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It has been shown that iterative reweighted strategies will often improve the performance ofmany sparse reconstruction algorithms.
Iterative Framework for Sparse Reconstruction Algorithms (IFSRA) is a recently proposed method which iteratively enhances the
performance of any given arbitrary sparse reconstruction algorithm. However, IFSRA assumes that the sparsity level is known.
Forward-Backward Pursuit (FBP) algorithm is an iterative approach where each iteration consists of consecutive forward and
backward stages. Based on the IFSRA, this paper proposes the Iterative Forward-Backward Pursuit (IFBP) algorithm, which applies
the iterative reweighted strategies to FBP without the need for the sparsity level. By using an approximate iteration strategy,
IFBP gradually iterates to approach the unknown signal. Finally, this paper demonstrates that IFBP significantly improves the
reconstruction capability of the FBP algorithm, via simulations including recovery of random sparse signals with different nonzero
coefficient distributions in addition to the recovery of a sparse image.

1. Introduction

Compressed Sensing (CS) is a new paradigm in signal
processing which was put forward by [1, 2]. Many algorithms
have been proposed to solve this problem, which seems
to be intractable. They can be roughly divided into three
categories: Greedy Pursuit, Convex Relaxation, and Bayesian
Framework. Greedy methods iteratively identify elements
of the estimated support set. At last, these methods use a
simple least-square to recover the original signal.Theymainly
include Matching Pursuit (MP) algorithm [3], Orthogonal
Matching Pursuit (OMP) [4], Subspace Pursuit (SP) [5],
Compressive SamplingMP (CoSaMP) [6], LookAheadOMP
(LAOMP) [7], and Forward-Backward Pursuit (FBP) [8]. CS
has been widely used in many fields, such as wireless sensor
network [9, 10] and magnetic resonance imaging (MRI) [11–
14].

In [15], the author proposes a general iterative frame-
work to improve the performance of any arbitrary sparse

reconstruction algorithm, called Iterative Framework for
Sparse Reconstruction Algorithms (IFSRA). After applying
the framework to MP, OMP, CoSaMP, BPDN [16], and
Smoothed L0 (SL0) [17], the performance of those algorithms
has been raised. However, IFSRA requires the sparsity level to
be known.

FBP, a novel two-stage greedy approach, uses a forward
step to enlarge the support estimate by 𝛼 atoms, while the
backward step eliminates 𝛽 < 𝛼 atoms from it. In [8], the
author demonstrates that the exact recovery of FBP can be
significantly better thanOMP, while the run times of FBP and
OMP are almost the same.However, this paper shows that the
performance of FBP can be further enhanced.

By inheriting the iterative idea of IFSRA, this paper
proposes the Iterative Forward-Backward Pursuit (IFBP)
algorithm. Different from the IFSRA, the IFBP does not need
to know the sparsity level in advance. By setting appropriate
initial atoms and iterative step, IFBP gradually iterates to
approach the spare signal. The simulations demonstrate that
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the exact recovery rate of IFBP is significantly better than
FBP.

2. Compressed Sensing and
Reconstruction Algorithm

2.1. Compressed Sensing Theory. Consider a standard CS
measurement, where a sparse signal is collected through
linear measurements via

b = Ax, (1)

where x is a 𝐾 sparse signal of length 𝑁, 𝐾 denotes the
number of nonzero elements in x, A is an 𝑀 × 𝑁 random
matrix, and b is the observation vector of length 𝑀 with
𝐾 < 𝑀 < 𝑁. However, it is analytically ill-posed to recover x
from the observation vector b. Because x is a sparse signal,
CS reformulates (1) as a sparsity-promoting optimization
problem:

x = argmin ‖x‖0
subject to Ax = b,

(2)

where ‖x‖
0
indicates the number of nonzero elements in x.

2.2. Iterative Framework for Sparse Signal Reconstruction. The
seminal work by Candès et al. [18] shows that the recon-
struction performance of Convex RelaxationMethods can be
improved by a reweighted strategy. In [15], the author extends
the iterative framework to an arbitrary sparse reconstruction
algorithm.

Each iteration of IFSRA mainly includes three major
tasks: estimation, fusion, and regularization.

(i) Estimation: Use original algorithm to get the result of
the regularized sparse problem.

(ii) Fusion: Keep only 𝐾 potential atoms from the inter-
section of the estimate of this regularized sparse
reconstruction problem and the estimate in the pre-
vious iteration.

(iii) Regularization: Regularize the measurement matrix
A and the measurement vector b which is prepared
for the next iteration.

The termination condition of IFSRA is that the 𝑙
2
norm of

the regularized measurement vector increases.

2.3. The Forward-Backward Pursuit Algorithm. FBP, as an
iterative two-stage algorithm, needs two factors: 𝛼 and 𝛽 (𝛽 <

𝛼). The former is called the forward step size, while the latter
is called the backward step size. At the first stage, FBP expands
the estimated support set by 𝛼 > 1 atoms. Subsequently,
the algorithm computes the orthogonal projection of the
observed vector onto the subspace defined by the estimated
support set. At the second stage, FBP eliminates 𝛽 atoms with
the smallest contributions to the projection to reduce the
size of the estimated support set. The termination condition,
which controls whether to stop these forward and backward
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| ≥ 𝐾max then

𝑓𝑙𝑎𝑔 = 0;
break

end if
end while
x̃ = 0

x̃
𝑇
𝑘 = w

return x̃, 𝑇𝑘, 𝑓𝑙𝑎𝑔

Algorithm 1: FBP algorithm [8].

steps, is related to the energy of the residue. If the energy
of the residue either vanishes or is less than a threshold,
which is proportional to the energy of the observed vector,
the algorithm has to return a result. Algorithm 1 gives the
pseudocode of the FBP algorithm.

Compared with OMP, SP, and BP, FBP has obvious
advantages, when the magnitudes of the nonzero elements
start spanning a wider range, as for the Gaussian distribution
or the uniform distribution. When increasing 𝛼 and keeping
𝛼 − 𝛽 fixed, we can improve the recovery performance, while
the run time also increases. From the simulations in [8], we
observe that choosing 𝛼 ∈ [0.2𝑀, 0.3𝑀] and keeping 𝛽 = 𝛼−

1 result in the optimal recovery performance. Moreover, the
parameter 𝐾max, which is useful in case of a fail, also decides
the number of the iterations. In order to adapt to the IFBP
algorithm, this paper make a little change to the pseudocode
of the FBP algorithm in Algorithm 1. Note that, by ignoring
the variable 𝑓𝑙𝑎𝑔 in Algorithm 1, we get the standard FBP.

3. Iterative Forward-Backward Pursuit

3.1. The Iterative Framework. By exploiting the information
available in the estimate of the current iteration, the IFSRA
algorithm improves the sparse reconstruction performance
in the subsequent iteration(s). Assuming that the estimated
support set ̂𝑇

𝑘
, which is obtained in the 𝑘th iteration, contains

𝑆
𝑘
true atoms, we need to identify only 𝐾 − 𝑆

𝑘
true atoms
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from 𝑁 − 𝐾 atoms listed in ̂
𝑇

𝑐

𝑘
. Based on this idea, the new

problem in the (𝑘 + 1)th iteration can be interpreted as a
reduced dimensional problem.Thus, we only need to recover
a sparser signal than x, while the number of measurements is
also𝑀.Thus,when retaining 𝑆

𝑘
true atoms in ̂

𝑇
𝑘
, we are likely

to obtain a better signal estimate in the (𝑘+1)th iteration [15].
Because the sparsity level 𝐾 is known, IFSRA can easily

determine the number of the reserved atoms. However, if
we do not know the sparsity level 𝐾, the iteration will not
perform well. For example, FBP would return 𝐾max atoms,
when FBP does not accurately reconstruct the original signal.
If we retain all 𝐾max atoms without any further processing,
the simulation shows that the iterative framework has no
effect on improving the performance of FBP. This paper
solves the problem by adding two parameters: 𝐼 and 𝑆. The
parameter 𝐼 denotes the number of the reserved atoms after
the first iteration. The parameter 𝑆 denotes the number of
the added atoms in the subsequent iteration(s). Experimental
simulation results show that this iterative framework can
effectively improve the performance of FBP, without the need
for the sparsity level𝐾.

3.2. The Iterative Forward-Backward Pursuit Algorithm. In
[8], the author points out that we can get the optimal recovery
performance in practice, when choosing 𝛼 ∈ [0.2𝑀, 0.3𝑀]

and 𝛽 = 𝛼−1. In other words, for𝑀 = 100 and 𝛼 = 20, when
𝛽 = 19, the result of the algorithm is the best for both exact
recovery rate and reconstruction error. The performance of
𝛽 = 18 is just lower than 𝛽 = 19. This paper proposes the
IFBP algorithm to further enhance the performance of FBP
by using the iterative framework.

First, IFBP runs FBP. If FBP exits the iteration in the
way that the energy of the residue is less than the default
threshold, IFBP uses the result of the FBP as the final result.
Different from IFSRA, IFBP algorithms are able to get the
estimated signal after the first iteration. Note that IFSRA
needs at least two iterations due to the iterative termination
condition. If FBP exits the iteration in the way that the
maximumsize of the estimated support set ismore than𝐾max,
IFBP retains 𝐼 potential atoms in the estimated support set. In
the subsequent iterations, IFBP adds only 𝑆 potential atoms
to the estimated support set after fusing the estimate of this
regularized sparse reconstruction problem and the estimate
in the previous iteration. IFBP is iterated as long as the energy
of the regularized measurement vector decreases.

3.3.TheAcceleration Strategy. Both IFSRA and IFBP improve
the performance of the algorithms through the iterations.
IFSRA only offers a general iterative framework. However,
this paper would exploit the character of FBP to reduce the
run time of IFBP.

In the 𝑘th (𝑘 > 1) iteration, the FBP algorithm, which
is the parent algorithm of IFBP in this paper, could exit the
iteration in the way that the energy of the residue is less than
the default threshold. Once this happens, the algorithm is
likely to have found all the remaining real atoms. If we add
all of those atoms to the estimated support set at once, the
number of iterations will be greatly reduced. Meanwhile, the
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Outputs: x̂ and ̂
𝑇.

Algorithm 2: IFBP algorithm.

exact recovery rate of IFBP would not decline. Algorithm 2
gives the pseudocode of the IFBP algorithm.

The main idea of the proposed algorithm is using two
parameters to reconstruct the signal step by step. The pro-
posed algorithm overcomes the problem that iterations need
the sparsity level𝐾 in [15]. By preserving the useful atoms in
each iteration, the proposed algorithm expands the estimated
support set step by step. Meanwhile, the proposed algorithm
exploits the character of FBP to reduce the number of itera-
tions. Thus, the proposed algorithm applies the reweighting
scheme into the FBP algorithm without the sparsity level.

4. Experimental Evaluation

4.1. The Recovery of the Sparse Signals. In order to demon-
strate the superiority of the algorithm, we compare the exact
recovery rates, average recovery error, and run times of
IFBP with those of FBP for signals with nonzero elements
drawn from the Gaussian and uniform distributions. The
nonzero entries of theGaussian sparse signals are drawn from
the standard Gaussian distribution. Meanwhile, nonzero ele-
ments of the uniform sparse signals are distributed uniformly
in [−1, 1]. The observation matrix, which is different for each
test signal, is drawn from the Gaussian distribution with
mean 0 and standard deviation 1/𝑁. Then, we normalize
each column norm to unity. During the experiments, we use
MATLAB to perform these algorithms.

In these simulations, we choose 𝑁 = 256 and 𝑀 = 100

while𝐾 varies from 15 to 48. For each𝐾, recovery simulations
are repeated over 500 times, where the randomly generated
Gaussian and uniform sparse signals are different for each
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Figure 1: Exact recovery rates for the Gaussian sparse vectors (𝛼 =

20, 𝛽 = 19).

test. We use the Average Normalized Mean-Squared-Error
(ANMSE) to scale the recovery error, which is defined as
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where x̂
𝑖
denotes the recovery of the 𝑖th test vector x

𝑖
.

In addition, another evaluation criterion, called the exact
recovery rate, is also used in these tests. It represents the ratio
of perfectly recovered test samples to the whole test data.The
exact recovery condition is selected as ‖x − x̂‖

2
≤ 10
−2
‖x‖
2

[8].
In these tests, we select 𝐾max = 50 and the termination

parameter 𝜀 = 10
−6, which are the same for FBP and IFBP.

Meanwhile, this paper selects 𝐼 = 0.1𝑀 and 𝑆 = 0.5𝐼 for
IFBP.

Reference [8] points out that choosing 𝛼 ∈ [0.2𝑀, 0.3𝑀]

and 𝛽 = 𝛼 − 1 leads to the optimal recovery performance in
practice. This paper chooses FBP (𝛼 = 20, 𝛽 = 19) and FBP
(𝛼 = 30, 𝛽 = 29) as the parent algorithm of IFBP, respectively.

First, we test the performance of IFBP with FBP (𝛼 = 20,
𝛽 = 19) as the parent algorithm. Figures 1 and 2 depict
the reconstruction performance of IFBP for the Gaussian
sparse signals in comparison to FBP (𝛼 = 20, 𝛽 = 19).
Analogous results are provided in Figures 3 and 4 for the
uniform ensemble as well.

In Figure 1, we observe that the exact recovery rates of
IFBP are significantly better than FBP.When𝐾 is small, both
FBP and IFBP can guarantee 100% to reconstruct the original
signal. With 𝐾 increasing, the exact recovery rates of two
algorithms decrease. At 𝐾 = 30, FBP starts to fail. However,
IFBP failures begin when 𝐾 = 36. The exact recovery rate
of FBP drops to 33.6% at 𝐾 = 48, where IFBP is 61.8%. By
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Figure 2: Average NMSE for the Gaussian sparse vectors (𝛼 = 20,
𝛽 = 19).
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Figure 3: Exact recovery rates for the uniform sparse vectors (𝛼 =

20, 𝛽 = 19).

the proposed method of this paper, the exact recovery rate of
FBP at𝐾 = 48 increases by 80%. As for ANMSE, IFBP is also
the better performer from Figure 2. At 𝐾 = 48, the ANMSE
of FBP grows to 0.31, while IFBP reduces the ANMSE down
to 0.19. Note that the performance of both IFBP and FBP
declines when the coefficient distribution changes from the
Gaussian distribution to the uniform distribution. This is
related to the involved correlation-maximization step, that is,
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Figure 4: Average NMSE for the uniform sparse vectors (𝛼 = 20,
𝛽 = 19).

choosing the largest magnitude elements of Φ × r𝑘−1, which
becomes more prone to errors when the nonzero elements of
the underlying sparse signals span a narrower range [8].

Investigating Figures 3 and 4, which depict recovery
results for the uniform sparse signals, we observe a similar
behavior aswell. IFBP results in significant improvement over
FBP in both exact recovery rates and ANMSE. The exact
recovery rate of IFBP is 29.4% at 𝐾 = 48, which is nearly
three times FBP. Meanwhile, IFBP provides 0.1 ANMSE
improvement over FBP.

Then, we take FBP (𝛼 = 30, 𝛽 = 29) as the parent
algorithm of IFBP in Figures 5, 6, 7, and 8. Similar to the
previous test case, IFBP yields better recovery rates and
ANMSE than FBP for both the Gaussian sparse signals and
the uniform sparse signals.

It is noted that IFBP is computationally more demanding
than the parent FBP as it runs the parent FBP multiple times
to enhance the sparse signal reconstruction. In addition, it
may be observed that IFBP with FBP (𝛼 = 30, 𝛽 = 29) as the
parent algorithm results in a better performance, compared
to IFBP with FBP (𝛼 = 20, 𝛽 = 19) as the parent algorithm.
This is due to the parent algorithm, which has severe effect on
IFBP.

4.2. The Recovery of the Sparse Image. In this section, we
evaluate the performance of the proposed IFBP using real-
world signal. We use a similar simulation setup used in [8].
The recovery is performed on the 256 × 256 image “lena,”
which should be divided into 8 × 8 blocks in advance. The
pretreatment is to ensure that each 8 × 8 block is 𝐾 sparse
in the 2D Haar Wavelet basis, Ψ, where 𝐾 = 12. Namely,
each block only keeps the 𝐾 = 12 largest magnitude wavelet
coefficients. Thus, the recovery problem is broken into a
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Figure 5: Exact recovery rates for the Gaussian sparse vectors (𝛼 =

30, 𝛽 = 29).
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Figure 6: Average NMSE for the Gaussian sparse vectors (𝛼 = 30,
𝛽 = 29).

number of smaller and simpler problems. In order to adapt
to the small size, we take the observation size 𝑀 = 32,
which is the same for each block. The observation matrix
Φ is randomly drawn from the Gaussian distribution with
mean 0 and standard deviation 1/𝑁. Then, we normalize
each column norm to unity. The parameters are selected as
𝐾max = 16 and 𝜀 = 10

−6. We take FBP (𝛼 = 10, 𝛽 = 9)
as the parent algorithm of IFBP in this example. Meanwhile,
this example selects 𝐼 = 4 and 𝑆 = 0.5𝐼 for IFBP.
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Figure 7: Exact recovery rates for the uniform sparse vectors (𝛼 =

30, 𝛽 = 29).
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Figure 8: Average NMSE for the uniform sparse vectors (𝛼 = 30,
𝛽 = 29).

Figure 9 is the test image “lena.” The results of FBP
and IFBP are shown in Figures 10 and 11. In this example,
the Peak Signal-to-Noise Ratio (PSNR) value of FBP is
28.6 dB, while IFBP promotes the PSNR up to 29.9 dB. This
example shows that IFBP has the ability to generate more
accurate recovery than FBP for a signal with realistic nonzero
coefficient distribution.

Figure 9: Test image “lena.”

Figure 10: FBP (𝛼 = 10, 𝛽 = 9), PSNR = 28.6 dB.

Figure 11: IFBP, PSNR = 29.9 dB.

5. Conclusions

Combining FBP with IFSRA, this paper proposes IFBP
algorithm. Unlike the IFSRA, IFBP iterates the FBP without
prior information of the sparsity. IFBP can significantly
improve the performance of FBP by adjusting the number of
atomswhich are added to the estimated support set in the first
iteration and the subsequent iteration(s). Meanwhile, IFBP
judges the result of the parent algorithm in the first iteration
and overcomes the problem that IFSRA has to iterate at least
twice due to the iterative termination condition. In addition,
this paper uses the acceleration strategy to reduce the number
of the iterations.The efficacy of IFBP in applications is shown
using numerical simulations on both spare signals and the
spare image. More important, the IFBP algorithm provides
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a useful idea for algorithm improvement, where the sparsity
level is unknown.
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