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Abstract
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MAGNETIC RESONANCE IMAGING IN MULTIPLE SCLEROSIS
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This document is a critical synopsis of prior work by Michael Dwyer, submitted
in support of a PhD by published work. The selected work is focused on the
application of quantitative magnetic resonance imaging (MRI) analysis
techniques to the study of multiple sclerosis (MS).

MS is a debilitating disease with a multi-factorial pathology, progression, and
clinical presentation. Its most salient feature is focal inflammatory lesions, but it
also includes significant parenchymal atrophy and microstructural damage. As a
powerful tool for in vivo investigation of tissue properties, MRI can provide
important clinical and scientific information regarding these various aspects of
the disease, but precise, accurate quantitative analysis techniques are needed
to detect subtle changes and to cope with the vast amount of data produced in
an MRI session.

To address this, eight new techniques were developed by Michael Dwyer and
his co-workers to better elucidate focal, atrophic, and occult/“invisible”
pathology. These included: a method to better evaluate errors in lesion
identification; a method to quantify differences in lesion distribution between
scanner strengths; a method to measure optic nerve atrophy; a more precise
method to quantify tissue-specific atrophy; a method sensitive to dynamic
myelin changes; and a method to quantify iron in specific brain structures.

Taken together, these new techniques are complementary and improve the
ability of clinicians and researchers to reliably assess various key elements of
MS pathology in vivo.
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Chapter 1 — Introduction

1.1 Purpose

This document is a synopsis of the published work of Michael Dwyer (hereafter

referred to as the author), which is herewith submitted for a PhD by published

work.

1.2 Selected publications

The body of published work submitted for this PhD is itemized in Table 1, which

comprises eleven journal papers and one conference proceeding. Copies of

these publications are included in Appendix B. They have been selected

because they represent both a significant contribution to the scientific

knowledge base and either primary or substantial involvement from the author.

Additional supporting material, which comprises the eleven journal papers

itemized in Table 2, is included in Appendix C.

Table 1. Publications submitted for inclusion in the PhD

Ref.
No.

Publication

Status’

1

Semi-automatic brain region extraction (SABRE) reveals superior

cortical and deep gray matter atrophy in MS. Carone DA, Benedict RH,

Dwyer MG, Cookfair DL, Srinivasaraghavan B, Tjoa CW, Zivadinov R.
Neuroimage. 2006 Jan 15;29(2):505-14. Epub 2005 Oct 5.

RP***




Ref.
No.

Publication

Status’

Effect of MRI coregistration on serial short-term brain volume changes
in multiple sclerosis. Fritz DA, Dwyer MG, Bagnato F, Watts KL, Bratina A,
Zorzon M, Durastanti V, Locatelli L, Millefiorini E, Zivadinov R. Neurol Res.
2006 Apr;28(3):275-9.

RP***

Neocortical atrophy, third ventricular width, and cognitive dysfunction
in multiple sclerosis. Benedict RH, Bruce JM, Dwyer MG, Abdelrahman N,
Hussein S, Weinstock-Guttman B, Garg N, Munschauer F, Zivadinov R. Arch
Neurol. 2006 Sep;63(9):1301-6.

RP***

Quantitative diffusion weighted imaging measures in patients with
multiple sclerosis. Tavazzi E, Dwyer MG, Weinstock-Guttman B, Lema J,
Bastianello S, Bergamaschi R, Cosi V, Benedict RH, Munschauer FE 3rd,
Zivadinov R. Neuroimage. 2007 Jul 1;36(3):746-54. Epub 2007 Apr 10.

RP***

Application of hidden Markov random field approach for guantification
of perfusion/diffusion mismatch in acute ischemic stroke. Dwyer MG,
Bergsland N, Saluste E, Sharma J, Jaisani Z, Durfee J, Abdelrahman N,
Minagar A, Hoque R, Munschauer FE 3rd, Zivadinov R. Neurol Res. 2008
Oct;30(8):827-34. doi: 10.1179/174313208X340987.

RP**

A sensitive, noise-resistant method for identifying focal demyelination
and remyelination in patients with multiple sclerosis via voxel-wise
changes in magnetization transfer ratio. Dwyer MG, Bergsland N, Hussein
S, Durfee JE, Wack DS, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):86-
95. doi: 10.1016/j.jns.2009.03.016. Epub 2009 Apr 22.

RP*

Relationship of optic nerve and brain conventional and non-
conventional MRI measures and retinal nerve fiber layer thickness, as
assessed by OCT and GDx: a pilot study. Frohman EM, Dwyer MG,
Frohman T, Cox JL, Salter A, Greenberg BM, Hussein S, Conger A,
Calabresi P, Balcer LJ, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):96-
105. doi: 10.1016/}.jns.2009.04.010. Epub 2009 May 12.

RP***

Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis
patients and healthy controls. A morphological and spatial quantitative
comparison study. Di Perri C, Dwyer MG, Wack DS, Cox JL, Hashmi K,
Saluste E, Hussein S, Schirda C, Stosic M, Durfee J, Poloni GU, Nayyar N,
Bergamaschi R, Zivadinov R. Neuroimage. 2009 Oct 1;47(4):1352-62. doi:
10.1016/j.neuroimage.2009.04.019. Epub 2009 Apr 14.

RP***

Abnormal subcortical deep-gray matter susceptibility-weighted imaging
filtered phase measurements in patients with multiple sclerosis: a case-
control study. Zivadinov R, Heininen-Brown M, Schirda CV, Poloni GU,
Bergsland N, Magnano CR, Durfee J, Kennedy C, Carl E, Hagemeier J,
Benedict RH, Weinstock-Guttman B, Dwyer MG. Neuroimage. 2012 Jan
2;59(1):331-9. doi: 10.1016/j.neuroimage.2011.07.045. Epub 2011 Jul 27.

RP***

10

Improved assessment of multiple sclerosis lesion segmentation
agreement via detection and outline error estimates. Wack DS, Dwyer
MG, Bergsland N, Di Perri C, Ranza L, Hussein S, Ramasamy D, Poloni G,
Zivadinov R. BMC Med Imaging. 2012 Jul 19;12:17. doi: 10.1186/1471-2342-
12-17.

RP***

11

Improved longitudinal gray matter atrophy assessment via a
combination of SIENA and a 4-dimensional hidden Markov random field
model. Dwyer MG, Bergsland N, Zivadinov R. 28th European Committee for
Treatment and Research in Multiple Sclerosis, Lyon, France, October 10-13,
2012:P840.

P**




"Status: P = available in the public domain; R = refereed journal paper; * = sole author;

** = principal author; *** = joint author

Table 2. Supporting documents

Publication Status’

Detection of cortical lesions is dependent on choice of slice thickness in RP***
patients with multiple sclerosis. Dolezal O, Dwyer MG, Horakova D, Havrdova
E, Minagar A, Balachandran S, Bergsland N, Seidl Z, Vaneckova M, Fritz D,
Krasensky J, Zivadinov R. Int Rev Neurobiol. 2007;79:475-89.

Diffusion-weighted imaging predicts cognitive impairment in multiple RP***
sclerosis. Benedict RH, Bruce J, Dwyer MG, Weinstock-Guttman B, Tjoa C,
Tavazzi E, Munschauer FE, Zivadinov R. Mult Scler. 2007 Jul;13(6):722-30. Epub
2007 Mar 15.

Comparison of three different methods for measurement of cervical cord RP***
atrophy in multiple sclerosis. Zivadinov R, Banas AC, Yella V, Abdelrahman N,
Weinstock-Guttman B, Dwyer MG. AJNR Am J Neuroradiol. 2008 Feb;29(2):319-
25. Epub 2007 Nov 1.

The place of conventional MRI and newly emerging MRI techniques in Rp#***
monitoring different aspects of treatment outcome. Zivadinov R, Stosic M, Cox
JL, Ramasamy DP, Dwyer MG. J Neurol. 2008 Mar;255 Suppl 1:61-74. doi:
10.1007/s00415-008-1009-1. Review.

Use of perfusion- and diffusion-weighted imaging in differential diagnosis of | RP***
acute and chronic ischemic stroke and multiple sclerosis. Zivadinov R,
Bergsland N, Stosic M, Sharma J, Nussenbaum F, Durfee J, Hani N, Abdelrahman
N, Jaisani Z, Minagar A, Hoque R, Munschauer FE 3rd, Dwyer MG. Neurol Res.
2008 Oct;30(8):816-26. doi: 10.1179/174313208X341003.

Gray matter atrophy and disability progression in patients with early RP***
relapsing-remitting multiple sclerosis: a 5-year longitudinal study. Horakova
D, Dwyer MG, Havrdova E, Cox JL, Dolezal O, Bergsland N, Rimes B, Seidl Z,
Vaneckova M, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):112-9. doi:
10.1016/}.jns.2008.12.005. Epub 2009 Jan 24.

Voxel-wise magnetization transfer imaging study of effects of natalizumab Rp***
and IFNB-1a in multiple sclerosis. Zivadinov R, Dwyer MG, Hussein S, Carl E,
Kennedy C, Andrews M, Hojnacki D, Heininen-Brown M, Willis L, Cherneva M,
Bergsland N, Weinstock-Guttman B. Mult Scler. 2012 Aug;18(8):1125-34. doi:
10.1177/1352458511433304. Epub 2011 Dec 22.

Iron deposition on SWi-filtered phase in the subcortical deep gray matter of Rp***
patients with clinically isolated syndrome may precede structure-specific
atrophy. Hagemeier J, Weinstock-Guttman B, Bergsland N, Heininen-Brown M,
Carl E, Kennedy C, Magnano C, Hojnacki D, Dwyer MG, Zivadinov R. AJNR Am J
Neuroradiol. 2012 Sep;33(8):1596-601. doi: 10.3174/ajnr.A3030. Epub 2012 Mar
29.

Subcortical and cortical gray matter atrophy in a large sample of patients RP***
with clinically isolated syndrome and early relapsing-remitting multiple
sclerosis. Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova
M, Krasensky J, Havrdova E, Zivadinov R. AJNR Am J Neuroradiol. 2012
Sep;33(8):1573-8. doi: 10.3174/ajnr.A3086. Epub 2012 Apr 12.

Bimonthly Evolution of Cortical Atrophy in Early Relapsing-Remitting RP***
Multiple Sclerosis over 2 Years: A Longitudinal Study. Zivadinov R, Tekwe C,
Bergsland N, Dolezal O, Havrdova E, Krasensky J, Dwyer MG, Seidl Z,
Ramasamy DP, Vaneckova M, Horakova D. Mult Scler Int. 2013;2013:231345. doi:
10.1155/2013/231345. Epub 2013 Jan 10.




Publication Status’

Gray matter SWi-filtered phase and atrophy are linked to disability in MS. RP***
Hagemeier J, Weinstock-Guttman B, Heininen-Brown M, Poloni GU, Bergsland N,
Schirda C, Magnano CR, Kennedy C, Carl E, Dwyer MG, Minagar A, Zivadinov R.
Front Biosci (Elite Ed). 2013 Jan 1;5:525-32.

Improved longitudinal gray and white matter atrophy assessment via N-p**
application of a 4-dimensional hidden Markov random field model. Dwyer
MG, Bergsland NP, Zivadinov R. [Unpublished manuscript]

“Status: P = available in the public domain; R = refereed journal paper; N-P = not yet

available; * = sole author; ** = principal author; *** = joint author

1.3 Statement of work

This document summarizes, synthesizes, and critically evaluates published
work of the author. This work involves the development and application of novel
computational algorithms for quantitatively analysing magnetic resonance
imaging (MRI) to better understand and characterize the pathology of multiple

sclerosis (MS), its progression, and the response of patients to treatment.

For the past decade, the author has served as senior computer scientist and
technical director at the Buffalo Neuroimaging Analysis Center (BNAC,
University at Buffalo, NY, USA), a multi-disciplinary institute specializing in
quantitative MRI analysis. His role in the BNAC is one of independent
conceptual leadership with regard to the application of computer science to MRI

analysis techniques.

In collaboration with Prof. Robert Zivadinov, whose expertise is in clinical
neurology, the author has developed, adapted, and applied a range of MRI
image analysis algorithms, designed to accurately quantify in vivo changes in
the brain of MS patients, thus advancing both the work of BNAC and the
discipline as a whole. Throughout his tenure, he has also served as the key
technical planner in the design of analysis protocols for over 70 individual

studies.

The purpose of this submission is not to exhaustively catalogue this work, but

rather to provide evidence supporting conferral of a degree of PhD by published



work. Therefore, the specific subset of papers selected is based on the
cohesiveness of the work reported and the fact that it demonstrates substantial
independent leadership and involvement by the author. While most of these
papers relate to MS in one way or another, a paper on the assessment of stroke
is also included, because the methodologies developed in that study laid

important groundwork for subsequent investigations of MS patients.

1.4 Justification for the work

Because it is non-invasive, non-ionizing, and can distinguish with great
accuracy pathological changes in soft tissue, MRI has become widely used in
the diagnosis, management, and study of neurological conditions such as MS.
Although it has already facilitated major clinical and scientific advances, it is
nonetheless a relatively new technology, with the first commercial whole-body
scanners only appearing in 1980 (Ai et al. 2012). While these early machines
were primitive, over the subsequent decades rapid technological improvements
have been made which allow MRI to quickly and accurately map many aspects
of tissue at resolutions on the order of a cubic millimetre. Consequently, MRI is
capable of harvesting a wealth of raw data from patients and delivering new

insights into the nature of many neurological diseases.

While advances in MRI physics have been rapid, they have not consistently
translated into improved ability of clinicians and researchers to interpret the raw
data into meaningful information. In practice, within a single one-hour scanning
session, ten or more full conventional and/or non-conventional 3-dimensional
tissue maps can be produced, each emphasizing different aspects of the local
chemical environment and/or pathophysiology. Indeed, a single MRI scanning
session may produce over a gigabyte of data comprising multiple intensity
readings in millions of voxels (3D pixels). Without sophisticated quantitative
tools to cope with this vast amount of information, many radiologists’ only
recourse is to make qualitative judgements or simple hand calculations.
However, this approach is subjective and prone to operator error and
misinterpretation (Drew et al. 2013). Furthermore, the use of qualitative
assessment can mean that only a small proportion of the data collected is
utilized, with much potentially useful information discarded. Consequently,
guantitative methodologies have been developed in recent years that enable



the data to be collected and analysed more reproducibly and in much greater

detail.

By conferring the ability to synthesize data, elucidate subtle effects, and refine
and standardize outcome measures, quantitative MRI image analysis holds
great potential to lead advances in both basic science and clinical treatment.
With its roots in signal processing, statistics, and pattern recognition, it has
become a field in its own right (Dhawan 2011; Dougherty 2009), and has
already seen many early successes. Nevertheless, it is a young field, with great

potential for improvement and many unexplored frontiers.

The aetiology and pathophysiology of MS is poorly understood, with the result
that the full clinical relevance of MRI data collected may not be known. Although
MS is known to be associated with many MRI factors, the clinico-radiological
paradox — the fact that MRI findings do not correlate well with clinical outcome —
remains troublesomely unresolved (Barkhof 1999; Barkhof 2002).
Understanding the precise impact of therapy on brain atrophy and tissue
integrity is complicated by factors like pseudoatrophy (Zivadinov, Reder, et al.
2008) and measurement error, and the best way to deal with these remains an
open question. Even seemingly straightforward issues like quantifying lesion
burden remain fraught with difficulties. How does one distinguish between
lesion and more subtle dirty-appearing white matter (WM)? How does one
quantify pathology with extremely diffuse edges? Consequently, there is need to
develop new, accurate techniques that can reliably quantify tissue integrity,
lesion burden, and atrophy in greater detail, so that disease onset and
progression can be better understood and therapeutic impact can be better

assessed.

In addition to the need for new analysis techniques, it is important to ensure
consistency in the fast moving field of MRI. For example, how does one deal
with subjective decisions made by different MRI analysts, regarding the choice
of regions of interest (ROI) to investigate? Furthermore, how does one ensure
that increasing the power of the MRI machine (e.g. from 1.5T to 3T) does not
completely invalidate cross-group comparisons? These and many other ‘softer’
issues have not been sufficiently discussed. However, given that clinical and

scientific findings are often based on the outcome of MRI image analysis, it is

6



important that consistency of analysis is maintained and that robust protocols

are developed.

1.5 Aims and objectives

The overall aim of the work was to develop, adapt, or refine quantitative image
analysis methodologies to improve both the precise characterization of MS

pathology and progression and the assessment of therapeutic interventions.
The specific objectives of the work were to:

(1) Develop a new methodology for accurately quantifying

volumetric loss in the optic nerves of MS patients.

(i) Develop an improved methodology for accurately quantifying
grey matter (GM) atrophy in MS patients.

(i)  Develop an improved methodology for assessing the
heterogeneity of microstructural tissue damage in MS patients.

(iv)  Develop an improved methodology for accurately and reliably
quantifying pathological intracranial features with diffuse

boundaries on MRI images.

(v) Develop a new methodology for accurately quantifying and
localizing ongoing demyelination and remyelination in the whole

brain of MS patients.

(vi)  Develop a standard methodology for quantifying iron deposition
in specific structures in the brains of MS patients.

(vii)  Evaluate the extent to which increasing the field strength of the

MRI machine influences the outcome of MS lesion analysis.

(viii) Evaluate the extent to which operator variability regarding
choice of ROI influences the quality of MRI lesion

measurements in MS patients.



Chapter 2 — Background and context

This chapter presents an overview of the background research underpinning the
work of the author and his collaborators. This work is interdisciplinary in nature
and overlaps between three key areas: MRI, MS, and image processing and
analysis. Therefore, to provide context and to familiarize readers with these
fields, a brief overview is provided below. For readers completely unfamiliar with
these fields or desiring more information, Appendix D reviews each in further

depth and provides additional key references.

2.1 MRI

MRI is a young but extremely versatile medical imaging modality. Through a
combination of superconducting magnet, gradient-producing coils, and
radiofrequency (RF) coils, it is capable of interrogating tissue protons to
elucidate many details about their chemical environment (Haacke 1999). The
technique is three-dimensional, non-invasive, and non-ionizing. Although more
time consuming than computed tomography (CT) it can produce a unique array
of contrasts, each of which can provide specific clinical or scientific information
not otherwise obtainable (Fig 1). Classically, these contrasts included proton
density (PD), T1, and T2, but many more have been discovered as well. Of
particular note are diffusion (Le Bihan 2003), which can quantify the molecular
motion of water, and magnetization transfer (Henkelman et al. 2001), which is

particularly sensitive to macromolecules.



Figure 1: Conventional MRI sequences showing different tissue properties: FLAIR

(left), proton density (center), and T2 (right). Images have been co-registered to show

exactly the same slice, but each has a different contrast mechanism.

Most neuroimaging MRI scanning sessions produce five to ten different three-
dimensional image volumes with resolutions on the order of one to five cubic
millimetres per voxel. They are usually interpreted qualitatively by trained
radiologists, but they can also be directly digitally transferred for more rigorous

quantification.

2.2 Multiple sclerosis

Multiple sclerosis is a chronic, often debilitating disease of the central nervous
system, thought to affect more than two million individuals worldwide (Rosati
2001). It is the most common neurologically disabling disease in young adults,
and currently has no known cure. It usually begins with a relapsing/remitting
phase followed by later conversion to progressive deterioration, but other
courses are possible and the effects vary widely between individuals (Poser et
al. 1982).

The hallmark pathology of MS is the presence of focal inflammatory
demyelinating plaques (Fig 2) that disseminate in both time and space. These
lesions can appear in many areas, and are common in periventricular,
juxtacortical, infratentorial, and spinal regions (Polman and Reingold 2011).

During the acute phase of their formation, there is usually evidence of blood-



brain-barrier breakdown. Over time, many result in permanent gliosis and

diminished or absent axonal conduction (Frohman et al. 2006).

Figure 2: FLAIR image of a representative secondary progressive MS patient showing
hallmark focal lesions, predominantly in the periventricular regions. Additionally,

enlarged ventricles and thinning cortical gyri indicate brain atrophy.

Since MS was identified by Jean-Martin Charcot in 1866, many disparate
factors have been implicated in its aetiology and progression. Environmental
studies have revealed associations with latitude, sunlight, infectious diseases
(particularly Epstein-Barr), vitamin D intake, and smoking (Ascherio and Munger
2007a; Ascherio and Munger 2007b). A genetic component is also implicated
based on higher co-occurrence in twins (Willer et al. 2003), and genome-wide
studies have identified specific candidate loci (Hafler et al. 2007; De Jager et al.
2009). Immunology has provided many insights, including the role of CD4+ and
CD8+ T cells, and B cells are currently receiving increased attention (Kasper
and Shoemaker 2010). Histopathology has also shed much light, demonstrating
widespread damage and neurodegeneration beyond simple demyelinating focal
lesions (Trapp and Nave 2008) as well as the presence of substantial GM lesion
burden (Geurts et al. 2009). However, despite significant progress in all these
areas no single factor has been fully explanatory, and a comprehensive disease

model remains elusive.

10



Although a cure has not been found, treatment options have expanded greatly,
and have now gone beyond symptom management to actual slowing of disease
progression. The most popular therapies are the beta interferons and glatiramer
acetate, but others like natalizumab (Polman et al. 2006) and fingolimod
(Kappos et al. 2010) have also proven valuable, and even more such as
alemtuzamab (Coles et al. 2008) and ocrelizumab (Kappos et al. 2011) are on
the horizon. None of these drugs are without side effects, though, and individual

responses often vary.

2.3 Medical image processing and analysis

For much of its history, neurological MRI was mainly qualitative in nature, but
more recently clinicians, MRI physicists, and researchers have begun to draw
on the fields of statistics, image analysis and signal processing to develop new
methodologies. However, medical images pose their own problems, and so
adaptation of general algorithms developed in other fields to neurological MRI
remains a major challenge. Nonetheless, substantial progress has been made.

MRI is capable of producing a wealth of raw data, but the transition from this
raw data to meaningful information is not always straightforward. A single MRI
scanning session may produce multiple intensity readings for over nine million
voxels (Fig 3). Consequently, a qualitative approach to MRI analysis is likely to
result not only in diagnostic inconsistency, but also in much valuable data being
discarded. Furthermore, even if it were possible to fully evaluate all of this data
by eye, there would remain the difficult question of which pieces of information
are clinically relevant and how they interrelate. Quantitative MRI image analysis
can address both of these issues. By bringing modern medical image analysis
techniques to bear, it is possible to process the massive raw datasets provided
by MRI quickly and reliably. Because it can distil raw data into specific metrics,
guantitative MRI can also help address questions of relative importance and
interrelation by facilitating the use of statistical modelling and/or data mining
techniques to correlate MRI findings with other meaningful clinical outcomes like
physical disability and cognition. Such applications range from the relatively
intuitive — e.qg. the realization that lesion counts may not be as important or

predictive as volumetric measurement in MS (Fisniku, Brex, et al. 2008) — to the

11



completely new and exciting, as in structural and functional connectomics
(Bullmore and Bassett 2011).
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Figure 3: Visual overview of typical MRI data produced by a single, clinical scanning

session. (N.B. Research protocols can comprise much more data.)

To a reasonable first approximation, medical image analysis can be split up into
pre-processing and processing stages. Pre-processing is concerned with such
tasks as noise attenuation, artefact correction, and post-acquisition alignment.
Removal of noise can be accomplished in many ways, from simple smoothing
(Gonzalez and Woods 2008) to more complex methods like anisotropic diffusion
(Black and Sapiro 1998). Artefact correction includes such techniques as bias
field removal (Sled et al. 1998) and distortion correction (Andersson et al.
2003). Post-acquisition alignment is particularly important, as it allows data from
multiple contrast types, time-points, or individuals to be synthesized.
Consequently, it is a relatively mature field with robust techniques for both co-
registration (linear, within-individual alignment) (Jenkinson and Smith 2001) and
normalization (non-linear warping for inter-individual alignment) (Klein et al.

2009). Furthermore, high-resolution, modern MRI atlases have been developed
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that allow for the alignment of scans into a common space that facilitates
collaboration between researchers and uniform understanding of scientific
findings (Mazziotta et al. 2001). In general, pre-processing techniques take

images as input and produce modified or refined images as output.

Processing techniques are more challenging to summarize, as they are highly
varied and application-dependent. They can be qualitative, also producing
images as output, or quantitative, producing well-defined metrics as output. In
either case, they can provide an important alternative or complement to
qualitative radiological reads. General techniques include contouring,
segmentation, and anatomical parcellation. Contouring, either automated or
semi-automated, can be used to identify focal lesions, and has been
substantially refined via the use of edge-finding techniques and iso-contours
(Grimaud et al. 1996). Segmentation is usually fully automated, and involves the
classification of individual voxels into tissue categories (e.g. GM, WM, CSF),
sometimes including pathology (Van Leemput et al. 2001; Zhang et al. 2001;
Ashburner and Friston 2005). Anatomical parcellation uses varying models and
techniques to reliably extract specific structures such as deep GM nuclei or

specific cortical gyri (Patenaude et al. 2011; Fischl 2012).

In addition to general technigues, more contrast-specific processing algorithms
have been developed, including diffusion-based fibre tracking (Ciccarelli et al.
2008), magnetization transfer ratio-based macromolecular quantification (Filippi
et al. 1998), and BOLD-based functional MRI analysis (Jezzard et al. 2002).
These specific techniques continue to evolve in tandem with improvements and

discoveries in MRI sequence development.

2.4 MRl image analysis in MS — overview of the field

Concurrent with and interwoven into advances in epidemiology, immunology,
and histopathology, MRI has already played a dramatic role in MS, where it has
both answered and generated many questions. Given the multifactorial nature
of MS, it is in many ways an ideal target for quantitative MRI research since it
can simultaneously provide information about so many different aspects of CNS
tissue (Fig. 4).
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Figure 4: MR imaging in MS has been used to elucidate many different aspects of the
disease. Although there are many exceptions, most current techniques can be broadly
categorized as measuring focal pathology, tissue atrophy, or "invisible” damage.

Focal pathology (in the form of lesions) was the earliest recognized element of
MS, and remains one of the most important clinical outcomes. From a clinical
perspective, MRI sensitivity to lesions has substantially improved diagnostic
criteria and differential diagnosis (Miller and Weinshenker 2008; Polman and
Reingold 2011). In many clinics, it has also become a common standard of care
to perform routine MRI to assess neurologically silent progression and assist in
evaluating response to treatment. There has even been some evidence that
lesions could be used as a primary endpoint in clinical trials (Sormani and
Bruzzi 2013), but this has been debated (Rudick and Cutter 2013). From a
research perspective, the spatial and temporal resolution achievable with MRI
has led to a much better understanding of the formation, progression, and
eventual fate of lesions (Ciccarelli et al. 1999). Also of particular interest,
through the interplay of histopathology and MRI, chronic T1 hypointensities
(“black holes”) have been identified as an important subset of lesions that are
more indicative of axonal loss and neurodegeneration than standard T2-

hyperintense lesions (van Walderveen et al. 1998). Remaining problems in this
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area mainly stem from difficulty in standardizing lesions measures across
scanners and operators (Grimaud et al. 1996; Zijdenbos et al. 2002), although
novel correlative approaches still continue to shed light on the disease process
(Gourraud et al. 2013) and the precise relationship between lesions and atrophy

is still under investigation (Muhlau et al. 2013).

Another aspect of MS that has been greatly illuminated by MRI is atrophy.
Some patients show extensive atrophy late in the disease, and its precise role
has been historically not well understood. With quantitative MRI analysis, it has
become possible to more precisely characterize tissue atrophy and to reduce it
to precise numerical quantities. This has led to the understanding that MS is
not simply a focal inflammatory disease, but also a neurodegenerative condition
(Chard et al. 2002; Losseff et al. 1996; Miller et al. 2002; Simon et al. 1999).
Typically, young healthy adults lose approximately 0.15% of their brain volume
per year (Ge et al. 2002), whereas an annual loss of 1.5% or more has been
observed in MS cohorts (Ge et al. 2000; Zivadinov et al. 2001). As such,
assessment of atrophy is now increasingly becoming an important end-point in
MS therapeutic trials (Filippi et al. 2004; Filippi et al. 2001; Rudick et al. 2000).
One notable finding has been that pathology in MS is markedly different
between GM and WM (Geurts and Barkhof 2008), and this has led to increased
interest in measuring their individual atrophy dynamics. Atrophy occurs at
broadly different rates between the GM and WM (Ge et al. 2001; Sanfilipo et al.
2006). GM volume appears to have a closer relationship with disability (Fisniku,
Chard, et al. 2008) and cognitive impairment (Benedict et al. 2006; Sanfilipo et
al. 2006; Riccitelli et al. 2011) than is the case with the WM, although both are
clearly important (Bodini et al. 2009; Bodini, Cercignani, Khaleeli, et al. 2013;
Papadopoulou et al. 2013), and less GM pathology is seen in benign MS
(Calabrese et al. 2013). The ability to reliably and independently detect subtle
GM and WM volumetric changes in vivo is therefore an issue of critical
importance, with some arguing that atrophy should be “upgraded” to a gold
standard outcome measure in MS treatment (Rudick et al. 2013). However,
despite the acceptance of atrophy as a key component of MS, its precise
nature, cause(s), and mechanism(s) are still not fully understood. A number of

possibilities have been discussed and explored, (Trapp and Nave 2008;
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Zivadinov, Reder, et al. 2008) but further work is still needed to fully understand

the phenomenon.

Beyond lesions and atrophy, MRI has also been extensively used to investigate
more subtle, “occult” tissue changes in MS. For example, myelin is a critical
target for both research and therapeutic intervention, and as MRI techniques
have improved, there have been some promising approaches to achieve more
myelin-sensitive imaging. Although no MRI marker has been found to have high
specificity, one technique, MTR (Berry et al. 1999), achieves good sensitivity by
taking advantage of the fact that water bound to large macromolecules,
particularly myelin, responds with resonant behaviour to a wider range of radio
frequencies than free water. By comparing images with and without the
additional application of an off-resonant pulse, the local concentration of
macromolecules can be indirectly inferred. MTR has been used to successfully
detect myelin changes in lesions (van Waesberghe et al. 1998; Brown et al.
2012). MTR changes have also been observed in normal-appearing tissue
(Filippi, Campi, et al. 1995; Bodini, Cercignani, Toosy, et al. 2013), but it is not
clear whether these represent changes in myelin content or other processes
such as axonal loss, since primary demyelination is not known to occur outside
lesions. Similarly, diffusion imaging has also been used to evaluate the
microstructure of tissue and to detect in vivo myelin changes (Ciccarelli et al.
2003), and diffusion tractography has shown how connectivity changes can
affect cognition (Bozzali et al. 2013). Beyond this, MS spectroscopy has also
been used to investigate changes in specific metabolites in the CNS (Srinivasan
et al. 2005; De Stefano et al. 2007; Ciccarelli et al. 2007), although its resolution
remains relatively crude. More recently, interest in iron dynamics in MS have
also been revived due to the emergence of new phase-sensitive MRI
techniques (Deistung et al. 2013; Zheng et al. 2013).

Although significant advances in MS image analysis have been made on all
these fronts in recent years, there are still significant ‘holes’ in the knowledge
base. For example, precision in lesion measurements remains challenging, the
early detection of atrophy is extremely difficult, and dynamic myelin changes are
difficult to localize and quantify in vivo. From a broader perspective, and

perhaps most importantly, the clinico-radiological paradox remains unresolved.
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Consequently, there is need to develop new methodologies with which to better

understand and interpret MRI data regarding MS.

2.5 MRl image analysis in MS — statistical modelling

Given these challenges, the author initiated a programme of work geared
toward addressing them (see Chapter 3 for details). Although individual
problems require individual solutions, in broad terms the author applied
statistical modelling techniques to address many of the objectives outlined in
section 1.5. Statistical modelling provides a rigorous and useful framework, and
allowed the author to draw on much existing work. In particular, the concepts of
regularization, robust statistics, and multiple comparison correction were
utilized. In order to aid the reader, these concepts are briefly introduced here.
As this is a summary and synthesis document, formal mathematical rigor will be

avoided in the interest of providing a more intuitive, high-level overview.

2.5.1 Models and regularization

MRI researchers and clinicians are consistently faced with a trade-off between
scanning time, noise, and spatial resolution. Since time is limited, these last two
factors are almost always compromised to some degree, creating significant
challenges for quantitative image analysis. In the absence of any information
about the underlying system, these challenges would be overwhelming.
Fortunately however, this is not the case, because nearly all real-world MRI
images have some underlying structure to them that can be exploited. For
example, neurological MRI images usually have a great deal of spatial
consistency — although there are many transitions between tissue types, they
are almost always at least contiguous. Perhaps surprisingly, even this simple
observation can dramatically improve many quantification approaches. Of
course, exploiting such information is not completely free, and one must be

careful to balance a priori notions against actual observations.

This balance is usually referred to as the bias/variance trade-off, and is a
relatively mature field in mathematics and optimization theory (Hastie et al.
2011). The abstract intuition described above is formalized in a number of more
mathematically precise and rigorous ways in different applications, but most fall
under the categories of regularization or model fitting. In the context of the
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author’s work, one of the most important and illustrative of these approaches is
the hidden Markov random field (HMRF) model (Winkler 2003).

At the core of this model is the Markov property, which roughly asserts that the
probability of each state transition for a given system only depends on the
current state, and not on any prior states. The Markov property is a significant
over-simplification of the real world, but is often surprisingly tenable in many
practical applications. For example, disparate areas like gambling, stock
markets, and speech can all be modelled as Markovian processes. In the
current context, the Markov property is also important from a spatial perspective
rather than a temporal one, and the conventional Markov chain is generalized to
the concept of a 2- or 3-dimensional Markov random field. In essence, taking
the Markov assumption allows tissues on MRI to be modelled in such a way that
only the direct neighbours matter in classifying or segmenting a given voxel. In
turn, this allows for a direct calculation of how likely a given configuration is a
priori. Finally, by combining this a priori spatial configuration information with
observed voxel intensities, a maximum a posteriori (Bayesian) estimate can be
created. The Markov random field approach was introduced for MRI tissue
segmentation in (Held et al. 1997) and substantially refined by (Zhang et al.
2001), who added the “hidden” aspect to explicitly model the noise in image

acquisition.

Using HMRFs or other similar models, the ultimate balance between bias and
variance can usually be reduced to a single, clear parameter choice. In theory,
Bayesian approaches can be used to calculate the optimal value for this
parameter to minimize the total actual expected error. In practice, though, this is
difficult to determine analytically and so is often determined using empirical
approaches like simulation, bagging, cross-validation, or L-curve modelling.

2.5.2 Non-parametric statistics
The study of non-parametric statistics is a very broad field, of which two
particular elements are primarily relevant to the author’s body of work: robust

statistics and permutation testing.

Robust statistics (Huber and Ronchetti 2009) provide a precise and rigorous

means for estimation of distribution parameters in the face of substantial noise
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or even minor bias. These are generally split into estimators of location and
estimators of scale. Estimators of location are analogous to the conventional
use of the mean, and can be as simple as trimmed mean or median and as
complex as Huber or Hempel y-function based M-estimators. Estimators of
scale are analogous to standard deviation, and can similarly range from familiar
approaches like interquartile range and median absolute deviation to more
unique approaches like Q, and S, estimators. The Q. estimator is of particular
interest, because it is efficient, does not depend on a location estimate, and is
computationally feasible to calculate. It is essentially the median value of all the

pairwise differences between all items in the set being studied.

Permutation testing solves a different but related problem: how to assign formal
significance values when the underlying distribution is not known. Conventional
techniques like Student's t-test assume a known family of parameters
underlying the null hypothesis, such that the probability of observing a given
value by chance can be analytically determined. In contrast, permutation testing
makes almost no assumptions about the nature of the underlying data, and
determines the likelihood of observing a given value empirically from the data
itself. For example, the equivalent of a t-test is performed by continually re-
assigning group labels, and determining in what percentage of random
labellings the observed difference is more than in the true labelling. Permutation
testing is not a new concept (Pitman 1937), but is very computationally
intensive. The rise of cheap, powerful computers have therefore contributed to a
marked rise in their use and applicability. Even today, though, permutation tests
still usually only use a percentage of the total number possible combinations via
Monte Carlo sampling.

2.5.3 Multiple comparison correction

In theory, performing statistical tests per voxel can provide unparalleled regional
information that would otherwise be “lost in the average”. However, it also
severely exacerbates the problem of multiple comparisons — there are millions
of voxels in many MRI images. Conventional Bonferroni correction is also
useless, resulting in highly over-conservative conclusions. The key to solving
this problem is that meaningful results generally do not occur in single isolated

voxels, but rather in clusters. This observation can be exploited to create more
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appropriate and suitably powerful statistical tests. One of the early (and still
widely used) approaches in this area is Gaussian random field (GRF) theory
(Worsley et al. 1996). Like nearly all parametric statistical approaches, GRF
theory makes certain assumptions about the data in exchange for power.
However, these assumptions may not be valid for a given experiment, and are
sometimes difficult to defend in novel research areas where data behaviour is
not yet well understood. In particular, application of GRF theory generally
requires a strong a priori hypothesis about the degree of tissue change that will
be observed, in order to choose an appropriate cluster-forming threshold.
Permutation testing is a more recent, non-parametric alternative to this that can
provide more appropriate results while making minimal assumptions. With this
approach, group labels are randomly permuted and values are calculated in
order to build up an empirical null distribution. It has been used with great
success to make statistical inferences in voxel-wise statistical mapping

problems (Nichols and Holmes 2002).
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Chapter 3 — The author’s contribution to the knowledge base

This chapter presents an overview of the author’s original work (as set out in his

published papers) and his contribution to the field of MS research.

3.1 Narrative framework

In order to contextualize the author’s work and to aid the reader in
understanding the author’s contribution to the knowledge base, a narrative
framework (shown in Table 3) has been constructed, which describes in a
cohesive manner the body of the work presented. For ease of reference, this
framework groups the author’s various papers into distinct sections, with each
section dealing with related ‘contributions’, which are mapped against the

specific objectives identified in section 1.5.

The overall goal of the author’s work has been to advance the use of
guantitative analysis of MRI images in order to better understand MS. Over the
years in which the author has been working in this field, pursuit of this goal has
led him to explore many avenues of research, with much of the work developing
organically, rather than fitting any pre-planned scheme. However with
retrospective reflection, it is clear that the body of work broadly fits into the three
distinct, but related sub-areas (tissue atrophy; occult pathology; and focal
pathology), outlined in Table 3. Taken together, these sub-areas highlight

different aspects of MS pathology, and serve as a contextual framework for the
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author’s work. Prior to 2007, the author also published a number of preliminary

studies associated with the quantification of tissue atrophy, which laid the

foundation for later more sophisticated work. Because of the formative nature of

this work, these preliminary studies are reported in a separate section in Table

3.

Table 3: Narrative framework of the author's published work

Section

Description

Objectives
met

Relevant
papers

3.2
Preliminary
work

This section presents an overview of the author’s
early work, which formed the basis of the later
studies relating to tissue atrophy.

N/A

1,2,&3

3.3 Tissue
atrophy

Neurodegeneration, characterized by tissue atrophy,
is a major component of MS disease progression,
and is predictive of future disease course, disability,
and cognitive outcome. As such, it is an important
target of research and therapeutic development.
Therefore, methods for its accurate quantification
and tissue-specific assessment are highly important.

This section presents an overview of the author’s
work relating to tissue atrophy. In particular, a new
methodology for accurate optic nerve atrophy
guantification is presented, together with a
dramatically improved methodology (algorithm) for
accurately quantifying GM atrophy in MS patients.

() & (i)

7&11

3.4 Occult
pathology

The term ‘occult pathology’ refers to pathologies that
are beyond the range of ordinary knowledge and
understanding. Numerous investigations have
demonstrated that the so-called ‘normal-appearing’
tissue in MS is often damaged in subtle ways that
are not immediately apparent on conventional MRI.
These include diffuse white matter axonal injury,
abnormal iron accrual, and cortical demyelination.

This section presents an overview of the author’s
work relating to some of the occult pathologies
associated with MS. In particular, an improved
methodology is presented for  quantifying
pathological intracranial features with diffuse
boundaries on MRI images, along with an improved
methodology for assessing the heterogeneity of
microstructural tissue damage in MS patients. Also
presented is a new methodology for accurately
quantifying ongoing demyelination and remyelination
in the whole brain of MS patients. Finally, a standard
methodology for quantifying iron deposition in
specific_structures in the brains of MS patients is

(iii), (iv), (v)
& (Vi)

4,5,6 &
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described.

3.5 Focal Although focal lesions are one of the best understood | (vii) & (viii) 8&10
pathology aspects of MS, their precise quantification remains
(error difficult to standardize and reproduce. Errors can
minimi- occur due to subjective decisions regarding the
zation) choice of regions of interest (ROI) to investigate.

Also, the field strength of the MRI machine
influences the outcome of lesion analysis.

This section presents an overview of the author’s
work relating to error minimization and
standardization in the assessment of focal lesions in
MS. In particular, operator variability regarding
choice of ROI is evaluated, as is the impact of
increasing the field strength of the MRI machine on
the outcome of lesion analysis.

3.2 Preliminary work

Qualitative and quantitative MRI have provided much insight into atrophy in MS,
but many key questions still remain. For example, precisely how and where
does atrophy occur in MS? What portion of atrophy is related to demyelination
compared to actual loss of cell bodies? How does MS atrophy relate to clinical
and cognitive outcomes? What is the best way to measure atrophy? Can
atrophy be accurately detected over smaller time periods and/or in smaller
groups of subjects in order to reduce the risk entailed in experimental clinical

trials?

In response to the above questions, the author undertook the work reported
here. Its beginnings can be traced to 2005, with some crude but important
investigations into the basic nature of atrophy in MS and the factors affecting its
measurement. In (Carone et al. 2006), a technique developed by (Dade et al.
2004) was adapted to study region-specific atrophy in MS based on parcellation
via familiar Talairach landmarks. This work confirmed that GM atrophy was
present in MS, and that it was not necessarily uniform. However, the regions
studied were relatively coarse and did not directly follow meaningful anatomical
boundaries. In addition, by modern standards the GM/WM segmentation used
was relatively imprecise. At the same time, the author and his co-workers

evaluated the impact of technical aspects like coregistration on a variety of brain
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atrophy measurement techniques, and also underscored the significant difficulty

of measuring brain changes in the short term (Fritz et al. 2006).

Building on this early work, it was hypothesized that a simple and highly
reproducible proxy for GM atrophy might be a valuable tool. Third ventricular
width was proposed, based on its location between the left and right thalami,
and the author and his co-workers were able to demonstrate that this measure
explained significant variation in a number of important neuropsychological tests
(Benedict et al. 2006). However, it was recognized that although third ventricular
width may be important, it was not sufficient due to the heterogeneity of atrophy
in MS. The author and his co-workers therefore undertook additional work to
develop reliable techniques for measuring other complementary aspects of
atrophy, including that of the spinal cord (Zivadinov, Banas, et al. 2008). This
preliminary work made it clear that studying small, well-defined structures could
have substantial advantages, and additionally underscored the importance of
precision in measurement. It also reiterated the need to better understand the

actual nature of atrophy.

3.3 Tissue atrophy

3.3.1 Optic nerve and RNFL analysis

Optic neuritis is one of the most common initial symptoms of MS (Sgrensen et
al. 1999), with nearly two thirds of patients suffering at least one acute episode
(McDonald and Barnes 1992). Therefore, a natural extension of the early
preliminary studies was to focus on the optic nerve and retina. The optic nerve
and retina are important targets for better understanding the precise nature of
tissue atrophy. Unlike other peripheral nerves, the optic nerve is actually a direct
outgrowth of the diencephalon, deriving from embryonic retinal ganglion cells.
As such, it is myelinated by oligodendrocytes rather than Schwann cells.
Furthermore, the retinal nerve fibre layer (RNFL) is formed from the axons of
the optic nerve, and is normally un-myelinated (Nolte 2008). Therefore, this two-
part system provides a unique opportunity to look at the same axons in two
different places and states — one where they are myelinated and one where
they are not — with very few additional confounds. Evaluating atrophy in both
these structures at the same time thus has the potential to provide information

about the specific atrophy related to axons as compared to demyelination.
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Optical coherence tomography (OCT) already provides a fast, reliable, and non-
invasive way to quantify RNFL (Huang et al. 1991). However, there were not
previously any reliable methods for optic nerve atrophy quantification beyond
simple ROI-based techniques. Such techniques, while easily applied, are highly
subject to error due to motion, slice angle, and scanner artefacts. To address
these concerns, and to ensure that differences seen were due to real
anatomical change and not just measurement error, a new approach was

required.

The author’s solution to this problem was achieved via the creation of a shape-
based model fitting technique (Frohman et al. 2009). In this type of approach, a
parameterized mathematical model is used to adjust an idealized shape such
that it best matches acquired data. In most cases, the motivation for this is
twofold. First, it dramatically reduces the number of parameters involved. In
theory, fitting something like the optic nerve is highly multidimensional, with one
parameter per voxel (i.e., partial volume of the structure in the voxel). By
changing to a parametric shape representation, the challenge can be greatly
reduced from potentially thousands of parameters to just a few. Second, by
imposing an a priori morphology to the structure to be quantified, shape fitting
serves as a form of regularization. Like other Bayesian approaches, this
regularization can greatly assist with precision in the face of noise and artefacts.

In this case, a circularly extruded cubic spline tube model was used, resulting in
a total of only 9 parameters as a function of slice location (four for x, four for vy,
and one for diameter). At each point, a circular cross section was extruded with
orientation determined by the spline’s tangent vector and radius set by the
equivalent model parameter. Given this model, fitting was performed in stages.
First, cubic splines were fit to operator-identified points at the centre of the optic
nerve on each slice. This fitting served both to characterize the path of the
nerve and to smooth out any small errors in the manual point placement. In
addition, deviation metrics were used to correct for movement between slices.
After this, fitting of the diameter was performed by a brute force search through
potential diameter values, by identifying the diameter value minimizing a

gradient-matching cost function.
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Overall, the approach was very successful, and atrophy measurement using
this technique proved to be extremely reproducible. Specifically, it demonstrated
a mean absolute scan-rescan error of only 0.06 mm (less than 5% of the nerve
diameter). This precision is more impressive when considering the fact that it is

only a little more than one tenth of the voxel width (0.49 mm).

3.3.2 Precise longitudinal GM atrophy quantification

Although atrophy has been suggested as a gold standard treatment outcome,
others dispute this stance (Rudick et al. 2013). It is notable, though, that many
of the counter-arguments involve technical difficulties associated with assessing
tissue atrophy, rather than on atrophy per se. For example, pseudoatrophy
(Zivadinov, Reder, et al. 2008) is an important phenomenon that results in
paradoxically larger brain shrinkage with the initiation of therapy. Additionally, it
is argued that atrophy is an end-stage effect that may not be apparent for years.
Although these are important caveats, they are not insurmountable. Mounting
evidence demonstrates that pseudoatrophy has less impact on GM than WM,
so studying GM in particular may alleviate that problem. In sufficiently powered
studies, volume changes are seen even in early CIS patients (Bergsland et al.
2012; Henry et al. 2008) so it seems that the inability to see short-term atrophy
is likely a result of imprecise measurement rather than an actual lack of tissue
changes. In this case, it would be extremely important to improve the precision

of existing GM atrophy measurement techniques.

To address this issue, the author developed an improved algorithm for
quantifying GM atrophy (Dwyer et al. 2012). Rather than work from the ground
up, the widely accepted FAST tool (Zhang et al. 2001) and elements of SIENAX
and SIENA (Smith et al. 2002) were taken as a starting point. Briefly, FAST
works by applying a hidden Markov random field (HMRF) (Winkler 2003)
expectation maximization (EM) model to classify tissue as GM, WM, or CSF
and to estimate partial volumes within voxels. FAST's model is three-
dimensional, though — concerned only with the spatial neighbours of individual
voxels. In the current work, this model was extended to be four-dimensional in
order to account for temporal neighbours as well. Although dealt with more
formally in the referenced paper, the intuitive motivation for this is relatively

straightforward. In a real set of MRIs, many voxels have intensities midway
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between the average intensities of tissue classes. In some cases, it's
contextually clear what these voxels should be called (e.g. a single voxel
completely surrounded by other voxels that are clearly WM), and in these cases
FAST will classify them appropriately. In other cases (e.g. along borders), the
correct classification is not clear at all, even to an expert human reader. In this
case, the choice between tissues will be seemingly random, although FAST will
attempt to be spatially consistent about that random classification. In this
second case, a key difference between an intelligent human reader and FAST is
that when reviewing a follow-up image, the human reader will be conservative
and not consider the tissue to be changing unless it is clearly different in
intensity. FAST will simply classify it as whichever intensity it is closest to, even
if ‘closest’ means it only changes in intensity by a fraction of a percent for voxels

that were directly between classes.

Initial testing with this improved model was very promising, and it was subjected
to more rigorous validation techniques including scan-rescan error assessment,
tests of agreement with controlled simulation, and ability to dichotomize
clinically meaningful subject groups. In all cases, the model demonstrated
significant improvement compared to standard SIENAX, including lower errors
(absolute deviation), better correlation with whole-brain (non-tissue specific)

measures, and significantly improved effect sizes (up to a 68% increase).

3.4 Occult pathology

As discussed previously, post-mortem and histopathological investigations have
revealed abnormalities in MS tissue outside of traditional focal lesions (Allen et
al. 2001). However, such investigations are usually only performed in terminal
cases and so cannot shed much light on the more dynamic aspects of any
occult pathologies that may be present. Because of this, it is unclear whether
such diffuse tissue damage is a primary or secondary effect, and what role such

damage plays in disease progression and outcome.

3.4.1 Quantification of pathological features with diffuse boundaries
Although the work described in this section was undertaken in the context of
ischemic stroke, the algorithms developed by the author laid important

groundwork for later work in MS patients. In acute stroke, a primary option for
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treatment is thrombolytic therapy, but this therapy carries a high risk of
intracranial bleeding. Therefore, before proceeding it is extremely important to
know whether any tissue is actually still viable but at risk. Commonly, this has
been evaluated on MRI via so-called “perfusion-diffusion” mismatch, in which a
diffusion abnormality is taken to represent unsalvageable tissue and a potential
surrounding area of depressed but non-zero perfusion is taken to represent
tissue that is salvageable but will become infarcted without intervention. The
salvageable tissue is called the “ischemic penumbra”. Because time is essential
in stroke, an automatic approach for independently assessing volumes of infarct
core and ischemic penumbra would be of great value, but available approaches
based on simple standard deviation thresholding were highly susceptible to
noise (Rghl et al. 2001; Takasawa et al. 2008). Also, unlike the infarcted core,
the edges of the penumbra are often extremely diffuse; without a clear border,
small variations in threshold can dramatically change volume. As such,
assessment of the size of penumbra presents clinicians with a considerable

challenge.

In order to address this problem, the author developed a more noise-resistant
and statistically rigorous approach. As discussed previously, hidden Markov
random field (HMRF) modelling is a powerful tool providing just these
capabilities in situations where observations are spatially correlated (i.e., where
neighbouring voxels aren’t truly independent). However, an HRMF model
generally assumes corrupted viewing of categorically different underlying
classes, and in this case the penumbra class was not well defined. To address
this problem, a unique combination of M-estimators (Yuan and Bentler 1998),
abnormality indexing, and HMRF was employed by the author (Dwyer et al.
2008). An M-estimator was used to robustly calculate the intensity distribution
characteristics of the infarct core and then a Mahalanobis distance metric was
used to categorize the abnormality level of tissue. Finally, an HMRF model was
used on this derived abnormality field to classify tissue. Intuitively, infarct core
and contralateral normal tissue were made to “compete” for ownership of the
intermediate data, with tissue ultimately more similar to infarct being retained as

penumbra.
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Although this work appears at first sight to be unrelated to MS, it provided
important experience and insight into the difficult problem of precisely
quantifying tissue pathology that is both subtle and without sharply demarcated
borders. More specifically, it also confirmed the applicability of M-estimators in
assessing empirical image intensity distribution parameters, which was critical

in solving the Monte Carlo MTR change problem discussed below.

3.4.2 Microstructural tissue damage

An early portion of the author’s work aimed to employ diffusion MRI to better
characterize microstructural tissue damage in normal appearing brain tissue. As
mentioned briefly above, diffusion MRI uses specially tuned, temporally
separated gradients of opposite polarity to specifically impact mobile nuclei (Le
Bihan 2003). The effects of these gradients vary with the extent of molecular
diffusion, and are processed to produce a quantitative map of the degree of
diffusivity. In a healthy human brain, diffusivity is highly restricted by
hydrophobic myelin sheaths, and so is considerably lower in WM than in GM.
Loss of myelin (or cellular structure in general) reduces the barriers to molecular

motion, and so increases diffusivity locally.

In this work, diffusion metrics were evaluated by the author and his co-workers
in the whole brain in addition to focal MS lesions (Tavazzi et al. 2007). Of
particular note, the author introduced a novel metric: entropy. Whereas the
conventional metric, mean apparent diffusivity (ADC), provides an estimate of
the overall water diffusion in the tissue, entropy provides an estimate of the
macroscopic variation in diffusivity levels. Although standard deviation is
somewhat analogous, entropy is arguably more appropriate in this case.
Although standard deviation and entropy are both minimized by all observed
diffusivities being identical, they are maximized differently. Standard deviation is
maximized by a bimodal distribution with peaks at the highest and lowest
diffusion values. On the other hand, entropy is maximized by a completely
uniform distribution where all possible diffusion values are equally observed in
different tissue areas. Organized structure may well result in clusters of different
diffusivity values, but disease is more likely to spread the distribution out.
Confirming this theoretical concern, entropy was empirically demonstrated to be

the best diffusion-based predictor of clinical outcome in the studied dataset.
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Later work using the same technique demonstrated that entropy was also the
best diffusion predictor of cognitive ability in MS (Benedict et al. 2007) and was
also successfully used to show the microstructural effects of glatiramer acetate
therapy (Zivadinov et al. 2011).

3.4.3 In vivo mapping and quantification of dynamic myelin changes

Remyelination is recognized as a competing process to destructive
demyelination in MS (Bunge et al. 1961; Prineas and Connell 1979). So-called
“shadow plaques” containing thin fibres have been shown to be partially
remyelinated with a thinner sheath, and remyelinated axons have been found to
have unique morphology (Prineas et al. 1993). However, nearly all of the
information gleaned regarding this phenomenon is from cross-sectional data via
post-mortem analysis or from animal models not perfectly equivalent to MS.
Consequently, the timing and interplay of demyelinating and remyelinating
processes in vivo in real MS patients was poorly understood, with the impact of
therapy not yet precisely evaluated. Accurate in vivo detection of the active
processes involved in demyelination and remyelination is difficult to achieve
from a technical standpoint, primarily due to a lack of MRI specificity and very
noisy images. Preliminary MTR-based work by (Chen et al. 2007) provided a
threshold-based technique for detecting these changes, but it was restricted to
areas within lesions. Because more subtle demyelination and remyelination
may also occur outside of overt T2 lesions (e.g. in cortical lesions or potentially
in pre- or peri-lesional WM), the author developed a novel, statistically rigorous

method for quantifying them in the whole brain.

The work drew on pre-existing techniques for cluster-based voxel-wise
inference, but faced unique challenges — whereas VBM and fMRI methods rely
on consistency in effect between subjects, myelination changes can occur in
unique locations in different patients. This necessitates evaluation of voxel-wise
changes on a per-subject basis, and makes standard permutation testing
impossible. It is feasible in this case to fall back to a GRF theoretic approach.
However, given the potential for large areas of subtly altered myelin content, it is
difficult to confidently choose a sufficiently meaningful cluster-forming threshold.

During this time another group published a method called TFCE, for “threshold-
free cluster enhancement” (Smith and Nichols 2009). TFCE provides a means
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to elegantly sidestep the cluster-forming threshold drawback of GRF theory by
nonlinearly modifying statistic images based on their local cluster support at
multiple scales. Unfortunately, though, TFCE had no known closed form
probability distribution function, and permutation testing could not be applied to
a single subject. To resolve this, the author created a new technique to make
inferences using a novel Monte Carlo simulation coupled with an M-estimator
for variance estimation. This resulted in the ability to reliably estimate the null
distribution for TFCE values in a single subject, and to thereby assign
meaningful p-values on a multiple-comparison corrected, per-voxel basis. The
final technique was validated in three separate ways, using scan-rescan,
simulation, and application to real clinical data.

3.4.4 Iron assessment

Another potentially intriguing front in the exploration of not-conventionally-visible
MS pathology and progression is iron detection and quantification. Iron toxicity
has been implicated in other diseases including Parkinson’s (Dexter et al. 1991)
and Alzheimer’s (Connor and Menzies 1992), and some early histopathological
work indicated abnormal iron deposition in MS (Craelius et al. 1982; LeVine
1997). Until recently, though, iron deposition was very difficult to image in vivo.
Initial work with T2 shortening was promising, but was also limited by the
relative non-specificity of T2 contrast (Bakshi et al. 2000). In the interim, new
MRI techniques based on phase data have been proposed. Traditionally
discarded in favour of magnitude data after Fourier reconstruction, phase data
is exquisitely sensitive to magnetic field fluctuations imposed by the high
susceptibility of iron. Unfortunately, it is plagued by serious and substantial
artefacts including aliasing, background field contributions, and non-locality.
However, modern processing approaches have been proposed that are capable
of alleviating the majority of these artefacts and recovering much of the
information available. These include the susceptibility-weighted imaging (SW1I)
technique (Haacke et al. 2004), and more recently QSM (Langkammer et al.
2012).

With these techniques, it has become possible to investigate iron deposition in
MS with much more sensitivity than T2 shortening could provide (Haacke et al.

2009). However, two concerns encouraged a careful, regional approach rather
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than whole brain measures. First, even in healthy people the time-course of iron
deposition is substantially different in different regions of the brain (Hallgren and
Sourander 1958). Second, myelin changes can cause non-iron phase changes
in WM (Yablonskiy et al. 2012). Therefore, the author initiated a programme of
work to develop a GM specific means to quantify phase on a structure-by-

structure basis.

To accomplish this, the author employed a novel combination of FSL's FIRST
subcortical parcellation tool (Patenaude et al. 2011) and SWI (Zivadinov,
Heininen-Brown, et al. 2012). FIRST uses shape models as described
previously to reliably identify left and right thalamus, caudate, putamen,
pallidum, hippocampus, nucleus accumbens, and amygdala on high-resolution
T1l-weighted images. By implementing a system for automatically running
FIRST and then realigning and warping the FIRST-identified regions into SWI
image space, it was possible to extract region-specific phase data for each
region. In addition, normative data was collected from healthy controls and used
to implement region-specific phase thresholds indicative of abnormal iron
content. Using this, a novel measure of mean phase of abnormal phase voxels
(MP-APV) was introduced.

3.5 Focal pathology

Although focal pathology is the most classically well-understood aspect of MS, it
remains challenging to make full use of the amount of data that even
conventional MRI produces. In particular, reproducibility has been relatively low
despite improvements to MRI. Whereas atrophy reliability is within the 1%
range, even optimistic reports of inter-rater lesion agreement have indicated
variances of near 7% (Filippi, Horsfield, et al. 1995), and others have reported
up to 20% (Jackson et al. 1993). In terms of actual voxel-level agreement,
kappa values below 0.7 have been demonstrated between centres (Zijdenbos
et al. 2002). Beyond this, variation between sequence parameters and a trend
toward higher field scanners makes inter-site comparison difficult at best.
Consequently, there is considerable scope for errors to occur, which might
compromise otherwise sound technical advances. In attempt to better
understand the sources of potential errors, the author and his co-workers

undertook the following studies involving MS patients.
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3.5.1 Operator impact on lesion measures

Although automatic lesion detection has been, and continues to be an area of
extensive active research, it has still not been widely adopted as a de facto
method due to performance and precision issues (Garcia-Lorenzo et al. 2013).
As such, semi-automated operator-guided techniques have remained the gold
standard — a situation that is likely to continue for the near future. Given that
such semi-automatic classification still has a relatively high rate of error,
improved precision is an important goal. To facilitate such improved precision, it
is important to have meaningful measurements indicating the source(s) of
imprecision. Otherwise, attempts to make improvements may easily be
misdirected. Realizing this, the author and his co-workers initiated a programme
of work aimed at providing an easily standardized and widely applicable means

to separate out the key factors that contribute to error in lesion measurements.

An appropriate measure or set of measures should have certain desirable
characteristics, including ability to separate operator ability from lesion burden,
ability to direct improvements toward specific areas, and resistance to
“averaging out” of measurement noise. The commonly used similarity index and
variants like Kappa or concordance provide the last characteristic, but not the
first two. Therefore, the author and his co-workers developed a new set of
measures termed detection error and outline error (Wack et al. 2012). A key
aspect of these measures is that they operate in a tiered lesion-wise/voxel-wise
manner rather than a purely voxel-wise manner, in contrast to many other
methods. Detection error reflects the lesion-wise probability of complete
disagreement in marking a lesion, whereas outline error represents the degree

of volume disagreement for lesions that were mutually agreed to exist.

These measures were applied by the author to a real dataset calculated
multiple times by different operators, and were found to be considerably more
independent of overall scan lesion volume than similarity index. They also
provided better feedback to individual operators to allow them to improve by
focusing either on recognizing lesions or more accurately delineating them, as

necessary.

33



3.5.2 Scanner impact on lesion measures

Another major class of errors in lesion measures is scanner induced, either via
hardware differences, changes in acquisition parameters, or both. From a
hardware perspective, a major contributor to lesion salience is field strength. In
particular, many research groups and clinical centres have moved from 1.5 tesla
to 3 tesla scanners. Although the change in overall lesion volume was
previously investigated (Sicotte et al. 2003), it was not clear if the impact of
improved field strength was spatially homogenous. To address this question, the
author and his colleagues adapted a recently introduced lesion probability
mapping technique (Enzinger et al. 2006) to compare lesion maps calculated
from paired images acquired on 1.5 and 3 tesla scanners (Di Perri et al. 2009).
Specifically, the technique was modified to use pairwise statistics rather than
group comparisons, and TFCE was substituted for the previous multi-resolution
smoothing approach. The results agreed with previous work in showing a
significantly higher lesion load at 3 tesla, but also revealed that lesions were
more commonly differentially detected in specific regions — particularly the

occipital horns of the lateral ventricles.
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Chapter 4 — Discussion and conclusions

4.1 Evaluation, limitations, and improvements

The subset of the author’s work described above produced a number of new
algorithms and techniques that have already furthered the study of MS. In
addition, many have continuing value and are still being used in ongoing

studies.

Two of the author’s algorithms dealt with methods for better understanding the
nature of tissue atrophy in MS, and included a new methodology for accurately
quantifying volumetric loss in the optic nerves (Frohman et al. 2009) and an
improved methodology for accurately quantifying GM atrophy (Dwyer et al.
2012). This work was important in a number of ways. From a technical
perspective, the optic nerve approach was an early and novel use of shape
models in MRI of MS. Such shape models have continued to prove extremely
useful in providing accurate and reliable semi-automated and automated
analysis, and have notably been used in FMRIB’s freely available and widely
used FIRST software (Patenaude et al. 2011). From a scientific and clinical
perspective, the optic nerve approach provided detailed data about the interplay
between OCT, MRI, and visual outcome measures, and was important in
elucidating the relative behaviour of optic nerve and RNFL. In particular, the low
correlation of two highly precise measures — optic nerve diameter and RNFL
thickness — was an important clue that volumetric changes are not entirely or
necessarily even largely due to axonal loss. Along with the concurrent work of

others, this helped to motivate the importance of studying WM and GM
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separately. The improved method for quantifying GM atrophy is more practical,
but equally important since it is capable of reducing the number of subjects
required to demonstrate atrophy-reducing efficacy in clinical trials. This both
helps to protect more patients from the risk inherent in trials, and also allows
more funds to be diverted to continued exploration of other therapeutic
avenues. In fact, the approach has already been used in a large study and
demonstrated improved ability to discern treatment effects (Zivadinov,
Bergsland, et al. 2013). Also, the technique can potentially detect changes
earlier, which may help to address some of the concerns with atrophy as a gold

standard discussed above.

As with any work, both of these techniques could have been improved, and
more future work is required to build on the foundations laid. In particular, it
would be beneficial to study the relationship between RNFL thickness and optic
nerve diameter with more statistical rigor, and in particular to evaluate more
complex models to better understand all sources of variance. Also, although
initial investigations indicated that the optic nerve diameter is relatively constant
over the area studied, the bias/variance trade-off of adding a linearly varying
diameter parameter to the model was not systematically evaluated. In a similar
vein, the GM quantification approach uses an empirical regularization
parameter that could benefit from more formal study — e.g. with L-curves or
related methods. Additionally, the emergence of very precise cross-sectional
techniques (Dahnke et al. 2013), more anatomically targeted techniques
(Vrenken et al. 2013), and availability of higher-quality MRI images may
eventually obviate the need for such regularization.

Four more methods were developed by the author to better elucidate occult
pathology: an improved methodology for accurately and reliably quantifying
pathological intracranial features with diffuse boundaries (Dwyer et al. 2008), an
improved methodology for assessing the heterogeneity of microstructural tissue
damage (Tavazzi et al. 2007), a new methodology for accurately quantifying and
localizing ongoing demyelination and remyelination in the whole brain (Dwyer et
al. 2009), and a standard methodology for quantifying iron deposition in specific
brain structures (Zivadinov, Heininen-Brown, et al. 2012). The first technique

laid important groundwork for the others in addition to its direct benefit in acute
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ischemic stroke. The method for measuring microstructural tissue damage was
important at the time it was done, but has since been largely overtaken by
diffusion tensor imaging (DTI) and tractography (Ciccarelli et al. 2008), which is
capable of answering much more detailed questions and it is sensitive not only
to the magnitude of diffusion but also to its directionality. However, the author’s
work did introduce a novel use of entropy that might still be worthwhile to apply
to DTI-specific metrics.

The voxel-wise myelination detection technique developed by the author was
more directly applicable, and led to the ability to investigate demyelination and
remyelination not just in the natural course of the disease, but also on the effect
of therapies on MTR. In patrticular, it was applied to a cohort of patients treated
with either interferon beta 1-a or natalizumab (Zivadinov, Dwyer, et al. 2012),
the results of which strongly suggested that natalizumab may significantly
promote remyelination compared to interferon beta 1-a. Work with this method
is still ongoing, and it is hoped that it can continue to be improved in a number
of ways. First, given its basis on MTR it is sensitive but not entirely specific to
myelin, but may also include some sensitivity to other macromolecules and
therefore result in some false positives. Although other investigators have
provided convincing evidence that this concern is not overly large (Giacomini et
al. 2009), it would clearly be better to more completely eliminate it. Since this
work was completed, other investigators have continued to expand the
capabilities of MRI to do just this by detecting and quantifying myelin more
specifically. In particular, novel sequences have been proposed that address
these specificity concerns with MTR while still retaining high sensitivity,
including gMTI (Janve et al. 2013), which may be clinically feasible (Dortch et
al. 2011; Stikov et al. 2011), mcDESPOT (Spader et al. 2013), and robust
myelin water fraction (Kwon et al. 2013). Since the majority of work on the VW-
MTR technique described is related to statistical modelling, it is largely pulse-
sequence-agnostic. It would therefore almost certainly be instructive to apply
similar methodology to these improved myelin-specific images. However, it is
important to note that none of these new methods are themselves perfectly
specific to myelin, and the development of such an MRI marker is still an open

research goal.
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The iron assessment approach was also directly applicable. Although intuitively
somewhat convoluted, the MP-APV measure was empirically shown to be well
correlated with other non-iron metrics, including disability. In another study, it
was shown that MP-APV may indicate iron deposition preceding atrophy in
clinically isolated syndrome (CIS) patients (Hagemeier et al. 2012). This finding
has also been replicated by another study (Al-Radaideh et al. 2013). Although
cross-sectional results must be interpreted with caution, this observation is
particularly intriguing, because it supports the idea that iron may have a
causative or modulatory role in MS rather than simply being the end-product of
myelin debris. Clearly, longitudinal studies are needed to substantiate this
suggestion, but this work shows that they are certainly warranted. Further
improvements to the technique will also help provide a more complete picture.
In particular, phase imaging, though very sensitive to iron, is not perfectly
specific and is also plagued by many artefacts. Modern approaches like
quantitative susceptibility mapping (Langkammer et al. 2012) may provide more
accurate measurements, and are currently being investigated by the author and

his colleagues.

Finally, two methods were introduced by the author to study influences on
calculating more conventional focal pathology, including a method for
decomposing the sources of inter-rater disagreement in semi-automated lesion
assessment (Wack et al. 2012) and a technique for comparing lesion visibility at
different scanner strengths (Di Perri et al. 2009). Although it seems likely that in
the longer-term future automated identification techniques will largely replace
manual assessment of lesions, the decomposition work remains relevant. The
slow progress of automated techniques demonstrates that an overly simplistic
solution is unlikely, and the ability to better identify specific sources of error in a
rigorous and quantitative manner can also help direct development of future

classification algorithms just as it can aid in the training of human operators.

The method for comparing lesions at different scanner strengths clearly
demonstrated the incompatibility of direct comparison between measures and,
like (Sicotte et al. 2003), indicated the importance of using field strength as a
statistical covariate or otherwise controlling for it in multi-centre trials.

Furthermore, it lent weight to the idea that hyperintensities observed at the
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posterior horns may be a normal variant, although the matter is not settled.
Additionally, the pair-wise spatial approach might also be used for other

applications, including measuring coil- and software-related changes.

4.2 Overall impact

The author’s work as described above has had a significant impact on the work
of the BNAC and that of other researchers, both in terms of direct contributions
to the knowledge base and also in the creation of new techniques for future

research.

Overall, the author’s work has contributed to the understanding of atrophy and
occult pathology associated with MS, and has highlighted some consistency
issues associated with quantifying focal pathology. Within the BNAC, the
techniques developed have been used in numerous studies in different disease
subgroups (Benedict et al. 2007; Horakova et al. 2009; Zivadinov, Heininen-
Brown, et al. 2012; Zivadinov, Dwyer, et al. 2012; Hagemeier et al. 2012;
Bergsland et al. 2012; Zivadinov, Tekwe, et al. 2013; Hagemeier et al. 2013).
Outside of the BNAC, they have complemented the ongoing work of others in
the field in investigating the precise MRI-observable impact and course of MS,
and the author’s relevant publications have garnered over 250 citations at the
time of this writing. In particular, it is now clear that atrophy is a complex
phenomenon differentially affecting tissue classes, and that subtle atrophy
occurs very early in the disease (Bergsland et al. 2012; Horakova et al. 2009).
Furthermore, it is clear that atrophy occurs at different rates and with different
impact in different areas and specific structures, and that these changes have
an important impact on cognition (Bergsland et al. 2012; Benedict et al. 2006).
With regard to occult pathology, diffusion entropy has been linked specifically to
cognitive deficits (Benedict et al. 2007). Additionally, the VW-MTR technique
has provided a better understanding of the locations and heterogeneity of subtle
demyelination, and has also shown clear cortical changes (Dwyer et al. 2009;
Zivadinov, Dwyer, et al. 2012). The author’s phase imaging work has also led to
particularly interesting findings, including the observations that iron likely relates
to disability and that its deposition may precede atrophy (Hagemeier et al.
2012). Taken together, all of these findings seem to agree with the observations

of others that the neurodegenerative component is not a removed, secondary
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effect, but rather potentially a primary process (Stys et al. 2012). Finally, the
author’s work with focal pathology, although perhaps less scientifically exciting
than the other work, has provided important information about precisely where
1.5 and 3 tesla scanners differ in lesion sensitivity, and has also indicated how

to better train operators for agreement.

As a whole and alongside the complementary work of many other researchers,
these various contributions provide guidance for future investigations in addition
to their direct impact. With respect to atrophy, the author’s work underscores the
need for better understanding of the disparate mechanisms associated with this
phenomenon, in order to separately quantify the contribution of fluid-based,
axonal, and myelin-based tissue losses towards overall brain atrophy. For occult
pathology, the work motivates further steps to elucidate the causes of non-focal
pathology, and perhaps suggests the need for more appropriate animal models
that include iron abnormalities and diffuse demyelination. Finally, for more
conventional focal pathology, the work indicates that more needs to be done in
terms of standardization, and future investigations might better investigate
specific scan parameter-based impacts and the precise causes of operator

disagreement in outlining lesions.

Outside of contributions to the knowledge base and indications of future
directions, the work has also more directly resulted in the production of a
number of useful algorithms that are both inherently valuable and can also be
relatively easily adapted or applied to new problems. These algorithms include
a semi-automated parametric shape model, a 4-D HMRF model for longitudinal
tissue segmentation, a system for statistically robust quantification of subtle
tissue changes (demyelination and remyelination), a technique for reliable
quantification of structure-specific phase (representative of iron), and a
decomposition method for quantifying specific error contributions to lesion
identification. The techniques for voxel-wise MTR analysis and for improved GM
classification will undoubtedly prove useful to monitor short and long term brain
changes in a continuing variety of disease subclasses and therapeutic
investigations. Equally importantly, the advances in understanding of lesion
measurements can provide for more precise lesion burden measures in near-

term clinical trials.
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Finally, it seems even more clear that, as suggested previously (Zivadinov,
Stosic, et al. 2008), a true understanding of MS is unlikely to come from any
single modality or technique, but rather from the fusion of many into a single
composite picture. This type of fusion is likely to require substantial statistical
modelling work on large, standardized datasets containing information about
many facets of the disease. Accurate, reliable quantitative techniques including
those presented by the author are therefore vital precursors to the goal of

completely overcoming the clinico-radiological paradox.

4.3 Conclusions

MS is a serious, debilitating disease that currently has no cure and whose
precise etiology and evolution are still not fully understood. Despite this, it is
clear that rapid progress is being made on a number of fronts, including a better
understanding of the nature of the disease itself and a much more effective
armamentarium of therapeutic options. Therefore, there is cause for some
optimism that the future will continue to hold meaningful improvements for

patients with MS.

The author’s work described in this document has served a critical part in
furthering this goal, both by directly answering important questions and by
providing tools to answer future questions. Like the underlying disease, the
related activities were multi-factorial, and dealt individually with atrophy, occult
pathology, and focal pathology.

With reference to tissue atrophy, the author has demonstrated that it is possible
to use quantitative techniques to precisely measure volumetric loss both in
specific structures and in individual tissue compartments. In particular, optic
nerve atrophy can be measured with a precision approaching one-tenth of a
voxel, and overall GM atrophy can be assessed reliably with up to 50% fewer

subjects than previously required.

With reference to occult pathologies, the author has demonstrated that higher-
order statistical measures like entropy provide valuable additional information,
and also that these pathologies can be meaningfully quantified even when their
boundaries are relatively diffuse. Furthermore, the author has shown that the
extent of demyelination and remyelination can be measured in vivo, and has
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also provided a reliable means for reproducibly quantifying phase (iron) in the

basal ganglia.

Finally, with reference to focal pathologies, the author has demonstrated that
there are multiple, separable sources of error, and has provided techniques that

can be employed to disentangle their relative impacts.

The work described here has taken over a decade of concerted effort, and has
proceeded as a combination of top-down planning and bottom-up reaction to
empirical findings. In total, it has resulted in the creation of eight new techniques
and many related scientific findings. Taken together, these both directly pushed
forward the current knowledge of MS and provided re-usable tools to answer

future questions.
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Description: In this publication, the author was responsible for the
conceptualization and implementation of the spatial lesion probability mapping
approach to compare scanners, as well as the technical aspects of preparing
the analysis in a halfway space. Delineation of lesions and non-spatial statistical

analysis were performed by other authors.

Independent contribution(s): probability map portion of study design;
implementation of probability mapping and adjustment to paired tests; writing of

relevant methods section

9. Abnormal subcortical deep-gray matter susceptibility-weighted imaging
filtered phase measurements in patients with multiple sclerosis: a case-
control study. Zivadinov R, Heininen-Brown M, Schirda CV, Poloni GU,
Bergsland N, Magnano CR, Durfee J, Kennedy C, Carl E, Hagemeier J,
Benedict RH, Weinstock-Guttman B, Dwyer MG. Neuroimage. 2012 Jan
2;59(1):331-9. doi: 10.1016/j.neuroimage.2011.07.045. Epub 2011 Jul 27.

Description: In this publication, the author was responsible for designing the
overall pipeline for data processing, including combining FIRST and unwarping
steps. In addition, he performed the analysis for the normative case sets and

introduced the MPV-LP measure.

Independent contribution(s): probability map portion of study design;
implementation of probability mapping and adjustment to paired tests; writing of

relevant methods section

10. Improved assessment of multiple sclerosis lesion segmentation
agreement via detection and outline error estimates. Wack DS, Dwyer MG,
Bergsland N, Di Perri C, Ranza L, Hussein S, Ramasamy D, Poloni G,
Zivadinov R. BMC Med Imaging. 2012 Jul 19;12:17. doi: 10.1186/1471-2342-
12-17.

Description: The author was responsible for joint conceptualization and
oversight of this project, as well as for selection of the dataset used and the

overall analysis pipeline including unbiased alignment into a halfway space.

59
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Description: In this work, the author both conceived and implemented the
mathematical framework and algorithm for the 4-dimension HMRF model. In
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A.2 Co-author confirmation

To substantiate these claims, a supporting document from Professor Robert
Zivadinov, BNAC Director, is provided below. As the senior researcher for the
centre, he was usually most responsible for oversight of proper authorship
apportionment for these papers. In addition, he was either last or first author for
many of them.

Supporting statements from additional authors can be provided upon request.
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To Whom It May Concern:

This letter serves as acknowledgement that I have read and agree with “Appendix A — Statement of
independence” in Michacl Dwyer’s submission for consideration of a Ph.D. entitled “Development and
application of novel algorithms for quantitative analysis of magnetic resonance imaging in multiple
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As a co-author, I confirm that the overall descriptions and specific contributions listed are true to the best
of my knowledge. In particular, I can attest to the veracity of the claims for the following specific works
listed in Table 1:
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4 Quantitative diffusion weighted imaging measures in patients with multiple RP#**
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Application of hidden Markov random field approach for quantification of
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10.1016/].jns.2009.03.016. Epub 2009 Apr 22.
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Relationship of optic nerve and brain conventional and non-conventional MRI
measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a
pilot study. Frohman EM, Dwyer MG, Frohman T, Cox JL, Salter A, Greenberg BM,
Hussein S, Conger A, Calabresi P, Balcer LJ, Zivadinov R, J Neurol Sci. 2009 Jul
15;282(1-2):96-103. doi: 10.1016/j.jns.2009.04.010. Epub 2009 May 12.
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Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis patients
and healthy controls. A morphological and spatial quantitative comparison study.
Di Perri C, Dwyer MG, Wack DS, Cox JL, Hashmi K, Saluste E, Hussein S, Schirda C,
Stosic M, Durfee J, Poloni GU, Nayyar N, Bergamaschi R, Zivadinov R. Neuroimage.

2009 Oct 1;47(4):1352-62. doi: 10.1016/j.neuroimage.2009.04.019. Epub 2009 Apr 14.
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Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered
phase measurements in patients with multiple sclerosis: a case-control study.
Zivadinov R, Heininen-Brown M, Schirda CV, Poloni GU, Bergsland N, Magnano CR,
Durfee J, Kennedy C, Carl E, Hagemeier J, Benedict RH, Weinstock-Guttman B,
Dwyer MG. Neurcimage. 2012 Jan 2;59(1):331-9. doi:
10.1016/j.neuroimage.2011.07.045. Epub 2011 Jul 27.
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Improved assessment of multiple sclerosis lesion segmentation agreement via
detection and outline error estimates. Wack DS, Dwyer MG, Bergsland N, Di Perri
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2012 Jul 19;12:17. doi: 10.1186/1471-2342-12-17.
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Improved longitudinal gray matter atrophy assessment via a combination of
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Bergsland N, Zivadinov R. 28th European Committee for Treatment and Research in
Multiple Sclerosis, Lyon, France, October 10-13, 2012:P840.
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Zivadinov R. Neuroimage [in revision | *

“This work has been submitted to Neuroimage, and is currently in the second round of
revisions after positive peer review. The manuscript is included in Appendix B.

Please do not hesitate to contact me for further confirmation or additional clarification.

Sincerely yours,

Robert Zivadinov, MD PhD FAAN

Director, BNAC
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Appendix B — Published works for consideration

This appendix collects the documents listed in Table 1. For copyright reasons, only the first page
of each document, including abstract, is shown here. The full versions of each work can be
retrieved from the appropriate academic journals.
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Semi-automatic brain region extraction (SABRE) reveals superior
cortical and deep gray matter atrophy in MS

D.A. Carone,*™ R.H.B. Benedict,*™** M.G. Dwyer,* D.L. Cookfair,° B. Srinivasaraghavan,®

C.W. Tjoa,* and R. Zivadinov,*"*

*Buffalo Neuroimaging Analysis Center, Buffalo, NY 14203, USA
The Jacobs Neurological Institute, Buffalo, NY 14203, USA

“Department of Neurology, State University of New York (SUNY) at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA

Received 3 April 2005; revised 17 June 2005; accepted 13 July 2005
Available online 5 October 2005

In multiple sclerosis (MS), atrophy occurs in various cortical and
subcortical regions. However, it is unclear whether this is mostly due to
gray (GM) or white matter (WM) loss. Recently, a new semi-automatic
brain region extraction (SABRE) technique was developed to quantify
parenchyma volume in 13 hemispheric regions. This study utilized
SABRE and tissue segmentation to examine whether regional brain
atrophy in MS is mostly due to GM or WM loss, correlated with disease
duration, and moderated by disease course. We studied 68 MS patients
and 39 normal controls with 1.5 T brain MRI. As expected, MS
diagnosis was associated with significantly lower (P < 0.001) regional
brain parenchymal fractions (RBPFs). While significant findings
emerged in 11 GM comparisons, only four WM comparisons were
significant. The largest mean RBPF percent differences between
groups (MS < NC) were in the posterior basal ganglia/thalamus
region (—19.3%), superior frontal (—15.7%), and superior parietal
(—14.3%) regions. Logistic regression analyses showed GM regions
were more predictive of MS diagnosis than WM regions. Eight GM
RBPFs were significantly correlated (P < 0.001) with disease duration
compared to only one WM region, Significant trends emerged for
differences in GM, but not WM between secondary progressive (SP)
and relapsing—remitting MS patients. Percent differences in GM
between the two groups were largest in superior frontal (—9.9%),
medial superior frontal (—6.5%), and superior parietal (—6.1%)
regions, with SP patients having lower volumes. Overall, atrophy in
MS is diffuse and mostly related to GM loss particularly in deep GM
and superior frontal-parietal regions.

© 2005 Elsevier Inc. All rights reserved.
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Introduction

Multiple sclerosis (MS) is a demyelinating and degenerative
disease of the central nervous system (CNS) characterized by
lesion formation and atrophy of the brain and spinal cord. Brain
lesions were described in a series of apparent MS cases by
Cruveilhier (1835), and atrophy was later documented by Charcot
(1877). Subsequent autopsy studies revealed ventriculomegaly in a
significant number of MS patients (Barnard and Triggs, 1974
Brownell and Hughes, 1962; Friedman and Davidson, 1945). With
advances in neuroimaging technology, it is now well established
that brain atrophy occurs in approximately 50% of MS patients
studied in vivo (Chard et al., 2002b; Kassubek et al., 2003; Miller
et al., 2002; Pelletier et al., 2003; Zivadinov and Bakshi, 2004).
Atrophy of gray (GM) and white matter (WM) occurs early in the
disease (Chard et al., 2002b; Chen et al., 2004; Ge et al., 2001;
Quarantelli et al., 2003), increases with disease progression, and
reflects widespread loss of myelin, axons, glial cells, and neuronal
cell bodies (Minagar et al., 2004; Pelletier et al., 2004; Silber and
Sharief, 1999). It 1s likely that clinical impairment results once
brain atrophy reaches a critical threshold (Zivadinov et al., 2004a),
making this an important variable to measure.

Few studies have compared measurements of WM and GM
atrophy in MS. Chard et al. (2002b) found greater WM than GM
atrophy in early relapsing—remitting (RR) disease, although lesion
load correlated only with GM loss. In another recent study (Ge
et al.,, 2001), RR patients had more WM atrophy than controls but
the same GM volume. These authors reported a significant
correlation between total lesion volume and WM but not GM
volume. Conversely, a more recent study with 50 RR patients
found lower GM, but not WM volume, when compared to normal
controls (Quarantelli et al., 2003). In this study, it was also found
that total lesion volume was associated with GM but not WM loss.
[t has been demonstrated that over a 3-year period, patients
converting to clinically definite MS were those who also developed
significant GM but not WM atrophy (Dalton et al., 2004).
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Objective: To test the effect of serial magnetic resonance (MR) coregistration on short-term brain
volume changes using different semiautomated and automated brain volume techniques in
patients with relapsing-remitting (RR) multiple sclerosis (MS). Coregistration is frequently used to
increase precision in serial MR imaging (MRI) analyses. However, the effect of coregistration on
measurement of whole brain volume changes from serial scans in the short term has not been
tested in MS patients.
Methods: Twenty-eight patients with RR MS [mean disease duration: 4.9 years, mean age:
34.4 years and mean expanded disability status scale (EDSS): 1.4] were scanned at baseline and
monthly for a period of 3 months with 2D spin-echo T1-weighted sequences obtained with non-
apped 3 mm axial slices. Percent brain parenchymal fraction change (PBPFC) was calculated
y a semiautomated (Buffalo) and, separately, by two automated (Buffalo automated and
SIENAX) techniques, whereas percent brain volume change (PBVC) was calculated by the SIENA
technique. For coregistration of serial images we used a robust, fully automated linear image
coregistration tool. PBPFC and PBVC were calculated before and after coregistration, comparinﬁ
scans from the following time periods: (1) baseline to month 3; (2) baseline to month 1; (3) montl
1 to 2 and (4) month 2 to 3.
Results: The highest median PBPFCs measured on non-coregistered images were detected for the
baseline-to-month-3 time period and ranged from —0.11% for Buffalo semiautomated to
—0.45% for Buffalo automated (p=ns). On coregistered images, the highest PBPFCs were
detected for the baseline-to-month-3 time period and ranged from 0.3% for Buffalo
semiautomated, —0.3% for Buffalo aul‘omale(j,J 0.02% for SIENAX and —0.02% for SIENA
(PBVC). At all time points of the study, no significant differences of median volume changes were
measured on coregistered and non-coregistered images when comparing the results among the
segmentation algorithms.
Conclusions: Over a 3 month period we did not detect short-term changes in normalized brain
volumes using different measurement techniques. A longer observation period is needed to
assess whether coregistration can affect the measurement of long-term brain volume changes.
[Neurol Res 2006; 28: 275-279]

Keywords: Magnetic resonance imaging; coregistration; brain atrophy; multiple sclerosis

INTRODUCTION

Whole brain atrophy measures are used to evaluate
macroscopic neurodegenerative disease progression
in patients with multiple sclerosis (MS)’. Longitu-
dinal studies have demonstrated the ability of brain
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parenchymal fraction (BPF), a self-normalized whole
brain atrophy measure, to detect significant brain volume
change over both the short and long term””. Because
these changes can be very small, accurate detection
requires precise and reproducible techniques®.

One particular hindrance to measurement of such
highly reproducible volume changes is inaccurate
patient repositioning during follow-up magnetic reso-
nance imaging (MRI) sessions. Follow-up scans
acquired in a slightly different plane or at a different
angle from baseline scans may result in artificial
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Background: Cognitive dysfunction is common in mul-
tiple sclerosis (MS). Correlations are reported between
atrophy and neuropsychological test results.

Objective: To determine if neocortical volume would
supplant or supplement third ventricular width and other
magnetic resonance imaging measures when predicting
neuropsychological impairment.

Design: Cross-sectional study.

Setting: University MS clinic.

Participants: Seventy-seven patients with relapsing-
remitting MS, 42 patients with secondary progressive MS,
and 27 healthy control subjects.

Main Outcome Measures: Brain atrophy and lesion

burden measures were obtained in all patients. A subset
of 82 patients and all controls underwent neuropsycho-

Results: Patients with secondary progressive MS had
more atrophy than patients with relapsing-remitting MS
and controls. Neocortical volume was significantly cor-
related with all neuropsychological measures, with r val-
ues ranging from 0.29 to 0.58. Third ventricular width
was retained in most stepwise regression analyses pre-
dicting cognitive impairment in patients with MS and dis-
tinguishing secondary progressive from relapsing-
remitting courses of MS.

Conclusions: We confirm an association between neo-
cortical volume and multiple cognitive domains in MS,
although neocortical volume did not explain signifi-
cantly more variance than other magnetic resonance im-
aging measures. Of the magnetic resonance imaging vari-
ables studied, third ventricular width was retained in most
regression models.

logical testing.
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PPROXIMATELY 50% OF PA-
tients with multiple sclero-
sis (MS) exhibit cognitive
impairment' that adversely
affects employability* and
social skills.? Research findings highlight the
value of magnetic resonance (MR) imag-
ing in predicting cognitive dysfunction in
MS. Magnetization transfer ratio,* whole
brain atrophy,’® cortical atrophy,” and le-
sion volume® correlate with cognitive func-
tion. Arguably, the simple measure of third
ventricular width (TVW) has shown the
highest correlation with cognitive dysfunc-
tion compared with other MR imaging mea-
sures.’ In that study, TVW was signifi-
cantly correlated with a wide range of tests
measuring verbal memory, visuospatial
memory, and processing speed; however,
the regression models in the study would
have been enhanced by newer semiauto-
mated and automated MR imaging tech-
niques that measure neocortical atrophy.

There is evidence of neocortical patho-
logic features in MS,'*** but only 1 study”’
has assessed the relationship between neo-
cortical volume (NCV) and cognition, to
our knowledge. That study showed sig-
nificant correlation between NCV and
measures of auditory and verbal memory,
verbal fluency, and attention in 41 pa-
tients. In the present study, we aimed to
replicate this work in a larger sample and
to determine whether NCV would sup-
plant or supplement TVW and other MR
imaging measures in regression models
predicting cognitive impairment.

N ETHODS T B

SUBJECTS

Patients with MS (n=119) provided informed
consent and met diagnostic criteria for MS'* and
for relapsing-remitting (RR) or secondary pro-
gressive (SP) disease." Exclusion criteria were

1301

WWW.ARCHNEUROL.COM

©2006 American Medical Association. All rights reserved.

67



Neurolmage

www.elsevier.com/locate/ynimg
Neurolmage 36 (2007) 746 — 754

Quantitative diffusion weighted imaging measures in patients with

multiple sclerosis

Eleonora Tavazzi,™" Michael G. Dwyer,* Bianca Weinstock-Guttman,® Jordan Lema,”
Stefano Bastianello,® Roberto Bergmnaschi,b Vittorio Cosi,® Ralph H.B. Benedict,**
Frederick E. Munschauer IIL, ¢ and Robert Zivadinov®**

“Buffalo Neuroimaging Analysis Center; Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA
Department of Newrology, IRCCS, C. Mondino, University of Pavia, Pavia, Italy
“The Jacobs Neurological Institute, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA

Received 12 November 2006; revised 15 March 2007; accepted 16 March 2007

Available online 10 April 2007

Diffusion-weighted imaging (DWI) has been proposed as a sensitive
measure of disease severity capable of detecting subtle changes in gray
matter and white matter brain compartments in patients with multiple
sclerosis (MS). However, DWI has been applied to the study of MS
clinical subtypes in only a few studies. The objective of this study was
to demonstrate the validity of a novel, fully automated method for the
calculation of quantitative DWI measures. We also wanted to assess
the correlation between whole brain (WB)-DWI variables and clinical
and MRI measures of disease severity in a large cohort of MS patients.
For this purpose we studied 432 consecutive MS patients (mean age
44,4+ 10,2 years), 16 patients with clinically isolated syndrome (CIS)
and 38 normal controls (NC) using 1.5 T brain MRIL Clinical disease
subtypes were as follows: 294 relapsing-remitting (RR), 123
secondary-progressive (SP) and 15 primary-progressive (PP). Mean
disease duration was 12+ 10 years. Mean Expanded Disability Status
Scale (EDSS) was 3.3+2.1. Brain parenchymal fraction (BPF), gray
matter fraction (GMF) and white matter fraction (WMF) were
calculated using a fully automated method, Mean parenchymal
diffusivity (MPD) maps were created. DWI indices of pealk position
(PP), peak height (PH), MPD and entropy (ENT) were obtained. T2-
and T1-lesion volumes (LV), EDSS, ambulation index (AI) and nine-
hole peg test (9-HPT) were also assessed. MS patients had significantly
lower BPF (d=1.26; p<0.001) and GMF (d=0.61; p=0.003), and
higher ENT (d=1.2; p<0.0001), MPD (d=1.04; p<0.0001) and PH
(d=0.47; p=0.045) than NC subjects. A GLM analysis, adjusted for
age and multiple comparisons, revealed significant differences between
different clinical subtypes for BPF, GMF, ENT, PH, PP, T2-LV and
T1-LV (p<0.0001), WMF (p=0.001) and MPD (p=0.023). In RR
and SP MS patients, ENT showed a more robust correlation with other
MRI (r=0.54 to 0.67, p<0.0001) and clinical (r=0.31 to 0.36,
p<0.0001) variables than MPD (r=0.23 to 0.41, p<0.001 for MRI
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and r=0.13 to 0.18; p=0.006 to p<0.001 for clinical variables). The
GMF and BPF showed a slightly stronger relationship with all clinical
variables (r=0.33 to 0.48; p<0.0001), when compared to both lesion
and DWI measures. ENT {Rz=l).23; p<0.0001) and GMF (R2=(I.26;
p<0.001) were best related with SP disease course. This study
highlights the validity of DWI in discerning differences between NC
and MS patients, as well as between different MS subtypes. ENT is a
sensitive marker of overall brain damage that is strongly related to
clinical impairment in patients with SP MS,

© 2007 Elsevier Inc. All rights reserved.

Keywords: Multiple sclerosis; MRI; Diffusion imaging; Mean diffusivity;
Entropy; Brain atrophy; Lesion volume; Clinical disability

Introduction

Diffusion weighted imaging (DWI) is a magnetic resonance
imaging (MRI) technique that measures tissue water diffusional
motion and, as a consequence, provides information about
orientation, size and geometry of the tissue. The mobility of water
molecules is reduced in highly organized tissue-like white matter
(WM) and gray matter (GM) because of interactions with cellular
and tissue structures, so the apparent diffusion coefficient (ADC) is
lower in those tissues than in pure water. Conventionally, the
average ADC is calculated from three orthogonal directions that
provide information about the overall diffusivity in the tissue.

Pathological processes that modify tissue organization can
cause abnormal water motion, with the consequence of altered
ADC values. In multiple sclerosis (MS), the two main pathological
processes affecting the brain are demyelination and neurodegen-
eration; they can alter the ability of tissues to restrict water motion,
resulting in an increase of water diffusivity measurable with
different DWI indices.
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The pertusion/diffusion ‘mismatch model” in acute ischemic stroke provides the potential to
more accurately understand the consequences of thrombolytic therapy on an individual patient
basis. Few methods exist to quantify mismatch extent (ischemic penumbra) and none have
shown a robust ability to predict infarcted tissue outcome. Hidden Markov random field (HMRF)
approaches have been used successfully in many other applications. The aim of the study was to

evelop a method for rapid and reliable identification and quantification of perfusion/diffusion
mismatch using an HMRF approach. An HMRF model was used in combination with automated
contralateral identification to segment normal tissue from non-infarcted tissue with perfusion
abnormality. The infarct was used as a seed point to initialize segmentation, along with the
contralateral mirror tissue. The two seeds were then allowed to compete for ownership of all
unclassified tissue. In addition, a novel method was presented for quantifying tissue
salvageability b{ weighting the volume with the degree of hypoperfusion, allowing the
penumbra voxels to contribute unequal potential damage estimates. Simulated and in vivo
datasets were processed and compared with results from a conventional thresholding approach.
Both simulated and in vivo experiments demonstrated a dramatic improvement in accuracy with
the proposed technique. For the simulated dataset, the mean absolute error decreased from
171.9% with conventional thresholding to 2.9% for the delay-weighted HMRF approach. For the
in vivo dataset, the mean absolute error decreased from 564.6% for thresholding to 34.2% for the
delay-weighted HMRF approach. The described method represents a significant improvement
over thresio!dr’ng techniques. [Neurol Res 2008; 30: 827-834]

Keywords: Perfusion-weighted imaging; diffusion-weighted imaging; acute ischemic stroke;
ischemic penumbra; stroke quantification; hidden Markov random field approach

INTRODUCTION

The use of tissue plasminogen activator (tPA) thrombo-
Iytic therapy in acute stroke treatment has dramaticall_}f
improved clinical outcomes for many patients'<.
However, its administration has been primarily limited
to a 3 hour time window, with the majority of patients
arriving too late for treatment’. Unfortunately, the
substantial risk of increased hemorrhagic transformation
that accompanies tPA therapy greatly limits its further
use®. Despite this risk, increasing evidence shows that
there is a large subset of patients who may benefit from
therapy even after the 3 hour window™®. A more
accurate understanding of potential benefit and risk that
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is patient-specific can greatly assist clinicians and
patients in making an informed decision with regard to
this treatment’.

The MRI perfusion/diffusion mismatch model has
shown promise as a means of identifying tissue that is
functionally impaired and at risk of infarction, but may
be salvaged via timely reperfusion””. Diffusion-
weighted imaging (DWI) measures the mobility of water
molecules within tissue, showing acute infarction as
hyperintense (due to decreased water motion)'"'".
Perfusion-weighted imaging (PWI) measures the flow
of blood to the brain and is very sensitive to abnormal
blood flow or arrival times'?. Thus, DWI is capable of
imaging infarcted tissue and PWI is capable of imaging
tissue with abnormal blood supply. By combining these
two techniques, areas that are not yet infarcted but are
at risk due to decreased blood supply can be directly

Neurological Research, 2008, Volume 30, October 827
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Magnetization transfer imaging (MTI) provides a reliable and histopathologically validated means for
identifying important tissue changes in multiple sclerosis (MS), including demyelination and remyelination.
However, most approaches to date have been based on a priori regions of interest (ROIs) and have been
relatively insensitive to small focal changes or competing processes. More recent techniques have sought to
address this through a voxel-wise approach, but have been limited in their detection capabilities by the
amount of noise in standard MTR images. To address this issue while remaining sensitive to local changes, we
propose the use of the recently introduced threshold-free cluster enhancement (TFCE) technique in
combination with a Monte Carlo estimation approach. TFCE is first applied to enhance individual voxels
based on their level of local cluster support, and then Monte Carlo estimation is performed to allow
meaningful statistical interpretation of the resulting TFCE values, We validated this technique in three
complementary ways: healthy control scan-rescan analysis, analysis of a “gold standard” simulated dataset,
and analysis of a group of MS patients and healthy volunteers with 1-year longitudinal MRI scans. Scan-
rescan analysis demonstrated a very low false-positive rate (1.44 mL increasing and 1.48 mL decreasing at the
optimal detection thresheld). Simulated dataset analysis yielded an area under receiver-operating
characteristic curve of 0.942 (compared to 0.801 for a more conventional voxel-wise thresholding analysis).
Finally, analysis of the real subject population showed highly significant differences (p<0.001) in volume of
decreasing MTR between patients and controls. The proposed method provides a valuable means for
quantifying MS-related tissue changes, particularly demyelination and remyelination, in vivo and without the
use of highly complex or experimental MRI acquisition techniques. It improves on the sensitivity of other
approaches, and may increase the statistical power of studies investigating the effects of therapy on MRI
outcomes in MS.
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Multiple sclerosis
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1. Introduction better tracking of individual patient responses to therapy and better

overall understanding of the effects of various therapies on disease

Multiple sclerosis (MS) is a chronic, immune-mediated disease of the
central nervous system (CNS). It is a complex, multi-factorial disease
that includes inflammatory and neurodegenerative processes manifest-
ing both focally in the form of lesions and diffusely in otherwise normal-
appearing brain tissue (NABT) [10,13,15,25,26]. The key hallmarks of this
disease are the ongoing processes of demyelination and remyelina-
tion [3,5,32,50]. Studies using magnetic resonance imaging (MRI)
[312,21,28,31,46], histopathological analysis [3,7,32,39], and animal
models [11] have demonstrated that these processes occur in lesions
as well as in NABT. The ability to detect both demyelination and
remyelination in vivo could provide substantial benefits, including
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progression.

Unfortunately, myelin itself cannot currently be directly and
specifically imaged via MRI because its relaxation time is too short.
However, magnetization transfer imaging (MTI) has been proposed as
a sensitive and reliable surrogate measure [13,14,18,50]. The magne-
tization transfer contrast (MTC) technique uses an off-resonance
radio-frequency (RF) pulse to selectively saturate protons bound to
macromolecules (including myelin). Because bound protons have a
very wide resonance range while free water protons have a very
narrow resonance range, a sufficiently offset pulse is able to excite the
bound protons without significantly affecting free water protons.
When these different protons are in contact with each other,
magnetization can be exchanged from the bound protons to the free
protons, indirectly causing a signal change from the free protons. The
net result is a loss of signal from the free protons that becomes greater
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Background: Measurement of retinal nerve fiber layer (RNFL) thickness in multiple sclerosis (MS) is gaining
increasing attention,
Objectives: To explore the relationship between RNFL thickness as measured by optical coherence tomography
(OCT) and scanning laser polarimetry with variable corneal compensation (GDx ), and conventional and non-
conventional optic nerve and brain MRI measures.
Methods: Twelve relapsing-remitting (RR) MS patients (12 affected and 12 unaffected eyes) and 4 age- and
sex-matched normal controls (NC) (8 unaffected eyes) were enrolled. Four MS patients had a history of
bilateral optic neuritis (ON), four had a history of unilateral ON, and 4 had no history of ON. Optic nerve MRI
measurements included the length of T2 lesions, measurement of optic nerve atrophy, magnetization transfer
ratio (MTR) and diffusion tensor imaging (DTI) measures. Optic nerve atrophy was measured by a novel
method with high reproducibility. Brain MRl measurements included T1 and T2 lesion volumes (LVs) and their
relative MTRs, and tissue class specific atrophy, MTR and DTl measures. Measures of RNFL were evaluated with
OCT and GDx. We also evaluated both high and low contrast letter acuities (LCLA) in order to determine the
relationship between vision, MRI metrics, and retinal structural architecture.
Results: LCLA, RNFL-OCT and optic nerve radius measures showed more robust differences between NC and MS
patients, and between MS patients with affected and unaffected eyes. T2-LV and T1-LV, as well as gray matter
atrophy, DTl and MTR measures were related to LCLA and RNFL thickness. Unique additive variance regression
models showed that both brain and optic nerve MRI measures independently accounted for about 50% of the
variance in LCLA and RNFL thickness. In reverse models, about 20% of the additional independent variance was
explained by optic nerve or brain MRI metrics.
Conclusions: Measurement of RNFL thickness and radius of the optic nerve should be preferred to the other
optic nerve MRI measures in clinical studies. Whole brain lesion and GM measures are predictive of impaired
visual function with corresponding structural concomitants.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

rently considered the most sensitive and reliable surrogate markers
for assessing diffuse inflammatory and axonal pathology in patients

A major objective in multiple sclerosis (MS) therapeutics is to
develop strategic targeting of discrete central nervous system ana-
tomic pathways, in order to precisely model and confirm neuropro-
tective and potentially even restorative properties of novel treatments
[1]. Conventional and non-conventional MRI techniques are cur-
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with MS [2].

Measurement of retinal fiber layer thickness (RNFL) by optical
coherence tomography (OCT) and scanning laser polarimetry with
variable corneal compensation (GDx) is emerging as a promising tool
for characterizing the amount of axonal loss in patients with MS [3,4].
RNFL thickness principally reflects axonal density, given that there is
no myelin in the retina (myelination begins at the lamina cribrosa).
Patients with complete recovery following monosymptomatic acute
optic neuritis (ON) demonstrate significant thinning of the RNFL and
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Previous studies in patients with multiple sclerosis (MS) revealed increased lesion count and volume on 3 T
compared to 1.5 T. Morphological and spatial lesion characteristics between 1.5 T and 3 T have not been
examined. The aim of this study was to investigate the effect of changing from a 1.5 T to a 3 T MRI scanner on
the number, volume and spatial distribution of signal abnormalities (SA) on brain MRI in a sample of MS
patients and normal controls (NC), using pair- and voxel-wise comparison procedures. Forty-one (41) MS
patients (32 relapsing-remitting and 9 secondary-progressive) and 38 NC were examined on both 1.5 T and
3 T within one week in random order. T2-weighted hyperintensities (T2H) and T1-weighted hypointensities
(T1H) were outlined semiautomatically by two operators in a blinded fashion on 1.5 T and 3 T images. Spatial
lesion distribution was assessed using T2 and T1 voxel-wise SA probability maps (SAPM). Pair-wise analysis
examined the proportion of SA not simultaneously outlined on 1.5 Tand 3 T. A posteriori unblinded analysis
was conducted to examine the non-overlapping identifications of SA between the 1.5 Tand 3 T, For pair-wise
T2- and T1-analyses, a higher number and individual volume of SA were detected on 3 T compared to 1.5 T
(p=<0.0001) in both MS and NC. Logistic regression analysis showed that the likelihood of missing SAon 1.5 T
was significantly higher for smaller SA in both MS and NC groups. SA probability map (SAPM) analysis
revealed significantly more regionally distinct spatial SA differences on 3 T compared to 1.5 T in both groups
(p=<0.05); these were most pronounced in the occipital, periventricular and cortical regions for T2H. This
study provides important information regarding morphological and spatial differences between data
acquired using 1.5 T and 3 T protocols at the two scanner field strengths.

© 2009 Elsevier Inc. All rights reserved.
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Introduction The MRI criteria for MS focus on evidence for dissemination of

lesions in time and space (McDonald et al., 2001), but several factors
can affect the number and volume of MS lesions that can be identified
on serial MRI scans. These include: the choice of pulse sequence (Filippi
et al, 1996; Patola et al., 2001; Yousry et al, 1997), slice thickness
(Dolezal et al., 2007; Filippi et al., 1998b; Molyneux et al., 1998),
repositioning errors (Filippi et al., 1997), spatial resolution (Molyneux
et al., 1998), differences among types of scanners (Filippi et al,, 1999)
and magnetic field strengths (Schima et al., 1993; Sicotte et al., 2003).
As high-field imaging becomes increasingly available in clinical
routine care, it is more important than ever to understand the impact
on SA detection rate of a change to higher field, including commonly
associated changes in sequence parameters and/or resolution.
Higher field strength has been shown to detect more SA in

Magnetic resonance imaging (MRI) has a unique sensitivity for
detecting tissue abnormalities in the central nervous system (CNS).
Therefore, its use has been progressively increased in recent decades,
enabling better diagnosis and prognosis of several neurological diseases.

In particular, MRI is the most sensitive diagnostic method for
detection of inflammatory lesions in the CNS in patients with multiple
sclerosis (MS) (Zivadinov, 2007). MRI plays an important role in
diagnosis and prognosis of MS (McDonald et al., 2001) and is also
commonly used as a surrogate marker to monitor disease activity in
clinical trials (Miller, 1995; Paty et al., 1994).

* Corresponding author. School of Medicine and Biomedical Sciences, State

University of New York Director, Buffalo Neuroimaging Analysis Center, The Jacobs
Neurological Institute, 100 High St., Buffalo, NY 14203, USA. Fax: +1 716 859 7874.
E-mail address: rzivadinov@bnac.net (R. Zivadinov).

1053-8119/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2009.04.019

clinically defined MS (Fischbach and Bruhn, 2008; Keiper et al., 1998;
Lee et al., 1995; Sicotte et al., 2003) and in clinically isolated syndrome
(Wattjes et al.,, 2006a, 2008).
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Objective: To investigate abnormal phase on susceptibility-weighted imaging (SWI)-filtered phase images
indicative of iron content, in subcortical deep-gray matter (SDGM) of multiple sclerosis (MS) patients and
healthy controls (HC), and to explore its relationship with MRI outcomes.
Methods: 169 relapsing-remitting (RR) and 64 secondary-progressive (SP) MS patients, and 126 age- and sex-
matched HC were imaged on a 3 T scanner. Mean phase of the abnormal phase tissue (MP-APT), normal phase
tissue volume (NPTV) and normalized volume were determined for total SDGM, caudate, putamen, globus
pallidus, thalamus, pulvinar nucleus of thalamus (PVN), hippocampus, amygdala, nucleus accumbens, red
nucleus and substantia nigra. 63 HC were used for establishment of normal reference phase values, while
additional 63 HC were used for blinded comparisons with MS patients.
Results: Increased MP-APT, decreased normalized volume and decreased NPTV were detected in total SDGM,
caudate, putamen, globus pallidus, thalamus and PVN in MS patients compared to HC (p<.0004). MS patients
also showed decreased volume in hippocampus (<.0001) and decreased NPTV in the hippocampus, amygdala
and accumbens (<.0004). SPMS patients had increased MP-APT, decreased volume and decreased NPTV in
total SDGM, caudate and amygdala compared to RRMS (p<.005), while individual measure differences were
also detected in putamen, thalamus, hippocampus and accumbens (p<.006). RRMS patients showed a
significant relationship between increased MP-APT and increased lesion burden and more advanced brain
atrophy (p<.004).
Conclusions: Abnormal phase, indicative of higher iron content was significantly increased in MS patients
compared to HC, and was related to more severe lesion burden and brain atrophy.

© 2011 Elsevier Inc. All rights reserved.

Introduction

et al,, 2009a; Tjoa et al., 2005), cognitive impairment (Brass et al.,
2006) and brain atrophy (Bakshi et al., 2001; Bakshi et al., 2002;

Increased iron deposition has been described previously in
multiple sclerosis (MS) (Adams, 1988; Bakshi et al., 2000; Craelius
et al, 1982; LeVine and Chakrabarty, 2004; LeVine et al, 1999;
Mehindate et al., 2001; Valberg et al., 1989). However, the precise role
of increased iron is not clear (Grimaud et al., 1995). Previous imaging
approaches designed to study the presence of abnormal iron deposits
in brain parenchyma have focused on T2- and T2*-weighted imaging
(WI). Using these techniques, investigators have shown correlations
of increases in putative iron content with clinical progression (Neema

* Corresponding author at: Department of Neurology, School of Medicine and
Biomedical Sciences, Buffalo Neuroimaging Analysis Center, 100 High St., Buffalo, NY
14203, USA. Fax: +1 716 859 4005.

E-mail address: rzivadinov@bnac.net (R. Zivadinov).

1053-8119/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2011.07.045

Bermel et al, 2005; Khalil et al., 2009). Nonetheless, direct
interpretation of these results has suffered from the non-specificity
of T2-based approaches, which are highly sensitive to a range of tissue
changes other than iron (Haacke et al., 2004; Neema et al., 2007).
More recently, greater attention has been paid to the phase
component of MRI acquisition (Haacke et al., 2009b). The phase
values of individual voxels can in fact provide more information about
the presence of substances with different magnetic properties than
normal tissue (Haacke et al., 2007). It is known that paramagnetic
substances such as deoxyhemoglobin and ferritin change the local
magnetic field and thus influence the frequency or “phase” of proton
spin isochromats. Tissues differ in their susceptibility to phase effects,
making possible a form of contrast enhancement called susceptibility-
weighted imaging (SWI). As the constituents of iron markedly
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Improved assessment of multiple sclerosis lesion
segmentation agreement via detection and

outline error estimates

David S Wack'*®", Michael G Dwyer', Niels Bergsland', Carol Di Perri®, Laura Ranza®, Sara Hussein',

Deepa Ramasamy', Guy Poloni' and Robert Zivadinov'*

Abstract

Background: Presented is the method "Detection and Outline Error Estimates” (DOEE) for assessing rater
agreement in the delineation of multiple sclerosis (MS) lesions. The DOEE method divides operator or rater
assessment into two parts: 1) Detection Error (DE) - rater agreement in detecting the same regions to mark, and 2)
Outline Error (OE) -- agreement of the raters in outlining of the same lesion.

Methods: DE, OE and Similarity Index (SI) values were calculated for two raters tested on a set of 17 fluid-
attenuated inversion-recovery (FLAIR) images of patients with MS. DE, OE, and S| values were tested for
dependence with mean total area (MTA) of the raters' Region of Interests (ROIs).

Results: When correlated with MTA, neither DE {p =.056, p=.83) nor the ratio of OF to MTA (p=.23, p=37), referred
to as Outline Error Rate (OER), exhibited significant correlation. In contrast, Sl is found to be strongly correlated with
MTA (p=.75, p < .001). Furthermore, DE and OER values can be used to model the variation in SI with MTA.
Conclusions: The DE and OER indices are proposed as a better method than Sl for comparing rater agreement of
ROIs, which also provide specific information for raters to improve their agreement.

Keywords: Multiple sclerosis, Detection and outline error estimates, Rater agreement, Operator agreement, Metric,
Jaccard Index, Similarity index, Measure, Index, Kappa, Lesion, MR, ROI

Background

Multiple operators are often used to draw regions of
interest (ROIs) on medical images when the workload
would be too great for a single operator. When using
multiple operators, it is desirable to have the ROIs
from each to be similar. There are multiple measures
available to assess inter-rater variability, such as
Kappa, Jaccard’s Index (JI), Similarity Index (SI),
Hausdorff Distances, Conformity and Sensibility, etc.
[1-6]. We want to be able to assess an operator’s (or
automated method’s) ability to create lesion ROls,

* Correspondence: dswack@buffalo.edu

'Buffalo Neurcimaging Analysis Center, Dept. of Neurology, University at
Buffalo, State University of New York at Buffalo, Buffalo, NY, USA
“Department of Nuclear Medicine, University at Buffalo, State University of
New York at Buffalo, Buffalo, NY, USA

Full list of author information is available at the end of the article

() EioMed Central

using the ROIs they created. However, for any assess-
ment we should consider whether some test scans are
easier or harder than others to achieve good mea-
sured agreement on. An ideal measure would solely
reflect the operator’s ability, and not the difficulty of
the underlying test scans.

One of the original and common results of multiple
sclerosis lesion segmentation is the determination of
the total lesion volume for an individual subject. A
center may validate operators by their ability to draw
ROIs that are in agreement with the overall lesion vol-
ume of a gold standard analysis. Fortunately, this
intra-observer agreement was not found to be signifi-
cantly correlated with lesion volume [7]. However, this
only assesses an operator’s ability to calculate total le-
sion volume; it does not make a strong statement
about the ability of the operator to produce ROIs

© 2012 Wack et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (httpz/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited

74



Michael Dwyer', Niels Bergsland', Robert Zivadinov'?

'Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, USA

Background

Brain atrophy is an important component of many neurologic
diseases, including multiple sclerosis, Alzheimer's, Parkinson's,
and epllepsy

Many investigators are now focusing specifically on gray matter
atrophy as a potentially more sensitive and/or specific marker of
disease progression

Unfortunately, tissue-specific atrophy is also more difficult to
measure from a methodological Eerspecuve The gray/white
border as seen on conventional MRI is generally not as clearly
defined as the brain/CSF border.

Small errors in estimating the precise boundary can have a very
large impact on the final volumes estimated.

One of the most common approaches to measuring tissue-
specific atrophy over time is independent tissue segmentation
at both baseline and follow-up time points (potentially with some
spatial normalization), and then calculation of volumetric chang-
es via simple arithmetic. While this approach is straightforward,

it unfortunately incurs different measurement errors for each
of the two sub-analyses. Absent a direct comparison, it is quite
likely that the two segmentations will come to slightly different
conclusions about the precise spatial and intensity distributions
of the tissue classes involved

The "direct” SIENA approach is favorable, but is only currently
fully workable for whole brain change measurements, not for
tissue specific assessment.

To address these issues, we developed a novel SIENAX-
Ilke muln llme_Pom! techmque (SIENAX-MTP) by augmenting

B’'s FAST tissue segmentation algorithm with a 4-dimen-
stonal hidden markov random field (HMRF). Additionally, we
incorporated two of the ideas from SIENA into our tissue-specific
analysis technique: skull-constrained scaling factor estimation
and uniform brain extraction.

Methods

Inclusion of a temporal component in the HMRF

« The HMRF framework employed by SIENAX's FAST tool is
designed to use spatial neighborhood information to elegantl
mitigate the noise and homogeneity problems inherent in MRI-
based tissue segmentation. Intuitively, when assigning tissue
class labels to voxels, the algorithm attempts to minimize a

lobal cost function that penalizes two separate things: select-
ing class labels whose mean intensities don't match well with
the individual voxels (e.g., labeling a relatively bright voxel gray
matter), and creating spatially isolated labels (e.g., a few gray
matter voxels completely surrounded by white matter)

= More rigorously, the class labeling in standard FAST is selected
iteratively according to:

x® = arg nlEnXx{P(y‘xﬂ(“) +P(x)}

where x is the class labels vector, y is the observed intensity
vector, and 8 provides the class intensity parameters (means
and standard deviations). The key compenent in this context is
the P(x) term, which expresses the overall a-priori probability
of finding a three-dimensional class configuration matching x.
Internally, FAST calculates this term via a conversion to “MRF
weights”

= From a local perspective, the total label weight for a voxel i and
label / is decided by iterating over its neighbors j € N (where N,
is the neighborhood of the 26 voxels surrounding i), and is
calculated as:

1
Wit Z mt—’(—\) =1
JEN;

where dfi,j) is the distance between voxels / and j, and p(x=l) is
the clurrent iteration a posteriori probability of classification / for
voxel j

(-17.210.79)
6.45 (3.82)
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+ All of the mathematics behind the HMRF model in FAST can
be very naturally extended from 3 dimensions to 4 with minimal
modification. Recognizing this and reorganizing terms, we modi-
fied the above calculation to be:

1 .
Z adq, I)PUJ )+ !—p(,\; =1)

JEN;

where p(x'=l) is the current iteration a posteriori probability of
classification [ for voxel i in the same physical po: as i but
at the other time-point. Analytically, the 4" dimension can be
included just like the other spatial ones. Intuitively, this calcula-
tion now includes a regularization term for maintaining constant
voxel classification over time as well as for the usual agreement
with neighboring classifications.

Skuli-constrained scaling factor

+ To avoid potential scanner-related scaling issues, we employed
a similar skull-constrained scaling approach to that used in SIE-
NA. Baseline and follow-up images were individually de-skulled
using BET, and both brain and skull images were retained
A skull-constrained 12-parameter affine registration was then

rformed with FLIRT, resulting in halfway transforms and scal-
ing factors. We used these scaling factors to correct the final
volume change estimates.

Uniform brain extraction

+ Another potentially confounding factor in longitudinal measure-
ment is differing brain extracfions. Because we transformed
both images into a common halfway space, we were also able
to combine the individual brain masks via a union operation
After masking with valid voxel masks from each time point, we
were thus able to isolate a common set of voxels and to avoid
spurious volume changes measurements due to differing BET
extractions.

Figure 1 represents schematic view of the SIENAX-MTP
processing pipeline.

Validation

= To evaluate the characteristics of our proposed approach, we
used both simulation and testing on a real clinical dataset of
patients with MS and matched healthy controls.

Simulation

= To provide images with known atrophy over time, we artificial-
ly introduced volume changes in a set of images. We jan
with a scan-rescan dataset of 5 healthy volunteers, all scanned
twice within a one-week period. We then performed brain/skull
extractions on all images using BET and manually correcting
where appropriate. Next, we generated transformation matrices
Fresemnghorder and position but scaling by a variety of known
actors in the range of 0-10% reduction. applied these trans-
formations to the follow-up brain images, retaining the original
follow-up skull masks. We then performed the above-described
SIENAX-MTP technigue on the various pairs of images

Clinical evaluation

« To evaluate whether SIENAX-MTP can better measure clini-
cally meaningful differences, we analyzed a cohort of 64 RRMS
patientswhodid not develop dlsablll!y progressionand64 RRMS
patients who did develop dlsablhtg Igrogressncn over 5 years
of follow-up. We applied SIENA and SIENAX-MTP,
and tested the effect sizes between the groups. Additionally, we
examined correlations between the various measures.

Results

« Simulation results are shown in Figures 2 and 3. The SIENAX-
MTP technique resulted in better correlation with the actual
scale values applied to the images (R=0.83 compared to R=0.23
for SIENAX). In addition, variance within the cases for each
scaling value was reduced in SIENAX-MTP results as compared
to standard SIENAX

Clinical results are shown in Tables 1 and 2. SIENAX MTP
showed reduced variance and a larger effect size than SIENAX
for all measures evaluated. For GM, SIENAX-MTP differences
reached statistical significance, while SIENAX differences did
not. SIENAX-MTP measures also correlated better with SIENA
than did standard SIENAX measures
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Conclusions

The proposed SIENAX-MTP technigue can provide significant-
ly improved measurement of GM atrophy over time in MS by
reducing error-related variance.

+ The increased statistical power gained with SIENAX-MTP can
potentially benefit research studies and clinical trials by detect-
ing changes earlier or in smaller cohorts, and/or by detecting
more subtle changes.
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associated journals. However, the unpublished manuscript related to work 11
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I. Introduction
II. Methods
A. MRI Acquisition and Analysis
B. Statistical Analysis
III. Results
A. Cortical, Juxtacortical, and Cortical—Juxtacortical Lesion Volumes
According to the Different Slice Thicknesses
B. Gray Matter Atrophy and Lesion Volumes
C. Relationship of Cortical, Juxtacortical, and Cortical—Juxtacortical
Lesion Volumes to Disability
IV. Discussion
References

Understanding the importance of cortical lesions in MS pathogenesis has
changed. Histopathologic studies using new immunohistochemical methods show
that cortical lesions can be detected more frequently than previously reported.
Newer MRI sequences also detect cortical lesions more accurately. The aim of this
study was to evaluate whether the effect of slice thickness (th) is an important factor
for detection of cortical lesions in patients with multiple sclerosis (MS). We aimed
also to investigate the relationship of cortical lesions with clinical status or other
MRI variables. Forty-one patients with relapsing-remitting (RR) MS (11 males,

INTERNATIONAL REVIEW OF 475 Copyright 2007, Elsevier Inc.
NEUROBIOLOGY, VOL. 79 All rights reserved.
DOI: 10.1016/S0074-7742(07)79021-9 0074-7742/07 $35.00
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30 females with mean EDSS 2.3) underwent scans of Two-dimensional (2D)-fluid-
attenuated inversion recovery (FLAIR) and 3D-T1-WTI at 1.5-, 3-, and 5-mm slice
thicknesses on 1.5-T MRI. Cortical and juxtacortical lesions were volumetrically
assessed using a semiautomated method. 2D-FLAIR and 3D-TI1-WI were
coregistered and the matrix of the neocortical volume (NCV) segmentation mask
(SIENAX-generated) was used to classify the location of the cortical-subcortical
lesions. Cortical lesions fell into three classes: (1) class 1 were defined as lesions
located m the NCV, (2) class 2 were juxtacortical lesions in contact with the
NCV mask, and (3) class 3 were cortical-juxtacortical lesions situated in both
regions. We measured NCV and normalized gray matter (GM) volume as well. We
used partial correlation and multiple regressions to investigate the relationship
between cortical lesions and other clinical and MRI variables. Of the total
T2-lesion volume (T2-LV) measured on 1.5-mm th scans (mean 16108 mm?®),
cortical lesions represented 2.4% (276 mm®), juxtacortical lesions 6.1% (760 mm?),
and cortical-juxtacortical 3.7% (491 mm®*). Compared to 1.5-mm th scan, cortical
LV was reduced by —28.3%, p < 0.001 on 3-mm th and by —40.78%, p < 0.001 on
5-mm th scans. Results for juxtacortical LV were for 3-mm th scans (—17.9%,
p < 0.01) and for 5-mm th scans (—30.3%, p < 0.01). The figures for cortical—
juxtacortical LV were also for 3-mm th scans (—16.2%, p < 0.01) and for 5-mm th
scans (—26.7%, p < 0.01). We observed a significant correlation between T2-LVand
GM atrophy in all slice thickness (r= —0.4 to —0.48, p = 0.001-0.003) and a modest
relationship between cortical and cortical—juxtacortical LVs and disability, especially
at 1.5-mm slice thickness (r = 0.35, p = 0.025). Use of thinner slices (1.5mm) on
2D-FLAIR images can significantly increase the sensitivity and precision of detecting
cortical and juxtracotical lesions in patients with MS. Cortical and juxtacortical
lesions contribute more to disability development than total T2-LV alone.

l. Introduction

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central
nervous system (CNS), leading to disability in young adults. Historically, MS has
been considered primarily a disease affecting the white matter (WM) of the CNS.
Evidence is mounting that MS is also a gray matter (GM) disease (Bo ¢/ a/., 2003;
Brownell and Hughes, 1962; Kutzelnigg and Lassmann, 2005; Peterson et al.,
2001; Wegner ef al., 2006). GM lesions are similar to those in the WM; they are
described as clearly defined areas of demyelination within the cerebral cortex,
basal ganglia, and GM of the spinal cord and brain stem that reflect an ongoing
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Diffusion-weighted imaging predicts cognitive
impairment in multiple sclerosis

Ralph HB Benedict’?, Jared Bruce”?, Michael G Dwyer?, Bianca Weinstock-Guttman'+,
Chris Tjoa'?, Eleonora Tavazzi®, Frederick E Munschauer' and Robert Zivadinov'-?

Following a previous study with diffusion tensor imaging, we investigated the correlation between
diffusion-weighted imaging (DWI) and cognitive dysfunction in multiple sclerosis (MS). We studied
60 MS patients (mean age 45.8 +9.0 years) using 1.5-T MRI. Disease course was RR =40 and SP =
20. Mean disease duration was 12.8 +8.7 years. Mean EDSS was 3.4 +1.7. Whole brain, gray and
white matter normalized volumes were calculated on 3D SPGR T1-WI using a fully automated Hybrid
SIENAX method. Parenchymal mean diffusivity (PMD) maps were created after automated
segmentation of the brain parenchyma and cerebrospinal fluid using T2-WI and DW images.
Histogram analysis was performed and DWI indices of peak position (PP), peak height (PH), mean
parenchymal diffusivity (MPD) and entropy were obtained. Neuropsychological (NP) evaluation
emphasized auditory/verbal and visual/spatial memory, as well as processing speed and executive
function. We found significant correlations between DWI and performance in all cognitive domains.
Overall, stronger correlations emerged for MPD and entropy than other DWI measures, although all
correlations were in the expected direction. The strongest association was between DWI entropy and
performance on the Symbol Digit Modalities Test, which assesses processing speed and working
memory (r = —0.54). Fisher r to z transformations revealed that DWI, gray matter (GMF) and whole
brain (BPF) atrophy, T1-lesion volume (LV) and T2-LV all accounted for similar amounts of variance in
NP testing. Stepwise regression models determined whether multiple MRl measures predicted
unique additive variance in test performance. GMF (R? =0.35, F=30.82, P <0.01) and entropy
(AR =0.06, AF =5.47, P <0.05) both accounted for unique variance in processing speed. Our data
make a stronger case for the clinical validity of DWI in MS than heretofore reported. DWI has very
short acquisition times, and the segmentation method applied in the present study is reliable and
fully automated. Given its overall simplicity and moderate correlation with cognition, DWI may offer
several logistic advantages over more traditional MRI measures when predicting the presence of NP
impairment. Multiple Sclerosis 2007; 13: 722-730. http://msj.sagepub.com

Key words: cognition; diffusion-weighted imaging; magnetic resonance imaging; multiple sclerosis;
neuropsychology

Introduction

Recent years have witnessed increasing interest in
the prediction of neuropsychological (NP) impair-
ment in patients with multiple sclerosis (MS).
Approximately 50% of MS patients exhibit some
degree of NP impairment [1,2]. Deficits in processing
speed [3,4], memory [5,6] and higher executive
function [7,8] are particularly common, affecting

quality of life and employment [9]. Identifying
patients at risk for NP impairment on the basis of
MRI would thus enhance quality of care. A number
of MRI measures are correlated with NP impairment
in MS, including lesion volume (LV) [10], ventricle
size [11,12], cortical sulcal enlargement [13], cortical
volume [14] and whole brain volume [15,16]. Recent
publications showed that atrophy accounts for more
NP variance than does lesion burden [11,12,17].
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Comparison of Three Different Methods for
Measurement of Cervical Cord Atrophy in
Multiple Sclerosis

BACKGROUND AND PURPOSE: Evidence is mounting that spinal cord atrophy significantly correlates
with disability in patients with multiple sclerosis (MS). The purpose of this work was to validate 3
different measures for the measurement of cervical cord atrophy on high-resolution MR imaging in
patients with MS and in normal control subjects (NCs). We also wanted to evaluate the relationship
between cervical cord atrophy and clinical disability in the presence of other conventional and
nonconventional brain MR imaging metrics by using a unique additive variance regression model.

MATERIALS AND METHODS: We studied 66 MS patients (age, 41.2 = 12.4 years; disease duration,
11.8 = 10.7 years; Expanded Disability Status Scale, 3.1 = 2.1) and 19 NCs (age, 30.4 = 12.0 years).
Disease course was relapsing-remitting (34), secondary-progressive (14), primary-progressive (7), and
clinically isolated syndrome (11). The cervical cord absolute volume (CCAV) in cubic millimeters and 2
normalized cervical cord measures were calculated as follows: cervical cord fraction (CCF) = CCAV/
thecal sac absolute volume, and cervical cord to intracranial volume (ICV) fraction (CCAV/ICV). Cervical and
brain lesion volume measures, brain parenchyma fraction (BPF), and mean diffusivity were also calculated.

RESULTS: CCAV (P < .0001) and CCF (P = .007) showed the largest differences between NCs and MS
patients and between different disease subtypes. In regression analysis predicting disability, CCAV was
retained first (A% = 0.498; P < .0001) followed by BPF (A% = 0.08; P = .08). Only 8% of the variance in
disability was explained by brain MR imaging measures when coadjusted for the amount of cervical cord
atrophy.

CONCLUSIONS: 3D CCAV measurement showed the largest differences between NCs and MS pa-
tients and between different disease subtypes. Cervical cord atrophy measurement provides valuable

R imaging of the brain is a sensitive tool for making a

diagnosis of multiple sclerosis (MS). Abnormalities of
brain MR imaging are present in more than 95% of patients
with clinically definite MS; however, there is poor correlation
between disability and the number and volume of focal brain
lesions visible on MR imaging."

Involvement of the spinal cord, especially of the cervical
cord, is of particular significance in the development of physi-
cal disability in patients with MS.** During the course of their
disease, approximately 80% of patients with MS present with spi-
nal cord symptoms.® Conventional T2-weighted spinal cord im-
aging is sensitive in detecting spinal cord lesions and their changes
over time.”* However, measures of cord T2 lesion number and
volume failed to show a significant relationship with disability
and have poor prognostic value for disability accumulation over
the mid-to-long term.>* Evidence is mounting that spinal cord
atrophy significantly correlates with disability.>"!

Atrophy of the spinal cord in MS is thought to reflect inflam-
matory tissue injury, demyelination, and axonal loss. Postmor-
tem pathologic studies have documented spinal cord axonal loss
in MS.">'"* However, whereas the correlation between central
nervous system atrophy and disability has been interpreted as a
reflection of axonal loss in pre-existing lesions,'*'® axonal loss
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additional information related to disability that is not obtainable from brain MR imaging metrics.

does not appear to directly affect the cross-sectional cord area in
pathologic studies.”> Measurement of spinal cord atrophy has
demonstrated value in the clinical realm. Serial MR imaging of
the spinal cord has shown evidence of disease activity undetect-
able on clinical examination, thereby increasing the diagnostic
sensitivity of MR imaging for patients with suspected MS."” Spi-
nal cord abnormalities on MR imaging are not restricted only to
patients presenting with spinal cord symptoms, because changes
suggestive of atrophy may be seen before any manifestation of
clinical symptoms. It has been shown that atrophy of the cervical
spinal cord is a useful measure for determining clinical disabili-
ty'®'>'® and monitoring disease progression,'® as well as thera-
peutic drug effects in MS.*

Key problems in the evaluation of spinal cord atrophy have
been related to poor resolution of MR imaging, small size of
the cord, and surrounding fat, bone, and CSF that can cause
artifacts and, as a consequence, compromise the final image
quality. Indeed, artifacts related to pulsation and respiratory
cardiac motion have also been considered.>” This led in most
of the earlier studies to unacceptable error in manual delinea-
tion of the cord/CSF interface.” The technical challenges of
spinal cord imaging posed by the size and anatomy of the cord
and by its surrounding structures have been addressed in re-
cent years by improved receiver coils, fast imaging, 3D imag-
ing, motion suppression, and cardiac gating. Subsequently,
interest has emerged in a reproducible semiautomated mea-
surement of the cord cross-sectional area® and its improved
measurement by reduction of partial volume effect,?? as well as
by 3D extraction of the cord surface area.”

The goal of the present study was to investigate whether

AJNR Am J Neuroradiol 29:319-25 | Feb 2008 | www.ajnr.org 319
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Abstract Magnetic resonance
imaging (MRI) is the most impor-
tant paraclinical measure for as-
sessing and monitoring the patho-
logic changes implicated in the
onset and progression of multiple
sclerosis (MS). Conventional MRI
sequences, such as T1-weighted
gadolinium (Gd) enhanced and
spin-echo T2-weighted imaging,
only provide an incomplete pic-

R. Zivadinov (IX4) - M. Stosic - J. L. Cox
D. P. Ramasamy - M. G. Dwyer

Dept. of Neurology

School of Medicine and Biomedical
Sciences

State University of New York

Director, Buffalo Neuroimaging Analysis
Center

The Jacobs Neurological Institute

100 High St.

Buffalo, NY 14203, USA

Tel.: +1-716/859-7031

Fax: +1-716/859-7874

E-Mail: rzivadinov@thejni.org

The place of conventional MRl and newly
emerging MRI techniques in monitoring
different aspects of treatment outcome

ture of the degree of inflammation
and underlying neurodegenerative
changes in this disease. Two- and
three-dimensional fluid-attenu-
ated inversion recovery and dou-
ble inversion recovery sequences
allow better identification of cor-
tical, periventricular and infraten-
torial lesions. Ultra-high field
strength MRI has the potential to
detect subpial cortical and deep
gray matter lesions. Unenhanced
T1-weighted imaging can reveal
hypointense black holes, a mea-
sure of chronic neurodegeneration.
Magnetization transfer imaging
(MTI) is increasingly used to char-
acterize the evolution of MS lesions
and normal-appearing brain tis-
sue. Evidence suggests that the dy-
namics of magnetization transfer
changes correlate with the extent
of demyelination and remyelin-
ation. Magnetic resonance spec-
troscopy, which provides details on
tissue biochemistry, metabolism,

and function, also has the capacity
to reveal neuroprotective mecha-
nisms. By measuring the motion of
water, diffusion imaging can pro-
vide information about the orien-
tation, size, and geometry of tissue
damage in white and gray mat-

ter. These advanced non-conven-
tional MRI techniques relate better
to clinical impairment, disease pro-
gression, accumulation of disabil-
ity, and have the potential to detect
neuroprotective effects of treat-
ment. Although detecting the sta-
tus of neuronal integrity using MRI
techniques continues to improve, a
“gold standard” model remains to
be established.

Keywords multiple sclerosis
- magnetic resonance imaging -
high field imaging - magnetization
transfer imaging - magnetic
resonance spectroscopy - diffusion
imaging

Introduction

Over the last two decades, magnetic resonance imaging
(MRI) has revolutionized the diagnosis and monitoring
of patients with multiple sclerosis (MS). Over this period,
MRI technology has continually evolved with more and
more sophisticated techniques becoming available that
may visualize more accurately the disease processes.
For much of this period, presence and accumulation
of T2-weighted and gadolinium (Gd) enhancing T1-

81

weighted lesions have represented the MRI gold stan-
dard for making the diagnosis and for evaluating long-
term prognosis in MS. These measures have also been
used for a long time as principal MRI outcomes in clini-
cal trials. The principal limitation of these techniques is
that they reveal only incompletely the pathophysiologic
process in this disease. In particular, more than twenty
clinical trials have demonstrated very pronounced in-
hibition of these inflammatory MRI measures without
concurrent clinical benefit over the long term. A meta-
analysis published in 1999 [33] analyzed data from five
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Use of perfusion- and diffusion-weighted
imaging in differential diagnosis of acute and
chronic ischemic stroke and multiple sclerosis
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Objective: To investigate differences in lesions and surrounding normal appearing white matter
(NAWM) by perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in
patients with acute and chronic ischemic stroke and multiple sclerosis (MS).

Methods: Study subjects included 45 MS patients, 22 patients with acute ischemic stroke and 20
patients with chronic ischemic stroke. All subjects underwent T,-weighted imaging (WI), flair
attenuated inversion recovery (FLAIR), DWI and dynamic contrast enhanced PWI. Apparent
diffusion coefficient (ADC) and mean transit time (MTT) maps were generated and values were
calculated in the acute and chronic ischemic and demyelinating lesions, and in NAWM for
distances of 5, 10 and 15 mm. Fifty-three acute ischemic and 33 acute demyelinating lesions,
and 775 chronic ischemic and 998 chronic demyelinating lesions, were examined. Univariate,
multivariate and data mining analyses were used to examine the feasibility of a prediction model
between different lesion types. Correctly and incorrectly classified lesions, true positive (TP),
false positive (FP) and precision rates were calculated.

Results: Patients with acute ischemic lesions presented more prolonged mean MTT values in
lesions (p=0.002) and surrounding NAWM for distances of 5, 10 and 15 mm (all p<0.0001)
than those with acute demyelinating lesions. In multinomial logistic regression analysis, 65 of 86
acute lesions were correctly classified (75.6%). The TP rates were 81.1% for acute ischemic
lesions and 66.7% for acute demyelinating lesions. The FP rates were 33.3% for acute ischemic
and 18.9% for acute demyelinating lesions. The precision was 79.6% for classification of acute
ischemic lesions and 68.8% for prediction of acute demyelinating lesions. The logistic model
tree decision algorithm revealed that prolonged MTT of surrounding NAWM for a distance of
15 mm (=7459.2 ms) was the best classifier of acute ischemic versus acute demyelinating
lesions. Patients with chronic ischemic lesions presented higher mean ADC (p<0.0001) and
prolonged MTT (p=0.013) in lesions, and in surrounding NAWM for distances of 5, 10 and
15 mm (all p<0.0001), compared to the patients with chronic demyelinating lesions. Data
mining analyses did not show reliable predictability for correctly discerning between chronic
ischemic and chronic demyelinating lesions. The precision was 56.7% for classification of
chronic ischemic and 58.9% for prediction of chronic demyelinating lesions.

Discussion: We found prolonged MTT values in lesions and surrounc/l'gng NAWM of patients with
acute and chronic ischemic stroke when compared to MS patients. The use of PWI is a promising
tool for differential diagnosis between acute ischemic and acute demyelinating lesions. The
results of this study contribute to a better understanding of the extent of hemodynamic
abnormalities in lesions and surrounding NAWM in patients with MS. [Neurol Res 2008; 30:
816-826]

Keywords: Perfusion-weighted imaging; diffusion-weighted imaging; acute ischemic stroke;
chronic ischemic stroke; multiple sclerosis; demyelinating lesions

INTRODUCTION
Quantitative neuroimaging indices

have advanced
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our understanding of the underlying pathophysio-
logic mechanisms of many neurological diseases.
Differentiating acute and subacute ischemic stroke
lesions from acute demyelinating lesions of multiple
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We assessed the relationship between gray matter (GM) and white matter (WM ) atrophy and clinical status
in early relapsing-remitting multiple sclerosis (MS) patients over 5 years. A group of 181 patients who
participated in the ASA (Avonex-Steroid-Azathioprine) study and had complete clinical and MRI
assessments over 2 and 5 years was investigated. One hundred seventy (170) patients completed the 12-
month follow-up, 147 the 24-month, 98 the 36-month, 65 the 48-month and 47 the 60-month. Changes in
GM (GMV), WM (WMV) and peripheral GM (PGV) volumes, whole brain volume (percentage brain volume

Keywords: X g - - -
Multiple sclerosis change PBVC), lateral ventricle volume (LVV), third ventricle width (3VW) and T2-lesion volume (T2-LV)
Disability were measured. Patients were assigned according to their clinical status to one of two groups: the Stable

group, and the Reached Confirmed Sustained Progression (RCSP) group (24-week interval). At 0-6 months
PBVC and GMV, at 0-12 months PBVC, GMV and T2-LV, at 0-24 months PBVC and GMV, at 0-36 months
PBVC, GMV and T2-LV, and at 0-48 PBVC predicted the differences between the RCSP and Stable groups.
PBVC and LVV showed the strongest ability to differentiate patients who presented 0 or =3 relapses in the
Stable group. Decline in PBVC and GMV were predictive markers of disability deterioration. Correlation of T2-
LV with clinical status was weaker and decreased over time. Higher number of relapses was associated with
faster decline in whole brain volume.

Relapse rate
Brain atrophy
Gray matter
White matter
MRI

© 2008 Elsevier B.V. All rights reserved.

1. Introduction increasingly accurate measurements of subclinical disease activity, along
with improved understanding of the mechanisms underlying the
inflammatory and neurodegenerative phases of this disease [4-6]. MRI
plays an essential role in the diagnosis of MS and studies have shown
that inflammatory lesion measures may accurately predict conversion to
clinically definite MS in the mid-to-long term [7-9]. The correlation are
less satisfactory, however, between these inflammatory MRI markers
and long-term clinical status in patients with relapsing-remitting (RR),
secondary-progressive or primary-progressive MS. Furthermore, an
important question still awaits complete clarification, ie., whether
newer MRI techniques (such as brain atrophy) may provide an advan-
tage in predicting long-term clinical status.

Numerous studies have underscored the usefulness of MRI in assessing
brain atrophy and its relationship to long-term neurodegeneration and
disability progression [4]. Brain atrophy is a modest-to-strong correlate of
clinical disability (including both cognitive and physical components) and
has moderate predictive value for subsequent development of neurolo-

Multiple sclerosis (MS) is a chronic inflammatory disease of the
central nervous system (CNS) characterized by early axonal damage
that, in a substantial number of patients, leads to irreversible disability.
It is now widely believed that this permanent neurological disability
develops when a threshold of cumulative axonal loss is reached and
CNS compensatory resources are exhausted [ 1]. Despite known clinical
patterns [2], there is considerable individual variation in the course of
MS and its clinical characteristics, and newer mathematical prognostic
models [3] still do not provide satisfactory answers regarding long-
term predictability of clinical disability in patients with MS.,

Among different surrogate markers proposed for this disease,
magnetic resonance imaging (MRI) is currently one of the most explored
and utilized. Technical advances in MRI during recent years have led to

* Corresponding author. Department of Neurology, Charles University in Prague, First

Faculty of Medicine, Katerinska 30, Prague 128 08, Czech Republic. Tel.: +420
224966515; fax: +420 224917907.
E-mail address: dana.horak@post.cz (D. Horakova).

0022-510X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
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gical impairment. On the other hand, the association between brain
atrophy and disability is independent of the effect of conventional
MRI lesions. Moreover, carefully conducted long-term serial MRI studies,
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Voxel-wise magnetization transfer
imaging study of effects of natalizumab
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Abstract

Objective: To determine the effects of intravenous natalizumab and intramuscular interferon beta-la (IFNf-1a) on the
volume of white-matter (WM) lesions and normal appearing brain tissue (NABT) undergoing voxel-wise (VW) increases
in magnetization transfer ratio (MTR) suggestive of remyelination in patients with relapsing multiple sclerosis.
Methods: This prospective, open-label, single-blinded study enrolled patients with relapsing—remitting multiple sclerosis
(RRMS) and relapsing secondary progressive multiple sclerosis (RSPMS) as well as a group of age/sex-matched healthy
controls (n=22). Patients with multiple sclerosis were assigned to receive natalizumab monotherapy (n=77; RRMS/
RSPMS) or intramuscular IFNB-la (n=26) as either monotherapy (RRMS) or combined with pulsed i.v. methylpredniso-
lone, as needed (RSPMS). The primary endpoint was the two-year change in volume of NABT YWMTR, by quantifying the
number of voxels that increased (suggesting remyelination) or decreased (suggesting demyelination) in their MTR value.
Results: The volume of tissue undergoing increases in YWMTR was significantly larger in natalizumab compared with
IFNP- la-treated patients (year |: p=0.001 in NABT and p<0.006 in WM lesions; year 2: p=0.008 in NABT) and compared
with healthy control subjects (year I: p=0.05 and year 2: p=0.007 in NABT). The larger volume within NABT undergoing
decreases in VWMTR was detected in multiple sclerosis patients compared with healthy controls (p<0.001), and in the
IFNP-la group compared with the natalizumab group (year |: p=0.05; year 2: p=0.002). One patient on natalizumab died
from progressive multifocal leukoencephalopathy eight months after completing the study.

Conclusion: Natalizumab may promote remyelination and stabilize demyelination in lesions and NABT in relapsing
multiple sclerosis, compared with intramuscular IFNf-la.

Keywords
clinical trials observational study, multiple sclerosis, MRI, voxel-wise MTR
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Introduction

shown to be related to remyelination in animal’ and post-
mortem studies.®?

The underlying pathology of multiple sclerosis (MS) is
characterized by alternating cycles of inflammation associ-
ated with demyelination that manifests both as focal lesions
and more diffusely in otherwise normal appearing brain tis-

sue (NABT), followed by remyelination.!? Magnetization
transfer imaging (MTT) may be used to detect variations in
myelin content within MS lesions and NABT. Decrease in
the magnetization transfer ratio (MTR) has been reported to
correlate with clinical decline assessed by the Expanded
Disability Status Scale (EDSS), MS Functional Composite
(MSFC), and other neuropsychological tests.>*¢ In addition,
it is a non-specific sign of demyelination, macrophage
infiltration and axonal damage.” Increased MTR has been
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Iron Deposition on SWI-Filtered Phase in the
Subcortical Deep Gray Matter of Patients with
Clinically Isolated Syndrome May Precede
Structure-Specific Atrophy

BACKGROUND AND PURPOSE: Increasing evidence suggests that iron deposition is present in the later
stages of MS. In this study we examined abnormal phase values, indicative of increased iron content
on SWI-filtered phase images of the SDGM in CIS patients and HC. We also examined the association
of abnormal phase with conventional MR imaging outcomes at first clinical onset.

MATERIALS AND METHODS: Forty-two patients with CIS (31 female, 11 male) and 65 age and sex-
matched HC (41 female, 24 male) were scanned on a 3T scanner. Mean age was 40.1 (SD = 10.4)
years in patients with CIS, and 42.8 (SD = 14) years in HC, while mean disease duration was 1.2 years
(SD = 1.3) in patients with CIS. MP-APT, NPTV, and normalized volume measurements were derived
for all SDGM structures. Parametric and nonparametric group-wise comparisons were performed, and
associations were determined with other MR imaging metrics.

RESULTS: Patients with CIS had significantly increased MP-APT (P = .029) and MP-APT volume (P =
.045) in the pulvinar nucleus of the thalamus compared with HC. Furthermore, the putamen (P = .004),
caudate (P = .035), and total SDGM (P = .048) displayed significant increases in MP-APT volume,
while MP-APT was also significantly increased in the putamen (P = .029). No global or regional
volumetric MR imaging differences were found between the study groups. Significant correlations
were observed between increased MP-APT volumes of total SDGM, caudate, thalamus, hippocampus,
and substantia nigra with white matter atrophy and increased T2 lesion volume (P < .05).

CONCLUSION: Patients with CIS showed significantly increased content and volume of iron, as
determined by abnormal SWI-phase measurement, in the various SDGM structures, suggesting that
iron deposition may precede structure-specific atrophy.

ABBREVIATIONS: CIS = clinically isolated syndrome; EDSS = Expanded Disability Status Scale;
ETL = echo-train length; FIRST = fMRl-integrated registration and segmentation tool; Gd =
gadolinium; GM = gray matter; HC = healthy controls; LV = lesion volume; MP-APT = mean phase
of the abnormal phase tissue; NBV = normalized brain volume; NGMV = normalized gray matter
volume; NLVV = normalized lateral ventricle volume; NPTV = normal phase tissue volume;
NWMV = normalized white matter volume; pFOV = phase FOV; RRMS = relapsing-remitting MS;
SDGM = subcortical deep GM

I thas become increasingly clear that GM damage is present in
patients with MS and involves both the cortical GM and
SDGM structures." GM damage is most extensive in patients
with progressive MS,> but is already present in those with
CIS>'® and can predict conversion to clinically definite
MS.I 1-13

Most authors investigating iron deposition in MS have
used imaging techniques such as T2 hypointensity,'*'® relax-
ometry,'”"'” magnetic field correlation,”® and SWI.>'** Accu-
mulation of iron in the SDGM has also been observed histo-
logically in MS,**** and iron deposition has been detected in
the same SDGM structures where the volume loss also oc-
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curred.” It is thought that excessive levels of iron in the brain
may lead to tissue damage by the generation of reactive oxygen
species, most probably through the Fenton reaction.’®*” In
this process, ferrous iron (Fe*") donates an electron to hydro-
gen peroxide, with the resulting toxic products being ferric
iron (Fe’*), hydroxyl anion (OH ™), and the highly reactive
hydroxyl radical (OH).

Few studies have investigated iron deposition in the earliest
stages of MS, such as in those with CIS.?® Ceccarelli et al®
reported increased T2 hypointensity in the head of the left
caudate nucleus of patients with CIS compared with HC.
However, a recent study using relaxometry did not show dif-
ferences between patients with CIS and HC.'® Moreover, pa-
tients with RR-MS appear to show even higher iron content in
the SDGM than patients with CIS, suggesting that disease pro-
gression may be related to pronounced iron deposition.'®!**
Ifincreased levels of iron are causally related to SDGM damage
and disease development, iron deposition must be present at
the earliest stages of the disease, such as in patients with CIS.

This study used a SWl-filtered phase approach to charac-
terize possible iron deposition in the SDGM of patients with
CIS. Paramagnetic substances within the brain, mostly in the
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Subcortical and Cortical Gray Matter Atrophy in a
Large Sample of Patients with Clinically Isolated
Syndrome and Early Relapsing-Remitting Multiple
Sclerosis

BACKGROUND AND PURPOSE: Recent studies have shown that selective regional, but not global, GM
atrophy occurs from clinical onset to conversion to clinically definite MS. Our aim was to investigate
the difference in the extent of SDGM and cortical atrophy in a large sample of patients with CIS and
early RRMS and to explore the relationship between SDGM and cortical atrophy and other MR imaging
and clinical outcomes.

MATERIALS AND METHODS: Two hundred twelve patients with CIS recruited at the first clinical event
(mean age, 29.3 years; median EDSS, 1.5; median disease duration, 3 months) and 177 patients with
early RRMS (mean age, 30.7 years; median EDSS, 2.0; median disease duration, 47 months) were
imaged on a 1.5T scanner by using a high-resolution 3D T1 spoiled gradient-recalled sequence.
Volumetric data for SDGM structures were obtained by using FSL FIRST, while whole-brain, GM, white
matter, cortical, and lateral ventricle volumes were estimated by using SIENAX software. Comparisons
between the groups were adjusted for age and sex.

RESULTS: Patients with early RRMS showed significantly lower SDGM but not cortical volumes
compared with patients with CIS. The most apparent SDGM differences were evident in the caudate
and thalamus (P < .0001), total SDGM (P = .0001), and globus pallidus (P = .01). Patients with CIS with
amedian T2 lesion volume >4.49 mL showed lower total SDGM, caudate, thalamus (P < .001), globus
pallidus (P = .007), hippocampus (P = .004), and putamen (P = .01) volumes and higher lateral
ventricle volume (P = .001) than those with a median T2 lesion volume <4.49 mL. Decreased thalamic
volume showed the most consistent relationship with MR imaging outcomes (P < .0001) in patients
with CIS.

CONCLUSIONS: Significant SDGM, but not cortical, atrophy develops during the first 4 years of the
RRMS. GM atrophy is relevant for disease progression from the earliest clinical stages.

ABBREVIATIONS: ASA = Avonex-Steroid-Azathioprine; CIS = clinically isolated syndrome; EDSS =
Expanded Disease Status Scale; FSL = FMRIB Software Library; GM = gray matter; NBV =
normalized brain volume; NCV = normalized cortical volume; NGMV = normalized gray matter
volume; NLVV = normalized lateral ventricle volume; NWMV = normalized white matter volume;
RRMS = relapsing remitting MS; SDGM = subcortical deep gray matter; SET = Study of Early
Interferon B 1a Treatment in High Risk Subjects after CIS

normal GM relaxation times on MR imaging is less than that

R imaging is a vital tool enabling clinicians to diagnose,

monitor, and predict the progression of MS. Conven-
tional MR imaging has proved to be very sensitive for detect-
ing focal changes in the WM, yet it is relatively insensitive to
involvement of the GM in MS. GM pathology in MS is quite
different from that in WM, with only mild blood-brain barrier
disruption and little-to-no inflammation due to minimal T-
cell infiltration." Hence, the difference between lesion and
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seen between lesion and normal white matter.”

In the past decade, continuous effort has been made to
develop novel MR imaging techniques that are able to quan-
titatively measure a wide spectrum of GM pathology.' The
introduction of double inversion recovery sequences has ad-
vanced the ability to capture part of GM pathology in vivo,*
and measurement of GM atrophy has become one of the im-
portant outcomes in MS studies.”” Other nonconventional
MR imaging techniques have also contributed to determining
the extent of GM damage in patients with MS.” The role of GM
pathology in MS has come under increasingly close scrutiny,
especially after it was shown that GM atrophy predicts clinical
outcomes better than WM damage.””

More recently, research has focused on determining the
extent of GM pathology at the first clinical event in patients
presenting with CIS*'° or on its evolution with conversion
to clinically definite MS.'7?° It has been reported that
global GM volume measures are not sensitive enough to
detect GM atrophy at the time of the initial attack.'' Con-
sequently, GM atrophy studies in patients with CIS have
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1. Introduction

Copyright © 2013 Robert Zivadinov et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We investigated the evolution of cortical atrophy in patients with early relapsing-remitting (RR) multiple sclerosis (MS) and its
association with lesion volume (LV) accumulation and disability progression. 136 of 181 RRMS patients who participated in the
Avonex-Steroids- Azathioprine study were assessed bimonthly for clinical and MRI outcomes over 2 years. MS patients with disease
duration (DD) at baseline of <24 months were classified in the early group (DD of 1.2 years, n = 37), while patients with DD >
24 months were classified in the late group (DD of 7.1 years, n = 99). Mixed effect model analysis was used to investigate the
associations. Significant changes in whole brain volume (WBV) (P < 0.00), cortical volume (CV) (P < 0.00}, and in T2-LV
(P < 0.00) were detected. No significant MRI percent change differences were detected between early and late DD groups over
2 years, except for increased T2-LV accumulation between baseline and year 2 in the early DD group (P < 0.0). No significant
associations were found between changes in T2-LV and CV over the followup. Change in CV was related to the disability progression
over the 2 years, after adjusting for DD (P = 0.01). Significant cortical atrophy, independent of T2-LV accumulation, occurs in early
RRMS over 2 years, and it is associated with the disability progression.

Because imaging techniques are still unable to adequately
detect GM lesions, especially in the cortex [5-9], measure-

Multiple sclerosis (MS) is an autoimmune disease of the
central nervous system (CNS) that affects both white matter
(WM) and gray matter (GM).

In the last decade, there has been increased interest
in studying GM damage in MS, especially in the cortical
regions [1]. Advances in both MRI acquisition and analysis
techniques have enabled better detection of changes in GM
morphology [2]. The MRI assessments included measure-
ments of cortical atrophy, cortical thinning, and cortical
lesions [1-4].
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ment of cortical atrophy is gaining increasing attention in
the literature [1], in order to assess the real extent of cortical
pathology in vivo in patients with MS [2].

Recent studies have established that subcortical, but not
cortical, atrophy is present at the earliest clinical stages of
the disease [10-15]. However, most of these studies had
a cross-sectional design, and only a few longitudinal stud-
ies investigated possible associations between GM atrophy
and clinical outcomes in patients with MS [11, 15-18].
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1. ABSTRACT

The association between clinical outcomes and
abnormal susceptibility-weighted imaging (SWI)-filtered
phase, indicative of increased iron content, as well as
atrophy, was investigated in the subcortical deep-gray
matter (SDGM) of multiple sclerosis (MS) patients. 149
relapsing-remitting (RR) and 61 secondary-progressive
(SP) MS patients underwent SWI on a 3T scanner. Mean
phase of the abnormal phase tissue (MP-APT) and
normalized volumes were determined for the total and
region-specific SDGM structures. In an age- and gender-
adjusted regression model, total SDGM volume was the
strongest predictor of Expanded Disability Status Scale
(EDSS) (beta = -.224, p <.001), followed by total SDGM
MP-APT (beta = -.168, p <.019). This model accounted for
30.4% of the variance in EDSS. Only SDGM MP-APT
added additional variance in predicting EDSS, compared to
conventional MRI metrics. Caudate and red nucleus MP-
APT and amygdala volume were associated with EDSS.
Our findings suggest that disability in MS patients is
associated better with SDGM pathology, as indicated by
increased iron content and atrophy, than with lesion burden
or white matter and cortical volumes
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2. INTRODUCTION

Although multiple sclerosis (MS) is considered
historically as a white matter (WM) disease, abnormalities
in the gray matter (GM) are consistently reported in both
the cerebral cortex and subcortical deep GM (SDGM) brain
structures. (1) Mounting evidence suggests that GM
pathology may play a more important role in predicting
clinical outcomes in MS patients than WM damage. (2, 3)

Over the last decade, efforts have been made to
develop novel MRI techniques that are able to
quantitatively measure a wide spectrum of GM pathology.
Histopathological and MRI studies have found increased
iron deposition in the SDGM of individuals with any of
several neurodegenerative disorders, including MS. (4-8)
Studies have shown a relationship between increased level
of iron content and clinical progression, cognitive
impairment, and brain atrophy in MS patients. (5, 9-12)
The underlying pathological mechanisms of iron deposition
in MS patients are unknown; however, it is thought that
iron may be derived from myelin/oligodendrocyte debris,
destroyed macrophages, or it can be the product of
hemorrhaging from damaged brain vessels. (8, 13, 14)
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Abstract:

SIENA and similar techniques have demonstrated the
utility of performing “direct” measurements as opposed
to post-hoc comparison of cross-sectional data for the
measurement of whole brain (WB) atrophy over time.
However, gray matter (GM) and white matter (WM)
atrophy are now widely recognized as important
components of neurological disease progression, and are
being actively evaluated as secondary endpoints in
clinical trials. Direct measures of GM/WM change with
advantages similar to SIENA have been lacking. We
created a robust and easily-implemented method for
direct longitudinal analysis of GM/WM atrophy, SIENAX
multi-time-point (SIENAX-MTP). We built on the basic
halfway-registration and mask composition components
of SIENA to improve the raw output of FMRIB's FAST
tissue segmentation tool. In addition, we created LFAST,
a modified version of FAST incorporating a 4™ dimension
in its hidden Markov random field model in order to
directly represent time. The method was validated by
scan-rescan, simulation, comparison with SIENA, and
two clinical effect size comparisons. All validation
approaches  demonstrated improved  longitudinal
precision with the proposed SIENAX-MTP method
compared to SIENAX. For GM, simulation showed better
correlation with experimental volume changes (r=0.99 vs.
0.75), scan-rescan showed lower absolute deviations
(1.5% vs. 2.5%), correlation with SIENA was more robust
(r=0.70 vs 0.53), and effect sizes were improved by up to
68%. Statistical power estimates indicated a potential
drop of 55% in the number of subjects required to detect
the same treatment effect with SIENAX-MTP vs. SIENAX.
The proposed direct GM/WM method significantly
improves on the standard SIENAX technique, and may
provide more precise data and additional statistical
power in longitudinal studies.

1. Introduction:

Brain atrophy measurement has become a key
analysis in basic neuroimaging science, aging
research, and research into pathologic conditions
including multiple sclerosis (MS) (Zivadinov and
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Bakshi, 2004; Bermel and Bakshi, 2006),
Alzheimer’s disease (AD) (Sluimer et al., 2008), and
Parkinson’s discase (Burton et al., 2005). It is also
becoming an important component of modern MS
and AD clinical trials (Thal et al., 2006; Zivadinov
et al., 2008). Readily available segmentation tools
such as FMRIB’s Structural Image Evaluation, using
Normalisation, of Atrophy (SIENA) (Smith et al.,
2001) allow atrophy measurements to be both
reliable (Sormani et al, 2004) and highly
standardized across studies and research centers
(Jasperse et al., 2007).

A better understanding of the specific
mechanisms of atrophy has led many researchers to
focus on separate quantification of gray matter (GM)
and white matter (WM) atrophy (Karas et al., 2003;
Thompson et al., 2003; Chard et al., 2004, Sanfilipo
et al.,, 2006; Zivadinov and Minagar, 2009; Hulst
and Geurts, 2011; Zivadinov and Pirko, 2012)
Although a variety of measurement approaches are
available (Chen et al., 2004; Nakamura and Fisher,
2009; Derakhshan et al., 2010; Nakamura et al.,
2011), one used by a number of groups is to perform
independent tissue segmentations at both baseline
and follow-up time points (potentially with some
spatial normalization), and then calculate the
changes via simple subtraction of the relevant total
volumes (Oreja-Guevara et al., 2005; Valsasina et
al., 2005; Healy et al., 2009; Horakova et al., 2009).
Unfortunately,  although  this  approach s
straightforward, intuitive, and easily implemented, it
is considerably less reproducible than a direct
measurement like SIENA. In fact, even whole brain
measures from SIENAX (the cross-sectional variant
of SIENA) (Smith et al., 2002) are less reproducible
than SIENA change measures (Cover et al., 2011),
and GM/WM-specific measures are even more
difficult. This reduction in precision can have
serious consequences for the statistical power of



planned studies, resulting in the need for either very
large subject groups or in the inability to detect real
changes (Anderson et al., 2007; Healy et al., 2009).

There are a number of potential reasons that
reproducibility issues arise from this approach. First,
and fundamentally, since two independent cross-
sectional measures are used rather than a single
direct measurement, there are two sources of
measurement error. Without a direct comparison, it
is likely that the two segmentations will come to
slightly different conclusions about the precise
spatial and intensity distributions of the tissue
classes involved. In particular, voxels of relatively
ambiguous intensity (i.e., halfway between GM and
WM) will often be classified differently at baseline
and follow-up, despite a lack of change in actual
tissue morphometry. Although these differences may
ultimately cancel out in aggregate, they add to the
overall variance of the measurement. This problem
is also aggravated by the fact that the GM/WM
border (as seen on conventional MRI) is generally
not as clearly defined as the brain/cerebrospinal fluid
(CSF) border, and the absolute intensity contrast
between the two tissues is usually considerably
lower than between GM and CSF.

Second, scanner drift and differences in
positioning can lead to minor geometric distortions
in the acquired images that can change volumetric
measurements (Freeborough, 1996). Even when
subtle, these changes can dwarf small clinical
changes that are the target of studies and clinical
trials. Although their nonlinear nature can make
them challenging to completely correct (Caramanos
et al.,, 2010), they can be at least somewhat
ameliorated by improved co-registration with full
affine parameters.

Third, brain extraction can have a significant
effect on measured tissue volumes (Battaglini et al.,
2008; Keihaninejad et al., 2010; Leung et al., 2011;
Popescu et al, 2012), so inconsistent brain
extraction at baseline and follow-up can lead to
tissue volume changes that do not reflect actual
atrophy.

To address these issues, we developed a
novel technique that augments FMRIB’s Automated
Segmentation Tool (FAST) algorithm with a 4-
dimensional hidden Markov random field (HMRF)

to ensure more consistent classification. In the
current version of FAST, a 3-dimensional HMRF is
used to impose local spatial constraints on the
segmentation process. Essentially, this HMRF
penalizes discrepancies in tissue classification for
isolated voxels, but allows for contiguous areas of
change (Zhang et al., 2001). So, for example, a shift
in the WM/GM border when moving from slice to
slice is not significantly penalized. By extending the
basic spatial model to a full spatio-temporal (4-
dimensional) model, we hoped to allow for the same
sort of shift in border over the time dimension -
atrophy/growth — instead of the slice direction
dimension (or any other spatial dimension), while
simultaneously ~ penalizing  small,  localized
discontinuities.

Additionally, we incorporated two of the
key eclements of SIENA into our tissue-specific
analysis technique: skull-constrained halfway-space
co-registration to address positioning and scanner
drift issues, and uniform brain extraction to reduce
extraction-related variance.

2. Materials and methods:

2.1 Inclusion of a temporal component in the
HMREF:

The HMRF framework employed by FAST (Zhang
et al., 2001) is designed to use spatial neighborhood
information to elegantly mitigate the noise and
homogeneity problems inherent in MRI-based tissue
segmentation. Intuitively, when assigning tissue
class labels to voxels, the algorithm attempts to
minimize a global cost function that penalizes two
separate elements: selection of class labels whose
mean intensities do not match well with the labeled
voxels (e.g., labeling a relatively bright voxel GM
on a Tl-weighted image), and creation of spatially
isolated labels (e.g., a single GM voxel completely
surrounded by WM). It is the tension and balance
between these intensity-matching and spatial-
homogeneity-preserving goals that allows for the
quality of tissue segmentations achievable with
FAST.

More rigorously, the class labeling prior
probability in standard FAST is updated iteratively
according to
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Where t is the iteration, | is the label of a
specific class, i is the voxel index, B is the
neighborhood weighting factor, w is a neighborhood
weighting function, and the entire second term is the
standard log Gaussian penalizing deviations of the
voxel intensity from the proposed class mean. The
proportionality rather than equivalence reflects the
fact that FAST allows for the incorporation of spatial
prior probabilities, and also for the fact that the
probabilities are normalized. The key component in
this context is the weighting function w, which
expresses the overall a-priori probability of finding a
three-dimensional class configuration where voxel
i's class is 1, given its already-classified neighbors.
Internally, FAST calculates this term via a
conversion to “MRF weights™.

From a local perspective, the total label
weight for a voxel i iand labell 1 is determined by
iterating over its neighbors j in neighborhood N
(where N is the neighborhood of the up to 26 voxels
surrounding voxel 1), and is calculated as:

Wi = E
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where d(i,j) is the distance between voxelsi i
and j (diagonal neighbors are farther than horizontal
neighbors, and the slice resolution is often lower
than the in-plane resolution), and the right side is the
current iteration’s a posteriori probability of
classification 1 for voxel j.

However, it is important to note that the
mathematics behind the general HMRF model are
not limited to the uswal 3 spatial dimensions
(Winkler, 2003), and in fact the implementation in
FAST can be very naturally extended from 3
dimensions to 4 with minimal modification. As
noted above, tissue atrophy or growth can be
considered as a change in the border between tissues
or between tissue and CSF when moving along the
time dimension, and is analogous to the shifts that
occur when moving from slice to slice. The main
distinction is that for a two-point tissue change
analysis, each voxel has only one temporal neighbor
whereas there are usually 26 spatial neighbors.
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Recognizing this, we modified the above calculation
to be:

1
=2 5
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where the second term is the prior iteration a
posteriori probability of classification 1 for voxel i in
the same physical position as i but at the other time-
point, multiplied by a factor z. Thus, this calculation
now includes a regularization term for maintaining
constant voxel classification over time as well as for
the usual agreement with spatially neighboring
classifications. The z factor is a weighting
coefficient to control the importance of temporal
consistency in the model, and can be specified either
as a constant or as a constant divided by the length
of time between scans.

We implemented the above scheme, called
LFAST (for longitudinal FAST), by modifying
FAST to be multithreaded, and having the two
segmentations proceed in parallel. We used a
producer/consumer semaphore system to cause each
thread of FAST to operate in symmetric lock-step,
moving on to the next iteration only when the total
cost function could be calculated by each side
comparison. Furthermore, this was implemented in
an unbiased way such that neither time point was
processed “first” or influenced the other time point
in a non-reciprocal manner.

2.2 Skull-constrained co-registration:

To avoid potential scanner- and position-related
scaling issues, we employed a skull-constrained co-
registration approach similar to that used in SIENA
(Smith et al., 2001). Baseline and follow-up images
were individually de-skulled using BET (Smith,
2002), and both brain and skull images were
retained. A skull-constrained 12-parameter affine
registration was then performed with FLIRT in each
direction. The resulting transforms were then
manipulated to determine unbiased halfway
transforms for each image into a space directly
between the two. Both images were resampled into
this space using tri-linear interpolation before
proceeding with analysis.



2.3 Uniform brain extraction:

Another potentially confounding factor in
longitudinal measurement is differing brain
extractions. Because we transformed both images
into a common halfway space, we were also able to
combine the individual brain masks via a union
operation. First, to prevent scanning volume
differences from being reflected as atrophy, we
created a joint mask of valid voxels. Briefly, we took
cach time point’s input image in native spacc and
coded all voxels as 1. Then, we transformed these
from each time-point into the halfway space,
padding with zeros (the default for FLIRT). This
resulted in maps of which voxels were actually
present in the original scanned volumes, and by
taking the intersection we were able to create a joint
map of voxels present in both original scanning
volumes. Second, we transformed both time points’
original brain masks into the common space, took
the union of these, and then masked the result with
the joint valid voxels mask. In the end, this left us
with a mask of voxels present in both raw scanning
volumes and included in either brain mask. We used
this mask to define the voxels for our modified
FAST to classity.

2.4 Complete pipeline:

A schematic view of the combination of these
elements into a single processing pipeline called
SIENAX-MTP (for multiple time points) is given in
Figure 1. Note that both modified FAST components
run in parallel. The final output was similar to the
results of running two individual SIENAX analyses,
including standard partial volume estimate (PVE)
maps. For all subsequent analysis, cross-sectional
volumes and longitudinal changes were calculated
based on summation of the individual voxel-wise
tissue type PVE estimates.

2.5 Validation:

To evaluate the characteristics of our proposed
approach, we used simulation, scan-rescan, and
testing on a real clinical dataset of patients with MS
and matched healthy controls (HCs).

2.5.1 Simulation
To better understand the impact of the inclusion of

the temporal factor in LFAST, as well as to
empirically determine the optimal z weighting value,

92

we created a semi-realistic controlled simulation
framework (Fig 2). Balancing simplicity against the
need for a reasonably complex shape with gyrus-like
folds, we opted to use a set of concentric spherical
shells distorted by periodic polar coordinate sin’
waves in the x-y plane. The model consisted of five
such shells, representing (from the inside out)
ventricular CSF, deep GM, white matter, peripheral
GM, and sulcal CSF. Intensities were set to
correspond to a conventional T1-weighted image,
with ventricular and sulcal CSF set to be dark,
peripheral GM set to be intermediate, and WM set to
be bright. Deep GM was set to be midway between
peripheral GM and WM, as is often the case.

Given this model, peripheral and deep GM
were iteratively thinned to yield 13 sample volumes
with varying levels of simulated atrophy. To
simulate partial volume effect, the sample volume
were created in a  high-resolution space
(512x512x256) and then down-sampled. The down-
sampled images were subsequently corrupted by
randomly generated multiplicative bias field based
on Legendre polynomials (Styner and Brechbuhler,
2000). Finally, the images were additionally
corrupted by Gaussian random noise to yield a
signal to noise ratio of approximately 135.

To evaluate LFAST’s performance and to
compare it against FAST, we ran FAST from
baseline to each of the subsequent 12 simulated
images. We then ran LFAST in the same way, and
repeated with 10 different z factors ranging from 0
to 256. Finally, we repeated this entire process 5
times using different random seeds for noise and
bias field calculation.

2.5.2 Scan-rescan:

For scan-rescan, we acquired a dataset of 5 HC, all
scanned twice within a maximum of one-week.
Axial 3D-SPGR T1-WI scans were acquired with
field of view (FOV) 25.6x25.6 c¢m, matrix 256 x
256, percent phase FOV 0.75, Imm thickness (th),
184 slices, no gap, TE 2.8 ms, TR 5.9 ms, NEX 1,
flip angle 10° on a 3-tesla Signa MRI scanner
(General Electric, Milwaukee, WI, USA). We then
performed brain/skull extractions on all images
using BET and manually correcting where
appropriate using fslview (less than 5% of cases).
We made simple modifications to the SIENAX and
SIENA scripts to allow for the input of brain and



skull images. Subsequently, we ran the above-
described SIENAX-MTP technique with a z factor
of 32, traditional SIENAX (version 2.6), and SIENA
(version 2.6) on each pair of images and masks.
Based on the assumption that no real atrophy should
occur within HCs during this time period, we
compared the resulting outcomes to the expected
value of 0% change. To ensure that opposite errors
did not cancel, we considered the absolute value of
cach scan pair’s observed deviation from the
expected 0%.

2.5.3 Clinical evaluation:

Two clinical cohorts were used for clinical
validation of the WB, GM and WM volume change
measures over a variable period of follow-up. The
first cohort included 67 relapsing-remitting (RR) MS
patients and 34 age- and sex-matched HCs who
obtained their follow-up scan 2 years from baseline.
This cohort was used to test differences in WB, GM
and WM volume change measures between MS
patients and HC. The second cohort included 64
RRMS patients who did not develop disability
progression and 64 patients who did develop
disability progression after 5 years of follow-up, and
received MRI scans at baseline and 5 years. This
cohort was used to test differences in WB, GM and
WM volume estimation change measures between
MS patients with or without disability progression
after 5 years. Both cohorts were randomly selected
from a larger cohort of RRMS patients and HC
participating in a 2- and 5-year follow-up study in
our center. The two cohorts did not overlap with
respect to participating subjects. Inclusion criteria
for MS patients were RR disease course (Lublin and
Reingold, 1996), age 18-65 years, and Expanded
Disability Status Scale (EDSS) (Kurtzke, 1983)
between 0 and 5.5. All HC subjects fulfilled the
health screen questionnaire requirements containing
information regarding medical history (illnesses,
surgeries, vascular and environmental risk factors,
medications) and health screen requirements on
physical and neurologic examination. Patients with a
relapse and/or steroid treatment in the 30 days
preceding study entry and pre-existing medical
conditions known to be associated with brain
pathology  e.g., neurodegenerative  disorder,
cerebrovascular disease, positive history of alcohol
dependence, traumatic brain injury with loss of
consciousness > 5 min, cognitive impairment,
history of psychiatric disorders and seizures ) or
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pregnant subjects were excluded. The original
follow-up studies from which the subjects were
randomly selected were approved by an internal
Institutional Review Board and written informed
consent was obtained from all subjects. All image
analysis was blinded to patients’ demographic,
clinical and disease group characteristics.

2.5.4 Clinical MRI acquisition:

MRI assessments were performed at baseline, 2
years (34 HC and 67 RRMS patients), and 5 years
(128 RRMS patients) using the same 1.5-tesla Signa
unit (General Electric, Milwaukee, WI, USA). For
each session, 3D high resolution T1-weighted
imaging (WI) using a spoiled gradient echo (SPGR),
2D multiplanar dual spin-echo (SE) proton density
(PD) and T2-WI and Fluid Attenuated Inversion
Recovery (FLAIR) were obtained using the same
protocol between the various time points.

The axial 3D-SPGR TI-WI scans were
acquired with FOV 25x25 cm, matrix 256 x 256,
1.5mm thickness (th), 128 slices, no gap, TE 7 ms,
TR 24 ms, NEX 1, flip angle 30°. The axial dual SE
sequence was acquired with TE 12/90 ms, TR 3000
ms, NEX 1, ETL 14, FOV 25x25 cm, matrix 256 x
256, 3mm slice th with a total of 48 slices, no gap,
whereas axial FLAIR with FOV 25x25 cm, matrix
256 x 256, 48 slices, 3 mm th, no gap, TE 128 ms,
TI 2000 ms, TR 8002 ms, ETL 22, NEX 1. Patients
and controls were positioned in the magnet

according to commonly accepted international
guidelines.
2.5.5 Clinical MRI analysis:

Lesion analysis: T2-lesion volumes (LV) were
calculated using a semi-automated edge-detection
contouring-thresholding technique, as previously
described (Zivadinov et al., 2001). The lesion maps
were then used to inpaint the 3D-SPGR T1-WI scans
via an in-house dilation-based method (Zivadinov et
al., 2012).

Volume change analysis: For each subject’s pair of
inpainted 3D-SPGR T1-WI scans (baseline and
follow-up), we performed three analyses. SIENAX
(version 2.6) was used on each individual T1-
weighted 3D SPGR image. Normalized WB volume,
normalized GM volume, and normalized WM
volume were measured as previously described



(Zivadinov et al., 2012). For longitudinal changes of
the WB volume, we applied the SIENA 2.6 method
(Smith et al., 2002) to calculate the percentage brain
volume change (PBVC). In addition, SIENAX and
SIENAX-MTP approaches were used to estimate
WB volume changes. To better understand the
specific contribution of the LFAST component, we
also ran conventional SIENAX on registered
halfway-space images with unified brain masks
(SIENAX-HW).

2.6 Quality control

All analyses were reviewed by a trained operator
(MD/NB) at all critical points, and either corrected if
possible or excluded from further analysis. Brain and
skull extraction errors were corrected manually or by
adjusting appropriate  BET parameters. For all
analyses (SIENA, SIENAX, SIENAX-HW, and
SIENAX-MTP), the same corrected brain
extractions were used. In addition, we also marked
as failures any longitudinal analysis pairs producing
biologically implausible percent changes in GM,
WM, or WB. Although the precise value of
biological implausibility is not known and may vary
by disease, for the work described here we adopted a
standardized cutoff of 5% per year.

2.7 Statistical analyses:

All data analyses were performed using SPSS
version 16.0 (SPSS, Inc., Chicago IL). For
simulation, correspondence with experimental
volume change was evaluated using Pearson
product-moment correlation. A  Fisher r-to-z
transform was then used to compare the correlation
coefficients. For scan-rescan, differences in mean
absolute PBVC, percent GM volume change
(PGMVC), and percent WM volume change
(PWMVC) between measurements were evaluated
using Student’s t-test for paired samples. Two-year
comparisons between HC and MS groups were
performed using the Pearson chi-squared test for
categorical values and Student’s t-test for continuous
variables (percent change from baseline). The 5-year
MS cohort was selected based on disability
progression at the 5-year of follow-up. The first
group contained patients who, at the end of the 5-
year period, presented with disability progression.
This was defined as a >1.0-point increase in EDSS
score in patients who had a baseline EDSS score of

94

>1.0, or a =1.5-point increase in EDSS score in
patients who had a baseline EDSS score of 0.0. The
second group contained patients without disability
progression. Two-tailed comparisons between these
two groups were performed using the Pearson chi-
squared test for categorical values and Student’s t-
test for continuous variables (percent change from
baseline). Spearman rank correlation was performed
within the cohorts to test associations between
different WB, GM and WM volume estimation
change measures. Fisher’s exact test was also
applied to compare the rate of quality control
failures for each analysis. The nominal p-value
<0.01 was considered significant, while p-value
<0.05 was considered a trend, using two-tailed tests.
In addition, we used the 5-year dataset to perform
basic power calculations to determine required
sample sizes to reliably detect GM and WM
treatment effects in atrophy reduction of varying
degree, as described in (Fox et al., 2000).

3. Results

Our method was able to run successfully on all 234
acquired MRI image pairs in the study with no
quality control failures for the SIENAX MTP
approach, compared to 12 quality control failures for
SIENAX (2 for visual segmentation and 10 for "cut-
off" acceptable range values, comparison p < 0.001).
Provided inpainted and properly de-skulled images,
it took approximately 20 minutes per case on a
modern system with 8GB RAM and an Intel Core-i5
2500 CPU. In particular, our multithreaded approach
allowed the LFAST component to take only
marginally longer than a single original FAST run.

3.1 Simulation results:

Simulation results for representative z factors are
shown in Figure 3. For all z factors above 0 and
below 128, LFAST agreed better with ground truth
than conventional FAST. Additionally, for those z
factors, LFAST showed lower variation between
runs due to noise and/or bias field. In particular, with
a z factor of 32, LFAST showed a correlation of
r=0.99 compared to r=0.75 for conventional FAST
(p < 0.001), and a mean absolute deviation (MAD)
of 1.3% compared to 5.6% for conventional FAST.
Median absolute deviations were similar, at 1.2%
and 5.5%, respectively. Below a z factor of 128,
LFAST did not appear significantly biased toward
no change; in fact, conventional FAST appeared to



somewhat overestimate the degree of change for
atrophy amounts less than 8%.

3.2 Scan-rescan results:

For the raw scan-rescan cases, SIENAX showed a
MAD of 2.5% for GM volume measurements, 3.4%
for WM measurements, and 1.5% for WB
measurements between acquisitions (averaged over
subjects). In contrast, our SIENAX-MTP method
had a MAD of 1.5% for GM, 2.4% for WM, and
0.39% for WB (Figure 2). Most likely due to the
very small sample size (5 subjects), these individual
differences showed only statistical trends. When
pooling all measures together, though, results were
significant (p < 0.01). For comparison, SIENA had a
MAD of 0.36% for WB.

3.3 Brain volume estimation change measure
method differences in the examined cohorts:

The mean age of the 67 RRMS patients in the first
cohort at baseline was 34.1 £ 7.6 years and 35.0 £
8.3 years in the 34 HC (p=0.595). There were 57
females in MS and 27 in HC groups (p=0.575). The
mean T2-LV at baseline in MS patients was 9.032 +
13.232 ecm®. The HC did not present T2 lesions.

The mean age of the second cohort of 128
RRMS patients was 36.7 £ 11.1 years in the group
without disability progression and 38.5 + 12.3 years
in the disability progression group (p=0.386). There
were no significant gender differences between the
two groups (0.709). T2-LV was not significantly
different at baseline between the 2 groups (15.723 +
10.9 vs. 12.201 £ 5.9 cm’, p=0.227). However, there
was significantly decreased normalized WB volume
at baseline in the 5-year disability progressed group
(1489.7 + 81.9 vs. 1525.8 + 72.7 cm’, p=0.003), in
normalized WM volume (691.9 + 47.0 vs. 709.6 +
36.8 cm’, p=0.008), and a trend in normalized GM
volume (797.8 + 54.4 vs. 816.3 + 50.7 cm’,
p=0.018).

The PBVC differed significantly between
HC and MS patients over the 2-year period for all 3
methods (p<0.0001), but the highest effect size was
detected for SIENAX-MTP PBVC (d=1.59),
followed by SIENA, SIENAX-HW and SIENAX
PBVCs (Table 1). The PGMVC also differed
significantly between HC and MS patients over the
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2-year period for SIENAX-MTP and SIENAX
PGMVCs, and again the highest effect size was
detected with SIENAX-MTP PGMVC (d=0.75,
Table 1). Interestingly, the SIENAX-HW difference
did not reach significance. The PWMVC was
significantly different between HC and MS patients
over the 2-year period for both methods, with the
highest effect size detected by SIENAX-MTP
PWMVC (d=I1.15, Table 1). The SIENAX-MTP
method also showed the lowest measurement SD for
WB, GM and WM percent volume changes, for both
HC and RRMS patients.

When the cohort of 128 RRMS patients with
or without disability progression over 5 years was
compared with regard to PBVCs, all methods
yielded significant differences (p<0.0001, Table 2),
except SIENAX PBVC. Again, the highest effect
size was for SIENAX-MTP PBVC (d=0.81)
followed by SIENA and then SIENAX-HW. For
PGMVC, the 2 groups differed significantly only
with SIENAX-MTP (d=0.57, p=0.002, Table 2). The
PWMVC was significantly different between the 2
MS groups for both methods with the highest effect
size for SIENAX-MTP PWMVC (d=0.64, p<0.0001,
Table 2). Again, the SIENAX-MTP method showed
the lowest measurement SD for WB, GM and WM
percent volume changes, for both groups of RRMS
patients.

In both cohorts, the SIENAX-MTP PBVC
showed higher correlation with SIENA PBVC
(r=0.70 and r=0.67, respectively) than SIENAX
PBVC (r=0.53 and r=0.55) or SIENAX-HW PBVC
(r=0.61 and r=0.55).

3.4 Power estimation:

Taking the second cohort MS patients™ GM atrophy
rates and variances, we found that using SIENAX-
MTP to detect a reduction in five-year GM atrophy
with a significance level of 0.05 and a power level of
90% would require approximately 55% less subjects
than for traditional SIENAX. For example, detecting
a 30% reduction would require 131 subjects with
SIENAX, compared to only 59 with SIENAX-MTP.
Even detecting a more pronounced 50% reduction
would require 47 subjects with SIENAX compared
to 21 with SIENAX-MTP. When evaluating WM,
both methods were less powerful than for GM due to
the low amount of observed atrophy in WM, but our



results again indicated that SIENAX-MTP would
require 35% fewer subjects than for SIENAX (793
subject vs. 1211 subjects to detect a 50% reduction
in atrophy).

4. Discussion

This study describes a novel and efficient technique
for evaluating tissue-specific  atrophy  via
longitudinal MRI data. It is a direct and relatively
straightforward extension of the widely used
SIENAX and SIENA techniques, building upon the
software tools wused in constructing them
(particularly FAST). As such, it retains many of the
advantages of those programs while providing
improved precision in longitudinal tissue-specific
change measurement.

It is difficult to produce a gold standard for
MRI-based longitudinal brain atrophy estimation,
since per se it requires in vivo measurements.
Because of this, many alternative validation
approaches have been proposed (Sharma et al.,
2009). Here, we have used four such approaches,
including experimental simulation, scan-rescan,
patient/control separation, and clinical outcome
separation. In all four cases, SIENAX-MTP
performed better than standard SIENAX. In our
simulation, SIENAX-MTP measurements correlated
significantly better with experimental volumetric
changes with far less case-to-case variance. For
scan-rescan, SIENAX-MTP provided a 40%
reduction in GM variability, a 29% reduction in WM
variability, and a 74% reduction in WB variability
(measured by mean absolute deviation). For
patient/control  separation, effect sizes were
consistently larger for SIENAX-MTP than SIENAX,
and were even marginally better than SIENA in this
particular group. For clinical progression separation,
SIENAX-MTP effect sizes were also consistently
higher in all tissue measures, and significant GM
volume change differences between the groups were
detected with SIENAX-MTP, while this was not the
case with SIENAX.

These improvements in precision were
realized through a combination of three variance-
reducing techniques - skull constrained co-
registration, uniform brain extraction, and a four-
dimensional extension to FAST’s MRF model. The
first two modifications are relatively straightforward,
and are already part of the standard SIENA
approach. However, the LFAST component of
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SIENAX-MTP is to our knowledge completely
novel. The general HMRF approach allows for
controlled Bayesian analysis in the face of
contaminated (noisy) data. The existing FAST
program uses this to substantially improve its
segmentation results by incorporating prior
knowledge about the spatial smoothness of brain
tissues — put simply, most voxels are the same tissue
as their spatial neighbors. Our LFAST approach
takes this one step further by incorporating the prior
knowledge that, despite atrophy, the majority of
voxels do not actually change classification across
time points. Furthermore, when atrophy does occur,
it is almost never single voxels changing, but rather
large groups of voxels along edges. These two
properties are highly amenable to HMRF model
analysis.

As with FAST, the optimal degree of
regularization to use is an important question. It is
dependent on a number of factors, including signal
to noise ratio (SNR), contrast to noise ratio (CNR),
and bias field strength, and is largely empirically
derived. For example, the commonly used value for
the B factor in FAST is 0.1, based on its
experimental success. The arbitrariness of this
selection is largely ameliorated by the model’s
robustness across a wide range of parameter values.
To better understand the behavior of our time-
specific weighting, z, we analyzed a large amount of
simulation data and found that for z values above 0
and below 128, LFAST consistently performed
better than FAST across a wide range of atrophy
amounts. Based on this, our recommendation is to
use a constant z factor of 32 for most datasets. In
most studies, the time duration between scans is well
matched between subjects, so the z factor can be
kept constant. If this is not the case, then the z factor
can be weighted as a function of the individual
subject’s fraction of the average time, according to:

Zg = — -2
Ht

Where z is the subject-specific z factor, t, is
the time difference in scans for the specific subject,
W, is the mean time difference across all subjects or
scan pairs, and z is the reference z factor (e.g., 32).



One potential confounding issue with our
regularization approach is the fact that atrophy may
result in some degree of mis-registration between
scans, or may produce deformations that cannot be
corrected without more error-prone non-linear
warping approaches. However, the nature of such
mis-registrations and/or deformations implies that
the discontinuities will be distributed over many
voxels representing a clear edge in 4-dimensional
space. Therefore, they will not be significantly
penalized by our additional 4-dimensional
regularization, as is indicated by our experimental
results,

Another important consideration with the
novel LFAST component is the degree to which
such a regularization-based technique introduces
bias into the analysis. In this case, there are three
mitigating factors that should be considered. First,
this approach builds on an already-existing
regularization scheme, simply extending the pre-
existing spatial framework to the temporal domain.
The pre-existing FAST approach makes the
assumption that tissues are generally contiguous
while still allowing for non-isolated continuities.
Our work extends this to atrophy, incorporating the
assumption that it generally occurs over connected
groups of voxels. Second, any bias introduced is
toward maintaining consistent classification over
time. This is both conservative (avoiding type I
error) and also more closely mimics the behavior of
a human expert in that it avoids classification
changes without clear intensity differences. Third,
and perhaps most important in practice, the actual
degree of regularization as specified is very small
compared to the contribution of the intensity models,
serving primarily to remove ambiguity due to noise
or intermediate intensities and having little effect on
areas of strong intensity change. Taking these factors
into account, and considering that our simulation
results do not show a significant bias, it appears
unlikely that our modifications have any
meaningfully detrimental effect on accuracy to offset
the clear gains in precision.

Given the robust results from various
validation findings, all pointing in favor of the
SIENAX MTP approach, we conclude that our direct
GM/WM method is indeed able to meaningfully
improve measurement precision. Overall, our power
analysis based on actual clinical data shows that

97

these improvements in precision from SIENAX to
SIENAX-MTP can result in an up to 55% decrease
in the number of subjects required to reliably detect
a given treatment effect. This is a substantial
difference, indicating that SIENAX-MTP can be
used to significantly reduce patient risk and/or costs
for tissue-specific studies and clinical trials and/or
allow for the detection of more subtle differences for
the same cost. It may also make possible more
studies from difficult-to-acquire groups (such as rare
disease variants). Furthermore, to be as objective as
possible we did not take scan failure rate into
account (Fox et al., 2000), but this would
theoretically result in an additional 5.1% increase in
required subjects for SIENAX.

Furthermore, the SIENAX MTP approach
was robust to segmentation of images of
considerably varying image quality, such as those
obtained in multi-center clinical trials. Although the
present study only included two different MRI
scanners of different field strength to study
robustness, the SIENAX MTP method was also
recently applied to a large number of MRI scans
deriving from multiple scanners in an ongoing multi-
center clinical trials (Zivadinov, Bergsland, et al.,
2013; Zivadinov, Havrdovd, et al, 2013).
Preliminary data from these multi-center studies
confirm that SIENAX MTP can be readily applied to
MRI scans with varying image quality, and results in
minimal failures. Moreover, the present study
showed that there were 12 SIENAX GM/WM
failures on total of 234 MRI pair analyses (5.1%).
Therefore, another important advantage of our newly
developed direct GM/WM method is a decrease of
scan failures due to inadequate GM/WM
segmentation and/or biologically implausible
percentage changes outside acceptable ranges.

As discussed previously, ours is not the only
approach to improvement of longitudinal tissue-
specific atrophy measurement (Karas et al., 2003;
Thompson et al., 2003; Chen et al., 2004; Battaglini
et al, 2009; Nakamura and Fisher, 2009;
Derakhshan et al., 2010; Nakamura et al., 2011).
However, we believe it has a number of comparative
advantages. First, it is a natural extension of already
existing methods that have been previously used
with success in various studies and clinical trials,
and may therefore be both easier for other to
implement and have less overall risk while still



significantly reducing measurement errors. Also, it is
capable of measuring atrophy in the entire brain,
including both deep GM and cortical GM and is not
restricted to specific areas as previously reported
(Chen et al., 2004). Moreover, unlike voxel-wise
group approaches (Douaud et al., 2007; Battaglini et
al., 2009), it makes no assumptions about the spatial
homogeneity of atrophy between patients — an
important concern in highly variable diseases like
MS. Deformation-based mapping approaches in
general suffer from a similar issue in that they are
generally designed to find spatially consistent
changes across subjects (Thompson et al., 2004;
Studholme and Drapaca, 2006; Pieperhoff et al.,
2008). Although subject-specific volume changes
can be calculated via techniques such as whole-brain
Jacobian integration (Boyes et al., 2006; Cardenas et
al.,, 2007), they are highly dependent on the
underlying accuracy of the non-linear normalization
technique used (Camara et al, 2008). These
techniques are a complex area of active research, can
still be relatively failure-prone, and are complicated
by the fact that there many potential warp fields can
be used to produce the same image. Furthermore, the
Jacobian integration technique requires a-priori
ROIs so that for accurate GM volumetry, an accurate
map of baseline or follow-up GM would be required.
A final advantage of SIENAX-MTP is that, just as
for SIENAX, it produces subject-specific voxel-wise
maps that can be subsequently used for assessing
other non-conventional metrics in specific tissue
compartments.

4.1 Limitations and future work:

Currently, experiments with SIENAX-MTP have
been limited to two time-points. However, the
mathematical framework naturally extends to an
arbitrary number of scans, and may therefore be
useful in frequent serial analyses of the type
described in (Valsasina et al., 2005). By using this
approach and processing all scans at once in a
unified model, significant reductions in the impact of
noise may be realizable.

One limitation of the current study is that we
did not investigate the effect of slice thickness,
which may be another confounding factor. However,
we used images of both 1.5mm and Imm thickness,
which we believe represent the current standard for
tissue atrophy analysis in most clinical studies. For
example, it is comparable to the recommendations of

98

the Alzheimer's Disease Neuroimaging Initiative
(ADNI) (Jack et al., 2010). Furthermore, it seems
likely that increases in slice thickness would either
affect both methods equally or further argue in favor
of SIENAX-MTP (since regularization would
become more important when faced with sparser
data).

Also, in the current study we used the
relatively simple power analysis approach of (Fox et
al., 2000) rather than a more accurate but complex
modeling technique (Healy et al., 2009). We believe
this approach is justified here both because it is more
straightforward and because we are primarily
concerned with relative power between SIENAX
and SIENAX-MTP. Although this may affect the
absolute number of patients calculated, it should not
have a significant impact on the relative values
between SIENAX and SIENAX-MTP.

There were also a few unexpected findings.
First, we observed increases in PBVC and PBWMC
in HC over two years. It is doubtful that this change
was “real” and not artifactual. Many factors can
systematically affect brain volume measurements,
including scanner drift, subject positioning,
hydration and hardware maintenance (Zivadinov et
al.,, 2008). However, SIENAX-MTP provided the
closest change to zero in addition to the best
differentiation between groups, and the groups were
both equally subject to any systematic artifactual
change. Second, SIENAX-HW in some cases
performed worse than SIENAX on the raw images.
It is possible that linear co-registration and/or the
smoothing entailed by that co-registration introduces
some small errors that in well-controlled scanning
environments may outweigh small positioning
errors.

5. Conclusions:

The proposed SIENAX-MTP technique can provide
significantly improved measurement of GM/WM
atrophy over time and significantly fewer scan
failures by reducing error-related variance. It is also
relatively simple to implement and builds on a
widely recognized and thoroughly tested method.
The increased statistical power gained with
SIENAX-MTP can potentially benefit research
studies and clinical trials by detecting changes
earlier or in smaller cohorts, or by detecting more
subtle changes.



Acknowledgements

The authors gratefully acknowledge Professors
Steven Smith and Nicola De Stefano for critical
reading of the manuscript, as well as the entire
FMRIB team for its generosity in providing FSL as
an open source software library for neuroimaging.
Additionally, we would like to acknowledge the
anonymous reviewers for their constructive
suggestions.

References

Anderson, V.M., Bartlett, J.W., Fox, N.C,, Fisniku, L., Miller, D.H.,
2007. Detecting treatment effects on brain atrophy in relapsing
remitting multiple sclerosis: sample size estimates. Journal of
neurology 254, 1588-94,

Battaglini, M., Giorgio, A., Stromillo, M.L., Bartolozzi, M.L., Guidi, L.,
Federico, A., De Stefano, N., 2009. Voxel-wise assessment of
progression of regional brain atrophy in relapsing-remitting
multiple sclerosis. Journal of the neurological sciences 282, 55—
60.

Battaglini, M., Smith, S.M., Brogi, S., De Stefano, N., 2008. Enhanced
brain extraction improves the accuracy of brain atrophy
estimation. NeuroImage 40, 583-9.

Bermel, R.A., Bakshi, R., 2006. The measurement and clinical relevance
of brain atrophy in multiple sclerosis. Lancet neurology 5, 158—
70.

Boyes, R.G., Rueckert, D., Aljabar, P., Whitwell, J., Schott, J.M., Hill,
D.L.G., Fox, N.C., 2006. Cerebral atrophy measurements using
Jacobian integration: comparison with the boundary shift
integral. Neurolmage 32, 159-69.

Burton, E.J., McKeith, LG., Burn, D.J.. O'Brien, J.T.. 2005. Bmin
atrophy rates in Parkinson’s disease with and without dementia
using serial magnetic resonance imaging. Movement disorders :
official journal of the Movement Disorder Society 20, 1571-6.

Camara, O., Schnabel, J.A., Ridgway, G.R., Crum, W.R., Douiri, A.,
Scahill, R.L, Hill, D.L.G., Fox, N.C., 2008. Accuracy assessment
of global and local atrophy measurement techniques with
realistic simulated longitudinal Alzheimer's disease images.
Neurolmage 42, 696-709.

Caramanos, Z., Fonov, V.8., Francis, S.J., Narayanan, S., Pike, G.B.,
Collins, D.L., Arnold, D.L., 2010. Gradient distortions in MRI:
characterizing and correcting for their effects on SIENA-
generated measures of brain volume change. Neurolmage 49,
1601-11.

Cardenas, V., Studholme, C.. Gazdzinski, S., 2007. Deformation-based
morphometry of brain changes in alcohol dependence and
abstinence. Neuroimage.

Chard, D.T., Griffin, C.M., Rashid. W., Davies, G.R., Altmann, D.R.,
Kapoor, R., Barker, G.J., Thompson, a J., Miller, D.H., 2004.
Progressive grey matter atrophy in clinically early relapsing-
remitting multiple sclerosis. Multiple sclerosis (Houndmills,
Basingstoke, England) 10, 387-91.

Chen, J.T., Narayanan, S., Collins, D.L., Smith, $.M., Matthews, P.M.,
Arnold, D.L., 2004, Relating neocortical pathology to disability
progression in multiple sclerosis using MRI. Neurolmage 23,
1168-75.

Cover, K.S., Van Schijndel, R.A., Van Dijk, B.W., Redolfi, A., Knol,
D.L., Frisoni, G.B., Barkhof, F., Vrenken, H., 2011. Assessing

99

the reproducibility of the SienaX and Siena brain atrophy
measures using the ADNI back-to-back MP-RAGE MRI scans.
Psychiatry research 193, 182-90.

Derakhshan, M., Caramanos, Z., Giacomini, P.S., Narayanan, S.,
Maranzano, J., Francis, S.J., Amold, D.L., Collins, D.L., 2010.
Evaluation of automated techniques for the quantification of grey
matter atrophy in patients with multiple sclerosis. Neurolmage
52, 1261-7.

Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H.,
Vickers, J., James, S., Voets, N., Watkins, K., Matthews, P.M.,
James, A., 2007. Anatomically related grey and white matter
abnormalities in adolescent-onset schizophrenia. Brain : a journal
of neurology 130, 2375-86.

Fox, N.C., Cousens, S.. Scahill, R., Harvey, R.J., Rossor, M.N., 2000.
Using Serial Registered Brain Magnetic Resonance Imaging to
Measure Disease Progression in Alzheimer Disease 57.

Freeborough, P., 1996. Accurate registration of serial 3D MR brain
images and its application to visualizing change in
neurodegenerative disorders. Journal of computer ....

Healy, B., Valsasina, P., Filippi, M., Bakshi, R., 2009. Sample size
requirements for treatment effects using gray matter, white
matter and whole brain volume in relapsing-remitting multiple
sclerosis. Journal of neurology. neurosurgery, and psychiatry 80,
1218-23.

Horakova, D., Dwyer, M.G., Havrdova, E., Cox, J.L., Dolezal, O.,
Bergsland, N., Rimes, B., Seidl, Z., Vaneckova, M., Zivadinov,
R., 2009. Gray matter atrophy and disability progression in
patients with early relapsing-remitting multiple sclerosis: a 5-
year longitudinal study. Journal of the neurological sciences 282,
112-9.

Hulst, H.E., Geurts, J.J.G., 2011. Gray matter imaging in multiple
sclerosis: what have we learned? BMC neurology 11, 153.

Jack, C.R., Bernstein, M.A., Borowski, B.J., Gunter, J.L., Fox, N.C.,
Thompson, P.M., Schuff, N., Krueger, G., Killiany, R.J., Decarli,
C.S., Dale, AM., Carmichael, O.W., Tosun, D., Weiner, M.W.,
2010. Update on the magnetic resonance imaging core of the
Alzheimer’s discase neuroimaging initiative. Alzheimer’s &
dementia : the journal of the Alzheimer's Association 6, 212-20.

Jasperse, B., Valsasina, P., Neacsu, V., Knol, D.L., De Stefano, N.,
Enzinger, C., Smith, S.M., Ropele, S., Korteweg, T., Giorgio, A.,
Anderson, V., Polman, C.H., Filippi, M., Miller, D.H., Rovaris,
M., Barkhof, F., Vrenken, H., 2007. Intercenter agreement of
brain atrophy measurement in multiple sclerosis patients using
manually-edited SIENA and SIENAX. Journal of magnetic
resonance imaging : JIMRI 26, 881-5.

Karas, G.., Burton, E.., Rombouts, S.A.R.., Van Schijndel. R... O'Brien,
J.., Scheltens, P... McKeith, L., Williams, D., Ballard, C.,
Barkhof, F., 2003. A comprehensive study of gray matter loss in
patients with Alzheimer’s disease using optimized voxel-based
morphometry. Neurolmage 18, 895-907.

Keihaninejad, S., Heckemann, R.A., Fagiolo, G., Symms, M.R., Hajnal,
J. V. Hammers, A., 2010. A robust method to estimate the
intracranial volume across MRI field strengths (1.5T and 3T).
Neurolmage 50, 1427-37.

Kurtzke, 1.F., 1983. Rating neurologic impairment in multiple sclerosis:
An expanded disability status scale (EDSS). Neurology 33,
1444-1444.

Leung, K.K., Bames, J., Modat, M., Ridgway, G.R., Bartlett, 1. W., Fox,
N.C.. Ourselin, S., 2011. Brain MAPS: an automated, accurate
and robust brain extraction technique using a template library.
NeuroImage 55, 1091-108.

Lublin, F.D., Reingold, S.C., 1996. Defining the clinical course of
multiple sclerosis: Results of an international survey. Neurology
46, 907-911.

Nakamura, K., Fisher, E., 2009. Segmentation of brain magnetic
resonance images for measurement of gray matter atrophy in
multiple sclerosis patients. Neurolmage 44, 769-76.

Nakamura, K., Fox, R., Fisher, E., 2011. CLADA: cortical longitudinal
atrophy detection algorithm. Neurolmage 54, 278-89.



Oreja-Guevara, C., Rovaris, M., lannucci, G., Valsasina, P., Caputo, D.,
Cavarretta, R., Sormani, M.P., Ferrante, P., Comi, G., Filippi,
M., 2005. Progressive gray matter damage in patients with
relapsing-remitting multiple sclerosis: a longitudinal diffusion
tensor magnetic resonance imaging study. Archives of neurology
62, 578-84.

Pieperhoff, P., Siidmeyer, M., Homke, L., Zilles, K., Schnitzler, A.,
Amunts, K., 2008, Detection of structural changes of the human
brain in longitudinally acquired MR images by deformation field
morphometry:  methodological — analysis,  validation  and
application. Neurolmage 43, 269-87.

Popescu, V.. Battaglini, M., Hoogstrate, W.S., Verfaillie, S.C.J.,
Sluimer, 1.C., Van Schijndel, R.A., Van Dijk, B.W., Cover, K.5.,
Knol, D.L., Jenkinson, M., Barkhof, F., De Stefano, N., Vrenken,
H., 2012. Optimizing parameter choice for FSL-Brain Extraction
Tool (BET) on 3D T1 images in multiple sclerosis, NeuroImage
61, 1484-94.

Sanfilipo, M.P., Benedict, R.H.B., Weinstock-Guttman, B., Bakshi, R.,
2006. Gray and white matter brain atrophy and
neuropsychological impairment in multiple sclerosis. Neurology
66, 685-92.

Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., Armspach,
1.-P., 2009. Use of simulated atrophy for performance analysis of
brain atrophy estimation approaches. Medical image computing
and computer-assisted intervention: MICCAI ... International
Conference on Medical Image Computing and Computer-
Assisted Intervention 12, 566-74.

Sluimer, J.D., Vrenken, H., Blankenstein, M.A., Fox, N.C., Scheltens,
P., Barkhof, F., Van der Flier, W.M., 2008. Whole-brain atrophy
rate in Alzheimer disease: identifying fast progressors.
Neurology 70, 1836-41.

Smith, S., De Stefano, N.. Jenkinson, M., Matthews, P.. 2001.
Normalized accurate measurement of longitudinal brain change.
Journal of computer ... 25, 466-475.

Smith, S.M., 2002. Fast robust automated brain extraction. Human brain
mapping 17, 143-55.

Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M.,
Federico, A., De Stefano, N., 2002. Accurate, Robust, and
Automated Longitudinal and Cross-Sectional Brain Change
Analysis. Neurolmage 17, 479-489.

Sormani, M.P., Rovaris, M., Valsasina, P., Wolinsky, J.S., Comi, G.,
Filippi, M., 2004. Measurement error of two different techniques
for brain atrophy assessment in multiple sclerosis. Neurology 62,
1432-1434.

Studholme, C., Drapaca, C., 2006. Deformation-based mapping of
volume change from serial brain MRI in the presence of local
tissue contrast change. ... IEEE Transactions on.

Styner, M., Brechbuhler, C., 2000. Parametric estimate of intensity
inhomogeneities applied to MRI. Medical Imaging, IEEE ....

Thal, L., Kantarci, K., Reiman, E., Klunk, W., Weiner, M., Zetterberg,
H., Galasko, D., Pratico, D., Griffin, S., Schenk, D., Siemers, E.,
2006. The role of biomarkers in clinical trials for Alzheimer
disease. Alzheimer discase ... 20, 6-15.

Thompson, P., Hayashi, K., Sowell, E., 2004. Mapping cortical change
in Alzheimer’s disease, brain development, and schizophrenia.
Neuroimage.

Thompson, P.M., Hayashi, KM., De Zubicaray, G., Janke, A.L., Rose,
S.E., Semple, J., Herman, D., Hong, M.S., Dittmer, S.S.,
Doddrell, D.M., Toga. A.W., 2003. Dynamics of Gray Matter
Loss in Alzheimer’s Disease. J. Neurosci. 23, 994-1005.

Valsasina, P., Benedetti, B., Rovaris, M., Sormani, M.P., Comi, G.,
Filippi, M., 2005. Evidence for progressive gray matter loss in
patients with relapsing-remitting MS. Neurology 65, 1126-8.

Winkler, G., 2003. Image Analysis, Random Fields and Markov Chain
Monte Carlo Methods: A Mathematical Introduction (Google
eBook). Springer.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR
images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE transactions on
medical imaging 20, 45-57.

100

Zivadinov, R., Bakshi, R., 2004. Brain And Spinal Cord Atrophy In
Multiple Sclerosis. Nova Science Pub Inc.

Zivadinov, R., Bergsland, N., Dolezal, O., Hussein, S., Seidl, Z., Dwyer,
M.G., Vaneckova, M., Krasensky, J., Potts, J.A., Kalincik, T.,
Havrdovd, E., Hordkovi. D., 2013. Evolution of Cortical and
Thalamus Atrophy and Disability Progression in Early
Relapsing-Remitting MS during 5 Years. AJNR. American
journal of neuroradiology ajnr.A3503-,

Zivadinov, R., Havrdovd, E., Bergsland, N., Tyblova, M., Hagemeier, J.,
Seidl, Z., Dwyer, M.G., Vaneckova, M., Krasensky, J., Carl, E.,
Kalincik, T., Horikovd, D., 2013. Thalamic Atrophy is
Associated with Development of Clinically Definite Multiple
Sclerosis. Radiology.

Zivadinov, R., Heininen-Brown, M., Schirda, C. V., Poloni, G.U.,
Bergsland. N.. Magnano, C.R., Durfee. J., Kennedy, C., Carl, E.,
Hagemeier, J., Benedict, R.H.B., Weinstock-Guttman, B.,
Dwyer, M.G., 2012. Abnormal subcortical deep-gray matter
susceptibility-weighted imaging filtered phase measurements in
patients with multiple sclerosis: a case-control study.
Neurolmage 59, 331-9.

Zivadinov, R., Minagar, A., 2009. Evidence for gray matter pathology in
multiple sclerosis: a neuroimaging approach. Journal of the
neurological sciences 282, 1-4.

Zivadinov, R., Pirko, L, 2012, Advances in understanding gray matter
pathology in multiple sclerosis: are we ready to redefine disease
pathogenesis? BMC neurology 12, 9.

Zivadinov, R., Reder, a T., Filippi, M., Minagar, a, Stiive, O., Lassmann,
H., Racke, M.K., Dwyer, M.G., Frohman, E.M., Khan, O., 2008.
Mechanisms of action of disease-modifying agents and brain
volume changes in multiple sclerosis. Neurology 71, 136-44.

Zivadinov, R., Rudick, R.A., De Masi, R., Nasuelli, D., Ukmar, M.,
Pozzi-Mucelli, R.S., Grop, A., Cazzato, G., Zorzon, M., 2001.
Effects of IV methylprednisolone on brain atrophy in relapsing-
remitting MS. Neurology 57, 1239-1247.



Table 1. Differences in whole brain, gray matter and white matter volume estimation change measures over 2-
year follow-up in 34 healthy controls and 67 relapsing-remitting multiple sclerosis patients.

Whole brain | HC (n=34) RRMS (n=67) d p value

measures Mean (SD) median | Mean (SD) median
(min/max) (min/max)

SIENA PBVC -0.30 (0.46) -0.31 -1.71(1.4) -1.52 1.36 <0.0001
(-0.99/1.08) (-7.61/2.71)

SIENAX PBVC -0.22 (1.63) -0.42 -2.78 (2.35) -2.55 1.26 <0.0001
(-4.22/2.94) (-9.3/2.13)

SIENAX-HW PBVC -0.19 (0.93) -0.12 -1.87 (1.56) -.1.66 1.31 <0.0001
(-1.71/2.31) (-6.77/1.63)

SIENAX-MTP PBVC | 0.19 (0.59) -0.15 -1.84 (1.33) -1.66 1.59 <0.0001
(-1.18/1.27) (-6.45/0.82)

GM measures

SIENAX PGMVC* -2.26 (1.87) -2.61 -4.04 (3.14) -4.18 0.69 0.003
(-4.8/2.45) (-9.92/3.21)

SIENAX-HW -1.76 (1.87) -1.93 -2.98 (2.45)-3.24 0.35 0.082

PGMVC (-3.91/2.39) (-7.48/4.23)

SIENAX-MTP -0.64 (0.83) -0.78 -1.87(2.18) -1.48 0.75 0.002

PGMVC (-1.96/1.66) (-9.76/3.16)

WM measures

SIENAX PWMVC#* 2.04 (2.34) 2.31 -1.27(3.77) -0.83 1.08 <0.0001
(-4.98/5.89) (-13.74/10.50)

SIENAX-HW 2.06 (1.90) 1.89 -0.48 (3.97) -0.27 0.86 0.001

PWMVC (-2.82/6.41) (-13.18/5.28)

SIENAX-MTP 1.86 (1.56) 1.89 -0.56 (2.49) -0.41 1.15 <0.0001

PWMVC (-2.18/6.41) (-7.07/5.28)

Legend: HC - healthy controls; RRMS - relapsing-remitting multiple sclerosis; SD - standard deviation; min -
minimum; max - maximum; PBVC - percent brain volume change; GM - gray matter; MTP - multi-timepoint;
HW - halfway; PGMVC - percent GM volume change; WM - white matter; PWMVC - percent WM volume
change. d- Cohen's d represents the effect size. The differences between HC and MS groups were tested using
Student's t-test.

* 4 SIENAX longitudinal analyses were excluded during quality control due to inadequate GM/WM
segmentation. The analyses were performed with and without these cases excluded for SIENA, SIENAX-HW,
and SIENAX-MTP measures. The results were nearly identical. Therefore, the results are presented with SIENAX
failed cases included, because one of the main points of the study was to test whether SIENAX-MTP will result in
fewer failures.

101



Table 2. Five year follow-up differences in whole brain, gray matter and white matter volume estimation change
measures in 64 relapsing-remitting (RR) multiple sclerosis (MS) patients without disability progression and 64

RRMS patients with disability progression.

Whole brain No disability Disability d p value
measures progression MS group | progression MS group
(n=64) (n=64)
Mean (SD) median Mean (SD) median
(min/max) (min/max)
SIENA PBVC -2.72(1.94) -2.34 -4.85 (3.49) -3.97 0.75 <0.0001
(-8.95/1.18) (-17.21/0.79)
SIENAX PBVC -5.56 (3.25) -4.86 -6.45 (3.82) -6.89 0.25 0.160
(-16.12/-0.79) (-14.63/3.41)
SIENAX-HW PBVC -2.56 (1.61) -2.31 -3.79 (2.37) -3.42 0.61 0.001
(-8.15/0.99) (-9.98/0.19)
SIENAX-MTP PBVC -2.08 (1.21)-1.88 -3.51(2.23)-3.10 0.81 <0.0001
(-3.72/0.35) (-10.37/0.24)
GM measures
SIENAX PGMVC* -4.18 (2.89) -4.11 -5.41 (4.28) -5.01 0.34 0.058
(-16.42/4.82) (-18.06/4.14)
SIENAX-HW -4.60 (2.37) -4.58 -5.11 (2.83) -4.77 0.20 0.261
PGMVC (-8.96/0.51) (-13.21/-0.83)
SIENAX-MTP -3.92 (1.81)-4.37 -5.26 (2.78) -4.45 0.57 0.002
PGMVC (-7.87/0.46) (-14.61/-1.42)
WM measures
SIENAX PWMVC# 1.47 (6.81) 2.75 -2.49 (8.24) -2.42 0.52 0.004
(-21.87/13.84) (-24.91/19.58)
SIENAX-HW -0.09 (3.55) 0.48 -2.14 (4.21) -1.39 0.53 0.003
PWMVC (-14.26/5.70) (-13.81/5.86)
SIENAX-MTP 0.40(2.61) 0.88 -1.52 (3.29) -0.75 0.64 <0.0001
PWMVC (-9.13/4.82) (-11.22/4.35)

Legend: HC - healthy controls; RRMS - relapsing-remitting multiple sclerosis; SD - standard deviation; min -
minimum; max - maximum; PBVC - percent brain volume change; GM - gray matter; MTP - multi-timepoint;
HW - haltway; PGMVC - percent GM volume change; WM - white matter; PWMVC - percent WM volume
change. d - Cohen's d represents the effect size. The differences between the MS groups were tested by using
Student's t-test.

* 8 SIENAX longitudinal analyses were excluded during quality control due to inadequate GM/WM
segmentation. The analyses were performed with and without these cases excluded for SIENA, SIENAX-HW,
and SIENAX-MTP measures. The results were nearly identical. Therefore, the results are presented with SIENAX
failed cases included, because one of the main points of the study was to test whether SIENAX-MTP will result in
fewer failures.
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Figure 1. Schematic view of the SIENAX-MTP processing pipeline. The arrows between the two LFAST
components indicate communication of HMRF costs, allowing for more consistent tissue segmentation between

time points.
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Figure 2. Representative images of the experimental simulation process, showing the 3D shape used to provide a
parametric volume with gyrus-like ridges (left), a mid-level cross-section of a sample set of concentric “tissues”
(middle), and a final bias field and noise corrupted image used for FAST and LFAST analysis (right).
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Figure 3. Simulation results. The top panel shows the results for FAST and some representative LFAST z factors
across a variety of atrophy levels, averaged across five random runs each. The middle panel shows the associated
mean absolute deviations (MADs) between runs for each atrophy level. The bottom panel shows a graph of the
relationship between z factor and agreement with ground truth, and indicates a relatively stable plateau between
32 and 64 for which results are substantially better than conventional FAST.
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Figure 4. Representative results from scan-rescan analysis. Differences, which should be negligible, are quite
noticeable for SIENAX but not for SIENAX-MTP. These visible difference voxels are sources or error in
volumetric change measurements. Note that standard SIENAX assigns different classifications for tissue that
has actually remained the same — e.g., in the deep gray matter.
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Appendix D — Additional background

This appendix provides more in-depth background and further references for
readers interested in more information about MRI, MS, and image processing.

D.1 MRI

Magnetic resonance imaging (MRI) of human subjects was first successfully
performed in 1977, with the first commercial whole-body scanner created in
1980 (Ai et al. 2012). In the three decades since, MRI has become an essential
medical tool available in more than half of surveyed emergency hospitals in the
US and UK (Ginde et al. 2008; Kane and Whiteley 2008).

The unigue advantages of MRI that have driven its widespread use, include the
fact that it is tomographic, capable of relatively high resolution of the order of a
cubic millimetre or better, and that it is almost completely non-invasive. Equally
notable, is MRI's ability to acquire a wide variety of data. By controlling the
magnetic environment and probing tissue protons with radio frequency (RF)
pulses, MRI is able to elucidate many different aspects of the chemical

environment of hydrogen atoms.

At its most basic, MRI is made possible by the combination of three key
components: a relatively large superconducting magnetic coil, a system for
radio frequency (RF) transmission and detection, and a set of magnetic
gradient-producing coils (Fig. D1).
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Figure D1: Schematic image of the core components of an MRI machine. The
superconducting magnet aligns water protons and provides them with a characteristic
frequency. The gradient coils allow for spatial encoding by varying the local magnetic
field. The radiofrequency coils interact with the spinning protons to elicit and read

electromagnetic signals.

It is impossible to do justice to the complex interplay at the heart of MRI image
creation and acquisition in such a short space, but the basic principles are as

follows:

1. Hydrogen nuclei (consisting of single protons) have a characteristic
physical property called “spin” which can be conceived of as analogous
to the angular momentum of a spinning ball or top. This spin also has a
definable axis and direction (clockwise vs. counter-clockwise). This can
of course be represented mathematically by a single positive or negative
vector, but we treat the two separately here for simplicity. For the most
part, the spin axes of hydrogen nuclei in vivo are oriented randomly.

2. When a subject is placed in the MRI scanner, these hydrogen nuclei also
begin to precess around the main field (BO) axis in much the same way
that a spinning top begins to “wobble” around the axis of gravity — the
spin axis itself rotates around the field axis. The rate of this precession,
called the Larmor frequency, is also a well-defined function on the
magnetic field strength (e.g., 42.58 MHz/Tesla for hydrogen nuclei).

3. In addition, although the spin axes were original oriented randomly, they
now begin to align more closely with the scanner, as this corresponds to

a lower energy state. Note that in reality, only a very small excess of
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protons align with instead of against the field, on the order of a few parts
per million. This is also a more classical view of the system that ignores
the more quantum-dynamical underlying principles. See (Haacke 1999)
for a more detailed discussion.

. When these precessing hydrogen nuclei are exposed to RF energy at or
near their Larmor frequency (called an excitation pulse), their precession
becomes phased, and their spin axes are also tipped away from the main
magnetic field. With many protons spinning in phase and tipped away
from the main field, a rotating net magnetic moment is produced in a
plane perpendicular to the main field. In turn, this rotating magnetic
moment induces a fluctuating electrical field that can be detected and
measured with properly positioned RF receive coils and careful
amplification.

. Once “energized” by an RF field, protons do not simple remain at their
newly “tipped” angle and stay in phase. Instead, they trade energy with
their surroundings and with each other in such a way that they begin to
‘relax” back into alignment with the main field and also lose phase
coherence with each other. The process of tipping back into alignment
with the main field is called T1 relaxation, whereas the process of losing
phase coherence is called T2 relaxation. Both occur simultaneously, with
T2 often much faster than T1, and each dependent of various aspects of
the local chemical environment. Because of this, the strength of the RF
signal read out at from a particular portion of tissue any given time after
the initial excitation pulse is largely governed by three factors: the overall
number of hydrogen nuclei in the tissue (proton density, PD), the T1
relaxation rate of the tissue, and the T2 relaxation rate of the tissue. For
simplicity, the important distinction between T2* and T2 is overlooked
here.

. Finally, recalling that protons are excitable only by RF pulses at or near
their Larmor frequency, and that the Larmor frequency itself is dependent
on the magnetic field, it is apparent that by varying the local magnetic
field it is possible to ensure that only protons in one specific area will be
excited. This is the job of gradient coils, which produce spatial variations
in the otherwise homogeneous main magnetic field in order to excite

single slices. Within a slice, carefully timed application of additional
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gradient fields can code already-excited nuclei in each portion of tissue
with a specific identifying frequency and phase. By exploiting the
mathematics of the Fourier transform, a great deal of data can be

acquired simultaneously in this manner.

7. Through the process of image reconstruction, a 3-dimensional grid (or
series of 2-dimensional grids) is built up, composed of individual
elements called voxels, for “volume elements” (analogous to pixels, but

with depth as well as height and width).

Despite their brevity, the above principles provide some basic intuition for how
conventional sequences like T1-weighted, T2-weighted, and PD-weighted
images are acquired. By adjusting gradient/RF strength and application times,
many variants can be acquired with different emphasis on scanning time, signal
to noise ratio, and resolution. However, much more creative uses are possible
with specialized RF/gradient techniques. For example, precise application of
opposite polarity gradients can have no net effect on stationary nuclei, but
dramatically affect moving nuclei, leading to diffusion contrast (Le Bihan 2003).
Similarly, a well-tuned frequency offset in the RF field can be used to only excite
protons in certain tissues, resulting in the potential for magnetization transfer

contrast (Henkelman et al. 2001).

In practice, within a single one-hour scanning session, ten or more full
conventional and/or non-conventional 3-dimensional tissue maps can be
produced, each emphasizing a different aspect of the local chemical
environment and/or sensitive to different pathology. For clinical routine imaging,
they are generally read qualitatively by a trained radiologist in a suitable visual
format. For quantitative analysis, they are transferred in a standard format
called DICOM, which ensures standard recording formats for most relevant

acquisition parameters.

A more complete description of the physics of MRI is beyond the scope of this
document, but the interested reader is referred to (Hornak 2011) for an informal
but informative overview, or to (Bernstein et al. 2004; Haacke 1999) for more

comprehensive and rigorous treatment of the subject.
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D.2 Multiple sclerosis

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous
system (CNS), which is characterized by inflammation, demyelination, axonal
loss, and gliosis (Fig. D2). It is thought to affect more than 2 million individuals
worldwide (Rosati 2001), and is the most common neurological disease
amongst young adults. It commonly strikes individuals in their 20's or 30’s
(Koch-Henriksen and Sgrensen 2010), and is usually characterized by acute
clinical relapses followed by significant periods of remission. Eventually, though,
most cases later enter a more debilitating progressive phase. The effects of MS
are almost exclusively confined to the central nervous system, and the disease
has as its hallmark focal pathological plagues with extensive demyelination
located in otherwise myelinated central WM. Symptoms vary dramatically
depending on affected areas, and include sensory deficits, muscle weakness,
loss of balance, bladder dysregulation, visual changes, and cognitive

impairment (Poser et al. 1982).

Cortical thinning

Axonal transection

Cortical demyelinating lesions
Inflammation/focal lesions
Remyelination

Meningeal inflammation
Deep gray matter atrophy

Other factors:

Non-inflammatory microglia

Axonal sprouting

Endogenous trophic factors
Oligodentrocyte progenitor recruitment
Astrocyte involvement

B Cortex/deep gray matter
=3 White matter

E Cerebrospinal fluid

---- Pre-disease tissue border

Figure D2: Heterogeneity of MS disease-related changes. In addition to the hallmark
focal plaques, many other pathological and reparatory mechanisms occur both
simultaneously and in series. The precise distribution, timing, and interaction between

many of these processes is still imperfectly understood.
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Although first identified by Jean-Martin Charcot in 1866 (Goetz et al. 1995), the
aetiology of MS remains unknown. Indeed, over the 150 years since it was first
discovered many disparate factors have been implicated. Environmental studies
have revealed an association with latitude, with populations at higher latitudes
being more susceptible (Simpson et al. 2011). Although there is evidence for an
effect of sunlight exposure potentially mediated through vitamin D (Munger et al.
2004), there are also substantial east-west variations that indicate other climate
related factors may be at work (Ebers and Sadovnick 1993). Infectious diseases
have also been implicated, and there is convincing evidence that Epstein-Barr
virus may play a role (Ascherio and Munger 2007). Other factors like degree of
outdoor work (Kampman et al. 2007) and smoking (Riise et al. 2003; Zivadinov
and Weinstock-Guttman 2009; Manouchehrinia et al. 2013; Salzer et al. 2013)
have shown significant correlations with MS risk and outcome. Also, diet has
been suggested and often discounted, although it seems that serum vitamin D
levels may play a meaningful role (Munger et al. 2004). In addition to these
environmental factors, there appears to be an important genetic component. MS
co-occurrence in monozygotic twins is significantly more likely than in dizygotic
twins or non-twin siblings (Willer et al. 2003). Additional studies with half-
siblings have made a compelling case for a genetic/epigenetic basis for MS
(Ebers et al. 2004). Beyond this, DNA microarray techniques have made it
possible to cast a wide net in searching for likely contributors to MS. A recent
large, genome-wide study identified specific risk alleles, including those of
interleukin (IL2 and IL7) and human leukocyte antigen (HLA-DR) genes (Hafler
et al. 2007), and another pointed to CD6, IRF8 and TNFRSF1A SNP locales
(De Jager et al. 2009). However, despite the encouraging insights gained
through these various studies, no overall comprehensive model of the disease
exists and much about MS remains unknown, perhaps due to the complexity of

epigenetic effects (Huynh and Casaccia 2013).

In recent years much of the research into MS has focused on the immunological
aspects of the disease. There is overwhelming evidence that MS is associated
with inflammatory markers in the CNS (Brtck et al. 1995). As seems to be the
case with most aspects of MS, the immune responses involved appear to be
multifaceted. For some time, CD4+ helper T cells have been implicated, and are

clearly involved in the disease (Viglietta and Baecher-Allan 2004). However,
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many other cell types and immunomodulatory cascades are also involved in
MS, including CD8+ T cells and CD56+ natural killer cells (Skulina and Schmidt
2004; Takahashi et al. 2004). Some populations like CD4+ Th1l T cells seem to
have a disease-promoting effect, whereas others like CD25+CD4+ T cells are
regulatory and suppress the immune response (Kasper and Shoemaker 2010).
Of particular recent interest is the potential role of B cells in MS etiology
(Magliozzi et al. 2007), and their potential as a therapeutic target (Hauser and
Waubant 2008).

Histopathological work has also shed much light on the precise nature of MS.
Perhaps most importantly, it has made increasingly clear the fact that MS
involves considerably more tissue damage than the conventionally seen focal
T2 lesions, as well as the fact that even within such lesions considerably more
activity occurs than simple demyelination (Lassmann et al. 2007). It has also
demonstrated extensive alterations in previously little-studied GM, and has
informed better understanding of its more subtle lesions (Geurts et al. 2009;
Filippi et al. 2013; Fischer et al. 2013). Meningeal inflammation has also been
found (Choi et al. 2012), which may more directly influence GM pathology.
Mechanisms of neurodegeneration beyond Wallerian degeneration have also
been elucidated, including direct axonal transection (Trapp and Peterson 1998).
Perhaps one of the most interesting recent findings from histopathology is an
evaluation of newly formed MS lesions. Surprisingly, this showed extensive
oligodendrocyte apoptosis and microglial activation but minimal lymphocyte or
myelin macrophage presence, contrary to current disease models (Barnett and
Prineas 2004). Follow-up study with more cases confirmed the absence of T or
B cells and the presence of apoptotic oligodendrocytes in early expanding
borders of MS lesions (Henderson et al. 2009). Further investigation
demonstrated a role for oxidative stress in pre-inflammatory oligodendrocytes
(Haider et al. 2011). These findings have led some to hypothesize that MS may
not be an autoimmune disease, but rather a degenerative disease resulting in
an immune component (Stys et al. 2012; Trapp and Nave 2008). Additional
work has pointed to the importance of astrocytes in remyelination (Skripuletz et
al. 2013), and has shown other factors that can inhibit (Stoffels et al. 2013) or
promote (Yuen et al. 2013) it. Given all of this, it has become clear that MS is a

multifactorial disease, and the ability to monitor all these aspects shown via
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histopathology with in vivo MRI is an important goal (Filippi et al. 2012).
Additionally, the simultaneous combination of histopathology and post-mortem
MRI may drive further advancements (Kolasinski et al. 2012).

Arguably one of the greatest recent changes for those afflicted with MS is the
fact that clinical care has progressed from passive observation, symptom
management, and palliative care to meaningful disease modifying treatments
that can significantly slow MS progress. These include large classes of immune-
modifying agents such as the beta interferons (Jacobs and Cookfair 1996) and
glatiramer acetate (Ford et al. 2006), as well as more modern approaches that
limit lymphocyte movement or proliferation such as teriflunomide (O’Connor and
Wolinsky 2011), fingolimod (Kappos et al. 2010), and natalizumab (Polman et
al. 2006).

D.3 Medical image processing and analysis

For the first 15 years or so of its existence neurological MRI analysis was
largely qualitive in nature, with most quantitative elements restricted to relatively
simple calculations or low-level reconstruction applications. However in the late
1990s, clinicians and MRI physicists started to turn to the world of signal
processing and statistics to develop new methodologies. Since then,
neurological image analysis has become a sub-discipline in its own right
(Dhawan 2011; Dougherty 2009); albeit an immature discipline that is
developing. While medical imaging provides a unique set of challenges, it
benefits from algorithms developed in other fields. Application and interpretation
of these algorithms in a neurological context, however, remains major
challenge. While the systems in other disciplines may be well understood, this is
not the case with neurological disease, where much is unknown about the
intracranial system. Consequently, techniques originally developed in other
disciplines have to be tailored to MRI image analysis and validated against

experimental data.

From the earliest stages of tomographic medical imaging (CT), computational
power and sophisticated algorithms were required to reconstruct images from
raw data, and this is still the case today. Where CT used the inverse Radon

transform and iterative reconstruction, MRl now makes extensive use of the fast

113



Fourier transform (FFT). In the past few decades, though, computing speeds
and memory have expanded to allow for considerably more possibilities than
mere reconstruction. Because of this, the field of image analysis has grown
dramatically, and has made quantitative interpretation and/or transformation of

images a viable alternative or complement to qualitative radiological reads.

Arguably some of the most critical advances in the field have come from areas
that are traditionally considered “pre-processing”. In particular, co-registration —
the mutual alignment of scans from different image types, time points, or
subjects — has substantially matured to the point where it is highly reliable, due
to the work of many independent investigators (Ashburner et al. 1997; Friston et
al. 1995; Jenkinson et al. 2002; Woods and Grafton 1998). Co-registration is
generally considered to be a linear operation, which although it can perform
excellently between a single individual’s scans, is not able to precisely align
anatomy between different subjects. This concern can however be addressed
by non-linear image warping, or normalization, which goes beyond affine
transforms to allow detailed anatomy-specific warping/morphing. Such
normalization may make use of hundreds or thousands of parameters, and is an
extremely difficult mathematical and computational problem. Despite the
challenges, though, significant progress was made even more than a decade
ago (Woods and Grafton 1998) and improvements are still consistently being
made. For example, much work has gone into invertible, diffeomorphic
normalization (Klein et al. 2009; Murphy et al. 2011). Taken together, the value
of fast, reliable, and reproducible post-acquisition alignment and normalization
is difficult to overstate. Without such tools, it would be extremely difficult or
impossible to track subtle changes across time, to evaluate the multi-spectral
MRI characteristics of single tissue locations, or to compare localized changes

across subjects.

With co-registration and normalization available, simultaneous progress has
been made on the creation and standardization of neurological maps, such as
the famous atlas of neurology produced by Talairach and Tourneaux (Talairach
and Tournoux 1988). Although crude by modern standards, at the time this
represented a great step forward. However, it was based on a single subject

data, and it was not until much later that the ability to warp many subjects into a
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common space in a highly detailed manner was possible. Only when this
obstacle was overcome was it possible to create much more accurate and
representative atlases (Grabner et al. 2006) and ICBM 452 non-linear atlases
(Mazziotta et al. 2001). With the ability to create high-quality atlases came the
ability to perform group-wise spatial analyses. While early work was based on
“collapsing” subject data into single metrics, the ability to normalize subjects into
a common space led to the ability to precisely evaluate differences in specific,
small anatomical regions all the way down to the voxel level. Some of the key
techniques in this area include voxel based morphometry (Ashburner and
Friston 2000) and deformation-based mapping (Chung et al. 2001). These
techniques have been the basis for many independent investigations into
morphometric changes in a variety of diseases and in normal aging (Draganski
et al. 2004; Honea and Crow 2005; Prinster et al. 2006; Thompson et al. 2003).

At the same time, improvements in image processing algorithms have led to
accurate, reproducible tissue segmentation and object extraction techniques.
These allow for classification on a voxel-by-voxel basis into specific tissue
compartments or for labeling of voxels as specific anatomical structures.
Examples of segmentation techniques include EMS (Van Leemput et al. 2001),
FAST (Zhang et al. 2001), and SPM unified segmentation (Ashburner and
Friston 2005). Examples of object extraction tools include FIRST (Patenaude et
al. 2011) and cortical parcellation in Freesurfer (Fischl 2012). Other advances
have occurred in lower-level processing areas, including a variety of techniques
for image enhancement and/or restoration. For example, non-linear smoothing
has provided a “best of both worlds” ability to diminish measurement noise
without paying the classical price of lost spatial resolution (Black and Sapiro
1998; Smith and Brady 1997). Other technigues have focused more on
ameliorating MRI-specific artefacts, including techniques for intra-session
motion correction (Jenkinson et al. 2002), eddy current correction (Bodammer
and Kaufmann 2004), and susceptibility-induced distortion unwarping (Jezzard
and Balaban 1995). Finally, a number of more sequence-specific techniques
have also developed symbiotically with MRI physics, including DTI-based
tractography (Ciccarelli et al. 2008), fMRI ICA (Calhoun et al. 2009) and network
analysis (Bullmore and Sporns 2009).
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