EXISTENCE OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

S. K. NTOUYAS and P. CH. TSAMATOS
University of Ioannina
Department of Mathematics
Ioannina, Greece
(Received September 27, 1989 and in revised form October 10, 1990)

PBSTKACR. In this paper, using a simple and classical application of the Leray-Schauder degree theory, we study the existence of solutions of the following boundary value problem for functional differential equations

$$
\begin{gathered}
x^{\prime \prime}(t)+f\left(t, x_{t}, x^{\prime}(t)\right)=0, \quad t \in[0, T] \\
x_{0}+\alpha x^{\prime}(0)=h \\
x(T)+\beta x^{\prime}(T)=n
\end{gathered}
$$

where $f \in C\left([0, T] \times C_{r} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), h \in C_{r}, \eta \in \mathbb{R}^{n}$ and α, β are real constants.

KEY WORDS AND PHRASES. Boundary value problem, functional differential equations. 1980 AMS SUBJECT CLASSIFICATION CODE. $34 K 10$.

1. INTRODUCTION

Let \mathbb{R}^{n} be the real euclidean space with inner product $\langle\cdot, \cdot\rangle$ and norm $|\cdot|$. Let also, C_{r} be the space of all continuous functions $x:[-r, 0] \rightarrow \mathbb{R}^{n}, r>0$, endowed with the sup-norm

$$
\|x\|=\sup \{|x(t)|: t \in[-r, 0]\} .
$$

For every continuous function $x:[-r, T] \rightarrow \mathbb{R}^{n}, T>0$ and every $t \in[0, T]$, we denote by x_{t} the element of c_{r} defined by

$$
x_{t}(\vartheta)=x(t+\vartheta), \quad \vartheta \in[-r, 0] .
$$

The main purpose of this paper is to discuss when the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+f\left(t, x_{t}, x^{\prime}(t)\right)=0, \quad t \in[0, T], \tag{1.1}
\end{equation*}
$$

admits a solution x on $[0, T]$ such that the boundary value conditions

$$
\begin{align*}
& x_{0}+\alpha x^{\prime}(0)=h \tag{1.2a}\\
& x(T)+\beta x^{\prime}(T)=n \tag{1.2b}
\end{align*}
$$

to be satisfied. Here, $f:[0, T] \times C_{r} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous function, $h \in C_{r}, \eta \in \mathbb{R}^{n}$ and α, β are real constants such that

$$
\begin{equation*}
\alpha \leqq 0 \leqq \beta \tag{1.2c}
\end{equation*}
$$

By $x^{\prime}(0)$ and $x^{\prime}(T)$ we mean $x^{\prime}\left(0^{+}\right)$and $x\left(T^{-}\right)$, respectively. In the next, the boundary value problem (B.V.P.) which constitutes from the equation (1.1) and the boundary conditions (1.2a),(1.2b),(1.2c), will be mentioned briefly as B.V.P. (1.1)-(1.2).

Analogous boundary value problems for ordinary differential equations has been studied by many authors, who used the Leray-Schauder continuation theorem (see Lasota and Yorke [1], Szmanda [2], Traple [3] and others). Usually, in these problems the authors derive a priori estimates of solutions by using inequalities of Wirtinger and Opial type.

Our work is motivated by the recent papers of Fabry and Habets [4], Fabry [5] and Ntouyas [6]. In [6] the author generalizes the results of Fabry and Habets [4] to the functional equation (1.1) with boundary conditions

$$
\begin{gathered}
x_{0}=h, \quad h(0)=0, \\
x(T)=0 .
\end{gathered}
$$

Here, following Fabry [5] we extend the results of Ntouyas [6].

2. MAIN RESULTS

Before stating our main results we refer some lemmas which simplify the proof of the theorem bellow.

LEMMA 2.1. [4, pp 187]. Let X be. a Banach space, $A: X \rightarrow X$ be a completely continuous mapping such that $I-A$ is one to one, and let Ω be a bounded set such that $0 \in(I-A)(\Omega)$. Then the completely continuous mapping $S: \Omega \rightarrow X$ has a fixed point in Ω if for any $\lambda \in(0,1)$, the equation

$$
\begin{equation*}
x=\lambda S x+(1-\lambda) A x \tag{2.1}
\end{equation*}
$$

has no solution on the boundary $\vartheta \Omega$ of Ω.
LEMMA 2.2. [5, pp 133]. Let $X:[0, T] \rightarrow \mathbb{R}^{n}$ be a twise differentiable function and let $R>0$ be such that

$$
\begin{equation*}
\|x\| \leqq R \tag{2.2}
\end{equation*}
$$

Assume that positive constants c, d exist, with $c<1$, such that

$$
\begin{equation*}
-<x(t), x^{\prime \prime}(t)>\leq c\left|x^{\prime}(t)\right|^{2}+d, \quad t e[0, T] \tag{2,3}
\end{equation*}
$$

Moreover, assume that positive constants c^{\prime}, d^{\prime} exist with $c^{\prime}<(1-c)^{2} / 8 R$ such that

$$
\begin{equation*}
\left|<x^{\prime}(t), x^{\prime \prime}(t)>\left|\leq\left(c^{\prime}\left|x^{\prime}(t)\right|^{2}+d^{\prime}\right)\right| x^{\prime}(t)\right|, \quad t \in[0, T] . \tag{2.4}
\end{equation*}
$$

Then there exists a number K nondepending on x, such that

$$
\left\|x^{\prime}(t)\right\| \leqq k
$$

LEMMA 3.2. If $\alpha \leq 0 \leq \beta$ the B.V.P

$$
\begin{gathered}
x^{\prime \prime}(t)=k \times(t), \quad k>0 \\
x(0)+\alpha \times x^{\prime}(0)=0, x(T)+\beta \times x^{\prime}(T)=0
\end{gathered}
$$

has the unique solution $x=0$.
PROOF. The general solution of the above equation has the form

$$
x(t)=c_{1} e^{\sqrt{k} t}+c_{2} e^{-\sqrt{k t}}
$$

Un account of the above boundary conditione we obtain

$$
\frac{(1+\alpha \sqrt{k})(1-\beta \sqrt{k})}{(1-\alpha \sqrt{k})(1+\beta \sqrt{k})} \neq e^{2 \sqrt{k} T}
$$

Since $e^{2 \sqrt{k} T}>1, k>0$, the last expression is twe for overy $k>0$, provided the left hand side is less than or equal to one. But this is clear since $\alpha \leq 0 \leq \beta$.

The next Theorem guarantees existence of solutions for the B.V.P. (1.1)-(1.2) which are bounded by an a priori given function φ. Moreover, the first derivative of a such solution is also bounded by a constant ρ not depending on this solution,

THEOREM. Let $f:[0, T] \times C_{r} \times \mathbb{R}^{n}$ be a continuous function which maps bounded sets of $[0, T] \times C_{r} \times \mathbb{R}^{n}$ into bounded sets of \mathbb{R}^{n}. Assume that $\left.\varphi: \mid 0, T\right] \rightarrow(0, \infty)$ is a twice continuously differentiable function such that

$$
\begin{align*}
-\varphi(0)-|\alpha| \varphi^{\prime}(0) & >|h(0)|, \text { if } \alpha \neq 0 \\
\varphi(0) & >|h(0)|, \text { if } \alpha=0
\end{align*}
$$

and

$$
\begin{align*}
-\varphi(T)+|\beta| \varphi^{\prime}(T) & >|n|, \text { if } \beta \neq 0 \\
\varphi(T) & >|n|, \text { if } \beta=0 .
\end{align*}
$$

Also, we suppose that

$$
\begin{equation*}
\left.\psi(t) \psi^{\prime \prime}(t)+<u(0), J(t, u, v)\right\rangle \leqslant 0 \tag{2.6}
\end{equation*}
$$

for any $(t, u, v) \in[0, T] \times C_{r} \times \mathbb{R}^{n}$ with $\varphi(t)=|u(0)|$ and $\langle u(0), v\rangle=|u(0)| \varphi^{\prime}(t)$.
Noreov^r, assume that there exist posijtive numbers $k_{1}, k_{\text {, }}$ with $k_{1}<1$ and positive numbers $k_{1}^{\prime}, k_{2}^{\prime}$ with

$$
k_{1}^{\prime}<\frac{1}{8 m}\left(1-k_{1}\right)^{2}, m=\max _{t \in[0, T]}|\varphi(t)|
$$

such that

$$
\begin{gather*}
\langle u(0), f(t, u, v)\rangle \leq k_{1}|v|^{2}+k_{2}, \tag{2.7}\\
\mid\langle v, f(t, u, v)>| \leq\left(k_{1}^{\prime}|v|^{2}+k_{2}^{\prime}\right)|v| \tag{2.8}
\end{gather*}
$$

for any $(t, u, v) e[0, T] \times C_{r} \times \mathbb{R}^{n}$ with $|u(0)| \leq \varphi(t)$.
Then the problem (1.1)-(1.2) has at least onc solution x such that $|x(t)| \leq \varphi(t)$, $\tau \in[0, T]$ and $\left|x^{\prime}(t)\right| \leq \rho, t \in[0, T]$.

PROOF. Let $k>0$ be a constant, such that $k>\max \left\{\frac{\varphi^{\prime \prime}(t)}{\varphi(t)}, t \in[0, T]\right\}$ and x a solution of the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\lambda f\left(t, x_{t}, x^{\prime}(t)\right)=(1-\lambda) k x(t), \quad \lambda \in(0,1) \tag{2.9}
\end{equation*}
$$

with $t \in[0, T]$ and $|x(t)| \leq \varphi(t)$.
Multiplying both sides of (2.9) by $x(t)$ and using (2.7) we deduce that

$$
\begin{aligned}
-\left\langle x(t), x^{\prime \prime}(t)>\right. & =\lambda<y_{t}(0), f\left(t, x_{t}, x^{\prime}(t)\right)-(1-\lambda) k|x(t)|^{2} \\
& \leq \lambda\left(k_{1}\left|x^{\prime}(t)\right|^{2}+k_{2}\right)
\end{aligned}
$$

$\leq k_{1}\left|x^{\prime}(t)\right|^{2}+k_{2}$.
Similarly, condition (2.8) yields

$$
\begin{aligned}
\left|<x^{\prime}(t), x^{\prime \prime}(t)>\right| & \leq\left(k_{1}^{\prime}\left|x^{\prime}(t)\right|^{2}+k_{2}^{\prime}\right)\left|x^{\prime}(t)!+k\right| x^{\prime}(t) \mid m \\
& \leq\left(k_{1}^{\prime}\left|x^{\prime}(t)\right|^{2}+\hat{c}\right)\left|x^{\prime}(t)\right|
\end{aligned}
$$

where $\hat{c}=k_{2}^{\prime}+k m$.
Thus the conditions of Lemma 2.2 are fulfilled and hence there exists a number K not depending on x, such that $\left|x^{\prime}(t)\right| \leq K$.

Let us now consider the Banach space B of all continuous functions $x:[0, T] \rightarrow \mathbb{R}^{n}$, which are continuously differentiable on $[0, T]$, endowed with the norm

$$
\|x\|_{1}=\max \left\{\sup _{t \in[0, T]}|x(t)|, \sup _{t \in[0, T]}\left|x^{\prime}(t)\right|\right\} .
$$

Also, for any $x \in B$ we set

$$
\begin{equation*}
S x(t)=\int_{0}^{T} G(t, s) f\left(s, x_{s}, x^{\prime}(s)\right) d s+\frac{1}{l}[(T-t) h(0)+\beta h(0)-\alpha \eta+t \eta], t \in[0, T] \tag{2.10a}
\end{equation*}
$$

where

$$
x_{s}(\vartheta)= \begin{cases}x(s+\vartheta), & \text { if } \vartheta \geqslant-s \\ h(s+\vartheta)-\alpha x^{\prime}(0), & \text { if } \vartheta<-s .\end{cases}
$$

Here, G is the Green function for the B.V.P.

$$
\begin{gathered}
y^{\prime \prime}=0 \\
y(0)+\alpha y^{\prime}(0)=0, y(T)+\beta y^{\prime}(T)=0
\end{gathered}
$$

and is given by the formula

$$
G(t, s)=\frac{1}{l} \begin{cases}(t-T-\beta)(s-\alpha), & s \leq T \\ (t-\alpha)(s-T-\beta), & t \leq s,\end{cases}
$$

where $\ell=T+\beta-\alpha \neq 0$ because of (1.2c).
Obviously, the operator S is a compact operator defined on B and taking values in B.
Since the B.V.P. (1.1)-(1.2) is equivalent to (2.10 $)$ and (2.10β), the purpose of the following proof is to show that the mapping S has a fixed point.

To this end we define an operator $A: B \rightarrow B$, and a subset Ω of B as follows:

$$
\begin{equation*}
(A x)(t)=-\int_{0}^{T} G(t, s) k x(t) d t, k \neq 0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=\left\{x \in B: \forall t \in[0, T],|x(t)|<\varphi(t),\left|x^{\prime}(t)\right|<K+1\right\}, \tag{2.12}
\end{equation*}
$$

where k and K are defined as above.
It is clear that Ω is open and bounded in B and A is a completely continuous operator
First we prove that the operator $I-A$ is one to one. Let $(I-A) x=(I-A) y$. If
$z(t)=x(t)-y(t)$ then $(I-A) z=0$ and $z(0)+\alpha z^{\prime}(0)=0, z(T)+\beta z \prime^{\prime}(T)=0$. Hence, z is a solution of the B.V.P.

$$
\begin{aligned}
& z^{\prime \prime}(t)=k z(t) \\
& z(0)+\alpha z^{\prime}(0)=0 \\
& z(T)+\beta z^{\prime}(T)=0 .
\end{aligned}
$$

By Lemma 2.3 the last problem has the unique solution $z=0$, and consequently I-A is one to one.

Next, we show that for any $\lambda \in[0,1]$ and $x \in \partial \Omega$ it is the case that

$$
x \neq \lambda S x+(1-\lambda) A x
$$

Indeed, if there exists $\lambda \in[0,1]$ and $x \in \partial \Omega$ satisfying

$$
x=\lambda S x+(1-\lambda) \lambda x,
$$

then the equation

$$
x^{\prime \prime}(t)+\lambda f\left(t, x_{t}, x^{\prime}(t)\right)=(1-\lambda) k x(t),
$$

has a solution $x:[0, T] \rightarrow \mathbb{R}^{n}$ satisfying

$$
\begin{gather*}
x_{0}+\alpha x^{\prime}(0)=h \\
x(T)+\beta x^{\prime}(T)=n \\
x \in \bar{\Omega} . \tag{2.13}
\end{gather*}
$$

Hence there exist $\xi, r \in[0, T]$ such that either

$$
\begin{equation*}
|x(\xi)|=\varphi(\xi) \text { or }\left|x^{\prime}(r)\right|=K+1 . \tag{2.14}
\end{equation*}
$$

Now, we shall prove that, in view of (2.13) , (2.13ß), the relations in (2.14) cannot hold. Since x is a solution of (2.9) for some $\lambda \in[0,1]$, the computation following (2.9) show that $\left|x^{\prime}(t)\right| \leqq K$ and hence $\left|x^{\prime}(t)\right|<K+1,0 \leqq t \leqq T$. Hence, the second case in (2.14) cannot hold. Thus it remains to eliminate the first possibility of (2.14). We shall prove that if $x \in \partial \Omega$ is a solution of (2.9), then there exists no $\xi \in[U, T]$ such that $|x(t)|^{2}-\varphi^{2}(t)$ reaches maximum value zero at $t=\xi \in[0, T]$.

Assume the contrary. Then, if $\xi \in(0, T)$, we have the following relations $|x(\xi)|=\varphi(\xi)$

$$
\begin{equation*}
\left\langle x(\xi), x^{\prime}(\xi)\right\rangle=\varphi(\xi) \varphi^{\prime}(\xi) \tag{2.15}
\end{equation*}
$$

$$
<x_{\xi}(0), x^{\prime}(\xi)>=\varphi(\xi) \varphi^{\prime}(\xi)
$$

or

$$
\left\langle x_{\xi}(0), x^{\prime}(\xi)\right\rangle=\varphi(\xi) \varphi^{\prime}(\xi)
$$

$$
\begin{equation*}
\left.J \equiv\left\langle x_{\xi}(0), x^{\prime \prime}(\xi)>+\right| x^{\prime}(\xi)\right|^{2}-\varphi(\xi) \varphi^{\prime \prime}(\xi)-\varphi^{\prime 2}(\xi) \leqq 0 . \tag{2.17}
\end{equation*}
$$

Now assume that x is a solution of (2.9). Then by (2.6), (2.15), (2.16ß) we obtain

$$
\begin{aligned}
J & =-\left.\lambda\left\langle x_{\xi}(0), f\left(t, x_{\xi}, x^{\prime}(\xi)\right)>+(1-\lambda) k\right| x(\xi)\right|^{2}+\left|x^{\prime}(\xi)\right|^{2}-\varphi(\xi) \varphi^{\prime \prime}(\xi)-\varphi^{\prime 2}(\xi) \\
& \geqq(1-\lambda)\left\{\left|x^{\prime}(\lambda)\right|^{2}-\varphi^{\prime}(\xi)-\varphi(\xi) \varphi^{\prime \prime}(\xi)+k|x(\xi)|^{2}\right\} \\
& \geqq(1-\lambda) \varphi(\xi)\left\{k \varphi(\xi)-\varphi^{\prime \prime}(\xi)\right\} .
\end{aligned}
$$

Since $k>\frac{\varphi^{\prime \prime}(t)}{\varphi(t)}, t \in(0, T)$, we get $J>0, \lambda \in[0,1]$, contradicting (2.17).
Next we show that $\xi \neq T$. If $\xi=T$ and $g(t)=|x(t)|^{2}-\varphi^{2}(t)$ then the following must hold:

$$
g^{\prime}(T)=2\left\langle x(T), x^{\prime}(T)>-2 \varphi(T) \varphi^{\prime}(T) \geqslant 0\right.
$$

and

$$
g(T)=0 .
$$

Then $|x(T)|=\varphi(T)$ and $\varphi^{\prime}(T) \leqq\left|x^{\prime}(T)\right|$. But, by the boundary condition (1.2b), we have

$$
|\beta|\left|x^{\prime}(T)\right| \leq|n|+\varphi(T) .
$$

Hence

$$
|\beta| \varphi^{\prime}(T) \leq|\eta|+\varphi(T) \text {, if } \beta \neq 0
$$

or

$$
\varphi(T) \leq|n|, \text { if } \beta=0
$$

which contradicts (2.5B). Therefore $E \neq T$ as required.
rinally, we show that $\xi \neq 0$. Assume on the contrary that $\varepsilon=0$. It is straightforward ro see that

$$
g(0)=0 \text { and } g^{\prime}(0) \leqq 0,
$$

imply

$$
|x(0)|=\varphi(0) \text { and }-\left|x^{\prime}(0)\right| \leq \varphi^{\prime}(0)
$$

From the boundary condition (1.2a) we obtain

$$
-\varphi(0) \leqq|h(0)|+|\alpha| \varphi^{\prime}(0), \text { if } \alpha \neq 0
$$

or

$$
\varphi(0) \leq|h(0)|, \text { if } \alpha=0
$$

contradicting (2.5a).
Consequently, no solutions of (2.9) can belong to $\partial \Omega$ for $\lambda \in[0,1)$, completing the proof of the theorem,

3. APPLICATIONS

As an application of the Theorem we consider the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\ell\left(t, x_{t}\right) x^{\prime}(t)+p\left(t, x_{t}\right) x(t)+q\left(t, x_{t}\right)=0, \quad t \in[0, T] \tag{3.1}
\end{equation*}
$$

where ℓ and p are bounded real valued functions defined on $[0, T] \times C_{r}$ and q is also bounded \mathbb{R}^{n}-valued function defined on $[0, T] \times C_{r}$.

We set
$\tilde{l}=\sup _{(t, u) \in[0, T] \times C_{r}}|\ell(t, u)|, \tilde{p}=\sup _{(t, u) \in[0, T] \times C_{r}}|p(t, u)|, \tilde{q}=\sup _{(t, u) \in[0, T] \times C_{r}}|q(t, u)|$.
Then we have the following
PROPOSITION. If there exists a constant M,

$$
M \geq \max \{\ell, \tilde{p}, \tilde{q}\}
$$

such that the inequality

$$
\begin{equation*}
\varphi^{\prime \prime}(t)+M\left[\left|\varphi^{\prime}(t)\right|+\varphi(t)+1\right] \leqq 0, \quad t \in[0, T] \tag{3.2}
\end{equation*}
$$

has a strictly positive solution φ, subject to the conditions (2.5α), $(2,5 \beta)$, then the B.V.P. (3.1)-(1.2) has at least one solution satisfying

$$
|x(t)| \leq \varphi(t), \quad t \in[0, T]
$$

Moreover, there exists ρ not depending on x with

$$
\left|x^{\prime}(t)\right| \leq \rho, \quad t \in[0, T]
$$

PROOF. It is enough to check the conditions of the theorem for the function

$$
f(t, u, v)=\ell(t, u) v+p(t, u) u(0)+q(t, u),(t, u, v) \in[0, T] \times C_{r} \times \mathbb{R}^{n}
$$

Indeed, for any $(t, u, v) \in[0, T] \times C_{r} \times \mathbb{R}^{n}$, with $|u(0)|=\varphi(t)$ and $\langle u(0), v\rangle=|u(0)| \varphi^{\prime}(t)$, we obtain

$$
\left.\langle u(0), f(t, u, v\rangle=\ell(t, u)<u(0), v>+p(t, u)| u(0)\right|^{2}+\langle u(0), q(t, u)\rangle
$$

```
\(\leq|\ell(t, u)||u(0)| \varphi^{\prime}(t)+p(t, u)|u(0)|^{2}+|u(0)||q(t, u)|\)
\(=|\ell(t, u)| \varphi(t) \varphi^{\prime}(t)+p(t, u) \varphi^{2}(t)+\varphi(t)|q(t, u)|\)
\(\leq \tilde{\ell} \varphi(t)\left|\varphi^{\prime}(t)\right|+\tilde{p} \varphi^{2}(t)+\tilde{q} \varphi(t)\)
\(\leqq M \varphi(t)\left(\left|\varphi^{\prime}(t)\right|+\varphi(t)+1\right)\).
```

In view of (3.2), the above relation shows that (2.6) holds.
Also, for any $(t, u, v) \in|0, T| \times C_{r} \times \mathbb{R}^{n}$ with $|u(0)| \leq \varphi(t)$ we get, obviously,

$$
\begin{aligned}
<u(0), f(t, u, v)> & \leq \tilde{\ell} \varphi(t)|v|+\tilde{p} \varphi{ }^{2}(t)+\tilde{q} \varphi(t) \\
& \leqq c_{1}+c_{2}|v|,
\end{aligned}
$$

where $c_{1}=\sup _{t \in[0, T]}\left(\tilde{p} \varphi^{2}(t)+\tilde{q} \varphi(t)\right)$ and $c_{2}=\sup _{t \in[0, T]}(\tilde{l} \varphi(t))$.
Moreover,

$$
\begin{aligned}
\langle v, f(t, u, v)\rangle & \leq \tilde{l}|v|^{2}+\tilde{p}|v| \varphi(t)+\tilde{q}|v| \\
& \leqq c_{1}^{\prime}|v|+\tilde{l}|v|^{2}
\end{aligned}
$$

where $c_{1}^{\prime}=\sup _{\mathrm{r} \in \mid 0, T]}(\tilde{\mathrm{p}} \varphi(t)+\tilde{q})$. Now, if $|v| \geq 1$ then we have $c_{1}^{\prime}|v|+\tilde{\ell}|v|^{2} \leq\left(c_{1}^{\prime}+\tilde{\ell}|v|^{2}\right) \mid v j$. If $|v|<1$ then (2.8) follows from the inequality

$$
\tilde{\ell} \geq \tilde{\ell}|v|-\ell{ }_{1}|v|^{2}, \text { for each } \ell_{1} \geq 0
$$

Indeed, we have

$$
c_{1}^{\prime}+\tilde{\ell}|v|=c_{1}^{\prime}+\ell{ }_{1}|v|^{2}+\tilde{\ell}|v|-\ell{ }_{1}|v|^{2} \leqq c_{1}^{\prime}+\ell{ }_{1}|v|^{2}+\tilde{\ell} .
$$

Hence (2.8) is satisfied for $k_{1}^{\prime}=\ell_{1}$ and $k_{2}^{\prime}=c_{1}^{\prime}+\tilde{\ell}$.
EXAMPLE. The B.V.P.

$$
\begin{aligned}
& x^{\prime \prime}(t)+\frac{x(t)}{1+\left\|x_{t}\right\|} x^{\prime}(t)=0, \quad t \in[0,1] \\
& x_{0}=h \\
& x(1)+\beta x^{\prime}(1)=n
\end{aligned}
$$

has at least one solution x such that

$$
|x(t)| \leqq 2-e^{-t}
$$

provided that function h and constants β and η are such that.

$$
|h(0)|<1 \text { and }|\beta|+1>e(2+|n|) .
$$

We remark that in this case $\tilde{\ell}=1$ (and hence $M=1$) and (3.2) becomes $\varphi^{\prime \prime}(t)+\left|\varphi^{\prime}(t)\right| \leq 0$, $t \in[0,1]$.

ACKNOWLEDGEMENT. The authors would like to express their deep thanks to the referee for his useful comments and helpful suggestions.

REFERENCES

1. LASO'TA, A., YORKE, JAMES. Existence of Solutions of two point boundary value problems for nonlinear systems, J. Differential equations 11(1972), 509-518..
2. SZMANDA, B. Boundary value problems for differential and difference equations of second order, Fasciculi Mathematici 12(1980), 13-25.
3. TRAPLE, J. Boundary value problem for differential and difference second order systems, Ann. Polon. Math. 35(1977), 167-186.
4. FABKY, C., HABETS, P. The Picard boundary value problem for nonlinear second order differential equations, J. Differential Equations 42(1981), 186-198.
5. FABRY, C. Nagumo conditions for systems of second order differential equations, J. Math. Anal. Appl. 107(1985), 132-143.
6. NTOUYAS, S. On a boundary value problem for functional differential equations, Acta Math. Hung. 48(1-2)(1986), 87-93.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

