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This document is a critical synopsis of prior work by Michael Dwyer, submitted 

in support of a PhD by published work. The selected work is focused on the 

application of quantitative magnetic resonance imaging (MRI) analysis 

techniques to the study of multiple sclerosis (MS). 

MS is a debilitating disease with a multi-factorial pathology, progression, and 

clinical presentation. Its most salient feature is focal inflammatory lesions, but it 

also includes significant parenchymal atrophy and microstructural damage. As a 

powerful tool for in vivo investigation of tissue properties, MRI can provide 

important clinical and scientific information regarding these various aspects of 

the disease, but precise, accurate quantitative analysis techniques are needed 

to detect subtle changes and to cope with the vast amount of data produced in 

an MRI session. 

To address this, eight new techniques were developed by Michael Dwyer and 

his co-workers to better elucidate focal, atrophic, and occult/―invisible‖ 

pathology. These included: a method to better evaluate errors in lesion 

identification; a method to quantify differences in lesion distribution between 

scanner strengths; a method to measure optic nerve atrophy; a more precise 

method to quantify tissue-specific atrophy; a method sensitive to dynamic 

myelin changes; and a method to quantify iron in specific brain structures. 

Taken together, these new techniques are complementary and improve the 

ability of clinicians and researchers to reliably assess various key elements of 

MS pathology in vivo. 
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Chapter 1 – Introduction 

1.1 Purpose 

This document is a synopsis of the published work of Michael Dwyer (hereafter 

referred to as the author), which is herewith submitted for a PhD by published 

work. 

1.2 Selected publications 

The body of published work submitted for this PhD is itemized in Table 1, which 

comprises eleven journal papers and one conference proceeding. Copies of 

these publications are included in Appendix B. They have been selected 

because they represent both a significant contribution to the scientific 

knowledge base and either primary or substantial involvement from the author. 

Additional supporting material, which comprises the eleven journal papers 

itemized in Table 2, is included in Appendix C.  

Table 1. Publications submitted for inclusion in the PhD 

Ref. 
No. 

Publication Status
*
 

1 Semi-automatic brain region extraction (SABRE) reveals superior 
cortical and deep gray matter atrophy in MS. Carone DA, Benedict RH, 
Dwyer MG, Cookfair DL, Srinivasaraghavan B, Tjoa CW, Zivadinov R. 
Neuroimage. 2006 Jan 15;29(2):505-14. Epub 2005 Oct 5. 

RP*** 
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Ref. 
No. 

Publication Status
*
 

2 Effect of MRI coregistration on serial short-term brain volume changes 
in multiple sclerosis. Fritz DA, Dwyer MG, Bagnato F, Watts KL, Bratina A, 
Zorzon M, Durastanti V, Locatelli L, Millefiorini E, Zivadinov R. Neurol Res. 
2006 Apr;28(3):275-9. 

RP*** 

3 Neocortical atrophy, third ventricular width, and cognitive dysfunction 
in multiple sclerosis. Benedict RH, Bruce JM, Dwyer MG, Abdelrahman N, 
Hussein S, Weinstock-Guttman B, Garg N, Munschauer F, Zivadinov R. Arch 
Neurol. 2006 Sep;63(9):1301-6. 

RP*** 

4 Quantitative diffusion weighted imaging measures in patients with 
multiple sclerosis. Tavazzi E, Dwyer MG, Weinstock-Guttman B, Lema J, 
Bastianello S, Bergamaschi R, Cosi V, Benedict RH, Munschauer FE 3rd, 
Zivadinov R. Neuroimage. 2007 Jul 1;36(3):746-54. Epub 2007 Apr 10. 

RP*** 

5 Application of hidden Markov random field approach for quantification 
of perfusion/diffusion mismatch in acute ischemic stroke. Dwyer MG, 
Bergsland N, Saluste E, Sharma J, Jaisani Z, Durfee J, Abdelrahman N, 
Minagar A, Hoque R, Munschauer FE 3rd, Zivadinov R. Neurol Res. 2008 
Oct;30(8):827-34. doi: 10.1179/174313208X340987. 

RP** 

6 A sensitive, noise-resistant method for identifying focal demyelination 
and remyelination in patients with multiple sclerosis via voxel-wise 
changes in magnetization transfer ratio. Dwyer MG, Bergsland N, Hussein 
S, Durfee JE, Wack DS, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):86-
95. doi: 10.1016/j.jns.2009.03.016. Epub 2009 Apr 22. 

RP** 

7 Relationship of optic nerve and brain conventional and non-
conventional MRI measures and retinal nerve fiber layer thickness, as 
assessed by OCT and GDx: a pilot study. Frohman EM, Dwyer MG, 
Frohman T, Cox JL, Salter A, Greenberg BM, Hussein S, Conger A, 
Calabresi P, Balcer LJ, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):96-
105. doi: 10.1016/j.jns.2009.04.010. Epub 2009 May 12. 

RP*** 

8 Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis 
patients and healthy controls. A morphological and spatial quantitative 
comparison study. Di Perri C, Dwyer MG, Wack DS, Cox JL, Hashmi K, 
Saluste E, Hussein S, Schirda C, Stosic M, Durfee J, Poloni GU, Nayyar N, 
Bergamaschi R, Zivadinov R. Neuroimage. 2009 Oct 1;47(4):1352-62. doi: 
10.1016/j.neuroimage.2009.04.019. Epub 2009 Apr 14. 

RP*** 

9 Abnormal subcortical deep-gray matter susceptibility-weighted imaging 
filtered phase measurements in patients with multiple sclerosis: a case-
control study. Zivadinov R, Heininen-Brown M, Schirda CV, Poloni GU, 
Bergsland N, Magnano CR, Durfee J, Kennedy C, Carl E, Hagemeier J, 
Benedict RH, Weinstock-Guttman B, Dwyer MG. Neuroimage. 2012 Jan 
2;59(1):331-9. doi: 10.1016/j.neuroimage.2011.07.045. Epub 2011 Jul 27. 

RP*** 

10 Improved assessment of multiple sclerosis lesion segmentation 
agreement via detection and outline error estimates. Wack DS, Dwyer 
MG, Bergsland N, Di Perri C, Ranza L, Hussein S, Ramasamy D, Poloni G, 
Zivadinov R. BMC Med Imaging. 2012 Jul 19;12:17. doi: 10.1186/1471-2342-
12-17. 

RP*** 

11 Improved longitudinal gray matter atrophy assessment via a 
combination of SIENA and a 4-dimensional hidden Markov random field 
model. Dwyer MG, Bergsland N, Zivadinov R. 28th European Committee for 
Treatment and Research in Multiple Sclerosis, Lyon, France, October 10-13, 
2012:P840. 

P** 
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*Status: P = available in the public domain; R = refereed journal paper; * = sole author; 

** = principal author; *** = joint author 

Table 2. Supporting documents 

Publication Status
*
 

Detection of cortical lesions is dependent on choice of slice thickness in 
patients with multiple sclerosis. Dolezal O, Dwyer MG, Horakova D, Havrdova 
E, Minagar A, Balachandran S, Bergsland N, Seidl Z, Vaneckova M, Fritz D, 
Krasensky J, Zivadinov R. Int Rev Neurobiol. 2007;79:475-89. 

RP*** 

Diffusion-weighted imaging predicts cognitive impairment in multiple 
sclerosis. Benedict RH, Bruce J, Dwyer MG, Weinstock-Guttman B, Tjoa C, 
Tavazzi E, Munschauer FE, Zivadinov R. Mult Scler. 2007 Jul;13(6):722-30. Epub 
2007 Mar 15. 

RP*** 

Comparison of three different methods for measurement of cervical cord 
atrophy in multiple sclerosis. Zivadinov R, Banas AC, Yella V, Abdelrahman N, 
Weinstock-Guttman B, Dwyer MG. AJNR Am J Neuroradiol. 2008 Feb;29(2):319-
25. Epub 2007 Nov 1. 

RP*** 

The place of conventional MRI and newly emerging MRI techniques in 
monitoring different aspects of treatment outcome. Zivadinov R, Stosic M, Cox 
JL, Ramasamy DP, Dwyer MG. J Neurol. 2008 Mar;255 Suppl 1:61-74. doi: 
10.1007/s00415-008-1009-1. Review. 

RP*** 

Use of perfusion- and diffusion-weighted imaging in differential diagnosis of 
acute and chronic ischemic stroke and multiple sclerosis. Zivadinov R, 
Bergsland N, Stosic M, Sharma J, Nussenbaum F, Durfee J, Hani N, Abdelrahman 
N, Jaisani Z, Minagar A, Hoque R, Munschauer FE 3rd, Dwyer MG. Neurol Res. 
2008 Oct;30(8):816-26. doi: 10.1179/174313208X341003. 

RP*** 

Gray matter atrophy and disability progression in patients with early 
relapsing-remitting multiple sclerosis: a 5-year longitudinal study. Horakova 
D, Dwyer MG, Havrdova E, Cox JL, Dolezal O, Bergsland N, Rimes B, Seidl Z, 
Vaneckova M, Zivadinov R. J Neurol Sci. 2009 Jul 15;282(1-2):112-9. doi: 
10.1016/j.jns.2008.12.005. Epub 2009 Jan 24. 

RP*** 

Voxel-wise magnetization transfer imaging study of effects of natalizumab 
and IFNβ-1a in multiple sclerosis. Zivadinov R, Dwyer MG, Hussein S, Carl E, 
Kennedy C, Andrews M, Hojnacki D, Heininen-Brown M, Willis L, Cherneva M, 
Bergsland N, Weinstock-Guttman B. Mult Scler. 2012 Aug;18(8):1125-34. doi: 
10.1177/1352458511433304. Epub 2011 Dec 22. 

RP*** 

Iron deposition on SWI-filtered phase in the subcortical deep gray matter of 
patients with clinically isolated syndrome may precede structure-specific 
atrophy. Hagemeier J, Weinstock-Guttman B, Bergsland N, Heininen-Brown M, 
Carl E, Kennedy C, Magnano C, Hojnacki D, Dwyer MG, Zivadinov R. AJNR Am J 
Neuroradiol. 2012 Sep;33(8):1596-601. doi: 10.3174/ajnr.A3030. Epub 2012 Mar 
29. 

RP*** 

Subcortical and cortical gray matter atrophy in a large sample of patients 
with clinically isolated syndrome and early relapsing-remitting multiple 
sclerosis. Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova 
M, Krasensky J, Havrdova E, Zivadinov R. AJNR Am J Neuroradiol. 2012 
Sep;33(8):1573-8. doi: 10.3174/ajnr.A3086. Epub 2012 Apr 12. 

RP*** 

Bimonthly Evolution of Cortical Atrophy in Early Relapsing-Remitting 
Multiple Sclerosis over 2 Years: A Longitudinal Study. Zivadinov R, Tekwe C, 
Bergsland N, Dolezal O, Havrdova E, Krasensky J, Dwyer MG, Seidl Z, 
Ramasamy DP, Vaneckova M, Horakova D. Mult Scler Int. 2013;2013:231345. doi: 
10.1155/2013/231345. Epub 2013 Jan 10. 

RP*** 
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Publication Status
*
 

Gray matter SWI-filtered phase and atrophy are linked to disability in MS. 
Hagemeier J, Weinstock-Guttman B, Heininen-Brown M, Poloni GU, Bergsland N, 
Schirda C, Magnano CR, Kennedy C, Carl E, Dwyer MG, Minagar A, Zivadinov R. 
Front Biosci (Elite Ed). 2013 Jan 1;5:525-32. 

RP*** 

Improved longitudinal gray and white matter atrophy assessment via 
application of a 4-dimensional hidden Markov random field model. Dwyer 
MG, Bergsland NP, Zivadinov R. [Unpublished manuscript] 

N-P** 

*Status: P = available in the public domain; R = refereed journal paper; N-P = not yet 

available; * = sole author; ** = principal author; *** = joint author 

 

1.3 Statement of work 

This document summarizes, synthesizes, and critically evaluates published 

work of the author. This work involves the development and application of novel 

computational algorithms for quantitatively analysing magnetic resonance 

imaging (MRI) to better understand and characterize the pathology of multiple 

sclerosis (MS), its progression, and the response of patients to treatment. 

For the past decade, the author has served as senior computer scientist and 

technical director at the Buffalo Neuroimaging Analysis Center (BNAC, 

University at Buffalo, NY, USA), a multi-disciplinary institute specializing in 

quantitative MRI analysis. His role in the BNAC is one of independent 

conceptual leadership with regard to the application of computer science to MRI 

analysis techniques. 

In collaboration with Prof. Robert Zivadinov, whose expertise is in clinical 

neurology, the author has developed, adapted, and applied a range of MRI 

image analysis algorithms, designed to accurately quantify in vivo changes in 

the brain of MS patients, thus advancing both the work of BNAC and the 

discipline as a whole. Throughout his tenure, he has also served as the key 

technical planner in the design of analysis protocols for over 70 individual 

studies.  

The purpose of this submission is not to exhaustively catalogue this work, but 

rather to provide evidence supporting conferral of a degree of PhD by published 
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work. Therefore, the specific subset of papers selected is based on the 

cohesiveness of the work reported and the fact that it demonstrates substantial 

independent leadership and involvement by the author. While most of these 

papers relate to MS in one way or another, a paper on the assessment of stroke 

is also included, because the methodologies developed in that study laid 

important groundwork for subsequent investigations of MS patients. 

1.4 Justification for the work 

Because it is non-invasive, non-ionizing, and can distinguish with great 

accuracy pathological changes in soft tissue, MRI has become widely used in 

the diagnosis, management, and study of neurological conditions such as MS. 

Although it has already facilitated major clinical and scientific advances, it is 

nonetheless a relatively new technology, with the first commercial whole-body 

scanners only appearing in 1980 (Ai et al. 2012). While these early machines 

were primitive, over the subsequent decades rapid technological improvements 

have been made which allow MRI to quickly and accurately map many aspects 

of tissue at resolutions on the order of a cubic millimetre. Consequently, MRI is 

capable of harvesting a wealth of raw data from patients and delivering new 

insights into the nature of many neurological diseases.  

While advances in MRI physics have been rapid, they have not consistently 

translated into improved ability of clinicians and researchers to interpret the raw 

data into meaningful information. In practice, within a single one-hour scanning 

session, ten or more full conventional and/or non-conventional 3-dimensional 

tissue maps can be produced, each emphasizing different aspects of the local 

chemical environment and/or pathophysiology. Indeed, a single MRI scanning 

session may produce over a gigabyte of data comprising multiple intensity 

readings in millions of voxels (3D pixels). Without sophisticated quantitative 

tools to cope with this vast amount of information, many radiologists‘ only 

recourse is to make qualitative judgements or simple hand calculations. 

However, this approach is subjective and prone to operator error and 

misinterpretation (Drew et al. 2013). Furthermore, the use of qualitative 

assessment can mean that only a small proportion of the data collected is 

utilized, with much potentially useful information discarded. Consequently, 

quantitative methodologies have been developed in recent years that enable 
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the data to be collected and analysed more reproducibly and in much greater 

detail.  

By conferring the ability to synthesize data, elucidate subtle effects, and refine 

and standardize outcome measures, quantitative MRI image analysis holds 

great potential to lead advances in both basic science and clinical treatment. 

With its roots in signal processing, statistics, and pattern recognition, it has 

become a field in its own right (Dhawan 2011; Dougherty 2009), and has 

already seen many early successes. Nevertheless, it is a young field, with great 

potential for improvement and many unexplored frontiers.  

The aetiology and pathophysiology of MS is poorly understood, with the result 

that the full clinical relevance of MRI data collected may not be known. Although 

MS is known to be associated with many MRI factors, the clinico-radiological 

paradox – the fact that MRI findings do not correlate well with clinical outcome – 

remains troublesomely unresolved (Barkhof 1999; Barkhof 2002). 

Understanding the precise impact of therapy on brain atrophy and tissue 

integrity is complicated by factors like pseudoatrophy (Zivadinov, Reder, et al. 

2008) and measurement error, and the best way to deal with these remains an 

open question. Even seemingly straightforward issues like quantifying lesion 

burden remain fraught with difficulties. How does one distinguish between 

lesion and more subtle dirty-appearing white matter (WM)? How does one 

quantify pathology with extremely diffuse edges? Consequently, there is need to 

develop new, accurate techniques that can reliably quantify tissue integrity, 

lesion burden, and atrophy in greater detail, so that disease onset and 

progression can be better understood and therapeutic impact can be better 

assessed.  

In addition to the need for new analysis techniques, it is important to ensure 

consistency in the fast moving field of MRI.  For example, how does one deal 

with subjective decisions made by different MRI analysts, regarding the choice 

of regions of interest (ROI) to investigate? Furthermore, how does one ensure 

that increasing the power of the MRI machine (e.g. from 1.5T to 3T) does not 

completely invalidate cross-group comparisons? These and many other ‗softer‘ 

issues have not been sufficiently discussed. However, given that clinical and 

scientific findings are often based on the outcome of MRI image analysis, it is 
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important that consistency of analysis is maintained and that robust protocols 

are developed. 

1.5 Aims and objectives 

The overall aim of the work was to develop, adapt, or refine quantitative image 

analysis methodologies to improve both the precise characterization of MS 

pathology and progression and the assessment of therapeutic interventions. 

The specific objectives of the work were to: 

(i) Develop a new methodology for accurately quantifying 

volumetric loss in the optic nerves of MS patients. 

(ii) Develop an improved methodology for accurately quantifying 

grey matter (GM) atrophy in MS patients. 

(iii) Develop an improved methodology for assessing the 

heterogeneity of microstructural tissue damage in MS patients. 

(iv) Develop an improved methodology for accurately and reliably 

quantifying pathological intracranial features with diffuse 

boundaries on MRI images.  

(v) Develop a new methodology for accurately quantifying and 

localizing ongoing demyelination and remyelination in the whole 

brain of MS patients. 

(vi) Develop a standard methodology for quantifying iron deposition 

in specific structures in the brains of MS patients. 

(vii) Evaluate the extent to which increasing the field strength of the 

MRI machine influences the outcome of MS lesion analysis. 

(viii) Evaluate the extent to which operator variability regarding 

choice of ROI influences the quality of MRI lesion 

measurements in MS patients.  
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Chapter 2 – Background and context 

 

This chapter presents an overview of the background research underpinning the 

work of the author and his collaborators. This work is interdisciplinary in nature 

and overlaps between three key areas: MRI, MS, and image processing and 

analysis. Therefore, to provide context and to familiarize readers with these 

fields, a brief overview is provided below. For readers completely unfamiliar with 

these fields or desiring more information, Appendix D reviews each in further 

depth and provides additional key references. 

2.1 MRI 

MRI is a young but extremely versatile medical imaging modality. Through a 

combination of superconducting magnet, gradient-producing coils, and 

radiofrequency (RF) coils, it is capable of interrogating tissue protons to 

elucidate many details about their chemical environment (Haacke 1999). The 

technique is three-dimensional, non-invasive, and non-ionizing. Although more 

time consuming than computed tomography (CT) it can produce a unique array 

of contrasts, each of which can provide specific clinical or scientific information 

not otherwise obtainable (Fig 1). Classically, these contrasts included proton 

density (PD), T1, and T2, but many more have been discovered as well. Of 

particular note are diffusion (Le Bihan 2003), which can quantify the molecular 

motion of water, and magnetization transfer (Henkelman et al. 2001), which is 

particularly sensitive to macromolecules. 
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Figure 1: Conventional MRI sequences showing different tissue properties: FLAIR 

(left), proton density (center), and T2 (right). Images have been co-registered to show 

exactly the same slice, but each has a different contrast mechanism. 

 

Most neuroimaging MRI scanning sessions produce five to ten different three-

dimensional image volumes with resolutions on the order of one to five cubic 

millimetres per voxel. They are usually interpreted qualitatively by trained 

radiologists, but they can also be directly digitally transferred for more rigorous 

quantification.  

2.2 Multiple sclerosis 

Multiple sclerosis is a chronic, often debilitating disease of the central nervous 

system, thought to affect more than two million individuals worldwide (Rosati 

2001). It is the most common neurologically disabling disease in young adults, 

and currently has no known cure. It usually begins with a relapsing/remitting 

phase followed by later conversion to progressive deterioration, but other 

courses are possible and the effects vary widely between individuals (Poser et 

al. 1982). 

The hallmark pathology of MS is the presence of focal inflammatory 

demyelinating plaques (Fig 2) that disseminate in both time and space. These 

lesions can appear in many areas, and are common in periventricular, 

juxtacortical, infratentorial, and spinal regions (Polman and Reingold 2011). 

During the acute phase of their formation, there is usually evidence of blood-
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brain-barrier breakdown. Over time, many result in permanent gliosis and 

diminished or absent axonal conduction (Frohman et al. 2006).  

 

Figure 2: FLAIR image of a representative secondary progressive MS patient showing 

hallmark focal lesions, predominantly in the periventricular regions. Additionally, 

enlarged ventricles and thinning cortical gyri indicate brain atrophy. 

 

Since MS was identified by Jean-Martin Charcot in 1866, many disparate 

factors have been implicated in its aetiology and progression. Environmental 

studies have revealed associations with latitude, sunlight, infectious diseases 

(particularly Epstein-Barr), vitamin D intake, and smoking (Ascherio and Munger 

2007a; Ascherio and Munger 2007b). A genetic component is also implicated 

based on higher co-occurrence in twins (Willer et al. 2003), and genome-wide 

studies have identified specific candidate loci (Hafler et al. 2007; De Jager et al. 

2009). Immunology has provided many insights, including the role of CD4+ and 

CD8+ T cells, and B cells are currently receiving increased attention (Kasper 

and Shoemaker 2010). Histopathology has also shed much light, demonstrating 

widespread damage and neurodegeneration beyond simple demyelinating focal 

lesions (Trapp and Nave 2008) as well as the presence of substantial GM lesion 

burden (Geurts et al. 2009). However, despite significant progress in all these 

areas no single factor has been fully explanatory, and a comprehensive disease 

model remains elusive. 
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Although a cure has not been found, treatment options have expanded greatly, 

and have now gone beyond symptom management to actual slowing of disease 

progression. The most popular therapies are the beta interferons and glatiramer 

acetate, but others like natalizumab (Polman et al. 2006) and fingolimod 

(Kappos et al. 2010) have also proven valuable, and even more such as 

alemtuzamab (Coles et al. 2008) and ocrelizumab (Kappos et al. 2011) are on 

the horizon. None of these drugs are without side effects, though, and individual 

responses often vary. 

2.3 Medical image processing and analysis 

For much of its history, neurological MRI was mainly qualitative in nature, but 

more recently clinicians, MRI physicists, and researchers have begun to draw 

on the fields of statistics, image analysis and signal processing to develop new 

methodologies. However, medical images pose their own problems, and so 

adaptation of general algorithms developed in other fields to neurological MRI 

remains a major challenge. Nonetheless, substantial progress has been made. 

MRI is capable of producing a wealth of raw data, but the transition from this 

raw data to meaningful information is not always straightforward. A single MRI 

scanning session may produce multiple intensity readings for over nine million 

voxels (Fig 3). Consequently, a qualitative approach to MRI analysis is likely to 

result not only in diagnostic inconsistency, but also in much valuable data being 

discarded. Furthermore, even if it were possible to fully evaluate all of this data 

by eye, there would remain the difficult question of which pieces of information 

are clinically relevant and how they interrelate. Quantitative MRI image analysis 

can address both of these issues. By bringing modern medical image analysis 

techniques to bear, it is possible to process the massive raw datasets provided 

by MRI quickly and reliably. Because it can distil raw data into specific metrics, 

quantitative MRI can also help address questions of relative importance and 

interrelation by facilitating the use of statistical modelling and/or data mining 

techniques to correlate MRI findings with other meaningful clinical outcomes like 

physical disability and cognition. Such applications range from the relatively 

intuitive – e.g. the realization that lesion counts may not be as important or 

predictive as volumetric measurement in MS (Fisniku, Brex, et al. 2008) – to the 
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completely new and exciting, as in structural and functional connectomics 

(Bullmore and Bassett 2011).  

 

Figure 3: Visual overview of typical MRI data produced by a single, clinical scanning 

session. (N.B. Research protocols can comprise much more data.) 

 

To a reasonable first approximation, medical image analysis can be split up into 

pre-processing and processing stages. Pre-processing is concerned with such 

tasks as noise attenuation, artefact correction, and post-acquisition alignment. 

Removal of noise can be accomplished in many ways, from simple smoothing 

(Gonzalez and Woods 2008) to more complex methods like anisotropic diffusion 

(Black and Sapiro 1998). Artefact correction includes such techniques as bias 

field removal (Sled et al. 1998) and distortion correction (Andersson et al. 

2003). Post-acquisition alignment is particularly important, as it allows data from 

multiple contrast types, time-points, or individuals to be synthesized. 

Consequently, it is a relatively mature field with robust techniques for both co-

registration (linear, within-individual alignment) (Jenkinson and Smith 2001) and 

normalization (non-linear warping for inter-individual alignment) (Klein et al. 

2009). Furthermore, high-resolution, modern MRI atlases have been developed 
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that allow for the alignment of scans into a common space that facilitates 

collaboration between researchers and uniform understanding of scientific 

findings (Mazziotta et al. 2001). In general, pre-processing techniques take 

images as input and produce modified or refined images as output. 

Processing techniques are more challenging to summarize, as they are highly 

varied and application-dependent. They can be qualitative, also producing 

images as output, or quantitative, producing well-defined metrics as output. In 

either case, they can provide an important alternative or complement to 

qualitative radiological reads. General techniques include contouring, 

segmentation, and anatomical parcellation. Contouring, either automated or 

semi-automated, can be used to identify focal lesions, and has been 

substantially refined via the use of edge-finding techniques and iso-contours 

(Grimaud et al. 1996). Segmentation is usually fully automated, and involves the 

classification of individual voxels into tissue categories (e.g. GM, WM, CSF), 

sometimes including pathology (Van Leemput et al. 2001; Zhang et al. 2001; 

Ashburner and Friston 2005). Anatomical parcellation uses varying models and 

techniques to reliably extract specific structures such as deep GM nuclei or 

specific cortical gyri (Patenaude et al. 2011; Fischl 2012).  

In addition to general techniques, more contrast-specific processing algorithms 

have been developed, including diffusion-based fibre tracking (Ciccarelli et al. 

2008), magnetization transfer ratio-based macromolecular quantification (Filippi 

et al. 1998), and BOLD-based functional MRI analysis (Jezzard et al. 2002). 

These specific techniques continue to evolve in tandem with improvements and 

discoveries in MRI sequence development. 

 

2.4 MRI image analysis in MS – overview of the field 

Concurrent with and interwoven into advances in epidemiology, immunology, 

and histopathology, MRI has already played a dramatic role in MS, where it has 

both answered and generated many questions. Given the multifactorial nature 

of MS, it is in many ways an ideal target for quantitative MRI research since it 

can simultaneously provide information about so many different aspects of CNS 

tissue (Fig. 4). 
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Figure 4: MR imaging in MS has been used to elucidate many different aspects of the 

disease. Although there are many exceptions, most current techniques can be broadly 

categorized as measuring focal pathology, tissue atrophy, or "invisible" damage. 

 

Focal pathology (in the form of lesions) was the earliest recognized element of 

MS, and remains one of the most important clinical outcomes. From a clinical 

perspective, MRI sensitivity to lesions has substantially improved diagnostic 

criteria and differential diagnosis (Miller and Weinshenker 2008; Polman and 

Reingold 2011). In many clinics, it has also become a common standard of care 

to perform routine MRI to assess neurologically silent progression and assist in 

evaluating response to treatment. There has even been some evidence that 

lesions could be used as a primary endpoint in clinical trials (Sormani and 

Bruzzi 2013), but this has been debated (Rudick and Cutter 2013). From a 

research perspective, the spatial and temporal resolution achievable with MRI 

has led to a much better understanding of the formation, progression, and 

eventual fate of lesions (Ciccarelli et al. 1999). Also of particular interest, 

through the interplay of histopathology and MRI, chronic T1 hypointensities 

(―black holes‖) have been identified as an important subset of lesions that are 

more indicative of axonal loss and neurodegeneration than standard T2-

hyperintense lesions (van Walderveen et al. 1998). Remaining problems in this 
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area mainly stem from difficulty in standardizing lesions measures across 

scanners and operators (Grimaud et al. 1996; Zijdenbos et al. 2002), although 

novel correlative approaches still continue to shed light on the disease process 

(Gourraud et al. 2013) and the precise relationship between lesions and atrophy 

is still under investigation (Mühlau et al. 2013). 

Another aspect of MS that has been greatly illuminated by MRI is atrophy. 

Some patients show extensive atrophy late in the disease, and its precise role 

has been historically not well understood. With quantitative MRI analysis, it has 

become possible to more precisely characterize tissue atrophy and to reduce it 

to precise numerical quantities.  This has led to the understanding that MS is 

not simply a focal inflammatory disease, but also a neurodegenerative condition 

(Chard et al. 2002; Losseff et al. 1996; Miller et al. 2002; Simon et al. 1999). 

Typically, young healthy adults lose approximately 0.15% of their brain volume 

per year (Ge et al. 2002), whereas an annual loss of 1.5% or more has been 

observed in MS cohorts (Ge et al. 2000; Zivadinov et al. 2001). As such, 

assessment of atrophy is now increasingly becoming an important end-point in 

MS therapeutic trials  (Filippi et al. 2004; Filippi et al. 2001; Rudick et al. 2000). 

One notable finding has been that pathology in MS is markedly different 

between GM and WM (Geurts and Barkhof 2008), and this has led to increased 

interest in measuring their individual atrophy dynamics. Atrophy occurs at 

broadly different rates between the GM and WM (Ge et al. 2001; Sanfilipo et al. 

2006). GM volume appears to have a closer relationship with disability (Fisniku, 

Chard, et al. 2008) and cognitive impairment (Benedict et al. 2006; Sanfilipo et 

al. 2006; Riccitelli et al. 2011) than is the case with the WM, although both are 

clearly important (Bodini et al. 2009; Bodini, Cercignani, Khaleeli, et al. 2013; 

Papadopoulou et al. 2013), and less GM pathology is seen in benign MS 

(Calabrese et al. 2013). The ability to reliably and independently detect subtle 

GM and WM volumetric changes in vivo is therefore an issue of critical 

importance, with some arguing that atrophy should be ―upgraded‖ to a gold 

standard outcome measure in MS treatment (Rudick et al. 2013). However, 

despite the acceptance of atrophy as a key component of MS, its precise 

nature, cause(s), and mechanism(s) are still not fully understood. A number of 

possibilities have been discussed and explored, (Trapp and Nave 2008; 
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Zivadinov, Reder, et al. 2008) but further work is still needed to fully understand 

the phenomenon. 

Beyond lesions and atrophy, MRI has also been extensively used to investigate 

more subtle, ―occult‖ tissue changes in MS. For example, myelin is a critical 

target for both research and therapeutic intervention, and as MRI techniques 

have improved, there have been some promising approaches to achieve more 

myelin-sensitive imaging. Although no MRI marker  has been found to have high 

specificity, one technique, MTR (Berry et al. 1999), achieves good sensitivity by 

taking advantage of the fact that water bound to large macromolecules, 

particularly myelin, responds with resonant behaviour to a wider range of radio 

frequencies than free water. By comparing images with and without the 

additional application of an off-resonant pulse, the local concentration of 

macromolecules can be indirectly inferred. MTR has been used to successfully 

detect myelin changes in lesions (van Waesberghe et al. 1998; Brown et al. 

2012). MTR changes have also been observed in normal-appearing tissue 

(Filippi, Campi, et al. 1995; Bodini, Cercignani, Toosy, et al. 2013), but it is not 

clear whether these represent changes in myelin content or other processes 

such as axonal loss, since primary demyelination is not known to occur outside 

lesions. Similarly, diffusion imaging has also been used to evaluate the 

microstructure of tissue and to detect in vivo myelin changes (Ciccarelli et al. 

2003), and diffusion tractography has shown how connectivity changes can 

affect cognition (Bozzali et al. 2013). Beyond this, MS spectroscopy has also 

been used to investigate changes in specific metabolites in the CNS (Srinivasan 

et al. 2005; De Stefano et al. 2007; Ciccarelli et al. 2007), although its resolution 

remains relatively crude. More recently, interest in iron dynamics in MS have 

also been revived due to the emergence of new phase-sensitive MRI 

techniques (Deistung et al. 2013; Zheng et al. 2013). 

Although significant advances in MS image analysis have been made on all 

these fronts in recent years, there are still significant ‗holes‘ in the knowledge 

base. For example, precision in lesion measurements remains challenging, the 

early detection of atrophy is extremely difficult, and dynamic myelin changes are 

difficult to localize and quantify in vivo. From a broader perspective, and 

perhaps most importantly, the clinico-radiological paradox remains unresolved. 
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Consequently, there is need to develop new methodologies with which to better 

understand and interpret MRI data regarding MS. 

2.5 MRI image analysis in MS – statistical modelling 

Given these challenges, the author initiated a programme of work geared 

toward addressing them (see Chapter 3 for details). Although individual 

problems require individual solutions, in broad terms the author applied 

statistical modelling techniques to address many of the objectives outlined in 

section 1.5. Statistical modelling provides a rigorous and useful framework, and 

allowed the author to draw on much existing work. In particular, the concepts of 

regularization, robust statistics, and multiple comparison correction were 

utilized. In order to aid the reader, these concepts are briefly introduced here. 

As this is a summary and synthesis document, formal mathematical rigor will be 

avoided in the interest of providing a more intuitive, high-level overview.  

2.5.1 Models and regularization 

MRI researchers and clinicians are consistently faced with a trade-off between 

scanning time, noise, and spatial resolution. Since time is limited, these last two 

factors are almost always compromised to some degree, creating significant 

challenges for quantitative image analysis. In the absence of any information 

about the underlying system, these challenges would be overwhelming. 

Fortunately however, this is not the case, because nearly all real-world MRI 

images have some underlying structure to them that can be exploited. For 

example, neurological MRI images usually have a great deal of spatial 

consistency – although there are many transitions between tissue types, they 

are almost always at least contiguous. Perhaps surprisingly, even this simple 

observation can dramatically improve many quantification approaches. Of 

course, exploiting such information is not completely free, and one must be 

careful to balance a priori notions against actual observations. 

This balance is usually referred to as the bias/variance trade-off, and is a 

relatively mature field in mathematics and optimization theory (Hastie et al. 

2011). The abstract intuition described above is formalized in a number of more 

mathematically precise and rigorous ways in different applications, but most fall 

under the categories of regularization or model fitting. In the context of the 



18 

author‘s work, one of the most important and illustrative of these approaches is 

the hidden Markov random field (HMRF) model (Winkler 2003). 

At the core of this model is the Markov property, which roughly asserts that the 

probability of each state transition for a given system only depends on the 

current state, and not on any prior states. The Markov property is a significant 

over-simplification of the real world, but is often surprisingly tenable in many 

practical applications. For example, disparate areas like gambling, stock 

markets, and speech can all be modelled as Markovian processes. In the 

current context, the Markov property is also important from a spatial perspective 

rather than a temporal one, and the conventional Markov chain is generalized to 

the concept of a 2- or 3-dimensional Markov random field. In essence, taking 

the Markov assumption allows tissues on MRI to be modelled in such a way that 

only the direct neighbours matter in classifying or segmenting a given voxel. In 

turn, this allows for a direct calculation of how likely a given configuration is a 

priori. Finally, by combining this a priori spatial configuration information with 

observed voxel intensities, a maximum a posteriori (Bayesian) estimate can be 

created. The Markov random field approach was introduced for MRI tissue 

segmentation in (Held et al. 1997) and substantially refined by (Zhang et al. 

2001), who added the ―hidden‖ aspect to explicitly model the noise in image 

acquisition. 

Using HMRFs or other similar models, the ultimate balance between bias and 

variance can usually be reduced to a single, clear parameter choice. In theory, 

Bayesian approaches can be used to calculate the optimal value for this 

parameter to minimize the total actual expected error. In practice, though, this is 

difficult to determine analytically and so is often determined using empirical 

approaches like simulation, bagging, cross-validation, or L-curve modelling. 

2.5.2 Non-parametric statistics 

The study of non-parametric statistics is a very broad field, of which two 

particular elements are primarily relevant to the author‘s body of work: robust 

statistics and permutation testing. 

Robust statistics (Huber and Ronchetti 2009) provide a precise and rigorous 

means for estimation of distribution parameters in the face of substantial noise 
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or even minor bias. These are generally split into estimators of location and 

estimators of scale. Estimators of location are analogous to the conventional 

use of the mean, and can be as simple as trimmed mean or median and as 

complex as Huber or Hempel ψ-function based M-estimators. Estimators of 

scale are analogous to standard deviation, and can similarly range from familiar 

approaches like interquartile range and median absolute deviation to more 

unique approaches like Qn and Sn estimators. The Qn estimator is of particular 

interest, because it is efficient, does not depend on a location estimate, and is 

computationally feasible to calculate. It is essentially the median value of all the 

pairwise differences between all items in the set being studied. 

Permutation testing solves a different but related problem: how to assign formal 

significance values when the underlying distribution is not known. Conventional 

techniques like Student‘s t-test assume a known family of parameters 

underlying the null hypothesis, such that the probability of observing a given 

value by chance can be analytically determined. In contrast, permutation testing 

makes almost no assumptions about the nature of the underlying data, and 

determines the likelihood of observing a given value empirically from the data 

itself. For example, the equivalent of a t-test is performed by continually re-

assigning group labels, and determining in what percentage of random 

labellings the observed difference is more than in the true labelling. Permutation 

testing is not a new concept (Pitman 1937), but is very computationally 

intensive. The rise of cheap, powerful computers have therefore contributed to a 

marked rise in their use and applicability. Even today, though, permutation tests 

still usually only use a percentage of the total number possible combinations via 

Monte Carlo sampling. 

2.5.3 Multiple comparison correction 

In theory, performing statistical tests per voxel can provide unparalleled regional 

information that would otherwise be ―lost in the average‖. However, it also 

severely exacerbates the problem of multiple comparisons – there are millions 

of voxels in many MRI images. Conventional Bonferroni correction is also 

useless, resulting in highly over-conservative conclusions. The key to solving 

this problem is that meaningful results generally do not occur in single isolated 

voxels, but rather in clusters. This observation can be exploited to create more 
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appropriate and suitably powerful statistical tests. One of the early (and still 

widely used) approaches in this area is Gaussian random field (GRF) theory 

(Worsley et al. 1996). Like nearly all parametric statistical approaches, GRF 

theory makes certain assumptions about the data in exchange for power. 

However, these assumptions may not be valid for a given experiment, and are 

sometimes difficult to defend in novel research areas where data behaviour is 

not yet well understood. In particular, application of GRF theory generally 

requires a strong a priori hypothesis about the degree of tissue change that will 

be observed, in order to choose an appropriate cluster-forming threshold. 

Permutation testing is a more recent, non-parametric alternative to this that can 

provide more appropriate results while making minimal assumptions. With this 

approach, group labels are randomly permuted and values are calculated in 

order to build up an empirical null distribution. It has been used with great 

success to make statistical inferences in voxel-wise statistical mapping 

problems (Nichols and Holmes 2002). 

 

 

 

 

  



21 

 

 

 

 

 

 

Chapter 3 – The author’s contribution to the knowledge base 

 

This chapter presents an overview of the author‘s original work (as set out in his 

published papers) and his contribution to the field of MS research.  

3.1 Narrative framework 

In order to contextualize the author‘s work and to aid the reader in 

understanding the author‘s contribution to the knowledge base, a narrative 

framework (shown in Table 3) has been constructed, which describes in a 

cohesive manner the body of the work presented. For ease of reference, this 

framework groups the author‘s various papers into distinct sections, with each 

section dealing with related ‗contributions‘, which are mapped against the 

specific objectives identified in section 1.5.  

The overall goal of the author‘s work has been to advance the use of 

quantitative analysis of MRI images in order to better understand MS. Over the 

years in which the author has been working in this field, pursuit of this goal has 

led him to explore many avenues of research, with much of the work developing 

organically, rather than fitting any pre-planned scheme. However with 

retrospective reflection, it is clear that the body of work broadly fits into the three 

distinct, but related sub-areas (tissue atrophy; occult pathology; and focal 

pathology), outlined in Table 3. Taken together, these sub-areas highlight 

different aspects of MS pathology, and serve as a contextual framework for the 
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author‘s work. Prior to 2007, the author also published a number of preliminary 

studies associated with the quantification of tissue atrophy, which laid the 

foundation for later more sophisticated work. Because of the formative nature of 

this work, these preliminary studies are reported in a separate section in Table 

3.  

Table 3: Narrative framework of the author's published work 

Section Description 
Objectives 

met 
Relevant 
papers 

3.2 
Preliminary 
work 

This section presents an overview of the author‘s 
early work, which formed the basis of the later 
studies relating to tissue atrophy. 

N/A 1, 2, & 3 

3.3 Tissue 
atrophy 

Neurodegeneration, characterized by tissue atrophy, 
is a major component of MS disease progression, 
and is predictive of future disease course, disability, 
and cognitive outcome. As such, it is an important 
target of research and therapeutic development. 
Therefore, methods for its accurate quantification 
and tissue-specific assessment are highly important.  

This section presents an overview of the author‘s 
work relating to tissue atrophy. In particular, a new 
methodology for accurate optic nerve atrophy 
quantification is presented, together with a 
dramatically improved methodology (algorithm) for 
accurately quantifying GM atrophy in MS patients. 

(i) & (ii) 7 & 11 

3.4 Occult 
pathology 

The term ‗occult pathology‘ refers to pathologies that 
are beyond the range of ordinary knowledge and 
understanding.  Numerous investigations have 
demonstrated that the so-called ‗normal-appearing‘ 
tissue in MS is often damaged in subtle ways that 
are not immediately apparent on conventional MRI. 
These include diffuse white matter axonal injury, 
abnormal iron accrual, and cortical demyelination.  

This section presents an overview of the author‘s 
work relating to some of the occult pathologies 
associated with MS. In particular, an improved 
methodology is presented for quantifying 
pathological intracranial features with diffuse 
boundaries on MRI images, along with an improved 
methodology for assessing the heterogeneity of 
microstructural tissue damage in MS patients. Also 
presented is a new methodology for accurately 
quantifying ongoing demyelination and remyelination 
in the whole brain of MS patients. Finally, a standard 
methodology for quantifying iron deposition in 
specific structures in the brains of MS patients is 

(iii), (iv), (v) 
& (vi) 

4, 5, 6 & 
9 
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described.  

3.5 Focal 
pathology 
(error 
minimi-
zation) 

Although focal lesions are one of the best understood 
aspects of MS, their precise quantification remains 
difficult to standardize and reproduce. Errors can 
occur due to subjective decisions regarding the 
choice of regions of interest (ROI) to investigate. 
Also, the field strength of the MRI machine 
influences the outcome of lesion analysis. 

This section presents an overview of the author‘s 
work relating to error minimization and 
standardization in the assessment of focal lesions in 
MS. In particular, operator variability regarding 
choice of ROI is evaluated, as is the impact of 
increasing the field strength of the MRI machine on 
the outcome of lesion analysis. 

(vii) & (viii) 8 & 10 

 

3.2 Preliminary work 

Qualitative and quantitative MRI have provided much insight into atrophy in MS, 

but many key questions still remain. For example, precisely how and where 

does atrophy occur in MS?  What portion of atrophy is related to demyelination 

compared to actual loss of cell bodies? How does MS atrophy relate to clinical 

and cognitive outcomes? What is the best way to measure atrophy? Can 

atrophy be accurately detected over smaller time periods and/or in smaller 

groups of subjects in order to reduce the risk entailed in experimental clinical 

trials? 

In response to the above questions, the author undertook the work reported 

here.  Its beginnings can be traced to 2005, with some crude but important 

investigations into the basic nature of atrophy in MS and the factors affecting its 

measurement. In (Carone et al. 2006), a technique developed by (Dade et al. 

2004) was adapted to study region-specific atrophy in MS based on parcellation 

via familiar Talairach landmarks. This work confirmed that GM atrophy was 

present in MS, and that it was not necessarily uniform. However, the regions 

studied were relatively coarse and did not directly follow meaningful anatomical 

boundaries. In addition, by modern standards the GM/WM segmentation used 

was relatively imprecise.  At the same time, the author and his co-workers 

evaluated the impact of technical aspects like coregistration on a variety of brain 



24 

atrophy measurement techniques, and also underscored the significant difficulty 

of measuring brain changes in the short term (Fritz et al. 2006).  

Building on this early work, it was hypothesized that a simple and highly 

reproducible proxy for GM atrophy might be a valuable tool. Third ventricular 

width was proposed, based on its location between the left and right thalami, 

and the author and his co-workers were able to demonstrate that this measure 

explained significant variation in a number of important neuropsychological tests 

(Benedict et al. 2006). However, it was recognized that although third ventricular 

width may be important, it was not sufficient due to the heterogeneity of atrophy 

in MS.  The author and his co-workers therefore undertook additional work to 

develop reliable techniques for measuring other complementary aspects of 

atrophy, including that of the spinal cord (Zivadinov, Banas, et al. 2008). This 

preliminary work made it clear that studying small, well-defined structures could 

have substantial advantages, and additionally underscored the importance of 

precision in measurement. It also reiterated the need to better understand the 

actual nature of atrophy. 

3.3 Tissue atrophy 

3.3.1 Optic nerve and RNFL analysis 

Optic neuritis is one of the most common initial symptoms of MS (Sørensen et 

al. 1999), with nearly two thirds of patients suffering at least one acute episode 

(McDonald and Barnes 1992). Therefore, a natural extension of the early 

preliminary studies was to focus on the optic nerve and retina. The optic nerve 

and retina are important targets for better understanding the precise nature of 

tissue atrophy. Unlike other peripheral nerves, the optic nerve is actually a direct 

outgrowth of the diencephalon, deriving from embryonic retinal ganglion cells. 

As such, it is myelinated by oligodendrocytes rather than Schwann cells. 

Furthermore, the retinal nerve fibre layer (RNFL) is formed from the axons of 

the optic nerve, and is normally un-myelinated (Nolte 2008). Therefore, this two-

part system provides a unique opportunity to look at the same axons in two 

different places and states – one where they are myelinated and one where 

they are not – with very few additional confounds. Evaluating atrophy in both 

these structures at the same time thus has the potential to provide information 

about the specific atrophy related to axons as compared to demyelination. 
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Optical coherence tomography (OCT) already provides a fast, reliable, and non-

invasive way to quantify RNFL (Huang et al. 1991). However, there were not 

previously any reliable methods for optic nerve atrophy quantification beyond 

simple ROI-based techniques. Such techniques, while easily applied, are highly 

subject to error due to motion, slice angle, and scanner artefacts. To address 

these concerns, and to ensure that differences seen were due to real 

anatomical change and not just measurement error, a new approach was 

required. 

The author‘s solution to this problem was achieved via the creation of a shape-

based model fitting technique (Frohman et al. 2009). In this type of approach, a 

parameterized mathematical model is used to adjust an idealized shape such 

that it best matches acquired data. In most cases, the motivation for this is 

twofold. First, it dramatically reduces the number of parameters involved. In 

theory, fitting something like the optic nerve is highly multidimensional, with one 

parameter per voxel (i.e., partial volume of the structure in the voxel). By 

changing to a parametric shape representation, the challenge can be greatly 

reduced from potentially thousands of parameters to just a few. Second, by 

imposing an a priori morphology to the structure to be quantified, shape fitting 

serves as a form of regularization. Like other Bayesian approaches, this 

regularization can greatly assist with precision in the face of noise and artefacts. 

In this case, a circularly extruded cubic spline tube model was used, resulting in 

a total of only 9 parameters as a function of slice location (four for x, four for y, 

and one for diameter). At each point, a circular cross section was extruded with 

orientation determined by the spline‘s tangent vector and radius set by the 

equivalent model parameter. Given this model, fitting was performed in stages. 

First, cubic splines were fit to operator-identified points at the centre of the optic 

nerve on each slice. This fitting served both to characterize the path of the 

nerve and to smooth out any small errors in the manual point placement. In 

addition, deviation metrics were used to correct for movement between slices. 

After this, fitting of the diameter was performed by a brute force search through 

potential diameter values, by identifying the diameter value minimizing a 

gradient-matching cost function. 
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Overall, the approach was very successful, and atrophy measurement using 

this technique proved to be extremely reproducible. Specifically, it demonstrated 

a mean absolute scan-rescan error of only 0.06 mm (less than 5% of the nerve 

diameter). This precision is more impressive when considering the fact that it is 

only a little more than one tenth of the voxel width (0.49 mm). 

3.3.2 Precise longitudinal GM atrophy quantification 

Although atrophy has been suggested as a gold standard treatment outcome, 

others dispute this stance (Rudick et al. 2013). It is notable, though, that many 

of the counter-arguments involve technical difficulties associated with assessing 

tissue atrophy, rather than on atrophy per se. For example, pseudoatrophy 

(Zivadinov, Reder, et al. 2008) is an important phenomenon that results in 

paradoxically larger brain shrinkage with the initiation of therapy. Additionally, it 

is argued that atrophy is an end-stage effect that may not be apparent for years. 

Although these are important caveats, they are not insurmountable. Mounting 

evidence demonstrates that pseudoatrophy has less impact on GM than WM, 

so studying GM in particular may alleviate that problem. In sufficiently powered 

studies, volume changes are seen even in early CIS patients (Bergsland et al. 

2012; Henry et al. 2008) so it seems that the inability to see short-term atrophy 

is likely a result of imprecise measurement rather than an actual lack of tissue 

changes. In this case, it would be extremely important to improve the precision 

of existing GM atrophy measurement techniques. 

To address this issue, the author developed an improved algorithm for 

quantifying GM atrophy (Dwyer et al. 2012). Rather than work from the ground 

up, the widely accepted FAST tool (Zhang et al. 2001) and elements of SIENAX 

and SIENA (Smith et al. 2002) were taken as a starting point. Briefly, FAST 

works by applying a hidden Markov random field (HMRF) (Winkler 2003) 

expectation maximization (EM) model to classify tissue as GM, WM, or CSF 

and to estimate partial volumes within voxels. FAST‘s model is three-

dimensional, though – concerned only with the spatial neighbours of individual 

voxels. In the current work, this model was extended to be four-dimensional in 

order to account for temporal neighbours as well. Although dealt with more 

formally in the referenced paper, the intuitive motivation for this is relatively 

straightforward. In a real set of MRIs, many voxels have intensities midway 
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between the average intensities of tissue classes. In some cases, it‘s 

contextually clear what these voxels should be called (e.g. a single voxel 

completely surrounded by other voxels that are clearly WM), and in these cases 

FAST will classify them appropriately. In other cases (e.g. along borders), the 

correct classification is not clear at all, even to an expert human reader. In this 

case, the choice between tissues will be seemingly random, although FAST will 

attempt to be spatially consistent about that random classification. In this 

second case, a key difference between an intelligent human reader and FAST is 

that when reviewing a follow-up image, the human reader will be conservative 

and not consider the tissue to be changing unless it is clearly different in 

intensity. FAST will simply classify it as whichever intensity it is closest to, even 

if ‗closest‘ means it only changes in intensity by a fraction of a percent for voxels 

that were directly between classes. 

Initial testing with this improved model was very promising, and it was subjected 

to more rigorous validation techniques including scan-rescan error assessment, 

tests of agreement with controlled simulation, and ability to dichotomize 

clinically meaningful subject groups. In all cases, the model demonstrated 

significant improvement compared to standard SIENAX, including lower errors 

(absolute deviation), better correlation with whole-brain (non-tissue specific) 

measures, and significantly improved effect sizes (up to a 68% increase). 

3.4 Occult pathology 

As discussed previously, post-mortem and histopathological investigations have 

revealed abnormalities in MS tissue outside of traditional focal lesions (Allen et 

al. 2001). However, such investigations are usually only performed in terminal 

cases and so cannot shed much light on the more dynamic aspects of any 

occult pathologies that may be present. Because of this, it is unclear whether 

such diffuse tissue damage is a primary or secondary effect, and what role such 

damage plays in disease progression and outcome. 

3.4.1 Quantification of pathological features with diffuse boundaries 

Although the work described in this section was undertaken in the context of 

ischemic stroke, the algorithms developed by the author laid important 

groundwork for later work in MS patients. In acute stroke, a primary option for 
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treatment is thrombolytic therapy, but this therapy carries a high risk of 

intracranial bleeding. Therefore, before proceeding it is extremely important to 

know whether any tissue is actually still viable but at risk. Commonly, this has 

been evaluated on MRI via so-called ―perfusion-diffusion‖ mismatch, in which a 

diffusion abnormality is taken to represent unsalvageable tissue and a potential 

surrounding area of depressed but non-zero perfusion is taken to represent 

tissue that is salvageable but will become infarcted without intervention.  The 

salvageable tissue is called the ―ischemic penumbra‖. Because time is essential 

in stroke, an automatic approach for independently assessing volumes of infarct 

core and ischemic penumbra would be of great value, but available approaches 

based on simple standard deviation thresholding were highly susceptible to 

noise (Røhl et al. 2001; Takasawa et al. 2008). Also, unlike the infarcted core, 

the edges of the penumbra are often extremely diffuse; without a clear border, 

small variations in threshold can dramatically change volume. As such, 

assessment of the size of penumbra presents clinicians with a considerable 

challenge. 

In order to address this problem, the author developed a more noise-resistant 

and statistically rigorous approach. As discussed previously, hidden Markov 

random field (HMRF) modelling is a powerful tool providing just these 

capabilities in situations where observations are spatially correlated (i.e., where 

neighbouring voxels aren‘t truly independent). However, an HRMF model 

generally assumes corrupted viewing of categorically different underlying 

classes, and in this case the penumbra class was not well defined. To address 

this problem, a unique combination of M-estimators (Yuan and Bentler 1998), 

abnormality indexing, and HMRF was employed by the author (Dwyer et al. 

2008). An M-estimator was used to robustly calculate the intensity distribution 

characteristics of the infarct core and then a Mahalanobis distance metric was 

used to categorize the abnormality level of tissue. Finally, an HMRF model was 

used on this derived abnormality field to classify tissue. Intuitively, infarct core 

and contralateral normal tissue were made to ―compete‖ for ownership of the 

intermediate data, with tissue ultimately more similar to infarct being retained as 

penumbra.  
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Although this work appears at first sight to be unrelated to MS, it provided 

important experience and insight into the difficult problem of precisely 

quantifying tissue pathology that is both subtle and without sharply demarcated 

borders. More specifically, it also confirmed the applicability of M-estimators in 

assessing empirical image intensity distribution parameters, which was critical 

in solving the Monte Carlo MTR change problem discussed below. 

3.4.2 Microstructural tissue damage 

An early portion of the author‘s work aimed to employ diffusion MRI to better 

characterize microstructural tissue damage in normal appearing brain tissue. As 

mentioned briefly above, diffusion MRI uses specially tuned, temporally 

separated gradients of opposite polarity to specifically impact mobile nuclei (Le 

Bihan 2003). The effects of these gradients vary with the extent of molecular 

diffusion, and are processed to produce a quantitative map of the degree of 

diffusivity. In a healthy human brain, diffusivity is highly restricted by 

hydrophobic myelin sheaths, and so is considerably lower in WM than in GM. 

Loss of myelin (or cellular structure in general) reduces the barriers to molecular 

motion, and so increases diffusivity locally. 

In this work, diffusion metrics were evaluated by the author and his co-workers 

in the whole brain in addition to focal MS lesions (Tavazzi et al. 2007). Of 

particular note, the author introduced a novel metric: entropy. Whereas the 

conventional metric, mean apparent diffusivity (ADC), provides an estimate of 

the overall water diffusion in the tissue, entropy provides an estimate of the 

macroscopic variation in diffusivity levels. Although standard deviation is 

somewhat analogous, entropy is arguably more appropriate in this case. 

Although standard deviation and entropy are both minimized by all observed 

diffusivities being identical, they are maximized differently. Standard deviation is 

maximized by a bimodal distribution with peaks at the highest and lowest 

diffusion values. On the other hand, entropy is maximized by a completely 

uniform distribution where all possible diffusion values are equally observed in 

different tissue areas. Organized structure may well result in clusters of different 

diffusivity values, but disease is more likely to spread the distribution out. 

Confirming this theoretical concern, entropy was empirically demonstrated to be 

the best diffusion-based predictor of clinical outcome in the studied dataset. 
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Later work using the same technique demonstrated that entropy was also the 

best diffusion predictor of cognitive ability in MS (Benedict et al. 2007) and was 

also successfully used to show the microstructural effects of glatiramer acetate 

therapy (Zivadinov et al. 2011). 

3.4.3 In vivo mapping and quantification of dynamic myelin changes 

Remyelination is recognized as a competing process to destructive 

demyelination in MS (Bunge et al. 1961; Prineas and Connell 1979). So-called 

―shadow plaques‖ containing thin fibres have been shown to be partially 

remyelinated with a thinner sheath, and remyelinated axons have been found to 

have unique morphology (Prineas et al. 1993). However, nearly all of the 

information gleaned regarding this phenomenon is from cross-sectional data via 

post-mortem analysis or from animal models not perfectly equivalent to MS. 

Consequently, the timing and interplay of demyelinating and remyelinating 

processes in vivo in real MS patients was poorly understood, with the impact of 

therapy not yet precisely evaluated. Accurate in vivo detection of the active 

processes involved in demyelination and remyelination is difficult to achieve 

from a technical standpoint, primarily due to a lack of MRI specificity and very 

noisy images. Preliminary MTR-based work by (Chen et al. 2007) provided a 

threshold-based technique for detecting these changes, but it was restricted to 

areas within lesions. Because more subtle demyelination and remyelination 

may also occur outside of overt T2 lesions (e.g. in cortical lesions or potentially 

in pre- or peri-lesional WM), the author developed a novel, statistically rigorous 

method for quantifying them in the whole brain. 

The work drew on pre-existing techniques for cluster-based voxel-wise 

inference, but faced unique challenges – whereas VBM and fMRI methods rely 

on consistency in effect between subjects, myelination changes can occur in 

unique locations in different patients. This necessitates evaluation of voxel-wise 

changes on a per-subject basis, and makes standard permutation testing 

impossible.  It is feasible in this case to fall back to a GRF theoretic approach. 

However, given the potential for large areas of subtly altered myelin content, it is 

difficult to confidently choose a sufficiently meaningful cluster-forming threshold.  

During this time another group published a method called TFCE, for ―threshold-

free cluster enhancement‖ (Smith and Nichols 2009). TFCE provides a means 
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to elegantly sidestep the cluster-forming threshold drawback of GRF theory by 

nonlinearly modifying statistic images based on their local cluster support at 

multiple scales. Unfortunately, though, TFCE had no known closed form 

probability distribution function, and permutation testing could not be applied to 

a single subject. To resolve this, the author created a new technique to make 

inferences using a novel Monte Carlo simulation coupled with an M-estimator 

for variance estimation. This resulted in the ability to reliably estimate the null 

distribution for TFCE values in a single subject, and to thereby assign 

meaningful p-values on a multiple-comparison corrected, per-voxel basis. The 

final technique was validated in three separate ways, using scan-rescan, 

simulation, and application to real clinical data. 

3.4.4 Iron assessment 

Another potentially intriguing front in the exploration of not-conventionally-visible 

MS pathology and progression is iron detection and quantification. Iron toxicity 

has been implicated in other diseases including Parkinson‘s (Dexter et al. 1991) 

and Alzheimer‘s (Connor and Menzies 1992), and some early histopathological 

work indicated abnormal iron deposition in MS (Craelius et al. 1982; LeVine 

1997). Until recently, though, iron deposition was very difficult to image in vivo. 

Initial work with T2 shortening was promising, but was also limited by the 

relative non-specificity of T2 contrast (Bakshi et al. 2000). In the interim, new 

MRI techniques based on phase data have been proposed. Traditionally 

discarded in favour of magnitude data after Fourier reconstruction, phase data 

is exquisitely sensitive to magnetic field fluctuations imposed by the high 

susceptibility of iron. Unfortunately, it is plagued by serious and substantial 

artefacts including aliasing, background field contributions, and non-locality. 

However, modern processing approaches have been proposed that are capable 

of alleviating the majority of these artefacts and recovering much of the 

information available. These include the susceptibility-weighted imaging (SWI) 

technique (Haacke et al. 2004), and more recently QSM (Langkammer et al. 

2012). 

With these techniques, it has become possible to investigate iron deposition in 

MS with much more sensitivity than T2 shortening could provide (Haacke et al. 

2009). However, two concerns encouraged a careful, regional approach rather 
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than whole brain measures. First, even in healthy people the time-course of iron 

deposition is substantially different in different regions of the brain (Hallgren and 

Sourander 1958). Second, myelin changes can cause non-iron phase changes 

in WM (Yablonskiy et al. 2012). Therefore, the author initiated a programme of 

work to develop a GM specific means to quantify phase on a structure-by-

structure basis. 

To accomplish this, the author employed a novel combination of FSL‘s FIRST 

subcortical parcellation tool (Patenaude et al. 2011) and SWI (Zivadinov, 

Heininen-Brown, et al. 2012). FIRST uses shape models as described 

previously to reliably identify left and right thalamus, caudate, putamen, 

pallidum, hippocampus, nucleus accumbens, and amygdala on high-resolution 

T1-weighted images. By implementing a system for automatically running 

FIRST and then realigning and warping the FIRST-identified regions into SWI 

image space, it was possible to extract region-specific phase data for each 

region. In addition, normative data was collected from healthy controls and used 

to implement region-specific phase thresholds indicative of abnormal iron 

content. Using this, a novel measure of mean phase of abnormal phase voxels 

(MP-APV) was introduced. 

3.5 Focal pathology 

Although focal pathology is the most classically well-understood aspect of MS, it 

remains challenging to make full use of the amount of data that even 

conventional MRI produces. In particular, reproducibility has been relatively low 

despite improvements to MRI. Whereas atrophy reliability is within the 1% 

range, even optimistic reports of inter-rater lesion agreement have indicated 

variances of near 7% (Filippi, Horsfield, et al. 1995), and others have reported 

up to 20% (Jackson et al. 1993). In terms of actual voxel-level agreement, 

kappa values below 0.7 have been demonstrated between centres (Zijdenbos 

et al. 2002). Beyond this, variation between sequence parameters and a trend 

toward higher field scanners makes inter-site comparison difficult at best. 

Consequently, there is considerable scope for errors to occur, which might 

compromise otherwise sound technical advances. In attempt to better 

understand the sources of potential errors, the author and his co-workers 

undertook the following studies involving MS patients.  
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3.5.1 Operator impact on lesion measures 

Although automatic lesion detection has been, and continues to be an area of 

extensive active research, it has still not been widely adopted as a de facto 

method due to performance and precision issues (García-Lorenzo et al. 2013). 

As such, semi-automated operator-guided techniques have remained the gold 

standard – a situation that is likely to continue for the near future. Given that 

such semi-automatic classification still has a relatively high rate of error, 

improved precision is an important goal. To facilitate such improved precision, it 

is important to have meaningful measurements indicating the source(s) of 

imprecision. Otherwise, attempts to make improvements may easily be 

misdirected. Realizing this, the author and his co-workers initiated a programme 

of work aimed at providing an easily standardized and widely applicable means 

to separate out the key factors that contribute to error in lesion measurements.  

An appropriate measure or set of measures should have certain desirable 

characteristics, including ability to separate operator ability from lesion burden, 

ability to direct improvements toward specific areas, and resistance to 

―averaging out‖ of measurement noise. The commonly used similarity index and 

variants like Kappa or concordance provide the last characteristic, but not the 

first two. Therefore, the author and his co-workers developed a new set of 

measures termed detection error and outline error (Wack et al. 2012). A key 

aspect of these measures is that they operate in a tiered lesion-wise/voxel-wise 

manner rather than a purely voxel-wise manner, in contrast to many other 

methods.  Detection error reflects the lesion-wise probability of complete 

disagreement in marking a lesion, whereas outline error represents the degree 

of volume disagreement for lesions that were mutually agreed to exist. 

These measures were applied by the author to a real dataset calculated 

multiple times by different operators, and were found to be considerably more 

independent of overall scan lesion volume than similarity index. They also 

provided better feedback to individual operators to allow them to improve by 

focusing either on recognizing lesions or more accurately delineating them, as 

necessary. 
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3.5.2 Scanner impact on lesion measures 

Another major class of errors in lesion measures is scanner induced, either via 

hardware differences, changes in acquisition parameters, or both. From a 

hardware perspective, a major contributor to lesion salience is field strength. In 

particular, many research groups and clinical centres have moved from 1.5 tesla 

to 3 tesla scanners. Although the change in overall lesion volume was 

previously investigated (Sicotte et al. 2003), it was not clear if the impact of 

improved field strength was spatially homogenous. To address this question, the 

author and his colleagues adapted a recently introduced lesion probability 

mapping technique (Enzinger et al. 2006) to compare lesion maps calculated 

from paired images acquired on 1.5 and 3 tesla scanners (Di Perri et al. 2009). 

Specifically, the technique was modified to use pairwise statistics rather than 

group comparisons, and TFCE was substituted for the previous multi-resolution 

smoothing approach. The results agreed with previous work in showing a 

significantly higher lesion load at 3 tesla, but also revealed that lesions were 

more commonly differentially detected in specific regions – particularly the 

occipital horns of the lateral ventricles.  
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Chapter 4 – Discussion and conclusions 

 

4.1 Evaluation, limitations, and improvements 

The subset of the author‘s work described above produced a number of new 

algorithms and techniques that have already furthered the study of MS. In 

addition, many have continuing value and are still being used in ongoing 

studies. 

Two of the author‘s algorithms dealt with methods for better understanding the 

nature of tissue atrophy in MS, and included a new methodology for accurately 

quantifying volumetric loss in the optic nerves (Frohman et al. 2009) and an 

improved methodology for accurately quantifying GM atrophy (Dwyer et al. 

2012). This work was important in a number of ways. From a technical 

perspective, the optic nerve approach was an early and novel use of shape 

models in MRI of MS. Such shape models have continued to prove extremely 

useful in providing accurate and reliable semi-automated and automated 

analysis, and have notably been used in FMRIB‘s freely available and widely 

used FIRST software (Patenaude et al. 2011). From a scientific and clinical 

perspective, the optic nerve approach provided detailed data about the interplay 

between OCT, MRI, and visual outcome measures, and was important in 

elucidating the relative behaviour of optic nerve and RNFL. In particular, the low 

correlation of two highly precise measures – optic nerve diameter and RNFL 

thickness – was an important clue that volumetric changes are not entirely or 

necessarily even largely due to axonal loss. Along with the concurrent work of 

others, this helped to motivate the importance of studying WM and GM 
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separately. The improved method for quantifying GM atrophy is more practical, 

but equally important since it is capable of reducing the number of subjects 

required to demonstrate atrophy-reducing efficacy in clinical trials. This both 

helps to protect more patients from the risk inherent in trials, and also allows 

more funds to be diverted to continued exploration of other therapeutic 

avenues. In fact, the approach has already been used in a large study and 

demonstrated improved ability to discern treatment effects (Zivadinov, 

Bergsland, et al. 2013). Also, the technique can potentially detect changes 

earlier, which may help to address some of the concerns with atrophy as a gold 

standard discussed above. 

As with any work, both of these techniques could have been improved, and 

more future work is required to build on the foundations laid. In particular, it 

would be beneficial to study the relationship between RNFL thickness and optic 

nerve diameter with more statistical rigor, and in particular to evaluate more 

complex models to better understand all sources of variance. Also, although 

initial investigations indicated that the optic nerve diameter is relatively constant 

over the area studied, the bias/variance trade-off of adding a linearly varying 

diameter parameter to the model was not systematically evaluated. In a similar 

vein, the GM quantification approach uses an empirical regularization 

parameter that could benefit from more formal study – e.g. with L-curves or 

related methods. Additionally, the emergence of very precise cross-sectional 

techniques (Dahnke et al. 2013), more anatomically targeted techniques 

(Vrenken et al. 2013), and availability of higher-quality MRI images may 

eventually obviate the need for such regularization. 

Four more methods were developed by the author to better elucidate occult 

pathology: an improved methodology for accurately and reliably quantifying 

pathological intracranial features with diffuse boundaries (Dwyer et al. 2008), an 

improved methodology for assessing the heterogeneity of microstructural tissue 

damage (Tavazzi et al. 2007), a new methodology for accurately quantifying and 

localizing ongoing demyelination and remyelination in the whole brain (Dwyer et 

al. 2009), and a standard methodology for quantifying iron deposition in specific 

brain structures (Zivadinov, Heininen-Brown, et al. 2012). The first technique 

laid important groundwork for the others in addition to its direct benefit in acute 
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ischemic stroke. The method for measuring microstructural tissue damage was 

important at the time it was done, but has since been largely overtaken by 

diffusion tensor imaging (DTI) and tractography (Ciccarelli et al. 2008), which is 

capable of answering much more detailed questions and it is sensitive not only 

to the magnitude of diffusion but also to its directionality. However, the author‘s 

work did introduce a novel use of entropy that might still be worthwhile to apply 

to DTI-specific metrics.  

The voxel-wise myelination detection technique developed by the author was 

more directly applicable, and led to the ability to investigate demyelination and 

remyelination not just in the natural course of the disease, but also on the effect 

of therapies on MTR. In particular, it was applied to a cohort of patients treated 

with either interferon beta 1-a or natalizumab (Zivadinov, Dwyer, et al. 2012), 

the results of which strongly suggested that natalizumab may significantly 

promote remyelination compared to interferon beta 1-a. Work with this method 

is still ongoing, and it is hoped that it can continue to be improved in a number 

of ways. First, given its basis on MTR it is sensitive but not entirely specific to 

myelin, but may also include some sensitivity to other macromolecules and 

therefore result in some false positives. Although other investigators have 

provided convincing evidence that this concern is not overly large (Giacomini et 

al. 2009), it would clearly be better to more completely eliminate it. Since this 

work was completed, other investigators have continued to expand the 

capabilities of MRI to do just this by detecting and quantifying myelin more 

specifically. In particular, novel sequences have been proposed that address 

these specificity concerns with MTR while still retaining high sensitivity, 

including qMTI (Janve et al. 2013), which may be clinically feasible (Dortch et 

al. 2011; Stikov et al. 2011), mcDESPOT (Spader et al. 2013), and robust 

myelin water fraction (Kwon et al. 2013). Since the majority of work on the VW-

MTR technique described is related to statistical modelling, it is largely pulse-

sequence-agnostic. It would therefore almost certainly be instructive to apply 

similar methodology to these improved myelin-specific images. However, it is 

important to note that none of these new methods are themselves perfectly 

specific to myelin, and the development of such an MRI marker is still an open 

research goal. 
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The iron assessment approach was also directly applicable. Although intuitively 

somewhat convoluted, the MP-APV measure was empirically shown to be well 

correlated with other non-iron metrics, including disability. In another study, it 

was shown that MP-APV may indicate iron deposition preceding atrophy in 

clinically isolated syndrome (CIS) patients (Hagemeier et al. 2012). This finding 

has also been replicated by another study (Al-Radaideh et al. 2013). Although 

cross-sectional results must be interpreted with caution, this observation is 

particularly intriguing, because it supports the idea that iron may have a 

causative or modulatory role in MS rather than simply being the end-product of 

myelin debris. Clearly, longitudinal studies are needed to substantiate this 

suggestion, but this work shows that they are certainly warranted. Further 

improvements to the technique will also help provide a more complete picture. 

In particular, phase imaging, though very sensitive to iron, is not perfectly 

specific and is also plagued by many artefacts. Modern approaches like 

quantitative susceptibility mapping (Langkammer et al. 2012) may provide more 

accurate measurements, and are currently being investigated by the author and 

his colleagues. 

Finally, two methods were introduced by the author to study influences on 

calculating more conventional focal pathology, including a method for 

decomposing the sources of inter-rater disagreement in semi-automated lesion 

assessment (Wack et al. 2012) and a technique for comparing lesion visibility at 

different scanner strengths (Di Perri et al. 2009). Although it seems likely that in 

the longer-term future automated identification techniques will largely replace 

manual assessment of lesions, the decomposition work remains relevant. The 

slow progress of automated techniques demonstrates that an overly simplistic 

solution is unlikely, and the ability to better identify specific sources of error in a 

rigorous and quantitative manner can also help direct development of future 

classification algorithms just as it can aid in the training of human operators.  

The method for comparing lesions at different scanner strengths clearly 

demonstrated the incompatibility of direct comparison between measures and, 

like (Sicotte et al. 2003), indicated the importance of using field strength as a 

statistical covariate or otherwise controlling for it in multi-centre trials. 

Furthermore, it lent weight to the idea that hyperintensities observed at the 
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posterior horns may be a normal variant, although the matter is not settled. 

Additionally, the pair-wise spatial approach might also be used for other 

applications, including measuring coil- and software-related changes. 

4.2 Overall impact 

The author‘s work as described above has had a significant impact on the work 

of the BNAC and that of other researchers, both in terms of direct contributions 

to the knowledge base and also in the creation of new techniques for future 

research. 

Overall, the author‘s work has contributed to the understanding of atrophy and 

occult pathology associated with MS, and has highlighted some consistency 

issues associated with quantifying focal pathology. Within the BNAC, the 

techniques developed have been used in numerous studies in different disease 

subgroups (Benedict et al. 2007; Horakova et al. 2009; Zivadinov, Heininen-

Brown, et al. 2012; Zivadinov, Dwyer, et al. 2012; Hagemeier et al. 2012; 

Bergsland et al. 2012; Zivadinov, Tekwe, et al. 2013; Hagemeier et al. 2013). 

Outside of the BNAC, they have complemented the ongoing work of others in 

the field in investigating the precise MRI-observable impact and course of MS, 

and the author‘s relevant publications have garnered over 250 citations at the 

time of this writing. In particular, it is now clear that atrophy is a complex 

phenomenon differentially affecting tissue classes, and that subtle atrophy 

occurs very early in the disease (Bergsland et al. 2012; Horakova et al. 2009). 

Furthermore, it is clear that atrophy occurs at different rates and with different 

impact in different areas and specific structures, and that these changes have 

an important impact on cognition (Bergsland et al. 2012; Benedict et al. 2006). 

With regard to occult pathology, diffusion entropy has been linked specifically to 

cognitive deficits (Benedict et al. 2007). Additionally, the VW-MTR technique 

has provided a better understanding of the locations and heterogeneity of subtle 

demyelination, and has also shown clear cortical changes (Dwyer et al. 2009; 

Zivadinov, Dwyer, et al. 2012). The author‘s phase imaging work has also led to 

particularly interesting findings, including the observations that iron likely relates 

to disability and that its deposition may precede atrophy (Hagemeier et al. 

2012). Taken together, all of these findings seem to agree with the observations 

of others that the neurodegenerative component is not a removed, secondary 
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effect, but rather potentially a primary process (Stys et al. 2012). Finally, the 

author‘s work with focal pathology, although perhaps less scientifically exciting 

than the other work, has provided important information about precisely where 

1.5 and 3 tesla scanners differ in lesion sensitivity, and has also indicated how 

to better train operators for agreement. 

As a whole and alongside the complementary work of many other researchers, 

these various contributions provide guidance for future investigations in addition 

to their direct impact. With respect to atrophy, the author‘s work underscores the 

need for better understanding of the disparate mechanisms associated with this 

phenomenon, in order to separately quantify the contribution of fluid-based, 

axonal, and myelin-based tissue losses towards overall brain atrophy. For occult 

pathology, the work motivates further steps to elucidate the causes of non-focal 

pathology, and perhaps suggests the need for more appropriate animal models 

that include iron abnormalities and diffuse demyelination. Finally, for more 

conventional focal pathology, the work indicates that more needs to be done in 

terms of standardization, and future investigations might better investigate 

specific scan parameter-based impacts and the precise causes of operator 

disagreement in outlining lesions. 

Outside of contributions to the knowledge base and indications of future 

directions, the work has also more directly resulted in the production of a 

number of useful algorithms that are both inherently valuable and can also be 

relatively easily adapted or applied to new problems. These algorithms include 

a semi-automated parametric shape model, a 4-D HMRF model for longitudinal 

tissue segmentation, a system for statistically robust quantification of subtle 

tissue changes (demyelination and remyelination), a technique for reliable 

quantification of structure-specific phase (representative of iron), and a 

decomposition method for quantifying specific error contributions to lesion 

identification. The techniques for voxel-wise MTR analysis and for improved GM 

classification will undoubtedly prove useful to monitor short and long term brain 

changes in a continuing variety of disease subclasses and therapeutic 

investigations. Equally importantly, the advances in understanding of lesion 

measurements can provide for more precise lesion burden measures in near-

term clinical trials. 
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Finally, it seems even more clear that, as suggested previously (Zivadinov, 

Stosic, et al. 2008), a true understanding of MS is unlikely to come from any 

single modality or technique, but rather from the fusion of many into a single 

composite picture. This type of fusion is likely to require substantial statistical 

modelling work on large, standardized datasets containing information about 

many facets of the disease. Accurate, reliable quantitative techniques including 

those presented by the author are therefore vital precursors to the goal of 

completely overcoming the clinico-radiological paradox. 

4.3 Conclusions 

MS is a serious, debilitating disease that currently has no cure and whose 

precise etiology and evolution are still not fully understood. Despite this, it is 

clear that rapid progress is being made on a number of fronts, including a better 

understanding of the nature of the disease itself and a much more effective 

armamentarium of therapeutic options. Therefore, there is cause for some 

optimism that the future will continue to hold meaningful improvements for 

patients with MS. 

The author‘s work described in this document has served a critical part in 

furthering this goal, both by directly answering important questions and by 

providing tools to answer future questions. Like the underlying disease, the 

related activities were multi-factorial, and dealt individually with atrophy, occult 

pathology, and focal pathology. 

With reference to tissue atrophy, the author has demonstrated that it is possible 

to use quantitative techniques to precisely measure volumetric loss both in 

specific structures and in individual tissue compartments. In particular, optic 

nerve atrophy can be measured with a precision approaching one-tenth of a 

voxel, and overall GM atrophy can be assessed reliably with up to 50% fewer 

subjects than previously required. 

With reference to occult pathologies, the author has demonstrated that higher-

order statistical measures like entropy provide valuable additional information, 

and also that these pathologies can be meaningfully quantified even when their 

boundaries are relatively diffuse. Furthermore, the author has shown that the 

extent of demyelination and remyelination can be measured in vivo, and has 
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also provided a reliable means for reproducibly quantifying phase (iron) in the 

basal ganglia. 

Finally, with reference to focal pathologies, the author has demonstrated that 

there are multiple, separable sources of error, and has provided techniques that 

can be employed to disentangle their relative impacts. 

The work described here has taken over a decade of concerted effort, and has 

proceeded as a combination of top-down planning and bottom-up reaction to 

empirical findings. In total, it has resulted in the creation of eight new techniques 

and many related scientific findings. Taken together, these both directly pushed 

forward the current knowledge of MS and provided re-usable tools to answer 

future questions.  
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no contribution was completely independent) 
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Description: In this work, the author both conceived and implemented the 
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To substantiate these claims, a supporting document from Professor Robert 

Zivadinov, BNAC Director, is provided below. As the senior researcher for the 

centre, he was usually most responsible for oversight of proper authorship 

apportionment for these papers. In addition, he was either last or first author for 

many of them.  

Supporting statements from additional authors can be provided upon request.
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Appendix B – Published works for consideration 

 

This appendix collects the documents listed in Table 1. For copyright reasons, only the first page 

of each document, including abstract, is shown here. The full versions of each work can be 

retrieved from the appropriate academic journals. 



65 

 

 



66 

 



67 

 



68 

 



69 



70 



71 



72 

 

  



73 

 



74 



75 



76 

 

 

 

 

Appendix C – Supporting documents 

 

This appendix collects the supporting documents published by the author. In 

contrast to Appendix B, the full documents have not been included in order to 

save space. Instead, the first page including the abstract has been provided. 

Full documents are available upon request to the author or directly from the 

associated journals. However, the unpublished manuscript related to work 11 

has been reproduced in full.
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Appendix D – Additional background 

 

This appendix provides more in-depth background and further references for 

readers interested in more information about MRI, MS, and image processing. 

D.1 MRI 

Magnetic resonance imaging (MRI) of human subjects was first successfully 

performed in 1977, with the first commercial whole-body scanner created in 

1980 (Ai et al. 2012). In the three decades since, MRI has become an essential 

medical tool available in more than half of surveyed emergency hospitals in the 

US and UK (Ginde et al. 2008; Kane and Whiteley 2008).  

The unique advantages of MRI that have driven its widespread use, include the 

fact that it is tomographic, capable of relatively high resolution of the order of a 

cubic millimetre or better, and that it is almost completely non-invasive. Equally 

notable, is MRI‘s ability to acquire a wide variety of data. By controlling the 

magnetic environment and probing tissue protons with radio frequency (RF) 

pulses, MRI is able to elucidate many different aspects of the chemical 

environment of hydrogen atoms. 

At its most basic, MRI is made possible by the combination of three key 

components: a relatively large superconducting magnetic coil, a system for 

radio frequency (RF) transmission and detection, and a set of magnetic 

gradient-producing coils (Fig. D1).  



107 

 

Figure D1: Schematic image of the core components of an MRI machine. The 

superconducting magnet aligns water protons and provides  them with a characteristic 

frequency. The gradient coils allow for spatial encoding by varying the local magnetic 

field. The radiofrequency coils interact with the spinning protons to elicit and read 

electromagnetic signals. 

 

It is impossible to do justice to the complex interplay at the heart of MRI image 

creation and acquisition in such a short space, but the basic principles are as 

follows: 

1. Hydrogen nuclei (consisting of single protons) have a characteristic 

physical property called ―spin‖ which can be conceived of as analogous 

to the angular momentum of a spinning ball or top. This spin also has a 

definable axis and direction (clockwise vs. counter-clockwise). This can 

of course be represented mathematically by a single positive or negative 

vector, but we treat the two separately here for simplicity. For the most 

part, the spin axes of hydrogen nuclei in vivo are oriented randomly. 

2. When a subject is placed in the MRI scanner, these hydrogen nuclei also 

begin to precess around the main field (B0) axis in much the same way 

that a spinning top begins to ―wobble‖ around the axis of gravity – the 

spin axis itself rotates around the field axis. The rate of this precession, 

called the Larmor frequency, is also a well-defined function on the 

magnetic field strength (e.g., 42.58 MHz/Tesla for hydrogen nuclei). 

3. In addition, although the spin axes were original oriented randomly, they 

now begin to align more closely with the scanner, as this corresponds to 

a lower energy state. Note that in reality, only a very small excess of 
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protons align with instead of against the field, on the order of a few parts 

per million. This is also a more classical view of the system that ignores 

the more quantum-dynamical underlying principles. See (Haacke 1999) 

for a more detailed discussion. 

4. When these precessing hydrogen nuclei are exposed to RF energy at or 

near their Larmor frequency (called an excitation pulse), their precession 

becomes phased, and their spin axes are also tipped away from the main 

magnetic field. With many protons spinning in phase and tipped away 

from the main field, a rotating net magnetic moment is produced in a 

plane perpendicular to the main field. In turn, this rotating magnetic 

moment induces a fluctuating electrical field that can be detected and 

measured with properly positioned RF receive coils and careful 

amplification. 

5. Once ―energized‖ by an RF field, protons do not simple remain at their 

newly ―tipped‖ angle and stay in phase. Instead, they trade energy with 

their surroundings and with each other in such a way that they begin to 

―relax‖ back into alignment with the main field and also lose phase 

coherence with each other. The process of tipping back into alignment 

with the main field is called T1 relaxation, whereas the process of losing 

phase coherence is called T2 relaxation. Both occur simultaneously, with 

T2 often much faster than T1, and each dependent of various aspects of 

the local chemical environment. Because of this, the strength of the RF 

signal read out at from a particular portion of tissue any given time after 

the initial excitation pulse is largely governed by three factors: the overall 

number of hydrogen nuclei in the tissue (proton density, PD), the T1 

relaxation rate of the tissue, and the T2 relaxation rate of the tissue. For 

simplicity, the important distinction between T2* and T2 is overlooked 

here.  

6. Finally, recalling that protons are excitable only by RF pulses at or near 

their Larmor frequency, and that the Larmor frequency itself is dependent 

on the magnetic field, it is apparent that by varying the local magnetic 

field it is possible to ensure that only protons in one specific area will be 

excited. This is the job of gradient coils, which produce spatial variations 

in the otherwise homogeneous main magnetic field in order to excite 

single slices. Within a slice, carefully timed application of additional 
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gradient fields can code already-excited nuclei in each portion of tissue 

with a specific identifying frequency and phase. By exploiting the 

mathematics of the Fourier transform, a great deal of data can be 

acquired simultaneously in this manner. 

 

7. Through the process of image reconstruction, a 3-dimensional grid (or 

series of 2-dimensional grids) is built up, composed of individual 

elements called voxels, for ―volume elements‖ (analogous to pixels, but 

with depth as well as height and width). 

Despite their brevity, the above principles provide some basic intuition for how 

conventional sequences like T1-weighted, T2-weighted, and PD-weighted 

images are acquired. By adjusting gradient/RF strength and application times, 

many variants can be acquired with different emphasis on scanning time, signal 

to noise ratio, and resolution. However, much more creative uses are possible 

with specialized RF/gradient techniques. For example, precise application of 

opposite polarity gradients can have no net effect on stationary nuclei, but 

dramatically affect moving nuclei, leading to diffusion contrast (Le Bihan 2003). 

Similarly, a well-tuned frequency offset in the RF field can be used to only excite 

protons in certain tissues, resulting in the potential for magnetization transfer 

contrast (Henkelman et al. 2001).  

In practice, within a single one-hour scanning session, ten or more full 

conventional and/or non-conventional 3-dimensional tissue maps can be 

produced, each emphasizing a different aspect of the local chemical 

environment and/or sensitive to different pathology. For clinical routine imaging, 

they are generally read qualitatively by a trained radiologist in a suitable visual 

format. For quantitative analysis, they are transferred in a standard format 

called DICOM, which ensures standard recording formats for most relevant 

acquisition parameters.  

A more complete description of the physics of MRI is beyond the scope of this 

document, but the interested reader is referred to (Hornak 2011) for an informal 

but informative overview, or to (Bernstein et al. 2004; Haacke 1999) for more 

comprehensive and rigorous treatment of the subject.  
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D.2 Multiple sclerosis 

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous 

system (CNS), which is characterized by inflammation, demyelination, axonal 

loss, and gliosis (Fig. D2). It is thought to affect more than 2 million individuals 

worldwide (Rosati 2001), and is the most common neurological disease 

amongst young adults. It commonly strikes individuals in their 20‘s or 30‘s 

(Koch-Henriksen and Sørensen 2010), and is usually characterized by acute 

clinical relapses followed by significant periods of remission. Eventually, though, 

most cases later enter a more debilitating progressive phase. The effects of MS 

are almost exclusively confined to the central nervous system, and the disease 

has as its hallmark focal pathological plaques with extensive demyelination 

located in otherwise myelinated central WM. Symptoms vary dramatically 

depending on affected areas, and include sensory deficits, muscle weakness, 

loss of balance, bladder dysregulation, visual changes, and cognitive 

impairment (Poser et al. 1982). 

 

Figure D2: Heterogeneity of MS disease-related changes. In addition to the hallmark 

focal plaques, many other pathological and reparatory mechanisms occur both 

simultaneously and in series. The precise distribution, timing, and interaction between 

many of these processes is still imperfectly understood. 
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Although first identified by Jean-Martin Charcot in 1866 (Goetz et al. 1995), the 

aetiology of MS remains unknown. Indeed, over the 150 years since it was first 

discovered many disparate factors have been implicated. Environmental studies 

have revealed an association with latitude, with populations at higher latitudes 

being more susceptible (Simpson et al. 2011). Although there is evidence for an 

effect of sunlight exposure potentially mediated through vitamin D (Munger et al. 

2004), there are also substantial east-west variations that indicate other climate 

related factors may be at work (Ebers and Sadovnick 1993). Infectious diseases 

have also been implicated, and there is convincing evidence that Epstein-Barr 

virus may play a role (Ascherio and Munger 2007). Other factors like degree of 

outdoor work (Kampman et al. 2007) and smoking (Riise et al. 2003; Zivadinov 

and Weinstock-Guttman 2009; Manouchehrinia et al. 2013; Salzer et al. 2013) 

have shown significant correlations with MS risk and outcome. Also, diet has 

been suggested and often discounted, although it seems that serum vitamin D 

levels may play a meaningful role (Munger et al. 2004).  In addition to these 

environmental factors, there appears to be an important genetic component. MS 

co-occurrence in monozygotic twins is significantly more likely than in dizygotic 

twins or non-twin siblings (Willer et al. 2003). Additional studies with half-

siblings have made a compelling case for a genetic/epigenetic basis for MS 

(Ebers et al. 2004). Beyond this, DNA microarray techniques have made it 

possible to cast a wide net in searching for likely contributors to MS. A recent 

large, genome-wide study identified specific risk alleles, including those of 

interleukin (IL2 and IL7) and human leukocyte antigen (HLA-DR) genes (Hafler 

et al. 2007), and another pointed to CD6, IRF8 and TNFRSF1A SNP locales 

(De Jager et al. 2009). However, despite the encouraging insights gained 

through these various studies, no overall comprehensive model of the disease 

exists and much about MS remains unknown, perhaps due to the complexity of 

epigenetic effects (Huynh and Casaccia 2013). 

In recent years much of the research into MS has focused on the immunological 

aspects of the disease. There is overwhelming evidence that MS is associated 

with inflammatory markers in the CNS (Brück et al. 1995). As seems to be the 

case with most aspects of MS, the immune responses involved appear to be 

multifaceted. For some time, CD4+ helper T cells have been implicated, and are 

clearly involved in the disease (Viglietta and Baecher-Allan 2004). However, 
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many other cell types and immunomodulatory cascades are also involved in 

MS, including CD8+ T cells and CD56+ natural killer cells (Skulina and Schmidt 

2004; Takahashi et al. 2004). Some populations like CD4+ Th1 T cells seem to 

have a disease-promoting effect, whereas others like CD25+CD4+ T cells are 

regulatory and suppress the immune response (Kasper and Shoemaker 2010). 

Of particular recent interest is the potential role of B cells in MS etiology 

(Magliozzi et al. 2007), and their potential as a therapeutic target (Hauser and 

Waubant 2008). 

Histopathological work has also shed much light on the precise nature of MS. 

Perhaps most importantly, it has made increasingly clear the fact that MS 

involves considerably more tissue damage than the conventionally seen focal 

T2 lesions, as well as the fact that even within such lesions considerably more 

activity occurs than simple demyelination (Lassmann et al. 2007). It has also 

demonstrated extensive alterations in previously little-studied GM, and has 

informed better understanding of its more subtle lesions (Geurts et al. 2009; 

Filippi et al. 2013; Fischer et al. 2013). Meningeal inflammation has also been 

found (Choi et al. 2012), which may more directly influence GM pathology. 

Mechanisms of neurodegeneration beyond Wallerian degeneration have also 

been elucidated, including direct axonal transection (Trapp and Peterson 1998). 

Perhaps one of the most interesting recent findings from histopathology is an 

evaluation of newly formed MS lesions. Surprisingly, this showed extensive 

oligodendrocyte apoptosis and microglial activation but minimal lymphocyte or 

myelin macrophage presence, contrary to current disease models (Barnett and 

Prineas 2004). Follow-up study with more cases confirmed the absence of T or 

B cells and the presence of apoptotic oligodendrocytes in early expanding 

borders of MS lesions (Henderson et al. 2009). Further investigation 

demonstrated a role for oxidative stress in pre-inflammatory oligodendrocytes 

(Haider et al. 2011). These findings have led some to hypothesize that MS may 

not be an autoimmune disease, but rather a degenerative disease resulting in 

an immune component (Stys et al. 2012; Trapp and Nave 2008). Additional 

work has pointed to the importance of astrocytes in remyelination (Skripuletz et 

al. 2013), and has shown other factors that can inhibit (Stoffels et al. 2013) or 

promote (Yuen et al. 2013) it. Given all of this, it has become clear that MS is a 

multifactorial disease, and the ability to monitor all these aspects shown via 
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histopathology with in vivo MRI is an important goal (Filippi et al. 2012). 

Additionally, the simultaneous combination of histopathology and post-mortem 

MRI may drive further advancements (Kolasinski et al. 2012). 

Arguably one of the greatest recent changes for those afflicted with MS is the 

fact that clinical care has progressed from passive observation, symptom 

management, and palliative care to meaningful disease modifying treatments 

that can significantly slow MS progress. These include large classes of immune-

modifying agents such as the beta interferons (Jacobs and Cookfair 1996) and 

glatiramer acetate (Ford et al. 2006), as well as more modern approaches that 

limit lymphocyte movement or proliferation such as teriflunomide (O‘Connor and 

Wolinsky 2011), fingolimod (Kappos et al. 2010), and natalizumab (Polman et 

al. 2006).  

D.3 Medical image processing and analysis 

For the first 15 years or so of its existence neurological MRI analysis was 

largely qualitive in nature, with most quantitative elements restricted to relatively 

simple calculations or low-level reconstruction applications. However in the late 

1990s, clinicians and MRI physicists started to turn to the world of signal 

processing and statistics to develop new methodologies. Since then, 

neurological image analysis has become a sub-discipline in its own right 

(Dhawan 2011; Dougherty 2009); albeit an immature discipline that is 

developing. While medical imaging provides a unique set of challenges, it 

benefits from algorithms developed in other fields. Application and interpretation 

of these algorithms in a neurological context, however, remains major 

challenge. While the systems in other disciplines may be well understood, this is 

not the case with neurological disease, where much is unknown about the 

intracranial system. Consequently, techniques originally developed in other 

disciplines have to be tailored to MRI image analysis and validated against 

experimental data. 

From the earliest stages of tomographic medical imaging (CT), computational 

power and sophisticated algorithms were required to reconstruct images from 

raw data, and this is still the case today. Where CT used the inverse Radon 

transform and iterative reconstruction, MRI now makes extensive use of the fast 
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Fourier transform (FFT). In the past few decades, though, computing speeds 

and memory have expanded to allow for considerably more possibilities than 

mere reconstruction. Because of this, the field of image analysis has grown 

dramatically, and has made quantitative interpretation and/or transformation of 

images a viable alternative or complement to qualitative radiological reads.  

Arguably some of the most critical advances in the field have come from areas 

that are traditionally considered ―pre-processing‖. In particular, co-registration – 

the mutual alignment of scans from different image types, time points, or 

subjects – has substantially matured to the point where it is highly reliable, due 

to the work of many independent investigators (Ashburner et al. 1997; Friston et 

al. 1995; Jenkinson et al. 2002; Woods and Grafton 1998). Co-registration is 

generally considered to be a linear operation, which although it can perform 

excellently between a single individual‘s scans, is not able to precisely align 

anatomy between different subjects. This concern can however be addressed 

by non-linear image warping, or normalization, which goes beyond affine 

transforms to allow detailed anatomy-specific warping/morphing. Such 

normalization may make use of hundreds or thousands of parameters, and is an 

extremely difficult mathematical and computational problem. Despite the 

challenges, though, significant progress was made even more than a decade 

ago (Woods and Grafton 1998) and improvements are still consistently being 

made. For example, much work has gone into invertible, diffeomorphic 

normalization (Klein et al. 2009; Murphy et al. 2011). Taken together, the value 

of fast, reliable, and reproducible post-acquisition alignment and normalization 

is difficult to overstate. Without such tools, it would be extremely difficult or 

impossible to track subtle changes across time, to evaluate the multi-spectral 

MRI characteristics of single tissue locations, or to compare localized changes 

across subjects. 

With co-registration and normalization available, simultaneous progress has 

been made on the creation and standardization of neurological maps, such as 

the famous atlas of neurology produced by Talairach and Tourneaux (Talairach 

and Tournoux 1988). Although crude by modern standards, at the time this 

represented a great step forward. However, it was based on a single subject 

data, and it was not until much later that the ability to warp many subjects into a 
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common space in a highly detailed manner was possible. Only when this 

obstacle was overcome was it possible to create much more accurate and 

representative atlases (Grabner et al. 2006) and ICBM 452 non-linear atlases 

(Mazziotta et al. 2001). With the ability to create high-quality atlases came the 

ability to perform group-wise spatial analyses. While early work was based on 

―collapsing‖ subject data into single metrics, the ability to normalize subjects into 

a common space led to the ability to precisely evaluate differences in specific, 

small anatomical regions all the way down to the voxel level. Some of the key 

techniques in this area include voxel based morphometry (Ashburner and 

Friston 2000) and deformation-based mapping (Chung et al. 2001). These 

techniques have been the basis for many independent investigations into 

morphometric changes in a variety of diseases and in normal aging (Draganski 

et al. 2004; Honea and Crow 2005; Prinster et al. 2006; Thompson et al. 2003). 

At the same time, improvements in image processing algorithms have led to 

accurate, reproducible tissue segmentation and object extraction techniques. 

These allow for classification on a voxel-by-voxel basis into specific tissue 

compartments or for labeling of voxels as specific anatomical structures. 

Examples of segmentation techniques include EMS (Van Leemput et al. 2001), 

FAST (Zhang et al. 2001), and SPM unified segmentation (Ashburner and 

Friston 2005). Examples of object extraction tools include FIRST (Patenaude et 

al. 2011) and cortical parcellation in Freesurfer (Fischl 2012). Other advances 

have occurred in lower-level processing areas, including a variety of techniques 

for image enhancement and/or restoration. For example, non-linear smoothing 

has provided a ―best of both worlds‖ ability to diminish measurement noise 

without paying the classical price of lost spatial resolution (Black and Sapiro 

1998; Smith and Brady 1997). Other techniques have focused more on 

ameliorating MRI-specific artefacts, including techniques for intra-session 

motion correction (Jenkinson et al. 2002), eddy current correction (Bodammer 

and Kaufmann 2004), and susceptibility-induced distortion unwarping (Jezzard 

and Balaban 1995). Finally, a number of more sequence-specific techniques 

have also developed symbiotically with MRI physics, including DTI-based 

tractography (Ciccarelli et al. 2008), fMRI ICA (Calhoun et al. 2009) and network 

analysis (Bullmore and Sporns 2009).  
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