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Portfolio optimisation has a number of constraints resulting from some practical 

matters and regulations. The closed-form mathematical solution of portfolio 

optimisation problems usually cannot include these constraints. Exhaustive search 

to reach the exact solution can take prohibitive amount of computational time. 

Portfolio optimisation models are also usually impaired by the estimation error 

problem caused by lack of ability to predict the future accurately. A number of 

Multi-Objective Genetic Algorithms are proposed to solve the problem with two 

objectives subject to cardinality constraints, floor constraints and round-lot 

constraints. Fuzzy logic is incorporated into the Vector Evaluated Genetic 

Algorithm (VEGA) to but solutions tend to cluster around a few points. Strength 

Pareto Evolutionary Algorithm 2 (SPEA2) gives solutions which are evenly 

distributed portfolio along the effective front while MOGA is more time efficient. An 

Evolutionary Artificial Neural Network (EANN) is proposed.  It automatically evolves 

the ANN‟s initial values and structures hidden nodes and layers. The EANN gives a 
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better performance in stock return forecasts in comparison with those of Ordinary 

Least Square Estimation and of Back Propagation and Elman Recurrent ANNs. 

Adaptation algorithms for selecting a pair of forecasting models, which are based 

on fuzzy logic-like rules, are proposed to select best models given an economic 

scenario. Their predictive performances are better than those of the comparing 

forecasting models. MOGA and SPEA2 are modified to include a third objective to 

handle model risk and are evaluated and tested for their performances. The result 

shows that they perform better than those without the third objective.  
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Chapter 1 

Introduction 
 

A portfolio of assets is a collection of investable assets which have returns 

expected at the end of a definite period called “investment period.” As a result, the 

expected return of a portfolio is the weighted average of return of all assets in that 

portfolio according to their proportions. The actual return of a portfolio, which is the 

realized return at the end of the investment period, may not be equal to the expected 

return due to the uncertainty inherent in the expectations of returns of assets. In the 

case that all assets in a portfolio are risk free, we can presume that the expected 

return and the actual return of a portfolio be equal.  Although there are differences in 

many aspects among assets or securities in an investment portfolio, by investment 

purposes, other aspects except those related to their returns and risks are 

disregarded. Prior to the inception of Modern Portfolio Theory in 1952, investors and 

portfolio managers made their investment decisions based on the classical 

investment tools, i.e. the dividend cash flow model (coined by John Burr Williams in 

1938) for stocks and the yield to maturity for fixed income instruments (Oberuc 

2004).         

Modern Portfolio Theory originated in a paper by Harry M. Markowitz in 1952 

(Markowitz 1952).  The theory states that a portfolio manager should not select 

assets due only to characteristics that are particular to the assets, i.e. their expected 

returns and volatilities, but he needs to consider how each asset co-moves with all 

other assets. Moreover, by taking into account these co-movements which usually 
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are measured by correlations among assets, he can construct a portfolio that has 

less risk given the same expected return than a portfolio constructed by ignoring the 

interaction between assets (Elton 1997).   Since 1952, Modern Portfolio Theory has 

become a well-developed paradigm and an academic field. Originally Markowitz 

suggested that the expected returns of any assets in question should be the 

historical means of their returns, and the expected volatilities should be their 

historical variances (or standard deviations as the square root of variances). This 

suggestion would be appropriate if assets in question were all normally distributed, 

and the investment horizon was long enough.   

Unfortunately, in practical settings the aforementioned assumptions are not 

true. A portfolio manager usually finds that the assets in question have no normal 

distributions. The investment horizon is also quite a short time period since most 

portfolio managers are subjected to report their performance monthly, quarterly and 

annually. To achieve a better portfolio return at a more optimal risk, a portfolio 

manager needs to forecast both expected returns and volatilities at the end of 

investment period of all assets s/he wishes to include in the portfolios rather than just 

simply to take the historical means and variances as the expected returns and 

volatilities (Oberuc 2004).  There are volumes of research on forecasting models and 

algorithms of stock returns and volatilities attempting to make the forecasts 

consistently accurate through all period of time regardless of instantaneous market 

conditions.  However, most of them failed both aspects of accuracy and consistency 

(Triana 2000).  

Moreover, besides the aforementioned input problems, Markowitz‟s original 

model, which can obtain a closed-form solution, suffers from imposing some 

unrealistic assumptions. To make portfolio models more realistic, we need to set 
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their assumptions in accordance with stock exchange customs and regulations by 

which they can only be solved by search algorithms, exhaustive or approximate.    

The Markowitz model with some modification later by Black (Black 1972) to allow 

short-selling (allowing negative weights of assets) has a closed-form solution.  By 

removing some realistic assumptions, such as the non-negativity constraints (i.e. no 

short sell on any assets are allowed); the integer constraints (i.e., shares of assets 

cannot be divided into lower than their trading units), etc., the model has a general 

form with only the assets‟ expected returns, the variance, and covariance of the 

assets as parameters.  On the other hand, if the non-negativity constraint is 

imposed, there exists no general form (closed-form) solution for the optimisation 

problem.  Although the model with non-negativity constraint can be solved efficiently 

by specialised algorithms and other ad hoc methods, imposing other constraints (e.g. 

the integer constraint or maximum number of asset constraint) will cause large-scale 

problems, and the model becomes unsolvable by mixed integer non-linear 

programming or other exact solution algorithms, within a reasonable time (Busetti 

2000).       

In the process of investment decision, a portfolio manager usually faces an 

abundance of choices of investment assets.  Also, he may need to make timely 

decisions in a rapidly changing financial market. This represents a tough optimisation 

problem, which continues to present a challenge for efficient optimisation solution 

techniques (Maringer 2005).  A variety of different techniques have been employed 

to solve the portfolio optimisation problem. The main drawback of techniques for 

exact solution is that the number of combinations of states that must be searched 

increases exponentially with the size of the problem and becomes computationally 

prohibitive (Crama 2003). Furthermore, these techniques are poor in handling the 
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nonlinear objective and constraint functions, and several assumptions are generally 

required to make the problem solvable using reasonable computational resources 

(Maringer 2005). Alternatively, some heuristic-based techniques use algorithms to 

find approximate solutions for instances of NP-hard problems in a reasonable time 

(Blum 2001). By using heuristics, the optimisation problems can be tackled in 

polynomial time with a trade-off for their optimality. In some circumstances of 

practicality, the speed to reach the acceptable approximate solutions is very critical. 

Feasible near-optimum solutions are acceptable, but untimely ones are not. The 

simple heuristic solution approaches are based on specialised techniques that work 

particularly well for a given problem, but are only of limited applicability to other 

problems (Blum 2003.) Furthermore simple heuristics, based on greedy search 

algorithms, tend to stop in inferior local optima. 

In order to overcome the above limitations, researchers from the 1990‟s 

onwards have focused much attention on meta-heuristic solution techniques (Blum 

2003 and Yilmaz 2011). Meta-heuristics are general intelligent searches that could 

find the ways out of local optima. Despite their intelligence and generality, 

performances of meta-heuristics depend on the problem settings. A number of 

research publications have accumulated over the period of more than 20 years on 

the applications of meta-heuristic approaches addressing portfolio management and 

optimisation issues.  

Portfolio optimisation is an important business problem involving selections of 

assets or classes of assets to be included in an investment portfolio in the beginning 

of an investment period. The problem is always in the dynamic domain since 

information and factors that affect optimisation are changing over time. An efficient 

portfolio optimisation system, therefore, needs to be adaptive. An adaptive business 
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intelligent system consists of three modules working cooperatively, namely: 

optimisation module, prediction (please note we are using terms „forecasting‟ and 

„prediction‟ interchangeably for the same meaning in this thesis) module, and 

adaptation module. The graphical illustration is shown in figure 1.1 (Modified from 

Michalewicz 2007.) 

 

 

Figure 1.1: Structure of Adaptive Business Intelligence System 

 

Most literature in portfolio optimisation with intelligent systems are largely 

concentrated in the optimisation module. To build a complete adaptive portfolio 

optimisation system, we need to do further research in the prediction module and 

adaptation module as well as improving performance and adaptability of the 

optimisation module. The research presented in this thesis aims to improve the 

optimisation module with consideration of prediction and adaptation issues. The 
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research for improving the optimisation module will be directed toward dynamic 

environment. The techniques analysed for the optimisation module are Multi-

objective Evolutionary Algorithms (MOEAs) or hybrid MOEAs. The prediction module 

is a hybrid system for prediction that consists of many prediction techniques or 

models. This research is considering time series econometric heuristic estimation, 

Evolutionary Programming (EP), Genetic Programming (GP) and Artificial Neural 

Networks techniques with a mechanism of choosing/averaging the results of the 

models. Figure 1.2 shows the framework diagram of hybrid systems for prediction. 

The adaptation module is responsible for regularly adjusting the prediction models. It 

detects and compares errors between the prediction result and the actual result. 

Then it will tune the prediction module to decrease prediction errors, if errors exist.  

 

Figure 1.2: Hybrid Systems for Prediction 

 

Models in the diagram above (figure 1.2) may include the same type of 

techniques or different type of techniques. The selection system may be a simple 

averaging, weighted averaging, rule based, neural networks, etc. The prediction 
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module is quite important to the adaptive portfolio optimisation system because the 

inputs of portfolio optimisation models are expected returns (or yields) of all assets 

included in a portfolio, and variances (standard deviations) or volatilities of the 

returns, or risk measures (which are based on or can be calculated from variances, 

e.g. Absolute Variations, Value-at-Risk (VaR), Daily VaR). If the inputs cannot be 

predicted accurately or close to the actual values, the optimisation will also be 

inaccurate and leads to wrong decisions. The adaptation module is to update input 

data from time to time as well as develop and modify the parameters of the 

prediction models and/or the choosing/averaging system. The adaptability could be: 

update each individual model, update the choosing/averaging system, and update 

both of the individual models and choosing/averaging system.  

 

1.1 Research Motivation and Scope 
 

Generally speaking, a workable system of portfolio optimisation comprises at 

least 2 subsystems or modules, namely an optimisation module and a prediction 

module. The optimisation module must perform optimisation tasks as efficiently as 

possible both in terms of accuracy and timeliness, in accordance with the nature of 

the problem. However, the optimisation module needs inputs from the forecasting 

module.  The forecasting module feeds inputs into the optimisation module. The 

final outcomes of the whole system therefore depend not only on the performance 

of the forecasting system, i.e. its accuracy, but also on the performance of the 

optimisation system, its closeness to the optimal solutions. However, there is 

abundant research on both optimisation techniques and forecasting models. The 

scope of the research presented in this thesis is to design an adaptive system to 



8 
 

include both optimisation techniques and forecasting models for portfolio 

optimisation of stock portfolio. The performance of the system will be evaluated by 

ex-post basis in which a portfolio‟s actual returns and variances in successive 

periods are calculated and compared with those expected from previous period 

data. 

 As mentioned above, there is a lot research in both forecasting models and 

optimisation techniques. Doing research in those areas will only add drops of water 

into a large pool. On the other hand, there is comparatively little research on 

adaptation module or techniques. Thus, the research presented in this thesis will 

focus on adaptation techniques which can improve the forecasting part, the 

optimisation part as well as the system as a whole. However, we need to address 

and survey the optimisation and forecasting models in order to have a complete 

view of the whole system. We also put make some improvements to the forecasting 

and optimisation models. Since the environment is always changing, a single model 

or algorithm will not be appropriate for all market situations, therefore we emphasise 

our research on adaptation modules. We believe that effective adaptation modules 

will improve the outcomes of the system as a whole. In risk management 

perspective, an adaptive mechanism may be viewed as a mechanism to manage 

model risk. Model risk occurs when a model does not best represent the true nature 

of a situation and finding another model which is more appropriate for the situation 

is a way to reduce model risk.      

 Portfolio optimisation is designed to manage risk associated with price 

movements of assets (implied returns of investments). In the original portfolio 

optimisation presented by Markowitz (1952), the model assumed that we can take 

the past average of returns of an asset as an accurate prediction of its future returns 
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as well as its past volatility as an accurate prediction of its future volatility. 

Unfortunately, the assumptions do not hold true in most of the market situations.  

Most of the time, portfolio managers need to supply the best prediction of both 

assets‟ returns and volatilities, in order to find an optimal choice of included assets 

into portfolios. So far, no model can make accurate predictions for all situations. The 

problem of portfolio optimisation becomes more complicated as it inherits model risk 

as well. Little research if any aims to handle this kind of risk in portfolio optimisation. 

Therefore, we aim to do so believing that if we can reduce model risk, we can 

improve the actual outcomes of portfolio optimisation significantly.      

 The scope of the research presented in this thesis, therefore, is to design 

algorithms aimed to improve the out of sample or ex post performance of the 

existing portfolio management methods, namely, the performance of the actual 

results. Also, portfolio optimisation problems need timely and appropriate answers 

and to properly execute portfolio arrangement and management, thus, the 

optimisation techniques need to handle applicable realistic constraints in a timely 

manner. We are also to design adaptation algorithms to handle model risk as a way 

to improve the actual performance of the whole system.       

 

1.2 Objectives 
 

The aim of this research is to develop a workable adaptive portfolio optimisation 

system. To achieve the above, the objectives of the research are set as follows: 

1. To find and design optimisation modules which can effectively deal with 

realistic constraints in a timely manner. The optimisation algorithms need to 
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yield results close enough to the actual portfolio frontier and also have a 

decent distribution along the actual portfolio frontier. Moreover, the results 

must be given within an acceptable time 

2. To find and improve stock return and volatility forecasting models which can 

make a good prediction for the next period of time given prevailing 

information prior to time of making prediction. 

3. To design an adaptation algorithm to handle model risk associated with the 

forecasting models. The algorithm would use rules based on prevailing 

economic situations to select the best models given an economic situation.  

4. To design and improve the optimisation models in such a way that they also 

can be adaptive and can handle model risk effectively. 

5. To integrate the forecasting module and the optimisation module and test 

for their effectiveness and performances. 

 

1.3 Research Contributions 

The main contributions of this thesis can be summarised as follows:  

 Multi-objective Genetic Algorithms (MOGAs) are explored and applied for 

portfolio optimisation with realistic constraints. Some novel mechanisms are 

added to the existing MOGAs to enhance their performances. (Chapter 4)  

 Forecasting models and methodologies are explored and applied for 

predicting future stock returns and volatilities. A novel Genetic Algorithm (GA) 

is designed for variable selection into Artificial Neural Network (ANN) models 

for forecasting. Another novel algorithm is applied for evolving the structure of 

ANN models for forecasting. (Chapter 5) 
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 Fuzzy logic is applied for selecting of a pair of forecasting models for the next 

period stock return and volatility predictions. A novel algorithm is designed 

and its outcomes are evaluated. (Chapter 6)  

 A number of MOGAs with good performance are modified to include another 

objective to handle model risk (as represented by expected forecasting 

errors). The prediction outcomes from chapter 6 are used as inputs. The 

algorithms are evaluated and tested for their performances. (Chapter 7)   

 In summary, this thesis presents a number of novel approaches to portfolio 

optimisation. Firstly, some Multi-Objective Evolutionary Algorithms are 

modified and applied to solve portfolio optimisation problems with a number of 

constraints arising from practicality. Secondly, an Evolutionary ANN is 

proposed and used to forecast stock returns. Thirdly, a fuzzy-like rule system 

is proposed to select forecasting models which are appropriate for prevailing 

economic situations in particular periods of time. Lastly, MOGA and SPEA2 

are modified to include a third objective as a way to manage risk associated 

with estimation errors which  often arise from model risk. This is where we 

integrate the three modules together comprising the whole portfolio 

optimisation system. The final results are validated statistically.      

 

1.4 Publications 

The research works of the thesis have also been reported in the publications 

listed below.  
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1. Skolpadungket, P.; Dahal, K.; Harnpornchai, N., “A Survey on Portfolio Optimisation 

with Metaheuristics”, International Conference on Software, Knowledge, Information 

Management and Applications 2006 (SKIMA 2006), Chiang Mai, Thailand. 

2. Skolpadungket, P.; Dahal, K.; Harnpornchai, N., “Portfolio optimisation using multi-

objective genetic algorithms”, IEEE Congress on Evolutionary Computation 2007 

(CEC 2007), Singapore. 

3. Skolpadungket, P.; Dahal, K.; Harnpornchai, N., “Forecasting Stock Returns using 

Evolutionary Artificial Neural Networks”, 7th International Conference on 

Computational Intelligence in Economics and Finance  (CIEF 2008), Taoyuan, China 

ROC (Taiwan). 

4. Skolpadungket, P.; Dahal, K.; Harnpornchai, N., “Forecasting Stock Returns 

using Variable Selections with Genetic Algorithm and Artificial Neural –

Networks”,  2009 Asia-Pacific Conference on Computational Intelligence and 

Industrial Applications (PACIIA 2009), Wuhan, China. 

 

1.5 Thesis Outline 

The thesis is structured as follows: 

This chapter (Chapter 1) explains the background and motivation for the proposed 

research work and also lists the research contributions made. 

Chapter 2 presents the review of the reported researches related to portfolio 

optimisation models. Those of classical models and post-classical models are 

reviewed.  
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Solving methods for portfolio optimisations are covered in Chapter 3. Together with 

Chapter 2, they comprise a review of relevant literature for this thesis.  

Multi-objective Genetic Algorithms for portfolio optimisation are explored in Chapter 

4. Some modifications are proposed to enhance the performances of the existing 

MOGAs. The newly modified MOGAs are also evaluated.  

Chapter 5 surveys some selected forecasting methodologies which will be used in 

later chapters. A couple of novel techniques are proposed to enhance ANN 

forecasting models. The first algorithm is designed to let an ANN‟s structure evolve 

over time and reach its optimal form. The other algorithm is designed for automatic 

selection of most relevant variables for the forecasting ANN. The results are also 

examined and evaluated.  

In Chapter 6, Fuzzy logic algorithms are designed to select a pair of forecasting 

models (one for stock return and one for stock volatility) from two groups of eight 

different kinds of models. The Fuzzy logic rules are based on their past 

performances and prevailing economic situations. The results are also examined and 

analysed.  

Chapter 7 describes model risk and how to handle model risk within the framework 

of MOGA portfolio optimisation models. A modification to include a third objective 

into the two objective MOGAs in Chapter 4 is proposed. The forecasting outcome of 

the Fuzzy selection algorithms in Chapter 6 are used as inputs for the newly 

proposed MOGAs constituting a completed adaptive portfolio optimisation system 

aimed for this thesis.  Finally, the results are evaluated and analysed.  
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Chapter 8 presents the conclusion of this thesis and the future works that can be 

extended from this work. 

1.6 Terminologies and Abbreviations 

 

Portfolio  A collection of financial assets, e.g., stocks, bonds, options, 

gold, with purpose obtain return for investment over period of 

time.   

Return  Stock return or asset return is the yield for investment of a stock 

or asset over time. It may be in the form of price appreciation or 

dividend paid.  

Volatility Stock volatility or asset volatility is a variation of return of a stock 

or an asset occurred over a period of time. It is usually 

measured by either standard deviation or variance of its return 

for the period of time. 

AC Ant Colony  

AR Auto-Regressive 

ARMA Auto-Regressive Moving Average 

ANN Artificial Neural Network 

APT Arbitrage Pricing Theory 

AVAR Average Variable Average Rule 

BPN Back Propagation Network 
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CAPM Capital Asset Pricing Model  

CEC Conference on Evolutionary Computation 

CFS Combined Fuzzy Score 

CPU Central Processing Unit 

CV Cross Validation  

CVaR Conditional Value-at-Risk 

FSGA Feature Selected Genetic Algorithm 

EA Evolutionary Algorithm 

EANN Evolutionary Artificial Neural Network 

ES Evolutionary Strategy 

GA Genetic Algorithms 

GD Generational Distance  

GNN Genetic Neural Network 

KGA  Knapsack Genetic Algorithm   

IAPM International Asset Pricing Model 

LS Least Square Model  

LSM  Local Search Metaheuristic 

MA Moving Average 

MVBR Multiple Variable Best Rule 
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MCV Multi-fold Cross Validation 

MOEA Multi-Objective Evolutionary Algorithm 

MOGA Multi-objective Genetic Algorithm 

NC1R 1-Norm-Constrained minimum-variance portfolio with  

calibrated by maximising portfolio Return in previous period 

NC1V 1-Norm-Constrained minimum-variance portfolio with  

calibrated using cross-Validation over portfolio variances, 

NC2R 2-Norm-Constrained minimum-variance portfolio with  

calibrated by maximising portfolio Return in previous period 

NC2V 2-Norm-Constrained minimum-variance portfolio with  

calibrated using cross-Validation over portfolio variances 

NCFR 𝚺F-Norm-Constrained minimum-variance portfolio with  

calibrated by maximising portfolio Return in previous period 

NCFV 𝚺F-Norm-Constrained minimum-variance portfolio with  

calibrated using cross-Validation over portfolio variances 

NPGA Niche Pareto Genetic Algorithm 

NSGA Non-dominated Sorting Genetic Algorithm 

OLS Ordinary Least Square 

PAES Pareto Archive Evolutionary Strategy 
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PARR Partial minimum-variance portfolio with k calibrated by 

maximising portfolio return in previous period 

PARV Partial minimum-variance portfolio with k calibrated using cross-

validation over portfolio variances 

SA Simulated Annealing 

SBVBR Single Best Variable Best Rule 

SR Sharpe Ratio 

SPEA Strength Pareto Evolutionary Algorithm 

 

TOGA   Target Objectives Genetic Algorithm 

TS   Tabu Search 

US   United States 

VaR   Value-at-Risk 

VEGA   Vector Evaluated Genetic Algorithm 
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Chapter 2  

Review of Portfolio Optimisation 

Models 
 

2.1 Chapter Overview 
 

 Markowitz‟s seminal paper in 1952 was the first work on Modern Finance in 

general and Modern Portfolio Theory in particular.  Markowitz himself had long been 

regarded as the father of Modern Finance even before he was honored with Nobel 

Prize in Economics in 1989.  Moreover, the model was the first that defined the 

concepts of risk and risk management related to financial and investment 

management.  The concept of risk in the model is defined as the volatility of asset 

prices which is usually represented by the variance or standard deviation (square 

root of variance) of asset‟s prices under consideration (even though there are other 

definitions of risk such as Value-at-Risk or VaR).  The risk management as far as the 

model is concerned is not to eliminate the risk associated with portfolio management 

but to choose the combination of assets that yields the lowest overall portfolio‟s 

variance given an expected portfolio return.  The optimum portfolio management by 

minimising portfolio‟s variance is equivalent to optimum portfolio by maximising 

portfolio‟s return given a portfolio‟s variance.   

This chapter reviews the portfolio optimisation problem models reported in the 

literature. The challenges and recent developments in the area of realistic portfolio 

optimisation are reviewed. The structure of this chapter is as follows: Section 2.1 is 

for the background of the so-called classical Portfolio Optimisation models and their 
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limitations; Section 2.2 discusses on some recent Portfolio Optimisation models and 

techniques aimed at overcoming the classical Portfolio Optimisation models; Section 

2.3 discusses on some Portfolio Optimisation models with alternative objectives. 

Section 2.4 covers the problems of estimation errors and model risk and their 

remedies. In Section, 2.5, we make some conclusions of the recent stage of 

research and current research gaps and challenges. 

 

2.2 The Classical Portfolio Optimisation Models 

 

 One of the practical problems in asset management is how to allocate 

money to invest in different assets in order to achieve the investors risk appetites 

and return objectives (Markowitz 1992). An investor is assumed to be a rational 

economic agent who is risk averse.  Given an objective at a level of return, an 

investor tries to reduce risk as much as possible.  To construct a portfolio of assets, 

a portfolio manager, who acts in the best interest of the investors, adds a number of 

assets to form a new asset portfolio that has a different risk-return characteristic than 

those of individual assets.  Choices and quantities of different assets that should be 

included into the portfolio are the outcomes of portfolio selection process. A set of 

portfolio of feasible set of assets that has a minimum risk level and a maximum 

return level is called an optimal or efficient portfolio. However, we cannot simply 

choose an asset which exhibits minimal variance and maximal return because there 

are correlations between pairs of assets which can further reduce the overall 

portfolio‟s variances. We have to consider all of the assets‟ risks and returns 

simultaneously. Based upon the aforementioned ideas, portfolio selections should 

follow Modern Portfolio Theory (MPT) originated in a paper by Harry M. Markowitz in 
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1952 (Markowitz 1952 cited in Markowitz 1992 and in Elton 1997).  The theory states 

that an investor should not select assets due only to characteristics that are 

particular to the assets but she/he needs to consider how each asset co-moves with 

all other assets. Moreover, by taking into account of these co-movements, an 

investor can construct a portfolio that has less risk given the same expected return 

than a portfolio constructed by ignoring the interaction between securities (Elton 

1997). However, the original MPT is based on a number of unrealistic assumptions, 

namely, no short selling, infinitesimal dividing of investment assets, observed means 

and variance of assets represent true means and variance of assets overtime. The 

Markowitz‟ version of MPT cannot have a closed form solution but can be easily 

solved by quadratic programming method.  

2.1.1 The Markowitz model 
 

The Markowitz model assumes that investors make their decision in portfolio 

construction by choosing assets that maximise their portfolio returns at the end of 

investment period (expected returns). By assuming that investors are risk averse, the 

simplest model with a number of unrealistic assumptions, namely perfect market 

without taxes, no transaction costs, no short sales, assets are infinitely divisible, the 

Markowitz portfolio optimisation can be stated mathematically as follows: 

 

                                                             
  

                                                                    (2.1)     

                                  

               
   ∑ ∑   

 
   

 
                                                      (2.2) 

                                                                                (2.3) 

                                                       ∑     
 
                                                    (2.4) 
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                                                  ∑      
                                                         (2.5) 

                                                                                                                         (2.6) 

Where, ij is covariance between asset i and j, if i = j, it is variance of asset i.  


2

P is variance of the portfolio of assets, 

     ri is expected return of asset i,  

       rP is the expected return of the portfolio,  

       r* is a predefined level of return, 

       wi is weight or proportion of asset i in the portfolio p.   

 

 The no-short sell constraint in Equation (2.6) makes the model having no 

closed form solution and also NP-hard. In the computational aspect, allowing short-

selling would make the solution of the problems (i.e. proportion of each asset) a  set 

of all real numbers rather than merely zero and positive real  numbers, therefore a 

closed form solution could be obtained. In this sense, we can think of the no short 

selling condition as a constraint.  However, for a small number of assets to be 

included in the portfolio, the model can be solved numerically by quadratic 

optimisation method with a reasonable time (Maringer 2005).  

However, later Markowitz has modified the original model to relax some of the 

aforementioned assumptions such as taxation, transaction costs, etc. The readers 

are referred to (Markowitz 1992) for detailed working on the modified model and 

solving methods. 
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2.1.2. Black’s Modification 
 

 Black (Black 1972) modified the Markowitz model to allow short-selling 

(allowing negative weights of assets). The model has a closed form solution. By 

removing some realistic assumptions such as the non-negativity constraints (i.e. no 

short sell on any assets are allowed), weights of any assets in the portfolio can be 

any real number given the sum of them satisfies Equation (2.5),  Equation (2.6) is 

now modified as 

                                                                                                               (2.7) 

  The model, thus, has a closed form or exact solution that only the assets‟ 

expected returns, the variance and covariance of the assets are parameters which 

can be solved by Lagrange Methods for constraint optimisation (Amenc 2003). The 

closed form solution for asset weights for a given level of return, rp = r* thus can be 

determined by 

                                       
   (      )  

  (  
 
)   

             

                                  (2.8) 

with 

                                            (
  
  

)    (  

  
) 𝚺                                              (2.9) 

and 

                                𝚺         (
  
  

)
  

(  
 
)                                       (2.10) 

 

where, r and r’ are the vector of ri and its transpose respectively, 
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 𝚺 is the variance-covariance matrix of all (NxN) assets, 

 I is the unity vector. 

The Black model comes with some convenience properties including having a 

closed form solution. In fact, it can be represented by a linear combination of any two 

efficient portfolios along the portfolio efficient frontier. Therefore, knowing just only a 

couple of efficient portfolios enables us to replicate any efficient portfolio.  However, 

the solutions of efficient portfolios may be impracticable due to their short sale 

positions (i.e. negative weights of assets). Some assets can be short sold but in a 

very limited way both in name and quantity. Compromising the solutions by ignoring 

any negative weights, setting them to zero, and adjusting the remaining asset 

weights accordingly so they sum up to one might result in the solution becoming 

inefficient (Maringer 2005).      

2.1.3 Tobin Model 
 

 By assuming that there is a riskless asset, the efficient line is no longer a 

parabola curve but a straight line or a linear relationship between return and 

volatility. This model is called the Tobin model as it was proposed by Tobin (1965). If 

all funds are invested in a riskless asset s with a risk free return ( rs) and some risky 

portfolio T with a return (rT)  then the fund portfolio P will have portfolio return (rP) as  

                                                                                                       (2.11) 

Since s is risk-free then its volatility (variance or standard deviation) is also zero. The 

portfolio volatility (    is  

                                                                                                                            (2.12) 
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Where    is the volatility of the risky portfolio T. 

From the equation (2.12), we can solve for α such that  

          
  

  
                                                    (2.13) 

Substitute (2.13) into (2.11), we can have a linear relationship between the portfolio‟s 

return and volatility: 

                                                               
  

  
                                      (2.14) 

The Tobin model has a far reaching implication. If we can find a riskless asset and 

an efficient portfolio according Markowitz‟s or Black‟s efficient frontier, we will be 

able to construct a portfolio of any return levels which is more than or equal to the 

original frontier. The new frontier is a linear combination between the efficient 

portfolio and the riskless asset which is named “Capital Market Line”.  Now, an 

investor needs only a riskless asset and an efficient portfolio to invest and satisfy 

his risk-return appetite. In other words, the optimal portfolio T can be separated 

from the investment decision. This is called “portfolio separation theorem”.  

However, according to this model, although an investor can choose any risk-return 

level of investment by combining a riskless asset and an efficient portfolio, the 

efficient portfolio must be estimated since it is not given.  

2.1.4. The Capital Asset Pricing Model (CAPM) 
 

 Portfolio Separation theory directly influences Sharpe (1964), Lintner (1965), 

and Mossin (1966) who independently developed the Capital Asset Pricing Model 

(CAPM). By asserting that the existing efficient portfolio which is represented by 

the market portfolio (i.e. portfolio in which consists of all assets in the market) and 



25 
 

a risk-free asset, and now the new efficient frontier is a linear combination, CAPM 

states that the prices of any asset in the market will be adjusted accordingly so 

that their returns and volatilities align along the linear combination line which is so 

called “Security Market Line.” Now, according to this model, any asset‟s returns 

can be estimated by its relative correlation with the market portfolio which is given 

by a symbol β (beta). The beta is defined by 

 

                                               
   

  
   

       

    
  

     

  
                                  (2.15) 

 

Where,    and   
 are standard deviation and variance of the market portfolio, 

         is the covariance between the market portfolio and asset i, 

         is the correlation coefficient between the market portfolio and asset i, 

       is the standard deviation of asset i. 

By knowing the beta, we can estimate the return of any asset i by the following 

equation: 

                                                                     (2.16) 

Where,    is the theoretical return of asset i, 

        is the observed return of the risk-free asset, 

       is the (observed) return of the market portfolio. 
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There are many researchers who have tried to test empirically the validity of CAPM. 

The results have been mixed. A number of earlier empirical tests, notably by Black 

(1972), Fama (1973), and Blume (1975) confirmed the theory. On the contrary, some 

later empirical tests, e.g. Cheng (1980) and Gibbsons (1982), rejected it.  

Aforementioned important developments have high impacts on practical 

implications. The portfolio separation theorem leads to mutual fund theorem. The 

theory states that if an investor has access to a risk free asset or a comparatively 

riskless asset, the investor‟s optimal portfolio is independent of his preferences for 

expected return and volatility. The investor then can construct an optimal portfolio at 

any expected return level from only a few elements, namely a risk free asset and one 

or few market portfolios or mutual funds. This radically simplified investment decision 

making. The important outcomes of this strand are the Capital Asset Pricing Model 

(CAPM) (in the seminal papers, Sharp 1964, Lintner 1965, and Mossin 1966 as cited 

in Elton 1997) and the Arbitrage Pricing Theory (APT) (in the seminal papers, Ross 

1967 and Roll 1980 as cited in Elton 1997). However, empirical researches are still 

inconclusive whether the models actually work in reality.  Above all, due to practical 

and cost matters, portfolio managers sometime have still to construct market 

portfolios or mutual funds from a subset of all available assets. Another strand has 

been to extend the Markowitz model into multi-period and dynamic models. A 

comprehensive treatment of this strand of development can be found in (Merton 

1992). More recently, many researchers have extended the model into stochastic 

forms (e.g. Gulpinar 2003 and Fernholz 1982, 2002, 2003).  However, besides 

Markowitz mean-variance model, CAPM and APT, other models still have lesser 

practical applications in the investment management industry (Anenc 2003).     
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2.1.5. Problems and Limitations of the Classical Models 
 

 Primarily, there are three problematic aspects of the classical portfolio 

optimisation models, namely, the problems of the model‟s objectives, the problems 

of the model‟s constraints, and the problem about estimation errors of the inputs of 

the models. The first aspect is somewhat theoretical, like those of Economic theories 

in which we observe whether an economic agent has rational behaviors by always 

maximising profits and utilities in certain ways. In portfolio optimisation models, this 

aspect concerning what should be representations of risk and what an investor tries 

to maximise and to minimise in the context of the models. There are a lot of 

criticisms concerning using mean-variance as the objectives of portfolio optimisation 

models recently (Gilli 2001). The second aspect has been addressed by a large 

number of researches. In order to solve for solutions of the models with 

mathematical or numerical ease, Markowitz (1952) and later Black (1972) simplify 

the reality of the market practices by excluding a number of realistic constraints 

which would have made the optimisation problem become discrete so that the 

optimisation problems are based on differentiable functions and constraints. By 

introducing realistic discrete constraints into portfolio optimisation, the problems 

become combinatory and NP complete (Jobst 2001). The third aspect is the most 

serious problem: Jorion (1992) claims that the estimation errors of the expected 

returns and the expected volatilities as “inputs” of the portfolio optimisation models 

make them to be under-utilised by most investment practitioners. The estimation 

errors of the input may result from inaccurate expert judgments, in case of prediction 

by experts, or model risk, in case of prediction by forecasting models.   The classical 

portfolio optimisaton models take the accuracies of asset returns and volatilities 

(historical means as expected return and historical variances as expected volatilities 
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in the Markowitz model) for granted. Optimal portfolios as outcomes are sensitive to 

the inputs. Wrongly estimating expected asset returns and volatilities will cause the 

outcomes to be suboptimal. The optimal portfolios, which use expected returns and 

volatilities forecasted by models based on historical samples, usually perform poorly 

out of sample (DeMiguel 2009).                   

  

2.2 Post-Classical Portfolio Optimisation Models with 

Realistic Constraints 
 

Recent developments of portfolio optimisation modeling have primarily tackled 

the problems and limitations of the classical models described in the previous 

sections. Introducing realistic constraints within the Markowitz model, which includes 

only the non-negativity constraint, makes portfolio optimisation models become 

discrete choice and NP complete problems. 

The Markowitz model is a simplified model to focus only on a theoretical point 

of view. In the practicality of investment management, portfolio managers face a 

number of realistic constraints arising from normal business practices, practical 

matters and industry regulations.  The realistic constraints that are of practical 

importance include (not exhaustively) integer constraints, cardinality constraints, 

floor and ceiling constraints, turnover constraints, trading constraints, buy-in 

threshold, and transaction cost inclusions.   

Integer constraints require that the number of any asset included in the 

portfolio must be an integer or indivisible (i.e. cannot be in any fraction of normal 

trading lot). The integer constraints can be expressed as 
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∑   
 
   

                                                                (2.22) 

And 

                                                                                    (2.23) 

 

Where ni is number of unit of asset (share), 

   li  is trading lot of the asset i,   

   N is the total number of assets and  

   mod is the modulo operator.    

Cardinality constraints are the maximum number and minimum number of 

assets that a portfolio manager wishes to include in the portfolio due to monitoring 

reasons or diversification reasons or transaction cost control reasons (Stein 2005).  

The constraints can be expressed as follow 

                                                  ∑   
 
                                                      (2.24) 

Where bi = 1 if wi> 0, otherwise bi = 0 and 

 Cl and Cu are the lowest and the highest number of assets to include in a 

portfolio respectively. 

Floor and ceiling constraints define lower and upper limits on the proportion of 

each asset, which can be held in a portfolio. These constraints may result from 

institutional policy in order to diversify portfolio and to rule out negligible holding of 

assets for ease of control (Crama 2003). They can be expressed mathematically as 

follow 
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                                                                                                                          (2.25) 

Where f iand ci are the lowest and the highest proportion that asset i can be held in 

the portfolio respectively.   

Turnover constraints impose upper bound for variations of the asset holding 

from one period to the next. The constraints are a mean to curb the transaction costs 

therefore they can be modeled indirectly by incorporating transaction costs and read 

as follows (Maringer 2005) 

                                                
                                                     (2.26) 

                                                
                     .                                        (2.27) 

 

Where w0
i is the holding proportion of asset i in the initial portfolio, 

Biu is the maximum purchase of asset i during the current holding period, and 

Siu is the maxiimum sales of asset i during the current holding period. 

On the other hand, trading constraints impose limits on buying and selling tiny 

quantities of assets due to practical reasons and can be stated as follows (Maringer 

2005) 

                           
    ⋁          

           ⋁          
                         (2.28) 

 

Where Bil denotes the minimum purchase of asset i during the current holding period 

and Sil denotes the minimum sale of asset i during the current holding period. 
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 The business of asset trading, stock brokers, bond dealers, etc. is related to 

buying and selling with money. Therefore, transaction costs associated with 

purchases and sales of assets are inevitable and should be incorporated in the 

realistic models (Maringer 2005).  Transaction costs have many forms as follows: 

Fixed fee per transaction:  

                                                                 (2.29) 

Variable fee per (dollar) amount: 

           
                                                        (2.30) 

Variable fee per (dollar) amount with minimum charge: 

                 
                                         (2.31) 

Variable fee per (dollar) amount plus fixed charge:    

                
                                           (2.32) 

Where Ti is the transaction cost of inclusion of asset i into the portfolio, 

Tf is the fixed fee per transaction of purchase or sale asset i, 

tf is the minimum (floor) fee per-transaction, 

tp is variable fee per amount (dollars) of purchase or sale of asset i, 

ni is the number of purchased or sold share of asset i, and 

Si
0 is current trading or market price of asset i (at the time of purchase or 

sale).  
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The transaction costs affect the fund that can be invested in all assets. Let V0 

be the initial endowment the portfolio manager is entrusted to construct a portfolio.  

And ni is the amount of asset i (assuming the integer constraints hold) then the 

amount of fund that can be invested in the portfolio will not equal V0 but will equal 

(assuming the fund is invested completely on assets). 

 

   ∑   
  

     ∑     
  

           (2.33) 

 

Where N is the number of asset held in the portfolio. 

And if there is no trading during the holding period then the expected portfolio return 

(rp) on the initial endowment for the holding period will be (Maringer 2005). 

 

                                         
∑      

         ∑    
     

   
   

 
   

  
                                    (2.34) 

 

Where Ti
0 is the transaction (purchase) cost of asset i at the beginning of the holding 

period and 

Ti
1 are transaction (sale) cost at the end of the holding period (to convert all 

assets to cash). 

2.3. Models with Alternative Objectives 
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From the invention of simple single period of Markowitz‟s portfolio 

optimisation, there have been many strands of developments.  Earlier, investor‟s 

utility functions had been taken into consideration as well as additional moments 

rather than variance such as skewness (Tobin 1958, Lee 1977, Kraus 1976, Fama 

1965, and Elton 1974 cited in Elton 1997).  The original mean-variance model is 

based on the assumptions that investors are risk averse and their utility is a 

quadratic function of the rate of return. Moreover, the distribution of the rate of return 

must be multivariate normal. But these assumptions do not believe that they hold in 

realistic setting, especially since many researches indicated that the distribution does 

not follow a multivariate normal distribution (Yilmas 2010). Since the distribution is 

not normal, it exhibits non-zero third and fourth (possibly beyond fourth) moments 

which are skewness and kurtosis respectively.      

Jurczenko et al (Jurczenko 2006) constructs a portfolio optimisation model 

with the first four moments, namely mean, variance, skewness and kurtosis. The 

model is imposed a no short-sale constraint (non-negativity constraint). The set of 

feasible portfolio represented by the fraction of proportion vector wp must conform to 

the following restrictions 

 

                      (2.35) 

 

      
                (2.36) 

 

                     (2.37) 

Where, wp is the (1xN) vector of the investor‟s holding of assets;  

      wp
’ is the transpose of wp; 
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      1 is the (Nx1) unitary vector.  

The mean (E (Rp)), variance (Ϭ2(Rp)), skewness (s3(Rp)) and kurtosis (k4(Rp)) 

of portfolio return of a feasible portfolio p are given respectively by: 
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Where, wpi, wpj, wpk and wpl are weights of assets ith, jth, kth and lth   respectively; 

      Ω is the non-singular (N x N) variance-covariance matrix of the assets; 

      𝚺 is the (N x N2) skewness-coskewness matrix; 

      Γ is the (N x N3) kurtosis-cokurtosis matrix and  

     The sign    stands for the Kronecker product. 

The portfolio optimisation in this case can use the shortage function to find the 

efficient frontier (Briec 2007). However, the finding of such efficient frontier by this 

method can only guarantee weak efficiency for the mean-variance-skewness-

kurtosis space (Jurczenko 2006). The shortage function for the true unknown four 

moments (i.e. mean, variance, skewness and kurtosis) can be computed by solving 

the following quadratic optimisation programming (ibid).  
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                  (2.42) 

               Subject to  

                (  ) 

                  (  ) 

                  (  )  
             (  ) 

  
           

                  

Where wp
* is the(N x 1) efficient portfolio weight vector that maximises the return‟s 

mean, variance, skewness and kurtosis relative improvement over the evaluated 

portfolio in the direction of the vector g; 

    {gE, gϬ, gs, gk} are the elements of (1x4) direction vector covering the four-

dimensional space of  (the return‟s) mean, variance, skewness and kurtosis that 

point to instantaneous optimal direction of any optimizing portfolio k (used in 

quadratic optimisation programming). 

 However, the shortage function is still needed to include vector projections on 

the vertical and horizontal part of the non-convex portfolio. Also, more research is 

still needed in a more robust non-parametric multi-moment efficient portfolio frontier. 

There are also not many empirical researches concerning validity of this model.  

 Davies et al (Davies 2009) used the four moment model to study hedge fund 

allocation problem. In this study, they were to select a number of hedge funds into a 

portfolio (i.e. the portfolio is a fund of funds). Hedge funds were classified into groups 

of strategies namely, Long/Short Equity, Equity Market Neutral, Convertible 

Arbitrage, Distressed Securities, Merger Arbitrage, Global Macro and Emerging 

Markets. The data used in their study was obtained from Tremont TASS which is one 

of the largest hedge fund databases. They applied an algorithm called Polynomial 



36 
 

Goal Programming (PGP) to solve the multi-objective optimisation problem. They 

found that, firstly, hedge fund return statistics (1st moment) tended to trade off 

against each other funds. Secondly, inclusion skewness and kurtosis in portfolio 

optimisation problem resulted in huge different from the only mean and variance 

portfolio seemingly from various trading-off effects. Thirdly, there were two groups of 

hedge funds, namely equity market neutral funds and global macro funds that had 

crucial roles in optimal hedge fund portfolios. Due to their attractive co-variance, co-

skewness and co-kurtosis properties, equity market neutral funds played roles of 

volatility and kurtosis reducers, while global macro fund played a role of skewness 

enhancers. Lastly, hedge funds and stocks should not be mixed together in the same 

portfolio but each of them should be combined with bonds to yield a more four-

moment efficient portfolio, especially for skewness.                

Hochreiter (2007) proposed an evolutionary computation approach for 

portfolio optimisation with general risk measures. He used a standard single 

objective GA to solve portfolio optimisation with expected return instead of mean and 

three risk measures (Standard Deviation, Value at Risk (VaR) and Conditional Value 

at Risk (CVaR) ). The author reformulated the two objectives into single criteria for 

the GA as follow 

                                         (2.43) 

  Where, lw is the distribution of discrete profit and loss of portfolio w,  

     E(lw) is expected return/profit of portfolio w,  

     (lw) is the risk dimension of portfolio w, 

       is an additional risk aversion parameter. 

Portfolio‟s Standard Deviation is defined in the context of (2.79) as follow 

      √∑                            (2.44) 
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Where, li is portfolio return that would occur in the scenario i.  

            S is the scenario set, 

     pi is the probability in which scenario i would occur. 

 

Portfolio‟s Value at Risk is defined as follow 

                                     (2.45) 

Where, l is the portfolios return,  

            1- is a predefined level of VaR, 

     P is the cumulative probability. 

Portfolio‟s Conditional Value at Risk is defined as follows 

              |                   (2.46) 

 

The author experimented portfolio optimisation problems with the three risk 

measures in (2.80), (2.81) and (2.82) by the standard GA with population size of 500. 

The parameter  was set at 0.9. The result showed that portfolio combinations were 

quite different from each other regarding the risk measure used. However, no ex-

post comparison had been made.    

Gaivoronski and Pflug (Gaivoronski 2004) proposed a method of calculating 

mean-VaR portfolio optimal frontier. They formulated mean-VaR portfolio 

optimisation problem based on sampling data (historical or simulated) as follows 

 

                                                                                                                              (2.47)

   

                

           ⌊  ⌋                                            (2.48) 

                                                                 (2.49) 
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∑    

                                                                                     (2.50) 

 

Where, ⌊  ⌋ is the largest integer not exceeding N, 

   N is the number of (time series) observation, 

    is the significant level of VaR, 

   i is the portfolio return of period i, 

   e is the average return vector. 

 

The authors solved the problem by using a numerical method. First, they 

smoothed out the local noisy and extract good global component of VaR function. 

Then, the problem in (2.47) – (2.50) was solved by standard off-the-shelf software for 

solution of non-linear programming problems. They found that the mean - VaR 

feasible set and its efficient portfolio frontier are not convex but the distance from the 

convex frontier is quite small which could be considered approximated convex. 

Mean-VaR efficient portfolio is substantially different from those of mean-CVaR and 

mean-variance. Therefore, mean-CVaR and mean-variance frontier give only a poor 

approximate of mean-VaR frontier.  However, mean-CVaR and mean-variance could 

be an approximation of each other better than those of mean-VaR. Finally, all 

frontiers approximate each other better for high risk portfolios than those of medium 

and low risk because portfolios with high return are likely to consist of only one asset 

with high return.  

Another approach for alternative optimising objectives is an MCDM approach 

to portfolio optimisation proposed by Ehrgott et al (Ehrgott 2004). The authors 

explained the motivations behind the development of this model were to address the 

criticism of the Markowitz model such that disregarded individual investors‟ 



39 
 

preferences and the observation that most investors did not actually hold the efficient 

portfolio but an inferior portfolio. Therefore, based on several discussions with 

investors and investment analysts from Standard & Poor‟s Funds Services GmbH, 

Germany, they came up with their proposed model. The model was composed of five 

objectives covering the proxies of portfolio‟s expected return and of risk. The 

proposed objectives were 12-month performance (relative change of portfolio‟s value 

over 12 month), 3-year performance (relative change of the portfolio‟s values over 36 

month), annual dividend (sum for all i of proportion of dividend of asset i paid by the 

highest price of the asset i in the last year), the Standard & poor‟s star ranking 

(German S&P fund performance raking) and volatility (portfolio variance). The five 

objectives were then combined into a single criteria optimisation problem as follows 

 

         
∑            

                                             (2.51) 

                                    

    ∑      
              (2.52) 

                             (2.53) 

                                    (2.54) 

                                    (2.55) 

  ∑      
                         (2.56) 

                                                                              (2.57) 

 

Where, wq is a positive weight for five decision maker specific utility, 

      Uq(fq(w)) is the q specific utility function of the decision maker (investor), 

      li is the minimum proportion of asset i in the portfolio, 

      ri is the maximum proportion of asset i in the portfolio, 
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      yi = 1 if asset i include in the portfolio and =0 otherwise. 

Note that relations in (2.54) and (2.55) are floor (minimum) and ceiling (maximum) 

constraints respectively. The authors proposed a novel local search algorithm called 

Two Phase Local Search and three meta-heuristics, namely, Simulated Annealing 

(SA), Tabu Search (TS) and Genetic Algorithm (GA) to solve the problem. In the 

proposed local search, they used two neighbourhood structures instead of one. The 

neighbourhood structures consisted of the member neighbourhood which were 

portfolios of the same percentage distribution of assets differing in at most one asset 

(this is a neighbourhood based on the 0-1 variable yi) and the percentage 

neighbourhood structure which were portfolios of the same assets differing in at most 

two percent percentage values of assets (this is a neighbourhood based on changing 

the variable wi). However, in their paper, the authors aimed to test performances and 

complexities of their proposed algorithms with the other algorithms, no out of sample 

or ex-post tests were made.  

The authors found and reported that for the partially approximated large real 

case in which consisted of 190 funds and used approximate covariance values, the 

Two Phase Local Search had a good and stable performance (which are maximising 

utility value and minimising standard deviation) but slightly inferior to that of SA while 

the SA was inferior to that of GA. However, the Two Phase Local Search used a 

shortest CPU time. On the other hand, for the small real case  which consisted of 40 

funds with actual past covariance values, the two phase local search was the best 

both in the terms of performance and CPU time. For the randomly generated 

instances (simulations), the Two Phase Local Search had the best in both the terms 

of performance and CPU time.  
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2.4. Estimation Errors and Model Risk  
 

A crucial part of the problem of the Markowitz model of portfolio optimisation 

lies on the estimation error of the necessary inputs. Typically, we assume that 

expected returns, risks, and correlations of assets to be included in a portfolio are 

known exactly and mostly are measured from historical data. The inputs are usually 

fed into the optimisation algorithm without recognising the uncertainty of their 

estimations. The estimations are made by various techniques. The simplest one is 

just plain historical averages (means) for the expected returns, historical variances 

for the risks, and historical covariance for the covariance matrices. More 

sophisticated estimations may be made by using some non-linear models. This likely 

invites model risks. Due to this estimation risk, portfolio optimisation in whatever 

choice of objective functions and optimising algorithms can only make a crude 

approximation of a true optimal portfolio. This makes portfolio optimisation models 

perform badly, especially for ex-post or out-of-sample results.  Without the 

information about the estimation risk and how to manage it effectively, it is likely that 

professional investment managers often disregard to base their investment decision 

on the portfolio optimisation models we have discussed so far (Jorion 1992).  

Jorion (1992) proposed a simulation approach in order to have information 

about the effects of estimation errors to ex-post performance of the Markowitz 

portfolio optimisation and to answer the question whether an optimal portfolio 

allowed holding of global assets statistically significantly improved performance over 

the prohibited one. The proposed simulation procedure was as follows: 

Step 1: Compute the means and covariance matrix from the historical returns. 

Let T be the sample size and N be the number of assets. Perform portfolio 

optimisation. 
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Step 2: Assuming that the results from Step 1 have multivariate standard 

normal distribution, draw one random sample of N joint returns T times. These are T 

periods simulated returns. 

Step 3: Estimate from the results in Step 3 a new set of means and a new set 

of variance-covariance matrix. Run an optimisation from the new inputs. The 

simulated optimal portfolio gives one observation in the distribution of the original 

portfolio.      

Step 4: Repeat Step 2 and Step 3 until the approximation of optimal portfolio‟s 

distribution is at the predefined precision.   

  Lastly, by choosing a cut-off probability (e.g. 1%, 5% or10%) and removing 

the lowest return-to-risk ratios by the chosen cut-off percentage, we then have got a 

statistically equivalent portfolio.  

 The author used the simulation method to select a global bond portfolio. He 

chose portfolio based only estimated variances and co-variances but not estimated 

return. He asserted that doing so because variances and co-variances can be 

estimated with much more precision than expected returns. The selected optimal 

portfolio‟s ex-post Sharp Ratio (mean/standard deviation) was compared to those of 

US bond index and World bond index over the period of 1978-1988. F-test statistics 

were performed accordingly. He concluded that there was no evidence that the 

chosen portfolio outperformed the world index. On the other hand, the chosen 

portfolio performed significantly better than the US index.  

 Ong et al (Ong 2005) also recognised that the performance of mean-variance 

portfolio optimisation depended on the accuracies of forecasts of the return rate and 

the variance-covariance matrix. Their approach was to make better forecasts of 

those values. Instead of using just historical means and variance-covariance or 
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regression techniques, they used the grey prediction model which incorporated the 

sequence curve under the small sample (Wang 2002) to predict the future return rate 

while used the probabilistic regression (Tanaka 2001) to predict the uncertainty risk. 

The proposed model was modified to have three objectives, namely to maximise 

Expected Return (predicting by the grey regression, to minimise Uncertainty Risk 

(predicting by the probabilistic regression) and Relation Risk (the sum of covariance 

matrix elements). The authors believed that the uses of the grey and probabilistic 

regressions were more appropriate to a small sample situation than those of ordinary 

regression. Since there were to optimise three objective simultaneously, they used a 

simple Pareto based MOEA to solve the problem. The approach was employed to 

select a portfolio which was composed of at most 6 stocks. There was only 6 period 

data to forecast the inputs from. They concluded that the proposed method provided 

more accurate and flexible results. An investor could select his alternative optimal 

portfolio based on the results of Pareto set.        

 An approach based on imposing some adding constraints to the selection 

process. DeMiguel et al (DeMiguel 2009) also well recognised it was much more 

difficult to accurately estimate means than that of covariance of asset returns, and 

the estimation errors of asset means (which represented asset expected returns) 

had more impact on portfolio weights and, therefore, aimed to minimise variance 

portfolio which relied on estimation of variances and co-variances. They proposed a 

general framework to find portfolio that perform well out-of-sample (ex-post) in the 

presence of estimation errors. The general framework relied on solving the traditional 

portfolio optimisation problem by minimising portfolio variance based on the sample 

variance-covariance matrix. The authors developed a new approach for determining 

portfolio weights in the presence of estimation errors by imposing constraints on the 
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weights (shrinking portfolio weight vector). The constraints were imposed such that 

the norm of the portfolio weight vector was less than a given value (called a 

threshold). They used two kinds of portfolio weight vector, which are the 1-norm 

denoted by ||w||1and the A-norm denoted by ||w||A, given respectively 

 

‖ ‖   ∑ |  |
 
             (2.58) 

‖ ‖                     (2.59) 

Where, w is portfolio weight vector, 

  wTis the transposeof w, 

  wi is the ith element of w as weight of asset i in the portfolio and 

  A is an n by n positive-definite matrix.  

 The authors formulated the proposed norm constrained minimum-variance 

portfolio as  

 

 

 

      �̂�   (2.60)

            

‖ ‖     
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Where, ||w||x is any norm (x-norm which x can be 1 or A or any subscription, 

    is a (constrained) threshold, 

    wi is the ith element of w or the weight of asset i in the portfolio and 

    A is an n by n positive-definite matrix.  

They developed 8 portfolio strategies as follows: 

1. 1-norm-constrained minimum-variance portfolio with  calibrated using cross-

validation over portfolio variances, denoted by NC1V. 

2. 1-norm-constrained minimum-variance portfolio with  calibrated by 

maximising portfolio return in previous period, NC1R. 

3. 2-norm-constrained minimum-variance portfolio with  calibrated using cross-

validation over portfolio variances, denoted by NC2V. 

4. 2-norm-constrained minimum-variance portfolio with  calibrated by 

maximising portfolio return in previous period, NC2R. 

5. 𝚺F-norm-constrained minimum-variance portfolio with  calibrated using cross-

validation over portfolio variances, denoted by NCFV. 

6. 𝚺F-norm-constrained minimum-variance portfolio with  calibrated by 

maximising portfolio return in previous period, NCFR. 

7. Partial minimum-variance portfolio with k calibrated using cross-validation 

over portfolio variances, denoted by PARV. 

8. Partial minimum-variance portfolio with k calibrated by maximising portfolio 

return in previous period, PARR. 

Note that 2-norm and 𝚺F-norm are given respectively as follows  
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‖ ‖   ∑   
  

             (2.61) 

‖ ‖  
    𝚺               (2.62) 

Where, 𝚺F is the covariance estimator obtained from a 1-factor model.  

The partial minimum variance portfolio is an optimal portfolio obtained by applying 

the classical conjugate-gradient method. The author can prove that the 2-norm of the 

kth partial minimum-variance portfolio is smaller than or equal to 2 norm of the short-

sale-unconstrained minimum-variance portfolio for k ≤ N-1 where N is the number of 

selectable assets.  

The authors used 5 sets of data from 07/1963-04/2005 to test their proposed 

models against other 10 minimum-variance portfolio models from various 

researchers as follows 

1. Equally-weighted (1/N) portfolio 

2. Value-weighted (market) portfolio 

3.  Short-sales unconstrained mean-variance portfolio with risk aversion 

parameter  = 5 

4. Short-sales unconstrained Bayesian mean-variance portfolio with risk 

aversion parameter  = 5 

5. Minimum-variance portfolio with short-sales unconstrained 

6. Minimum-variance portfolio with short-sales unconstrained from (Jagannathan 

2003) 

7. Minimum-variance portfolio with market as the single factor 

8. Weighted average of sample covariance and identity matrix  

9. Weighted average of sample covariance and 1-factor matrix 
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10. Parametric portfolio with a risk-aversion parameter of  = 5 using the factors 

size, book-to-market and momentum.  

 

They performed monthly out-of-sample tests for portfolio variances and 

portfolio Sharpe ratios by comparing all of the proposed models and the 10 models 

above. They found that the norm-constrained portfolio calibrated using cross 

validation over the return variances (NC1V, Nc2V, NCFV and PARV) was similar 

across 5 data sets and lower for those calibrated using criterion of maximum return 

of the portfolio in the past period (NC1R, NC2R, NCFR and PARR). They concluded 

that the variances of the norm constrained portfolio often had lower variances than 

those augmented models.  And also the proposed 8 portfolio strategies mostly had 

higher Sharp ratios and lower portfolio variances than those of 10 comparing 

portfolio strategies.    

Lutgens and Schotman (Lutgens 2010) dealt directly with estimation errors. 

They considered portfolio choice that was robust to the advice of multiple experts 

who employed different return models and proposed that a robust optimal portfolio 

should have maximised the performance over the least favourable return model. 

Their “robust‟ approach assumed no preference or weights on the alternative asset 

return model but treated each of the model as equally plausible and fully taken into 

account each one for decision making. They considered two types of optimisation 

models namely, the optimisation model with point estimates of asset returns and the 

optimisation model with estimation uncertainty (range estimates). Mathematically 

speaking, for the point estimate optimisation, a robust investor will consider the worst 

case and maximise it as  
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         (  
   

 

 
   𝚺  )         (2.63) 

Where, j is the vector of estimated return of N assets (to be selected) by expert j, 

and  j = 0 to J, 

 w is the vector of asset weights in the portfolio, j is the variance-covariance 

matrix of assets as estimated by expert j, 

 ϫ is the risk aversion parameter. 

For the range estimate optimisation, a robust investor will consider the worst case 

and maximise it as  

                
(  

   
 

 
   𝚺  ).                     (2.64) 

Where, Uj is the uncertainty set of a particular expert j which contains range or 

parameter of the plausible values of j. 

The authors performed empirical tests by assuming that there were 5 experts 

(J = 4): Expert u forecasted based on past sample means; Expert c forecasted based 

on CAPM; Expert d forecasted based on CAPM with book value to market value; 

Expert e forecasted based on IAPM which was an international CAPM; And Expert f 

forecasted based on all factors from all of the aforementioned models. They ran 

optimisations by a bootstrap experiment. The results showed that for the point 

estimation case, the robust investor had a probability that his ex-post portfolio Sharp-

ratio was more than or equal to the ex-ante by 56.6% and that his ex-post utility was 

more than or equal to the ex-ante utility by 55.7%. And for the range estimation case, 

the robust investor had a probability that his ex-post portfolio Sharp-ratio his ex-post 

utility were more than or equal to those of ex-ante by 98.5% and 99.0% respectively. 
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DeMiguel et al (2012) used information implied in prices of stock options to 

improve estimates of stock-return volatilities and correlations in order to improve the 

out-of-sample performance of portfolios which were measured in terms of portfolio 

volatility, Sharpe ratio, certainty-equivalent return and turnover, with the benchmarks 

being the 1/N portfolio (DeMiguel 2009) and four types of minimum-variance 

portfolios based on historical data. They found that using option-implied correlations 

and option-implied volatilities did not significantly improve portfolio performance due 

to high variability and instability of the estimates of implied volatilities and implied 

correlations. They also investigated the effects of adjusting the estimates of historical 

volatilities of stock returns using two sources of option-implied information. The first 

source uses the volatility risk premium of each stock. The empirical evidence 

showed that the portfolios with scaled volatilities using the volatility risk premium 

outperform the traditional portfolios in terms of Sharpe ratio and certainty-equivalent 

return, but with an increase in turnover. The second source uses the model-free 

option-implied skewness to scale volatilities in the same manner as for the volatility 

risk premium. The empirical evidence showed that portfolios based on implied 

skewness outperform the traditional portfolios in terms of Sharpe ratio and certainty-

equivalent return more strongly, but this increase is also accompanied by an 

increase in turnover and portfolio volatility. Based on the empirical analysis, they 

concluded that prices of stock options had information that could be used to improve 

the out-of-sample performance of portfolios.  

2.5 Chapter Summary 
 

This chapter reviews literature related portfolio optimisation under realistic 

situations as development from the classical models proposed by Markowitz and 



50 
 

Black (collectively called the classical models) in the mid of 20th century.  There are 

three main problems recognised by academic and financial communities. Firstly, the 

classical models‟ solution methods do not well handle some realistic constraints 

caused by the prevailing market customs and investment management practices. 

These constraints usually make the portfolio optimisation problems become NP-hard 

problems and can only be solved by approximate search algorithms. 

Secondly, variances of returns may not be the best representation of risk 

especially for individual investors‟ utility functions. There have been other proposed 

candidates, e.g. expected- shortfall, Value at Risk, kurtosis, etc. However, this is only 

a matter theoretical perspective. And any of these functions can be handled 

effectively by meta-heuristics. Lastly, the inputs of the classical models have been 

historical means and variances, presuming that assets‟ returns are normally 

distributed with a constant means. Therefore, their expected returns and expected 

variances are the same as their historical means and variances. However, this 

assumption is not true especially in the short-run and causes “estimation errors”. The 

estimation errors eventually make the ex-post outcomes of portfolio optimisation 

become suboptimal. There are recently a number of researches that have attempted 

to address these problems as we have discussed and that have resulted in better ex-

post performances.      
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Chapter 3  

Review of Solution Methods 
 

 

3.1. Chapter overview 
 

Most realistic portfolio optimisation models have no closed form solution. 

Inclusion of typically realistic constraints, such as cardinality constraints, round-lot 

constraints, etc., makes portfolio optimisation become a combinatory problem. 

Although they can be solved by exact solution methods, they need exhaustive 

searches and become NP-hard problems. If the complexity or the number of feasible 

choices is so great, the problems will not be able to be solved in a reasonable time. 

In such circumstance, we prefer approximate solutions to exact solutions.  

This chapter reviews relevant Artificial Intelligent techniques and their 

application to solution methodologies of portfolio optimisation reported in the 

literature. The structure of this chapter is as follows: Section 3.2 is for the algorithms 

for exact solutions; Section 3.3 discusses on some heuristic methods; Section 3.4, 

Metaheuristic methods are reviewed; Local Search metaheuristics are briefly 

covered in Section 3.5; We then go on to cover Genetic Algorithms for portfolio 

optimisation in Section 3.6. In section 3.7; we discuss Multi-Objective Genetic 

Algorithm methodologies which are used extensively in this thesis; Lastly, in section 

3.8, summary and research gaps are presented.  
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3.2 Algorithms for Exact Solutions 

 
The standard Markowitz models with non-negativity constraints are NP-hard, 

only with small problem size, i.e. the small number of assets (N), can be solved 

within reasonable time for an exact solution using standard optimisation software 

(quadratic optimisation tools) (Maringer 2005, Wolfe 1959 cited in Crama 2003). In 

Jagannathan 2003 (cited in Maringer 2005), the non-negativity constraints are 

incorporated by modifying the covariance matrix without reducing complexity.  Some 

ad hoc methods take advantage of the special structure of the covariance matrix 

(see Perold 1984 and Bienstock 1996 both cited in Crama 2001). Other researchers 

investigated some techniques that can be solved only by models with only a subset 

of constraints, e.g. Dembo 1989 using network flow models, Konno 1991 using linear 

programming models with embedded absolute deviation approach to measure risk, 

Takehara 1993 (cited in Crama 2003) using an interior point algorithm, Bienstock 

1996 (ibid.), and Horniman 2001 (cited in Stein 2005) using branch and cut 

approaches (as a subset of Mixed Integer Quadratic Programming – MIQP).    

 Quadratic Programming (QP) problems consist of an objective function that 

allows for an additional quadratic form of the decision variable, and a number of 

constraints which are expressed in linear equality or inequality with respect to the 

decision variables. A general problem form can be stated as 

                                                         
     

 
                                               (3.1) 
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Where f is a 1 by N vector, 

 H is an N by N matrix, 

           x is an N by 1 vector of decision variables, 

 A is an M (any number) by N matrix, 

 B is an M by N matrix, 

 a is a vector and  

 b is a vector.  

 

This can be applied to the Markowitz model (only non-negativity constraint 

imposed) as follows 

           
     

 
                                                        (3.2)  

           

      

     . 

Where   is the parameter which measures trade-off between return and risk, 

 I is an N by N identity matrix and 

 1 is a 1 by N unity vector.   

 

If we set   = 0 then the result will be the minimum variance portfolio. On the 

other hand, if we set   = 1 thus put all weight to maximization of expected return, the 

result will be the portfolio with the highest possible yield. In this case, the Markowitz 

model disallows negative weights without upper limit of the asset weights. This will 

result in a portfolio with single asset which has the highest expected return. To 
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construct the entire efficient portfolio, we would increase   in sufficiently small steps 

from zero to one and solve the quadratic optimisation for these values (Maringer 

2005).            

Although the model with non-negativity constraint cannot have a closed form 

solution, it can be solved efficiently by specialised algorithms and other ad hoc 

methods. A popular method for Portfolio Optimisation with non-negativity constraint 

is Quadratic Programming (QP) which is an iterative numerical method (Scherer 

2005). However, imposing other constraints (e.g. the integer constraint or maximum 

number of asset constraint) will increase the problem complexity and size making 

them difficult to solve by Quadratic Programming, mixed integer non-linear 

programming or other exact solution algorithms, within a reasonable time (Busetti 

2000). The portfolio optimisation problems with realistic constraints are NP hard 

problems, especially for those of exact solutions. The methods for exact solutions 

require complete enumerations where all possible and valid values for the decision 

variables are tested. The problem will be to select k out of N assets and optimize 

their portfolio weights.  Only the complexity of selection of asset alone is O (C (N, k)) 

e.g. selecting 10 out of 100 assets come with C (100, 10) or 1.73 x 1013 alternatives.  

Moreover, for each of the alternatives, the optimal weights must be determined. If we 

assume that the weight must be zero or multiples of 0.1, we will have 1010 possible 

weight structures for each alternative. Obviously, the problem size can quickly get 

out of our present computational power. There are two ways to cope with the NP 

hard problems.  First, realistic models of portfolio optimisation are solved by 

approximate algorithms, which do not guarantee finding the optimal solution, but 

search for good enough solutions in a significantly reduced computational time (Blum 
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2003).  Second, approximately simplified unrealistic portfolio optimisation models are 

constructed instead so that they can be solved by standard methods or algorithms.     

3.3. Heuristic Methods 
 

In the process of investment decision, portfolio managers usually face an 

abundance of choices of investment assets.  Also, they may need to make timely 

decisions in a rapidly changing financial market. This represents a tough optimisation 

problem, which continues to present a challenge for efficient optimisation solution 

techniques (Maringer 2005). A variety of different techniques have been employed to 

solve the portfolio optimisation problem. The main drawback of techniques for exact 

solution is that the number of combinations of states that must be searched 

increases exponentially with the size of problem and becomes computationally 

prohibitive (Crama 2003). Furthermore, these techniques are poor in handling the 

nonlinear objective and constraint functions, and several assumptions are generally 

required to make the problem solvable using reasonable computational resources 

(Maringer 2005). Alternatively, some heuristic-based techniques use algorithms to 

find approximate solutions for problem instances of NP-hard problems in a 

reasonable time (Blum 2001). By using heuristics, the optimisation problems can be 

tackled in polynomial time with a trade-off for their optimality. In some circumstances 

of the practicality, the speed to reach the acceptable approximate solutions is very 

critical. Feasible near-optimum solutions are acceptable but untimely ones are not. 

The simple heuristic solution approaches are based on specialised techniques that 

work particularly well for a given problem but are only of limited applicability to other 

problems (Blum 2003). Furthermore simple heuristics, based on greedy search 

algorithms, tend to stop in inferior local optima. 
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 Heuristics are approximate algorithms.  Basic or classical heuristics are 

greedy algorithms.  In combinatorial optimisations, the basic heuristics include local 

search algorithms and constructive algorithms.  Local search algorithms start from 

initial solutions and repeatedly try to substitute the current solution with a better one 

in an appropriate vicinity or neighbourhood of the current solutions. Constructive 

algorithms generate a solution from an initially empty solution by adding components 

until a solution is completed.   

 An example of a heuristic approach is proposed by Elton and Gruber (Elton 

1997) for determining optimal portfolio which in fact approximates the solution of the 

Markowitz model by using CAPM as a tool of selecting assets.  The algorithm can be 

described as follow: 

Step1: For all asset I, calculating a ratio based on CAPM, which is later also known 

as “Treynor Ratio” and given by 

 

                                                      
         

  
                                                (3.3)             

 

Where, E (ri) denotes the expected return of asset 

In order to select any asset to be included in the optimal portfolio, we need to 

calculate for all potential assets.  

Step 2: The results are ordered from the highest value to the lowest in which is 

preferred more to less.  
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Step 3: Estimating a regression from a time series data of the empirical market 

model given as follows 

                                                          (3.4) 

Whereit is the specific return on asset i which is the residual of the regression. 

Now, we have and keep the value of I to be used in Step 5. 

Step 4: Add the highest ranking asset into the portfolio. 

Step 5: Try to add another asset which has the highest value of Treynor Ratio    

and has not yet included into the portfolio.  Then, calculate the threshold denoted 

by Ci which is expressed as follows 
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Step 6: Compare Ci with TRi, if Ci<= TRi , including the asset i into the portfolio. 

Let C* = Ci, and then, go to Step 5. Else exclude the asset i, end the selection and 

then proceed to the next step (Step 7). 

Step 7: With the list of included assets (let‟s assume that we have p assets), we 

calculate the proportion (weight) of asset i to be held in the portfolio by  
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 In most combinatorial optimisations, heuristic methods can reduce the 

computation complexity to at most polynomial time (but yield solutions that are not 

sure to be global optima). A drawback of the basic heuristics is that they tend to be 

trapped with local optima far inferior to the true or global optima and, for most of 

time, is not considered good enough.  Metaheuristics are to combine basic heuristic 

methods with some Intelligence or guided strategies aimed to avoid the traps.    

 

3.4. Metaheuristic Methods 
 

In order to overcome the above limitations, researchers in the last decade 

have focused much attention on metaheuristic solution techniques (Blum 2003 and 

Yilmaz 2011). Metaheuristics are general intelligent searches that could find the 

ways out of local optima. Despite their intelligence and generality, performances of 

metaheuristics depend on problem settings.  Over the last decade a number of 

research publications have been reported on applications of metaheuristic 

approaches addressing some of portfolio management and optimisation issues. 

Essentially, metaheuristics are algorithms for exploring search spaces by using 

guided strategies that have a dynamic balance between the exploitation of the 

accumulated search experience (i.e. intensification) and the exploration of search 

space (i.e. diversification) (Blum 2001).   Metaheuristics can be classified into two 

categories, namely local search metaheuristics (LSMs) and evolutionary algorithms 

(EAs).  LSMs begin with a single solution that is subsequently replaced by another 

(often but not always the best) solution found in the neighbourhood. They are called  

exploit-oriented (or intensification) methods because they are often allowed to find a 

local optima solution. However, they are different form local search algorithms of 
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basic heuristics in such a way that they have some mechanism to strategically guide 

the search away from trapped local optima. Conversely, EAs make use of a 

randomly generated population of solutions. The initial population is improved 

through natural evolution/selection processes. In the processes, the whole or part of 

population is replaced by newly generated offspring (often the most suitable ones). 

As a result, EAs are often called exploration-oriented method.  LSMs can be 

categorised into various models, based on guiding techniques, which include 

Simulated Annealing (SA) (Kirkpatrick 1983), Tabu Search (TS) (Glover 1990), 

Greedy Randomised Adaptive Search Procedure (GRASP) (Feo 1995), and Variable 

Neighbourhood Search (VNS) (Mladenovic 1997). On the other hand, EAs include 

Genetic Algorithms (GA) (Goldberg 1988), Evolution Strategies (ES) (Rechenberg 

1989), Genetic Programming (GP) (Koza 1999), Ant Colonies (Dorigo 1997), 

Estimation of Distribution Algorithms (Larranaga 2002), and Scatter Search (Glover 

2000). Since there is active research around the world to find new heuristic 

techniques, the lists are by no mean exhaustive.  Moreover, there are also hybrids 

and other metaheuristics that can fall into neither category (Alba 2005). 

 Even though metaheuristics are not problem specific but in order to reach 

good solutions, they often need to make use of detailed knowledge of the problem 

domains. As a result, most efficient metaheuristics are not reusable for different 

problems or even different instances of the same problem, without redevelopment or 

in some cases, adjustment of relevant parameters. 

3.5. Applications of Local Search Metaheuritics 
 

 The main focus of this research is portfolio optimisation using multi-objective 

EAs, however for completeness we briefly discuss here some of the applications of 
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popular LSMs, namely Ant Colony (AC), Tabu Search (TS) and Simulated 

Annealing. The readers are referred to the references (Dorigo 1997, Glover 1990 

and Kirkpatrick 1983) for the detailed working principle of these algorithms. 

Ant Colony Search is the imitation of behavior of ants that enable them to find 

shortest path between food sources and their nest. While moving to/from the nest 

ants deposit pheromone on the ground. Using the concentration of pheromone, they 

decide the likelihood of which direction to go. The shortest paths are likely to be used 

more often within the same period of time. They are likely to have more amount of 

pheromone on the trail than those used less. This reinforced strategy enables ants to 

find shortest paths between the nest and the food source (Blum 2003).        

Maringer (2005) applied ant colony algorithms to solve optimisation problems 

in small portfolios (with cardinality constraints). He asserts that the problems can be 

regard as Knapsack problems with some modifications. In order to make the problem 

have only a single objective function, he set the objective function to be the 

proportion of risk premium over the risk-free asset and the standard deviation of 

portfolio return which is called the “Sharp Ratio” denoted by SRP. Assuming that 

there exists a market M with N assets (M is a set of assets or M = {1,…,N}) and the 

investor will choose k assets to be included in the portfolio P.   

The author tested for two cases of choosing three stocks (k = 3) and ten (k = 

10) stocks respectively from S&P 100 (with 161,700 and 1.73 x 1013 alternatives 

respectively). In the case of standard parameter setting (no evaporation of the 

pheromone) for k = 3 only 16 % of all run in which the global optimum was found and 

for k = 10 in just 2 out of the 1,000 independent runs that the global optimal was 

found. However, when the parameters were set to the appropriate values (with some 
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evaporation), for k = 3, about two third of the run that global optima were found, and 

for k = 10, from half and two third of the run that global optima were found (Maringer 

2005). Thus, Ant Colony Search is not quite efficient for portfolio optimisation 

problems, especially in a large scale. Also, it is not flexible to incorporate more than 

one objective into the problem.   

Simulated Annealing (SA) is the oldest among the metaheuristics. It allows 

moves toward worse solutions in order to escape from local optima. The probability 

of such worse moves is diminished in a similar way to molecules slowing down when 

the system‟s temperature is cooling down (which the name is derived from) (Blum 

2003). 

Crama and Schyns (Crama 2003) applied simulated annealing to solve 

complex portfolio selection problems with floor, ceiling, turnover, trading and 

cardinality constraints. They encoded a solution of the problem as an n-dimensional 

vector X whose element xi represents the holding of asset i in the portfolio. The 

quality of a solution was measured by the variance of the portfolio. They used 

specific approaches to handle specific classes of constraint either by explicitly 

restricting the solutions to be in feasible region or by penalizing infeasible solutions. 

They found that the algorithm could approximate the optimal portfolio frontier for 

medium size problem (151 assets) within acceptable computing time and could 

handle more classes of constraints than those of classical approaches. Also it was 

quite versatile to apply to different measures of risk other than variance as well as 

different covariance matrix properties. However, the algorithm still needed to 

customise and to delicately fine tune parameters to account for different classes of 

constraints.   
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Maringer (2005) adapted SA to solve portfolio optimisation problems with 

transaction costs. The results showed that in presence of transaction costs the 

optimal portfolio structures were severely affected. Fixed costs could lead to a 

substantial reduction of different assets which should have been included in a 

portfolio as well as for proportional cost and compound cost schemes (Maringer 

2005). Chang (2000) found that, in terms of mean percentage errors, on average SA 

performed better than TS but worse than GA. 

Tabu Search (TS) is a local search heuristic. The concept is a systematic 

operator that, given a single starting solution, generates other possible solutions 

which are the neighbourhood of the single starting solution. The solution may not be 

feasible in this stage. The best solution may be the very first that improves the 

solution in the neighbourhood or may be the last one upon completing enumeration. 

The best solution is chosen to become a new starting solution for the next round as 

the process is repeated. 

Chang et al (Chang 2000) applied TS to cardinality constrained portfolio 

optimisation (with also minimum portion constraint). They solved the problem by 

three meta-heuristic methods, namely Genetic Algorithm (GA), Tabu Search (TS), 

and Simulated Annealing (SA). SA was the next best. TA reported the highest mean 

percentage errors. Busetti (Busetti 2000) used Tabu Search/Scatter Search tools in 

a decision support system developed by Decisioneering Incorporated to handle 

portfolio optimisations with cardinality constraints. The results were then compared 

with those of Genetic Algorithms (GA). The authors found that Tabu/scatter search 

method was unsuitable for optimisation portfolio with cardinality constraints (of the 

size of 40 assets). Therefore, he concluded that GA was better than Tabu/scatter 

search for this application and problem size. Moreover, the GA applied to portfolio 
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optimisation was effective and robust with respect to quality of solution and speed of 

convergence. It was also more versatile by not relying on restrictive properties of the 

model, by ease of new constraint addition and by ease of the objective function‟s 

modifications. Contrary to other metaheuristic methods, the needs for tailoring, 

customising, and fine-tuning are not an issue for GA, even though these may 

improve performance of the model to an extent but not necessarily. 

3.6. Evolutionary Algorithms 
 

Evolutionary Algorithms (EA) are population based heuristic algorithms. 

Genetic algorithm (GA) is the foundation of EA as most of the other evolutionary 

algorithms can be viewed as variations of GA. In GA, solutions are represented as 

chromosomes to be bred by crossover, or modified by mutation. Selection processes 

are used to find optima solutions imitating the natural selection of survival of the 

fittest (Maringer 2005).  During the evolution process, the populations change and 

evolve through the natural selection. Individual chromosomes which are more 

successful adapting to the environment will have a better chance to survive and thus 

to breed. The less fit individuals, however, are eliminated from the gene pool. Thus, 

the fit genes will spread and increase from generation to generation. The good 

characters from successful parents may produce even better offspring which 

become increasingly adapted to the environment. The basic step of a simple GA is 

shown in Figure   3.1. 
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Figure 3.1: Genetic Algorithm 

 

Busetti (2000) compared GA with Tabu search and found that GA performs 

better for portfolio optimisation problems in the problem setting. Chang (2000) 

applied stocks in Hang Seng (31 names), DAX (85 names), FTSE (89 names), S&P 

(98 names), and Nikkei (225 names), and found that on average GA is the best in 

terms of mean percentage errors compared to those of SA and TA.  Streichart et al. 

(Streichart 2004a) apply the Multi-Objective Evolutionary Algorithm (MOEA) to solve 

portfolio optimisation problem. However, they were not the first group to applied 

Evolutionary Algorithms to solve the problem.  Tettamanzi et al. (cited in Arnone 

1993, and Loraschi 1995a and 1995b) transformed the multi objective optimisation 

problem into a single-objective problem by using a trade-off function (therefore not a 

true multi-objective). In their paper, they compared the performances of different GA 

representations of portfolio optimisations with several combinations of the constraints 

on the Hang Seng data set with 31 assets. The representations were binary bit-string 

based genotypes or gray-code encoding and real-valued genotype. They also 

investigated the size of the bit string from 32 bit „continuous‟ representation to 7 bit 

„discrete‟ representation. They also compared GA with and without Lamarckism 

(hybrid GA in which the genotype can be modified, not only being removed from the 

Generate an initial population 

Evaluate fitness of individuals in the population  

REPEAT 

 Select parents from the population 

 Mating (Crossover) parents to produce offspring 

 Evaluate fitness of the offspring  

 Replace some or all of the (previous) population by the offspring individuals  

UNTIL  a satisfactory solution has been found (or a number of generation have been reached)  
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population) and Knapsack GA (KGA) with and without Larmarckism. The constraints 

imposed on the optimisation problems were cardinality and integer (discrete) 

constraints. The results showed that KGA produced better results, as well as 

converged faster than ordinary GA due to more efficient removal of surplus assets.  

This conclusion was drawn from the fact that, in the problems without constraints, 

both GA and KGA performed almost the same. They also found that GAs without 

Larmarckism tended to prematurely converge because the neutrality of the search 

space, i.e. the space is relatively even space or gradually changed in values in all 

directions, caused the GAs to be trapped in the sub-optimal search space. KGAs, 

even without Larmarckism, did not have this tendency.  For the bit strings, on 

average the real value coding performed worst in all problem instances. Also, the 

differences were not much if a constraint was not added. The discrete 7-bit string 

performed better than the „continuous‟ 32-bit string because the mutation and 

crossover operators were more effective. Thus, the hybrid KGA with 7 - bit gray-

coding and Larmarckism was the best in the most problem instances with real-world 

constraints. In another paper (Streichert 2005), the same group of authors 

introduced an alternative hybrid encoding for evolutionary algorithms, which 

combined both „continuous‟ real value and „discrete‟ binary value together. The 

algorithm then was compared with the different EA representations. When the 

algorithm and the other EAs without Larmarckism were applied on the problem with 

only cardinality constraints, the algorithms performed better than those of standard 

EAs. However, after introducing Larmarckism into the algorithms as well as into all 

standard EAs, the algorithm‟s performance was only comparable to other standard 

EAs. Similar to the results in the previous paper, in problems with many constraints, 

the algorithms with Larmarckism were among the best of all due to their ability to 



66 
 

remove some of the neutrality in the search space. In other words, Larmarckism 

expands the search space by allowing self-modification of genetic strings in addition 

to altering in crossing-over operations.        

Gomez et al (Gomez 2006) proposed a Hybrid Evolutionary Algorithm which 

was in fact an evolutionary Simulated Annealing. They used population of SA instead 

of just a single solution. The best of the population‟s solutions were selected and 

retained. The worst were discarded and replaced by a clone of the best ones or 

some new solutions with properties of the best solutions. The hybrid approach was 

used to solve portfolio optimisations with budget constraints, floor and ceiling 

constraints, purchase constraints, sale constraints, trading constraints and cardinality 

constraints. They found that increasing the number of constraints would also 

increase the time to find the optimal portfolio and would cause more noise on the 

efficient frontier. By comparing to those of the standard SA, the hybrid algorithm‟s 

was better. It increased the average of return by 1.7% and reduced the average 

variance by 41%. The curve of the portfolio frontier was also smoother.   

     

3.7. Multi-Objective Evolutionary Algorithms 

 
 Most of meta-heuristics and standard Evolutionary Algorithms are for single 

objective optimisation. In the case of portfolio optimisation which usually has two 

objectives (to maximise mean and to minimise variance), we need to modify the 

objectives so as to reduce to a single objective, e.g. Sharp ratio, mean minus 

variance, etc. However, it becomes very inconvenient to handle optimisation with 

more than two objectives. Even though many objectives can be combined into one 
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objective by assigning appropriate weights to the objectives, determining appropriate 

weights is not an easy task. 

Multi-Objective Evolutionary Algorithms (MOEA) are based on the concept of 

Pareto optimality. Two solutions may not have the same bi-objective values but they 

may be as good as one another in the sense of Pareto dominance in which they both 

are non-dominant solution. Generally, a Multi-Objective Optimisation problem can be 

stated as follows 

                                                                )                (3.8)         

                

                                                                                                 (3.9) 

Where, T (x) is a vector of m objectives, 

             f1 to fm are the m objective functions (also elements of vector T(x)),  

             x is a vector of decision variables, 

             e (x) is a set of n constraints, 

             e1 to en are the n constraints, ej(x)  0 for all j.  

 

A Pareto optimal set of solutions is composed of non-dominant solutions. 

Mathematically, a decision vector u is said to strictly dominate another v if  

 

                                        (3.10) 
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And 

                                                                             (3.11) 

 

The algorithmic procedure of MOEA is the same as that of GA (or general 

Evolutionary Algorithms) except when it comes to evaluating the fitness function.  A 

pseudo code for general MOEA for portfolio optimisation is shown in Figure 3.2 

which is adapted from Fieldsand (2004). 

 

 

 

 

 

 

 

 
Figure 3.2: Pseudo-code for General Multi-objective Evolutionary Algorithm for 

Portfolio Optimisation Problems 

 

So far, there have been a good number of varieties of MOEA that have been 

applied to many science, engineering, and business problems.  Brief descriptions of 

some well-known MOEA algorithms are as follows. 

MOGA was proposed by Fonceca and Fleming (1993).  In this algorithm, each 

individual is given a rank according to the number of individuals in the population 

Let T := maximum number of interation 

Let H is set of sets of portfolios defining the c different estimated frontier 

Let t:= 0, H
t
k = { }    k = 1,….., a 

H
t
k,1 := random_portfolio (k)     k = 1,……,a  

While (t < T)   

 k = U (1,a)                                                   

 w:= Select (H
t
, k)                               // w is a asset weight vector 

 w  := adjust (w)  

 y  := evaluate(w) 

 H
t+1

 = check_insert_remove (H
t
 ,w, y)  

 t := t + 1 

END 
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which it dominates, thus the non-dominated individuals have the lowest rank of 1. 

The population is then sorted according to each individual‟s rank. The fitness is 

determined by interpolating from the best rank to the worst. The individuals with the 

same rank will be sampled at the same rate by having their fitness averaged. 

NPGA (Niche Pareto Genetic Algorithm) was proposed by Horn (Horn 1994). 

It uses a tournament selection scheme based on Pareto dominance.  Instead of 

simple comparing two individuals in the population, the algorithm draws two 

individuals and then compares them with a random sample of the population. If one 

of them is non-dominated and the other is dominated with respect to the random 

sample, the non-dominated will be selected. On the other hand, if the both are either 

non-dominated or dominated, the tournament will be decided through fitness sharing 

in the objective domain. Because the decision of Pareto ranking is based on a 

segment of the population, the algorithm is quite fast compared to MOGA. 

NSGA (Non-dominated Sorting Genetic Algorithm) was proposed by Srinivas 

and Deb (Srinivas 1994). In this algorithm, each individual in the population is ranked 

using Pareto-dominance. The non-dominated individual are then classified in to one 

category and assigned a dummy fitness value proportional to the size of population. 

The category is separated from the population. Another search for non-dominated 

individuals is performed until all of the population is ranked. In order to maintain 

population‟s diversity, individuals in each category share their dummy fitness value. 

Its computational complexity is O(mN3), where m = the number of category (niche 

count) and N is the population‟s size. 

PAES (Pareto Archived Evolutionary Strategy) was proposed by Knowles et al 

(Knowles 1999). It is not a kind of Genetic Algorithm (GA) but a kind of Evolutionary 

Strategy (ES) in which one parent reproduces one child. The parent and its child are 
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compared after the child has been produced. The child is accepted to the population 

if it dominates its parent else it is discarded and a new child will be produced. 

However, if no one can dominate the other, the one that is more diverse among the 

obtained solutions will be preferred. This can be achieved by comparing the child to 

the non-dominated solution archive.  And if it is not dominated by any of the member 

in the archive, it and its parent will be checked to find which one resides in the less 

crowded region of the parameter space. This diversity maintenance is achieved by 

dividing the objective space up into grids. Solutions are put to the grids according to 

their objective values. A crowding measure based on the number of solution in and 

around each grid location is used to maintain diversity. The algorithm has a lower 

computational complexity compare to MOGA, NPGA and NSGA because every 

solution in the population is only compared to its parent and all member of the 

archive. 

SPEA (Strength Pareto Evolutionary Algorithm) was introduced by Zitzler and 

Thiele (Zitzler 1999). It employs an external achieve to preserve the non-dominated 

solution (which is considered as an elitism mechanism). The external archive then 

collects all no-dominated individuals for each generation. The individuals in the 

archive are to be tested for dominated individuals and deleted if found. If the number 

of individuals in the archive exceeds the predefined upper limit, some of non-

dominated individuals will be deleted based on their phenotypic closeness to other 

members of the group. This is a mechanism to preserve diversity. The fitness of an 

individual in the population is calculated by summing up the strength values, which 

are the number of the other individuals in the population which a particular individual 

has dominated, divided by the population size plus one (ranged from zero to one) of 

all archive members it dominates. In the reproduction, both current population and 
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the archive population are combined together to form one population. Then the 

parents are selected and mated to generate the offspring population. Its 

computational complexity is O (N2), where N is the population‟s size. 

NSGA2 is an improvement to the NSGA algorithm also proposed by Deb et al 

(Deb 2001). The main criticism of NSGA is the computational complexity. The 

NSGA2 is composed of two main loops. First, for each individual i, two values are 

computed, namely the number of individuals which dominates it (denoted by ni) and 

the number of individuals which it dominates (denoted by si). Then, the non-

dominated individuals are put in a separate list called the current front. Second, the 

current front from the first loop is traversed for every individual. For each individual 

on each member j, when it is visited and its own nj is decreased by one. If nj 

becomes zero, it will be put in a separate list. When all individuals of the current front 

have been visited the new separate list becomes the current front. As a result, 

NSGA2 requires only O (N2) computation while NSGA requires O (mN3).   The 

fitness assignment, reproduction, and selection remain the same as for NSGA. 

SPEA2 is also an improvement of SPEA. It was designed by Zitzler et al 

(Zitzler 2002).  It is different from SPEA in many respects. First, its archive has a 

fixed size. The archive may fill with some dominated individuals if the number of non-

dominated is less than that of dominated individuals. And if the number of non-

dominated ones is greater than the archive‟s size some of non-dominated individuals 

will be excluded by truncation. Second, the truncation method truncates individuals 

which have the minimum distance to another individual. If more than one individual 

have the same distance, the second smallest distance will be considered. Third, the 

fitness assignment in SPEA2 is defined to take in to account both dominated and 

dominating individuals.  Individuals in both archive and the population are assigned a 
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strength value representing the number of individuals. The raw fitness value is 

calculated as the sum of the strengths of the dominating individuals in both archive 

and the population. Thus, the raw fitness is to be minimised. Fourth, Density 

information is included to the fitness function by computing the inverse of the 

distance to the kth nearest neighbor. It then is used to further discriminate between 

individuals. Fifth, only members of the archive are allowed to mate and to be 

selected.   

Zitzler et al (Zitzler 1999) compared a number of MOEA by using metrics of 

performance which capture three aspects of performance, namely the distance of the 

non-dominated set (should be minimised), the distribution of solutions (should be 

maximised), and the range of values covered on each objective (should be 

maximised). Using two objective problems as test problems which were followed a 

guideline proposed by Deb (1998), they found that among the other algorithms 

SPEA was the best in the terms of distance from Pareto optimal front. The next best 

was NSGA. NPGA was the worst of the mentioned three algorithms. According to 

the test problems, multimodality and deception seemed to cause the most difficulty 

for MOEA. Moreover, they also found that elitism, which was incorporated into 

SPEA, was a crucial factor contributing to a MOEA‟s performance. By inclusion of 

elitism to other MOEA, it was improved significantly. 

 

3.8 Fuzzy Logic  
 

Fuzzy Logic can be viewed as an extension of multi-value logic to include 

probabilistic theory. Fuzzy logic is concerned with approximate modes of reasoning 

rather than precise ones as for classical logic (or crisp logic). In fuzzy logic, truth is 
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described as a matter of degrees. In other words, truth in fuzzy world is revealed as 

grey scales rather than black or white as in the world of classical logic. An advantage 

of fuzzy logic in the realm of modeling is that it allows computing with linguistic 

variables. Fuzzy logic also can make inferences from qualified propositions, 

especially from probability-qualified propositions. This is crucial for managing 

uncertainty in expert systems and in the formalization of common sense reasoning. 

The values of a linguistic variable can be derived from a primary term such as “hot” 

and  its antonym such as “cold” (as well as a collection of modifiers such as  “not”, 

“very”, “more or less”, etc.), and the connectives “and” and  “or.” The values can be 

generated by a context-free grammar. Moreover, each value of a linguistic variable 

represents a possibility distribution which can be calculated from the predefined 

possibility distributions of the primary term and its antonym through the use of 

attributed grammar techniques (Zadeh 1988). 

Contrary to the classical set theory, in the fuzzy set theory, membership of 

fuzzy set A of universe X is defined by the membership function (of A) denoted by 

(Negnevitsky 2005)  

 

                                                                                                    (3.12)  

Where 

                                          ;                 

                                      ;                 

                                          .              

 

For an example, according to our sensory feeling and knowledge of temperature, we 

can produce fuzzy sets of hot, warm and cold. Thus, the universe of discourse of 
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temperature in degree Celsius consists of three sets: cold, warm and hot. The fuzzy 

sets can be graphically drawn as Figure 3.3. In this instance, a temperature of 20 

degree Celsius is a member of Cold temperature with a degree of membership 0.3 

and at the same time it is also a member of Warm temperature with a degree of 0.3. 

This means that the temperature of 20 degree Celsius has a partial membership in 

multiple sets.    

 

 

 

 

 

 

 

 

Figure 3.3 Fuzzy sets of Cold, Warm and Hot 

 

Fuzzy logic has been applied extensively in engineering and in social science. 

For engineering applications, it is successfully used as control logic in various control 

systems as well as decision mechanism in a number of expert systems (Zadeh 

1988). Also it has widely been applied to various fields of social science such as 

Economics, Political Science, etc. There are at least five reasons that fuzzy logic has 

been used in social science research. Firstly, it can handle vagueness 

systematically. Secondly, many variables in social science are categorical variables 

which are often turned out to be matters of degree. Thirdly, it can analyse 

multivariate relationships beyond conditional means and the general linear model. 

Fourthly, it is more suitable to social theoretical concepts which are frequently 

1.0 

  

0.5 

0.25 

0 

10 20 30 40 50 60 

Cold Warm Hot 



75 
 

expressed in logical and set-wise terms than those of statistical models which rely on 

continuous variables. Lastly, fuzzy logic can rigorously merge set-wise thinking and 

continuous variables (Smithson 2006).  

Fuzzy set theory is applied to construct an intelligent system with fuzzy 

inference. In a complicated system dedicated to a realm of knowledge, the intelligent 

system may sometimes be called an expert system. Fuzzy inference is a process of 

mapping a given input to an output by applying the fuzzy set theory. The most 

popular fuzzy inference technique is Mamdani method which consists of 4 steps 

(Negnevitsky 2005). First, fuzzification is to determine the fuzzy membership degree 

of the crisp inputs to each applicable fuzzy set. Second, rule evaluation is to take 

fuzzified inputs and then apply to the antecedents of the relevant fuzzy rules. Third, 

aggregation of the rule outputs is the unification procedure of the outputs of all rules. 

In this step, we take the membership functions of all rule consequents which are 

previously clipped and blend them together into a single fuzzy set.  Fourth, the last 

step is defuzzification. In this step, fuzziness is aggregated into a single crisp 

number. The most popular method is the centriod technique. The techniques is to 

find centre of gravity (COG) to represent the aggregate output membership function 

(as a crisp number) which can be expressed mathematically over a sample of  points 

as (Negnevitsky 2005) 

 

                                       
∑        

   

∑       
   

  ,                                                (3.13) 

or over a continuum  of points  as (ibid) 
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Where a is the lowest value of the lowest fuzzy set, 

 b is the highest values of the highest fuzzy set.  

The readers are referred to (Mendel 2001) and (Negnetivitsky 2005) for the 

detailed working principles of the fuzzy systems. 

3.9. Summary and Research Gap 
 

There are a number of researchers that have attempted to find and develop 

the most suitable solving algorithms, and most of the researchers turned to 

metaheuristics. Metaheuristics have showed that they can solve the problems 

effectively. Genetic Algorithms have an advantage due to their simplicity, adaptability 

and flexibility. Moreover, they are quite effective especially for large scale portfolio 

optimisation problems. They are also extendable to MOEAs which can be effectively 

used to solve multi-objective problems. Among the MOEAs, according to the 

previous research, SPEA2‟s performance is likely to be the best both in the terms of 

the closeness to the real Pareto front and the diversity of solutions. Secondly, the 

classical models‟ objective functions may not reflect the real investors‟ utility 

functions or reflect their intentions. Since the utility functions or the intentions are 

hidden inside the investors and are not likely to be homogeneous, the proposed 

novel objective functions are only from theoretical points of views, if not purely 

conjectures. There are also no convincing proofs of the models‟ ability to explain the 

reality of the markets or the actuality of investors‟ behaviours.  Thirdly, the classical 

models are prone to estimation errors or model risk of the inputs. Originally the 

historical means and variances of assets were used as the expected returns and the 

expected variance of assets. However, these values are poor estimation of the 

actual returns and variances especially in the short runs and medium runs. A small 
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error of assets‟ expected returns usually have a huge effect on portfolio choices and 

optimality. A number of researchers coped with this problem by various approaches. 

Almost all were indirectly dealing with the estimation of inputs. They circumvented 

the problems by imposing more constraints into portfolio choices, using simulations 

or modifying the MOEA such that it can handle dynamic environments well. Some 

direct methods were using more accurate forecasting models or choosing the most 

pessimistic in order to be better than the forecasts in ex-post.             

There is a gap for short-term portfolio optimisation in realistic settings. The 

estimation errors or forecasting models risk which are among the most serious 

problems to put the portfolio optimisation to be effectively used in practices should 

be handled systematically and effectively. There are no forecasting models or 

experts that can be accurate most of the time especially in predictions of the future. 

However, the expected errors can be managed in an efficient manner.  Also if we 

can estimate the risk of various models and map their suitability for prevailing 

economic situations, we could mitigate the model risk by properly choosing the best, 

fittest model for the situations. This is the gap which this research attempts to 

reduce.       
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Chapter 4 Portfolio Optimisation 

Using Multi-Objective Genetic 

Algorithms 
 

4.1. Chapter Overview 
 

Different techniques have been used to solve portfolio optimisation problems. 

For those techniques for exact solution, they usually involve the number of 

combinations of states that must be searched which increases exponentially with the 

size of problem and becomes computationally intractable (Crama 2003). 

Furthermore, these techniques are inept at handling the nonlinear objective and 

constraint functions, and several assumptions are generally required to make the 

problem solvable using reasonable computational resources (Maringer 2005). 

Alternatively, some heuristic-based and evolutionary techniques can approximate 

solutions for problem instances of NP-hard problems in a reasonable time (Blum 

2001). By using those techniques, the optimisation problems can be tackled in 

polynomial time with a trade-off in their optimality. In some circumstances of the 

practicality, the speed to reach the acceptable approximate solutions is very critical. 

Feasible near-optimum solutions are acceptable but untimely ones are not. Simple 

heuristics, based on greedy search algorithms, tend to stop in inferior local optima. In 

this chapter, we will use Multi-Objective Genetic Algorithm (MOGAs) to solve 

portfolio optimisation problem with typical realistic constraints. Although their 

solutions are approximate ones, they can be reached in acceptable time. We will 

also evaluate the quality of the solutions in the aspect of their closeness to the 

efficient portfolio frontiers. The best performing algorithms will be used in the later 



79 
 

chapters as the main methodologies for the optimisation module. Even though the 

two objectives of portfolio optimization, i.e. minimizing portfolio volatility and 

maximizing portfolio return, can be collapsed into a single value (e.g. Sharpe ratio), 

this requires an assumption about utility function of the investor which defines the 

level of acceptable risk. In the case of using the Sharpe ratio, the investor‟s risk-

return trading-off should be closed to linearity (Elton 1997).        

 

4.2 Related work 
 

The background and general working principles of the popular GA-based 

solution approaches for multi-objective optimisation are already discussed in details 

in section 3.7. In this section we will review their applications to portfolio optimisation 

problems.  

Subbu et al (Subbu 2005) presented a new hybrid evolutionary multi-objective 

portfolio optimisation algorithm called Pareto Sorting Evolutionary Algorithm (PSEA) 

that integrated evolutionary computation with linear programming. Unlike Streichert 

el al (2004b), they applied the algorithm to a portfolio optimisation with more than 2 

objectives. The problem can be stated as 

     
       

∑               

∑     
                                   (4.1)                               

       
                                 (4.2) 

                                                                          (4.3)  

            

                                                                                                             (4.4) 
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                                                                                            (4.5) 

                                                                                                                   (4.6) 

                                                                            (4.7) 

where, BYldp is book yield of the portfolio; 

 BYldi is book yield of asset i, 

 BVi is book value of asset i, 

 VaRp is Value at Risk of the portfolio, 

 DA and DL are durations of portfolio assets and of portfolio liabilities 

respectively, 

 CA and CL are convexities of portfolio assets and of portfolio liabilities 

respectively, 

 N is the number of assets in the portfolio, 

 x is an N by 1 vector of decision variables, 

 A is an M (any number) by N matrix, 

 B is an M by N matrix, 

 a is a vector. 

Equations (4.4) and (4.7) represent sets of linear equality constraints and linear 

inequality constraints respectively. The authors propose a quite complicated 

algorithm to solve the problem. Firstly, they use apply Randomised Linear 

Programming to generate the portfolio population which satisfy the linear constraints. 

Secondly, the constrained population are preliminarily optimised in parallel by both of 

the Pareto Sorting Evolutionary Algorithm (PSEA) and the Target Objective Genetic 
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Algorithm (TOGA) (Subbu 2005). Thirdly, the efficient frontier portfolios selected by 

the both algorithms are filtered by the Fast Dominance Filter Algorithm. Fourthly, the 

results are visualised and the user sets targets. Fifthly, the selected portfolios are 

optimised by TOGA again. Lastly, the portfolio frontier is shown on the screen and 

the user may finally make a down selection.   

The PSEA is good for small population size. Like all of meta-heuristic 

algorithms, there is no guarantee that a solution found at certain generation would be 

a globally solution.              

 The authors also use TOGA which is a non-Pareto and non-aggregating 

function approach to multi-objective optimisation as augmented optimizing algorithm.  

The algorithm borrows ideas from goal programming and Vector Evaluated Genetic 

Algorithm (VEGA). Contrary to the PSEA, TOGA is not based on the concept of 

dominance but is based on finding solutions of a predefined target for one or many 

criteria (Subbu 2005).  

Hassan (2010) attempted to tackle the problem from a different angle. He 

recognised that SPEA2 was the best algorithm to solve portfolio problems so far and 

its main limitation lied in sub-optimality of out-of-sample results. He showed that the 

capital market was always changing thus the problems were becoming a multi-

objective optimisation in dynamic environment. In other words, the suboptimal 

problem was not caused by estimation errors as such but by changing of the 

environment.  He proposed a novel MOEA algorithm called R-SPEA2 to deal with 

the changing environment.  He incorporated three strategies into the standard 

SPEA2 namely, ranked-based selection bias, diversity enhancement and mating 

restriction. In rank based selection bias, he added an extra routine after the Pareto 

front had been identified to calculate the robustness value based on the ranking of 
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robustness which was defined as a solution‟s ranking preservation in the new 

environment. The robustness value was then added to the solution‟s original fitness 

value. In diversity enhancement, he implemented a couple of techniques to achieve. 

First, the pointed mutation was set to probability of 0.3 (30%) for entire evolutionary 

cycle. Second, the duplicate individuals were removed from the SPEA2 archive 

before selection so that the archive only contained unique genes. For mating 

restriction, he proposed a cluster-based mating restriction which prioritised mating 

between parents from the same cluster in order to preserve heterogeneity level of 

entire population. He also tested the proposed algorithms against the original SPEA2 

with the Markowitz portfolio optimisation problem (no-short-sale). The data was 

drawn from 25 UK stocks listed in FTSE100 with 80 monthly observation sets. The 

time series were divided up to 60 months for training (48 months from May 1999 to 

April 2003 for in-sample training, and 12 months from May 2003 to April 2004 for 

validation) and the last 20 months from May 2004 to December 2005 for out-of-

sample testing.   All experiments had a population size of 500, archive size of 200 

and repeated for 35 generations. He concluded from the result that R-SPEA2 had a 

statistically highly significant improvement in the mean number of cluster changes by 

individual solution between a training environment and a validation environment. 

Also with the diversity enhancement technique, the diversity of the population was 

indeed increased. He found that the cluster-based mating restriction combined 

provided the best robustness results with greatly enhancing the quality of solution 

and also increased the diversity of the solution population.   

In this thesis (and also in the paper present to CEC 2007 [Skolpadungket 

2007]), five GA based MOEA compared, namely VEGA, a fuzzy VEGA, MOGA, 

NSGA2, and SPEA2 using the dataset of Hong Kong‟s Hang Seng Index from the 



83 
 

OR-Library. The results of the experiment SPEA2 show that is the best with respects 

to GD metric and the distribution of solutions along the front (see also Chapter 3). 

Also, in a recent related work (Anagnostopoulos 2010), NSGA2, PESA and SPEA2 

were compared in experimentation for three objectives, namely risk, return, and the 

number of securities in the portfolio. With three dimensions, the efficient frontier 

became a surface rather than a line. By visual comparisons, the authors found that 

SPEA2 was the best with respect to the hyper-volume metric as well as the diversity 

of the solution. However, it was the slowest with respect to computing time.    

  

4.3 The Portfolio Optimisation Problem Model 
 

The portfolio optimisation problem model can be applied to Multi-Objective 

Genetic Algorithm since the underlying objectives are to maximise portfolio expected 

return and minimised expected risk. In the original Markowitz model (see Section 

2.1.1 and equations 2.1-2.6) the expected portfolio return is assumed to be based on 

assets‟ historical means, and the expected risk is assumed to be based on assets‟ 

historical variances and their past correction of assets‟ returns. So, the model is also 

called mean-variance analysis model. For Multi-Objective formulation, the problem 

can be represented as  

 

                                                           
  

  .                                                  (4.8) 

And 

                                                          
                                                       (4.9)  

 

Subject to  
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                                                    ∑                                                              (4.10)  
 

                                                                    .                                                (4.11)  
 

 

 

 

Where, 2
P is variance of the portfolio of assets, 

                  rP is the expected return of the portfolio, 

             wi is the weights of asset i in the portfolio. 

The Markowitz model is a simplified model to focus only on a theoretical point 

of view. In investment management, portfolio managers face a number of realistic 

constraints that arise from normal business practices, practical matters, and industry 

regulations.  The realistic constraints that are of practical importance include (not 

exhaustively) round-lot constraints, cardinality constraints, floor constraints, turnover 

constraints, trading constraints, buy-in threshold, and transaction cost inclusions. In 

the meantime, only round-lot constraints, cardinality constraints, and buy-in (floor) 

constraints are considered. 

Round-lot constraints require that the number of any asset included in the 

portfolio must be multiples of normal trading lot. The round-lot constraints can be 

expressed as: 

 

                                                    
  

∑   
 
   

                                                    (4.12)  

                                                                                                            (4.13)  

 

Where ni is number of unit of asset (share), 
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            li is trading lot of the asset I and 

            N is the number of asset. 

Cardinality constraints are the maximum number and minimum number of 

assets that a portfolio manager wishes to include in the portfolio due to monitoring 

reasons, or diversification reasons, or transaction cost control reasons (Stein 2005).  

The constraints can be expressed as follows: 

 

                                                     ∑   
 
        .                                         (4.14) 

 

Where, b1 = 1 if x1 > 0, otherwise, b1= 0, 

     Cl and Cu are the lowest number of assets and the highest number of 

assets required to include in a portfolio respectively. 

Floor constraints define the lower limits on the proportion of each asset, which 

can be held in a portfolio. These constraints may result from institutional policy in 

order to diversify portfolio and to rule out negligible holding of assets for the ease of 

control (Crama 2003). They can be expressed mathematically as follows; 

                                                              .                                                  (4.15) 

Where fi is the lowest proportion and the highest proportion that asset i can be held 

in the portfolio.   
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4.4 The GA Algorithm Design 
 

A Genetic algorithm is an evolutionary algorithm. The general main routine of 

GA can be found in Figure 3.1. GA‟s operation involves the exchanges of 

chromosomes which represent problem solutions. The good design of a GA is to 

balance between exploitation and exploration. The exploitation is to keep best 

solutions and improve them in order to be closer to the exact or ultimate solution. 

While the exploration is a mechanism to prevent the searches trapped in local 

optima (Blum 2003).   

Genetic Algorithms are versatile search algorithms. They can be adjusted and 

modified to suit a wide range of problems and various degrees of performances. 

Design of a GA involves making choices mainly over its problem representation, its 

variation operator, its population size, its selection mechanism, its initialisation of the 

population and its fitness function. The key to designing a good GA lies in making 

the appropriate choices for these concerns with respect to the problem at hand 

(Michalewicz 2004).  There are a number of successful applications of GA to 

portfolio optimisation which have been discussed in Section 3.6 and 3.7.  

4.4.1 Problem Representation 

The problem is represented by hybrid encoding (Streichert 2004b, 2005). A 

pair of genetic strings stands for a particular portfolio (an individual of population) as 

shown in Figure 4.1. The binary value string represents which stocks (or assets) are 

included in portfolio (0 stands for not included and 1 stands for included). The real 

value string represents weights of each stock in portfolio. So the lengths of both 

strings are equal to the number of stocks in the market (or the stocks of interest). 

Crossover and mutation operations are performed independently for both strings. But 
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before evaluation both strings need to be combined so that the objective values can 

be calculated. Although the real value string can adequately represent the problem, 

the search space in this encoding is expanded and can be abruptly altered due to 

any changes in the binary value string.    

 

 

 

 

 

 

 

 

 

Figure 4.1: Problem Representation: Binary String, Real Value String and Combined 

String 

4.4.2 Repair Algorithms and Constraint Handling 
 

All constraints are handled through repair algorithms. The algorithms were 

proposed and used in Streichert (2004a, 2004b and 2005). The constraints in this 

setting are unity constraints (the sum of weights must be equal to one), cardinality 

constraints, floor (buy-in) constraints and round-lot constraints.  

The repair algorithm first handles the cardinality constraints by setting N - K 

the smallest values of combined string to zero, where N is the number of selectable 

stocks (equal to the length of the strings) and K is the maximum number of stocks 

 0  0  1  0  1  0  1  0 1 

.76 .51 .46 .08 .09 .76 .01 .22 09 

 

0.0 .51 0.0 .46 0.0 .22 .01 0.0 0.0 

Binary String 

Real Value String 

Combined String 
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permitted in a portfolio (cardinality constraints). Then, it handles floor constraints 

(buy-in threshold) by setting stocks whose weights are below the buy-in threshold to 

zero. Next, it normalises those remaining non-zero weights to make all weights  sum 

to 1 by setting wi
/ = li +  (wi– li ) / (wi– li ) , where wi is non-zero weight of stock i and 

li is the buy-in threshold (the minimum weight amount that can be purchased) for 

stock i.  Then, the round-lot constraints are handled by rounding the non-zero 

weights to the next round-lot level such that wi
// = wi

/ - (wi
/ mod ci), where, ci is the 

smallest volumes that can be normally purchased from the stock market for stock i. 

The remainder of the rounding process (wi
/ mod ci) is allocated in quantity of ci to 

wi
// which has the biggest value of wi

/ mod ci until all of the remainder is depleted.  

All pairs of strings are first filled with random numbers, so, they need to be 

repaired by the repair algorithm.  Since crossover and mutation operations cause the 

string to be deformed, the repair algorithm need to be applied again to preserve the 

aforementioned constraints before the evaluations and selections.  

4.5 Vector Evaluated Genetic Algorithm (VEGA) 
 

The Vector Evaluated Genetic Algorithm is proposed by Schaffer (1985) as an 

extension of a simple genetic algorithm to handle multiple objectives in a single run.  

VEGA is a criterion-based fitness assignment, which is filling equal portions of 

mating pool according to the different objectives (Zitzler 2004).  For m optimisation 

objectives and a fixed population size as P, VEGA randomly selects m 

subpopulations with the size of P/m each so there are i = 1 to m subpopulation. Each 

individual in subpopulation i will be evaluated based on the optimisation objective i.   

After probabilistic selections based on relative objective values (two for this 

experiment, i.e., relative yield and relative variance), the selected individual from 
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each subpopulation is shuffled and pooled together to form a new population of size 

P. The new population is then followed by crossover and mutation operations. The 

whole process is repeated until the predetermined condition is met (in this case, Nth 

generation or round has been reached.   VEGA usually has O (N) complexity for 

each round (generation) of population, where, N is the number of generation. Figure 

4.2 shows the pseudo code of the VEGA algorithm. 

lation.        

 

 

 

 

Figure 3.2: VEGA Main Routine 

Figure 3.2: VEGA Main Routine 
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Figure 4.2: VEGA Main Routine 

4.6 Fuzzy VEGA 
 

VEGA tends to converge towards one-objective best solution, thus it is quite 

incompatible with multi-objective optimisation in which trading off between objectives 

is required during the search process. Introducing fuzzy logic into VEGA may 

Initialize generation counter: N = 0 

Create a population, Pop. 

Repeat while stopping criteria is not met. 

     Initialize subpopulation counter: i = 1. 

Repeat while i<= m. 

Generate ith subpopulation, SubPop(i), by randomly selecting P/m individuals from Pop.  

        Remove any individuals SubPop(i) from Pop. 

Generate theith objective function values,F(i), for individuals   in SubPop(i). 

        Perform genetic selection on SubPop(i) based on F(i). 

i = i + 1. 

End Repeat 

Pop = Integrate all SubPop(i). 

     Shuffle the individual sequence in Pop. 

N = N + 1. 

End Repeat 

Evaluate Pop for all objective function values for all F(i). 

Return (Pop, all F(i),…) 
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facilitate the trade-off between objectives. We incorporate a fuzzy decision rule to 

combine optimisation objectives together. The fuzzy decision rule dictates the 

probability of selection for each individual.  Fuzzy logic theory has been briefly 

discussed in Section 3.8 of Chapter 3.  

Y   |   Var   Min Very Lo Low Moderate High Very High 

Max 
Certain Highly Likely Highly Likely Likely Likely Probably 

Very 

High 

Highly 

Likely 

Highly Likely Likely Likely Probably Probably 

High 
Highly 

Likely 

Likely Likely Likely Probably Probably 

Moderate 
Likely Likely Likely Probably Unlikely Highly 

Unlikely 

Low 
Likely Probably Probably Unlikely Unlikely Highly 

Unlikely 

Very 

Low 

Probably Probably Probably Unlikely Highly 

Unlikely 

Never 

TABLE 4.1 Fuzzy Rules for Fuzzy VEGA (VEGA_Fuz1) 

We design two versions of VEGA with fuzzy logic. The first version of fuzzy 

VEGA (VEGA_Fuz1) is modified form ordinary VEGA using fuzzy combination of 

both objectives (yield and variance) to determine the probability of selection of 

particular individuals (see Table 4.1.) for both of subpopulations which are, in the 
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original VEGA, the sub-populations selected by only single objectives (one for yield 

and another for variance).  In table 4.1, Certain, Highly Likely, Likely, Probably, 

Unlikely, Highly Unlikely and Never represent probabilities of selection. By their 

linguistic meanings, we set the values of probabilities to 1.0, 0.9, 0.75, 0.5, 0.35, 0.1 

and 0.0 accordingly. The second version of fuzzy VEGA (VEGA_Fuz2) is different 

from VEGA_Fuz1 by combining an additional objective, i.e. sampling distance by 

randomly selecting 25 different individuals from populations (using sampling instead 

of plain distance to reduce the complexity of the algorithm) into fuzzy rule. Then, the 

fuzzy rule has 3 objectives instead of 2.  The fuzzy rule prefers more sampling 

distance to less to correct clustering problems of both VEGA and VEGA_Fuz1. 

Figure 4.3 demonstrates Fuzzy VEGA main routine in which fuzzy logic is used to 

combine the two objectives together with fuzzy rules. 

 

 
 

 

 

 

 

 

 

Figure 4.3: Fuzzy VEGA Main Routine 

 

Initialize generation counter: N = 0 

Create a population, Pop. 

Repeat while stopping criteria is not met. 

Repeat while i<= m. 

Generate theith objective function values,F(i), for individuals   in 

Pop. 

End Repeat 

         Fuzzify of the objective function values.  

         Apply Fuzzy rules to the Fuzzified objectives giving Fuzzy value. 

          Defuzzify the Fuzzy value to get selecting probability p. 

          Perform genetic selection on Pop by probability p. 

          N = N + 1. 

End Repeat 

Evaluate Pop for all objective function values for all F(i). 

Return (Pop, all F(i),…) 
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4.7 MOGA 
 

MOGA in this paper stands for the Multi-Objective Genetic Algorithm 

proposed by Fonseca and Flemming in 1993 (Fonceca 1993). MOGA uses Pareto 

rankings to assign the smallest ranking value to all non- dominated individuals. For 

dominated individuals, they are ranked by how many individuals in the population 

dominate them. Thus, the raw fitness of an individual is an inverse function of its 

Pareto rank. In order to distribute the individual in the population evenly along the 

Pareto front, the overall fitness function is then adjusted by sum of sharing distance. 

The sharing distance between individuals i and j is given by  

                          [
 (     )

      
]         (     )                              (4.16)  

Where, d(Xi, Xj)is a metric distance between two individuals in objective domain,                

             share is a predefined sharing distance. 

Thus, the overall fitness is defined by  

                                                                   
      

∑         
                                   (4.17) 

Where, fit(i) is the inverse of Pareto rank(i) (1/rank(i) in this test).    

 The overall fitness values of individuals are to be used in the probabilistic 

selection process by the comparative overall fitness to the individual that has 

maximum overall fitness. The comparative fitness values are used to compare with 

a random number.  If they exceed the random number, the individual will be 

selected (roulette selection method). MOGA usually has O (N2) for a single round, 
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because it needs to compute Pareto ranks and the sharing distance for all 

individuals.  

4.8 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 
 

SPEA2 was proposed by Zitzler et al (2001) as an improvement of the original 

SPEA. Like SPEA, SPEA2 uses two populations of size P, the first (P) for the 

population and the second (P‟) for the archive. In SPEA, all non-dominated 

individuals in population P are copied to the archive P‟, so the size of the archive P‟ 

is varied from generation to generation. However, in SPEA2, the size of P‟ is fixed 

thus if the number of non-dominated individuals in a generation exceeds the size of 

P‟, the number will be truncated. On the other hand, if the number is less than P‟, 

some dominated individuals need to be added in the archive P‟. The truncation and 

addition of dominated individuals are incorporate density information as a strategy 

to make the solutions distribute along the Pareto front. The density estimation of an 

individual i is defined as D(i) = 1/(di+2), where di is the distance of individual i from 

the nearest neighbor.  

SPEA2 first selects all non-dominated individuals from the population P in the 

first round and then selects the combined population of P and archive of P‟ in the 

subsequent rounds. Unlike VEGAs and MOGA, the selection is deterministic rather 

than probabilistic. If the number of non-dominated individuals exceeds the fixed 

size of the archive P‟, the excess individuals will be unselected based on the 

density estimation. If the number of non-dominated individuals falls short of the 

size of P‟, then the remaining dominated individuals (the next best Pareto front) will 

be selected until the archive has been filled. (However, if the last selected Pareto 

front exceeds the size, the same truncation method will be employed.) SPEA2 
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usually has O (N2 log N) a single round, due to the density estimation calculation 

(Zitzler 2004.)  

4.9 Experimentation and Results 
 

As our aim in this chapter is to test the performances of a number of MOEAs 

and comparing them with the benchmark portfolios which are usually referred to by 

the other researchers in the field, we decide to use a different data set from the 

rest of this thesis. In this way we will be able to compare the results and reference 

in future works of portfolio optimisation research. We conducted a number of 

experiments on data from OR library maintained by Prof. Beasley as a public 

benchmark data set (derived from Heng Seng data set with 31 stocks.) The data 

can be found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. 

The experiment runs on 2 problem instances; the first case with cardinality 

constraints where the number of stocks in a portfolio is not being larger than 10 (K 

= 10) and the second case with cardinality constraints where the number of stocks 

in a portfolio is not being larger than 5 (K = 5). In each case, the data is run by 

using VEGA, VEGA_Fuz1, VEGA_Fuz2 and MOGA in which the run lasts for 500, 

1000 and 5000 rounds (generations) with the number of population at 400. The 

performance is assessed through the average of 10 times of tests. For SPEA2, the 

algorithm runs only for 100, 250 and 500 generations. The performance is 

measured by Generation Distance (GD) (Tan 2005) for the last generation of the 

tests.   GD is given as follow; 

                                               √
 

 
∑   

  
   .                                              (4.18)  

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo
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Where, di is the nearest distance between Pareto front of the results (PF known) 

and Pareto front of the benchmark solutions provided by the OR-library (PF true),                         

             M is the number of solution population. 

 The graphical results of known Pareto fronts for the algorithms (N = 5000) is 

shown in Figure 4.4. MOGA seems the best when compared to the true Pareto 

front (NC Eff Front) both in the terms of the closeness and distribution along the 

true front.  When one looks at SPEA2, they perform much better, even when N is 

only 100, 250 and 500 rounds.     

 
 

Figure 4.4: The Results for N= 5000 
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Figure 4.5: SPEA2 with N=100, 250 and 500 
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Figure 4.6: Generational Distance (GD) for N = 500 

 

 Comparing performance by using Generational Distances (GD), one finds that 

for N= 500, SPEA2 performs the best for both of instances (K = 5 and K =10). MOGA 

and VEGA_Fuz 1 perform about the same. VEGA_Fuz2 is the second worst and 

VEGA is the worst.  However, Figure 4.1 shows that VEGA_Fuz 1 does not evenly 

distribute while VEGA_Fuz 2 improves the distributions but has to trade off 

performance. The results indicate that, as VEGA is not Pareto based MOEAs, we 

can  improve some aspects of its performance by using Fuzzy logic to combine the 

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

1

VEGA K =10 0.000987345

VEGA K = 5 0.00098776

VEGA_Fuz1 K=10 0.00025351

VEGA_Fuz1 K=5 0.0002511

VEGA_Fuz2 K=10 0.000858425

VEGA_Fuz2 K=5 0.000791422

MOGA K=10 0.000256879

MOGA K=5 0.000240365

SPEA2 K=10 4.8902E-05

SPEA2 K=5 4.80922E-05



98 
 

objective selections but its performance is still unmatched to the performances of 

those Pareto based MOEAs.  

 

Figure 4.7: Generational Distance (GD) for N = 5000 

 
 

Figure 4.7 shows the GDs for N= 5000, the relative performances for the 

algorithms are not changed for those of N= 5000 (no SPEA2).  We can see that the 

results GDs are not much different from those of N= 500. It seems that all of the 

algorithms are rapidly converged. Interestingly, in these cases, those with K= 10 

(with 10 assets) on average perform better than those of K = 5. This is contrary to 

the cases of N = 500. This might be due to the expanded search space for K = 10, 

which mitigates the possibility of being trapped in local optima. Even so, the 
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performances are only slightly better than those of the counter parts. Also those of 

VEGA_Fuz1 show superior performance in both cases (K=5 and K=10) to those of 

VEGA and VEGA_Fuz2. However, in these cases of N=5000, those of VEGA_Fuz1 

are even slightly better than those of MOGA. The VEGA_Fuz1‟s drawback is the 

solutions tend to concentrate in a certain area behind the efficient frontier, not 

distributing along it.     

 

4.10 Chapter Summary 
 

In this chapter, various techniques of Multi-Objective Genetic Algorithms are 

applied to solve portfolio optimisation with some realistic constraints, namely 

cardinality constraints, floor constraints, and round-lot constraints. We apply fuzzy 

logic to see whether it can improve performances of the Vector Evaluated Genetic 

Algorithm (VEGA). The results show that using fuzzy logic to combine optimisation 

objectives of VEGA (in VEGA_Fuz1) for this problem does improve performances 

especially in Generation Distance from the true Pareto front, but its solutions tend to 

cluster around a few points.  With additional fuzzy logic to make VEGA solution more 

distributed, it causes the performance to worsen. MOGA and SPEA2 are more 

complex algorithms but they perform better. SPEA2 perform the best even in 

comparatively small N and also has a good distribution along the Pareto front.  
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Chapter 5 Forecasting Stock 

Returns and Volatilities Using 

Evolutionary Artificial Neural 

Networks 

 

5.1 Chapter overview 
 

This chapter presents ANN and Genetic Algorithms to build stock return 

forecasting frameworks, namely Evolutionary Artificial Neural Network (EANN). We 

propose an evolutionary scheme of neural networks with evolving connection 

weights and “step-up,” adding more hidden nodes and layers in order to search for 

optimal structure. The adaptive EANNs are used to predict individual stock returns 

based on multivariate time series (AR with state variables) models. Since the input 

time series are quite limited, Multi-fold Cross Validation methods for the sections of 

the optimal ANN structures are used to circumvent the data problem. The prediction 

results have been compared with those of simple regressions (Least Square 

Estimation) and of simple (non-evolutionary) ANNs (Back Propagation and Elman 

Recurrent ANNs).    The proposed EANNs will be used as forecasting models among 

the set of selectable forecasting models in the next Chapter. 
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5.2 Related Works 
 

 For stock market investors and portfolio managers, it is crucial to have the 

most accurate forecast of stock returns. However, stock returns are difficult to 

forecast accurately. Several models and techniques have been used to forecast 

stock returns.  The relevant models include autoregressive models (AR), 

autoregressive-moving-average models (ARMA) and AR with state variable 

(explaining variable) models. It is reported that the AR models with state variables 

are superior to the rest both in the short-run and the long-run. In developing a model 

with many state variables as model inputs to forecast stock returns, a crucial part is 

to identify input variables. There are numerous theories and models that determine 

the input variables ranging from technical analysis based on trading data to 

complicated multivariate time series models. The multivariate time series models, 

which are based on fundamental factors, are considered more theoretically sound 

than those based on technical factors (e.g. trading volume, price trend, etc.) (Zhou 

1996). They imply that stock prices and stock returns can be explained and thus 

predicted by a number of “fundamental” economic factors as proposed by Capital 

Market Theory (CAPM-single factor, i.e. stock market index) (Sharp 1964, Lintner 

1965) and Asset Pricing Theory (APT – multi-factors) (Ross 1967). The inputs 

suggested by an empirical research were changing in economic and financial 

variables, such as changing in inflation, changing in yield spreads, etc. (Roll 1980).  

The techniques that have been deployed to forecast stock returns are linear 

regression (time-series), artificial neural networks (ANNs), decision trees, rule 

induction, Bayesian belief networks, evolutionary algorithms (EAs), classifier 

systems and association rules (Kwon 2005). Researchers found that ANNs show 
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better performance than most other techniques, especially linear regressions (Kwon 

2007).  However, ANNs with sub-optimal initial weights can be trapped in local 

minima. In dynamic environments, as the nature of learning objects are always 

changing, the topologies of the ANNs also should be adapted accordingly. 

Evolutionary Algorithms can be applied to evolve ANNs at many levels, e.g. 

connection weights, topologies, both the number of hidden nodes as well as the 

number of hidden layers, and learning rules (Yao 1999). Some previous research 

has applied Evolutionary Artificial Neural Networks (EANNs) to predict stocks prices 

(Kwon 2005, 2007). In their research, Kwon et al. (Kwon 2005) aimed to predict 

stock price trends (only up or down) by using EANNs that could evolve their initial 

connection weights. Comparing buy-and-hold strategy, Recurrent ANNs (RANNs) 

and EANNs, they found that their proposed EANNs outperformed Recurrent ANNs, 

and also EANNs were significantly outperformed buy-and-hold strategies. The same 

author in another paper (Kwon 2007), attempted to predict stock returns based on 

stock correlations (with other stocks in the same market). They proposed EANNs 

(called Feature Selection Genetic Algorithm –FSGA) that could evolve a set of inputs 

(selections of inputs). By comparing prediction performance (only stock price up or 

down) of buy-and-hold, Recurrent ANNs and EANNs (FSGAs), they found that the 

order of performance was the same, i.e. EANNs then RANNs and then buy-and-

hold-strtegies. A related research by Armano et al. (Armano 2005) proposed an 

EANN algorithm called NXCS, essentially a set of genetic classifiers designed to 

control feed forward ANNs‟ activation for performing forecasting at different particular 

local scopes, to predict stock indexes (rather than individual stock prices or returns 

also up or down only.) The prediction then results from experts‟ interactions in the 
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population.  The research found that the proposed methodology repeatedly 

outperformed buy-and-hold strategy.     

Most previous research has been concentrated on predicting stock indexes or 

trends rather than individual stock returns (Zhou 1996, Yao 1999). For stock trading, 

merely prediction on trends of stock prices or indexes would be adequate. But for 

portfolio optimisation, especially mean-variances analysis (Markowitz) portfolio 

optimisation model, to construct an efficient portfolio of stocks, a portfolio manager 

needs to most accurately predict individual stock returns as well as their variances 

(Oberuc 2004).  

 

5.3 Stock Forecasting Models 
 

Generally, stock returns are the difference in prices from the beginning period 

(investing time) to the ending period (disinvesting time) plus dividends if any. For 

convenience and by assuming that either the time is quite short or dividend payouts 

are always reflected in asset prices, dividends will be disregarded in the models. 

Models of asset return can be generalised into 3 categories of models. In the 

simplest AR Model for time-variation expected returns, the expected returns follow 

auto-regressive (AR) processes. The second category is called the ARMA model. 

The logarithmic prices of assets have two components, a permanent part and a 

transitory part. The permanent part follows an AR process. On the other hand, the 

transitory part follows a moving average (MA) process. The last category is the state 

variable model. In this kind of model, the transitory component of price not only 

depends on its own past value but also on state variables (x) which are relevant 

financial and economic variables. The AR Model of expected returns has 
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considerable capacity to capture the movement of stock returns over short horizons 

but has a mediocre capacity to predict the expected stock return over longer 

horizons. On the other hand, the ARMA model does a good job of forecasting long-

horizon returns, but has no adequate flexibility to capture the pattern of expected 

return at short horizons. Meanwhile the State Variable model is the best in at least 

four aspects, namely using only the recent past returns, parsimonious, good 

prediction in the short-run and good prediction in the long-run (Zhou 1996). 

A State Variable model with K state variables and N time lags can be stated 

as  
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          (5.1) 

Where,  

rt, , rt-i is stock returns at the time period t and t-i respectively. 

i  
is stock return‟s autoregressive coefficient for time lag i. 

xt-i
k is the kth state variable at previous ith time period, 


k is the regression coefficient for the previous ith period of the kth state 

variable, 

eis the error term. 

 Factors that have evidences of influencing stock returns and are included in 

this model are previous stock returns (R), unemployment (U), money supply (M), 

stock index (SP500), inflation (CPI), default spread (DS), term spread (TS), 
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reference interest rate (FED), industrial production (IP), and January effect (JAN-

circumstantial variable) (Oberuc 2004). Some factors which have no monthly data 

have been excluded (e.g. trade deficits, GDP etc). The model can be stated as 

follows 

R(t=0)  =  R(t=-1 to -12) +  U(t=-1 to -12) + M(t=-1 to -12) + SP500(t=-1 to -12)  + CPI(t=-1 to -12) +   

DS(t=-1 to -12) + TS(t=-1 to -12) + FED(t=-1 to -12) + IP(t=-1 to -12) +JAN(t=-1 to -12)                                              (5.2) 

The model in 5.2 constitutes a prediction output and 120 inputs (10 kinds with 

12 month lags each.) For January effect (JAN), the input is “1” if the month is 

January and “0” otherwise. It can be estimated by Ordinary Least Square or Linear 

Square Regression Techniques (Rachev 2007) as well as making it nonlinear 

through Artificial Neural Networks.   

 

5.4 Back Propagation and Elman ANNs 
 

An Artificial Neural Networks is a crude approximation of biological neural 

networks.  A neural network is a fundamental unit of human and animal brains. A 

brain is merely an extremely large collection of connected neurons. Neurons 

communicate and pass signals through synapses where, in biological neurons, a 

signal is created by chemical interactions. A neuron typically receives signals 

through synapses on dendrites and sends signals through synapses on axons. An 

artificial neuron is a simplified version of the biological neurons. There are three 

basic elements of the artificial neuron. First, connecting links or synapses, each 

weighted by positive or negative values. Second, an adder is to sum up the input 

signal from the weighted synapses. Third, an activation function or a squashing 
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function is to limit the permissible amplitude range of the output signal to a range of 

finite value. Figure 5.1 shows a nonlinear model of a neuron. 

 

 

 

 

 

 

 

 

Figure 5.1: A nonlinear model of a neuron 

 

In this chapter, two kinds of Artificial Neuron Networks, namely, Back 

Propagation Networks and Elman Recurrent Networks have been used in 

experiment to forecast stock returns. In a Back Propagation Network, there are three 

or more layers with an input layer, an output layer and one or more hidden layers.  

Its output is a non-linear function of activation, usually a sigmoid function which can 

be stated mathematically. 

                                           
 

                        ∑                                        (5.3) 

 

Where, xj is jth input,  

Bias Өk Wk
X1 

Wk
X2 

ActivationF
n 

Ѱ(.) 𝚺 
. 

. 

. 

. 

. 

. 

Output y 

Summation Junction 

Wk
Xm 



107 
 

wj is weight associated with input xj, 

y is the output and 

Ө is the bias. 

The training algorithm is to adjust the weights as to minimise the error e with p sets 

or periods of data, which is given as, 

 

                               ∑ ∑          
                                                 (5.4) 

 

Where, yj is the jth output, and 

  tj is the actual value.   

For the output layer, the weight updates would be: 

 

                      ∑                                                              (5.5) 

 

Where, η is the learning constant.   

      is the change in weights from node k in the adjacent layer to the output 

layer,    

For the hidden layers, the weight updates would be: 
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                            ∑ ∑                            (    )                      (5.6)         

             

 

 

 

 

 

 

 

Figure 5.2: Graphical Model of a Typical Back Propagation Neuron Network 

 

Figure 5.2 depicts a graphical model of Back Propagation Network (BPN).  An 

Elman Recurrent Network includes a number of context units to accept signals from 

the hidden layer and feed them back as inputs to the hidden layer. Figure 5.3 shows 

the graphical model of an Elman Recurrent Network. BPNs and Elman ANNs are 

used in the next section to predict stock return for next T period ahead and modified 

to be evolved by encoded GAs in the next section.  
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Figure 5.3: Graphical Model of a Typical Elman Recurrent Neuron Network 

 

 

5.5 Evolutionary ANN Design 

5.5.1 The ANN and EA Encoding 

 The proposed encodings for the BPNs and RANs for evolving proposes use 

direct encoding for connection weights and indirect encoding for the number of 

hidden nodes and the number of layers. There are two set of evolving encoding 

genes, namely weight matrices and layer specification. A weight matrix describes 

weights of connections for each node (hidden and output nodes) to other hidden 

nodes in the immediate previous layer (may be the input layer for hidden nodes in 

the first hidden layer). The weight values are between -1 and 1. In the first 

generation the weights are randomly set up. Also when the structure of an ANN is 

changing, i.e. adding a hidden node or adding a hidden layer, the weights are also 
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randomly re-assigned.  In evolutionary process, each weight mutates to its current 

value plus a random number between -0.5 and 0.5. If the mutated value exceeds 

1then the weight will be set to 1. If the mutated values is below -1 then the weight will 

be set to -1. A layer specification is a vector of integer describing the number of 

hidden nodes in each layer excluding input layers, thus the length of layer 

specification is equal to the number of hidden node plus one of the output layers. In 

evolutionary process, after a mutation on connection weights cannot improve the 

performance of an ANN, a hidden node is added into the first hidden layer with all 

connection weights randomly reassigned. If the inclusion of a hidden node in the first 

hidden layer also cannot improve the performance of the ANN, a new hidden layer 

with 2 hidden nodes is put before the first hidden layer (then become the first hidden 

layer.)  

5.5.2 Evolutionary Algorithm 
 

The proposed Evolutionary Algorithm used in this chapter is a modified EP Net 

Algorithm from (Sharp 1964). The proposed EA is named Step-up Mutation 

Evolutionary ANN. As the name suggests, the algorithm begins with a mutation that 

has least effect on the structure of ANNs then “step-up” to have greater effect if the 

previous mutation fails to improve the performance of the ANNs. On the other hand, 

if the mutation can improve the performance, the new network will be selected while 

its parent will be discarded (dual tournament with its parent) and the loop will 

continue to the next iteration. The main loop is shown in Figure 5.4.  

 

.  



111 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The Step Wise Mutation of EANN Algorithm 
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The algorithm begins with random initialisation of a set of ANN encoding 

genetic boxes and then the creation of the corresponding ANNs.  All of the ANNs are 

initially trained to collect their preliminary fitness values. The selected ANNs then go 

under the “step-up” mutation with 3 conditional sub-steps, namely, connection weight 

mutations, hidden node mutations and connection mutations. The mutations are 

conditionally stepped-up in such a way that it will step at a sub-step if the trained 

corresponding ANN‟s fitness value (in this case, MCV value as described in the next 

section) is improved. The process repeats until the pre-specified round count is met. 

The algorithm does not have a mating operator but bases the evolution solely on the 

mutation operators. 

 

5.5.3 The EA Objective 
 

 Multifold Cross-Validation (MCV) is a method that makes efficient use of the 

available data. It is a sample re-used method to estimate prediction risk.  The EA 

objective is to minimise prediction risk of the EANN. MCV is essentially a 

perturbation refinement of Cross-Validation (CV) methods. The method can be 

described as follows: 

 Let the data set D be divided into m randomly chosen disjoint subsets Dj of 

roughly equal size.   

  jiforDDDD ji

m

j j 


,
1

                  
(5.7) 
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For each disjoint set j, CV is defined as 
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Where, 

 Dj , xk) is an estimator trained on all data except (x, t)  Dj , 

tk is the realized (actual) output, 

xk is the vector of all inputs and  

Nj is the number of observations in the subset Dj. 

Cross-Validation (CV) for all available data set of an ANN is a non-parametric 

estimation of the prediction risk.  
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A refinement is required for CV to become MCV. An ANN is trained on the entire set 

of data D to obtain estimates  (D, xk) with set of weights W0. The weights W0 are 

used as starting point for m-fold cross validation production procedure. Each subset 

Dj is removed from the training data in turn. The ANN is then retrained using the 

remaining data (starting at W0, not random initial weights) assuming that deleting a 

subset from training data set does not lead to a significant difference in the locally-

optima weights. These perturbed retraining from W0 yields Wi (i = 1 to m.) The MCV 

error is calculated for each “perturbed model” by the sum (tk -  (Dj, xk)) as an 

estimation of prediction risk of the model with W0. 
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Figure 5.5: Multi-fold Cross Validation for Selection of Optimal ANN Structure 

 

5.6 Experimentation 

 
 The forecast ANNs and the experiments were conducted with the Step-up 

Mutation EANN Algorithm proposed above with BPNs and Elman RANs without 

evolutions as well as forecasting from Linear Least Square Regression (LS) in order 

to compare their performances. All forecasting have been trained and tested  with 

monthly dividend and split adjusted return series from 1971 to 2007 on 10 selected 

stocks in US Stock markets, namely Alcoa (AA), Boeing (BA), Caterpillar (CAT), 

Dupont (DD), Disney (DIS),  General Electric (GE), General Motor (GM), Honeywell 

(HON), HP (HPQ) and IBM (IBM). The independent variables are 12 month time lag 

(from lag = -1 to -12) of changing on consumer price index (CPI), default yield 

spread, term yield spread, fed fund rate, industrial product, money supply (M), S&P 

500, unemployment rate, January effect (dummy variable) also stock returns own 

lags. These variables are selected based on some previous research related to 

economic factors that have or should have effects on stock prices (Roll 1980 and 

Oberuc 2004). The variables believe to have direct or indirect effects on stock prices 

Validating Set 

   Training Set 

1972 1977 1982 1987 1992 1997 
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can be described as follows. Change in consumer price index is a measure of 

inflation and inflation usually causes asset price to rise. Default yield spread, which is 

a spread between an A rating bond and a BBB rating bond, is observed to be widen 

with economic downturn and stock prices falling. Term yield spread, which is the 

spread between a long-term bond (usually 15 year remaining) and a short-term bond 

(1 year remaining), is observed to be widen when the economy prospers, and 

narrowed or even negative when the economy takes a downturn.  Fed fund rate is 

usually set high in an economic boom and low when the economy  is in recession. 

Industrial product tends to correlate with the level of economic activity and stock 

market cycle. Money supply also shows some correlation with economic and stock 

market cycles. S&P 500 is the stock index itself and according to CAPM, directly 

affects stock prices. In contrast, unemployment rate usually has negative correlation 

with the economic and stock market cycles. Lastly, it has been noticed that stock 

markets are usually driven high at the end of long Christmas and New Year holidays. 

This might be because some investors return to the markets after long holidays. 

Therefore, we add this variable as a dummy variable. The sets of data are paired 

between a dependent variable and a set of time lags independent variables (10 

nominal variables with 12 lags, in totality 120 including lags) to form pattern sets (10 

stocks in consideration thus 10 pattern sets.)  

 For training and testing the regression model (LS), BPNs and Elman RNNs, 

each pattern set is broken into 16 subsets: 8 subsets for training and 8 subsets for 

testing (1972 – 1999 for training and 2000 for testing, 1973-2000 for training and 

2001 for testing correspondingly to the eighth set 1978-2006 for training and 2007 for 

testing). But for training and testing the Evolutionary ANNs, each pattern set from 

1972-1997 is broken into 5 subsets (12 months for 5 years thus 60 patterns each.) 
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The subsets then form 5 training sets corresponding with a validating set for training 

and testing to obtain MCVs‟ value (see Figure 5.5). Then the best group of genes, 

which has the minimum MVCs of the last generation for each stock, is deployed to 

structure ANNs. The same pattern sets are used to train and test LS, BPNs and 

Elman RNNs.  

 The parameters for all BPNs, Elman RNNs and final training testing for 

EANNs are as follows: Since the experiment involves both evolutionary phase and 

training phase which takes a lot of time, epoch limit is 100 and error limit is 0.0. The 

learning constant is 1. The (initial for EANN) architecture is 1 hidden layer with 2 

nodes. The step-up evolution algorithm was run 50 generations on population of 10 

ANNs (5 BPNs and 5 Elman RANNs) with conditional mutation probability at 1 (a 

mutation will affect only if there is an improvement).  
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5.7 Results Analysis 
 

 

Figure 5.6: Comparing Average MCV values (Root Mean Square Error-RMSE)  of 

Linear Regression (LS), Backpropagation ANN (BPN) and Elman Recurrent ANN 

(Elman) 

 

 Figure 5.6 shows the results of five forecasting models‟s root mean square 

errors (RMSEs) in comparison among the others (y-axis is shown average RMSE 

values of the MCVs) The bar graphs show the corresponding values of LS, BPN, 

Elman and EANN from left to right. Note that lower RMSE value is better in the term 

of model‟s performance (means less error).       

In comparison among the four methods of forecasting, namely Linear 

Regression(LS), Back Propagation ANN, Elman RAN and Evolutionary ANN (EANN) 

for ten stock returns, the result shows that BPNs have better performances in all 

stock return forecasts than those of LS and Elman RANs. This result shows that to 
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increase the complexity of ANN by introducing recurrent networks does not always 

improve forecasting performances. For the EANNs, they are all but one (namely 

GM‟s) at least slightly better than those of BPNs. However, the improvements are 

not substantial. Most of EANNs have evolved only in initial weights of BPNs (AA, BA, 

CAT, DD and HON) only a few have evolved both initial weights and structures of 

BPNs (GE, HON and HPQ). Only for GM and IBM, evolved Elman RANs are 

selected. The experiment shows that optimal structures of ANN for prediction stock 

returns are not complicated. ANNs with only a single hidden layer mostly 

outperformed those with more hidden layers, thus they are not evolved to have more 

hidden layers. Also BPNs, which are comparatively simpler than Elman RANs, are 

mostly selected.      

 

5.8 Chapter Summary 
 

 The experimental results show that ANNs have the potential to make a better 

forecasting of financial and economics time series. In this research, a step has been 

taken by automatically evolving both initial and structures (number of hidden nodes 

and number of hidden layers). Compared to the traditional Linear Regressions, the 

ANNs show promising results and most of the proposed EANNs can improve the 

performances of the ANNs as expected even if the improvements are slight. There is 

ample room for further research. Firstly, the running time is quite long -- about 36 

hours for each stock return forecast. Due to limited computer power, one is unable to 

experiment with many populations and many generations.  Running the experiment 

in parallel high performance computer may improve the results, because we could 

run an experiment with more population members and more generation. This might 
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render more accurate forecasts. The EANN algorithm also can be modified for 

further improvement in accuracy, such as introducing more variations of ANNs or 

selection of inputs.  To apply the EANN to other related forecasting problems such 

as predicting stock volatilities, exchange rates, etc., is quite a natural step to do 

which we will use the EANN as choices of forecasting models in the next chapter.           
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Chapter 6 Fuzzy Model Selection 
 

6.1 Chapter Overview 
 

In this chapter, we design and test an algorithm to select the best forecasting 

model from a number of relevant models as we have surveyed in chapter 4. The idea 

is that a particular model may be best suited for use in some economic situation but 

not in others. If we can find rules linking a model and prevailing economic conditions 

at the time of forecasting, it would be helpful for better selection of forecasting 

models. If so, the predicting results will be closer to actual outcomes.  

There are many classes of models that can be used to forecast stock returns 

and volatilities. A class of model may perform best in some situations but not for all 

situations and all time. Its performance may depend on the prevailing economic and 

market situations. In this chapter, adaptive and dynamic model selection 

mechanisms are introduced. The selection rules are based on economic and 

financial variables. Hopefully, pooling all of the forecasting classes of models 

together will indeed improve the accuracy of the portfolio optimisation inputs and 

eventually improve the performance of portfolio selections. 

6.2 Methodology and Algorithm 
 

Fuzzy logic is a methodology in what is called “soft computing”. It is the main 

methodology to build expert systems where expert rules are combined and used for 

a particular knowledge domain. To select the best forecasting model given economic 

situations, there needs to be some rules, and the rules should not be made of crisp 

values otherwise they would be model relationships themselves. Thus, we design an 
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automatic selection system based on Fuzzy logic and GA.  Fuzzy logic theory has 

been discussed in Section 3.8, Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Model Selection Algorithm for Predictions of Stock Returns and 

Volatilities 
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The methodology can be described into 9 steps. The first step is to make 

forecasting of the interested values, in this research, stock returns and volatilities. In 

the second step, appropriate fuzzy profiles for the selecting variables (independent 

variables or input variables) are determined. Then, the variable data are to be 

fuzzified. The next step is to find for a given period which pair of models is the best in 

the term of minimising portfolio sharp ratio error. The best pair of models for entire 

training periods is determined. The fourth step is to generate all possible single 

variable rules of prediction, called the basic rule set.  After the basic rule sets are 

formed, in the fifth step, they are individually evaluated based on the fuzzified 

training data against the best pair of forecasting models. The scores are evaluated 

and set based on the right predictions adjusted by the degree of fuzzy membership. 

Then, all of the basic rules are ranked according to their scores.  In the sixth step, a 

number of basic rule set predictions, namely best variable- best rules, average best 

rules of all variables and average all variable-all rule, are performed. After, making 

prediction in each period, in order to make the basic rule set adaptive and up to date, 

it is updated to reflect the newly available data (the seventh step). After all 

predictions have been complete (the eighth step), its performance is evaluated 

according their portfolio sharp-ratio errors (the ninth step).     

6.3 Forecasting Models 
 

 There are nine classes of model which apply to both stock returns and 

volatilities.  The nine classes consist of 1) auto-regressive and moving average 

models (ARMA), 2) multi-variable ordinary least square fit models (OLS), 3) auto-

regressive back propagation neural network models (BPN-AR or BPN1), 4) multi-

variable back propagation neural network models (BPN-M or BPN2), 5) auto-
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regressive Elman neural network models (Elman-AR or ELM1), 6) multi-variable 

Elman neural network models (Elman-M or ELM2), 7) auto-regressive genetic neural 

network (GNN-AR or GANN1), 8) multi-variable genetic neural network (GNN-M or 

GANN2) and 9) historical mean models (MEAN). 

 Ordinary Least Square (OLS) is a technique most often used in Econometric 

model estimations for economic analyses and forecasting. OLS models assume 

linear relationship between the dependent variables and its corresponding 

independent variables. OLS models are in the form as follow (Greene 2008): 

                                               (6.1) 

Where,y is the dependent variable of the equation i.e. the variable to be forecasted, 

 x1, x2 and xN are  independent variables, 

  a is the equation intercept term , 

  b1, b2 and bN are coefficients of the variable x1,, x2 and xN respectively and 

  e is the error term.    

The actual OLS model is described in Table 6.1.  

 ARMA is a class of Time Series Regressions which are standard techniques 

to deal with forecasting stock returns and volatilities given that all stock returns and 

volatilities are time series in nature. Time series regressions assume linear 

relationship among independent variables and dependent variables. The differences 

from other regressions are they also include either autoregressive terms or moving 

average terms. The simplest kind of time series models is Autoregressive model 
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(AR) which has only lag-time dependent variables as independent variables. One 

can describe Autoregressive model as (Rachev 2007): 

                                                                                       (6.2) 

Where, xt,, xt-1, xt-2 and xt-N are the value of interested variable at time t, t-1, t-2 and t-

N respectively, 

   a is the equation intercept term , 

   b1, b2 and bN are coefficients of the variable xt-1, xt-2 and xt-N respectively and 

    e is the error term.    

Moving Average model (MA) is a time series model composed only of moving 

average.  The moving average included in a model may be ranged from previous 

period lagged term to N period lagged term. One can describe the model as follow 

(Rachav 2007): 

                                                                         (6.3) 

Where, xt,, xt-1, xt-2 and xt-N are the value of interested variable at time t, t-1, t-2 and t-

N respectively, 

 a is the equation intercept term , 

 c1, c2 and cN are coefficients of the variable et-1, et-2 and et-N respectively and 

 e is the error term.    

AR(p) is referred to an Autoregressive model which includes lagged terms 

from t = t-1 to t = t-p. So as MA(q) is referred to a Moving Average model which 

included lagged terms from t = t-1 to t = t-q.  
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 A model with both moving average and autoregressive terms is called ARMA 

model which can be specifically stated ARMA (p, q) to inform that how many 

autoregressive lagged terms and how many moving average lagged terms are 

included in the models. ARMA (p, q) can be described as follow (Rachav 2007): 

                                                                (6.4) 

Where, xt,, xt-1, xt-2 and xt-p are the value of interested variable at time t, t-1, t-2 and t-

p respectively, 

 a is the equation intercept term , 

 b1, b2 and bp are coefficients of the variable xt-1, xt-2 and xt-p respectively, 

 c1, c2 and cq are coefficients of the variable et-1, et-2 and et-q respectively and 

 e is the error term.    

The actual ARMA model is described in Table 6.1.  

Auto-regressive back propagation neural network models (BPN-AR or BPN1), 

Multi-variable back propagation neural network models (BPN-M or BPN2), Auto-

regressive Elman neural network models (Elman-AR or ELM1) and Multi-variable 

Elman neural network models (Elman-M or ELM2) have been described in Section 

5.4, Chapter 5. The actual specifications of these models are given in Table 6.1.    

Auto-regressive genetic neural network (GNN-AR or GANN1) and Multi-

variable genetic neural network (GNN-M or GANN2) are constructed according to 

Section 5.5, Chapter 5. The actual specifications of these models are also given in 

Table 6.1 
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Historical mean models (MEAN) are simply the average of past values. They 

can be stated mathematically as follow: 

                         
∑     

 
   

 
                                                         (6.5) 

Where, xt,is interested variable at time t (predicted),  

  xt-i is the past (ith previous period realised value) of interested variables, 

   N is the number of periods. 

For ARMA, OLS, BPN-AR, BPN-M, Elman-AR, Elman-M and MEAN, 

forecasting models are estimated from the previous 18 years of data (216 month 

periods) starting from January 1971 (1971 M01) to December 1988 (1988 M12). The 

forecasting models are re-estimated each year with shifting windows of 18 years of 

data (216 months) for the subsequent 18 years ending 2006. The estimated models 

are used to forecast the next 12 months from the ending of the estimating data, e.g. 

the first estimated models using data from 1971 M1 to 1988 M12 estimating data are 

used to forecast stock returns and volatilities from 1989 M1 to 1989 M12. The 

subsequent models are estimated from the next 216 months of data with 12-month 

shifting window to the last window of estimating data of 1989 M01 to 2006 M12. The 

last set of forecasting values are from 2007 M1 to 2007 M12. For GNN-AR and 

GNN-M, the estimation of models needs to be done in two phases. First, the optimal 

structures of Artificial Neural Networks (i.e. the number of hidden layers and the 

number of hidden nodes in each layer) must be chosen by means of evolutionary 

algorithms. Second, the optimally structured ANNs are trained (estimated) to be 

ready for forecasting.  Due to limited data availability, the evolutions of ANN 

structures use the subset of data of those for ANN training. In the structure evolution 
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phases, by the cross validation method, previous 15 years of data are partitioned 

into 5 cohorts, of 3 years each. Four cohorts are randomly chosen for training each 

of the population of ANNs. The remaining cohort is for choosing (for validating) the 

ANNs (to calculate the value of the objective function i.e. prediction error).  After the 

optimal ANN structure has been chosen, the ANN is trained by previous 18 years of 

data. The shifting window of data also applied for GNN-AR and GNN-M as in the 

rests of models described above.  The forecasting models produce 9 series of stock 

return forecasting and 9 series of stock volatility forecasting for all 17 stocks from 

1989 M01 to 2007 M12 which are used in the next steps.     
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Table 6.1 Descriptions of 9 Selectable models 

 

Note that in Table 6.1 dCPI(-1) =  change in Consumer Price Index (-1),  dBTY(-1)  =  

change in bond  yield term spread(-1), dRPM(-1) = change in risk premium(-1), 

Model Inputs for Return Inputs for Volatility Structure Output 

ARMA return(-1) to return(-6) volatility(-1) to volatility (-6) x0 = a1x-1 +…+ a6x-6 + e return
f
(0) or 

volatility
f
(0) 

OLS return(-1),  dCPI(-1),  

dBTY(-1), dRPM(-1), 

dFED(-1),   dM1(-1),    

dUM(-1), dSP500(-1)      

and dIPI(-1) 

volatility(-1),  dCPI(-1),   

dBTY(-1), dRPM(-1),      

dFED(-1),   dM1(-1),        

dUM(-1), dSP500(-1)      and 

dIPI(-1) 

x0 = a1x-1 + a2dCPI-1 + 

a3dBTY-1 + a4dRPM-1 + 

a5dFED-1 + a6dM1-1 + 

a7dUM-1   a8dSP500-1 + 

a9dIPI-1 + e 

return
f
(0), 

volatility
f
(0) 

BPN-AR 

(BPN1) 

return(-1) to return(-6) volatility(-1) to volatility (-6) Inputs: 6 Nodes 

Hidden1: 6 Nodes 

Output: 1 Node 

return
f
(0) or 

volatility
f
(0) 

BPN-M 

(BPN2) 

return(-1),  dCPI(-1),  

dBTY(-1), dRPM(-1), 

dFED(-1),   dM1(-1),    

dUM(-1), dSP500(-1)      

and dIPI(-1) 

volatility(-1),  dCPI(-1),   

dBTY(-1), dRPM(-1),      

dFED(-1),   dM1(-1),         

dUM(-1), dSP500(-1)      and 

dIPI(-1) 

Inputs: 10 Nodes 

Hidden1: 10 Nodes 

Output: 1 Node 

return
f
(0) or 

volatility
f
(0) 

Elman-AR 

(ELM1) 

return(-1) to return(-6) volatility(-1) to volatility (-6) Inputs: 6 Nodes 

Hidden1: 6 Nodes 

Output: 1 Node 

(Recurrent) 

return
f
(0) or 

volatility
f
(0) 

Elman-M 

(ELM2) 

return(-1),  dCPI(-1),  

dBTY(-1), dRPM(-1), 

dFED(-1),   dM1(-1),    

dUM(-1), dSP500(-1)      

and dIPI(-1) 

volatility(-1),  dCPI(-1),    

dBTY(-1), dRPM(-1),      

dFED(-1),   dM1(-1),        

dUM(-1), dSP500(-1)      and 

dIPI(-1) 

Inputs: 10 Nodes 

Hidden1: 10 Nodes 

Output: 1 Node 

(Recurrent) 

return
f
(0) or 

volatility
f
(0) 

GNN-AR 

(GANN1) 

return(-1) to return(-6) volatility(-1) to volatility (-6) Inputs: 6 Nodes 

Hidden Layers: Varied 

Hidden Nodes in each 

layer: Varied 

Output: 1 Node 

Elman or BPN 

return
f
(0) or 

volatility
f
(0) 

GNN-M 

(GANN2) 

return(-1),  dCPI(-1),  

dBTY(-1), dRPM(-1), 

dFED(-1),   dM1(-1),    

dUM(-1), dSP500(-1)      

and dIPI(-1) 

volatility(-1),  dCPI(-1),    

dBTY(-1), dRPM(-1),      

dFED(-1),   dM1(-1),        

dUM(-1), dSP500(-1)  and 

dIPI(-1) 

Inputs: 10 Nodes 

Hidden Layers: Varied 

Hidden Nodes in each 

layer: Varied 

Output: 1 Node 

Elman or BPN 

return
f
(0) or  

volatility
f
(0) 

MEAN return(-1) to return(-12) volatility(-1) to volatility(-12) x0 = (x-1 +…+ x-12)/12 return
f
(0) or 

volatility
f
(0) 
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dFED(-1) = change in fed-fund rate(-1), dM1(-1) = change in money supply(-1), 

dUM(-1) = change in unemployment rate(-1), dSP500 = change in stock index (S&P 

500)(-1) and dIPI(-1) = change in industry product index(-1); where (-1) stands for t-1 

or the values of the previous period. And (-2) to (-12) are (t-2) to (t-12) or n periods to 

the past.   

 

6.3 Impact of Input Errors to the Output of 

Portfolio Optimisation 
 

6.3.1 Portfolio’s Sharp Ratio Error 
 

 Sharp Ratio is a ratio that measures asset‟s or portfolio‟s returns adjusted by 

risk. Risk in the ratio is measured by standard deviation of asset‟s or portfolio‟s 

returns. Sharpe Ratio is defined as (Sharpe 1964) 

         
      

  
          (6.6) 

Where,  

SRp is Sharpe Ratio of a portfolio, 

Rp is return of the portfolio, 

Rf is the risk-free rate of return, 

σp is Standard deviation of the portfolio.  

Sharpe Ratio is essentially standardised excess return above risk free rate 

per unit of absolute risk as measured by standard deviation. In a sense, returns of 
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assets or of portfolio of assets cannot be compared directly because they may have 

different level of inherent risks. However, Sharpe Ratio has adjusted the level of risk 

so that it represents a standardised return that can be comparable among different 

assets and portfolios. For summarily comparing two assets or two portfolios, Sharp 

Ratio is the right tool to do the job.  To compare two portfolios, the larger Sharp Ratio 

portfolio is the better one.  

The objective is to find a portfolio that can handle model risk effectively. The 

proposed algorithm needs prove that it can render better portfolio, i.e. portfolio with 

larger Sharp Ratio on average and for large number of time periods. Portfolio 

optimisation is to construct a portfolio that satisfies two objectives simultaneously, 

i.e. minimisation of risk as measured by the portfolio‟s standard deviation and 

maximisation of the portfolio‟s return. This is actually to maximise Sharpe Ratio at a 

given level of returns or at a given level of risk.  Let consider two slightly different 

portfolios which have a slightly different proportion of asset wi. Comparing a 

forecasted portfolio‟s Sharpe Ratio and that of an actual portfolio‟s, the error of 

Sharpe Ratio (ESRp) can be calculated as follows:  
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For simplicity, let assume that Rf = 0. 
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Let us consider, 
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Substitute (6.10), (6.11), (6.12) and (6.13) in (6.9), 
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By rearranging terms, one has got,    
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Let us consider equation (6.15), according to the assumptions, one assumes that the 

original portfolio is optimal and the second portfolio is only infinitesimally changed 

from the original, thus we can approximate that  

  
                          (6.16) 

And, 

  
                                     (6.17) 

Terms inside the bracket {} are correlations of the assets. Since correlations between 

pair of assets are assumed to be the same from both cases, thus it can be 

approximated as follow: 

   ∑                 ∑        
 

     
          (6.18) 

 

From the equations (6.17) and (6.18), the third term is vanished and substituted in 

both equations into (6.15) given: 

     

   
  

  

  

 
 

    
  

  
 

  

  
 

    
  

           (6.19) 

 

6.4 Best Pairs of Prediction Models  
 

 There are 9 classes of models for predicting stock returns and another 9 

classes of models for predicting stock volatilities. There are 17 stocks to predict and 

216 monthly periods to forecast. The best class of model for each prediction is the 

one which has minimum error in each period. However, in this research, the best pair 
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of prediction models which yield minimum error for portfolio selection are to be 

determined. Thus, the best pair should neither be select based on their return model 

nor their volatility model alone but they should be selected based on a combination 

of both. An approximation of error for portfolio selection are used to evaluate and 

also to be the objective function for both Basic Fuzzy Rule set selection and the 

complex Fuzzy Rule Set selection by GA. By rearranging the terms of equation 

(6.19), the approximation of a unit change in Sharp Ratio Error is given as follows:    
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Where, Ri
f and σi

f are forecasted return and forecasted volatility from a return 

prediction model and from volatility prediction model for stock ith at a given period 

respectively.  

Ri and σi are actual return and actual volatility respectively for stock ith at a 

given period respectively. 

Rp and σp are approximated portfolio return and volatility respectively. Since 

no specific portfolio is predetermined, the market portfolio (i.e. S&P 500 index) is 

assumed. It has average return in the period from 1980 to 1999 of 0.011874 and 

volatility of S&P 500 index in the same periods has the average of 0.043027.    

wi is an approximated portion of stock ith in the portfolio. The portfolio of equal 

weighted stock is taken as general case. So, each stock has 1/17 weight in the 

portfolio i.e. 0.0588.  

 In each period from 1989 M1 to 2007 M12, ∆ESPp is calculated for all possible 

combinations of the return models and the volatility models (9x9 = 81 combinations) 
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and find their minimum values. The return model and the volatility model pair which 

produce the minimum value are set as the best pair of forecasting models in that 

period.  Note that less Sharp Ratio error is preferred to more, regardless of its 

absolute value. Neither an absolute operator nor a square is appropriate here.    

6.5 Fuzzy Profiles 
 

 Before fuzzification of the independent (predicting) variables can be made, the 

fuzzy profiles are to be determined. As a rule of thumb, the number of fuzzy profiles 

should be set as minimum but also be able to capture the distinction nature of value 

in question. Because fuzzy profiles are set based upon the linguistic meaning of 

ordinal classification which we tend to measure things in just only a few orders such 

as very hot, hot, warm, cold, very cold. Therefore, in this case, it is deemed 

appropriate that five profiles for each of those variables should suffice. The profiles 

are Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The shape of 

the profiles is set to be linear for Very High profile, inverted linear for Very Low and 

spike profiles for those of Low, Medium and High. For the lowest points (fuzzy 

membership degree = 1) of the Very Low linear profile and the highest points of the 

Very High inverted linear profile are set to the minimum values and maximum values 

in the ranges of data of the predicting variables from estimating period ( 1971 M1 to 

1988 M12). For those of spike profiles, the middle points of Low, Medium and High 

are set by the Fuzzy C-Means Algorithm (Yang 1993). To satisfy the condition that 

degrees of fuzzy membership are always in unity, the lowest points of the Very Low 

profiles are the middle points of Low profiles and the lowest points of Very High 

profiles are the middle points of High profiles. And the middle points of the Low 

profiles are the lowest points of the Medium profiles so as the middle points of the 
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High profiles are the highest point of the Medium profiles. Thus, all 5 profiles of a 

variable can be described by a vector of 5 numbers. Figure 6.2 shows the fuzzy 

membership profiles.     

 

 

 

 

 

 

 

Figure 6.2:  Fuzzy Membership Profiles of the Predicting Variables 

 

 For each of the predicting variables, point 1 and point 5 have been set to their 

minimum values and maximum values in the range of the estimating period as 

mentioned above. However, points 2, 3 and 4 are needed to determine the Fuzzy C-

Means (FCM) Clustering Algorithm. It is an algorithm for clustering which determines 

one piece of data to belong to two or more clusters. The FCM is an algorithm to 

maximise the following objective function: 

                   ∑ ∑    
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       (6.21) 

Where m is any real number greater than 1, in this experiment, it is set to be 2.00, in 

order to be consistent with the term of ||xi-cj||;  

1  

Low of VL and L 

5 

High of VL and L 

2 

High of VL 

Mid of L 

Low of M 

 

 

3 

High of L 

Mid of M 

Low of H 

 

 

4 

High of M 

Mid of H 

Low of VH 

 

 



136 
 

uij is the degree of membership of xi in the cluster j;  

xi is the ith of d-dimensional measure data; 

cj is the d-dimension center of the cluster and 

||*|| is any norm expressing the similarity between any measure data and the 

centre.   

The algorithm is an iterative optimisation of the objective function shown in 

(6.21). It consists of the following steps: 

Step 1: Initialise Uij = (uij) matrix as U(0) which is derived from equal partitioning from 

the  maximum values (points 1) and the minimum values (points 5) of points 2, 3 and 

4 of the vector C.  

Step 2: At k-step, calculate the centres of vectors C (k) = (cj) with U (k) using the 

following equation:  

        
∑    

   
 
   

∑    
  

   

         (6.22) 

Step 3: Update U(k) and U(k+1) 

         
 

∑ (
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‖     ‖
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       (6.23) 

 If ||U(k+1) – U(k) || < ε then STOP, else return to Step 2 (ε is set to 0.0000001).
i
 

 The algorithm yields Fuzzy C-Means of the data of three partitioned intervals 

between the maximum values and the minimum values of each predicting variables 

which are the points 2, 3 and 4 for creating its respective fuzzy profiles.   The fuzzy 
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profiles will be used to fuzzify the predicting variables both in finding the best basic 

rule set and the optimal complex rule set. They will also used in the forecasting 

periods.  

6.6 Fuzzy Basic Rule Set 

 
 A Fuzzy basic rule consists of a causal part and a result part. In this setting, 

an example of Fuzzy basic rule is “If Change in inflation (dCPI) is high, then the best 

pair of models are return model 1 and volatility model 4”. It can be seen that there 

are 9 predicting variables and each of them can be in 5 Fuzzy membership profiles 

or sets (a realised value of any variable is usually in 2 Fuzzy membership sets at the 

same time).  So, there are 9x5 or 45 possible causal units to form a causal part. For 

the result part, there are 9 return prediction models and 9 volatility prediction models 

or 81 possible combinations. Thus, in totality, there are 45x81 or 3645 Fuzzy basic 

rules. Obviously, the Fuzzy basic rules here are not truly Fuzzy rules because their 

result parts are not fuzzified values but pairs of models or pairs of objects which 

point to pairs of predefined crisp values. Since there are a large number of rules, 

they are organised in a particular order for convenience of scoring and utilisation.  

The Fuzzy basic rule sets are collected firstly as groups of rules for particular stocks, 

then as groups for the predicting variables and lastly as groups for Fuzzy profiles, as 

shown in Figure 6.3.     
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Figure 6.3:  Organisation of Fuzzy Basic Rule Set 

 

6.7 Evaluation of the Fuzzy Basic Rules 
 

 All possible Fuzzy basic rules are evaluated based on their predictive ability. If 

a Fuzzy basic rule can correctly predict the best pair of forecasting models using just 

the previous value of the predicting variable, it is given a credit weighted the 

predictive variable‟s degree of Fuzzy membership according to the Fuzzy profile 

stated in the causal part of the rule. Summing up credits for entire of the training 

period, each of the Fuzzy basic rules has its own score. A score for a Fuzzy basic 

rule of predicting variable ith with Fuzzy profile jth and result combination kth,  

accumulated through period 0 to period T (S0
T), can be stated as follows: 

Fuzzy basic Rule Set  

Rule Subset for stock 

#1 

Rule Subset for stock 

#17 

Rule Sub-Subset for 

Predicting Variable #1 
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          ∑   

 
                    (6.24) 

Where Mt (i,j) is Fuzzy membership degree of the realised value of predicting 

variable ith of Fuzzy profile (set) jth at time period t;  

Ct (k) is credit given to the combination pair of prediction models. If k refers to 

prediction models (e.g. return model #4 and volatility model #8) which match the best 

pair of prediction models for that time period t, it will have value equal to one, 

otherwise its value is zero.         

 After all Fuzzy basic rules are completely scored, those contained in each 

group of sub-sub-subset for Fuzzy profile, which have 81 rules, are sorted by 

descending order according to their scores. This sorted Fuzzy basic rule set will be 

used for predictions by model selections on step 7 (see Figure 5.1).        

6.8 Single Best Variable Best Rule (Basic 1) 
 

 There are three ways to use Fuzzy basic rule set to predict stock returns and 

stock volatilities. First, the values are predicted from the highest scored Fuzzy rule 

from all predicting variables. This method can be called as “Single Best Variable 

Best Rule” or SBVBR or Basic Rule Prediction 1. For each stock s, it can be stated 

mathematically for each time period predictions of stock return (rs
e) and of stock 

volatility (Ϭs
e ) respectively as follows: 
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⁄              (6.26) 

                 
    ∑                  

   .                                                      (6.27) 

 

Where M (v, i) is Fuzzy membership degree of the realised value of predicting 

variable v of Fuzzy profile (set) ith for the predicting time period. 

S (v, i, max) is a cumulative score prior to predicting time period according to 

(6.24) given to the combination pair of prediction models which have the maximum 

score of Fuzzy profile i of subset of all k (or all combinations of pairs of predicting 

models)  of variable v. 

Max (CFSv
max) is the maximum value of CFSv

max (6.27)  selected from all 

predicting variable v.  

 

6.9 Multiple Variable Best Rule (Basic 2) 
 

 The second method is called “Multiple Variable Best Rule” or MVBR or Basic 

Rule 2. This method is different from SBVBR in such a way that the predictions are 

weighted averages of all predictions from the predicting variables. The weighted 

averages are the products of corresponding Fuzzy membership degrees of the 

particular predicting variables and rule scores for the combination pair of prediction 

models which have the maximum score of the applicable Fuzzy profile of subset of 

the predicting variable or CFSv
max according to (6.27). The predictions of the stock 

return and volatility for a time period are; 
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    ∑   

  
        

       ∑     
     

    .      (6.29) 

 

6.10 All Variables All Rules (Basic 3) 
  

 The third method is called “All Variables All Rules” or AVAR or Basic Rule 3. 

This method uses all of the rules (which are equal to the combination of predicting 

models) of all Fuzzy profile sets of all predicting variables, thus 81 for each of Fuzzy 

profile set for each predicting variables. The predictions of stock return and volatility 

of a particular period are the results of weighted average values based on each of 

current individual rule score and the corresponding Fuzzy membership degrees of 

the particular predicting variables. The weighted factor or CFS of a particular Fuzzy 

rule is given as follows: 

CFS (v, i, k) =                          (6.30) 

Where M (v, i) is Fuzzy membership degree of the realised value of predicting 

variable v of Fuzzy profile (set) i for the predicting time period.  

S (v, i, k) is cumulative score prior to predicting time period according to (5.19) 

given to the combination pair of prediction models k of Fuzzy profile i of predicting 

variable v. 

The predictions of the stock return and volatility for a time period are:  
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6.11 The Experimental Results and Analysis 
 

 A number of experiments are conducted to find out whether the proposed 

Fuzzy model selection methods as described above will indeed outperform 

forecasting performance of each class of models. Since the Fuzzy selection is based 

on errors in forecasting Sharpe ratio of each stock (6.20), the performance 

measurement is based on the average portfolio Sharpe ratio errors of the Fuzzy 

selection algorithmic forecasting values (i.e. SBVBR or Basic Rule 1, MVBR or Basic 

Rule 2 and AVAR or Basic Rule 3) compared with those of the forecasting models. 

The outcomes of 72 periods from 2002 (January) to 2007 (December), 17 stocks for 

each period are run and evaluated.  

 The Fuzzy selection algorithm Basic 1, Basic 2 and Basic 3 are compared to 

other single forecasting classes of models (ARMA, OLS, BPN1, BPN2, ELM1, ELM2, 

GANN1, GANN2 and MEAN) to see whether the forecasts of any single class of 

model or a proposed Fuzzy selection algorithm is more reliable for the purpose of 

stock portfolio optimisation. The results of average portfolio Sharpe ratio errors of 

each proposed forecasting algorithm with the other single models for 17 stocks as 

the sample for all experiment for this thesis are presented in Table 6.2, 6.3 and 6.4 

accordingly. Finally, we include all of Basic 1, Basic 2 and Basic 3 in comparison 

among themselves and the other single forecasting model in Table 6.5.  
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Stock ID Basic 1 ARMA OLS BPN1 BPN2 ELM1 ELM2 GANN1 GANN2 MEAN Min Best 

AA_PSR 0.2728 0.4009 0.3273 0.6493 0.5614 1.8507 0.8321 15.004 6.2323 -0.031 -0.031 MEAN 

BA_PSR 8.3511 -0.151 -0.058 0.4196 0.1692 1.46 0.4162 -0.039 0.6891 -0.091 -0.151 ARMA 

CAT_PSR -0.365 -0.192 -0.1 -0.274 -0.304 0.4404 -0.184 11.738 4.3998 0.0508 -0.365 Basic 1 

DD_PSR -0.007 0.1892 0.1499 0.1737 0.1662 1.1921 0.3418 0.7865 -0.1471 -0.042 -0.147 GANN2 

DIS_PSR  0.2917 0.0916 0.1041 0.2396 0.2905 1.918 0.5991 -0.1058 7.5523 -0.124 -0.124 MEAN 

GE_PSR  -0.057 0.1573 0.2648 0.3133 0.1315 0.6005 0.2018 -0.0384 -0.0242 -0.073 -0.073 MEAN 

GM_PSR -0.047 0.0429 0.0429 1.5521 0.2862 1.5521 0.4628 -0.0069 -0.0479 -0.073 -0.073 MEAN 

HON_PSR 0.017 0.1284 0.0558 -0.14 -0.126 0.199 -0.126 7.9471 0.0396 -0.06 -0.14 BPN1 

HPQ_PSR -0.147 0.0937 -0.036 -0.154 -0.207 0.0657 -0.158 2.6202 1.0441 -0.099 -0.207 BPN2 

IBM_PSR  -0.124 0.1525 0.2055 0.0597 0.0174 0.1102 0.0349 4.6284 3.1852 -0.057 -0.124 Basic1 

JNJ_PSR -0.101 0.3875 0.3457 0.1254 0.1679 1.0712 0.3007 0.1678 -0.1021 0.012 -0.102 Basic1 

KO_PSR -0.078 0.1376 0.3078 0.5186 0.3724 2.1592 0.6293 -0.0467 0.0451 -0.068 -0.078 Basic1 

MMM_PSR 0.4492 0.1683 0.1164 0.2317 0.0809 1.0516 0.2176 -0.1403 0.7291 0.0158 -0.14 GANN1 

MRK_PSR  -0.189 0.2331 0.4133 0.5991 0.3754 0.5991 0.5071 -0.0565  -0.057 -0.122 -0.189 Basic1 

PG_PSR  -0.001 0.1753 0.0457 0.1498 0.0524 1.0653 0.2522 0.9326 1.706 0.0288 -0.001 Basic1 

UTX_PSR -0.321 0.0175 0.0853 -0.007 -0.018 0.9775 0.1217 3.5991 -0.3228 -0.009 -0.323 Basic1 

XOM_PSR -0.32 -0.084 -0.013 -0.038 -0.13 0.4098 -0.054 1.412 0.6303 -0.064 -0.32 Basic1 

 

Table 6.2 Average Shape Ratio Errors of Basic 1 (SBVBR) and Other Forecasting Models 

(Column) according to stock names (Row) 

  

Table 6.2 shows the comparison among the average Sharp Ratio errors 

resulting from SBVBR or Basic 1 to those of the other forecasting models The 

comparison shows that Basic 1 algorithm yields minimum average portfolio Sharp 

ratio error from 8 out of 17 stocks (CAT, IBM, JNJ, KO, MRK, PG, UTX and XOM), 

which is considered the best among other forecasting models. The next best is 

MEAN which yields minimum portfolio Sharp ratio error from 4 out of 17 stocks (AA, 

DIS, GE and GM). Although Basic 1 can beat all single model forecasting for 8 out 

of17 stock instances, 8 is still less than half of instances.  
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Stock ID Basic 2 ARMA OLS BPN1 BPN2 ELM1 ELM2 GANN1 GANN2 MEAN Min Best 

AA_PSR 0.2717 0.4009 0.3273 0.6493 0.5614 1.8507 0.8321 15.004 6.2323 -0.031 -0.031 MEAN 

BA_PSR 7.2684 -0.151 -0.058 0.4196 0.1692 1.46 0.4162 -0.039 0.6891 -0.091 -0.151 ARMA 

CAT_PSR -0.34 -0.192 -0.1 -0.274 -0.304 0.4404 -0.184 11.738 4.3998 0.0508 -0.34 Basic 2 

DD_PSR -0.024 0.1892 0.1499 0.1737 0.1662 1.1921 0.3418 0.7865 -0.147 -0.042 -0.147 GANN2 

DIS_PSR  0.2941 0.0916 0.1041 0.2396 0.2905 1.918 0.5991 -0.106 7.5523 -0.124 -0.124 MEAN 

GE_PSR  -0.054 0.1573 0.2648 0.3133 0.1315 0.6005 0.2018 -0.038 -0.024 -0.073 -0.073 MEAN 

GM_PSR -0.039 0.0429 0.0429 1.5521 0.2862 1.5521 0.4628 -0.007 -0.048 -0.073 -0.073 MEAN 

HON_PSR 0.0218 0.1284 0.0558 -0.14 -0.126 0.199 -0.126 7.9471 0.0396 -0.06 -0.14 BPN1 

HPQ_PSR -0.217 0.0937 -0.036 -0.154 -0.207 0.0657 -0.158 2.6202 1.0441 -0.099 -0.217 Basic 2 

IBM_PSR  -0.109 0.1525 0.2055 0.0597 0.0174 0.1102 0.0349 4.6284 3.1852 -0.057 -0.109 Basic 2 

JNJ_PSR -0.081 0.3875 0.3457 0.1254 0.1679 1.0712 0.3007 0.1678 -0.102 0.012 -0.102 GANN2 

KO_PSR -0.057 0.1376 0.3078 0.5186 0.3724 2.1592 0.6293 -0.047 0.0451 -0.068 -0.068 MEAN 

MMM_PSR 0.4225 0.1683 0.1164 0.2317 0.0809 1.0516 0.2176 -0.14 0.7291 0.0158 -0.14 GANN1 

MRK_PSR  -0.13 0.2331 0.4133 0.5991 0.3754 0.5991 0.5071 -0.057 -0.057 -0.122 -0.13 Basic 2 

PG_PSR  0.0613 0.1753 0.0457 0.1498 0.0524 1.0653 0.2522 0.9326 1.706 0.0288 0.0288 MEAN 

UTX_PSR -0.304 0.0175 0.0853 -0.007 -0.018 0.9775 0.1217 3.5991 -0.323 -0.009 -0.323 GANN2 

XOM_PSR -0.318 -0.084 -0.013 -0.038 -0.13 0.4098 -0.054 1.412 0.6303 -0.064 -0.318 Basic 2 

Table 6.3 Average Shape Ratio Errors of Basic 2 (MVBR) and Other Forecasting Models 

(Column) according to stock names (Row) 

  

 

Table 6.3 shows the comparison among the average Sharp Ratio errors 

resulting from MVBR or Basic 2 to those of the other forecasting models. The 

comparison shows that Basic 2 algorithm yields minimum average portfolio Sharp 

ratio error from only 5 out of 17 stocks (CAT, HPQ, IBM, MRK and XOM) which is 

considered the second place while those of MEAN yield 6 out of 17 stock instances 

(AA, DIS, GE, GM, KO and PG) which is considered the best among other 

forecasting models.    

 

 



145 
 

 

Stock ID Basic 3 ARMA OLS BPN1 BPN2 ELM1 ELM2 GANN1 GANN2 MEAN Min Best 

AA_PSR -0.084 0.4009 0.3273 0.6493 0.5614 1.8507 0.8321 15.004 6.2323 -0.031 -0.084 Basic 3 

BA_PSR -0.374 -0.151 -0.058 0.4196 0.1692 1.46 0.4162 -0.039 0.6891 -0.091 -0.374 Basic 3 

CAT_PSR -0.456 -0.192 -0.1 -0.274 -0.304 0.4404 -0.184 11.738 4.3998 0.0508 -0.456 Basic 3 

DD_PSR -0.145 0.1892 0.1499 0.1737 0.1662 1.1921 0.3418 0.7865 -0.147 -0.042 -0.147 Basic 3 

DIS_PSR  -0.268 0.0916 0.1041 0.2396 0.2905 1.918 0.5991 -0.106 7.5523 -0.124 -0.268 Basic 3 

GE_PSR  -0.073 0.1573 0.2648 0.3133 0.1315 0.6005 0.2018 -0.038 -0.024 -0.073 -0.073 Basic 3 

GM_PSR -0.044 0.0429 0.0429 1.5521 0.2862 1.5521 0.4628 -0.007 -0.048 -0.073 -0.073 MEAN 

HON_PSR -0.211 0.1284 0.0558 -0.14 -0.126 0.199 -0.126 7.9471 0.0396 -0.06 -0.211 Basic 3 

HPQ_PSR -0.38 0.0937 -0.036 -0.154 -0.207 0.0657 -0.158 2.6202 1.0441 -0.099 -0.38 Basic 3 

IBM_PSR  -0.054 0.1525 0.2055 0.0597 0.0174 0.1102 0.0349 4.6284 3.1852 -0.057 -0.057 MEAN 

JNJ_PSR -0.11 0.3875 0.3457 0.1254 0.1679 1.0712 0.3007 0.1678 -0.102 0.012 -0.11 Basic 3 

KO_PSR -0.101 0.1376 0.3078 0.5186 0.3724 2.1592 0.6293 -0.047 0.0451 -0.068 -0.101 Basic 3 

MMM_PSR -0.053 0.1683 0.1164 0.2317 0.0809 1.0516 0.2176 -0.14 0.7291 0.0158 -0.14 GANN1 

MRK_PSR  -0.182 0.2331 0.4133 0.5991 0.3754 0.5991 0.5071 -0.057 -0.057 -0.122 -0.182 Basic 3 

PG_PSR  -0.226 0.1753 0.0457 0.1498 0.0524 1.0653 0.2522 0.9326 1.706 0.0288 -0.226 Basic 3 

UTX_PSR -0.313 0.0175 0.0853 -0.007 -0.018 0.9775 0.1217 3.5991 -0.323 -0.009 -0.323 GANN2 

XOM_PSR -0.326 -0.084 -0.013 -0.038 -0.13 0.4098 -0.054 1.412 0.6303 -0.064 -0.326 Basic 3 

Table 6.4 Average Shape Ratio Errors of Basic 3 (AVAR) and Other Forecasting Models 

(Column) according to stock names (Row) 

 

Table 6.4 shows the comparison among the average Sharpe Ratio errors 

resulting from AVAR or Basic 3 to those of the other forecasting models. The 

comparison shows that Basic 3 algorithm yields minimum average portfolio Sharp 

ratio error for 13 out of 17 stocks (AA, BA, CAT, DD, DIS, GE, HON, HPQ, JNJ, KO, 

MRK, PG and XOM), which is considered the best among other forecasting models. 

The next best is MEAN which yields minimum portfolio Sharp ratio error from 2 out of 

17 stocks (GM and IBM).   
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Stock ID Basic 1 Basic 2 Basic 3 ARMA OLS BPN1 BPN2 ELM1 ELM2 GANN1 GANN2 MEAN Min Best 

AA_PSR 0.273 0.272 -0.08 0.401 0.327 0.649 0.561 1.851 0.832 15.004 6.2323 -0.03 -0.08 Basic 3 

BA_PSR 8.351 7.268 -0.37 -0.15 -0.06 0.42 0.169 1.46 0.416 -0.039 0.6891 -0.09 -0.37 Basic 3 

CAT_PSR -0.37 -0.34 -0.46 -0.19 -0.1 -0.27 -0.3 0.44 -0.18 11.738 4.3998 0.051 -0.46 Basic 3 

DD_PSR -0.01 -0.02 -0.14 0.189 0.15 0.174 0.166 1.192 0.342 0.7865 -0.147 -0.04 -0.15 GANN2 

DIS_PSR  0.292 0.294 -0.27 0.092 0.104 0.24 0.29 1.918 0.599 -0.1058 7.5523 -0.12 -0.27 Basic 3 

GE_PSR  -0.06 -0.05 -0.07 0.157 0.265 0.313 0.132 0.601 0.202 -0.0384 -0.024 -0.07 -0.07 Basic 3 

GM_PSR -0.05 -0.04 -0.04 0.043 0.043 1.552 0.286 1.552 0.463 -0.0069 -0.048 -0.07 -0.07 MEAN 

HON_PSR 0.017 0.022 -0.21 0.128 0.056 -0.14 -0.13 0.199 -0.13 7.9471 0.0396 -0.06 -0.21 Basic 3 

HPQ_PSR -0.15 -0.22 -0.38 0.094 -0.04 -0.15 -0.21 0.066 -0.16 2.6202 1.0441 -0.1 -0.38 Basic 3 

IBM_PSR  -0.12 -0.11 -0.05 0.153 0.206 0.06 0.017 0.11 0.035 4.6284 3.1852 -0.06 -0.12 Basic 1 

JNJ_PSR -0.1 -0.08 -0.11 0.388 0.346 0.125 0.168 1.071 0.301 0.1678 -0.102 0.012 -0.11 Basic 3 

KO_PSR -0.08 -0.06 -0.1 0.138 0.308 0.519 0.372 2.159 0.629 -0.0467 0.0451 -0.07 -0.1 Basic 3 

MMM_PSR 0.449 0.423 -0.05 0.168 0.116 0.232 0.081 1.052 0.218 -0.1403 0.7291 0.016 -0.14 GANN1 

MRK_PSR  -0.19 -0.13 -0.18 0.233 0.413 0.599 0.375 0.599 0.507 -0.0565 -0.057 -0.12 -0.19 Basic1 

PG_PSR  -0 0.061 -0.23 0.175 0.046 0.15 0.052 1.065 0.252 0.9326 1.706 0.029 -0.23 Basic 3 

UTX_PSR -0.32 -0.3 -0.31 0.017 0.085 -0.01 -0.02 0.977 0.122 3.5991 -0.323 -0.01 -0.32 GANN2 

XOM_PSR -0.32 -0.32 -0.33 -0.08 -0.01 -0.04 -0.13 0.41 -0.05 1.412 0.6303 -0.06 -0.33 Basic 3 

Table 6.5 Average Shape Ratio Errors of Basic 1 (SBVBR), Basic 2 (MVBR), Basic 3 (AVAR) and 

Other Forecasting Models (Column) according to stock names (Row) 

 

 

 Comparing among the three proposed Fuzzy selection algorithms and with 

the other single forecasting classes of models, Basic 3 is the best forecasting 

algorithms so far. It yields minimum average portfolio Sharp ratio errors for 11 out of 

17 stock instances (AA, BA, CAT, DIS, GE, HON, HPQ, JNJ, KO, PG and XOM). 

(Note that when comparing to other single forecasting models as reported in Table 

6.4, Basic 3 is best for 13 out of 17, however, when we include Basic 1 and Basic 2, 

it is best for only 11 out of 17.)   Basic 1 and GANN2 are considered the next best by 

beating 2 out of 17 stock instances equally (IBM and MRK for Basic 1; and DD and 

UTX for GANN2).  The remaining stock instances are taken by MEAN (GM) and 

GANN1 (MMM) (see Table 6.5).  
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6.12 Summary 
 

 In this chapter, three model selection algorithms, namely Basic 1 (SBVBR), 

Basic 2 (MVBR), and Basic 3(AVAR) are introduced and compared with single 

classes model forecasting. Evaluation is performed by comparing average Sharp 

ratio errors of the three proposed algorithms of Fuzzy model selection with all single 

model forecasting. The results show that Basic 3 is the best selection algorithm both 

when compared with all single model forecasting and with the model selection 

algorithms combined. Basic 1 is the next best algorithm for out-of-sample forecasting 

of stock Sharp ratios. We intend to use the results in this chapter as inputs to our 

proposed optimisation module. The complete portfolio optimal system will be 

evaluated as a whole. Therefore, we have just roughly evaluated the result in this 

chapter.     
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Chapter 7 Portfolio Optimisation 

with Minimum Expected Errors 

Using Multi-Objective Genetic 

Algorithm 
 

7.1 Chapter overview 
 

Generally the inputs for the Markowitz models are expected or forecasted 

asset returns and asset risk measures. If all asset returns are assumed to follow a 

normal distribution with constant long term mean, the inputs for the optimisation 

problem are the constant long term means and standard deviations. However, if the 

normal distribution assumption is not true, especially for the short term, the means 

and standard deviations vary from time to time. In order to find a short term optimal 

portfolio, those expected returns and standard deviations are usually forecasted 

based on some mathematical or computational models which have previous values 

and some previous economic variables as independent variables that are always 

changing when the markets and the economies in question are moving. However, 

those forecasting models are far from perfect. In fact, even the best forecasting 

models in economics and finance are very inaccurate when compared to those of 

physical science and engineering. The inaccuracy of the forecasting models is a 

source of model risk. It also needs to cope and to take care of this risk in order to 

select a portfolio that is nearest to the optimal one. In this chapter as in the earlier 

Chapter 4, the research is based on a realistic case with all realistic constraints 

imposed, and we choose a genetic algorithm which is an approximate algorithm to 
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solve the problem. Novel algorithms are proposed in such a way to optimise a 

portfolio while also taking care of model risk.    

This chapter is organized as follows. After problems of Markowitz‟s portfolio 

optimisation model are described in Section 7.2, in Section 7.3, the concepts of 

model risk are briefly discussed. The Multi-Objective Genetic Algorithms, which is 

modified to use in this research, are described in Section 7.4. Section 7.5 provides 

the settings of the experimentation. The results of the experiment and their analyses 

are discussed in Section 7.6. Finally, a summary of finding is given in Section 7.7. 

 

7.2 Portfolio Optimisation and Modern Portfolio Theory 
 

Modern portfolio theory originated from Morkowitz‟s seminal paper (Markowitz 

1952). The theory is based on economic theory that economic agents are, facing any 

economic decisions, rational and thus are trying to maximise their utility given budget 

constraints. The Markowitz Mean-Variance Model assumes that investors make their 

decisions in portfolio construction by choosing assets that maximise their portfolio 

return at the end of investment period (expected return).  By assuming that investors 

are risk averse, the simplest model with a number of unrealistic constraints, namely 

perfect market without taxes, no transaction costs and infinitely divisible assets, the 

Markowitz portfolio optimisation can be stated mathematically as follows: 
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           (7.1) 

 
Subject to 
 

     
                  ∑ ∑             

                           

                        ∑       

   ∑                    
                

 

Where, ij is covariance between asset i and j, if i = j, it is variance of asset i.  


2
P is variance of the portfolio of assets. 

   ri is expected return of asset i.  

   rP is the expected return of the portfolio  

 

The Markowitz‟s model has many criticisms concerning its simplification for 

the sake of the ease of solving by simplifying representations of the problem.  

Besides imposing some unrealistic constraints and ignoring some realistic 

constraints, the objective function is considered unrealistic too. The portfolio 

optimisation objective is to find a combination of the least risky assets providing a 

level of portfolio return. To optimise a portfolio of assets, we find a combination of 

assets which minimise risk of a portfolio given an expected return. There are two 

problems of definitions here. First, how one can measure the “risk”, since the original 

meaning of risk is subjective and depend on individual‟s risk appetite. Second, how 

can we estimate the expected return since all of returns of assets are to be realized 

in the future?  This will lead to an important assumption of the model, whether 

expected return in the future is certainly known. By taking the estimated returns of 

assets for granted, one can optimise the model based on them. Alternatively, by 

assuming that the returns of assets in the future are not certain but follow some 
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stochastic rule, the result will be a stochastic optimisation problem. Another aspect of 

modeling is whether the investor cares only for the next period or cares also for a 

number of consecutive outcomes in the future, or cares for any moment cumulatively 

from now to the end of investment period. The objective function will need to be 

adjusted for single period optimisation or for multi-period optimisation or dynamic 

optimisation accordingly. There are also some motivations to alter the objective 

function of portfolio optimisation problem for other purposes beside the 

aforementioned “theoretical” issues. The objective function may be modified for 

convenience of solving, such as to reduce complexity of computation, to make 

compatible with some known solving methods or algorithms, etc.  

A crucial issue for portfolio optimisation is how one can find the model‟s 

inputs. There are two inputs, namely the measure of risk and the estimated asset 

return that must be estimated or forecasted, because according to the theory these 

inputs must represent the uncertain values and will be realised in the future.  

Optimising the portfolio selection model with error estimations of the inputs will lead 

to the wrong combination of assets and thus inefficient portfolio. This is model risk 

which this research attempts to handle.         

 

7.3 Model Risk 
 

There are many definitions of model risk around. As far as we are concerned, 

especially for this chapter, model risk is defined in a broad sense as follows:  Model 

risk is the risk that one uses inaccurate models to make a decision or to assist in a 

process of making a decision, and by making such decision, leads to financial loss or 

misleads by miscalculation of the possibility of financial loss. For other definitions, 
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Kato and Yoshiba (Kato 2000) defined model risk separately in the area of pricing 

model and of risk measurement model. In pricing models, model risk is defined as 

“the risk arising from the use of a model which cannot accurately evaluate market 

prices, or which is not a mainstream in the market.” And in the risk measurement 

model, model risk is defined as “the risk of not accurately estimating the probability 

of future losses.” In the same paper, the sources of model risk in pricing model are 

described as the use of wrong assumptions, errors in estimations of parameters, 

errors resulting from discretisation and error in market data. While the sources of 

model risk in risk measurement model are the difference between assumption and 

actual distribution and error in the logical framework of the model.  

In another perspective, Derman (Derman 1996) classifies financial models 

into three categories, namely fundamental models, phenomenological models and 

statistical models. Different categories of models are prone to different sources of 

model risk. For the fundamental models which are mathematical models based on a 

set of postulates, the sources of model risk are wrong assumptions and wrong 

inputs. For the phenomenological models which are based on observations of the 

underlying behaviors, the main sources of risk are attempting to apply beyond their 

validity ranges and situations. Unlike both of aforementioned categories which 

embody some sort of causality, the statistical models rely on correlation rather than 

causation. The users of the statistical models hope that the correlations underpinning 

the models would eventually result from the cause and effect so that the correlations 

would be stable overtime. The main sources of model risk for this kind of models are 

misspecification, i.e. constructing models with the wrong variables or the wrong 

relationship functions, and instability of correlations which causes the model to be 

applicable for only a limited period of time.  
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In portfolio optimisation based on equation (7.1), it is crucial to accurately 

forecast portfolio return which can be calculated from returns of assets at the end of 

an investment period as well as portfolio standard deviation which can be calculated 

from standard deviations of the returns of assets during the period of investment. 

Note that the original Markowitz model uses means and standard deviations of 

assets returns as the best prediction of the future returns and volatilities of assets 

under the assumption that all assets‟ returns follow a certain statistical distribution, 

i.e. normal distribution. Most models used to forecast stock returns and standard 

deviations including that of past means and past standard deviations are a kind of 

the statistical models. Their predictability may suffer from the instability of 

correlations overtime. This kind of model risk in turn causes the outcomes of portfolio 

optimisation to be suboptimal, i.e. shortfalls in expected portfolio returns or larger 

volatilities than expected and thus lager probability of future losses.  

There are a number of measures to manage or mitigate model risks. These 

measures are complimentary rather than substitutable. Firstly, models used in any 

decision making need to be reviewed by an independent model controller and 

reported to the management. Secondly, the persons who make uses of models need 

to be aware of the limitations of the models. Thirdly, models need to be thoroughly 

examined for their validity and limitations before being put into use. Fourthly, models 

in use are subjected to regular reviews (Kato 2000).  

A measure is proposed to handle model risk by embedding stock selections 

based on predicted accuracy or validity of their forecasting models in the portfolio 

selection process. Forecasting models are mostly statistical ones which often suffer 

from their instability. To have a pool of models for the same subjects and 

dynamically evaluate and select the best among them is obviously a way to mitigate 
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model risk. In this case, one has a number of somewhat substitutable assets (stocks) 

which have different expected returns, expected volatilities, and the capability to 

forecast them (i.e. model risk). As one puts the minimisation of model risk into the 

portfolio selection process, we could effectively handle model risk.   

The objective is to find a portfolio that can handle model risk effectively. The 

proposed algorithm should also render a better portfolio, i.e. a portfolio with a larger 

Sharpe Ratio on average and for most of time. The aim is to construct a portfolio that 

optimizes two objectives simultaneously, i.e. minimisation of risk as measured by the 

portfolio‟s standard deviation and maximisation of the portfolio‟s return. This is 

actually to maximise Sharpe Ratio at a given level of returns or at a given level of 

risk. 

 

7.4 Multi-objective Genetic Algorithms for Portfolio 

Optimisation 
 

We deploy the Multi-Objective Genetic Algorithm for portfolio optimisation 

here, which is based on MOGA proposed by Fonseca and Flemming in 1993 

(Fonseca 1993) as well as SPEA2 proposed by Zizler et al. (2001). MOGA relies on 

Pareto rankings to assign the smallest ranking value to all non-dominated 

individuals. On the other hand, for those dominated individuals, they are ranked by 

how many individuals in the population actually dominate them. Thus, the raw fitness 

of an individual is an inverse function of its Pareto rank. MOGA for two objectives 

portfolio optimisation is to rank individuals in the population by portfolio return (to 

maximise) and portfolio standard deviation (to minimise). To state by equations, the 

two objectives can be stated as follows 
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                      ∑     
 
                                (7.2) 

                      ∑ ∑            
 
 

 
        (7.3) 

Where, 

xi is a proportion of the asset i in the portfolio of assets, 

xj is a proportion of the asset j in the portfolio of assets, 

ij is the correlation coefficient between asset i and j, 

P is expected standard deviation of the portfolio of assets, 

i is expected or forecasted standard deviation of asset I, 

j is expected or forecasted standard deviation of asset j, 

rpi is the expected return of the portfolio of assets and 

ri is expected or forecasted return of asset i.  

 

For the purpose of handling model risk from forecasting asset returns and 

standard deviations, the third objective is added into the original two-objective 

MOGA, and we referred to it as MOGA3O here. The third objective is based on the 

equation (6.14) and can be stated as follow: 

 

                        ∑    
     

   
   

           (7.4) 

 

Where, SREP is the approximated Sharpe ratio error of the portfolio of assets 

resulting from inclusion of all of the assets. 
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 is the approximate impact to portfolio Sharpe ratio error of inclusion of 

asset i into the portfolio. The term is square to eliminate the sign (see equation 6.14).   

In order to distribute the individual in the population evenly along the Pareto 

front, the overall fitness function is then adjusted by sum of sharing distance. The 

sharing distance between individuals i and j is given by: 

 

       
 (     )

      
                      (     )                (7.5)

                                             (     )           

 

Where, d(xi, xj) is a metric distance between two individuals in objective domain,         

                    is a predefined sharing distance.  And, the overall fitness is defined by    

 

      
      

∑      
          (7.6) 

Where, fit (i) is the inverse of Pareto rank (i) (1/rank (i) in this test). 

The overall fitness values of individuals are to be used in the probabilistic 

selection process by the comparative overall fitness to the individual that has 

maximum overall fitness. The comparative fitness values are used to compare with 

random number.  If they exceed the random number, the individual will be selected 

(roulette selection method).  MOGA usually has O (n2) for a single round, because it 
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needs to compute Pareto ranks and the sharing distance for all individuals. The 

pseudo code for MOGA is shown in Figure 4.4, Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Pareto ranking in Java code (three-objective MOGA) Figure 6.2: 

 

Figure 7.1: Calculation of Pareto Front Routine 

 

While in SPEA2, the size of P‟ is fixed, the non-dominated individuals in a 

generation exceeding the size of P‟ will be removed. In contrast, if they are less than 

P‟ then some dominated individuals will be included in the archive P‟. The exclusions 

and inclusions of dominated individuals are incorporated onto density information as 

a strategy to make the solutions distribute along the Pareto front.  The density 

// compute Pareto Rank for each port 

for(Portfolio ith: pop) {     // for ith 

int q = 1; 

for(Portfolio jth: pop) {     // for jth 

if( (ith.getPortYield() <jth.getPortYield()) && (ith.getPortStd() >jth.getPortStd()     
&&(ith.getPortPSRError() >jth.getPortPSRError()))|| 

(ith.getPortYield() <jth.getPortYield()) && (ith.getPortStd() >jth.getPortStd() 
 && (ith.getPortPSRError() == jth.getPortPSRError()))|| 

(ith.getPortYield() <jth.getPortYield()) && (ith.getPortStd() == jth.getPortStd() 
 && (ith.getPortPSRError() >jth.getPortPSRError()))|| 

(ith.getPortYield() == jth.getPortYield()) && (ith.getPortStd() >jth.getPortStd() 
 && (ith.getPortPSRError() >jth.getPortPSRError()))|| 

(ith.getPortYield() == jth.getPortYield()) && (ith.getPortStd() == jth.getPortStd() 
&& (ith.getPortPSRError() >jth.getPortPSRError()))|| 

(ith.getPortYield() == jth.getPortYield()) && (ith.getPortStd() >jth.getPortStd() 
 && (ith.getPortPSRError() == jth.getPortPSRError()))|| 

(ith.getPortYield() <jth.getPortYield()) && (ith.getPortStd() == jth.getPortStd() && 
(ith.getPortPSRError() == jth.getPortPSRError()))) 

q++; 

 }     // for jth 

ith.setParetoRank(q); 

ith.setFitness((1/(double)q)); 
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estimation of an individual i is defined as D (i) = 1/(di+2), where di is the distance of 

individual i from the nearest neighbor. SPEA2 deterministically selects all non-

dominated individuals from the population P in the first round and then selects the 

combined population of P and archive of P‟ in the subsequent rounds. SPEA2 

usually has O (N2 log N) complexity in a single round, due to the density estimation 

calculation (Zitzler 2004.)   

The problem is represented by hybrid encoding (Streichert 2004a, 2005). A 

pair of genetic strings stands for a particular portfolio (an individual of population) as 

discussed in Section 4.3 in Chapter 4. The binary value string represents which 

stocks (or assets) are included in portfolio (0 stands for not included and 1 stands for 

included). The real value string represents the weight of each stock in portfolio. So, 

the lengths of both strings are equal to the number of stocks in the market (or the 

stocks of interest.) The strings are generated with their real elements normalised in 

such a way that the summation of all elements of each combined string is always 

one. Before the repair algorithm begins, both strings combine by scalar product of 

the Binary string and the Real value string. Then after the repair process ends, the 

combined string is normalised to ensure that the summation of all elements is one. 

Finally, the combined string separates into new and normalized Binary string and 

Real value string (see Figure 4.1).  

Crossover and mutation operations are performed independently for both 

strings. But before evaluation both strings need to be combined so that the objective 

values can be calculated.  Crossover operation for all GAs is a three-point crossover 

by randomly selecting three points for the string independently. Mutation operation 

for all algorithms in this paper is a one-point mutation by randomly selecting the 

mutation point.  For Binary strings, the mutation is a flip-flop mutation by changing 
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from 1 to 0 and 0 to 1 respectively. For those of real value strings, mutation points 

are added by random numbers (between 0 and 1) multiplying by 0.1 (5% weight.)  

The Markowitz model is a simplified model to focus only a theoretical point of 

view. In investment management practices, portfolio managers face a number of 

realistic constraints arising from normal business practices, practical matters, and 

industry regulations.  The realistic constraints that are of practical importance include 

(not exhaustively) integer constraints, cardinality constraints, floor and ceiling 

constraints, turnover constraints, trading constraints, buy-in threshold, and 

transaction cost inclusions.  Integer constraints or round lot constraints require the 

number of any asset included in the portfolio be an integer or be indivisible (i.e. 

cannot be in any fraction of normal trading lot). This may not suffer for GA 

optimisations because they are combinatorial but suffers for other optimisation 

methods that require continuity of the variables. The integer constraints (or round-lot 

constraints) can be expressed in equation (4.5) and (4.6). Cardinality constraints are 

the maximum number and minimum number of assets that a portfolio manager 

wishes to include in the portfolio due to monitoring reasons or diversification reasons 

or transaction cost control reasons (Stein 2005).  The constraint is mathematically 

described in equation (4.7). Floor and ceiling constraints define lower and upper 

limits on the proportion of each asset which can be held in a portfolio. These 

constraints may result from institutional policy in order to diversify portfolio and to 

rule out negligible holding of assets for the ease of control (Crama 2003). They have 

been expressed mathematically as follows 

                                               (7.7) 
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Where fi and ci are the lowest proportion and the highest proportion that asset i can 

be held in the portfolio respectively.   

The repair algorithm first handles the cardinality constraints by setting smaller 

(S-K) values (from S values) of combined string to zero, where S is the number of 

selectable stocks (equal to the length of the strings) and K is the maximum number 

of stocks permitted in a portfolio (cardinality constraint.) Then, it handles floor 

constraint (buy-in threshold) by setting stocks whose weights are below the buy-in 

threshold to zero. Next, it normalizes those remaining non-zero weights to make all 

weight sum to 1 by setting wi
/ = li +  (wi – li ) / 𝚺(wi – li ) , where wi is non-zero weight 

of stock i and li  is the buy-in threshold (the minimum weight amount that can be 

purchase) for stock i.  Then, the round-lot constraints are handled by rounding the 

non-zero weights to the next round-lot level such that wi
// = wi

/ - (wi
/ mod ci), where, ci 

is the smallest volumes can be normally purchased from the stock market for stock i. 

The remainder of the rounding process (𝚺wi
/ mod ci) is allocated in quantity of ci to 

wi
// which has the biggest value of wi

/ mod ci until all of the remainder is depleted.  

All pairs of strings first are filled with random numbers, so, they need to be 

repaired by the repair algorithm.  And since crossover and mutation operations 

cause the string to be deformed, the repair algorithm needs to be applied again to 

preserve the aforementioned constraints before the evaluations and selections.  

7.5 The Experimental Design 
 

 An experiment has been conducted to find out whether the modification of 

MOGA and SPEA2 to include the third objective, portfolio sharp ratio error, is indeed 

for improving the outcome of actual portfolio in the term of actual portfolio sharp 

ratio. The experiment is to compare the actual portfolio among 5 cases for those of 
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MOGA group and 3 cases for those of SPEA2 group. The MOGA group consists of 

MOGA with two objectives (forecasted portfolio return and forecasted portfolio 

standard deviation) and Fuzzy MOGA (as MOGA_Fuz in Chapter 3) using stock 

forecasting by the Fuzzy selection algorithm Basic 3 in chapter 5, MOGA with two 

objectives using stock mean returns and standard deviations as stock forecasting 

values (MOGA_M), MOGAFuz with two objectives using stock mean returns and 

standard deviations as stock forecasting values (MOGAFuz_M)  and MOGA with 

three objectives (forecasted portfolio return, forecasted portfolio standard deviation 

and estimated portfolio Sharpe ratio error-MOGA3O).  The SPEA2 group consists of 

SPEA2 with two objectives, i.e. forecasted portfolio return and forecasted portfolio 

standard deviation from the BASIC 3 model selection algorithm from chapter 5 

(SPEA2_MS), SPEA2 with two objectives using stock mean returns and standard 

deviations as stock forecasting values (SPEA2_MEAN), and SPEA2 with three 

objectives, i.e. forecasted portfolio return, forecasted portfolio standard deviation and 

estimated portfolio sharp ratio error (MOGA3O). The outcomes of 60 periods from 

2002 (January) to 2006 (December) with 10 times for each period are evaluated and 

compared. All MOGAs and SPEA2s have 400 population and 1000 rounds. Note that 

we test the outcomes over a small set of data here, because we used most of the 

data of earlier periods to estimate parameters and train ANNs (see Chapter 5) as 

well as to build and parametise the selection algorithm (see Chapter 6). The estimate 

stock portfolio sharp ratio errors are calculated according to equation (6.14) and (7.4) 

to the next12 monthly observations of actual stock returns and standard deviations 

and 12 monthly out of sample forecasting of the corresponding forecasting models. 

For example, in the first year of 2002, the estimated models are used to forecast 

stock returns and deviations for the next 12 months of 2001.  Then, the forecasted 
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values with the actual values of the same periods are used to calculate the estimated 

stock portfolio sharp ratio errors by taking square of the numerical results of equation 

(7.4) and (7.8). The aforementioned estimated models and estimated portfolio sharp 

ratio errors are used for portfolio selections of 12 next monthly periods (2002). The 

forecasting models use actual month by month observations while the estimated 

stock portfolio sharp ratios error remains the same for all 12 month periods. For the 

next year, the window of observations will shift for one year to 2002 for the 

estimation of stock portfolio sharp ratio errors and to 2003 for portfolio selections and 

evaluations. The window of observations is rolling to the last year of 2006.  For 

MOGA with two objectives using stock mean returns and standard deviations as 

stock forecasting values (MOGA_M), the previous 24 month data are used to 

calculate the stock mean returns and standard deviations.  

 For the reality constraints, the budget (i.e. the sum of money to invest) is set 

to USD 10,000,000.00. We need to set a budget because it is necessary to find how 

many stock the money can buy in order to handle the rounding constraint. The 

rounding lot for each stock is set to equal 10 stocks a lot, therefore the money 

amount of a rounding lot is 10 times stock closing price. The cardinality constraint, 

i.e. the maximum number of name of stocks in a portfolio, is assumed to be equal to 

10. Finally, the floor weight (the minimum proportion of each stock allowed in a 

portfolio) is set to be equal to 0.01 (1%) and the ceiling weight (the maximum 

proportion of each stock allowed) equals to 0.25 (25%).  Assuming that portfolio with 

sizable assets would be approximation of the market portfolio (under CAPM theory), 

we only estimate the values. For simplicity, the portfolio return is assumed to be 

equal to the average return of S&P 500 from 1980 to 1999 (as represent the market 

return) and set the portfolio standard deviation to that of S&P 500 returns from 1980 
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to 1999. The values are 0.011874 and 0.043027 accordingly and will be remain the 

same for all later periods. Again, for simplicity and estimation purposes, since the 

proportion of each stock in portfolio varies, the optimal portfolio is assumed to 

consist of equal proportion of 17 stocks, thus xi is assumed to be 1/17 or 0.0588.  

These values are set constant for the entire experimental periods. One substitutes 

these values into equation (6.20) yielding the follow equation.  

      
     

   
  

 

        
   

         
        

          
         

          
         (7.8) 

 

7.6 Results and Analyses 
 

 In the experiments, we test MOGA and its modified versions as well as 

SPEA2 and its modified versions. We find the average of actual Sharpe Ratio 

between them to judge the algorithms‟ performance to obtain optimal choices of 

stock investments for one period (one month) ahead.  There are 10 samples per one 

month period for 60 months so there are totally 600 samples in each panel outcome 

data set.  
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Period MOGA3O MOGA MOGAFuz MOGA_M MOGAFuz_M Period MOGA3O MOGA MOGA_Fuz MOGA_M MOGAFuz_M 

1 -10.7 10.936 -11.1903 15.558 16.2272 31 8.6468 7.3917 7.39173 12.037 5.578077 

2 8.2047 2.5877 9.399086 14.721 12.07396 32 9.6496 8.2099 8.2099 -2.457 -2.25004 

3 4.9353 -2.559 4.828431 2.1185 -8.72976 33 -0.354 -5.724 -5.724 -5.363 -2.14992 

4 -4.069 -1.832 -4.93287 -4.689 -4.04255 34 19.833 19.523 19.5227 21.822 21.15358 

5 -4.423 -6.995 -4.13416 -17.03 -18.0214 35 -0.849 2.0407 2.04071 11.001 7.177073 

6 -5.947 -8.078 -5.21733 -4.794 -9.47081 36 -14.53 -16.95 -16.952 -1.082 -2.36134 

7 0.1723 -1.37 -0.95915 -0.981 -0.20795 37 11.028 11.825 11.8248 39.85 28.85629 

8 6.6373 -10.98 8.323575 -8.354 -7.2497 38 -5.726 -9.742 -9.7418 -2.903 -2.24428 

9 12.629 9.32 11.09712 6.7079 4.75702 39 -11.87 -11.98 -11.978 -12.07 -5.16499 

10 4.3628 4.7937 5.539727 0.1361 1.330263 40 4.0427 10.292 10.2925 2.1794 3.903933 

11 3.2142 -5.132 3.346566 -5.504 -3.95819 41 -3.625 -3.13 -3.1303 -7.944 -1.01682 

12 15.253 -4.399 9.059314 -9.246 -5.34831 42 5.9609 14 13.9996 1.9853 3.597757 

13 -7.781 -5.455 -14.1861 -3.23 -2.32542 43 -7.735 -0.079 -0.0794 2.3364 5.164895 

14 25.658 -0.912 29.45351 16.827 10.82595 44 16.373 10.793 10.7926 9.6009 7.715435 

15 -2.709 7.4125 -1.58568 3.4126 4.652872 45 -12.29 -13.28 -13.284 -21.77 -19.4714 

16 45.757 11.095 23.73846 3.2743 7.510827 46 7.8234 9.9439 9.94386 7.0949 6.978559 

17 3.1531 4.8879 4.952013 1.7062 -0.88106 47 2.6063 -3.967 -3.9673 -9.605 0.179903 

18 7.7796 3.3308 6.783529 7.7091 5.106529 48 15.502 21.29 21.2901 11.384 23.12005 

19 -0.718 9.2552 -1.29663 1.0517 1.829317 49 8.4848 8.213 8.21299 10.601 6.173813 

20 -5.723 -14.17 -9.64393 16.407 -6.39844 50 8.6246 7.1372 7.13717 0.67 3.172302 

21 -0.122 29.745 2.569789 13.997 13.99057 51 23.064 17.052 17.052 16.219 16.27077 

22 9.7297 -0.974 9.783416 1.7364 2.986315 52 -1.455 -7.243 -7.2434 -4.275 -2.95829 

23 -6.16 27.604 -9.58369 44.56 39.3206 53 -1.2 -0.641 -0.6414 -1.563 -0.30061 

24 8.6486 4.8403 7.342368 -12.63 -7.10473 54 -3.273 -5.136 -5.1357 0.723 -2.44524 

25 9.6471 6.7889 8.14987 -0.977 2.310339 55 7.0328 6.3053 6.30527 7.239 1.561448 

26 -0.32 -1.177 -5.98195 -5.622 -10.8787 56 9.6689 7.1659 7.16594 5.2409 4.174184 

27 19.83 -8.786 19.56304 -0.485 -1.93078 57 13.367 9.9828 9.98281 32.554 16.87682 

28 0.1832 2.9344 1.800028 0.4352 4.248483 58 4.5668 3.1056 3.10556 2.4822 11.06094 

29 -11.51 9.8012 -17.208 13.978 14.59579 59 -2.23 1.0861 1.08607 10.109 2.758595 

30 11.574 -9.604 11.91136 -20.8 -7.56033 60 28.52 25.028 25.0275 7.9946 3.895983 

Table 7.1: Average portfolio sharp ratios of the outcomes of MOGA and its modified versions. 

Table 7.1 shows the average of portfolio sharp ratios of all 10 samples of 

selected portfolio from using different algorithms, namely, MOGA with 2 objectives 

(portfolio returns and portfolio standard deviation) using the stock forecasting by 

Basic 3 (MOGA), Fuzzy MOGA with 2 objectives using the stock forecasting by 

Basic 3 (MOGAFuz), Multi-objective genetic algorithm with 2 objectives using means 

and standard deviations of stocks as forecasting values (MOGA_M), MOGA with 2 

objectives using means and standard deviations of stocks as forecasting values 
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(MOGAFuz_M) and MOGA3O with 3 objectives in which the third objective, the 

estimated portfolio sharp ratio error, is incorporated into MOGA. Figure 7.2  shows 

graphical decription of the average portfolio sharp ratios from Table 7.1. The 

horizontal axis is the number of period (1 – 60) and the vertical axis is the value of 

portfilio sharp ratio.  

Period SPEA2_3O SPEA2_MS SPEA2_MEAN Period SPEA2_3O SPEA2_MS SPEA2_MEAN 

1 11.41458 12.88161 2.655231 31 8.638711 7.794607 0.497722 

2 3.453195 3.40676 -15.8484 32 9.70863 7.752666 -5.23613 

3 -3.29575 -1.52629 8.350613 33 -3.54513 -4.25042 17.64804 

4 0.12467 -0.35849 1.712594 34 19.79139 19.27034 3.351981 

5 -7.07564 -6.70003 -11.8284 35 1.16427 1.818865 40.73078 

6 -7.36537 -9.75236 6.724451 36 -12.5429 -19.2626 -13.1963 

7 -0.95063 -1.46031 -5.8192 37 13.94309 11.94271 -3.05708 

8 -10.7036 -11.1338 -7.08724 38 -3.61738 -9.99209 -4.77081 

9 8.26454 9.035181 1.629333 39 -11.6848 -12.3176 -1.89881 

10 4.956189 4.896407 8.274699 40 10.24371 9.291814 0.189116 

11 -4.12682 -7.53972 6.919482 41 0.511999 -2.40561 14.81651 

12 -4.4144 -4.12899 -6.26818 42 7.835436 15.11159 -18.4152 

13 -6.60596 -5.53776 15.29978 43 -3.53328 -2.16439 12.12039 

14 1.366036 0.314661 11.32056 44 13.27279 13.2585 -2.85351 

15 7.41045 7.966957 3.164859 45 -14.047 -14.5559 -7.70022 

16 12.71714 12.15893 -4.95533 46 8.447448 10.2491 21.60546 

17 4.828903 5.739117 -15.922 47 0.554994 -6.48217 11.46286 

18 2.884883 3.139503 -5.48336 48 15.65134 18.00374 -0.6437 

19 2.975822 9.458178 -0.31595 49 10.15464 3.989328 37.58161 

20 -10.8415 -12.2569 -8.64287 50 6.674794 6.345272 -4.2084 

21 26.50963 30.52927 5.743597 51 19.08311 19.75499 -10.3674 

22 -2.72743 -2.13708 0.896455 52 -1.91937 -3.58384 1.908551 

23 40.17496 30.73534 -6.46243 53 -1.76723 -0.79414 -3.47836 

24 6.099512 5.023068 -8.70226 54 -3.04296 -4.91734 2.853264 

25 7.779155 4.229403 -3.0615 55 4.780385 6.830131 4.638343 

26 0.153657 -1.19437 16.1271 56 9.551172 7.722105 9.770464 

27 -2.75949 -7.85417 3.874901 57 8.256564 15.64671 -23.9768 

28 0.1706 4.031284 2.785285 58 1.274766 2.486074 7.011145 

29 16.41433 10.06229 1.767675 59 -2.15096 1.434787 -8.56114 

30 -9.20117 -9.45243 9.953307 60 25.34843 24.15209 13.5576 

Table 7.2: Average portfolio sharp ratios of the outcomes of SPEA2 and its modified versions. 
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Table 7.2  shows the average of portfolio sharp ratios of all 10 samples of 

selected portfolio from the SPEA2 and its modifications, namely SPEA2_MS with 2 

objectives (portfolio returns and portfolio standard deviation) using the stock 

forecasting by Basic 3 (MOGA), SPEA2_MEAN with 2 objectives using means and 

standard deviations of stocks as forecasting values, SPEA2 with 3 objectives 

(SPEA2_3O) in which the third objective, the estimated portfolio Sharpe ratio error, is 

incorporated into SPEA2. Figure 7.3 shows graphical decription of the average 

portfolio Sharpe ratios from Table 7.2. The horizontal axis is the number of period (1 

– 60) and the vertical axis is the value of portfilio Sharpe ratio.  

 

Figure 7.2Average portfolio sharp ratios of the outcomes of MOGA and its modified 

versions (Y axis shows sharp ratio values and X axis shows monthly period from 

2002-2006) 
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Figure 7.3: Average portfolio sharp ratios of the outcomes of SPEA2 and its modified 

versions (Y axis shows Sharpe ratio values and X axis shows monthly period from 

2002-2006) 

 

Next, it is to find from the results, whether handling model risk by 

incorporating the third objective, the approximation of portfolio sharp ratio error which 

is estimated from stock impacts on portfolio sharp ratio errors, will indeed improve 

the actual outcomes of portfolios at the end of each investment periods. There are 

the results from 60 periods, 10 samples for each period, thus 600 polled samples in 

totality. To see whether the algorithms with 3 objectives are better off than those of 2 

objectives, we perform testing hypotheses about a proportion (Utts 2006). Since we 

consider two classes of Multi-objective Genetic Algorithms, MOGA and its 

modifications as well as SPEA2 and its modifications need to be evaluated.  

For the testing hypotheses about a proportion, we need to know that, at a 

given level of confidence, whether the outcomes of MOGA3O and SPEA2_3O are 

better off those of MOGA, MOGAFuz, MOGA_MEAN or MOGAFuz_M and 

SPEA2_MS or SPEA2_MEAN respectively for the most of time. If the outcomes of 

MOGA3O/SPEA2_3O are not better off for most of the time the proportion of 
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samples in which MOGA3O/SPEA2_3O beats those of MOGA, MOGAFuz, 

MOGA_MEAN or MOGAFuz_M and SPEA2_MS or SPEA2_MEAN would be ranged 

from less than to around 50:50 percent or 0.5, else the proportion would be 

significantly greater than 0.5.  These tests are not concerning the means of portfolio 

sharp ratio values but only the number of samples where MOGA3O/SPEA3O‟s 

outcomes are better than those of MOGA or MOGA_MEAN and SPEA2_MS or 

SPEA2_MEAN. The appropriate significant test is as follows: 

           

          

 

   
 ̅    

√
        

 

         (7.9) 

 

Where, z is z score of the statistical test,  

   ̅̅ ̅is the sample estimate of population proportion (in this case, is that of 

MOGA3O or SPEA2_3O beating), 

   is the hypothetical value to test against (in this case, is 0.5),  

  is the number of the second population. 
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Algorithms n  ̅ > MOGA3O > MOGA >MOGAFuz >MOGA_M > MOGAFuz_M 

MOGA3O 600 3.78571 

 

0 

 (0.00%) 

354 

 (59.00%) 

346 

(57.67%) 

333  

(55.50%) 

316 

(52.67%) 

MOGA 600 3.10545 

 

246 

(41.00%) 

0 

 (0.00%) 

314 

(52.33%) 

315 

(52.50%) 

284 

(47.33%) 

MOGAFuz 600 2.93361 

 

254 

(42.33) 

286 

(47.67%) 

0 

 (0.00%) 

298 

(49.67%) 

283 

(47.12%) 

MOGA_M 600 3.23048 

 

267 

(44.50%) 

285 

(47.50%) 

302 

(50.33%) 

0 

 (0.00%) 

279 

(46.50%) 

MOGAFuz_M 600 3.11109 

 

284 

(47.33) 

316 

(52.67%) 

317 

(52.83%) 

321 

(53.50%) 

0 

(0.00%) 

Table 7.3 Summary of important statistical values MOGA and its modifications 

  

Table 7.3 summarizes important statistics for the test according to equations 

(7.9).  Obviously, the outcomes of MOGA3O are comparatively better than those of 

MOGA, MOGAFuz, MOGA_M and MOGAFuz_M. MOGA3O‟s sharp ratios have an 

average of 3.78571 while those of MOGA, MOGAFuz, MOGA_M and MOGAFuz_M 

are 3.10545, 2.93361, 3.23048 and 3.11109 respectively.  

MOGA3O > 

MOGA 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

z = 4.40908 5.1905E-06 Yes 

(0.1% level) 

Table 7.4 Result of the proportional test whether MOGA3O’s outcome is better than that of 

MOGA 

 Table 7.4 concludes the result of the proportional test of equation (7.9) 

comparing the outcomes of MOGA3O and of MOGA. The calculated z-score is 
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4.40908. With reference to the normal distribution table, the null hypothesis that the 

proportion of the outcomes of MOGA3O is worse than or equal to those of MOGA is 

rejected at the 0.1 % level of confidence (with the probability that one wrongly 

rejected the hypothesis less than 1 out of 1000 times). Thus, one can safely 

conclude that the outcomes of MOGA3O, indeed, are better than those of MOGA for 

most of the time.  

MOGA3O > 

MOGAFuz 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

 

z =3.75588 

 

8.6365E-05 

 

 

Yes 

(0.1% level) 

Table 7.5 Result of the proportional test whether MOGA3O’s outcome is better than that of 

MOGAFuz 

 

Table 7.5 shows the results of the proportional test of equation (7.9) 

comparing the outcomes of MOGA3O and of MOGAFuz. The calculated z-score is 

3.75588. Referencing to the normal distribution table, the null hypothesis that the 

proportion of the outcomes of MOGA3O is worse than or equal to those of 

MOGAFuz is rejected at the 0.1 % level of confidence. Therefore, it safely concludes 

that the outcomes of MOGA3O, indeed, are better than those of MOGAFuz for most 

of the time.  
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MOGA3O> 

MOGA_MEAN 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

 

z = 2.69444 

 

0.003525 

 

 

Yes 

(0.5% level) 

Table 7.6 Result of the proportional test whether MOGA3O’s outcome is better than that of 

MOGA_M 

 

Table 7.6 concludes the result of the proportional test comparing the 

outcomes of MOGA3O and of MOGA_M. The calculated z-score is 2.69444. With 

reference to the normal distribution table, the null hypothesis that the proportion of 

the outcomes of MOGA_M is worse than or equal to those of MOGA3O is rejected at 

the 0.1 % level of confidence. Thus, it can safely conclude that the outcomes of 

MOGA3O, indeed, are better than those of MOGA_MEAN for most of the time.  

 

MOGA3O> 

MOGAFuz_M 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

z = 1.30639 0.095709 Yes 

(10% level) 

Table 7.7 Result of the proportinal test whether MOGA3O’s outcome is better than that of 

MOGAFuz_M 
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Table 7.7 concludes the result of the proportional test comparing the 

outcomes of MOGA3O and of MOGAFuz_M.  The calculated z-score is 1.30639. 

With reference to the normal distribution table, the null hypothesis that the proportion 

of the outcomes of MOGAFuz_M is worse than or equal to those of MOGA3O is 

rejected at the 10 % level of confidence. Thus, one can conclude that the outcomes 

of MOGA3O are better than those of MOGAFuz_M for most of the time.  

Algorithms n  ̅ > SPEA2_3O > SPEA2_MS >SPEA2_MEAN 

SPEA2_3O 600 3.744453402 

 

0 

 (0.00%) 

332 

 (55.33%) 

333 

(55.50%) 

SPEA2_MS 600 3.245078749 

 

268 

 (44.67%) 

0 

 (0.00%) 

320 

(53.33%) 

SPEA2_MEAN 600 1.636378534 

 

267 

(44.50%) 

280 

(46.67%) 

0 

 (0.00%) 

Table 7.8 Summary of important statistical values of the SPEA2 and its modifications 

  

Table 7.8 summarizes important statistics for the test according to equations 

(7.9) for SPEA2 and its modifications.  As we can see, the outcomes of SPEA2_3O 

are comparatively better than those of SPEA2_MS and SPEA2_MEAN.  

SPEA2_3O‟s sharp ratios have an average of 3.74445 while those of SPEA2_MS 

and SPEA2_MEAN are 3.24508 and 1.63638 respectively.  
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SPEA2_3O > 

SPEA2_MS 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

 

z = 2.612789059 0.004490336 Yes 

(0.5% level) 

Table 7.9 Result of the proportional test whether SPEA2_3O’s outcome is better than that of 

SPEA2_MS 

  

Table 7.9 concludes the result of the proportional test of equation (7.9) 

comparing the outcomes of SPEA2_3O and of SPEA2_MS. The calculated z-score 

is 2.612789. With reference to the normal distribution table, the null hypothesis that 

the proportion of the outcomes of SPEA2_3O is worse than or equal to those of 

SPEA2_MS is rejected at the 0.5 % level of confidence (with the probability that one 

wrongly rejected the hypothesis less than 5 out of 1000 times). Thus, one can safely 

conclude that the outcomes of SPEA2_3O, are indeed, better than those of 

SPEA2_MS for most of the time.  
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SPEA2_3O > 

SPEA3O_MEAN 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

 

z = 2.69444 

 

0.003525 

 

 

Yes 

(0.5% level) 

Table 7.10 Result of the proportional test whether SPEA2_3O’s outcome is better than that of 

SPEA2_MEAN 

 

 

Table 7.10 shows the result of the proportional test of equation (7.9) 

comparing the outcomes of SPEA2_3O and of SPEA2_MEAN. For the test 

hypotheses about a proportion described in the first row, the calculated z-score is 

2.69444. Referencing to the normal distribution table, the null hypothesis that the 

proportion of the outcomes of SPEA2_3O is worse or equal to those of 

SPEA2_MEAN is rejected at the 0.5 % level of confidence. Therefore, it safely 

concludes that the outcomes of SPEA2_3O, indeed, are better than those of 

SPEA2_MEAN for most of the time.  

Algorithms n  ̅ > SPEA2_3O > MOGA3O 

SPEA2_3O 600 3.74445 0 

 (0.00%) 

304 

 (50.67%) 

MOGA3O 600 3.78571 296 

 (49.33%) 

0 

 (0.00%) 

Table 7.11 Summary of important statistical values comparing between SPEA2_3O and 

MOGA3O 
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Table 7.11 summarizes important statistics for the test according to equations 

(7.9) for comparing between SPEA2_3O and MOGA3O.  As we can see, the 

outcomes of SPEA2_3O are comparatively on par with that of MOGA3O.  

SPEA2_3O‟s sharp ratios have an average of 3.74445 while that of MOGA3O is and 

3.78571. While only 304 periods, only slightly more than half, in which SPEA2_3O‟s 

sharp ratios are better than those of MOGA3O. 

SPEA2_3O> 

MOGA3O 

t/z One-tail 

prob. 

 

Reject Ho 

(at % level) 

           

          

z = 0.326598 

 

0.371986 

 

No 

 

Table 7.12 Result of the proportional test whether SPEA2_3O’s outcome is better than that of 

MOGA3O 

Table 7.12 shows the result of the proportional test comparing the outcomes 

of SPEA2_3O and of MOGA3O. The calculated z-score is 0.326598. With reference 

to the normal distribution table, the null hypothesis that the proportion of the 

outcomes of SPEA2_3O is worse than or equal to those of MOGA3O cannot be 

rejected at any level of confidence.  Thus, we can conclude that the performance of 

SPEA2_3O and MOGA3O is equal.  

7.7 Summary 
 

In this chapter, modified versions of two classes of Multi-Objective Genetic 

Algorithm namely MOGA and SPEA2 are proposed to handle model risk in portfolio 

optimisation problem with realistic constraints. An experiment has been conducted 

for the proposed algorithm with real data from US stock market over 60 short term 
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investment periods. The results of the proposed algorithms (MOGA3O and 

SPEA2_3O) are compared with those of original two-objective optimisation (MOGA, 

MOGAFuz, MOGA_M, MOGAFuz_M and SPEA2_MS, SPEA2_MEAN respectively).  

The results show that the outcomes of MOGA3O are comparatively the best in its 

group for most of time periods. The similar results also can be concluded for 

SPEA2_3O in its group. Statistical tests of proportion confirm this conclusion. 

Incorporating a third objective, the approximation of portfolio sharp ratio error, helps 

to reduce the inherent model risk in the forecasting process. By comparing the 

performance between MOGA3O and SPEA2_3O, we found that their performances 

are on par to each other. MOGA3O and SPEA2_3O optimize portfolio selections by 

inclining to choose more proportions of stocks which are able to forecast their returns 

and volatilities more accurately given their returns and volatilities are equal and with 

more accurate forecasted inputs can render superior stock portfolio selections for a 

single period investment.     
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Chapter 8 Conclusions and Future 

Works 
 

8.1 Conclusion 
 

 Portfolio optimisation is always in a dynamic domain since information and 

factors that affect optimisation are changing over time. An effective portfolio 

optimisation system needs to be adaptive. An adaptive portfolio optimisation system 

consists of three parts working cooperatively, namely the optimisation part, the 

predictive part, and the adaptability part.   

Portfolio managers face a number of realistic constraints resulting from 

normal business practices, practical matters, and industry regulations.  The realistic 

constraints of practical importance are integer constraints, cardinality constraints, 

floor and ceiling constraints, turnover constraints, trading constraints, buy-in 

threshold, and transaction cost inclusions.  The closed-form mathematical solution of 

portfolio optimisation problem usually cannot include these realistic constraints. The 

problem needs to be solved by numerical methods. However, solving them by 

exhaustive searches normally takes too much, if not prohibitive, computational time. 

Thus, heuristic searches are more appropriate.  

In this thesis, multi-objective genetic algorithms are proposed to serve in the 

optimisation module. A number of Multi-Objective Genetic Algorithms are explored to 

solve the problem with three common realistic constraints (namely cardinality 

constraints, floor constraints, and round-lot constraints). Fuzzy logic is incorporated 

to see whether it can improve the performances of the Vector Evaluated Genetic 



178 
 

Algorithm (VEGA). The results show that using fuzzy logic to combine optimisation 

objectives of VEGA (in VEGA_Fuz1) for this problem does improve performances 

especially in Generation Distance from the true Pareto front, but its solutions  tend to 

cluster around a few points.  With additional fuzzy logic to make VEGA solution more 

distributed, the performance is worsened. MOGA and SPEA2 are more complex 

algorithms but they perform better. SPEA2 is rendered more evenly distributed 

portfolio along the effective front. However, MOGA is more time efficient for solving 

portfolio optimisation with realistic constraints.  

For the predictive part, two classes of traditional econometric models, i.e. 

Auto-Regressive-Moving-Average models (ARMA) and multivariate Ordinary Least 

Square (OLS) are used as benchmark in comparison with Back-Propagation ANN, 

Elman Recurrent ANN and the novel proposed hybrid ANNs. ANNs have potentials 

to make a better forecasting of financial and economics time series. The novel 

proposed hybrid evolutionary ANNs (EANNs) go a step further to automatically 

evolve both initial and structures (number of hidden nodes and number of hidden 

layers). Compared with the traditional OLS, the ANNs show promising results and 

most of the proposed EANNs can improve the performances of the ANNs as 

expected even if the improvements are slights. Although ANNs have the potential to 

make a better forecasting of financial and economics time-series, selecting the 

appropriate structure and relevant input variables by using Evolutionary Algorithm 

techniques that are quite time consuming.   

 For the adaptive part, three Fuzzy adaptive model selection algorithms are 

explore namely Basic 1 (SBVBR), Basic 2 (MVBR) and Basic 3(AVAR).  Their 

predictive performances are compared with those of single classes model 

forecasting (ARMA, OLS, BPN1, BPN2, ELM1, ELM2, GANN1, GANN2 and MEAN). 
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Their performances are evaluated by comparing average Sharp ratio errors of the 

three proposed algorithms of Fuzzy model selection with all single model forecasting. 

The results show that Basic 3 is the best selection algorithm comparing with all 

single model forecasting and the model selection algorithms combined. Basic 1 is 

the second best algorithm for out-of-sample forecasting of stock Sharp ratios.     

As a complimentary adaptive mechanism, a modified version of Multi-

Objective Genetic Algorithm (MOGA3O) is proposed to handle model risk in portfolio 

optimisation problem with realistic constraints. An experiment is conducted with real 

data from US stock market over 60 short term investment periods. The results with 

those of MOGA and MOGA with Fuzzy optimisation and also with MOGA with using 

medium terms stock mean returns and standard deviations (MOGA_M) as well as 

MOGA_M with Fuzzy optimisation. The outcomes of MOGA3O are comparatively the 

best of all five algorithms, and statistical tests confirm this conclusion. By 

incorporating a third objective, the approximation of portfolio sharp ratio error is 

reduced as well as the inherent model risk in the forecasting process. MOGA3O 

adaptively optimise portfolio selections by choosing more proportions of stocks 

whose returns and volatilities can be predicted more accurately given the same 

returns and volatilities. Then, SPEA2 which is considered the best algorithm 

regarding to its closeness to the real Pareto front and its distribution of solutions 

along the Pareto front. SPEA2 is modified such that it incorporates the third objective 

as MOGA3O does to handle input model/estimation risk which is denoted 

SPEA2_3O. The modified algorithm is compared with the original version of SPEA2 

with using forecasts from the fuzzy model selection algorithm and with using 

historical means and standard deviations as the inputs respectively (denoted 

SPEA2_MS and SPEA2_MEAN respectively). The result for this group is quite 
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similar for those of MOGA. The performance order is SPEA2_3O, SPEA2_MS and 

SPEA_MEAN. However, when the performance of SPEA2_3O is compared with that 

of MOGA_3O, they are quite on par and with statistical tests, it can be concluded 

that no one performs better than the other. 

 

8.2 Future Works 
 

Some directions for future works that can be built from the research outcomes 

presented in this thesis are discussed in the following paragraphs. 

An aspect that is worth further research is forecasting stock correlations. In 

this thesis we assume stock correlations are constant overtime and for entire periods 

of studies. If the forecasting of correlations is included then the portfolio selection 

would more realistic and may reduce errors. 

 There is also ample room for further researches in more accurate prediction 

models. Large amount of research has been done through many decades in this 

area. But it is still inadequate. Also, the running time is quite long for some of the 

proposed predicting models. Due to limited computer power, experiments with many 

populations and many generations have not been possible. Running the experiments 

in parallel high performance computer may provide some more improvements. The 

EANN algorithm also can be modified for further improvements such as introducing 

more variations of ANNs or selection of inputs.  The application of the EANN to other 

related forecasting problems such as to predict stock volatilities, exchange rates, 

etc., is quite a natural extension of this research.      
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The proposed Fuzzy model selection algorithms are open module in such a 

way that they can incorporate more forecasting models into them. If a number of 

better forecasting models are included, they can yield more accurate predictions, 

hence more efficient selected portfolios. Experiment with more complex Fuzzy rules 

is also worth trying.  

For the proposed three objective portfolio optimisations, MOGA3O and 

SPEA2_3O, one could also modify other multi-objective algorithms such as VEGA, 

VEGA_Fuzzy or MOGA_Fuz to incorporate the third objective. The results should be 

compared among them to see which one is yielding a better result.     

 It would also be interesting to use the Multi-objective Genetic Algorithm 

platform to explore other optimisation objectives such as the third moment of 

distribution (skewness), the fourth moments (kurtosis) or even to explore with the 

other risk measures such as VaR, CVaR, expected shortfall, etc., to see whether the 

ex-post or out-of-sample performances could be improved compared with the 

proposed algorithms in this thesis.   
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