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Two-dimensional steepest descent curves (SDC) for a quasiconvex family are considered; the problem of their extensions (with
constraints) outside of a convex body 𝐾 is studied. It is shown that possible extensions are constrained to lie inside of suitable
bounding regions depending on 𝐾. These regions are bounded by arcs of involutes of 𝜕𝐾 and satisfy many inclusions properties.
The involutes of the boundary of an arbitrary plane convex body are defined and written by their support function. Extensions
SDC ofminimal length are constructed. Self-contracting sets (with opposite orientation) are considered: necessary and/or sufficient
conditions for them to be subsets of SDC are proved.

1. Introduction

Let 𝑢 be a smooth function defined in a convex bodyΩ ⊂ R𝑛.
Let𝐷𝑢(𝑥) ̸= 0 in {𝑥 ∈ Ω : 𝑢(𝑥) > min 𝑢}. A classical steepest
descent curve of 𝑢 is a rectifiable curve 𝑠 → 𝑥(𝑠) solution to

𝑑𝑥

𝑑𝑠
= −

𝐷𝑢

|𝐷𝑢|
(𝑥 (𝑠)) . (1)

Classical steepest descent curves are the integral curves of
a unit field normal to the sublevel sets of the given smooth
function𝑢.We are interested in “generalized” steepest descent
curves that are integral curves to a unit field normal to a
nested family of convex sets {Ω

𝑡
} (see Definition 5); {Ω

𝑡
}

will be called a quasiconvex family as in [1]. Sharp bounds
about the length of the steepest descent curves for a quasi
convex family have been proved in [2–4]. The geometry of
these curves, equivalent definitions, related questions and
generalizations have been studied in [5–9].

In the present work generalized steepest descent curves for
a quasiconvex family (SDC for short) are defined as bounded
oriented rectifiable curves 𝛾 ⊂ R𝑛, with a locally Lipschitz

continuous parameterization 𝑇 ∋ 𝑡 → 𝑥(𝑡), with ascent
parameter, satisfying

⟨𝑥̇ (𝑡) , 𝑥 (𝜏) − 𝑥 (𝑡)⟩ ≤ 0, a.e. 𝑡 ∈ 𝑇, ∀𝜏 ≤ 𝑡; (2)

⟨⋅, ⋅⟩ is the scalar product in R𝑛. Let ordering ⪯ be chosen on
𝛾, according to the orientation; let us denote

𝛾
𝑥
= {𝑦 ∈ 𝛾 : 𝑦 ⪯ 𝑥} . (3)

In [8, Theorem 4.10], the SDC are characterized in an equiv-
alent way as self-distancing curves, namely, oriented (⪯)
continuous curves with the property that the distance of 𝑥
to an arbitrarily fixed previous point 𝑥

1
is not decreasing:

𝑥
1
⪯ 𝑥

2
⪯ 𝑥

3
󳨐⇒

󵄨󵄨󵄨󵄨𝑥2
− 𝑥

1

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥3

− 𝑥
1

󵄨󵄨󵄨󵄨 ∀𝑥
1
, 𝑥

2
, 𝑥

3
∈ 𝛾.

(4)

Thus steepest descent curves are self-distancing curves and
both denoted SDC. In [8] self-distancing curves are called
self-expanding curves. With the opposite orientation these
curves have been also introduced, studied, and called self-
approaching curves (see [2]) or self-contracting curves (see
[7]).
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In our work we are interested in the behaviour and
properties of a plane SDC 𝛾 beyond its final point 𝑥

0
. One of

the principal goals of the paper is to show that conditions (2)
and (4) imply constraints for possible extensions of curve 𝛾
beyond 𝑥

0
; these constraints are written as bounding regions

for the possible extensions of 𝛾
𝑥0
.

An important property that will be used later is the
property of distancing from a set 𝐴.

Definition 1. Given a set𝐴, an absolutely continuous curve 𝛾,
𝑇 ∋ 𝑡 → 𝑥(𝑡) has the distancing from 𝐴 property if it satisfies

⟨𝑥̇ (𝑡) , 𝑦 − 𝑥 (𝑡)⟩ ≤ 0, a.e. 𝑡 ∈ 𝑇, ∀𝑦 ∈ 𝐴. (5)

Let us outline the content of our work. In Section 2
introductory definitions are given and covering maps for
the boundary of a plane convex set, needed for later use,
are introduced. In Section 3 the involutes of the boundary
of a plane convex body are introduced and some of their
properties are proved.

In Section 4 plane regions depending on the convex hull
of 𝛾

𝑥0
have been defined; these regions fence in or fence out

the possible extensions of 𝛾
𝑥0
. The boundary of these sets

consists of arcs of involutes of convex bodies, constructed
in Section 3. As an application, in Section 4.1 the following
problemhas been studied: given a convex set𝐾,𝑥

0
∈ 𝜕𝐾,𝑥

1
∉

𝐾, is it possible to construct SDC joining 𝑥
0
to 𝑥

1
, satisfying

the distancing from K property? Minimal properties of this
construction have been introduced and studied. In Section 5
sets of points more general than SDC are studied. A set 𝜎 ⊂
R2 (not necessarily a curve) of ordered points satisfying (4)
will be called self-distancing set; see also Definition 2; with
the opposite order, 𝜎 was called in [6] self-contracting set
and many properties of these sets, as only subsets of self-
contracting curves, were there obtained. Another goal of the
paper is the solution to the following question: given a self-
distancing set 𝜎 ⊂ R2 does a steepest descent curve 𝛾 ⊃

𝜎 exist? In Section 5 examples, necessary and/or sufficient
conditions are given when 𝜎 consists of a finite or countable
number of points 𝑥

𝑖
∈ R2 and/or steepest descent curves

𝛾
𝑖

⊂ R2.
In the present work the two-dimensional case is studied.

Similar results for the 𝑛-dimensional case are an open
problem stated at the end of the work.

2. Preliminaries and Definitions

Let

𝐵 (𝑧, 𝜌) = {𝑥 ∈ R
𝑛

: |𝑥 − 𝑧| < 𝜌} ,

𝑆
𝑛−1

= 𝜕𝐵 (0, 1)

𝑛 ≥ 2.

(6)

A nonempty, compact convex set 𝐾 of R𝑛 will be called a
convex body. Fromnow on,𝐾will always be a convex body not
reduced to a point. Int(𝐾) and 𝜕𝐾 denote the interior of𝐾 and
the boundary of𝐾, |𝜕𝐾| denotes its length, cl(𝐾) is the closure
of 𝐾, Aff(𝐾) will be the smallest affine space containing 𝐾,

and relint 𝐾 and 𝜕rel𝐾 are the corresponding subsets in the
topology of Aff(𝐾). For every set 𝑆 ⊂ R𝑛, co(𝑆) is the convex
hull of 𝑆.

Let 𝑞 ∈ 𝐾; the normal cone at 𝑞 to 𝐾 is the closed convex
cone:

𝑁
𝐾
(𝑞) = {𝑥 ∈ R

𝑛

: ⟨𝑥, 𝑦 − 𝑞⟩ ≤ 0 ∀𝑦 ∈ 𝐾} . (7)

When 𝑞 ∈ Int(𝐾), then𝑁
𝐾
(𝑞) reduces to zero.

The tangent cone or support cone of K at a point 𝑞 ∈ 𝜕𝐾
is given by

𝑇
𝐾
(𝑞) = cl(⋃

𝑦∈𝐾

{𝑠 (𝑦 − 𝑞) : 𝑠 ≥ 0}) . (8)

In two dimensions cones will be called sectors.
Let𝐾 be a convex body and let 𝑝 be a point. A simple cap

body 𝐾𝑝 is

𝐾
𝑝

= ⋃

0≤𝜆≤1

{𝜆𝐾 + (1 − 𝜆) 𝑝} = co (𝐾 ∪ {𝑝}) . (9)

Cap bodies properties can be found in [10, 11].

2.1. Self-Distancing Sets and Steepest Descent Curves. Let us
recall the following definitions.

Definition 2. Let us call self-distancing set a bounded subset 𝜎
of R𝑛, linearly ordered (by ⪯), with the property

𝑥
1
⪯ 𝑥

2
⪯ 𝑥

3
󳨐⇒

󵄨󵄨󵄨󵄨𝑥2
− 𝑥

1

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥3

− 𝑥
1

󵄨󵄨󵄨󵄨 , 𝑥
1
, 𝑥

2
, 𝑥

3
∈ 𝜎.

(10)

The self-distancing sets have been introduced in [6] with
the opposite order. If a self-distancing set 𝜎 is a closed
connected set, not reduced to a point, then it can be proved
that 𝜎 is the support of a steepest descent curve 𝛾 (see [8,
Theorem 4.10, Theorem 4.8]) and it will also be called a self-
distancing curve 𝛾.

The short name SDC will be used both for self-distancing
curves and for steepest descent curves in all the paper.

Definition 3. Let 𝐾 be a convex body; 𝛾 ⊂ R2

\ relint 𝐾 will
be called a self-distancing curve from 𝐾 (denoted SDC

𝐾
) if

(i) 𝛾 is a self-distancing curve,
(ii) 𝛾 ∩ 𝜕rel𝐾 ̸= 0,
(iii) 𝛾 has the property

𝑥 ⪯ 𝑥
1
󳨐⇒

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑥1
− 𝑦
󵄨󵄨󵄨󵄨 ∀𝑦 ∈ 𝐾, ∀𝑥, 𝑥

1
∈ 𝛾.

(11)

When (ii) does not hold, that is 𝛾 ∩ 𝜕rel𝐾 = 0, 𝛾 will be called
a deleted self-distancing curve from 𝐾.

Remark 4. Let 𝛾 be SDC
𝐾
, since 𝛾 has an absolutely continu-

ous parameterization ([8,Theorem 4.10,Theorem 4.8]), thus
property (11) for 𝛾 is equivalent to (5).
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If 𝛾 is SDC and 𝑥 ∈ 𝛾 then 𝛾 \ 𝛾
𝑥
is SDCco(𝛾𝑥). That is,

the tangent vector 𝑥̇(𝑡) to 𝛾 is in the normal cone at 𝑥(𝑡) to
the related convex set Ω

𝑡
fl co(𝛾

𝑥(𝑡)
). This condition is a

generalization of the classicals steepest descent curves that are
integral curves to a unit field normal to smooth quasiconvex
families.

Nested families of convex sets have been introduced and
studied by de Finetti [12] and Fenchel [1]. Let us recall some
definitions.

Definition 5. Let 𝑇 be a real interval. A convex stratification
(see [12]) is a nonempty familyK of convex bodies Ω

𝑡
⊂ R𝑛,

𝑡 ∈ 𝑇 ⊂ R, linearly strictly ordered by inclusion (Ω
1
⊂ Ω

2
,

Ω
1
̸= Ω

2
), with a maximum set (maxK) and a minimum set

(minK).
Let K = {Ω

𝑡
}
𝑡∈𝑇

be a convex stratification. If for every
𝑠 ∈ 𝑇 \ {max𝑇} the property

⋂

𝑡>𝑠

Ω
𝑡
= Ω

𝑠 (12)

holds, then as in [1],K = {Ω
𝑡
}
𝑡∈𝑇

will be called a quasiconvex
family.

An important quasiconvex family associated with a con-
tinuous self-distancing curve from 𝐾, 𝛾: 𝑡 → 𝑥(𝑡) is K =

{Ω
𝑡
}
𝑡∈𝑇

, where

Ω
𝑡
= co (𝛾

𝑥(𝑡)
∪ 𝐾) . (13)

The couple (𝛾,K) is special case of Expanding Couple, a class
introduced in [8].

Remark 6. If 𝛾 ∈ SDC
𝐾
, then for all 𝑥 ∈ 𝛾 the curve (𝛾 \ 𝛾

𝑥
) ∪

{𝑥} is a self-distancing curve from the convex hull of the set
𝛾
𝑥
∪ 𝐾.

This fact is a direct consequence of the following.

Proposition 7 (see [8, Lemma 4.9]). Let 𝑝, 𝑞, 𝑦
𝑖
∈ R𝑛, 𝑖 =

1, . . . , 𝑠. If
󵄨󵄨󵄨󵄨𝑝 − 𝑦

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑞 − 𝑦

󵄨󵄨󵄨󵄨 , 𝑓𝑜𝑟 𝑦 = 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑠 (14)

then the same holds for every 𝑦 ∈ co({𝑦
𝑖
, 𝑖 = 1, . . . , 𝑠}).

The statement of the previous proposition holds if large
inequalities are replaced by strict inequalities everywhere.

2.2. The Support Function of a Plane Convex Body. Let 𝐾 ⊂

R𝑛 be a convex body not reduced to a point.
For a convex body 𝐾, the support function is defined as

𝐻
𝐾
(𝑥) = sup

𝑦∈𝐾

⟨𝑥, 𝑦⟩ , 𝑥 ∈ R
𝑛

, (15)

where ⟨⋅, ⋅⟩ denotes the scalar product inR𝑛. For 𝑛 = 2, 𝜗 ∈ R,
let 𝜃 = (cos 𝜗, sin 𝜗) ∈ 𝑆

1 and ℎ
𝐾
(𝜗) fl 𝐻

𝐾
(𝜃); it will be

denoted ℎ(𝜗) if no ambiguity arises.
For every 𝜃 ∈ 𝑆1 there exists at least one point 𝑥 ∈ 𝜕𝐾

such that

⟨𝜃, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ 𝐾; (16)

this means that the line through 𝑥 orthogonal to 𝜃 supports
𝐾. For every 𝑥 ∈ 𝜕𝐾 let𝑁

𝑥
be the set of 𝜃 ∈ 𝑆1 such that (16)

holds. Let 𝐹(𝜃) be the set of all 𝑥 ∈ 𝜕𝐾 satisfying (16). If 𝜕𝐾
is strictly convex at the direction 𝜃 then 𝐹(𝜃) reduces to one
point and it will be denoted by 𝑥(𝜃).

Definition 8. The set valued map 𝐺 : 𝜕𝐾 → 𝑆
1

, 𝜕𝐾 ∋ 𝑥 →

𝑁
𝑥
⊂ 𝑆

1, is the generalized Gauss map; 𝑥 ∈ 𝜕𝐾 is a vertex on
𝜕𝐾 iff𝑁

𝑥
is a sector with interior points. The set valued map

𝐹 : 𝑆
1

→ 𝜕𝐾, 𝑆
1

∋ 𝜃 → 𝐹(𝜃) ⊂ 𝜕𝐾 is the reverse generalized
Gauss map; 𝐹(𝜃) is a closed segment, possibly reduced to a
single point, and it will be called 1-face when it has interior
points.

Let 𝑃 be the covering map

𝑃 : R 󳨀→ 𝑆
1

, (17)

R ∋ 𝜗 󳨀→

𝜃 = (cos 𝜗, sin 𝜗) ∈ 𝑆1.
(18)

Let 𝐿 = |𝜕𝐾|, and let 𝑠 → 𝑥
𝑙
(𝑠), 0 ≤ 𝑠 < 𝐿 (𝑠 → 𝑥

𝑟
(𝑠),

0 ≤ 𝑠 < 𝐿) be the parametric representations of 𝜕𝐾depending
on the arc length counterclockwise (clockwise) with an initial
point (not necessarily the same). Let us extend 𝑥

𝑙
(⋅) and 𝑥

𝑟
(⋅)

by defining

𝑥
𝑙
(𝑠) fl 𝑥

𝑙
(𝑠 − 𝑘𝐿) if 𝑘𝐿 ≤ 𝑠 < (𝑘 + 1) 𝐿, (𝑘 ∈ Z) , (19)

similarly for 𝑥
𝑟
.

Let us fix 𝑥
0
∈ 𝜕𝐾, 𝜃

0
∈ 𝐺(𝑥

0
), 𝜃

0
= (cos 𝜗

0
, sin 𝜗

0
), and

𝜗
0
∈ R.
For later use, we need to have 𝑥

0
= 𝑥

𝑙
(𝑠

0
) = 𝑥

𝑟
(𝑠

0
);

this can be realized by choosing suitable initial points for the
parameterizations 𝑥

𝑙
and 𝑥

𝑟
.

Then

𝑥
𝑙
(𝑠

0
+ 𝑠) = 𝑥

𝑟
(𝑠

0
+ 𝐿 − 𝑠) , ∀𝑠 ∈ R. (20)

The maps

𝑥
𝑙
: R 󳨀→ 𝜕𝐾,

𝑥
𝑟
: R 󳨀→ 𝜕𝐾

(21)

are covering maps.
The initial parameters will be

𝑥
0
= 𝑥

𝑙
(𝑠

0
) = 𝑥

𝑟
(𝑠

0
) ∈ 𝜕𝐾,

𝑆
1

∋ 𝜃
0
∈ 𝐹

−1

(𝑥
0
) ,

R ∋ 𝜗
0
∈ 𝑃

−1

(𝜃
0
)

(22)

(𝐹−1

(𝑥
0
), 𝑃

−1

(𝜃
0
) are the back images of 𝐹, 𝑃, resp.). Let 𝑘 ∈

Z. Let us define, for 𝜗
0
+ 2𝑘𝜋 < 𝜗 < 𝜗

0
+ 2(𝑘 + 1)𝜋:

𝑠
𝑙+
(𝜗) fl sup {𝑠 ∈ R : 𝑘𝐿 < 𝑠 ≤ (𝑘 + 1) 𝐿, 𝑥

𝑙
(𝑠)

∈ 𝐹 (𝑃 (𝜗))} ;

(23)
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if 𝜗 = 𝜗
0
+ 2𝑘𝜋

𝑠
𝑙+
(𝜗) fl sup {𝑠 ∈ R : 𝑘𝐿 ≤ 𝑠 < (𝑘 + 1) 𝐿, 𝑥

𝑙
(𝑠)

∈ 𝐹 (𝑃 (𝜗))} .

(24)

Similarly, let us define for 𝜗
0
+ 2(𝑘 − 1)𝜋 < 𝜗 < 𝜗

0
+ 2𝑘𝜋:

𝑠
𝑟−
(𝜗) fl inf {𝑠 ∈ R : 𝑘𝐿 ≤ 𝑠 < (𝑘 + 1) 𝐿, 𝑥

𝑟
(𝑠)

∈ 𝐹 (𝑃 (𝜗))} ;

(25)

if 𝜗 = 𝜗
0
+ 2𝑘𝜋

𝑠
𝑟−
(𝜗) fl inf {𝑠 ∈ R : (𝑘 − 1) 𝐿 < 𝑠 ≤ 𝑘𝐿, 𝑥

𝑟
(𝑠)

∈ 𝐹 (𝑃 (𝜗))} .

(26)

The function 𝑠
𝑙+
is increasing in R and right continuous and

with left limits (so called cadlag function). Similar properties
hold for −𝑠

𝑟−
. Let us recall that a cadlag increasing function

𝑠(𝜗), 𝜗 ∈ R, has a right continuous inverse defined as

𝜗 (𝑠) = inf {𝜗 : 𝑠 (𝜗) > 𝑠} . (27)

Let 𝜗
𝑙+
(⋅) be the right continuous inverse of 𝑠

𝑙+
(⋅). Let 𝑠 →

𝜗
𝑟−
(𝑠) be the opposite of the right continuous inverse of

−𝑠
𝑟−
(⋅).
Let us introduce for simplicity

n
𝜗
fl (cos 𝜗, sin 𝜗) ,

t
𝜗
fl (− sin 𝜗, cos 𝜗) .

(28)

Let 𝜗 → ℎ(𝜗) be the support function of𝐾.
It is well known ([13]) that if 𝜕𝐾 is 𝐶2

+
(i.e., 𝜕𝐾 ∈ 𝐶2, with

positive curvature), then ℎ is 𝐶2 and the counterclockwise
element arc 𝑑𝑠 of 𝜕𝐾 is given by

𝑑𝑠 = (ℎ + ℎ̈) 𝑑𝜗. (29)

ℎ(𝜗) + ℎ̈(𝜗) is the positive radius of curvature; moreover the
reverse Gauss map 𝐹 : 𝜃 → 𝑥 ∈ 𝜕𝐾 is a 1-1 map given by

𝑥 (𝜃) fl ℎ (𝜗)n
𝜗
+ ℎ̇ (𝜗) t

𝜗
, 𝜗 ∈ 𝑃

−1

(𝜃) . (30)

The previous formula also holds for an arbitrary convex
body, for every 𝜗 such that 𝐹(𝜃) is reduced to a point; see [10].
Let us recall that a real valued function 𝑥 → 𝑓(𝑥) is called
semiconvex onRwhen there exists a positive constant𝐶 such
that 𝑓(𝑥) + 𝐶𝑥2 is convex on R. From (29) the function 𝜗 →
ℎ(𝜗) + (1/2)𝜗

2 max ℎ is convex onR; thus ℎ is semiconvex. In
the case that𝐾 is an arbitrary convex body, by approximation
arguments with𝐶2

+
convex bodies (see [11]) it follows that the

support function of 𝐾 is also semiconvex. As consequence ℎ
is Lipschitz continuous, it has left (right) derivative ℎ̇

−
(resp.,

ℎ̇
+
) at each point, which is left (right) continuous. Moreover

at each point the right limit of ℎ̇
−
is ℎ̇

+
and the left limit of ℎ̇

+

is ℎ̇
−
; see [14, pp. 228].

It is not difficult to show (from (30), with a right limit
argument) that, for an arbitrary convex body, for 𝜗 ∈ R, the
formula

𝑥
𝑙
(𝑠

𝑙+
(𝜗)) = ℎ (𝜗)n

𝜗
+ ℎ̇

+
(𝜗) t

𝜗
(31)

holds. Similarly the formula

𝑥
𝑟
(𝑠

𝑟−
(𝜗)) = ℎ (𝜗)n

𝜗
+ ℎ̇

−
(𝜗) t

𝜗
(32)

holds.
If 𝜕𝐾 is not strictly convex at the direction 𝜃 = (cos 𝜗,

sin 𝜗) then ℎ is not differentiable at 𝜗 and

ℎ̇
+
(𝜗) − ℎ̇

−
(𝜗) =

󵄨󵄨󵄨󵄨𝑥𝑙
(𝑠

𝑙+
(𝜗)) − 𝑥

𝑟
(𝑠

𝑟−
(𝜗))

󵄨󵄨󵄨󵄨 = |𝐹 (𝜃)| .
(33)

If 𝑥
1
, 𝑥

2
∈ 𝜕𝐾 let us define arc+(𝑥

1
, 𝑥

2
) as the set of points

of 𝜕𝐾 between 𝑥
1
and 𝑥

2
according to the counterclockwise

orientation of 𝜕𝐾 and arc−(𝑥
1
, 𝑥

2
) as the set of points

between 𝑥
1
and 𝑥

2
, according to the clockwise orientation;

|arc±(𝑥
1
, 𝑥

2
)| denote their length.

Remark 9. It is well known that a sequence of convex body
𝐾

(𝑛) converges uniformly to 𝐾 if and only if the correspond-
ing sequence of support functions converges in the uniform
norm; see [11, pp. 66]. Moreover as the two sequences of
the end points of a closed counterclockwise oriented arc of
𝜕𝐾

(𝑛) converge, then the sequence of the corresponding arcs
converges to a connected arc of 𝜕𝐾 and the sequence of the
corresponding lengths converges too.

Proposition 10. Let 𝐾 be a convex body and ℎ its support
function; then

𝑠
𝑙+
(𝜗) − 𝑠

𝑙+
(𝜗

0
) = ∫

𝜗

𝜗0

ℎ (𝜏) 𝑑𝜏 + (ℎ̇
+
(𝜗) − ℎ̇

+
(𝜗

0
)) ,

∀𝜗 ≥ 𝜗
0
;

(34)

𝑠
𝑟−
(𝜗

0
) − 𝑠

𝑟−
(𝜗) = ∫

𝜗

𝜗0

ℎ (𝜏) 𝑑𝜏 + (ℎ̇
−
(𝜗) − ℎ̇

−
(𝜗

0
)) ,

∀𝜗 ≤ 𝜗
0
.

(35)

Proof. For every convex body 𝐾 not reduced to a point the
function 𝜗 → 𝑠

𝑙+
(𝜗) is defined everywhere and satisfies the

weak form of (29); namely,

− ∫
R

𝑠
𝑙+
(𝜂) 𝜙̇ (𝜂) 𝑑𝜂 = ∫

R

(𝜙 + 𝜙̈) (𝜂) ℎ (𝜂) 𝑑𝜂,

∀𝜙 ∈ 𝐶
∞

0
(R) .

(36)

Using the fact that 𝜗 → ℎ(𝜗) is Lipschitz continuous,
integrating by parts (36), the formula

− ∫
R

𝑠
𝑙+
(𝜂) 𝜙̇ (𝜂) 𝑑𝜂

= −∫
R

𝜙̇ (𝜂) (∫

𝜂

0

ℎ (𝜏) 𝑑𝜏 + ℎ̇ (𝜂)) 𝑑𝜂,

∀𝜙 ∈ 𝐶
∞

0
(R)

(37)
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holds. Thus

𝑠
𝑙+
(𝜂) = 𝑐 + ∫

𝜂

0

ℎ (𝜏) 𝑑𝜏 + ℎ̇ (𝜂) , a.e. (38)

with 𝑐 constant. Passing to the right limit, the equality

𝑠
𝑙+
(𝜂) = 𝑐 + ∫

𝜂

0

ℎ (𝜏) 𝑑𝜏 + ℎ̇
+
(𝜂) , ∀𝜂 ∈ R (39)

holds. Formula (34) follows, by computing 𝑠
𝑙+
(𝜗) − 𝑠

𝑙+
(𝜗

0
),

using the previous equality. Similarly (35) is proved.

3. Involutes of a Closed Convex Curve

Definition 11. Let 𝐼 be an interval. A plane curve 𝐼 ∋ 𝑡 → 𝑥(𝑡)

is convex if at every point 𝑥 it has right tangent vector 𝑇+

(𝑥)

and arg𝑇+

(𝑥(𝑡)) is not decreasing function.

Let 𝑠 → 𝑥(𝑠) be the arc length parameterization of a
smooth curve; the classical definition of involute starting at
a point 𝑥

0
= 𝑥(𝑠

0
) of the curve 𝑥(⋅) is

𝑖 (𝑠) = 𝑥 (𝑠) − (𝑠 − 𝑠
0
) 𝑥

󸀠

(𝑠) 𝑠 ≥ 𝑠
0
. (40)

Let us notice that 𝑠 is the arc length of the curve, not of
the involute; if 𝑠

0
= 0, then the starting point of the involute

coincides with the starting point of the curve. It is easy to
construct an involute of a convex polygonal line (even if
classical definition (40) does not work) by using arcs of circle
centered at its corner points; moreover the involute depends
on the orientation of the curve.

In this section, involutes for the boundary of an arbitrary
plane convex body𝐾, not reduced to a point, will be defined.
The assumption that𝐾 is an arbitrary convex body is needed
to work with the involutes of the convex sets, not smooth,
studied in Section 4.

Let𝐾 ∈ 𝐶2

+
; let 𝑥

0
be a fixed point of 𝜕𝐾; 𝑠 → 𝑥(𝑠) can be

the clockwise parameterization of 𝜕𝐾or the counterclockwise
parameterization. Since there exist two orientations, then two
different involutes have to be considered. As noted previously
one can assume that the parameterizations of 𝜕𝐾 have been
chosen so that 𝑥

0
= 𝑥

𝑙
(𝑠

0
) = 𝑥

𝑟
(𝑠

0
).

Definition 12. Let one denote by 𝑖
𝑙,𝑥0

the left involute of
𝜕𝐾 starting at 𝑥

0
corresponding to the counterclockwise

parameterization of 𝜕𝐾 and by 𝑖
𝑟,𝑥0

the right involute corre-
sponding to the clockwise parameterization.When one needs
to emphasize the dependence on 𝐾 of involutes, they will be
written as 𝑖𝐾

𝑙,𝑥0

, 𝑖𝐾
𝑟,𝑥0

.

Remark 13. Let us notice that if 𝜌 is a plane reflection with
respect to a fixed axis then

𝑖
𝐾

𝑟,𝑥0

= 𝜌 (𝑖
𝜌(𝐾)

𝑙,𝜌(𝑥0)
) . (41)

This relation allows us to prove our results for the left invo-
lutes only and to state without proof the analogous results for
the right involutes.

Theorem 14. Let one fix the initial parameters 𝑥
0
, 𝑠

0
, 𝜃

0
, and

𝜗
0
. The left and the right involutes of a plane convex curve

starting at 𝑥
0
∈ 𝜕𝐾, boundary of a 𝐶2

+
plane convex body

𝐾 with support function ℎ, are parameterized by the value 𝜗
related to the outer normal n

𝜗
to 𝐾, as follows:

𝑖
𝑙,𝑥0
(𝜗) = ℎ (𝜗)n

𝜗
− (∫

𝜗

𝜗0

ℎ (𝜏) 𝑑𝜏 − ℎ̇ (𝜗
0
)) t

𝜗
,

𝑓𝑜𝑟 𝜗 ≥ 𝜗
0
,

(42)

𝑖
𝑟,𝑥0
(𝜗) = ℎ (𝜗)n

𝜗
− (∫

𝜗

𝜗0

ℎ (𝜏) 𝑑𝜏 − ℎ̇ (𝜗
0
)) t

𝜗
,

𝑓𝑜𝑟 𝜗 ≤ 𝜗
0
.

(43)

Proof. In the present case there is a 1-1 mapping between 𝜗
and 𝑠; from (29), it follows that

𝑠 − 𝑠
0
= ∫

𝜗

𝜗0

ℎ (𝜏) 𝑑𝜏 + ℎ̇ (𝜗) − ℎ̇ (𝜗
0
) ; (44)

then, changing the variable 𝑠 with 𝜗 in (40), with elementary
computation, (42) is obtained (since 𝑥󸀠

(𝑠) = t
𝜗
and (30)

holds). Formula (43) follows from (32) and (35).

For an arbitrary convex body𝐾 in place of (30), formulas
(31) and (32) have to be used.

Definition 15. Let 𝐾 be a plane convex body; let

𝑥
0
= 𝑥 (𝑠

0
) ∈ 𝜕𝐾,

𝜗
+

0
fl 𝜗

𝑙+
(𝑠

0
) ,

𝑠
+

0
fl 𝑠

𝑙+
(𝜗

+

0
) .

(45)

The left involute of 𝜕𝐾 starting at 𝑥
0
will be defined as

𝑖
𝑙,𝑥0
(𝜗) = 𝑥

𝑙
(𝑠

𝑙+
(𝜗)) − (𝑠

𝑙+
(𝜗) − 𝑠

0
) t

𝜗
for 𝜗 ≥ 𝜗+

0
; (46)

similarly if 𝜗−
0
:= 𝜗

𝑟−
(𝑠

0
), 𝑠−

0
:= 𝑠

𝑟−
(𝜗

−

0
), the right involute

starting at 𝑥
0
will be defined as

𝑖
𝑟,𝑥0
(𝜗) = 𝑥

𝑟
(𝑠

𝑟−
(𝜗)) + (𝑠

𝑟−
(𝜗) − 𝑠

0
) t

𝜗
for 𝜗 ≤ 𝜗−

0
. (47)

From (46) and (34) it follows that

𝑖
𝑙,𝑥0
(𝜗) = ℎ (𝜗)n

𝜗
− (∫

𝜗

𝜗
+

0

ℎ (𝜏) 𝑑𝜏 − ℎ̇
+
(𝜗

+

0
)) t

𝜗

−
󵄨󵄨󵄨󵄨𝑥0

− 𝑥
𝑙
(𝑠

+

0
)
󵄨󵄨󵄨󵄨 t𝜗, 𝜗 ≥ 𝜗

+

0
;

(48)

similarly from (47), (35) it follows that

𝑖
𝑟,𝑥0
(𝜗) = ℎ (𝜗)n

𝜗
− (∫

𝜗

𝜗
−

0

ℎ (𝜏) 𝑑𝜏 − ℎ̇
−
(𝜗

−

0
)) t

𝜗

+
󵄨󵄨󵄨󵄨𝑥0

− 𝑥
𝑟
(𝑠

−

0
)
󵄨󵄨󵄨󵄨 t𝜗, 𝜗 ≤ 𝜗

−

0
.

(49)

Let us notice that in (48) and (49) the same parameter
𝜗 is used, but with different range; it turns out that 𝑖

𝑙
is

counterclockwise oriented; instead 𝑖
𝑟
is clockwise oriented;

𝑥
0
= 𝑖

𝑙,𝑥0
(𝜗

+

0
) = 𝑖

𝑟,𝑥0
(𝜗

−

0
).
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Remark 16. The following facts can be derived from the above
equations:

(i) since ℎ is Lipschitz continuous for every convex body
𝐾, then the involute 𝑖

𝑙,𝑥0
is a rectifiable curve;

(ii) 𝑖
𝑙,𝑥0
(𝜗

+

0
) = 𝑥

0
and

󵄨󵄨󵄨󵄨󵄨
𝑖
𝑙,𝑥0
(𝜗) − 𝑥

𝑙
(𝑠

𝑙+
(𝜗))

󵄨󵄨󵄨󵄨󵄨
= 𝑠

𝑙+
(𝜗) − 𝑠

0
; (50)

(iii) if 𝑥 is a vertex of 𝜕𝐾 then 𝑖
𝑙,𝑥0
(𝜗), for (cos 𝜗, sin 𝜗) ∈

𝑁
𝐾
(𝑥), lies on an arc of circle centered at𝑥with radius

𝑠
𝑙+
(𝜗) − 𝑠

0
;

(iv) the involute (42) satisfies

𝑖
𝑙,𝑥0
(𝜗 + 2𝜋) = 𝑖

𝑙,𝑥0
(𝜗) − 𝐿t

𝜗
, ∀𝜗 ≥ 𝜗

+

0
. (51)

Lemma 17. Parameterization (48) of the involute 𝑖
𝑙,𝑥0

is 1-1 in
the interval [𝜗+

0
, 𝜗

+

0
+ 2𝜋); moreover, except for at most a finite

or countable set F of values 𝜗
𝑖
, 𝑖 = 1, 2, . . . (corresponding to

the 1-face 𝐹
𝜃𝑖
of 𝜕𝐾), 𝑖

𝑙,𝑥0
is differentiable and

𝑑

𝑑𝜗
𝑖
𝑙,𝑥0
(𝜗) = (𝑠

𝑙+
(𝜗) − 𝑠

0
)n

𝜗
𝑓𝑜𝑟 𝜗 > 𝜗

+

0
, 𝜗 ∉ F; (52)

furthermore 𝑖
𝑙,𝑥0

has left and right derivative with common
direction n

𝜗
at 𝜗 = 𝜗

𝑖
∈ F.

Proof. By differentiating (48) and using (34), equality (52) is
proved. Similar argument, at 𝜗 = 𝜗

𝑖
∈ F, proves that n

𝜗
is the

common direction of the left and right derivatives.

Remark 18. Let 𝜗 → 𝑖
𝑙,𝑥1
(𝜗), 𝜗 → 𝑖

𝑙,𝑥2
(𝜗), 𝑥

𝑖
= 𝑥(𝑠

𝑖
), 𝑖 = 1, 2,

be left involutes of𝐾. Since

𝑖
𝑙,𝑥2
(𝜗) − 𝑖

𝑙,𝑥1
(𝜗) = (𝑠

2
− 𝑠

1
) t

𝜗
,

for 𝜗 > max {𝜗+
𝑙
(𝑠

2
) , 𝜗

+

𝑙
(𝑠

1
)} ,

(53)

then they will be called parallel curves. Moreover, by (51),
𝑖
𝑙,𝑥0
(𝜗) and 𝑖

𝑙,𝑥0
(𝜗 + 2𝜋) will also be called parallel.

Theorem 19. If 𝑑󰜚 is the arc element of the involute 𝑖
𝑙,𝑥0

then
𝜗 → 󰜚(𝜗) is continuous and invertible in 𝜗 ≥ 𝜗

+

0
with

continuous inverse [0, +∞) ∋ 󰜚 → 𝜗(󰜚). Moreover

𝑑󰜚 = (𝑠
𝑙+
(𝜗) − 𝑠

0
) 𝑑𝜗 𝑓𝑜𝑟 𝜗 ≥ 𝜗

+

0
, 𝜗 ∉ F; (54)

the involute is a convex curve with positive curvature a.e.:

𝑑𝜗

𝑑󰜚
=

1

(𝑠
𝑙+
(𝜗) − 𝑠

0
)

𝑓𝑜𝑟 𝜗 > 𝜗
+

0
, 𝜗 ∉ F, (55)

󰜚 → 𝑖
𝑙,𝑥0
(𝜗(󰜚)) is 𝐶1 everywhere, and

𝑑

𝑑󰜚
𝑖
𝑙,𝑥0
= n

𝜗(󰜚)
. (56)

Moreover the following properties hold.

(i) For every 󰜚 > 0 the right derivative

(
𝑑𝜗

𝑑󰜚
)

+

=
1

𝑠
𝑙+
(𝜗 (󰜚)) − 𝑠

0

(57)

exists everywhere and it is a decreasing cadlag function.
(ii) (𝑑/𝑑󰜚)𝑖

𝑙,𝑥0
has everywhere right derivative given by

(
𝑑
2

𝑑󰜚2
𝑖
𝑙,𝑥0
)

+

= −
1

𝑠
𝑙+
(𝜗 (󰜚)) − 𝑠

0

t
𝜗(󰜚)
. (58)

Theorem 20. Let 𝐾(𝑛) be a sequence of plane convex bodies
which converges uniformly to 𝐾, 𝑥(𝑛)

∈ 𝜕𝐾
(𝑛), 𝑥(𝑛)

→ 𝑥
0
;

then the corresponding sequences of left involutes 𝑖𝐾
(𝑛)

𝑙,𝑥
(𝑛) converge

uniformly to 𝑖
𝑙,𝑥0

in compact subsets of [𝜗+
0
, +∞]; moreover the

corresponding sequence of their derivatives (with respect to the
arc length) converges uniformly to (𝑑/𝑑󰜚)𝑖

𝑙,𝑥0
.

Proof. By Remark 9 the sequence of functions 𝑠𝑛
𝑙+
converges

to 𝑠
𝑙+
. From (54) the arclengths of the left involutes 𝑖𝐾

(𝑛)

𝑙,𝑥
(𝑛)

󰜚
(𝑛)

(𝜗) = ∫

𝜗

𝜗0

(𝑠
(𝑛)

𝑙+
(𝜗) − 𝑠

(𝑛)

0
) 𝑑𝜗 (59)

converges uniformly in compact subsets of [𝜗+
0
, +∞) to the

arc length 󰜚(𝜗) of 𝑖
𝑙,𝑥0

; from (56) the same fact holds for their
derivatives.

Let us consider the arc of the involute

𝜂 fl {𝑖
𝑙,𝑥0
(𝜗) : 𝜗

+

0
≤ 𝜗 ≤ 𝜗

+

0
+ 3𝜋/2} (60)

and the set valued map 𝐹 (Definition 8). Let

𝑄

= ⋃

𝜗
+

0
≤𝜗≤𝜗
+

0
+3𝜋/2

{𝜆𝐹 (𝜃) + (1 − 𝜆) 𝑖
𝑙,𝑥0
(𝜗) , 0 ≤ 𝜆 ≤ 1} ,

𝜃 = (cos 𝜗, sin 𝜗) ,

(61)

the union of segments joining the points of 𝜂 with the
corresponding points on 𝜕𝐾.

Definition 21. If the tangent sector 𝑇(𝑥
0
) to𝐾 has an opening

less than or equal to 𝜋/2 as in Figure 1, then 𝑄 ∪𝐾 is convex;
let one define

𝜗
∗

𝑙
= 𝜗

+

0
+ 3𝜋/2. (62)

If 𝑄 ∪ 𝐾 is not convex then let us consider co(𝑄 ∪ 𝐾). Let us
notice that 𝜕 co(𝑄 ∪ 𝐾) \ 𝜕(𝑄 ∪ 𝐾) is an open segment with
end points 𝐴, 𝐵, with 𝐴 ∈ 𝜂, 𝐵 ∈ 𝜕𝐾. Let us define 𝜗∗

𝑙
, with

𝜗
+

0
+ 3𝜋/2 ≤ 𝜗

∗

𝑙
< 𝜗

+

0
+ 2𝜋 such that (see Figure 2) 𝜃∗

𝑙
=

(cos 𝜗∗
𝑙
, sin 𝜗∗

𝑙
) is orthogonal to 𝐴𝐵, 𝐵 ∈ 𝐹(𝜃

∗

𝑙
). Let 𝜗

1,𝑙
be

the smallest 𝜃 > 𝜃
+

0
satisfying 𝐴 = 𝑖

𝑙,𝑥0
(𝜗

1,𝑙
). Clearly 𝜗∗

𝑙
=

𝜗
1,𝑙
+ (3/2)𝜋.
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x0

𝜃+0

𝜃−0

il,x0 (𝜗
∗
l )

Figure 1: Left involute of a square.

For the right involutes a value 𝜗∗
𝑟
is defined similarly, with

𝜗
−

0
− 2𝜋 < 𝜗

∗

𝑟
≤ 𝜗

−

0
− 3𝜋/2, such that the line orthogonal to

𝜃
∗

𝑟
supporting 𝐾 at 𝐹(𝜃∗

𝑟
) is tangent to the right involute at

𝑖
𝑟,𝑥0
(𝜗

1,𝑟
) (see Figure 3) where 𝐹(𝜃∗

𝑟
) is the point 𝑥(𝑠

𝑟−
(𝜗

∗

𝑟
)),

written as 𝑥(𝜗∗
𝑟
) for short.

Theorem 22. Let 𝑖
𝑙
:= 𝑖

𝑙,𝑥0
be the left involute starting at 𝑥

0
on

the boundary of a plane convex body 𝐾; then

(i) the left involute 𝜗 → 𝑖
𝑙
(𝜗) has the distancing from 𝐾

property for 𝜗 ≥ 𝜗+
0
but is not SDC for 𝜗 ≥ 𝜗∗

𝑙
;

(ii) the curve 𝜗 ∈ [𝜗+
0
, 𝜗

∗

𝑙
] → 𝑖(𝜗) is SDC;

(iii) for 𝑦 ∈ Int(𝐾) the distance function 𝐽
𝑦
(𝜗) = |𝑖

𝑙
(𝜗) − 𝑦|

is strictly increasing for 𝜗 ≥ 𝜗+
0
;

(iv) if 𝑦 ∈ 𝜕𝐾, then 𝐽
𝑦
(𝜗) is not decreasing for 𝜗 ≥ 𝜗+

0
and

(𝑑/𝑑𝜗)𝐽 > 0 for (cos 𝜗, sin 𝜗) ∉ 𝑁
𝐾
(𝑦).

Proof. As 𝑖
𝑙
is rectifiable, then the function 𝐽2

𝑦
(𝜗) = |𝑖

𝑙
(𝜗)−𝑦|

2

is an absolutely continuous function for 𝜗 ≥ 𝜗+
0
, and from (52)

for 𝜗 ∉ F

1

2

𝑑

𝑑𝜗
𝐽
2

𝑦
= ⟨

𝑑

𝑑𝜗
𝑖
𝑙
, 𝑖

𝑙
(𝜗) − 𝑦⟩

= ⟨(𝑠
𝑙
(𝜗) − 𝑠

0
)n

𝜗
, 𝑥

𝑙
(𝑠

𝑙+
(𝜗)) + (𝑠

𝑙+
(𝜗) − 𝑠

0
) t

𝜗
− 𝑦⟩

= (𝑠
𝑙+
(𝜗) − 𝑠

0
) ⟨n

𝜗
, 𝑥

𝑙
(𝑠

𝑙+
(𝜗)) − 𝑦⟩ ≥ 0;

(63)

the last inequality holds since n
𝜗
is the outer normal to 𝜕𝐾 at

𝑥
𝑙
(𝑠

𝑙+
(𝜗)). Moreover the previous inequality is strict for all 𝜗

if 𝑦 ∈ Int(𝐾), and it is also a strict inequality for 𝑦 ∈ 𝜕𝐾 and
𝑦 ∉ 𝐹(𝜃). This proves (iii) and (iv). Then (i) follows from (iii)
and Definition 1 of distancing from K property for a curve.
To prove (ii) let us recall that SDC satisfies (2); then one has
to prove that the angle at 𝑖

𝑙
(𝜗) between the vector 𝑖

𝑙
(𝜗) − 𝑖

𝑙
(𝜏),

𝜗
+

0
< 𝜏 < 𝜗 ≤ 𝜗

∗

𝑙
, and n

𝜗
, the tangent vector at 𝑖

𝑙
(𝜗), is greater

than or equal to 𝜋/2; this is equivalent to show that the half
line 𝑟

𝜗
through 𝑖

𝑙
(𝜗) and 𝑥(𝑠

𝑙+
(𝜗)) orthogonal to n

𝜗
supports

at 𝑖
𝑙
(𝜗) the arc of 𝑖

𝑙
from 𝑥

0
to 𝑖

𝑙
(𝜗). By Definition 21 this is the

case for all 𝜗 between 𝜗+
0
and 𝜗∗

𝑙
.

il,x0 (𝜗
∗
l )

K B

x0

A = il(𝜗1,l)

Figure 2: Left involute of an hexagon.

il(𝜗
∗
r + 2𝜋) ir(𝜗1,r)

x(𝜗∗r ) x(𝜗1,r)x0

K

P+(𝜗∗r + 2𝜋)

x(𝜓(𝜗∗r + 2𝜋))

y = il,x0 ( ) = ir,x0 ( )𝜗l 𝜗r

Figure 3: Involutes of a circumference.

Corollary 23. The left involute 𝜗 → 𝑖
𝑙,𝑥0
(𝜗) of the boundary

of a plane convex body 𝐾 is a self-distancing curve from 𝐾 for
𝜗 ∈ [𝜗

+

0
, 𝜗

∗

𝑙
]; similarly right involute (49) is a self-contracting

curve from 𝐾 for 𝜗 ∈ [𝜗∗
𝑟
, 𝜗

−

0
].

Proof. From (i) ofTheorem 22 the left involute is a curve such
that the distance of its points from all 𝑦 ∈ 𝐾 is not decreasing;
(ii) of the same theorem proves that it is a SDC. Let us recall
that a self-contracting curve is a self-distancing curve with
opposite orientation.

Theorem 24. Let 𝐾 be a plane convex body not reduced to a
single point and let 𝑥

0
, 𝑠

0
, 𝜃

0
, 𝜗

0
be the initial parameters. Let

[𝜗
+

0
, 𝜗

+

0
+ 2𝜋] ∋ 𝜗 → 𝑖

𝑙
(𝜗) be an arc of the left involute starting

at 𝑥
0
, and let [𝜗−

0
− 2𝜋, 𝜗

−

0
] ∋ 𝜗 → 𝑖

𝑟
(𝜗) be an arc of the right

involute ending at 𝑥
0
; then there exists only one point 𝑦 ̸= 𝑥

0

which belongs to both arcs and

𝑦 = 𝑖
𝑙
(𝜗

𝑙
) = 𝑖

𝑟
(𝜗

𝑟
) , (64)

with

𝜗
−

0
≤ 𝜗

∗

𝑟
+ 2𝜋 < 𝜗

𝑙
< 𝜗

+

0
+
3𝜋

2
≤ 𝜗

∗

𝑙
,

𝜗
∗

𝑟
≤ 𝜗

−

0
−
3𝜋

2
< 𝜗

𝑟
< 𝜗

∗

𝑙
− 2𝜋 ≤ 𝜗

+

0
.

(65)

Proof. For simplicity, first let us prove the existence of 𝑦
assuming that 𝐾 ∈ 𝐶

2

+
. With the assumed conditions,
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R ∋ 𝜗 → 𝑥(𝜗) := 𝑥(𝜃) defined by (30) is a parameterization
of 𝜕𝐾.

Let 𝜗 ∈ [𝜗
0
, 𝜗

0
+ 2𝜋] and let 𝑃+

(𝜗) be the first common
point of the half line {𝑥(𝜗) + 𝜆t

𝜗
, 𝜆 > 0} and of 𝑖

𝑙
. Moreover,

let [𝜗
0
, 𝜗

∗

𝑙
] ∋ 𝜗 → 𝜓(𝜗) be the function satisfying

𝑃
+

(𝜗) = 𝑖
𝑙
(𝜓 (𝜗)) . (66)

Let

𝜙 (𝜗) fl 󵄨󵄨󵄨󵄨𝑃
+

(𝜗) − 𝑖
𝑙
(𝜗)
󵄨󵄨󵄨󵄨 . (67)

First the following sentence will be proved.

Claim 1. 𝑃+

(𝜗
𝑙
) belongs to 𝑖

𝑟
iff the equality

𝜙 (𝜗
𝑙
) = 𝐿 (68)

holds for some 𝜗
𝑙
∈ [𝜗

0
, 𝜗

0
+ 2𝜋], 𝐿 = |𝜕𝐾|.

Proof of Claim 1. If (68) holds, then
󵄨󵄨󵄨󵄨󵄨
𝑃

+

(𝜗
𝑙
) − 𝑥 (𝜗

𝑙
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑃

+

(𝜗
𝑙
) − 𝑖

𝑙
(𝜗

𝑙
)
󵄨󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨󵄨
𝑖
𝑙
(𝜗

𝑙
) − 𝑥 (𝜗

𝑙
)
󵄨󵄨󵄨󵄨󵄨

= 𝐿 −
󵄨󵄨󵄨󵄨󵄨
arc+ (𝑥

0
, 𝑥 (𝜗

𝑙
))
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
arc+ (𝑥 (𝜗

𝑙
) , 𝑥

0
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
arc− (𝑥

0
, 𝑥 (𝜗

𝑙
− 2𝜋))

󵄨󵄨󵄨󵄨󵄨
.

(69)

Thus

𝑃
+

(𝜗
𝑙
) = 𝑥 (𝜗

𝑙
) +

󵄨󵄨󵄨󵄨󵄨
arc+ (𝑥 (𝜗

𝑙
) , 𝑥

0
)
󵄨󵄨󵄨󵄨󵄨
t
𝜗𝑙

= 𝑥 (𝜗
𝑙
− 2𝜋) +

󵄨󵄨󵄨󵄨󵄨
arc− (𝑥

0
, 𝑥 (𝜗

𝑙
− 2𝜋))

󵄨󵄨󵄨󵄨󵄨
t
𝜗𝑙−2𝜋

= 𝑖
𝑟
(𝜗

𝑙
− 2𝜋) .

(70)

Thus 𝑃+

(𝜗
𝑙
) is on both arcs of involutes and the other way

around.
Our aim is to prove that there exists 𝜗

𝑙
∈ [𝜗

0
, 𝜗

0
+ 3𝜋/2]

such that (68) holds. For this goal we prove next Claims 2 and
3.

Claim 2. The following facts hold in [𝜗
0
, 𝜗

∗

𝑙
]:

(i) 𝜓 is continuously differentiable and 𝜓󸀠

> 0;
(ii) 𝜙󸀠

> 0.

Proof of Claim 2. Let us prove that n
𝜗
and n

𝜓(𝜗)
satisfy

⟨n
𝜗
,n

𝜓(𝜗)
⟩ < 0. (71)

Let us consider the triangle with vertices 𝑥(𝜗), 𝑖
𝑙
(𝜓(𝜗)),

𝑥(𝜓(𝜗)). As
󵄨󵄨󵄨󵄨𝑖𝑙 (𝜓 (𝜗)) − 𝑥 (𝜓 (𝜗))

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨arc

+

(𝑥
0
, 𝑥 (𝜓 (𝜗)))

󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨arc

+

(𝑥 (𝜗) , 𝑥 (𝜓 (𝜗)))
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝑥 (𝜓 (𝜗)) − 𝑥 (𝜗)
󵄨󵄨󵄨󵄨 ,

(72)

the angle between 𝑥(𝜓(𝜗)) − 𝑃+

(𝜗) and 𝑥(𝜗) − 𝑃+

(𝜗) is acute
and the angle between n

𝜗
and n

𝜓(𝜗)
is obtuse. Thus (71)

follows. By definition, 𝜓(𝜗) solves (66); thus 𝜓(𝜗) is the
implicit solution to

⟨𝑖
𝑙
(𝜓 (𝜗)) − 𝑥 (𝜗) ,n

𝜗
⟩ = 0. (73)

As

⟨
𝑑

𝑑𝜓
𝑖
𝑙
(𝜓) ,n

𝜗
⟩ = (𝑠 (𝜓) − 𝑠

0
) ⟨n

𝜓
,n

𝜗
⟩ (74)

is negative by (71), then by Dini’s Theorem equation (73) has
a solution 𝜓(𝜃) satisfying

(𝑠 (𝜓) − 𝑠
0
) ⟨n

𝜓
,n

𝜗
⟩𝜓

󸀠

(𝜗) + ⟨𝑖
𝑙
(𝜓 (𝜗)) − 𝑥 (𝜗) , t

𝜗
⟩

= 0.

(75)

As 𝑖
𝑙
(𝜓(𝜗)) − 𝑥(𝜗) = 𝜆t

𝜗
(𝜆 > 0) and (71) holds, then 𝜓󸀠

> 0,
and 𝜓 is strictly increasing and continuously differentiable.

Let us prove (ii).
The formula

𝑑

𝑑𝜗

󵄨󵄨󵄨󵄨𝑖𝑙 (𝜗) − 𝑖𝑙 (𝜓 (𝜗))
󵄨󵄨󵄨󵄨

2

= 2⟨𝑖
𝑙
(𝜗) − 𝑖

𝑙
(𝜓 (𝜗)) ,

𝑑

𝑑𝜗
𝑖
𝑙
(𝜗) −

𝑑

𝑑𝜗
𝑖
𝑙
(𝜓 (𝜗))⟩

(76)

holds. Let us notice that 𝑖
𝑙
(𝜗) − 𝑖

𝑙
(𝜓(𝜗)) is parallel to t

𝜗
; thus

by (52)

⟨𝑖
𝑙
(𝜗) − 𝑖

𝑙
(𝜓 (𝜗)) ,

𝑑

𝑑𝜗
𝑖
𝑙
(𝜗)⟩ = 0. (77)

On the other hand

− ⟨𝑖
𝑙
(𝜗) − 𝑖

𝑙
(𝜓 (𝜗)) ,

𝑑

𝑑𝜗
𝑖
𝑙
(𝜓 (𝜗))⟩

= −⟨−𝑠 (𝜗) t
𝜗
− 𝜆t

𝜗
, (𝑠 (𝜓 (𝜗)) − 𝑠

0
)n

𝜓(𝜗)
⟩𝜓

󸀠

= (𝑠 (𝜗) + 𝜆) (𝑠 (𝜓 (𝜗)) − 𝑠
0
) ⟨t

𝜗
,n

𝜓(𝜗)
⟩𝜓

󸀠

.

(78)

As the angle between t
𝜗
and n

𝜓(𝜗)
is acute, then last term in

the above equalities is positive; thus the derivative in the left
hand side of (76) is positive and (ii) of Claim 2 follows.

Claim 3. In the interval [𝜗
0
, 𝜗

∗

𝑙
] the function 𝜙 has values

smaller than 𝐿 and greater than 𝐿.

Proof of Claim 3. The angles 𝜗∗
𝑟
and 𝜗

1,𝑟
have been introduced

in Definition 21. For simplicity 𝑥(𝑠
𝑟−
(𝜗

1,𝑟
)) will be denoted

with 𝑥(𝜗
1,𝑟
). Let us consider the convex set bounded by

arc+(𝑥(𝜓(𝜗∗
𝑟
+ 2𝜋)), 𝑥(𝜗

1,𝑟
)) and by the polygonal line with

vertices 𝑥(𝜗
1,𝑟
), 𝑖

𝑟
(𝜗

1,𝑟
), 𝑃

+

(𝜗
∗

𝑟
+ 2𝜋), 𝑥(𝜓(𝜗

∗

𝑟
+ 2𝜋)); see

Figure 3.
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Clearly the inequalities

󵄨󵄨󵄨󵄨𝑖𝑟 (𝜗1,𝑟) − 𝑃
+

(𝜗
∗

𝑟
+ 2𝜋)

󵄨󵄨󵄨󵄨

<
󵄨󵄨󵄨󵄨𝑖𝑟 (𝜗1𝑟) − 𝑥 (𝜗1,𝑟)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨arc

−

(𝑥 (𝜗
1,𝑟
) , 𝑥 (𝜓 (𝜗

∗

𝑟
+ 2𝜋)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑥 (𝜓 (𝜗

∗

𝑟
+ 2𝜋)) − 𝑃

+

(𝜗
∗

𝑟
+ 2𝜋)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨arc

−

(𝑥
0
, 𝑥 (𝜗

1,𝑟
))
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨arc

−

(𝑥 (𝜗
1,𝑟
) , 𝑥 (𝜓 (𝜗

∗

𝑟
+ 2𝜋)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨arc

−

(𝑥 (𝜓 (𝜗
∗

𝑟
+ 2𝜋)) , 𝑥

0
)
󵄨󵄨󵄨󵄨 = 𝐿

(79)

hold. As

𝜙 (𝜗
∗

𝑟
+ 2𝜋) =

󵄨󵄨󵄨󵄨𝑖𝑙 (𝜗
∗

𝑟
+ 2𝜋) − 𝑃

+

(𝜗
∗

𝑟
+ 2𝜋)

󵄨󵄨󵄨󵄨

<
󵄨󵄨󵄨󵄨𝑖𝑟 (𝜗1,𝑟) − 𝑃

+

(𝜗
∗

𝑟
+ 2𝜋)

󵄨󵄨󵄨󵄨 ,
(80)

using the previous inequalities, one obtains

𝜙 (𝜗
∗

𝑟
+ 2𝜋) < 𝐿. (81)

Let us show now that

𝜙(𝜗
0
+
3𝜋

2
) > 𝐿 (82)

holds.
Let 𝜌 be the half line with origin 𝑥

0
and direction −t

𝜗0
;

𝜌 − {𝑥
0
} crosses the arc 𝑖

𝑟
in a first point 𝑦

1
= 𝑖

𝑟
(𝛼

1
), with

𝛼
1
< 𝜗

0
− 𝜋/2. Then

𝑟 fl 󵄨󵄨󵄨󵄨𝑥0
− 𝑦

1

󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨𝑦1 − 𝑥 (𝛼1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨arc

−

(𝑥 (𝛼
1
) , 𝑥

0
)
󵄨󵄨󵄨󵄨

= 𝐿.

(83)

The half line 𝜌meets the arc 𝑖
𝑙
in a point 𝑦

2
and |𝑦

2
−𝑥

0
| = 𝐿.

Property (iii) of Theorem 22 implies that the arc 𝐷 of
the left involute after 𝑦

2
lies outside of the circle centered in

𝑥
0
and with radius 𝐿. Similar property for the right involute

implies that the arc𝐶 of the right involute joining 𝑥
0
to 𝑦

1
lies

in the circle with center 𝑥
0
and radius 𝑟; thus the straight line

tangent to 𝐾 at 𝑥(𝜗
0
+ 3𝜋/2) meets the arc 𝐶 in 𝑖

𝑟
(𝜗

0
− 𝜋/2)

and𝐷 in 𝑃+

(𝜗
0
+ 3𝜋/2). Therefore

𝜙(𝜗
0
+
3

2𝜋
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖
𝑙
(𝜗

0
+
3𝜋

2
) − 𝑃

+

(𝜗
0
+
3𝜋

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖
𝑙
(𝜗

0
+
3𝜋

2
) − 𝑥(𝜗

0
+
3𝜋

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 (𝜗

0
+
3𝜋

2
) − 𝑃

+

(𝜗
0
+
3𝜋

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖
𝑙
(𝜗

0
+
3𝜋

2
) − 𝑥(𝜗

0
+
3𝜋

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 (𝜗

0
+
3𝜋

2
) − 𝑖

𝑟
(𝜗

0
−
𝜋

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arc+ (𝑥

0
, 𝑥 (𝜗

0
+
3𝜋

2
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arc− (𝑥

0
, 𝑥 (𝜗

0
+
3𝜋

2
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝐿.

(84)

Inequality (82) is proved.

The intermediate values theorem implies that there exists
𝜗
𝑙
∈ [2𝜋+𝜗

∗

𝑟
, 𝜗

0
+3𝜋/2] such that (68) holds. Claim 1 implies

that

𝑃
+

(𝜗
𝑙
) = 𝑖

𝑙
(𝜓 (𝜗

𝑙
)) = 𝑖

𝑟
(𝜗

𝑙
− 2𝜋) , (85)

so the right involute and the left involute meet each other in
one point and (64) is proved with 𝜗

𝑙
= 𝜓(𝜗

𝑙
), 𝜗

𝑟
= 𝜗

𝑙
− 2𝜋.

By approximation argument the same result holds for an
arbitrary convex body𝐾.

Let us prove now that the point 𝑦 is unique. Let us argue
by contradiction. Let𝑃,𝑄 be two distinct points on 𝑖

𝑙
∩𝑖

𝑟
, with

𝑃 ≺ 𝑄 on 𝑖
𝑙
and 𝑖

𝑟
; then since 𝑖

𝑙
is a distancing curve from 𝑥

0
,

󵄨󵄨󵄨󵄨𝑃 − 𝑥0

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑄 − 𝑥0

󵄨󵄨󵄨󵄨 , (86)

and since 𝑖
𝑟
is a contracting curve to 𝑥

0
,

󵄨󵄨󵄨󵄨𝑃 − 𝑥0

󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝑄 − 𝑥0

󵄨󵄨󵄨󵄨 , (87)

therefore all the points on the arc of 𝑖
𝑙
and of 𝑖

𝑟
between

𝑃 and 𝑄 have the same distance from 𝑥
0
; thus, between 𝑃

and 𝑄, 𝑖
𝑙
and 𝑖

𝑟
(arc of involutes of a same convex body 𝐾)

coincidewith the same arc of circle centered at𝑥
0
; this implies

that 𝐾 reduce to the point 𝑥
0
, which is not possible for the

assumption.

Definition 25. Let 𝑧 ∉ 𝐾. Let 𝑧
𝑙
(𝑧

𝑟
) ∈ 𝜕𝐾 on the contact set on

the “left” (right) support line to𝐾 through 𝑧. If the contact set
is a 1-face on these support lines, then 𝑧

𝑙
and 𝑧

𝑟
are identified

as the closest ones to 𝑧.The triangle 𝑧𝑧
𝑙
𝑧
𝑟
is counterclockwise

oriented.

Theorem 26. For every 𝜉 ∈ 𝜕𝐾 let one consider the left
involutes 𝑖

𝑙,𝜉
and the right involutes 𝑖

𝑟,𝜉
parameterized by their

arc length 󰜚. The maps

𝜕𝐾 × (0, +∞) ∋ (𝜉, 󰜚) 󳨀→

𝑖
𝑙,𝜉
(𝜃 (󰜚)) ∈ R

2

\ 𝐾,

𝜕𝐾 × (0, +∞) ∋ (𝜉, 󰜚) 󳨀→

𝑖
𝑟,𝜉
(𝜃 (󰜚)) ∈ R

2

\ 𝐾

(88)

are 1-1 maps.

Proof. Assume, in the proof, that 𝑥
0
∈ 𝜕𝐾, 𝜃

0
∈ 𝐺(𝑥

0
), 𝜗

0
, 𝑠

0

are fixed. Let 𝑧 ∉ 𝐾. The tangent sector to the cap body 𝐾𝑧

with vertex z has two maximal segments 𝑧𝑧
𝑙
and 𝑧𝑧

𝑟
on the

sides that do not meet 𝐾 (except at the end points 𝑧
𝑙
and 𝑧

𝑟
).

Let 𝜗
𝑙
be such that 𝑧

𝑙
= 𝑥

𝑙
(𝑠

𝑙+
(𝜗

𝑙
)), and let 𝑠 be such that

󵄨󵄨󵄨󵄨𝑧 − 𝑧𝑙
󵄨󵄨󵄨󵄨 = 𝑠𝑙+ (𝜗𝑙) − 𝑠. (89)

Let 𝜉
𝑙
= 𝑥

𝑙
(𝑠); let 𝜗 = 𝜗+

𝑙
(𝑠). From (50) and from the definition

of left involute (46) (with 𝜉
𝑙
in place of 𝑥

0
, 𝜗 in place of 𝜗+

0
, and

𝑠 in place 𝑠
0
)

𝑧 = 𝑖
𝑙,𝜉𝑙
(𝜗

𝑙
) (90)



10 Journal of Applied Mathematics

holds; thus themap (𝜉, 󰜚) → 𝑖
𝑙,𝜉
(󰜚) is surjective.Moreover the

map is also injective, since the left involutes do not cross each
other since they are parallel (see Remark 18). Similar proof
holds for the right involutes.

Let 𝜉
𝑙
= 𝑥

𝑙
(𝑠) be the starting point of the left involute 𝑖

𝑙,𝜉𝑙

through 𝑧, defined in the previous theorem; similarly let 𝜉
𝑟
be

the starting point of the right involute 𝑖
𝑟,𝜉𝑟

through 𝑧. Let us
notice that 𝑖

𝑙,𝜉𝑙
and 𝑖

𝑟,𝜉𝑟
meet each other in a countable ordered

set of points.

3.1. J-Fence andG-Fence

Definition 27. Let 𝐾 be a convex body in R2, |𝜕𝐾| > 0, 𝑥
0
∈

𝜕𝐾, 𝜃
0
∈ 𝐺(𝑥

0
), 𝜃

0
= (cos 𝜗

0
, sin 𝜗

0
), 𝑠

0
∈ R. Let 𝑖

𝑙
fl 𝑖

𝑙,𝑥0
, and

let 𝑖
𝑟
fl 𝑖

𝑟,𝑥0
. Let

𝑦 = 𝑖
𝑙
(𝜗

𝑙
) = 𝑖

𝑟
(𝜗

𝑟
) ∈ R

2

\ 𝐾 (91)

be the first point where the two involutes cross each other (see
Theorem 24). Let one define

J
𝑙
(𝐾, 𝑥

0
) fl {𝑦 ∈ R

2

: 𝑦 = 𝑡𝑥
0
+ (1 − 𝑡) 𝑖

𝑙
(𝜗) , 0 ≤ 𝑡

≤ 1, 𝜗
+

0
≤ 𝜗 ≤ 𝜗

𝑙
} ,

J
𝑟
(𝐾, 𝑥

0
) fl {𝑦 ∈ R

2

: 𝑦 = 𝑡𝑥
0
+ (1 − 𝑡) 𝑖

𝑟
(𝜗) , 0 ≤ 𝑡

≤ 1, 𝜗
𝑟
≤ 𝜗 ≤ 𝜗

−

0
} ,

J (𝐾, 𝑥
0
) fl (J

𝑙
(𝐾, 𝑥

0
) ∪J

𝑟
(𝐾, 𝑥

0
)) \ Int (𝐾) .

(92)

J(𝐾, 𝑥
0
) will be called theJ-fence of𝐾 at 𝑥

0
.

Let us notice thatJ
𝑙
(𝐾, 𝑥

0
) andJ

𝑟
(𝐾, 𝑥

0
) are two convex

bodies in common with the segment 𝑥
0
𝑦 only.

FromTheorem 26 the starting point 𝜉
𝑙
(𝜉

𝑟
) of a left (right)

involute is uniquely determined from any point 𝑧 ∉ 𝐾 of
the involute. The arc of the points on the left (right) involute
between the starting point and 𝑧 will be denoted by 𝑖𝑧

𝑙,𝜉𝑙

(𝑖𝑧
𝑟,𝜉𝑟

)
or 𝑖𝑧

𝑙
(𝑖𝑧

𝑟
) for short. For 𝑦 ⪯ 𝑤 let us denote with 𝑖𝑦,𝑤

𝑙
(𝑖

𝑦,𝑤

𝑟
) the

oriented arc of the left (right) involute between 𝑦 and 𝑤.
Let us introduce now other regions which are bounded by

left and right involutes.
Let us fix the initial parameters 𝑥

0
, 𝑠

0
, 𝜃

0
, 𝜗

0
.

Definition 28. Given 𝑧 ∈ R2

\ 𝐾, let 𝑖
𝑙
= 𝑖

𝑙,𝜉𝑙
(𝑖

𝑟
= 𝑖

𝑟,𝜉𝑟
) be

the left (right) involute through 𝑧 with starting point 𝜉
𝑙
(𝜉

𝑟
)

and let 𝑧
𝑙
(𝑧

𝑟
) ∈ 𝜕𝐾 be as in Definition 25. Let 𝜗+

𝜉𝑙

satisfying
𝑥
𝑙
(𝑠

𝑙+
(𝜗

+

𝜉𝑙

)) = 𝜉
𝑙
. Let 𝜗

𝑙
> 𝜗

+

𝜉𝑙

be the smallest angle for which
𝑥
𝑙
(𝑠

𝑙+
(𝜗

𝑙
)) = 𝑧

𝑙
. Let one consider the parameterization (46);

let one define

G
𝑙
(𝐾, 𝑧) fl {𝑡𝑥

𝑙
(𝑠

𝑙+
(𝜗)) + (1 − 𝑡) 𝑖

𝑙
(𝜗) , 0 < 𝑡

< 1, 𝜗
+

𝜉𝑙

< 𝜗 < 𝜗
𝑙
} .

(93)

If 𝑖𝑧
𝑙
does not cross the open segment 𝑧𝑧

𝑙
, the regionG

𝑙
(𝐾, 𝑧)

is an open set bounded by the convex arc of left involute 𝑖𝑧
𝑙
, the

segment 𝑧𝑧
𝑙
, and the convex arc of 𝜕𝐾: arc+(𝜉

𝑙
, 𝑧

𝑙
); otherwise

let 𝑤 be the nearest point to 𝑧 where 𝑖𝑧
𝑙
crosses the open

segment 𝑧𝑧
𝑙
; the region G

𝑙
(𝐾, 𝑧) is an open set bounded by

the arc 𝑖𝑤,𝑧

𝑙
, the segment 𝑤𝑧, and 𝜕𝐾. Similarly let us define

G
𝑟
(𝐾, 𝑧).

G
𝑙
(𝐾, 𝑧),G

𝑟
(𝐾, 𝑧) are open and bounded sets. Let us

define

G (𝐾, 𝑧) fl Int (cl (G
𝑙
(𝐾, 𝑧) ∪G

𝑟
(𝐾, 𝑧))) . (94)

G(𝐾, 𝑧) is an open, bounded, connected set. G(𝐾, 𝑧) will be
called theG-fence of𝐾 at 𝑧.

Remark 29. If 𝑧 is the first crossing point of 𝑖
𝑙
and 𝑖

𝑟
and 𝜉

𝑙
=

𝜉
𝑟
, thenG(𝐾, 𝑧) = Int(J(𝐾, 𝜉

𝑙
)).

Let us conclude this section with the following result,
which follows fromTheorem 20.

Theorem 30. Let 𝐾 be limit of a sequence of convex bodies
𝐾

(𝑛), 𝑥
0
= lim𝑥(𝑛)

0
, and 𝑥(𝑛)

0
∈ 𝜕𝐾

(𝑛). Then

J (𝐾
(𝑛)

, 𝑥
(𝑛)

0
) 󳨀→ J (𝐾, 𝑥

0
) . (95)

Moreover if 𝑧 ∉ 𝐾, 𝑧 = lim 𝑧(𝑛), 𝑧(𝑛) ∉ 𝐾(𝑛), then

cl (G (𝐾(𝑛)

, 𝑧
(𝑛)

)) 󳨀→ cl (G (𝐾, 𝑧)) . (96)

4. Bounding Regions for SDC in the Plane

Let us assume that 𝑥
0
is the end point of one of the following

sets:

(a) a steepest descent curve 𝛾;

(b) 𝛾𝐾: a self-distancing curve from a convex body𝐾; see
Definition 3.

The following questions arise: can one extend 𝛾, 𝛾𝐾 beyond
𝑥
0
? Which regions delimit that extension?Which regions are

allowed and which are forbidden?

Lemma 31. Let 𝑧 ∈ R2

\ 𝐾. If 𝑢 ∈ G
𝑙
(𝐾, 𝑧) then the arc 𝑖𝑢

𝑙

of the left involute to 𝐾 ending at 𝑢 is contained in G
𝑙
(𝐾, 𝑧).

Similarly if 𝑢 ∈ G
𝑟
(𝐾, 𝑧), then 𝑖𝑢

𝑟
⊂ G

𝑟
(𝐾, 𝑧).

Proof. Since 𝑢 ∈ G
𝑙
(𝐾, 𝑧), by (93) there exist 𝜗

𝑙
∈ (𝜗

+

𝜉𝑙

, 𝜗
𝑙
),

𝜏 ∈ (0, 1) such that

𝑢 = 𝜏𝑥
𝑙
(𝑠

𝑙+
(𝜗

𝑙
)) + (1 − 𝜏) 𝑖

𝑙
(𝜗

𝑙
) . (97)

Then the arc 𝑖𝑢
𝑙
is parallel to an arc of the left involute 𝑖

𝑙

(through 𝑧) for 𝜗 ∈ (𝜗+
𝜉𝑙

, 𝜗
𝑙
). Then any left tangent segment to

𝐾 from a point of 𝑖𝑢
𝑙
is contained in the left tangent segment

from the corresponding point of 𝑖𝑧
𝑙
.
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Lemma 32. Let 𝑧 ∈ R2

\ 𝐾 and let 𝑢 ∈ G
𝑙
(𝐾, 𝑧). There are

two possible cases:

(i) if the right involute ending at 𝑢 does not cross the
tangent segment 𝑧

𝑙
𝑧 or it crosses 𝑧

𝑙
𝑧 at a point 𝑞 ∈

G
𝑙
(𝐾, 𝑧), then in both cases 𝑖𝑢

𝑟
⊂ G

𝑙
(𝐾, 𝑧);

(ii) if the right involute ending at 𝑢 crosses the tangent
segment 𝑧

𝑙
𝑧 at a point 𝑞 ∈ 𝑧

𝑙
𝑧 ∩ 𝜕G

𝑙
(𝐾, 𝑧), then

𝑖
𝑞,𝑢

𝑟
\ {𝑞} ⊂ G

𝑙
(𝐾, 𝑧).

Proof. Since the starting point 𝜉
𝑟
(𝑢) of the right involute

ending at 𝑢 is on 𝜕𝐾, the distance from 𝜉
𝑟
(𝑢) to a point of

the left involute 𝑖𝑧
𝑙
is not decreasing; see (iv) of Theorem 22;

similarly the distance from 𝜉
𝑟
(𝑢) to a point of 𝑖𝑢

𝑟
is not

decreasing. In case (i) the arc 𝑖𝑢
𝑟
has its end points inG

𝑙
(𝐾, 𝑧)

and by the above distance property it can not cross two
times the left involute; then it can not cross the boundary
of G

𝑙
(𝐾, 𝑧); therefore 𝑖𝑢

𝑟
⊂ G

𝑙
(𝐾, 𝑧); similarly in case (ii) the

arc 𝑖𝑞,𝑢
𝑟

can not cross the boundary of G
𝑙
(𝐾, 𝑧) at most in 𝑞;

therefore all the points of this arc, except to that 𝑞, belong to
G

𝑙
(𝐾, 𝑧).

From the previous lemma the following follows.

Theorem 33. Let 𝑧 ∉ 𝐾. The following inclusions hold:

(a) if 𝑢 ∈ G
𝑙
(𝐾, 𝑧), then

cl (G
𝑙
(𝐾, 𝑢)) \ 𝜕𝐾 ⊂ G

𝑙
(𝐾, 𝑧) ; (98)

(b) if 𝑢 ∈ G
𝑟
(𝐾, 𝑧), then

cl (G
𝑟
(𝐾, 𝑢)) \ 𝜕𝐾 ⊂ G

𝑟
(𝐾, 𝑧) ; (99)

(c) if 𝑢 ∈ G(𝐾, 𝑧), then

cl (G (𝐾, 𝑢)) \ 𝜕𝐾 ⊂ G (𝐾, 𝑧) . (100)

Proof. By Lemma 31 the left involute that boundsG
𝑙
(𝐾, 𝑢) is

insideG
𝑙
(𝐾, 𝑧); then (98) is proved. Inclusion (99) is proved

similarly. Let 𝑢 ∈ G(𝐾, 𝑧) = Int(cl(G
𝑙
(𝐾, 𝑧) ∪G

𝑟
(𝐾, 𝑧))) and

let us consider 𝑢 ∈ G
𝑙
(𝐾, 𝑧); then in case (i) of Lemma 32

also the open arc of the right involute 𝑖𝑢
𝑟
is inside G

𝑙
(𝐾, 𝑧) ⊂

G(𝐾, 𝑧). Besides 𝑖𝑢
𝑙
⊂ 𝜕G

𝑙
(𝐾, 𝑢); then (100) is trivial. In case

(ii) of Lemma 32 the open arc 𝑖𝑞,𝑢
𝑟

is inside G
𝑙
(𝐾, 𝑧). On the

other hand 𝑞 is insideG
𝑟
(𝐾, 𝑧) and by (99) the arc 𝑖𝑞

𝑟
⊂ 𝑖

𝑢

𝑟
is in

G
𝑟
(𝐾, 𝑧) ⊂ G(𝐾, 𝑧). Similar arguments hold if 𝑢 ∈ G

𝑟
(𝐾, 𝑧).

Then (100) holds in this case too.

Lemma 34. Let 𝑤 ∉ 𝐾. Let 𝜂 be polygonal deleted SDC
𝐾
with

end point 𝑦 ∈ G(𝐾, 𝑤). Then

𝜂 ⊂ G (𝐾, 𝑤) , (101)

𝜂 ⊂ cl (G (𝐾, 𝑦)) . (102)

Proof. To prove (101), let us assume, by contradiction, that 𝜂
has a point 𝑧 ∉ G(𝐾, 𝑤). With no loss of generality it can be
assumed that 𝑧 ∈ 𝜕G(𝐾, 𝑤) and

𝜂 \ 𝜂
𝑧
⊂ G (𝐾, 𝑤) . (103)

Then, 𝑧 is the end point of a segment 𝑧𝑤
𝑖
, where 𝑤

𝑖
∈

G(𝐾, 𝑤) ∩ 𝜂 and 𝑧 ≺ 𝑤
𝑖
on 𝜂. As 𝑧 ∈ 𝜕G(𝐾, 𝑤), then there

exists an involute through 𝑧 which is a piece of the boundary
of G(𝐾, 𝑤) (to fix the ideas it is assumed that it is the left
involute 𝑖

𝑙
). Let us consider 𝑧

𝑙
∈ 𝜕𝐾 so that the tangent vector

t
𝑧
to 𝑖

𝑙
at 𝑧 satisfies

⟨t
𝑧
, 𝑧 − 𝑧

𝑙
⟩ = 0. (104)

As 𝑤
𝑖
is inside the orthogonal angle centered in 𝑧 with sides

t
𝑧
and 𝑧

𝑙
− 𝑧, then

⟨𝑤
𝑖
− 𝑧, 𝑧 − 𝑧

𝑙
⟩ < 0. (105)

Then as for 𝜀 > 0 sufficiently small, 𝑧
𝜀
:= 𝑧 + 𝜀(𝑤

𝑖
− 𝑧) ∈ 𝜂

𝑤𝑖

and at 𝑧
𝜀
the curve 𝜂 has tangent vector 𝑤

𝑖
− 𝑧 that satisfies

⟨𝑤
𝑖
− 𝑧, 𝑧

𝜀
− 𝑧

𝑙
⟩ < 0, (106)

contradicting the fact that 𝜂
𝑤
has the distancing from 𝐾

property (5). This proves (101).
If 𝑤

𝑛
→ 𝑦, with 𝑦 ∈ G(𝐾, 𝑤

𝑛
), also the inclusions

𝜂 ⊂ cl (G (𝐾, 𝑤
𝑛
)) (107)

hold. Then (102) is obtained by approximation Theorem 30.

Theorem 35. Let 𝐾 be a convex body and let 𝛾𝐾 be SDC
𝐾
,

𝑤 ∈ 𝛾, 𝑤 ∉ 𝐾. Then

𝛾
𝐾

𝑤
⊂ cl (G (𝐾, 𝑤)) . (108)

Proof. Let us choose a sequence {𝑤
𝑛
}, 𝑤

𝑛
∈ 𝛾

𝐾

, 𝑤
𝑛
⪯ 𝑤,𝑤

𝑛
→

𝑤. Let us fix the arc 𝛾𝐾
𝑤𝑛

. By [8, Theorem 6.16], 𝛾𝐾
𝑤𝑛

is limit of
polygonal SDC

𝐾
with end point 𝑤

𝑛
. From Lemma 34, these

polygonal SDC
𝐾
are enclosed in cl(G(𝐾, 𝑤

𝑛
)); then

𝛾
𝐾

𝑤𝑛

⊂ cl (G (𝐾, 𝑤
𝑛
)) (109)

holds too. Inclusion (108) is now obtained from the
limit of the previous inclusions and by the approximation
Theorem 30.

Theorem 36. Let 𝐾 be a convex body not reduced to a point.
If 𝛾𝐾 is a self-distancing curve from 𝐾 with starting point 𝑥

0
∈

𝜕𝐾, then

𝛾
𝐾

⊂ cl (R2

\ (J (𝐾, 𝑥
0
) ∪ 𝐾)) . (110)

Proof. Let 𝑧 be the first crossing point of the left and right
involutes of𝐾 starting at 𝑥

0
. Then

Int (J (𝐾, 𝑥
0
)) = G (𝐾, 𝑧) . (111)

By contradiction, if 𝛾𝐾 has a point 𝑤 ∈ G(𝐾, 𝑧), then, by
Theorem 35, the following inclusion holds:

𝛾
𝐾

𝑤
⊂ cl (G (𝐾, 𝑤)) ; (112)
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since, by the distancing from 𝐾 property, 𝛾𝐾 has in common
with 𝐾 only the starting point 𝑥

0
then the inclusion

𝛾
𝐾

𝑤
\ {𝑥

0
} ⊂ cl (G (𝐾, 𝑤)) \ 𝜕𝐾 (113)

holds too. Moreover by (100) the set cl(G(𝐾, 𝑤)) \ 𝜕𝐾 has
positive distance from the R2

\ G(𝐾, 𝑧); then 𝛾𝐾
𝑤
\ {𝑥

0
} has

a positive distance from R2

\ G(𝐾, 𝑧) = R2

\ Int(J(𝐾, 𝑥
0
)).

This is in contradiction with 𝑥
0
∈ 𝜕J(𝐾, 𝑥

0
).

Corollary 37. Let 𝛾 be SDC and let 𝑧
1
∈ 𝛾; then

𝛾 \ 𝛾
𝑧1
⊂ cl (R2

\J (co (𝛾
𝑧1
) , 𝑧

1
)) . (114)

Proof. Since 𝛾\𝛾
𝑧1
is a self-distancing curve from co(𝛾

𝑧1
) and

𝑧
1
∈ 𝜕 co(𝛾

𝑧1
) (see [8, (i) of Lemma 4.6]), then Theorem 36

applies to 𝛾𝐾 = 𝛾 \ 𝛾
𝑧1
with𝐾 = co(𝛾

𝑧1
).

Definition 38. Let 𝛾 be SCD. If 𝑧
1
, 𝑧 ∈ 𝛾, with 𝑧

1
⪯ 𝑧 let

𝛾
𝑧1,𝑧

fl 𝛾
𝑧
\ 𝛾

𝑧1
. (115)

For 𝑧 ∉ 𝐾, let𝐾𝑧 be the cap body, introduced in (9). Next
theorem shows the principal result on bounding regions for
arcs of SDC 𝛾.

Theorem 39. Let 𝐾 be a convex body and let 𝛾 be SDC
𝐾
. If

𝑧
1
, 𝑧 ∈ 𝛾, with 𝑧

1
⪯ 𝑧 then

𝛾
𝑧1,𝑧

⊂ cl (G (𝐾, 𝑧) \J (𝐾𝑧1 , 𝑧
1
)) . (116)

Proof. First let us notice that 𝛾
𝑧1 ,𝑧

has the distancing from 𝐾

and from the set point {𝑧
1
} property; thus by Proposition 7

it has the distancing from 𝐾
𝑧1 property. Then inclusion (116)

follows fromTheorems 35 and 36.

Let us conclude the section with the following inclusion
result forJ-fences.

Theorem 40. Let 𝐾,𝐻 be two convex bodies not reduced to a
point, 𝐾 ⊂ 𝐻. Let 𝑥

0
∈ 𝜕𝐾 ∩ 𝜕𝐻. Then

J (𝐾, 𝑥
0
) ⊂ J (𝐻, 𝑥

0
) . (117)

Proof. The boundary of J(𝐻, 𝑥
0
) consists of two arcs

of the left and right involutes of 𝐻 starting at 𝑥
0
. By

Corollary 23 they are SDC
𝐻
, and then they are SDC

𝐾
;

therefore by Theorem 36 they cannot intersect the boundary
ofJ(𝐾, 𝑥

0
).

4.1. Minimally Connecting Plane Steepest Descent Curves.
Given a point 𝑥

1
∉ 𝐾, the segment joining it with its

projection 𝑥
0
on 𝜕𝐾 is SDC

𝐾
which minimally connects the

two points.
This subsection is devoted to consider when it would be

possible to connect a given point 𝑥
0
on the boundary of a

plane convex body 𝐾, with an arbitrarily given point 𝑥
1
∉ 𝐾,

by using a steepest descent curve 𝛾 ∈ SDC
𝐾
. Let us denote

with Γ𝐾
𝑥0 ,𝑥1

the class of the curves 𝛾 ∈ SDC
𝐾
starting at 𝑥

0
and

ending at 𝑥
1
.

N

K
x0

Pl

Br

V
P

yr

y∗r

yl

x1

ĩ
P𝑟
r,x0

ĩ
P𝑙
l,x0 Ql

Figure 4: The regions𝑁, 𝐵
𝑟
, and 𝑉 when 𝐾 is a square.

Definition 41. Let 𝛾 be SDCwith end point𝑦 and let 𝜂 be SDC
with starting point 𝑦; let us denote by 𝛾 ∗ 𝜂 the curve joining
𝛾 with 𝜂 in the natural order, if it is SDC curve.

Theorem 42. Let 𝑥
0
∈ 𝜕𝐾, 𝑥

1
∉ 𝐾. Then Γ𝐾

𝑥0 ,𝑥1

̸= 0 iff

𝑥
1
∈ cl (R2

\ (J (𝐾, 𝑥
0
)) ∪ 𝐾) . (118)

If (118) holds, there exist at most two 𝜂
𝑖
∈ Γ

𝐾

𝑥0 ,𝑥1

, 𝑖 = 1, 2 such
that the following properties are true:

∀𝛾 ∈ Γ
𝐾

𝑥0 ,𝑥1

󳨐⇒

co (𝜂
1
) ⊂ co (𝛾)

𝑜𝑟 co (𝜂
2
) ⊂ co (𝛾) , (𝑜𝑟 𝑏𝑜𝑡ℎ),

(119)

∀𝛾 ∈ Γ
𝐾

𝑥0 ,𝑥1

󳨐⇒

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≥ min

𝑖=1,2

{
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨} .

(120)

Proof. Let 𝛾 ∈ Γ𝐾
𝑥0 ,𝑥1

. From (110) of Theorem 36, since 𝑥
1
∈ 𝛾,

then (118) follows.
Let us prove now that (118) is sufficient. Let us notice that

R2

\ (J(𝐾, 𝑥
0
) ∪ 𝐾) can be divided into four regions 𝑁, 𝐵

𝑙
,

𝐵
𝑟
, and 𝑉 (see Figure 4) defined as follows:

(i) the closed normal sector𝑁 := 𝑥
0
+𝑁

𝐾
(𝑥

0
) is the angle

bounded by the two half lines 𝑡
𝑙
, 𝑡

𝑟
tangent at 𝑥

0
∈

𝜕𝐾 to the left and right involute 𝑖
𝑙
:= 𝑖

𝑙,𝑥0
, 𝑖

𝑟
:= 𝑖

𝑟,𝑥0
,

respectively; this angle can be reduced to an half line,
starting at 𝑥

0
;

(ii) let 𝑃 be the first crossing point between 𝑖
𝑙
and 𝑖

𝑟
; see

Theorem 24; 𝑖
𝑙
is SDC to 𝑖

𝑙
(𝜗

∗

𝑙
), which will be a point

𝑄
𝑙
following𝑃; after𝑄

𝑙
the involute 𝑖

𝑙
is nomore SDC;

see (i) of Theorem 22.
Let us change 𝑖

𝑙
after 𝑄

𝑙
with 𝑗

𝑙,𝑄𝑙
, the left involute of

co(𝐾 ∪ 𝑖𝑄𝑙
𝑙
) at 𝑄

𝑙
.

Let us define 𝑃
𝑙
as the first intersection point of 𝑗

𝑙,𝑄𝑙

with 𝜕𝑁, and let

𝑖̃
𝑃𝑙

𝑙,𝑥0

fl 𝑖
𝑄𝑙

𝑙,𝑥0

∗ 𝑗
𝑃𝑙

𝑙,𝑄𝑙

. (121)
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It is not difficult to see that 𝑖̃𝑃𝑙
𝑙,𝑥0

∈ Γ
𝐾

𝑥0 ,𝑃𝑙

. Changing
the left with the right, 𝑖̃

𝑟,𝑥0
and the point 𝑃

𝑟
can be

constructed. Let 𝐵
𝑟
be the union of the arc 𝑖𝑃

𝑟,𝑥0

\ {𝑃}

with the plane open region bounded by the segment
𝑥
0
𝑃
𝑙
, the arc 𝑖𝑃

𝑟,𝑥0

, and the arc 𝑖̃𝑃,𝑃𝑙
𝑙

; let 𝐵
𝑙
be the union

of the arc 𝑖𝑃
𝑙,𝑥0

\ {𝑃} with the plane open region
bounded by the segment 𝑥

0
𝑃
𝑟
, the arc 𝑖𝑃

𝑙,𝑥0

, and the arc
𝑖̃
𝑃,𝑃𝑟

𝑟
;

(iii) let 𝑉 be the remaining region; that is, 𝑉 = R2

\ (𝐾 ∪

J(𝐾, 𝑥
0
) ∪ 𝑁 ∪ 𝐵

𝑙
∪ 𝐵

𝑟
).

Let 𝑥
1
∈ 𝐵

𝑟
∪ 𝑉. On the oriented curve 𝑖̃𝑃𝑟

𝑟,𝑥0

there are two
points so that their tangent lines contain 𝑥

1
. Let 𝑦∗

𝑟
be the first

tangency point.
Let 𝑦

𝑙
, 𝑦

𝑟
be the intersection points of the half line 𝑚

starting at 𝑥
0
and containing 𝑥

1
, with 𝑖̃𝑃𝑙

𝑙,𝑥0

and with 𝑖̃𝑃𝑟
𝑟,𝑥0

,
respectively; see Figure 4.

Under assumption (118), 𝑥
1
belongs to one of the four

regions 𝑁,𝐵
𝑙
, 𝐵

𝑟
, 𝑉; let us prove now (119), (120) in the four

corresponding cases.

(1) If 𝑥
1
∈ 𝑁, then let 𝜂

1
= 𝜂

2
∈ Γ

𝐾

𝑥0 ,𝑥1

be the segment
𝑥
0
𝑥
1
. Then (119) and (120) are trivial.

(2) Let 𝑥
1
∈ 𝑉. Let

𝜂
𝑟
fl 𝑖̃

𝑦
∗

𝑟

𝑟,𝑥0

∗ 𝑦
∗

𝑟
𝑥
1
. (122)

The curve 𝜂
𝑟
is SDC

𝐾
, since the normal lines at all the

points on the segment 𝑦∗

𝑟
𝑥
1
have the same directions

and support 𝑖̃𝑦
∗

𝑟

𝑟,𝑥0

up to 𝑦∗

𝑟
; then 𝜂

𝑟
is SDC

𝐾
and joins

𝑥
0
with 𝑥

1
. Similarly SDC

𝐾
is defined:

𝜂
𝑙
= 𝑖̃

𝑦
∗

𝑙

𝑙,𝑥0

∗ 𝑦
∗

𝑙
𝑥
1
. (123)

Thus Γ𝐾
𝑥0 ,𝑥1

is nonempty and contains at least the two
elements 𝜂

𝑙
, 𝜂

𝑟
.

Let us consider the connected closed curve

𝑐
𝑥1

fl 𝑖̃
𝑦𝑟

𝑟,𝑥0

∪ 𝑦
𝑟
𝑦
𝑙
∪ 𝑖̃

𝑦𝑙

𝑙,𝑥0

. (124)

Let 𝛾 ∈ Γ
𝐾

𝑥0 ,𝑥1

, and let 𝑇 ∋ 𝑡 → 𝑥(𝑡) ∈ 𝛾 be a
continuous parameterization of 𝛾. Let us project from
𝑥
0
the curve 𝛾 on 𝑐

𝑥1
and let𝐷 be this projection.That

is, for 𝑡 ∈ 𝑇, let 𝜆
𝑡
:= {𝑥

0
+ 𝜆𝑥(𝑡), 0 ≤ 𝜆} and let

𝐷 = ⋃

𝑡∈𝑇

(𝑐
𝑥1
∩ 𝜆

𝑡
) . (125)

Clearly𝐷 is a closed connected subset of 𝑐
𝑥1
contain-

ing 𝑥
0
and the segment 𝑦

𝑟
𝑦
𝑙
. Thus𝐷 contains at least

one of the two connected components of 𝑐
𝑥1

joining
𝑥
0
with 𝑦

𝑟
, 𝑦

𝑙
. Therefore the inclusions

(̃𝑖
𝑦𝑟

𝑟,𝑥0

∪ 𝑦
𝑟
𝑦
𝑙
) ⊂ 𝐷 (126)

or

(̃𝑖
𝑦𝑙

𝑙,𝑥0

∪ 𝑦
𝑟
𝑦
𝑙
) ⊂ 𝐷 (127)

(or both) hold.
Assume that (126) holds and let 𝜂

𝑟
be defined as in

(122). Since, by construction of𝐷, the set co(𝐷∪{𝑥
1
})

is contained in co(𝛾), then

co (𝜂
𝑟
) ⊂ co (𝛾) . (128)

Similarly if (127) holds, then

co (𝜂
𝑙
) ⊂ co (𝛾) , (129)

with 𝜂
𝑙
defined by (123). Then (119) is proved. It is not

difficult to see that the region bounded by 𝛾 ∪ 𝑥
0
𝑥
1

contains the convex region bounded by 𝑖𝑦
∗

𝑟

𝑟,𝑥0

∪ 𝑦
∗

𝑟
𝑥
1
∪

𝑥
0
𝑥
1
. Thus the bound

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨󵄨󵄨
𝑖
𝑦
∗

𝑟

𝑟,𝑥0

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑦

∗

𝑟
𝑥
1

󵄨󵄨󵄨󵄨 (130)

holds; similar procedure can be used for left case.This
proves (120).

(3) Let 𝑥
1
∈ 𝐵

𝑟
; the same argument as in case (2) can be

carried on up to the inclusions (126) and (127). As in
step (2), when case (126) holds, the curve 𝜂

𝑟
can be

constructed and 𝜂
𝑟
is SDC

𝐾
.

Let us show that if 𝑥
1
∈ 𝐵

𝑟
then (127) cannot occur,

so the curve 𝜂
𝑙
can not to be constructed.

Let us argue by contradiction. If (127) occurs, then
let 𝑧

1
̸= 𝑥

0
be the first point where 𝛾 crosses the

half line 𝑥
0
𝑃. The point 𝑧

1
exists, since, under the

assumption (127), 𝑃 ∈ 𝐷. Then (Theorem 36) 𝑧
1
does

not belong to the open segment 𝑥
0
𝑃.Then, from (127)

(see Definition 27)

co (𝛾
𝑧1
) ⊃ J

𝑙
(𝐾, 𝑥

0
) . (131)

Moreover 𝛾 \ 𝛾
𝑧1
∪ {𝑧

1
} is SDCco(𝐾∪𝛾𝑧1

)
; see Remark 6.

Then by (131) it is SDCco(𝐾∪J𝑙(𝐾,𝑥0))
. Let us consider

the convex body𝐻 = co(𝐾 ∪ 𝑖𝑃
𝑙,𝑥0

). Since

co (𝐾 ∪ 𝛾
𝑧1
) ⊃ co (𝐾 ∪J

𝑙
(𝐾, 𝑥

0
)) ⊃ 𝐻, (132)

then 𝛾\𝛾
𝑧1
is a deleted SDC

𝐻
. FromTheorem 39, with

𝐻 in place of 𝐾, 𝑥
1
in place of 𝑧, it follows that

𝛾
𝑧1 ,𝑥1

⊂ cl (R2

\J (𝐻
𝑧1 , 𝑧

1
)) . (133)

Let𝑃
1
be where the right tangent from 𝑧

1
to𝐻 crosses

the arc 𝑖̃𝑃𝑙
𝑙,𝑃
. Let us notice that 𝑖̃𝑃𝑙

𝑙,𝑃
is also an arc of the

left involute of𝐻 at 𝑃. Moreover 𝑖̃𝑃1,𝑃𝑙
𝑙

is an arc of the
left involute of𝐻𝑧1 starting at 𝑃

1
; then it is parallel to

the left involute of𝐻𝑧1 at 𝑧
1
until it crosses the sector

𝑁; it turns out that

𝐵
𝑟
⊂ J (𝐻

𝑧1 , 𝑧
1
) . (134)
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From the two previous inclusions a contradiction
comes out since

𝑥
1
∈ 𝛾

𝑧1 ,𝑥1
∩ 𝐵

𝑟
= 0. (135)

Then (127) cannot occur.
(4) The case 𝑥

1
∈ 𝐵

𝑙
is similar to the previous one.

The proof is complete.

Definition 43. Under the assumptions ofTheorem 42, let one
define 𝐸𝐾

𝑥0 ,𝑥1

the set of 𝜂
𝑖
, 𝑖 = 1, 2 (possibly coinciding)

as they are constructed in the proof of Theorem 42, which
satisfy (119) and (120). These curves will be called minimally
connecting steepest descent curves for the class Γ𝐾

𝑥0 ,𝑥1

.

Definition 44. Let 𝛾 : 𝑇 ∋ 𝑡 → 𝑥(𝑡) be an absolutely
continuous curve and let 𝑥(𝑡) be a point of 𝛾, with tangent
vector 𝑥̇(𝑡). Let

H
𝑥(𝑡)

fl {𝑦 ∈ R
2

: ⟨𝑥̇ (𝑡) , 𝑦 − 𝑥 (𝑡)⟩ ≤ 0} . (136)

H
𝑥(𝑡)

is half plane bounded by the normal line to 𝛾 at 𝑥(𝑡)
and it is defined almost everywhere in 𝑇. For the curve 𝛾\𝛾

𝑥1

(consisting of the points of 𝛾 following 𝑥
1
) let us define the

region:

H (𝛾, 𝑥
1
) fl ⋂

𝑥1⪯𝑥(𝑡), 𝑥(𝑡)∈𝛾

H
𝑥(𝑡)
. (137)

IfH(𝛾, 𝑥
1
) ̸= 0, then it is a convex set.

If 𝛾 is SDC (𝛾 is SDC
𝐾
), then condition (2) (resp., (5))

implies that

𝛾
𝑥1
⊂ H (𝛾, 𝑥

1
) (resp., 𝛾

𝑥1
∪ 𝐾 ⊂ H (𝛾, 𝑥

1
)) . (138)

Theorem 45. Let 𝑥
0
∈ 𝜕𝐾, 𝑥

1
∉ 𝐾. Let 𝛾

1
be SDC with first

point 𝑥
1
. Necessary and sufficient conditions for the existence

of a curve 𝛾, self-distancing curve from 𝐾, starting at 𝑥
0
and

satisfying (𝛾 \ 𝛾
𝑥1
) ∪ {𝑥

1
} = 𝛾

1
, are as follows:

(a) 𝑥
1
∈ cl(R2

\J(𝐾, 𝑥
0
));

(b) there exists 𝜂 ∈ 𝐸𝐾

𝑥0 ,𝑥1

such that (𝐾 ∪ 𝜂) ⊂ H(𝛾
1
, 𝑥

1
);

moreover if (a) and (b) are satisfied, then 𝛾
1
∈ SDCco(𝐾∪𝜂)

.

Proof. (a) is necessary by Theorem 36. (b) is necessary by
Theorem 42 and by (138) since H(𝛾

1
, 𝑥

1
) = H(𝛾, 𝑥

1
).

Conversely if (a) and (b) hold, let us define 𝛾 := 𝜂 ∗ 𝛾
1
; then

(by definition of 𝐸𝐾

𝑥0 ,𝑥1

) 𝜂 is SDC
𝐾
; thus, 𝛾 is SDC

𝐾
too and 𝛾

1

is SDCco(𝐾∪𝜂)
(see Remark 6).

5. Self-Distancing Sets and Steepest
Descent Curves

A self-distancing set 𝜎 will be called SDC-extendible if there
exists a steepest descent curve 𝛾 such that 𝜎 ⊂ 𝛾.

This section is devoted to investigate the following ques-
tion:

Can a self-distancing set 𝜎 be extended to a steepest
descent curve 𝛾?

Let us call Γ
𝜎
the family of SDC 𝛾 which extends 𝜎. The

following example shows that Γ
𝜎
can be empty.

Example 46. Let us consider in a coordinate system xy the
points

𝑥
1
= (0, 0) ,

𝑥
2
= (0, 2) ,

𝑥
3
= (1,√8) ,

𝑥
4
= (−1,√8) .

(139)

The set 𝜎̃ = {𝑥
𝑖
, 𝑖 = 1, . . . , 4} is a self-distancing set not SDC-

extendible.

Proof. By contradiction let 𝛾 ∈ Γ
𝜎̃
; then any point 𝑥 on the arc

𝛾
𝑥3 ,𝑥4

satisfies the inequalities

3 =
󵄨󵄨󵄨󵄨𝑥3

− 𝑥
1

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥 − 𝑥1

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥4

− 𝑥
1

󵄨󵄨󵄨󵄨 = 3,

󵄨󵄨󵄨󵄨𝑥3
− 𝑥

2

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥 − 𝑥2

󵄨󵄨󵄨󵄨 .

(140)

That is, 𝑥 ∈ 𝜕𝐵(𝑥
1
, 3) and 𝑥 ∈ R2

\ 𝐵(𝑥
2
, |𝑥

3
− 𝑥

2
|). Since

𝜕𝐵(𝑥
1
, 3) ∩ (R2

\ 𝐵(𝑥
2
, |𝑥

3
− 𝑥

2
|)) = {𝑥

3
, 𝑥

4
}, the arc 𝛾

𝑥3,𝑥4

consists of two points only, which is impossible.

Next theorem gives a necessary condition (141) in order
to extend a finite self-distancing set 𝜎 to SDC; this condition
is based on the bounding sets introduced in Section 3.1.

Let us define 𝜎
𝑥
as the subset of 𝜎 consisting of the point

𝑥 and of the previous ones on 𝜎 (consistent with (3)).

Theorem 47. Let 𝜎 be a self-expanding SDC-extendible set;
then for all 𝑥

0
∈ 𝜎 such that 𝜎

𝑥0
̸= {𝑥

0
}, the inclusion

(𝜎 \ 𝜎
𝑥0
) ⊂ cl (R2

\J (co (𝜎
𝑥0
) , 𝑥

0
)) (141)

holds.

Proof. Let 𝛾 ∈ Γ
𝜎
; then 𝜎 ⊂ 𝛾 and 𝛾 is SDC. Then

co(𝛾
𝑥0
) ⊃ co(𝜎

𝑥0
) and 𝑥

0
∈ 𝜕 co(𝛾

𝑥0
) ∩ 𝜕 co(𝜎

𝑥0
) (see [8, (i)

of Lemma 4.6]); fromTheorem 40,

J (co (𝛾
𝑥0
) , 𝑥

0
) ⊃ J (co (𝜎

𝑥0
) , 𝑥

0
) ; (142)

moreover 𝜎 \ 𝜎
𝑥0
⊂ 𝛾 \ 𝛾

𝑥0
and from Corollary 37,

𝛾 \ 𝛾
𝑥0
⊂ cl (R2

\J (co (𝛾
𝑥0
) , 𝑥

0
)) . (143)

The previous inclusions prove (141).

Remark 48. In Example 46 it has been proved, in a simple
way, that 𝜎̃ is not SDC-extendible. Another way to prove this
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fact is to check that condition (141) does not hold for the point
𝑥
4
; let us notice that 𝜕J(co(𝜎̃

𝑥3
), 𝑥

3
) ∩ {𝑥 ≤ 0, 𝑦 ≥ 0} consists

of a circular arc centered at 𝑥
1
with radius 2 + √13 − 4√8;

then it is easy to see that 𝑥
4
is in the interior ofJ(co(𝜎̃

𝑥3
), 𝑥

3
)

and (141) is not satisfied.
Let us show in the following example that (141) is not

sufficient for a self-distancing set 𝜎 to be SDC-extendible.

Example 49. Let us consider in a coordinate system 𝑥𝑦 the
points

𝜉
1
= (0, 0) ,

𝜉
2
= (0, 2) ,

𝜉
3
= (2, 0) ,

𝜉
4
= (𝜌, 2) .

(144)

For √8 < 𝜌 < 𝜋, the set 𝜎 := {𝜉
𝑖
, 𝑖 = 1, . . . , 4} is a self-

distancing set satisfying condition (141) not SDC-extendible.

Proof. It easy to see that 𝜎 is a self-distancing set. Moreover
the initial piece of the left involute of co({𝜉

1
, 𝜉

2
, 𝜉

3
}) starting

at 𝜉
3
consists of a circular arc centered at 𝜉

2
of ray √8 and

amplitude (3/4)𝜋. Then 𝜉
4
∉ J(co({𝜉

1
, 𝜉

2
, 𝜉

3
}), 𝜉

3
) and (141)

is verified with 𝑥
0
= 𝜉

3
, 𝜎 \ 𝜎

𝑥0
= {𝜉

4
}. Trivially (141) is

verified also at 𝑥
0
= 𝜉

2
. Let us prove now that Γ

𝜎
is empty.

By contradiction let 𝛾 ∈ Γ
𝜎
. Let us consider 𝛾

𝜉3
. Since 𝜉

2
, 𝜉

3

have the same distance from 𝜉
1
, arguing as in Example 46,

𝛾
𝜉3

is a circular arc 𝐶 centered at 𝜉
1
from 𝜉

2
to 𝜉

3
. Since

the arc 𝛾
𝜉3

has the distancing property from the segment
𝜉
1
𝜉
2
, it is necessarily the arc of amplitude 𝜋/4 and not the

complementary arc. Let 𝜂 = 𝜉
1
𝜉
2
∗ 𝐶. Since 𝐶 ⊂ 𝛾 and

𝜉
2
, 𝜉

3
∈ 𝛾, then co(𝜂) ⊂ co(𝛾

𝜉3
).Thus byTheorem 40

J (co (𝛾
𝜉3
) , 𝜉

3
) ⊃ J (co (𝜂) , 𝜉

3
) . (145)

Since the segment 𝜉
2
𝜉
4
is tangent to 𝜂 at 𝜉

2
and it has length

𝜌, less than 𝜋, the length of the arc 𝜂
𝜉2,𝜉3

, then

𝜉
4
∈ Int (J (co (𝛾

𝜉3
) , 𝜉

3
)) . (146)

This is in contradiction with Corollary 37 at the point 𝜉
3
.

Let us introduce definitions and preliminary facts
needed to obtain necessary and sufficient conditions for the
extendibility of a self-distancing set 𝜎 structured as follows.

Definition 50. Let one denote with ∪̃
𝑖
𝜎
𝑖
a self-distancing

set with a finite (or countable) family of closed connected
components 𝜎

1
, 𝜎

2
, . . . , 𝜎

𝑛
, . . ., ordered as the points of 𝜎; that

is, if 𝑖 < 𝑗, 𝑥 ∈ 𝜎
𝑖
, 𝑦 ∈ 𝜎

𝑗
⇒ 𝑥 ⪯ 𝑦. Let 𝑥−

𝑖
be the first point

and let 𝑥+

𝑖
be the last point of 𝜎

𝑖
; if they are distinct (i.e. 𝜎

𝑖

does not reduce to a point) as noticed in the introduction ([6,
Theorem 3.3] and [8,Theorem 4.10]), 𝜎

𝑖
is SDC and it will be

denoted by 𝛾
𝑖
.

Lemma 51. Let 𝜎 = ∪̃
𝑖
𝜎
𝑖
be a self-distancing set. A necessary

condition for Γ
𝜎

̸= 0 is that for all components 𝜎
𝑖
, which are

curves 𝛾
𝑖
, the fact

𝑖

⋃

𝑗=1

𝜎
𝑗
⊂ H (𝛾

𝑖+1
, 𝑥

−

𝑖+1
) (147)

holds.

Proof. Let 𝛾 ∈ Γ
𝜎
. Then ∪𝑖

𝑗=1
𝜎
𝑗
⊂ 𝛾

𝑥
−

𝑖+1

. Then (147) follows
from (138).

Definition 52. Let 𝜎 = ∪̃
𝑖
𝜎
𝑖
be a self-distancing set. A

subfamily 𝐸
𝜎
⊂ Γ

𝜎
is called essential for Γ

𝜎
if the facts

(a) ∀𝛾 ∈ Γ
𝜎
∃𝜂 ∈ 𝐸

𝜎
: co (𝜂) ⊂ co (𝛾) , (148)

(b) 𝛾 ∈ Γ
𝜎
󳨐⇒

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≥ min {󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨 , 𝜂 ∈ 𝐸𝜎
} ,

(149)

(c) 𝛾 ∈ Γ
𝜎
,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 = min {󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨 , 𝜂 ∈ 𝐸𝜎
} 󳨐⇒

𝛾 ∈ 𝐸
𝜎

(150)

hold.
If Γ

𝜎
= 0, let us define 𝐸

𝜎
= 0 essential for Γ

𝜎
.

Let us start to study a self-distancing set with two closed
connected components.

Lemma 53. Let 𝜎∗

= ∪̃
𝑖=1,2

𝜎
𝑖
be a self-distancing set and let 𝜌

be the segment joining 𝑥+

1
, 𝑥

−

2
. There are five possibilities:

(p1) Let𝜎
1
= {𝑥

1
}, 𝜎

2
= {𝑥

2
}; then𝐸

𝜎
∗ = {𝜌} ̸= 0 is essential

for Γ
𝜎
.

(p2) Let 𝜎
1
= {𝑥

1
}, 𝜎

2
= 𝛾

2
(𝛾

2
is SDC); then a necessary

and sufficient condition for the extensibility of 𝜎∗ is

𝜎
1
⊂ H (𝛾

2
, 𝑥

−

2
) ; (151)

moreover 𝐸
𝜎
∗ = {𝜌 ∗ 𝛾

2
} is essential for Γ

𝜎
∗ .

(p3) Let 𝜎
1
= 𝛾

1
be a SDC, 𝜎

2
= {𝑥

2
}; then a necessary and

sufficient condition for the extensibility of 𝜎∗ is

𝜎
2
⊂ cl (R2

\ (J (co (𝛾
1
) , 𝑥

+

1
)) ∪ co (𝛾

1
)) ; (152)

moreover 𝐸
𝜎
∗ = {𝛾

1
∗ 𝜂 : 𝜂 ∈ 𝐸

co(𝛾1)
𝑥
+

1
,𝑥2

} (see
Definition 43).

(p4) Let 𝜎
1
= 𝛾

1
, 𝜎

2
= 𝛾

2
; then a necessary and sufficient

condition for the extensibility of 𝜎∗ is that there exists
SDC 𝜂 such that

𝜂 ∈ 𝐸
co(𝛾1)
𝑥
+

1
,𝑥
−

2

,

𝜎
1
∪ 𝜂 ⊂ H (𝛾

2
, 𝑥

−

2
) ;

(153)

the related essential family is 𝐸
𝜎
∗ = {𝛾

1
∗ 𝜂 ∗ 𝛾

2
: 𝜂 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠

(153)}.
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(p5) If in cases (p2), (p3), and (p4) the corresponding
necessary and sufficient conditions do not hold, then

𝐸
𝜎
∗ = Γ

𝜎
∗ = 0. (154)

Proof. Case (p1) is trivial; in case (p2) the inclusion (151)
follows from Lemma 51 with 𝑖 = 2 in (147). It is also trivial
that it is sufficient. Case (p3) follows from Theorem 42 with
𝐾 = co(𝛾

1
). Case (p4) follows from Theorem 45 with 𝛾

2
in

place of 𝛾
1
, 𝐾 = co(𝛾

1
), 𝑥+

1
in place of 𝑥

0
and 𝑥−

2
in place of

𝑥
1
.

An easy sufficient condition to check if 𝜎 = ∪̃
𝑖
𝜎
𝑖
is

extendible is the following.

Theorem 54. Let 𝜎 = ∪̃
𝑖
𝜎
𝑖
be a self-distancing set. Let 𝜎(𝑖)

=

∪̃
𝑖

𝑗=1
𝜎
𝑗
. If (147) and

𝑥
−

𝑖+1
∈ 𝑁co(𝜎(𝑖)) (𝑥

+

𝑖
) , ∀𝑖 ≥ 1 (155)

hold, then Γ
𝜎

̸= 0 and 𝛾, which linearly and orderly connects
𝜎
𝑖
, 𝜎

𝑖+1
with the segments 𝑥+

𝑖
𝑥
−

𝑖+1
, is SDC and it has minimal

length in Γ
𝜎
.

Proof. Let us argue by induction on the self-distancing set
𝜎
(𝑖). The case 𝑖 = 1 is contained in Lemma 53, since

the assumptions (147) and (155) are enough to get the
corresponding assumptions in cases (p1), (p2), (p3), and (p4).
Moreover in the case (p4) the curve 𝜂 = 𝑥

+

1
𝑥
−

2
is such that

𝛾
(2)

= 𝛾
1
∗𝜂∗𝛾

2
is the SDC of minimal length extending 𝜎(2).

Let 𝛾(𝑖) be the curve of minimal length extending 𝜎(𝑖).
Since the normal sector to co(𝜎(𝑖)

) at 𝑥+

𝑖
coincides with the

sector 𝑁 in the proof of Theorem 42, with 𝑥+

𝑖
in place of 𝑥

0
,

𝑥
−

𝑖+1
in place of 𝑥

1
, then assumption (155) implies that case (1)

of the proof of Theorem 42 occurs. It follows that

𝛾
(𝑖+1)

= 𝛾
(𝑖)

∗ 𝑥
+

𝑖
𝑥
−

𝑖+1
∗ 𝜎

𝑖+1
(156)

is of minimal length in Γ
𝜎
(𝑖+1) . Then, 𝛾 = ∪

𝑖
𝛾
(𝑖+1) is of minimal

length in Γ
𝜎
.

Remark 55. Since, as noticed in [4, II, Section 2], ∀𝑢, 𝑤 ∈ 𝜎
𝑥
+

𝑖

the angle 𝑢𝑥+

𝑖
𝑤 has opening less than 𝜋/2, thus the related

normal sector in (155) has opening greater than or equal
to 𝜋/2; then checking that 𝑥−

𝑖+1
satisfies (155) is easier than

checking that 𝑥−

𝑖+1
is outside of theF-fence as in (152).

Lemma 51 and Theorem 54 give only necessary and only
sufficient conditions, respectively, for the extensibility of
self-expanding sets. Let us give definitions in order to get
necessary and sufficient conditions.

Definition 56. Let 𝜎 = ∪̃
𝑗
𝜎
𝑗
be a self-distancing set. Let𝐸

𝑖
, 𝑖 =

2, . . . , 𝑛, . . . be defined by induction as follows.
𝐸

2
is the essential family related to ∪̃2

𝑗=1
𝜎
𝑗
, as given by

Lemma 53; if 𝑖 ≥ 2, the 𝐸
𝑖+1

related to ∪̃𝑖+1

𝑗=1
𝜎
𝑗
is defined as

follows:

(i) if 𝐸
𝑖
= 0 then 𝐸

𝑖+1
= 0;

(ii) if 𝐸
𝑖
̸= 0, let one consider for all 𝜂 ∈ 𝐸

𝑖
the essential

family 𝐸(𝜂) (see Lemma 53) related to 𝜂∪̃𝜎
𝑖+𝑖

(see
Definition 50). Let 𝐸

𝑖+1
= ∪

𝜂∈𝐸𝑖
𝐸(𝜂).

Let us notice that {𝐸
𝑖
} is ordered by inclusion and 𝐸

𝑖+1
, if

it is nonempty, consists of 2𝑖 curves at most.

Theorem 57. Let 𝜎 = ∪̃𝜎
𝑗
be a self-expanding set and let

𝐸
2
, 𝐸

3
, . . . , 𝐸

𝑖
, . . . be the sequence (finite or countable) of the

essential families associated with 𝜎. Then Γ
𝜎
̸= 0 iff ∀𝑖 ≥ 2 the

essential family 𝐸
𝑖
is nonempty.

Proof. If there exists 𝛾 ∈ Γ
𝜎
then, for all 𝑖 ≥ 1, 𝛾

𝑥
+

𝑖+1

∈ Γ
∪̃
𝑖+1

𝑗=1
𝜎𝑗

;
thus 𝐸

𝑖+1
̸= 0 byTheorem 42. Conversely if at each step 𝑖 ≥ 1

the essential family 𝐸
𝑖+1

̸= 0, then, by definition, there exists
a sequence {𝜂𝑖+1} of SDC such that 𝜂𝑖+1 ∈ 𝐸

𝑖+1
and such that

𝜂
𝑠

⊂ 𝜂
𝑠+1

, 𝑠 ≥ 1 (i.e., at each step, 𝜂𝑠+1 is an extension of a
previous one 𝜂𝑠) and 𝜂𝑠+1 ∈ 𝐸

∪̃
𝑖+1

𝑗=1
𝜎𝑗

; see Definition 56. Then

𝛾 = ∪
∞

𝑖=1
𝜂
𝑖+1 is well defined; obviously 𝛾 ∈ Γ

𝜎
.

Open Problem. In the present work only two-dimensional
problems are studied. In three (or more) dimensions the
construction of boundary regions to SDC and to SDC

𝐾
is

open. The boundary regions should probably be constructed
by using the space involutes of the geodesics curves on 𝜕𝐾.
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