0 & 1830 & 42 & 5 & 1872 & 0\end{array}$
$\begin{array}{lllllll}1877 & 0 & 1877 & 42 & 5 & 1919 & 0 \\ 1924 & 0 & 1924 & 42 & 5 & 1966 & 0\end{array}$
$\begin{array}{lllllll}1924 & 0 & 1924 & 42 & 5 & 1966 & 0 \\ 1971 & 0 & 1971 & 42 & 5 & 2013 & 0\end{array}$
0
0
2065
2112
2112
2159
$\begin{array}{llllll}2159 & 0 & 2159 & 42 & 5 & 5 \\ 2201\end{array}$
$\begin{array}{lllllll}2206 & 0 & 2206 & 42 & 5 & 2248\end{array}$
$\begin{array}{lllllll}2253 & 0 & 2253 & 42 & 5 & 2295\end{array}$
$\begin{array}{lllllll}2347 & 0 & 2300 & 42 & 5 & 2342 & \\ 23 & 5 & 2389\end{array}$
$\begin{array}{lllllll}2347 & 0 & 2347 & 42 & 5 & 2389 & 0 \\ 2394 & 0 & 2394 & 42 & 5 & 2436 & 0\end{array}$
$\begin{array}{lllllll}2394 & 0 & 2394 & 42 & 5 & 2436 & 0 \\ 2441 & 0 & 2441 & 42 & 5 & 2483 & 0\end{array}$
$\begin{array}{lllllll}2441 & 0 & 2441 & 42 & 5 & 2483 & 0 \\ 2488 & 0 & 2488 & 42 & 5 & 2530 & 0\end{array}$
2535
2582
$\begin{array}{llllll}2582 & 0 & 2582 & 42 & 5 & 2624 \\ 2629 & 0 & 2629 & 42 & 5 & 2671\end{array}$

| 2676 | 0 | 2676 | 42 | 5 | 2671 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 \(\begin{array}{lllllll}2723 & 0 & 2723 & 42 & 5 & 2765 & 0 \\ 2770 & 0 & 2770 & 42 & 5 & 2812 & 0\end{array}\)
 \(\begin{array}{lllllll}2770 & 0 & 2770 & 42 & 5 & 2812 \\ 2817 & 0 & 2817 & 42 & 5 & 2859\end{array}\)
 \(2864 \quad 0 \quad 2864 \begin{array}{lllllll} & 42 & 5 & 2906 & 0\end{array}\)
 \(\begin{array}{llllllll}2864 & 0 & 2864 & 42 & 5 & 2906 & 0\end{array}\)
 2911
 2958
2958
3005
3052
3052
3099
$\begin{array}{llll}3099 & 0 & 3099 & 42 \\ 3146 & 0 & 3146 & 42\end{array}$
$\begin{array}{lllllll}3193 & 0 & 3193 & 42 & 5 & 3188 \\ 3240 & 0 & 3240 & 42 & 5 & 3235\end{array}$
$\begin{array}{lllllll}3240 & 0 & 3240 & 42 & 5 & 3282 & 0\end{array}$
$\begin{array}{lllllll}3287 & 0 & 3287 & 42 & 5 & 3329 & 0 \\ 3334 & 0 & 3334 & 42 & 5 & 3376 & 0\end{array}$
$\begin{array}{lllllll}3334 & 0 & 3334 & 42 & 5 & 3376 & 0 \\ 3381 & 0 & 3381 & 42 & 5 & 3423 & 0\end{array}$

$\begin{array}{llllll}3428 & 0 & 3428 & 42 & 5 & 3470 \\ 3475 & 0 & 3475 & 42 & 5 & 3517\end{array}$
$\begin{array}{llll}3522 & 0 & 3522 & 42 \\ 3569 & 0 & 3569\end{array}$
3616
3663
0 $\quad 3663 \quad 42$

$\begin{array}{llllllll}100 & 3 & 4744 & 0 & 4744 & 42 & 5 & 4786\end{array}$
$\begin{array}{lllllllll}78 & 2 & 3666 & 0 & 3666 & 44 & 3 & 3710 & 3 \\ 79 & 2 & 3713 & 0 & 3713 & 44 & 3 & 3757 & 3 \\ 80 & 2 & 3760 & 0 & 3760 & 44 & 3 & 3804 & 3 \\ 81 & 2 & 3807 & 0 & 3807 & 44 & 3 & 3851 & 3 \\ 82 & 2 & 3854 & 0 & 3854 & 44 & 3 & 3898 & 3 \\ 83 & 2 & 3901 & 0 & 3901 & 44 & 3 & 3945 & 3 \\ 84 & 2 & 3948 & 0 & 3948 & 44 & 3 & 3992 & 3 \\ 85 & 2 & 3995 & 0 & 3995 & 44 & 3 & 4039 & 3 \\ 86 & 2 & 4042 & 0 & 4042 & 44 & 3 & 4086 & 3 \\ 87 & 2 & 4089 & 0 & 4089 & 44 & 3 & 4133 & 3 \\ 88 & 2 & 4136 & 0 & 4136 & 44 & 3 & 4180 & 3 \\ 89 & 2 & 4183 & 0 & 4183 & 44 & 3 & 4227 & 3 \\ 90 & 2 & 4230 & 0 & 4230 & 44 & 3 & 4274 & 3 \\ 91 & 2 & 4277 & 0 & 4277 & 44 & 3 & 4321 & 3 \\ 92 & 2 & 4324 & 0 & 4324 & 44 & 3 & 4368 & 3 \\ 93 & 2 & 4371 & 0 & 4371 & 44 & 3 & 4415 & 3 \\ 94 & 2 & 4418 & 0 & 4418 & 44 & 3 & 4462 & 3 \\ 95 & 2 & 4465 & 0 & 4465 & 44 & 3 & 4509 & 3 \\ 96 & 2 & 4512 & 0 & 4512 & 44 & 3 & 4556 & 3 \\ 97 & 2 & 4559 & 0 & 4559 & 44 & 3 & 4603 & 3 \\ 98 & 2 & 4606 & 0 & 4606 & 44 & 3 & 4650 & 3 \\ 99 & 2 & 4653 & 0 & 4653 & 44 & 3 & 4697 & 3 \\ 100 & 2 & 4700 & 0 & 4700 & 44 & 3 & 4744 & 3\end{array}$

This appendix contains a results statistics for case studies.
Column 1: Shows current job number which seizes the machines Job Number

Column 2: Shows operation number of jobs in process in column 1

Column 3: Shows Arrival Time of job in column 1
Column 4: Shows Waiting Time for a job to be loaded on the machine

Column 5: Shows start time of a process
Column 6: Shows Processing Time of job on machines

Column 7: Shows Machine Idle Time

Column 8: Shows Finish time

Column 9: Shows Next Machine on which finished job to be processed

```
Cmax = 300.2000
MC1 =
    5.0000 1.0000 0 0 0 0
    6.0000 1.0000
    7.0000 1.0000 0
    8.0000 1.0000
    1.0000 1.0000 0 0 0 66.400 0 0 66.4000 2.0000
    2.0000 1.0000 0 66.400 0 66.400 0 66.4000 0 132.8000 2.0000
    3.0000 1.0000 0132.800 0132.800 0 66.4000 0 199.2000 2.0000
    4.0000 1.0000 0199.200 0199.2000 66.4000 0 265.6000 2.0000
MC2 =
    5.0000 2.0000 0
    6.0000 2.0000 0 20.2000 20.2000 20.2000 0 40.4000 3.0000
    7.0000 2.0000 0 40.4000 40.4000 20.2000 0 60.6000 3.0000
    8.0000 2.0000 0 60.6000 60.6000 20.2000 0 80.8000 3.0000
    1.0000 2.0000 66.4000 14.4000 80.8000 0 0 0 80.8000 3.0000
    2.0000 2.0000 132.8000 0132.8000 0 52.0000 132.8000 3.0000
    3.0000 2.0000 199.2000 0 199.2000 0 66.4000 199.2000 3.0000
    4.0000 2.0000 265.6000 0 265.6000 0 66.4000 265.6000 3.0000
MC3 =
    5.0000 3.0000 20.2000 0 20.2000 0 20.2000 20.2000 4.0000
    6.0000 3.0000 40.4000 0 40.4000 0 20.2000 40.4000 4.0000
    7.0000 3.0000 60.6000 0 60.6000 0 20.2000 60.6000 4.0000
    8.0000 3.0000 80.8000 0 80.8000 0 20.2000 80.8000 4.0000
    1.0000 3.0000 80.8000 0 80.8000 31.0000 0 111.8000 4.0000
    2.0000 3.0000 132.8000 0132.8000 31.0000 21.0000 163.8000 4.0000
    3.0000 3.0000 199.2000 0 199.2000 31.0000 35.4000 230.2000 4.0000
    4.0000 3.0000 265.6000 0 265.6000 31.0000 35.4000 296.6000 4.0000
MC4 =
    5.0000 4.0000 20.2000 0 20.2000 27.8000 20.2000 48.0000 5.0000
    6.0000 4.0000 40.4000 7.6000 48.0000 27.8000 0 75.8000 5.0000
    7.0000 4.0000 60.6000 15.2000 75.8000 27.8000 0 103.6000 5.0000
    8.0000 4.0000 80.8000 22.8000 103.6000 27.8000 0 131.4000 5.0000
    1.0000 4.0000 111.8000 19.6000 131.4000 0 0 131.4000 5.0000
    2.0000 4.0000 163.8000 0163.8000 0 32.4000 163.8000 5.0000
    3.0000 4.0000 230.2000 0230.2000 0 66.4000 230.2000 5.0000
    4.0000 4.0000 296.6000 0296.6000 0 66.4000 296.6000 5.0000
MC5 =
    5.0000 5.0000 48.0000 0 48.0000 27.8000 48.0000 75.8000 6.0000
    6.0000 5.0000 75.8000 0 75.8000 27.8000 0 103.6000 6.0000
    7.0000 5.0000 103.6000 0103.6000 27.8000 0 131.4000 6.0000
    8.0000 5.0000 131.4000 0 131.4000 27.8000 0 159.2000 6.0000
    1.0000 5.0000 131.4000 27.8000 159.2000 0 0 0 159.2000 6.0000
    2.0000 5.0000 163.8000 0 163.8000 0 4.6000 163.8000 6.0000
    3.0000 5.0000 230.2000 0230.2000 0 66.4000 230.2000 6.0000
    4.0000 5.0000 296.6000 0296.6000 0 66.4000 296.6000 6.0000
MC6 =
    5.0000 6.0000 75.8000 0 75.8000 3.6000 75.8000 79.4000 0
    6.0000 6.0000 103.6000 0103.6000 3.6000 24.2000 107.2000 0
7.0000 6.0000 131.4000 0 131.4000 3.6000 24.2000 135.0000 0
8.0000 6.0000 159.2000 0 159.2000 3.6000 24.2000 162.8000 0
1.0000 6.0000 159.2000 3.6000 162.8000 3.6000 0 166.4000 0
2.0000 6.0000 163.8000 2.6000 166.4000 3.6000 0 170.0000 0
3.0000 6.0000 230.2000 0230.2000 3.6000 60.2000 233.8000 0
4.0000 6.0000 296.6000 0 296.6000 3.6000 62.8000 300.2000 0
```


APPENDIX F: ATTEMPTS

This appendix shows the Makespan or the result (Gantt charts) for FT06 and LA02 benchmark job shop scheduling problem with some of the new procedures.

The number of attempts listed in Chapter 4 were applied to different size of the problems and were solved manually using drawing sheets. An example is shown in the figure below (snapshot of FT10: 10x10 problem). Practically, it was a laborious job, even a simple job solution procedure took hours, but has helped in understanding the behavior of the problems. The reproduction of these attempts in excel need months. Therefore, the application of new procedure attempts on FT06 and LA02, which are larger problems is provided in this appendix. These attempts and the attempts in Chapter 4 quit fairly explain the process that how these procedures resulted in Index Based Heuristic (IBH).

Attempt on FT06 (6x6) - Exchange procedure

Identify poor job finished last i.e. J2 ... Delay J5-O2 and Assign it before J5 --Legal

Assign J2-O2 before J3-O1 on M3 - Results in Overlapping and Apply Delay on J3-O2 - Legal with increase in Complexity

Delay J3-O2 on M4 will overlap J5-06 delay J5-06 \& Assign J2-O3 at the end of J2-O2 and Delay overlapped J06-O5 . This lead into so many overlapping and violation of precedence constraints that It made it impossible to logically program it.

Conclusion: The priority of on job and delay lead in complexities and made it difficult to program. The Delay was very effective in small problem, however, it increased the complexities. Hence, it is impossible to program such procedure although manually it is possible and will lead a feasible schedule

Attempt on FT06 - Changing priority

Attempt on FT06: Priority Exchange of 50\% jobs
Assign half job ties on the same machine on SPT and rest of jobs ties on the same machine on LPT

$75 \mid$

Conclusion: again it yielded a feasible schedule, but the result is worst than the actual.

Attempt on FT06 swapping jobs or prioritizing jobs in ascending order for in each operation shown below:
Operation 1: J1,J6,J3,J4,J2,J5
Operation 2: J1, J5, J6, J3, J2, J4
Operation 3: J4, J5, J1, J3, J6, J2
Operation 4: J4, J5, J1, J3, J2, J6
Operation 5: J3, J1, J5, J6, J4, J2
Operation 6: J5,J6, J2, J1, J3, J4

Conclusion: This swapping attempt improved the results and yielded a feasible schedule. This attempt was tried on another problem (LA02 10×5) in order to check whether it will be effective on a larger number of jobs or not.

Attempt on Lawrence (1984) - LA02 : 10×5 JSSP with a Makespan value of 655.
SPT rule gives a Makespan of 1022.
Applying the Swapping Technique which prioritizing jobs in ascending order for in each operation. For this problem the final schedule is shown below:

Job 1	1	Job 3	3	Job 5	5	Job 7	7	Job 9	9
Job 2	2	Job 4	4	Job 6	6	Job 8	8	Job 10	10

11.			511		01		12			51		23		$4!$		μ		14	15.1	
12	12	\#	4		12			112	12		9.			0	52					
18	4.3		\mathbb{Z}		173 88			33	,	3		4					19	\%10	78	
14.		124	74	518		14.4		2					8	(1)	(4)	!		15		$3: 4$
	9515 415	15	10				45		is				${ }^{6} \mathrm{ij}$			1.5		\%		

Conclusion: The swapping technique yielded better solution. At this point an idea of taking effect of other job on the seized job on a machine was considered. Which resulted in normalization of the processing time and finally resulted in Index Based Heuristics (IBH).

APPENDIX G: LIST OF PUBLICATION FROM THIS RESEARCH

Journal Publication:

1. MAQSOOD, I. Hussain, S., KHAN, MK. and WOOD, AS., (2012). A novel heuristic for job shop scheduling, International Journal of Customer Relationship Marketing and Management (IJCRMM) (In Press)
2. MAQSOOD, S. Noor, S., KHAN, MK. and WOOD, AS., (2012). Hybrid Genetic Algorithm (GA) for job shop scheduling problems and its sensitivity analysis. Int. J. Intelligent Systems Technologies and Applications. Vol. 11, Issue 1/2, PP. 49-62
3. MAQSOOD, S., KHAN, MK. and WOOD, AS., (2011). A novel heuristic for low batch manufacturing process scheduling optimization with reference to process engineering, Special issue of Chemical Product and Process Modelling. Vol. 6, Issue 2, Article 8.

Conference Publication:

4. MAQSOOD, S., NOOR, S., KHAN, MK. and WOOD, AS., (2011). Sensitivity analysis of genetic algorithms for job shop scheduling problems. 26th International Conference of CAD/CAM, Robotics \& Factories of the Future, Kuala Lumpur, Malaysia.
5. MAQSOOD, S., HUSSAIN, I., KHAN, MK. and WOOD, AS., (2011). A novel Index Based Heuristic for job shop scheduling problems. 26th International Conference of CAD/CAM, Robotics \& Factories of the Future, Kuala Lumpur, Malaysia.
6. MAQSOOD, S., KHAN, MK. and WOOD, AS., (2011). A novel heuristic for low batch manufacturing process scheduling optimization. International Conference of Computer Aided Process Engineering (CAPE). School of Engineering, Design \& Technology. University of Bradford, UK.
7. MAQSOOD, S., KHAN, MK. and WOOD, AS., (2010). A review of AI technique for manufacturing scheduling. The 25th International conference of CAD/CAM, Robotics \& Factories of the Future. Pretoria, South Africa.

[^0]:

 $\begin{array}{llllllll}3 & 70 & 0 & 70 & 37 & 70 & 107 & 4\end{array}$

 | 2 | 3 | 106 | 1 | 107 | 37 | 0 | 144 | 4 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 3 | 3 | 142 | 2 | 144 | 37 | 0 | 181 | 4 |

 | 3 | 3 | 142 | 2 | 144 | 37 | 0 | 181 | 4 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 4 | 3 | 178 | 3 | 181 | 37 | 0 | 218 | 4 |
 | 5 | 3 | 214 | 4 | 218 | 37 | 0 | 255 | 4 |

