
Research Article
CHAOS: An SDN-Based Moving Target Defense System

Yuan Shi,1 Huanguo Zhang,1 Juan Wang,1 Feng Xiao,1 Jianwei Huang,1

Daochen Zha,1 Hongxin Hu,2 Fei Yan,1 and Bo Zhao1

1Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
Computer School of Wuhan University, Wuhan, China
2Division of Computer Science, School of Computing, Clemson University, Clemson, SC 29634, USA

Correspondence should be addressed to Juan Wang; jwang@whu.edu.cn

Received 2 August 2017; Accepted 11 September 2017; Published 16 October 2017

Academic Editor: Zhiping Cai

Copyright © 2017 Yuan Shi et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Moving target defense (MTD) has provided a dynamic and proactive network defense to reduce or move the attack surface that
is available for exploitation. However, traditional network is difficult to realize dynamic and active security defense effectively and
comprehensively. Software-defined networking (SDN) points out a brand-new path for building dynamic and proactive defense
system. In this paper, we propose CHAOS, an SDN-based MTD system. Utilizing the programmability and flexibility of SDN,
CHAOS obfuscates the attack surface including host mutation obfuscation, ports obfuscation, and obfuscation based on decoy
servers, thereby enhancing the unpredictability of the networking environment. We propose the Chaos Tower Obfuscation (CTO)
method, which uses the Chaos Tower Structure (CTS) to depict the hierarchy of all the hosts in an intranet and define expected
connection and unexpected connection. Moreover, we develop fast CTO algorithms to achieve a different degree of obfuscation
for the hosts in each layer. We design and implement CHAOS as an application of SDN controller. Our approach makes it very
easy to realize moving target defense in networks. Our experimental results show that a network protected by CHAOS is capable
of decreasing the percentage of information disclosure effectively to guarantee the normal flow of traffic.

1. Introduction

Nowadays, the network security issues become increasingly
prominent as all kinds of network security events emerge one
after another. However, the traditional network security tools
cannot effectively defend increasingly complex and intelligent
penetration of network intrusion and unknown vulnerability
attacks. As usually, adversaries can break through or bypass
firewalls and intrusion detection systems (IDS) so that an
intranet can be easily compromised. As one of revolutionary
technologies, Moving Target Defense (MTD) changes game
rules, providing a dynamic and proactive network defense [1–
3].

MTD aims at building a dynamically and continually
shifting and changing system to increase complexity and
cost for attackers, limit the exposure of vulnerabilities and
opportunities for attackers, and increase system resiliency
[4]. The idea of MTD has been applied to network security,
for example, DYNAT [5] and DESIR [6].

The difference between MTD and traditional network
tools, such as firewall and IDS, is that the latter will suspend
suspicious actions once they break security rules.That makes
it easy for adversaries to figure out the deployed network
defense mechanism so that they will try to bypass them.
However, MTD sends illegible fake information to potential
threats to make them spend more time and cost so that they
will leave more footprints, making them easier to be exposed.

However, due to its closed and static characteristics,
traditional network is difficult to realize dynamic and proac-
tive security defense effectively and comprehensively. As a
new type of network security architecture, software-defined
networking (SDN) points a brand-new path for building
dynamic and proactive defense system [7, 8]. SDN has a
couple of benefits. It decouples network control and data
planes, enabling network control to become directly pro-
grammable [9]. It enables network managers to configure,
manage, secure, and optimize network resources very quickly
via dynamic and automated SDN programs [10]. Meanwhile,

Hindawi
Security and Communication Networks
Volume 2017, Article ID 3659167, 11 pages
https://doi.org/10.1155/2017/3659167

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206653354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/3659167

2 Security and Communication Networks

SDN lets the underlying infrastructure be abstracted from
applications and network services [11]. In addition, SDN con-
trollers can provide a global view of the network. The central
management of SDN makes networks more intelligent.

Therefore, our goal is to build an SDN-based dynamic
network defense system. In order to realize the SDN-based
MTD, it has some key challenges to be resolved. Firstly, we
should leverage SDN to obfuscate network fingerprinting.
Secondly, the moving target defense may make some net-
works services unavailable, such as database server. The IP
address and port number of these services have to be opened
to the outside and remain real. If MTD obfuscates these
services fully, it will return users with fake IPs and ports,
making these services unable to be used.Thirdly, obfuscating
network parameters indiscriminately will severely reduce the
performance of networks undoubtedly.

Motivated by the aforementioned goals and challenges,
we proposeCHAOS, a SDN-basedMTD system.Utilizing the
programmability and flexibility of SDN, CHAOS obfuscates
the attack surface including host mutation obfuscation, ports
obfuscation, and obfuscation based on decoy servers thereby
enhancing the unpredictability of the networking environ-
ment. Furthermore, it discriminately obfuscates hosts with
different security levels in networks. In CHAOS, we propose
the Chaos Tower Obfuscation (CTO) method, which uses
the Chaos Tower Structure (CTS) to depict the hierarchy of
all the hosts in an intranet and define expected connection
and unexpected connection. Moreover, we develop fast CTO
algorithms to achieve a different degree of obfuscation for the
hosts in each layer. We design and implement CHAOS as an
application of SDN controller. Our approach makes it very
easy to realize moving target defense in networks.

Furthermore, we evaluate our system and the results
show that CHAOS can effectively hide real information of
the target hosts from attackers and produce fake responses,
which can disrupt an adversary’s ability to sniff network
traffic effectively. In addition, our tests show that the system
has lower cost when comparedwith a fully obfuscated system,
which strengthens its applicability in real networks.

Our contributions can be summarized as follows:
(i) We propose a new SDN-based MTD approach,

CHAOS, where a Chaos Tower Structure (CTS) is
constructed to represent a hierarchy of all the hosts in
the network. Using the CTS, we can determine if a
network connection is needed to be obfuscated.

(ii) We present a more unpredictable and flexible obfus-
cation method named Chaos Tower Obfuscation
(CTO) in CHAOS, where the level of obfuscation is
decided reasonably. Furthermore, through using host
mutation obfuscation, ports obfuscation, and obfus-
cation based on decoy servers, CHAOS can flexibly
forward and modify the packets in a network to
obfuscate the attack surface.

(iii) We design and implement CHAOS as an SDN
application and evaluate its performance. The results
demonstrate that a network protected by CHAOS can
decrease the percentage of information disclosure
effectively and has a lower cost.

(iv) CHAOS is designed and implemented as an appli-
cation of SDN controller and works with IDS that
lets it very easy to realize moving target defense in
networks, so CHAOS not only solves the key issues
of building a practical SDN-based MTD system, but
also can be used in the real-world systems instead of
a theory model.

The remainder of this paper is organized as follows.
Section 2 provides some background information relating to
our system. Section 3 describes how we design our system.
Section 4 shows the details of CHAOS obfuscation methods.
Section 5 presents the implementation and evaluation of
our system. Section 6 shows some related work. Section 7
concludes this paper.

2. Background and Threat Model

In this section, we first provide an introduction to SDNand its
mechanism of asynchronousmessaging.Thenwe introduce a
threat model about our system.

2.1. SDN and Its Asynchronous Messaging Mechanism. SDN
has emerged as a programmable and centrally controlling
architecture providing an agile platform for vendors as well as
enterprise users to control and define network.

The SDN controller plays the role of an operating system
(OS) for networks [11]. All communications between network
applications and network devices have to go through the
controller. OpenFlow protocol as the first SDN standards
defined the communication protocol between the SDN con-
troller and the forwarding plane of network devices such as
switches and routers. The controller uses the OpenFlow
protocol to control network devices and choose the best path
for application traffic. Because the network control plane
can be programmed, contrary to the firmware of hardware
devices, network traffic can be managed more dynamically
and at a much more granular level.

Centralized control allows the SDN core controller to
define the data flows [1]. Each flow through the networkmust
first get permission from the controller, which verifies that the
communication is permissible by the network policy [12].

Flow Table. The OpenFlow switch (OF switch) contains the
flow tables, which are used to perform packet lookups and
forwarding [12]. UsingOpenFlow protocol, the controller can
add, update, and delete flow entries in the flow table, both
reactively (in response to packets) and proactively [12]. Each
flow table in the switch contains a set of flow entries. Each
flow entry consists of matching fields, counters, and a set
of instructions to apply to matching packets [1]. If a packet
matches the fields defined in the flow table, the instructions
(i.e., “actions”) are executed. If no match is found, a packet
may be forwarded to the controller or continue to the next
flow table.

Packet-InMessage. For all packets that do not have amatching
flow entry, a packet-in event may be sent to the controller.
There are mainly two situations that produce these messages:
a mismatch in the tables of the switch or a time to live

Security and Communication Networks 3

Layer 1
Layer 2
Layer 3
Layer 4

Chaos
Tower

Obfuscation
module

IDS

VictimAttacker A B

Ⓐ

Ⓑ

①

②

③

④

⑤

Figure 1:Overall systemofCHAOS.A shows that IDS ismonitoring the flows ofOF switch;B andD shows thatwhether normal connections
detected by IDS will be obfuscated or not is determined by Chaos Tower; C means the abnormal connections detected by IDS will be
obfuscated directly;Emeans that the obfuscation is executed by OF switches.

(TTL) error [13]. Packet-in messages contain a variety of
information about the flow.

After receiving the packet-in message, the core controller
decides how to process irregular flows by dispatching a
packet-out message.

Packet-Out Message. Packet-out messages are sent from the
controller to a switch when the controller wishes to instruct
the switch to send packets via a specified port of the switch
or to instruct the switch how to forward packets received via
packet-in messages.

In CHOAS, we use SDN features and its asynchronous
messagingmechanism to implement our dynamic and proac-
tive defense system.

2.2. Threat Model. In most cases, adversaries start an attack
on an intranet by collecting as much information about the
network as they can. Then they connect to those vulnerable
hosts and send attack payloads. Our system, CHAOS, aims
to build a dynamic and variable network, so as to defeat
reconnaissance attacks on an intranet. Thus, we assume an
adversary can scan a network andmonitor the network traffic.
Moreover, the adversary can eavesdrop network packets. We
also assume the protected networks are able to support
OpenFlow-based SDN switches and controllers.

3. CHAOS Design

In this section, we provide an overview of CHAOS and then
highlight the design of Chaos Tower Structure (CTS).

3.1. CHAOS System Overview. The overall system is illus-
trated in Figure 1. We design two main modules: Chaos
Tower Structure (CTS) and Chaos Tower Obfuscation (CTO)
module. CTS defines the communication rules of hosts in a
network. The communications that break the CTS rules will
be obfuscated usingCTO that implements obfuscationmech-
anisms. We do not obfuscate all network traffic because it
will dramatically degrade network performance. In CHOAS,

the network traffic will be first sent to IDS, such as Bro. If
IDS judges that the traffic is suspicious, CTO module will
obfuscate them through installing new flows into OpenFlow
switches ormodifying flows.Otherwise, if the traffic is judged
normal, it will be redirected to our Chaos Tower Structure
module. The reasons for doing this are that adversaries
often can bypass IDS through some unknown vulnerability
attacks. CTS judges the risk of flows and divide them into
expected connections and unexpected connections, detailed
in Section 3.2.1. Expected connections will be allowed. The
unexpected connections will be obfuscated by obfuscation
module according to different obfuscation levels.

Chaos Tower Structure (CTS). It is the module we design in
the system to determine the communication rules. CTS
builds a host hierarchy according to security level of infor-
mation assets. The tower consists of several layers. Generally,
important workgroups are placed in higher layers, whereas
unimportant workgroups are placed in lower layers. The
importance of every single node which can correspond
to a host as well as the host cluster is determined based
on the importance degree of services and the vulnerability
assessment score in the node. Then we build our model to
control network traffic by defining which pairs of hosts
can communicate in our topology. Further, according to
the tower, the system divides connections into two types:
expected and unexpected connections.

Chaos Tower Obfuscation (CTO). It works on the basis of the
CTS. It will obfuscate the suspicious connections detected
by IDS and unexpected connections detected by CTS. Those
connections will be divided into corresponding obfuscation
levels.ThenCTOobfuscates the connections according to the
level.

We next elaborate the major processes of the whole
system as shown in Figure 1. If an attacker tries to launch a
request from a workgroup in relatively lower layers to a
workgroup in higher layers, as indicated by A and B in
Figure 1, the system examines the corresponding connection.
Firstly, the IDS detects the request and then determines

4 Security and Communication Networks

whether it is a normal connection (LineA). If it is suspicious,
the connection will be directly obfuscated directly (Lines C
and E). Otherwise, CTS starts to work (Line B). As shown
before, CTS will judge the connection according to its rules.
Once the connection is judged to be unexpected by CTS, it
will be obfuscated by CTO (Lines D and E). In Figure 1,
the request is unexpected; as a result, the connection will be
obfuscated andB is protected frombeing scanned or attacked.

3.2. Chaos Tower Structure and Its Workflow. The CTS is a
combination of a tree structure and an oriented graph
structure. We use a multibranch tree in which to store the
workgroup (a host is assigned to a specificworkgroup accord-
ing to its function or importance degree) and the tree defines
the privilege of every workgroup. This ensures that most
of the layer-jumping behavior is obfuscated. Nonetheless,
some layer-jumping behavior is necessary (e.g., the two-way
communication between a web server and a database server
is necessary, although they are in distinct workgroups). We
can define or modify the information conveniently by editing
the “Chaos Tower configure file” in the controller to add the
special rules. The tower structure with its strict hierarchy
enables a more secure and more reliable network.

3.2.1. Tower Construction. In CHAOS, every host or subnet
group will be examined and thus a corresponding risk level
will be calculated. Risk levels are based on the underlying
security metrics. In our system, we use the base score of
Common Vulnerability Scoring System (CVSS) [14] to deter-
mine the intrinsic qualities of vulnerability. CVSS base score
includes two factors, exploitability of vulnerability and impact
of vulnerability. CVSS classifies all the vulnerabilities depend-
ing on their features and effects and thus concludes several
different kinds of vulnerabilities, such as SQL injection
and buffer overflow. For all these kinds of vulnerabilities,
CVSS assigns different score to signal the importance of the
vulnerability. And in addition to CVSS score, another critical
factor is service importance value (SIV). Normally, some
hosts are more valuable than others. Thus, we adopt service
importance value to represent service’s inherent value. It is
worth mentioning that, in different networks, the same ser-
vicemay be valued different.That is the reasonwhy we set the
SIV table as a part of configuration that administrators should
define before the system works. In our system, we introduce
the following generic equation to incorporate the CVSS base
score and service importance value:

RL (ℎ) = ∑
V∈𝑉(ℎ)
(𝛼 × SIV (𝑠) + (1 − 𝛼) × CVSS (V)) , (1)

where RL(ℎ) is the risk level of node ℎ; 𝑉(ℎ) is a function to
return all vulnerability contained in the host ℎ; SIV(𝑠) is a
function to return the service importance value of the service
𝑠; and CVSS(V) is a function to return the CVSS base score of
the vulnerability V. We also introduce the weight coefficient
𝛼 (0 ≤ 𝛼 ≤ 1) that allows an administrator to determine
how important the service is. The value 𝛼 can be increased,
in which case the service is more important. Otherwise, the
administrator can decrease the value of 𝛼 to weaken the

influence of the service but emphasize the influence of the
possibility that the hosts would be attacked. According to
this given information, we can continue building the original
tower, which contains several layers. Each of these layers
contains several workgroups, each of which includes several
hosts that provide similar functions. CTS also can use some
weights such as time, to further define access rules. For
example, some access requests can be only allowed in some
periods.

After the risk level of each hosts or groups is calculated,
we put them into different layers of Chaos Tower. Hosts in
the same layers should have the same risk level. Layers with
higher risk level will have higher position (e.g., database
servers). To deal with the situation that many new devices
might well be added to specific subnets, we further divide
hosts in the same layer into several groups. Each group
contains at least one host. The group division is dependent
on the hosts distribution in physical networks. Hence, when
there are new devices added to the tower, CHAOS first exams
whether they can belong to one existing group or not, if not,
its risk level will be calculated and thus it will bemapped onto
a new group in the corresponding layers.

In CHAOS, we deem that the more important and risky
the host is, the higher the layer it is assigned to. These groups
share some common traits; for example, they may be used to
store some important network resources. In our system, the
administrators can define those important hosts and specify
their order of privilege by the risk level of group.

Expected Connections. Expected connections include normal
connections and special connections:

(i) Normal connections: they represent the connections
from higher layers towards lower layers. In CTS,
the communication from higher layers to low layers
should be allowed because the hosts of high layer
are of high risk level. They often provide impor-
tant service. So these connections correspond to the
allowed communications in an intranet. For those
which belong to higher layers only because of their
high CVSS score, they can be hardly accessed, which
indirectly protect them from being attacked. It is
worth mentioning that if the connection from A
toward B belongs to normal connections, it does not
mean that the connection fromB toward A belongs to
normal connections.

(ii) Special connections: in order to deal with some
special communication request, we define the special
connections even though the connections where a
host belonging to lower layer accesses a host belong-
ing to higher layers are not judged as normal con-
nections. CTS will judge the special connections as
expected connections.We can release special connec-
tions temporarily and record them in system log so
that administrator can carry out the analysis.

Unexpected Connections. We define unexpected connections
as those connections that are not included in the list of
expected connections. Generally, these connections are not

Security and Communication Networks 5

Group 1

Group 2 Group 3

Group 4 Group 5 Group 6

Group 7 Group 8 Group 9 Group 10

①

②

③

Figure 2: Logical structure of CTS. Red lines likeA represent the unexpected connections; gray lines from upper layers towards lower layers
likeB represent the normal connections; gray lines from lower layers towards upper layers likeC represent special connections.

defined as being allowed and will be detected by our CHAOS
system. For example, the connection from a host in employee
group toward a host in database group will be judged as
unexpected connections.

Here we consider an example to illustrate our proposed
CHAOS system in more detail. In Figure 2, Group 1 is placed
to the top of tower due to its highest risk level. For lineB, it
is a connection from a higher layer to a lower layer, which
belongs to normal connections. For lineC, it is a connection
from a lower layer to a higher layer but still allowed by CTS,
which belongs to special connections. And for lineA, it is an
unexpected connection even though it just transgresses only
one layer.

3.2.2. Exploiting the Tower. The system reacts differently for
expected and unexpected connections.

Expected Connections. We consider expected connections to
be legal; thus, the system does not interfere with these
connections.

Unexpected Connections. Attention should be paid to these
connections. If confronted with an unexpected connection,
the controller will send a request to obfuscation module to
obfuscate it. Generally, if the connection is established by
layer-jumping or occurswithin the same layer, it is considered
abnormal and will be obfuscated. However, some special
connections can be defined by system administrator; these
connections cannot be judged as abnormal communication
and not be obfuscated.

4. Obfuscation

In our system, we implement three kinds of obfuscations,
which are host mutation obfuscation, port obfuscation, and
obfuscation based on decoy servers. For unexpected connec-
tions judged byCTS and the abnormal connections judged by
IDS, our system will grade them and apply corresponding
obfuscations according to their degree of abnormality.

HostMutationObfuscation.This technique is aimed to defend
MITM (Man in the Middle) attack and third-party traffic
monitoring by replacing source IP address and destination
IP address of the packet to virtual IP addresses when trans-
ferring it between switches [15]. The mechanism is shown
in the right-hand side of Figure 3. The OpenFlow controller
frequently assigns a random virtual IP (vIP) to each real IP
(vIP).WhenHost1 initiates the connection toHost2 and sends
an initial packet using real source IP (r1) and real destination
IP (r2), the first OF switch that captures the initial packet (OF
switch 1) encapsulates and sends the packet to SDN controller,
where a rIP-vIPmapping table is stored, andmaps r1 and r2 to
corresponding virtual IPs (v1 and v2).When the initial packet
reaches the OF switch that is nearest to Host2 (OF switch n),
a similar reverse mapping is executed, changing vIPs back to
rIPs, namely, v1 to r1 and v2 to r2. In this sense, packets in the
middle (between OF Switch 1 and OF Switch n) only contain
virtual IPs so that real host IPs are concealed.

Port Obfuscation. This technique is aimed to defend port-
scanning-based attack. In this case we inject some entirely
fake information into responses as well as hiding some real

6 Security and Communication Networks

Process the
packet-in
message

Host 2
rIP = r2

Match fields Actions

srcIP = I3
dstIP = I1

setSrcIP = I2
setSrcMAC = M2

Match fields Actions

srcIP = I1

dstIP = I2

setDstIP = I3

setDstMAC = M3

Match fields Actions

srcIP = r2
dstIP = r1

setSrcIP = v2
setDstIP = v1

Match fields Actions

srcIP = r1
dstIP = r2

setSrcIP = v1
setDstIP = v2

srcIP = I1
dstIP = I2

srcMAC = M1

dstMAC = M2

srcIP = r1
dstIP = r2

Process the
packet-in
message

SDN controller

OF Switch n

OF Switch 1

Host 1
rIP = r1

dest = r2
src = r1

src = r2
dest = r1

dest = v2
src = v1

src = v2
dest = v1

dest = r2
src = r1

src = r2
dest = r1

Decoy servers Host 2

OF switch 1

Host 1

Original
packets

Forwarded
packets

Respond Request

Packet-in
Packet-in

vIP = v2

vIP = v1

Figure 3: Mechanism of host mutation and decoy-servers-based obfuscation.

Create a
packet-out

message

SDN controllersrcIP setDstIP

dstIP setSrcIP

srcPort setDstPort

dstPort setSrcPort

srcMAC setDstMAC

dstMAC setSrcMAC
Process the
packet-in
message

Host 2

OF switch

Host 1

Packet-in

Request
Real packets

& fake packets

Packet-out

Request Real packets

Figure 4: Mechanism of port obfuscation.

information. As is shown in Figure 4, when IDS detects a port
scanning, CHAOS system will inject fake packets into the
real packets by generating corresponding acknowledgment to
obfuscate the result of the port scanning. For instance, when
a TCP scan is detected and port obfuscation is applied,
the TCP packets will be fetched by switch and sent to the
controller through packet-in.Then the controller will analyze
the packet, generate a corresponding packet-out, and send it
to the switch.The acknowledgments of some injected packets
are 0, while some are 1. Whether to inject or modify the
packets is generally on a random basis. Therefore, the results
of port scanning will show a certain degree of randomness
and fuzziness.

Obfuscation Based on Decoy Servers. In CHAOS system,
we deploy a number of decoy servers as an attack trap. In
most cases, decoy servers can even delay the attack. When
applying this strategy, our systemwill forward the unexpected
connections to the decoy servers. As is shown in Figure 3,
when a host launches a request, our system can analyze the
packets and install flows into the switch, which will forward
the unexpected connections to our decoy servers. In this way,
suspicious users can only access various decoy servers. The

services we deployed in the decoy servers can further help us
discover the real attackers.

These three obfuscation strategies are applied under
different circumstances. In the tower, we use the threshold
factor to determine which strategy is applied. It is determined
by calculating the ratio of leapfrog access number to the
total number of the layers, named altitude. If the altitude of
the connection is smaller than threshold, the connection will
be obfuscated later. If not, the connection will be forwarded
to decoy servers. In short, the threshold factor divides unex-
pected connections into two parts by altitude. Connections
which belong to the first part will be obfuscated, while
connections which belong to the other part will be forwarded
to decoy servers. Administrators can change the threshold
factor depending on the security level and structure of the
network. The threshold factor assures that attacks will be
obfuscated in theory.

In addition, we introduce a parameter named Rando-
mIndex (0 ≤ RandomIndex ≤ 1) to define the possibility of
CHAOS performing obfuscation; that is, the closer the Ran-
domIndex to 0, the higher the likelihood of CHAOS injecting
fake information into the network. We define srcLayer as the
layer in which the host launches the request and dstLayer as

Security and Communication Networks 7

Require: packetInp, Inf, Sup, RandomIndex; {HEIGHT is the height of the tower}
if isFromSrcSwitch (p) orisFromDstSwitch (p) then installHostMutationFlows (p);
end if
srcLayer← getSrcLayer (p);
dstLayer← getDstLayer (p);
Δ Altitude← srcLayer – dstLayer;
Possibility← random [0, 1];
if Δ Altitude ≥ 0 then

Forward (p);
else
Δ Altitude← −Δ Altitude;
if Δ Altitude/HEIGHT ≤ threshold then

if isRequestPacket (p) andPossibility ≥ RandomIndex
then

PacketOut (p);
else

ForwardToDecoyServer (p);
end if

else
InstallForwardingFlows (p);
end if

end if

Algorithm 1: CHAOS.

the layer in which the host responds. Then we define altitude
as the difference in height between these two respective layers
(i.e., the height of srcLayer minus the height of dstLayer).
RandomIndex assures that obfuscation is random so that
attackers will not notice our system immediately.

Our design of obfuscation contains two aspects. First,
as most network mapping tools perform their operations by
using ICMP packets and TCP or UDP scans, ICMPmessages
are typically used to verify connectivity or reachability of
potential targets. TCP and UDP port scans are used to
identify running services of a target. Replies (TCP RST, silent
drop, or ICMPunreachable) to scans can also reveal what ser-
vices are allowed or filtered through transit devices. Addition-
ally, the TTL field of IP packets is used to identify the hop dis-
tance between the target and the destination. SDN-enabled
devices can be used to confuse the reconnaissance. For
example, traffic to a destination that can be blocked according
to a filtering policy can be silently dropped and SDN utilities
can generate varying responses that will confuse the attacker.
In the case of traffic that is permitted by the filtering policy
(that is, it is legitimate), the SDNpolicy does not interfere.The
action for each packet is kept in a buffer to ensure consistent
behavior. As a result of this algorithm, random ports will
appear to the scanner as being open. Digging deeper in order
to identify services running on these fake open ports would
require more resources from the attacker [16]. Secondly, the
controller determines the type of connection (i.e., via srcIP
or dstIP) and installs necessary flows in all OF switches in
the path. These flows will change the srcIP and dstIP of
each packet (assuming srcIP changed to be vsrcIP and dstIP
changed to be vdstIP) so that the packet will be different from
what they actually are. But meanwhile, these flows will also
make sure that the packet can be sent to the destination host

by changing the vsrcIP and vdstIP to srcIP and dstIP in the
end. Each connection must be associated with a unique flow,
because the rIP-vIP translation changes for each connection.
This property guarantees the end-to-end reachability of hosts,
because the rIP-vIP translation for a specific connection
remains unchanged regardless of subsequent mutations [15].

The process is presented as Algorithm 1. Here we use a
pseudo-code to clarify the process. Firstly, if we find that
the packet-in message comes from the source switch or
destination switch of the packet, we will install flow tables
of host mutation. Then, the connection will be judged to
be obfuscated or not. For expected connections, the packet
will be forwarded directly. But for unexpected connections,
the packet will be obfuscate or forwarded to a decoy server
if the altitude is bigger than the threshold configured by
administrator.

5. Implementation and Evaluation

5.1. System Implementation. The structure of our system is
shown in Figure 5. The routing was managed entirely by the
Floodlight controller andmonitored byBro.We implemented
three modules. The first one we implemented is the Chaos
Tower module, the purpose of which is to build the Chaos
Tower and get unexpected flows. Then, we implemented
the obfuscation module in Floodlight, which obfuscates the
unexpected flows and abnormal traffic judged by IDS. Finally,
we implemented the CHAOS management module which
allows administrators to further configure their networks.

We provide an implementation of obfuscation with Bro’s
warning message. In the beginning, we push flow tables into
switches so that all flows are allowed. Then, we use Bro to
monitor the network. When suspicious flows are detected,

8 Security and Communication Networks

Ⓐ

Ⓑ Ⓒ

Ⓓ Ⓔ Ⓕ

Ⓖ Ⓗ Ⓘ Ⓙ

ChaosTower
module

Obfuscation
module

CHAOS management module

Obfuscation
index

Floodlight

Policy script
interpreter

Event
engine

Events

Bro
Open vSwitch

Mirror

Network

Notification Flow tables

Figure 5: System implementation.

the tower will determine the corresponding obfuscation
index and transfer it to obfuscation module. After that,
corresponding flow tables will be updated to make sure that
the obfuscation works in the network.

5.2. Scanning and Foot-Printing Test. Foot-printing and
scanning are techniques for gathering information about
computer systems in networks. These techniques are imple-
mented by various security auditing tools as the first step
when launching an attack. Nmap [17] and the scanner
modules in Metasploit [18] contain many payloads to gather
sensitive information from target machines, whereas Nessus
[19] and WVS (Web Vulnerability Scanner) focus on vulner-
ability detection and exploitation.

In our test, we used Nmap to evaluate the information
obfuscation ability of CHAOS. Nmap uses raw IP packets in
novel ways to determine which hosts are available on the net-
work, which services (application name and version) those
hosts are offering and which operating systems (and OS ver-
sions) they are running, which type of packet filters/firewalls
are in use, and many other characteristics [17]. Our test
involved configuring some vulnerable hosts in the network,
after which we used Nessus to detect vulnerabilities to
test whether CHAOS would be able to confuse and deceit
Nessus.

We tested the performance of our system by launching a
series of attacks under different circumstances. We consider
three situations against Nmap. In the first, the network was
unprotected; in the second, we implement a fully obfuscated
system [16]; and in the third, our CHAOS system was
implemented. When simulating the attack, we used Nmap to
scan the entire network several times. Based on its response
and the reality of its given circumstances, we concluded
the result (Figures 6 and 7). Besides this, we used a ping
command to test the effect of our system on normal traffic
(Figure 8).

5.3. Results. We carried out our experiments in CloudLab
[20] and deployed the network shown in Figure 2.

First, we used Nmap to determine whether our CHAOS
system was able to deceit the security tool. There are two
situations involved in this experiment. We selected the hosts
of Group 4 and Group 3 in Figure 2; thus, the obfuscation
index is 0.5, so obfuscation based on decoy servers will work
then.

We define information disclosure percentage (IDP) as
our index and calculate it by the following formulas. ID is
the amount of information that the adversary fetches from
the victim. NONE represents the unprotected network. FON
represents the fully obfuscated network. CHAOS represents
the network protected by CHAOS.

IDPCHAOS =
IDCHAOS
IDNONE

,

IDPFON =
IDFON
IDNONE

.
(2)

Figure 6 shows the percentage of information disclosure
of an unprotected network and a network (Level 2) protected
by CHAOS as a function of the number of times the
network was scanned by Nmap.The figure shows that, for the
network protected by CHAOS, the percentage of information
disclosure is decreased effectively.

Secondly, we studied the correlation between the degree
of threat of the adversary and the information disclosure he
would experience. For comparison, we implemented another
MTD system, fully obfuscated network, which obfuscates all
the packets in the network. Figure 7 shows the information
disclosure in an unprotected network, a network protected by
CHAOS, and fully obfuscated network [15], all of which face
different degrees of threats. The fully obfuscated network
obfuscates all the packets by some static policies. Thus, it
is able to decrease information disclosure when the threat
reaches a certain degree, but does not decrease information
disclosure further when the degree of threat is elevated
beyond that certain degree, because of its static solution.
However, the network protected by CHAOS decreases infor-
mation disclosure when the degree of threat is elevated. Only

Security and Communication Networks 9

CHAOS protected network
None protected network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
t o

f i
nf

or
m

at
io

n
di

sc
lo

su
re

50 100 150 200 2500
Scanning times via Nmap

Figure 6: Information disclosure with scanning time.

CHAOS protected network
None protected network
Fully obfuscated network

20 30 40 50 60 70 80 90 10010
Threat degree

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t o

f i
nf

or
m

at
io

n
di

sc
lo

su
re

Figure 7: Information disclosure with respect to threat degree.

a few information disclosures exist when the threat reached a
very high degree.

After that, we compared the performance cost of the three
networks. As above, we compare the network protected by
CHAOS with the unprotected and fully obfuscated network.
We use the example shown above to test the performance
of these systems and to measure the average delay time of
the connections under each system. Figure 8 shows the delay
time of the unprotected network, the network protected
by CHAOS, and fully obfuscated network with changing
package counts. We conclude that both the networks pro-
tected by CHAOS and fully obfuscated network increase the
delay time to some extent, although the network protected

CHAOS protected network
None protected network
Fully obfuscated network

200 400 600 800 1000 1200 1400 1600 1800 20000
Packet counts

0

0.5

1

1.5

2

2.5

D
el

ay
 ti

m
e (

m
s)

×10
4

Figure 8: Delay time with respect to packet count.

by CHAOS has a reduced delay compared to that fully
obfuscated network.Thus, our system enables the network to
perform faster. We discovered that the transforming speed of
our system is faster than that of random obfuscation system
especially when the network is crowded.

The result above can be understood in terms of the
following factors.

First, we use Bro to monitor the network and transfer
those suspicious flows. The important point is that Bro runs
stand-alone so it makes quite few effects to the speed of the
network.

Then, the Chaos Tower is also a factor that reduces the
delay time. We assume that the Chaos Tower is to be built as
a binary tree in the network and the number of layers is 𝐿;
hence,

𝑁 = 2𝐿 − 1. (3)

We consider a situation in which each workgroup sends a
request to the remaining groups, which means that the sum
of the connections the unprotected situation and the MTD
solution would have to process would be

𝐶NONE = 0,

𝐶MTD = 𝑁 ∗ (𝑁 − 1) .
(4)

However, we only need to obfuscate the connections from the
lower layers toward the higher layers in our CHAOS system,
the number of which is

𝐶CHAOS =
𝐿−1

∑
𝑖=1

(2𝑖 ∗ (2𝑖 − 1)) . (5)

In the end, we launched several real attacks to tes-
tify robustness of our system. We employ some vulnera-
ble hosts in the network. In the experiment, MS 08-067

10 Security and Communication Networks

Unprotected
network

Fully obfuscated
network

Protected by MTD
with CHAOS

0

0.2

0.4

0.6

0.8

1

1.2

Figure 9: Attack testing.

is the vulnerability that we test. The hosts can be easily
attacked by any pen-testing tools which contain payload
of MS 08-067. Actually, in Chaos Tower, we employ a
vulnerable host in each layer. Then we use one of them
to play the role of attacker in turn. Figure 9 shows the
results of the unprotected network, the network protected
by CHAOS, and the fully obfuscated network. We conclude
that, in the network protected by CHAOS, only a few attacks
directed to hosts belonging to adjacent layers succeeded.
However, in the fully obfuscated network, most attacks
succeeded in the end. The worst is that almost all attacks
succeeded in the unprotected network. Thus, our system can
decrease the success rate of such kind of attacks significantly.

6. Related Work

Several researchers have reported work on MTD. Kewley et
al. [21] performed the initial research in the area of dynamic
network defense and proved that dynamic network recon-
figuration, such as randomly changing the IP address and
port numbers, would effectively inhibit an adversary’s ability
to gather intelligence and thus degrade the ability to success-
fully launch an attack. Al-Shaer proposed MUTE, a moving
target defense architecture [5], which implements themoving
target through random address hopping and random finger
printing. Furthermore, they presented BDD, a model for
creating a validmutation of network configuration. Zhuang et
al. [4] investigated the application of moving target defenses
to network security and presented a high-level architecture of
the MTD system.Their simulation results show the potential
for MTD to be effective in preventing attacks against com-
puter networks. Furthermore, they proposed a formal theory
to describe the MTD system and its basic properties and
formalized the MTD entropy hypothesis, which states that
the greater the entropy of the system configuration, the more
effective the MTD system [22, 23]. Stallings proposed the
use of SDN in the implementation of MTD mitigations. Al-
Shaer et al. [15] proposed OpenFlow RandomHost Mutation
(OF-RHM), which uses OpenFlow to develop an MTD

architecture that transparently mutates host IP addresses
with high unpredictability, while maintaining configuration
integrity and minimizing operational overhead.

However, current network-based MTD obfuscates net-
works indiscriminately that makes some networks services
unavailable, for example, some key services like web and
DNS, because some information of these services has to be
opened to the outside and remain real. If MTD obfuscates
these services fully, it will return users with virtual IPs and
ports, making these services unable to use. Moreover, obfus-
cation will affect the performance of networks. To obfuscate
hosts indiscriminately will severely reduce the performance
of networks undoubtedly. In contrast to the above work,
CHAOS discriminately obfuscates hosts with different secu-
rity levels in networks.

Zhang et al. [24] proposed to construct an incentive
compatible moving target defense by periodically migrating
virtual machines (VMs), thereby making it much harder
for adversaries to locate the target VMs. Gillani et al. [25]
proposed to defend againstDDoS attacks bymigrating virtual
networks (VNs) to dynamically reallocate network resources.
Different from their work, CHOAS leverages SDN features
to obfuscate network information instead of migrating target
objects.

Previous research involving memory address space ran-
domization [26–28], instruction set randomization [29], and
software diversification [30, 31] also used the idea of amoving
target to increase the attack difficulty and cost by enlarging
the exploration surface or moving the attack surface. The
objective of our work is to enhance network security; hence,
the aspects mentioned here are not discussed in detail.

7. Conclusion

MTD is able to create a type of changing network so as to
increase the difficulty and cost for an adversary aiming to
launch a network attack. In this paper, we proposes an SDN-
based MTD system named CHAOS which discriminately
obfuscates hosts with different security levels in networks so
as to keep some key services available and low performance
cost. CHAOS incorporates the Chaos Tower Structure to
represent a hierarchy of all the hosts on the network and lever-
ages SDN features to obfuscate the attack surface to enhance
the unpredictability of the networking environment. CHAOS
offers rapid obfuscation of unexpected network traffic but
does not interfere with normal traffic. The evaluation shows
that a network protected by CHAOS can effectively lower the
percentage of information that is disclosed.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation ofChina (nos. 61272452, 61332019, and 61402342),
the National High-Tech Research and Development Program

Security and Communication Networks 11

of China (“863” Program) (no. 2015AA016002), and the
National Basic Research Program of China (“973” Program)
(no. 2014CB340601).

References

[1] Open Networking Foundation, “OpenFlow1.1.0 specification,”
2011, http://www.openflow.org/documents/openflow-spec-v1.1.0
.pdf.

[2] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Adversary-aware
IP address randomization for proactive agility against sophis-
ticated attackers,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM ’15), pp. 738–746, IEEE,
April 2015.

[3] Y. Wang, J. Bi, and K. Zhang, “A tool for tracing network data
plane via SDN/OpenFlow,” Science China Information Sciences,
vol. 60, no. 2, Article ID 022304, 2017.

[4] R. Zhuang, S. Zhang, A. Bardas, S. A. DeLoach, X. Ou, and A.
Singhal, “Investigating the application ofmoving target defenses
to network security,” in Proceedings of the 2013 6th International
Symposium on Resilient Control Systems, ISRCS 2013, pp. 162–
169, San Francisco, Calif, USA, August 2013.

[5] E. Al-Shaer, “Toward network configuration randomization for
moving target defense,” in Moving Target Defense, vol. 54 of
Advances in Information Security, pp. 153–159, Springer, New
York, NY, USA, 2011.

[6] J. Sun and K. Sun, “DESIR: Decoy-enhanced seamless IP
randomization,” in Proceedings of the 35th Annual IEEE Inter-
national Conference onComputer Communications, IEEE INFO-
COM 2016, April 2016.

[7] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards
SDN-Defined Programmable BYOD (Bring Your Own Device)
Security,” in Proceedings of the Network and Distributed System
Security Symposium, San Diego, Calif, USA, February 2016.

[8] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, “PSI:
Precise Security Instrumentation for Enterprise Networks,” in
Proceedings of the 2017 Network and Distributed System Security
Symposium (NDSS ’17), San Diego, Calif, USA, February 2017.

[9] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, 2008.

[10] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Enabling
Practical Software-defined Networking Security Applications
with OFX,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS ’16), San Diego, Calif, USA,
February 2016.

[11] Stanford University, “Clean slate program,” http://cleanslate
.stanford.edu/.

[12] OpenNetworking Foundation, “OpenFlow switch specification,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[13] Flowgrammable Team, “Packet in messages,” 2014, http://
flowgrammable.org/sdn/openow/message-layer/packetin.

[14] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide to
the Common Vulnerability Scoring System Version 2.0,” 2007,
https://www.nist.gov/publications/complete-guide-common-
vulnerability-scoring-system-version-20.

[15] E.Al-Shaer,Q.Duan, and J.H. Jafarian, “Randomhostmutation
for moving target defense,” in Security and Privacy in Commu-
nication Networks, A. D. Keromytis and R. Di Pietro, Eds., vol.

106 of Lecture Notes of the Institute for Computer Sciences, pp.
310–327, Springer, Berlin, Germany, 2013.

[16] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions
for Moving Target Defense network protection,” in Proceedings
of the 15th IEEE International Symposium on aWorld ofWireless,
Mobile and Multimedia Networks (WoWMoM ’14), pp. 1–6,
Sydney, Australia, June 2014.

[17] G. Lyon, Network mapper, 2017, https://nmap.org/.
[18] Rapid7 LLC, Metasploit, 2009, https://www.offensive-security

.com/metasploit-unleashed/vulnerabilityscanning.
[19] Tenable, Nessus, 2017, http://www.tenable.com.
[20] The CloudLab Team, CloudLab, 2014, http://www.cloudlab.us

.project.
[21] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic ap-

proaches to thwart adversary intelligence gathering,” in Pro-
ceedings of the DARPA Information Survivability Conference and
Exposition II, DISCEX 2001, pp. 176–185, Anaheim, Calif, USA,
June 2001.

[22] R. Zhuang, S. A. DeLoach, and X. Ou, “A model for analyzing
the effect of moving target defenses on enterprise networks,” in
Proceedings of the 9th Annual Cyber and Information Security
Research Conference (CISRC ’14), pp. 73–76, April 2014.

[23] R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of
moving target defense,” in Proceedings of the First ACM Work-
shop on Moving Target Defense (MTD ’14), pp. 31–40, ACM,
November 2014.

[24] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive com-
patible moving target defense against VM-colocation attacks in
clouds,” in Information Security and Privacy Research, pp. 388–
399, Springer, Berlin, Germany, 2012.

[25] F. Gillani, E. Al-Shaer, S. Lo, Q. Duan, M. Ammar, and E.
Zegura, “Agile virtualized infrastructure to proactively defend
against cyber attacks,” in Proceedings of the 34th IEEE Annual
Conference on Computer Communications and Networks, IEEE
INFOCOM 2015, pp. 729–737, May 2015.

[26] F. P. Miller, A. F. Vandome, and J. McBrewster, Address space
layout randomization, Alphascript Publishing, 2010.

[27] K. Chongkyung, J. Jinsuk, C. Bookholt, X. Jun, and N. Peng,
“Address Space Layout Permutation (ASLP): Towards fine-
grained randomization of commodity software,” in Proceedings
of the 22nd Annual Computer Security Applications Conference,
ACSAC 2006, pp. 339–348, December 2006.

[28] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D.
Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM conference on Computer and
communications security (CCS ’04), p. 298, Washington, DC,
USA, October 2004.

[29] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V.
Prevelakis, “On the general applicability of instruction-set
randomization,” IEEE Transactions on Dependable and Secure
Computing, vol. 7, no. 3, pp. 255–270, 2010.

[30] Y. Huang and A. K. Ghosh, “Introducing diversity and uncer-
tainty to create moving attack surfaces for web services,” in
Moving Target Defense, vol. 54 of Advances in Information
Security, pp. 131–151, Springer, New York, NY, USA, 2011.

[31] M. Christodorescu, M. Fredrikson, S. Jha, and J. Giffin, “End-
to-end software diversification of internet services,” in Moving
Target Defense, vol. 54 of Advances in Information Security, pp.
117–130, Springer, New York, NY, USA, 2011.

http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://cleanslate.stanford.edu/
http://cleanslate.stanford.edu/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://flowgrammable.org/sdn/openow/message-layer/packetin
http://flowgrammable.org/sdn/openow/message-layer/packetin
https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://nmap.org/
https://www.offensive-security.com/metasploit-unleashed/vulnerabilityscanning
https://www.offensive-security.com/metasploit-unleashed/vulnerabilityscanning
http://www.tenable.com
http://www.cloudlab.us.project
http://www.cloudlab.us.project

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

