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The robust 𝐻∞ fusion filtering problem is considered for linear time-varying uncertain systems observed by multiple sensors.
A performance index function for this problem is defined as an indefinite quadratic inequality which is solved by the projection
method in Krein space. On this basis, a robust centralized finite horizon 𝐻∞ fusion filtering algorithm is proposed. However,
this centralized fusion method is with poor real time property, as the number of sensors increases. To resolve this difficulty,
within the sequential fusion framework, the performance index function is described as a set of quadratic inequalities including
an indefinite quadratic inequality. And a sequential robust finite horizon 𝐻∞ fusion filtering algorithm is given by solving this
quadratic inequality group. Finally, two simulation examples for time-varying/time-invariant multisensor systems are exploited to
demonstrate the effectiveness of the proposed methods in the respect of the real time property and filtering accuracy.

1. Introduction

In many advanced systems, multiple homogeneous or het-
erogeneous sensors are spatially distributed to provide large
coverage, diverse viewing angles of the things of interest [1, 2].
How to deal with large amounts of overlapping and comple-
mentary data sampled by these sensors is a crucial issue. The
fusion filtering technology could effectively integrate these
data to estimate the signal of interest.

In the existing literature, the research of fusion filter
has already become a focus in recent years. Most of the
existing results are usually developed from Kalman filter [3–
7], on the basis of two necessary assumptions: the system
parameters are given, and the system noises satisfy the Gaus-
sian distributions with given statistic characteristics. These
assumptions, however, are usually too idealistic to obtain
in practice. Recently, several fusion filtering methods are
also developed with different assumptions. While the system
parameters include some uncertainties and the system noises
are Gaussian, by describing the system parameter uncertain-
ties as multiplicative noises or the norm-bounded uncer-
tainties, several robust Kalman fusion filters are deduced

in [8–10]. While the system parameters are given and the
statistic characteristic of system noises is unknown, some
centralized 𝐻∞ fusion filters are presented based on the
linear matrix inequality (LMI) technology or the Riccati
equation technology [11–13]. For the linear time-invariant
multisensor system with energy-bounded noises and norm-
bounded uncertain parameters, the centralized robust 𝐻∞

fusion filters are proposed in [14, 15]. In [16], a centralized
distributed 𝐻∞-consensus filtering method is proposed for
discrete time-varying systems by solving a set of different
linear matrix inequalities in each filtering period and further
extended for two kinds of uncertain systems.

However, there are still some performance and applica-
tion deficiencies in the (robust)𝐻∞ fusion filters mentioned
above.The deficiencies on performance aremainly embodied
in the real time property. This is due to the centralized
fusion structure of these filters [11–15], in which the mea-
surement functions of different sensors are augmented into a
high-dimensional measurement function, whose dimension
increases with the increase of sensors.Therefore, the running
time of these fusion filters can be affected by the implicit high-
dimensional operation. What is more, these fusion filters

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 2720549, 13 pages
http://dx.doi.org/10.1155/2016/2720549



2 Discrete Dynamics in Nature and Society

are designed on the basis of the measurements sampled
by all sensors. It is implied that the estimate of the signal
to be estimated cannot be obtained until all measurements
sampled by different sensors in a fusion period arrive at the
information processer. Particularly when measurements are
transmitted with random delayed phenomenon, the real time
performance of the centralized fusionmethods is usually very
poor. The deficiency on application refers to the fact that
most available literature concerning the 𝐻∞ fusion filtering
problems has been limited to time-invariant systems, and the
state estimation problem for the corresponding time-varying
systems has not been paid adequate research attention to
despite its clear engineering significance.

In this paper, we aim to investigate the robust𝐻∞ fusion
filtering method for time-varying multisensor uncertain
systems. The research work in this paper mainly includes the
following parts:

(i) In this paper, the impacts of the parameter uncer-
tainty and the system noises on the fusion esti-
mate errors are expressed by an indefinite quadratic
inequality, whose stationary can be given by a pro-
jection method in Krein space. On this basis, a
robust centralized finite horizon 𝐻∞ fusion filtering
algorithm is designed.

(ii) In order to improve the real time property of the
above robust fusion filtering algorithm, the perfor-
mance index function is reformulated into a set of
quadratic inequalities. By sequentially solving these
quadratic inequalities, a real time robust finite hori-
zon𝐻∞ fusion filtering algorithm is developed.

The remainder of this paper is organized as follows. In
Section 2, the time-varyingmultisensor system is formulated.
Two robust finite horizon 𝐻∞ fusion filtering algorithms
are proposed in Section 3, respectively, according to the
centralized fusion strategy and the sequential one. Simulation
results and comparisons are presented in Section 4, and some
conclusions are given in Section 5.

Notation. The notation used here is fairly standard except
where otherwise stated.The superscript “𝑇” stands formatrix
transposition, R𝑛 denotes the 𝑛-dimensional Euclidean
space, and I denotes the identity matrix with appropriate
dimension. The notation P > 0, where P is positive definite.
The vectors in Hilbert space are denoted by bold face letters,
such as “x(𝑖),” and the ones in Krein space are denoted by the
bold face letters with bar, such as “x(𝑖).” ⟨A,B⟩ stands for the
inner product in Krein space.

2. Problem Formulation

Consider the following time-varying 𝑁-sensor system with
uncertain parameters:

x (𝑘 + 1) = (F (𝑘 + 1, 𝑘) + ΔF (𝑘 + 1, 𝑘)) x (𝑘)

+ w (𝑘 + 1, 𝑘) ,

y
𝑖
(𝑘) = H

𝑖
(𝑘) x (𝑘) + k

𝑖
(𝑘) , 𝑖 = 1, 2, . . . , 𝑁,

z (𝑘) = L (𝑘) x (𝑘) ,

(1)

where x(𝑘) ∈ R𝑛 is the state vector. y
𝑖
(𝑘) ∈ R𝑚𝑖 is the

measurement output of sensor 𝑖. w(𝑘, 𝑘 − 1) ∈ 𝑙
2
[1,𝑁) is

the process noise and k
𝑖
(𝑘) ∈ 𝑙

2
[1,𝑁) is the corresponding

measurement noise of sensor 𝑖. z(𝑘) ∈ R𝑝 is the signal to be
estimated. F(𝑘 + 1, 𝑘),H

𝑖
(𝑘), L(𝑘) are the given matrices with

compatible dimensions.ΔF(𝑘+1, 𝑘) is a real-valued uncertain
matrix satisfyingΔF(𝑘+1, 𝑘) = D(𝑘+1, 𝑘)Λ(𝑘)M(𝑘), in which
D(𝑘 + 1, 𝑘),M(𝑘) are known time-varying matrices and Λ(𝑘)

is time-varying uncertainty satisfying ‖Λ(𝑘)‖ ≤ 1.

3. Robust Finite Horizon 𝐻∞ Fusion
Filtering Algorithms

Define the following auxiliary variables [17]:

s (𝑘) fl M (𝑘) x (𝑘) ,

𝜉 (𝑘) fl Λ (𝑘) s (𝑘) = Λ (𝑘)M (𝑘) x (𝑘) .

(2)

Then the system shown in (1) can be rewritten as

x (𝑘 + 1) = F (𝑘 + 1, 𝑘) x (𝑘) +D (𝑘 + 1, 𝑘) 𝜉 (𝑘)

+ w (𝑘 + 1, 𝑘) .

(3)

Due to ‖Λ(𝑘)‖ ≤ 1, s𝑇(𝑘)s(𝑘) ≥ 𝜉
𝑇

(𝑘)𝜉(𝑘), we can also get
𝑘

∑

𝑖=1

s𝑇 (𝑖) s (𝑖) ≥

𝑘

∑

𝑖=1

𝜉
𝑇

(𝑖) 𝜉 (𝑖) . (4)

Denote ẑ(𝑘 | 𝑘) as the fusion filtering result of z(𝑘), based
on the measurements {y

𝑖
(𝑗) | 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑘}, and

e
𝑧
(𝑘) = ẑ(𝑘 | 𝑘) − z(𝑘). The transfer function of the system

noises and e
𝑧
(𝑘) can be expressed as

󵄩󵄩󵄩󵄩𝑇𝑘 (𝑠)
󵄩󵄩󵄩󵄩

2

∞

= sup
w,k∈𝑙2

∑
𝑘

𝑖=1
e𝑇
𝑧
(𝑖) e
𝑧
(𝑖)

∑
𝑘

𝑖=1
k𝑇
𝑖
(𝑗) k
𝑖
(𝑗) + ∑

𝑘

𝑖=1
w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1) + x̃𝑇

0
P−1
0
x̃
0

,

(5)

where x̃
0
= x(0) − x̂

0
and x̂

0
is an initial estimate of x(0). P

0

is a given positive definite matrix.
For a given scalar 𝛾 > 0, the following constraint is given

to map the system noises to the filtering error:

sup
w,k∈𝑙2

∑
𝑘

𝑖=1
e𝑇
𝑧
(𝑖) e
𝑧
(𝑖)

∑
𝑘

𝑖=1
k𝑇 (𝑖) k (𝑖) + ∑

𝑘

𝑖=1
w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1) + x̃𝑇

0
P−1
0
x̃
0

< 𝛾
2

.

(6)

It is obvious from (6) that
𝑘

∑

𝑖=1

w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1) + x̃𝑇
0
P−1
0
x̃
0

+

𝑘

∑

𝑖=1

(

𝑁

∑

𝑗=1

k𝑇
𝑗
(𝑖) k
𝑗
(𝑖) − 𝛾

−2e𝑇
𝑧
(𝑖) e
𝑧
(𝑖)) > 0.

(7)
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Combining the above constraints (4) and (7), we can obtain
the following performance index function for the robust
fusion filtering process:

𝐽 (𝑘) = x̃𝑇
0
P−1
0
x̃
0
+

𝑘

∑

𝑖=1

w𝑇 (𝑖, 𝑖 − 1)w (𝑖, 𝑖 − 1)

+

𝑘

∑

𝑖=1

𝜉
𝑇

(𝑖) 𝜉 (𝑖) −
𝑘

∑

𝑖=1

s𝑇 (𝑖) s (𝑖)

+

𝑘

∑

𝑖=1

(

𝑁

∑

𝑗=1

k𝑇
𝑗
(𝑖) k
𝑗
(𝑖) − 𝛾

−2e𝑇
𝑧
(𝑖) e
𝑧
(𝑖)) > 0.

(8)

Rewrite (8) as

𝐽 (𝑘) = x̃𝑇
0
P−1
0
x̃
0

+

𝑘

∑

𝑖=1

[w𝑇 (𝑖, 𝑖 − 1) 𝜉
𝑇

(𝑖)] [

w (𝑖, 𝑖 − 1)

𝜉 (𝑖)
]

+

𝑘

∑

𝑖=1

(

𝑁

∑

𝑗=1

k𝑇
𝑗
(𝑖) k
𝑗
(𝑖) − 𝛾

−2e𝑇
𝑧
(𝑖) e
𝑧
(𝑖) − s𝑇 (𝑖) s (𝑖))

> 0.

(9)

The above performance index means

(1) there is a minimum J∗(𝑘) of 𝐽(𝑘) at a stationary point
ẑ(𝑘 | 𝑘);

(2) the minimum J∗(𝑘) > 0.

The stationary point of indefinite quadratic forms in
Hilbert space corresponds to a projection in Krein space [17–
20]. In the remainder of this section, the projections in Krein
space will be solved to obtain the stationary point of 𝐽(𝑘) and
further to yield the estimates of the signal to be estimated.

3.1. Centralized Robust Finite Horizon 𝐻∞ Fusion Filtering
Algorithm. Define the following augmented matrices:

󵱰Y (𝑘) =

[
[
[
[

[

y
1
(𝑘)

.

.

.

y
𝑁
(𝑘)

]
]
]
]

]

,

󵱰H (𝑘) =

[
[
[
[

[

H
1
(𝑘)

.

.

.

H
𝑁
(𝑘)

]
]
]
]

]

,

󵱰V (𝑘) =

[
[
[
[

[

k
1
(𝑘)

.

.

.

k
𝑁
(𝑘)

]
]
]
]

]

,

Y (𝑘) =

[
[
[

[

󵱰Y (𝑘)

0

ẑ (𝑘 | 𝑘)

]
]
]

]

,

←→H (𝑘) =

[
[
[

[

󵱰H (𝑘)

M (𝑘)

L (𝑘)

]
]
]

]

,

V (𝑘) =

[
[
[

[

󵱰V (𝑘)

s (𝑘)
e
𝑧
(𝑘)

]
]
]

]

,

←→w (𝑘, 𝑘 − 1) = [

w (𝑘, 𝑘 − 1)

𝜉 (𝑘)
] .

(10)

Then we can rewrite (1) in the following augmented matrix
form:

x (𝑘 + 1) = F (𝑘 + 1, 𝑘) x (𝑘) +D (𝑘 + 1, 𝑘) 𝜉 (𝑘)

+ w (𝑘 + 1, 𝑘)

= F (𝑘 + 1, 𝑘) x (𝑘) + G (𝑘)
←→w (𝑘 + 1, 𝑘) ,

Y (𝑘) =
←→H (𝑘) x (𝑘) + V (𝑘) ;

(11)

here G(𝑘) = [I,D(𝑘 + 1, 𝑘)]. And the performance index
function shown in (9) can be further expressed as

𝐽 (𝑘) = x̃𝑇
0
P−1
0
x̃
0
+

𝑘

∑

𝑖=1

←→w 𝑇 (𝑖, 𝑖 − 1)
←→w (𝑖, 𝑖 − 1)

+

𝑘

∑

𝑖=1

V𝑇 (𝑖)R−1 (𝑖)V (𝑖) > 0

(12)

in which R(𝑖) = diag{I, −I, −𝛾−2I}.

Theorem 1. Given a positive scalar 𝛾, for the augmented
matrix system shown in (11), the following robust finite horizon
𝐻∞ fusion filter can be given to satisfy the performance index
function (9), based on the centralized fusion strategy:

ẑ (𝑘 | 𝑘) = L (𝑘) x̂ (𝑘 | 𝑘) ,

x̂ (𝑘 | 𝑘) = x̂ (𝑘 | 𝑘 − 1) + P (𝑘) [

󵱰H (𝑘)

M (𝑘)

]

𝑇

A−1 (𝑘)

⋅ (

󵱰Y (𝑘) − 󵱰H (𝑘) x̂ (𝑘 | 𝑘 − 1)

−M (𝑘) x̂ (𝑘 | 𝑘 − 1)

) ,

x̂ (𝑘 | 𝑘 − 1) = F (𝑘, 𝑘 − 1) x̂ (𝑘 − 1 | 𝑘 − 1) ,

(13)
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where

Α (𝑘) = [

󵱰H (𝑘)

M (𝑘)

]P (𝑘) [

󵱰H (𝑘)

M (𝑘)

]

𝑇

+ [

I 0
0 −I

] ,

P (𝑘 + 1) = F (𝑘 + 1, 𝑘)P (𝑘) F𝑇 (𝑘 + 1, 𝑘) + G (𝑘 + 1)

⋅ G𝑇 (𝑘 + 1) − F (𝑘 + 1, 𝑘)P (𝑘)
←→H
𝑇

(𝑘)P−1
𝑒𝑌

(𝑘)

⋅
←→H (𝑘)P (𝑘) F𝑇 (𝑘 + 1, 𝑘) ,

P
𝑒𝑌

(𝑘) =
←→H (𝑘)P (𝑘)

←→H
𝑇

(𝑘) + R (𝑘) .

(14)

The existing condition of this robust 𝐻∞ fusion filter is that
P
𝑒𝑌
(𝑘) and R(𝑘) have the same inertia index.

Proof. The performance index function (9) can be expressed
by the indefinite quadratic augmented matrix inequality
(12), in which the stationary point of 𝐽(𝑘) corresponds to a
projection in the following Krein subspace:

x (𝑖) = F (𝑖, 𝑖 − 1) x (𝑖 − 1) + G (𝑖)w (𝑖, 𝑖 − 1) ,

Y (𝑖) =
←→H (𝑖) x (𝑖) + V (𝑖) , 𝑖 = 1, . . . , 𝑘

(15)

with

⟨

[
[
[

[

x̃
0

w (𝑗
1
, 𝑗
1
− 1)

V (𝑗
1
)

]
]
]

]

,

[
[
[

[

x̃
0

w (𝑗
2
, 𝑗
2
− 1)

V (𝑗
2
)

]
]
]

]

⟩

=

[
[
[

[

P
0

0 0
0 I𝛿
𝑗1 ,𝑗2

0
0 0 R (𝑗

1
) 𝛿
𝑗1 ,𝑗2

]
]
]

]

, 1 ≤ 𝑗
1
, 𝑗
2
≤ 𝑘.

(16)

Denote W(𝑘) fl [w𝑇(1, 0), . . . ,w𝑇(𝑘, 𝑘 − 1)]
𝑇, 𝜉(𝑘) fl

[x𝑇(0),W𝑇(𝑘)]𝑇. The stationary point of the indefinite
quadratic form (12) corresponds to the projection of 𝜉(𝑘) into
the Krein subspace 𝐿

𝑘

𝑌
spanned by {Y(𝑖) | 𝑖 = 1, . . . , 𝑘}. Let

̂Y(𝑖 | 𝑖 − 1) be the projection of Y(𝑖) into 𝐿
𝑘

𝑌
, and let e

𝑌
(𝑖)

be Y(𝑖) −
̂Y(𝑖 | 𝑖 − 1). Then {e

𝑌
(1), . . . , e

𝑌
(𝑘 − 1), e

𝑌
(𝑘)} is

an orthogonal basis of 𝐿𝑘
𝑌
, and the projection of 𝜉(𝑘) into the

Krein subspace 𝐿
𝑘

𝑌
is given by

̂
𝜉 (𝑘 | 𝑘) =

𝑘

∑

𝑖=1

⟨𝜉 (𝑘) , e
𝑌
(𝑖)⟩ ⟨e

𝑌
(𝑖) , e
𝑌
(𝑖)⟩
−1 e
𝑌
(𝑖) . (17)

The projection of x(𝑘) into 𝐿
𝑘

𝑌
is

x̂ (𝑘 | 𝑘) =

𝑘

∑

𝑖=1

⟨x (𝑘) , e
𝑌
(𝑖)⟩ ⟨e

𝑌
(𝑖) , e
𝑌
(𝑖)⟩
−1 e
𝑌
(𝑖)

fl x̂ (𝑘 | 𝑘 − 1) +
←→K (𝑘) e

𝑌
(𝑘) ,

(18)

where

x̂ (𝑘 | 𝑘 − 1)

=

𝑘−1

∑

𝑖=1

⟨x (𝑘) , e
𝑌
(𝑖)⟩ ⟨e

𝑌
(𝑖) , e
𝑌
(𝑖)⟩
−1 e
𝑌
(𝑖)

= F (𝑘, 𝑘 − 1) x̂ (𝑘 − 1 | 𝑘 − 1) ,

←→K (𝑘) = ⟨x (𝑘) , e
𝑌
(𝑘)⟩ ⟨e

𝑌
(𝑘) , e
𝑌
(𝑘)⟩
−1

.

(19)

Denote e
𝑥
(𝑘) = x(𝑘) − x̂(𝑘 | 𝑘− 1), P(𝑘) fl ⟨e

𝑥
(𝑘), e
𝑥
(𝑘)⟩;

then

e
𝑌
(𝑘) = Y (𝑘) −

̂Y (𝑘 | 𝑘 − 1)

=
←→H (𝑘) [x (𝑘) − x̂ (𝑘 | 𝑘 − 1)] + V (𝑘) ,

P
𝑒𝑌

(𝑘) = ⟨e
𝑌
(𝑘) , e
𝑌
(𝑘)⟩

=
←→H (𝑘)P (𝑘)

←→H
𝑇

(𝑘) + R (𝑘) ,

←→K (𝑘) = ⟨x (𝑘) , e
𝑌
(𝑘)⟩ ⟨e

𝑌
(𝑘) , e
𝑌
(𝑘)⟩
−1

= P (𝑘)
←→H
𝑇

(𝑘) (
←→H (𝑘)P (𝑘)

←→H
𝑇

(𝑘) + R (𝑘))

−1

.

(20)

The projection of 𝜉(𝑘) in (17) corresponds to a stationary
point of the indefinite quadratic form 𝐽(𝑘) in (12), and the
value of 𝐽(𝑘) at this stationary point is

J∗ (𝑘) =

𝑘

∑

𝑖=1

e𝑇
𝑌
(𝑖)P−1
𝑒𝑌

(𝑖) e
𝑌
(𝑖)

=

𝑘−1

∑

𝑖=1

e𝑇
𝑌
(𝑖)P−1
𝑒𝑌

(𝑖) e
𝑌
(𝑖) + e𝑇

𝑌
(𝑘)P−1
𝑒𝑌

(𝑘) e
𝑌
(𝑘)

= J∗ (𝑘 − 1) + e𝑇
𝑌
(𝑘)P−1
𝑒𝑌

(𝑘) e
𝑌
(𝑘)

(21)

in which

e
𝑌
(𝑘) = Y (𝑘) − Ŷ (𝑘 | 𝑘 − 1)

=

[
[
[

[

󵱰Y (𝑘)

0

ẑ (𝑘 | 𝑘)

]
]
]

]

−

[
[
[

[

󵱰H (𝑘)

M (𝑘)

L (𝑘)

]
]
]

]

x̂ (𝑘 | 𝑘 − 1) ,

x̂ (𝑘 | 𝑘 − 1) = F (𝑘, 𝑘 − 1) x̂ (𝑘 − 1 | 𝑘 − 1) .

(22)
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Due to the fact that P−1
𝑒𝑌
(𝑘) can be expressed as the form

in (23), J∗(𝑘) can also be given by (24):

P−1
𝑒𝑌

(𝑘) = [

Α (𝑘) Β (𝑘)

Β𝑇 (𝑘) C (𝑘)

]

−1

= [

A−1 (𝑘) + A−1 (𝑘)B (𝑘) 𝜀−1 (𝑘)B𝑇 (𝑘)A−1 (𝑘) −A−1 (𝑘)B (𝑘) 𝜀−1 (𝑘)

−𝜀−1 (𝑘)B𝑇 (𝑘)A−1 (𝑘) 𝜀−1 (𝑘)
]

= [

I 0

−B𝑇 (𝑘)A−1 (𝑘) I
]

𝑇

[

A−1 (𝑘) 0
0 𝜀−1 (𝑘)

] [

I 0

−B𝑇 (𝑘)A−1 (𝑘) I
]

=

[
[
[

[

[

I 0

−A𝑇
12

(𝑘)A−1
11

(𝑘) I
] 0

−B𝑇 (𝑘)A−1 (𝑘) I

]
]
]

]

𝑇

[
[

[

[

A−1
11

(𝑘) 0
0 A−1

3
(𝑘)

] 0

0 𝜀−1 (𝑘)

]
]

]

[
[
[

[

[

I 0

−A𝑇
12

(𝑘)A−1
11

(𝑘) I
] 0

−B𝑇 (𝑘)A−1 (𝑘) I

]
]
]

]

,

(23)

J∗ (𝑘) = J∗ (𝑘 − 1) + e𝑇
𝑌
(𝑘)P−1
𝑒𝑌

(𝑘) e
𝑌
(𝑘)

= J∗ (𝑘 − 1) + 󵱰̃Y
𝑇

(𝑘 | 𝑘 − 1)A−1
11

(𝑘) 󵱰̃Y (𝑘 | 𝑘 − 1) + 󵱰̂x𝑇 (𝑘 | 𝑘 − 1)M𝑇 (𝑘)A−1
3

(𝑘)M (𝑘) 󵱰̂x (𝑘 | 𝑘 − 1)

+ [ẑ (𝑘 | 𝑘) − ẑ∗ (𝑘 | 𝑘)]
𝑇

𝜀
−1

(𝑘) [ẑ (𝑘 | 𝑘) − ẑ∗ (𝑘 | 𝑘)] .

(24)

Here,

Α (𝑘) = [

A
11

(𝑘) A
12

(𝑘)

A𝑇
12

(𝑘) A
22

(𝑘)

]

= [

󵱰H (𝑘)

M (𝑘)

]P (𝑘) [

󵱰H (𝑘)

M (𝑘)

]

𝑇

+ [

I 0
0 −I

] ,

Β (𝑘) = [

󵱰H (𝑘)

M (𝑘)

]P (𝑘) L𝑇 (𝑘) ,

C (𝑘) = L (𝑘)P (𝑘) L𝑇 (𝑘) − 𝛾
−2I,

A
3
(𝑘) = A

22
(𝑘) − A𝑇

12
(𝑘)A−1
11

(𝑘)A
12

(𝑘) ,

𝜀 (𝑘) = C (𝑘) − B𝑇 (𝑘)A−1 (𝑘)B (𝑘) ,

󵱰̃Y (𝑘 | 𝑘 − 1) = 󵱰Y (𝑘) − 󵱰H (𝑘) x̂ (𝑘 | 𝑘 − 1) ,

ẑ∗ (𝑘 | 𝑘)

= L (𝑘) x̂ (𝑘 | 𝑘 − 1)

+ B𝑇 (𝑘)A−1 (𝑘) (
󵱰Y (𝑘) − 󵱰H (𝑘) x̂ (𝑘 | 𝑘 − 1)

−M (𝑘) x̂ (𝑘 | 𝑘 − 1)

) ,

󵱰̂x (𝑘 | 𝑘 − 1) = −P (𝑘) 󵱰H𝑇 (𝑘)A−1
11

(𝑘) 󵱰̃Y (𝑘 | 𝑘 − 1) .

(25)

According to [19, 20], J∗(𝑘) is the minimum of J(𝑘) if and
only ifP

𝑒𝑌
(𝑘) andR(𝑘)have the same inertia. Considering the

block triangular factorization of P−1
𝑒𝑌
(𝑘) as shown in (23), the

sufficient condition of the minimum is A
3
(𝑘) < 0, 𝜀(𝑘) < 0.

Therefore, a choice of ẑ(𝑘 | 𝑘) to ensure J∗(𝑘) > 0 is ẑ(𝑘 | 𝑘) =

ẑ∗(𝑘 | 𝑘); then the estimate of the signal to be estimated is

ẑ (𝑘 | 𝑘) = ẑ∗ (𝑘 | 𝑘) = L (𝑘) x̂ (𝑘 | 𝑘) (26)

in which

x̂ (𝑘 | 𝑘) = x̂ (𝑘 | 𝑘 − 1) + P (𝑘) [

󵱰H (𝑘)

M (𝑘)

]

𝑇

A−1 (𝑘)

⋅ (

󵱰Y (𝑘) − 󵱰H (𝑘) x̂ (𝑘 | 𝑘 − 1)

−M (𝑘) x̂ (𝑘 | 𝑘 − 1)

) ,

Α (𝑘) = [

󵱰H (𝑘)

M (𝑘)

]P (𝑘) [

󵱰H (𝑘)

M (𝑘)

]

𝑇

+ [

I 0
0 −I

] .

(27)

The existing condition of this filter is that P
𝑒𝑌
(𝑘) andR(𝑘)

have the same inertia index.
The Riccati equation is given by

P (𝑘 + 1) = F (𝑘 + 1, 𝑘)P (𝑘) F𝑇 (𝑘 + 1, 𝑘) + G (𝑘 + 1)

⋅ G𝑇 (𝑘 + 1) − F (𝑘 + 1, 𝑘)P (𝑘)
←→H
𝑇

(𝑘)P−1
𝑒𝑌

(𝑘)

⋅
←→H (𝑘)P (𝑘) F𝑇 (𝑘 + 1, 𝑘) ,

P
𝑒𝑌

(𝑘) =
←→H (𝑘)P (𝑘)

←→H
𝑇

(𝑘) + R (𝑘) .

(28)

Remark 2. Given a positive scalar 𝛾, the value of R(𝑘) and
P
𝑒𝑌
(𝑘) can be obtained in each fusion period. Then compare

the inertia index (the number of positive eigenvalues) ofR(𝑘)

and P
𝑒𝑌
(𝑘). If they have the same inertia index, the fusion

filters in Theorem 1 are applied to the corresponding fusion
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period. Otherwise, the value of 𝛾 should be changed, and the
fusion filter needs to be resolved for the changed performance
index function.

In Theorem 1, a robust finite horizon 𝐻∞ fusion filter-
ing algorithm is proposed based on the centralized fusion
strategy. The estimate of the signal to be estimated cannot be
obtained until all measurements sampled by different sensors
arrive at the fusion center, by a high-dimensional operation.
Obviously, the real time property of the centralized fusion
methods is usually lost to some extent in this fusion filtering
process.

Motivated by this situation, in the next subsection, an
equivalent real time robust finite horizon𝐻∞ fusion filtering
algorithm is also proposed for the time-varying𝑁-sensor sys-
tem with uncertain parameter, on the basis of the sequential
fusion strategy.

3.2. Sequential Robust Finite Horizon 𝐻∞ Fusion Filtering
Algorithm. Without loss of generality, assume that the arrival
sequence of the 𝑁 measurements is just the sequence of
the sensors; namely, the measurements arrive at the fusion
center in the sequence y

1
(𝑘), y
2
(𝑘), . . . , y

𝑁
(𝑘). These mea-

surements could be dealt with sequentially in the fusion
center, according to the sequential fusion strategy. Denote the
corresponding system state of y

𝑖
(𝑘) by x

𝑖
(𝑘); then one gets

x
𝑁
(𝑘) = ⋅ ⋅ ⋅ = x

1
(𝑘) = x (𝑘)

= F (𝑘, 𝑘 − 1) x (𝑘 − 1) + G (𝑘)
←→w (𝑘, 𝑘 − 1) .

(29)

Lemma 3. The performance index function shown in (9) can
also be expressed as the following set of quadratic inequalities:

J
1
(𝑘) = J

𝑁
(𝑘 − 1) +

←→w 𝑇 (𝑘, 𝑘 − 1)
←→w (𝑘, 𝑘 − 1)

+ k𝑇
1
(𝑘) k
1
(𝑘) > 0,

(30a)

J
𝑖
(𝑘) = J

𝑖−1
(𝑘) + k𝑇

𝑖
(𝑘) k
𝑖
(𝑘) > 0,

𝑖 = 2, . . . , 𝑁 − 1,

(30b)

J
𝑁
(𝑘) = J

𝑁−1
(𝑘) + k𝑇

𝑁
(𝑘) k
𝑁
(𝑘) − 𝛾

−2e𝑇
𝑧
(𝑘) e
𝑧
(𝑘)

− s𝑇 (𝑘) s (𝑘) > 0.

(30c)

Theorem 4. For the augmented matrix system shown in (11),
the following sequential robust finite horizon 𝐻∞ fusion filter
can be given to satisfy the performance index functions (30a),
(30b), and (30c):

ẑ
𝑖
(𝑘 | 𝑘) = L (𝑘) x̂

𝑖
(𝑘 | 𝑘) , 𝑖 = 1, . . . , 𝑁 (31)

in which

x̂
𝑖
(𝑘 | 𝑘) =

{{{{{

{{{{{

{

x̂
𝑖−1

(𝑘 | 𝑘) + P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) (H

𝑖
(𝑘)P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) + I)

−1

(y
𝑖
(𝑘) −H

𝑖
(𝑘) x̂
𝑖−1

(𝑘 | 𝑘)) , 𝑖 < 𝑁

x̂
𝑁−1

(𝑘 | 𝑘) + P
𝑁
(𝑘) [

[

H
𝑁
(𝑘)

M (𝑘)

]

]

𝑇

󵱰A−1 (𝑘)(
y
𝑁
(𝑘) −H

𝑁
(𝑘) x̂
𝑁−1

(𝑘 | 𝑘)

−M (𝑘) x̂
𝑁−1

(𝑘 | 𝑘)

) , 𝑖 = 𝑁,

P
𝑖
(𝑘)

=

{

{

{

F (𝑘, 𝑘 − 1)P
𝑁
(𝑘 − 1) F𝑇 (𝑘, 𝑘 − 1) + G (𝑘)G𝑇 (𝑘) − F (𝑘, 𝑘 − 1)P

𝑁
(𝑘 − 1)H𝑇

𝑁
(𝑘 − 1)P−1

𝑒𝑦,𝑁
(𝑘 − 1)H

𝑁
(𝑘 − 1)P

𝑁
(𝑘 − 1) F𝑇 (𝑘, 𝑘 − 1) , 𝑖 = 1

P
𝑖−1

(𝑘) − P
𝑖−1

(𝑘)H𝑇
𝑖−1

(𝑘) (H
𝑖−1

(𝑘)P
𝑖−1

(𝑘)H𝑇
𝑖−1

(𝑘) + I)
−1

H
𝑖−1

(𝑘)P
𝑖−1

(𝑘) , 𝑖 = 1,

󵱰A (𝑘) = [

H
𝑁
(𝑘)

M (𝑘)
]P
𝑁
(𝑘) [

H
𝑁
(𝑘)

M (𝑘)
]

𝑇

+ [

I 0
0 −I

] ,

x̂
0
(𝑘 | 𝑘) = x̂ (𝑘 | 𝑘 − 1) = F (𝑘, 𝑘 − 1) x̂ (𝑘 − 1 | 𝑘 − 1) ,

P
𝑒𝑦,𝑁

(𝑘) = R
𝑁
(𝑘) +

[
[

[

H
𝑁
(𝑘)

M (𝑘)

L (𝑘)

]
]

]

P
𝑁
(𝑘) [H𝑇

𝑁
(𝑘) M𝑇 (𝑘) L𝑇 (𝑘)] .

(32)

The existence condition of this robust 𝐻∞ fusion filter is that
P
𝑒𝑦,𝑁

(𝑘) and R
𝑁
(𝑘) have the same inertia index.

An analytical proof of this theorem is given in the
remainder of this section.

(I) When y
1
(𝑘) arrives at the fusion center, the corre-

sponding subsystem is
x
1
(𝑘) = x (𝑘)

= F (𝑘, 𝑘 − 1) x (𝑘 − 1) + G (𝑘)
←→w (𝑘, 𝑘 − 1) ,

y
1
(𝑘) = H

1
(𝑘) x
1
(𝑘) + k

1
(𝑘) ,

z
1
(𝑘) = L (𝑘) x

1
(𝑘) .

(33)

The corresponding performance index function is (30a),
the stationary point of which corresponds to a projection in
the following Krein subspace:

x (𝑖) = F (𝑖, 𝑖 − 1) x (𝑖 − 1) + G (𝑖)w (𝑖, 𝑖 − 1) ,
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Y (𝑖) =
←→H (𝑖) x (𝑖) + V (𝑖) , 𝑖 = 1, . . . , 𝑘 − 1,

x
1
(𝑘) = x (𝑘)

= F (𝑘, 𝑘 − 1) x (𝑘 − 1) + G (𝑘)w (𝑘, 𝑘 − 1) ,

y
1
(𝑘) = H

1
(𝑘) x
1
(𝑘) + k

1
(𝑘)

(34)

with

⟨

[
[
[
[
[

[

x̃
0

w (𝑗
1
, 𝑗
1
− 1)

k
1
(𝑘)

V (𝑗
1
)

]
]
]
]
]

]

,

[
[
[
[
[

[

x̃
0

w (𝑗
2
, 𝑗
2
− 1)

k
1
(𝑘)

V (𝑗
2
)

]
]
]
]
]

]

⟩

=

[
[
[
[
[

[

P
0

0 0 0
0 I𝛿
𝑗1 ,𝑗2

0 0
0 0 I 0
0 0 0 R (𝑗

1
) 𝛿
𝑗1 ,𝑗2

]
]
]
]
]

]

, 1 ≤ 𝑗
1
, 𝑗
2
≤ 𝑘.

(35)

The stationary point of (30a) corresponds to the pro-
jection of 𝜉(𝑘) in the Krein subspace 𝐿

𝑘

𝑦,1
spanned by

{Y(1), . . . ,Y(𝑘 − 1), y
1
(𝑘)}. Denote the projection of y

1
(𝑘) in

𝐿
𝑘−1

𝑌
by ŷ
1
(𝑘 | 𝑘−1), and the error e

𝑦,1
(𝑘) fl y

1
(𝑘)− ŷ

1
(𝑘 | 𝑘−

1). Obviously, {e
𝑌
(1), . . . , e

𝑌
(𝑘 − 1), e

𝑦,1
(𝑘)} is an orthogonal

basis of 𝐿𝑘
𝑦,1
. Therefore, the projection of 𝜉(𝑘) in 𝐿

𝑘

𝑦,1
is given

by

̂
𝜉
1
(𝑘 | 𝑘)

=

𝑘−1

∑

𝑖=1

⟨𝜉 (𝑘) , e
𝑌
(𝑖)⟩ ⟨e

𝑌
(𝑖) , e
𝑌
(𝑖)⟩
−1 e
𝑌
(𝑖)

+ ⟨𝜉 (𝑘) , e
𝑦,1

(𝑘)⟩ ⟨e
𝑦,1

(𝑘) , e
𝑦,1

(𝑘)⟩
−1

e
𝑦,1

(𝑘) .

(36)

The projection of x(𝑘) in 𝐿
𝑘

𝑦,1
is given by

x̂
1
(𝑘 | 𝑘)

=

𝑘−1

∑

𝑖=1

⟨x (𝑘) , e
𝑌
(𝑖)⟩ ⟨e

𝑌
(𝑖) , e
𝑌
(𝑖)⟩
−1 e
𝑌
(𝑖)

+ ⟨x (𝑘) , e
𝑦,1

(𝑘)⟩ ⟨e
𝑦,1

(𝑘) , e
𝑦,1

(𝑘)⟩
−1

e
𝑦,1

(𝑘)

= x̂ (𝑘 | 𝑘 − 1)

+ ⟨x (𝑘) , e
𝑦,1

(𝑘)⟩ ⟨e
𝑦,1

(𝑘) , e
𝑦,1

(𝑘)⟩
−1

e
𝑦,1

(𝑘) ,

(37)

where

e
𝑦,1

(𝑘) = y
1
(𝑘) − ŷ

1
(𝑘 | 𝑘 − 1)

= H
1
(𝑘) [x (𝑘) − x̂ (𝑘 | 𝑘 − 1)] + k

1
(𝑘) .

(38)

One gets

P
𝑒𝑦,1

(𝑘) = ⟨e
𝑦,1

(𝑘) , e
𝑦,1

(𝑘)⟩

= H
1
(𝑘)P
1
(𝑘)H𝑇
1
(𝑘) + I,

⟨x (𝑘) , e
𝑦,1

(𝑘)⟩ ⟨e
𝑦,1

(𝑘) , e
𝑦,1

(𝑘)⟩
−1

= P
1
(𝑘)H𝑇
1
(𝑘) (H

1
(𝑘)P
1
(𝑘)H𝑇
1
(𝑘) + I)

−1

.

(39)

̂
𝜉
1
(𝑘 | 𝑘) corresponds to the stationary point of (30a), the

value of J
1
(𝑘) at which point is

J∗
1
(𝑘) =

𝑘−1

∑

𝑖=1

e𝑇
𝑌
(𝑖)P−1
𝑒𝑌

(𝑖) e
𝑌
(𝑖)

+ e𝑇
𝑦,1

(𝑘)P−1
𝑒𝑦,1

(𝑘) e
𝑦,1

(𝑘)

= J∗
1
(𝑘 − 1) + e𝑇

𝑦,1
(𝑘)P−1
𝑒𝑦,1

(𝑘) e
𝑦,1

(𝑘) ,

(40)

where e
𝑦,1

(𝑘) = y
1
(𝑘) − H

1
(𝑘)x̂(𝑘 | 𝑘 − 1), x̂(𝑘 | 𝑘 − 1) =

F(𝑘, 𝑘 − 1)x̂(𝑘 − 1 | 𝑘 − 1).
Because P

𝑒𝑦,1
(𝑘) = H

1
(𝑘)P
1
(𝑘)H𝑇
1
(𝑘) + I > 0, J∗

1
(𝑘) > 0.

The estimate of the signal to be estimated is given by

ẑ
1
(𝑘 | 𝑘) = L (𝑘) x̂

1
(𝑘 | 𝑘) (41a)

in which

x̂
1
(𝑘 | 𝑘) = x̂ (𝑘 | 𝑘 − 1) + P

1
(𝑘)H𝑇
1
(𝑘)

⋅ (H
1
(𝑘)P
1
(𝑘)H𝑇
1
(𝑘) + I)

−1

⋅ (y
1
(𝑘) −H

1
(𝑘) x̂ (𝑘 | 𝑘 − 1)) ,

(41b)

x̂ (𝑘 | 𝑘 − 1) = F (𝑘, 𝑘 − 1) x̂ (𝑘 − 1 | 𝑘 − 1) . (41c)

Because x
1
(𝑘) = x

2
(𝑘), the corresponding Riccati equa-

tion is given by

P
2
(𝑘) = P

1
(𝑘) − P

1
(𝑘)H𝑇
1
(𝑘)

⋅ (H
1
(𝑘)P
1
(𝑘)H𝑇
1
(𝑘) + I)

−1

H
1
(𝑘)

⋅ P
1
(𝑘) .

(41d)

(II) When y
𝑖
(𝑘) (𝑖 = 2, . . . , 𝑁 − 1) arrives at the fusion

center, the corresponding subsystem is

x
𝑖
(𝑘) = x

𝑖−1
(𝑘) ,

y
𝑖
(𝑘) = H

𝑖
(𝑘) x
𝑖
(𝑘) + k

𝑖
(𝑘) ,

z
𝑖
(𝑘) = L (𝑘) x

𝑖
(𝑘) .

(42)
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The corresponding performance index function is (30b),
the stationary point of which corresponds to a projection in
the following Krein subspace:

x (𝑙) = F (𝑙, 𝑙 − 1) x (𝑙 − 1) + G (𝑙)w (𝑙, 𝑙 − 1) ,

Y (𝑙) =
←→H (𝑙) x (𝑙) + V (𝑙) , 𝑙 = 1, . . . , 𝑘 − 1,

x
𝑖
(𝑘) = ⋅ ⋅ ⋅ = x

1
(𝑘) = x (𝑘)

= F (𝑘, 𝑘 − 1) x (𝑘 − 1) + G (𝑘)w (𝑘, 𝑘 − 1) ,

y
𝑗
(𝑘) = H

𝑗
(𝑘) x
𝑗
(𝑘) + k

𝑗
(𝑘) , 𝑗 = 1, . . . , 𝑖

(43)

with

⟨

[
[
[
[
[

[

x̃
0

w (𝑗
1
, 𝑗
1
− 1)

k
𝑗3
(𝑘)

V (𝑗
5
)

]
]
]
]
]

]

,

[
[
[
[
[

[

x̃
0

w (𝑗
2
, 𝑗
2
− 1)

k
𝑗4
(𝑘)

V (𝑗
6
)

]
]
]
]
]

]

⟩

=

[
[
[
[
[

[

P
0

0 0 0
0 I𝛿
𝑗1 ,𝑗2

0 0
0 0 I𝛿

𝑗3 ,𝑗4
0

0 0 0 R (𝑗
5
) 𝛿
𝑗5 ,𝑗6

]
]
]
]
]

]

,

1 ≤ 𝑗
1
, 𝑗
2
≤ 𝑘; 1 ≤ 𝑗

3
, 𝑗
4
≤ 𝑖; 1 ≤ 𝑗

5
, 𝑗
6
< 𝑘.

(44)

The stationary point of (30b) corresponds to the pro-
jection of 𝜉(𝑘) in the Krein subspace 𝐿

𝑘

𝑦,𝑖
spanned by

{Y(1), . . . ,Y(𝑘−1), y
1
(𝑘), . . . , y

𝑖
(𝑘)}. Denote the projection of

y
𝑗
(𝑘) in 𝐿

𝑘

𝑦,𝑗−1
as ŷ
𝑗
(𝑘 | 𝑘 − 1), and e

𝑦,𝑗
(𝑘) fl y

𝑗
(𝑘) − ŷ

𝑗
(𝑘 |

𝑘 − 1). Obviously, {e
𝑌
(1), . . . , e

𝑌
(𝑘 − 1), e

𝑦,1
(𝑘), . . . , e

𝑦,𝑖
(𝑘)} is

an orthogonal basis of 𝐿𝑘
𝑦,𝑖
. Therefore, the projection of 𝜉(𝑘)

in 𝐿
𝑘

𝑦,𝑖
is given by

̂
𝜉
𝑖
(𝑘 | 𝑘) =

𝑘−1

∑

𝑙=1

⟨𝜉 (𝑘) , e
𝑌
(𝑙)⟩ ⟨e

𝑌
(𝑙) , e
𝑌
(𝑙)⟩
−1 e
𝑌
(𝑙)

+

𝑖

∑

𝑗=1

⟨𝜉 (𝑘) , e
𝑦,𝑗

(𝑘)⟩ ⟨e
𝑦,𝑗

(𝑘) , e
𝑦,𝑗

(𝑘)⟩
−1

e
𝑦,𝑗

(𝑘) .

(45)

The corresponding projection of x(𝑘) is given by

x̂
𝑖
(𝑘 | 𝑘)

= x̂
𝑖−1

(𝑘 | 𝑘)

+ ⟨x (𝑘) , e
𝑦,𝑖

(𝑘)⟩ ⟨e
𝑦,𝑖

(𝑘) , e
𝑦,𝑖

(𝑘)⟩
−1

e
𝑦,𝑖

(𝑘)

(46)

in which

e
𝑦,𝑖

(𝑘) = y
𝑖
(𝑘) − ŷ

𝑖
(𝑘 | 𝑘 − 1)

= H
𝑖
(𝑘) [x (𝑘) − x̂

𝑖−1
(𝑘 | 𝑘)] + k

𝑖
(𝑘) .

(47)

Then,

P
𝑒𝑦,𝑖

(𝑘) = ⟨e
𝑦,𝑖

(𝑘) , e
𝑦,𝑖

(𝑘)⟩

= H
𝑖
(𝑘)P
𝑖−1

(𝑘)H𝑇
𝑖
(𝑘) + I,

⟨x (𝑘) , e
𝑦,𝑖

(𝑘)⟩ ⟨e
𝑦,𝑖

(𝑘) , e
𝑦,𝑖

(𝑘)⟩
−1

= P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) (H

𝑖
(𝑘)P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) + I)

−1

.

(48)

̂
𝜉
𝑖
(𝑘 | 𝑘) corresponds to the stationary point of (30b), the

value of J
𝑖
(𝑘) at which point is

J∗
𝑖
(𝑘) =

𝑘−1

∑

𝑙=1

e𝑇
𝑌
(𝑙)P−1
𝑒𝑌

(𝑙) e
𝑌
(𝑙)

+

𝑖

∑

𝑗=1

e𝑇
𝑦,𝑗

(𝑘)P−1
𝑒𝑦,𝑗

(𝑘) e
𝑦,𝑗

(𝑘)

= J∗
𝑖−1

(𝑘) + e𝑇
𝑦,𝑖

(𝑘)P−1
𝑒𝑦,𝑖

(𝑘) e
𝑦,𝑖

(𝑘) ,

(49)

where e
𝑦,𝑖

(𝑘) = y
𝑖
(𝑘) − H

𝑖
(𝑘)x̂
𝑖
(𝑘 | 𝑘 − 1), P

𝑒𝑦,𝑖
(𝑘) =

H
𝑖
(𝑘)P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) + I > 0. Therefore, J∗

𝑖
(𝑘) > 0.

Then the estimate of the signal to be estimated is given by

ẑ
𝑖
(𝑘 | 𝑘) = L (𝑘) x̂

𝑖
(𝑘 | 𝑘) , (50a)

x̂
𝑖
(𝑘 | 𝑘) = x̂

𝑖−1
(𝑘 | 𝑘) + P

𝑖
(𝑘)H𝑇
𝑖
(𝑘)

⋅ (H
𝑖
(𝑘)P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) + I)

−1

⋅ (y
𝑖
(𝑘) −H

𝑖
(𝑘) x̂
𝑖−1

(𝑘 | 𝑘)) .

(50b)

Because x
𝑖+1

(𝑘) = x
𝑖
(𝑘), the corresponding Riccati

equation is given by

P
𝑖+1

(𝑘) = P
𝑖
(𝑘) − P

𝑖
(𝑘)H𝑇
𝑖
(𝑘)

⋅ (H
𝑖
(𝑘)P
𝑖
(𝑘)H𝑇
𝑖
(𝑘) + I)

−1

H
𝑖
(𝑘)

⋅ P
𝑖
(𝑘) .

(50c)

(III) When y
𝑁
(𝑘) arrives at the fusion center, the corre-

sponding subsystem is

x
𝑁
(𝑘) = x

𝑁−1
(𝑘) ,

y
𝑁
(𝑘) = H

𝑁
(𝑘) x
𝑁
(𝑘) + k

𝑁
(𝑘) ,

z
𝑁
(𝑘) = L (𝑘) x

𝑁
(𝑘) .

(51)

The corresponding performance index function is (30c),
the stationary point of which corresponds to a projection in
the following Krein subspace:

x (𝑙) = F (𝑙, 𝑙 − 1) x (𝑙 − 1) + G (𝑙)w (𝑙, 𝑙 − 1)

Y (𝑙) =
←→H (𝑙) x (𝑙) + V (𝑙) , 𝑙 = 1, . . . , 𝑘

(52)
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with

⟨

[
[
[

[

x̃
0

w (𝑗
1
, 𝑗
1
− 1)

V (𝑗
3
)

]
]
]

]

,

[
[
[

[

x̃
0

w (𝑗
2
, 𝑗
2
− 1)

V (𝑗
4
)

]
]
]

]

⟩

=

[
[
[

[

P
0

0 0
0 I𝛿
𝑗1 ,𝑗2

0
0 0 R (𝑗

3
) 𝛿
𝑗3 ,𝑗4

]
]
]

]

,

1 ≤ 𝑗
1
, 𝑗
2
≤ 𝑘; 1 ≤ 𝑗

3
, 𝑗
4
≤ 𝑘.

(53)

The stationary point of (30c) corresponds to the projec-
tion of 𝜉(𝑘) in the Krein subspace 𝐿

𝑘

𝑌
. Denote

e
𝑦,𝑁

(𝑘) =
[
[

[

y
𝑁
(𝑘)

0

ẑ
𝑁
(𝑘 | 𝑘)

]
]

]

−
[
[

[

H
𝑁
(𝑘)

M (𝑘)

L (𝑘)

]
]

]

x̂
𝑁
(𝑘 | 𝑘 − 1) . (54)

Then {e
𝑌
(1), . . . , e

𝑌
(𝑘 − 1), e

𝑦,1
(𝑘), . . . , e

𝑦,𝑁
(𝑘)} is an

orthogonal basis of 𝐿𝑘
𝑌
. And we can obtain the projection of

𝜉(𝑘) in 𝐿
𝑘

𝑌
as

̂
𝜉
𝑁
(𝑘 | 𝑘)

=

𝑘−1

∑

𝑙=1

⟨𝜉 (𝑘) , e
𝑌
(𝑙)⟩ ⟨e

𝑌
(𝑙) , e
𝑌
(𝑙)⟩
−1 e
𝑌
(𝑙)

+

𝑁

∑

𝑗=1

⟨𝜉 (𝑘) , e
𝑦,𝑗

(𝑘)⟩ ⟨e
𝑦,𝑗

(𝑘) , e
𝑦,𝑗

(𝑘)⟩
−1

e
𝑦,𝑗

(𝑘)

=

𝑘

∑

𝑙=1

⟨𝜉 (𝑘) , e
𝑌
(𝑙)⟩ ⟨e

𝑌
(𝑙) , e
𝑌
(𝑙)⟩
−1 e
𝑌
(𝑙) .

(55)

The corresponding projection of x(𝑘) is given by

x̂
𝑁
(𝑘 | 𝑘) = x̂

𝑁−1
(𝑘 | 𝑘) + ⟨x (𝑘) , e

𝑦,𝑁
(𝑘)⟩

⋅ ⟨e
𝑦,𝑁

(𝑘) , e
𝑦,𝑁

(𝑘)⟩
−1

e
𝑦,𝑁

(𝑘) .

(56)

Denote R
𝑁
(𝑘) = [

I 0 0
0 −I 0
0 0 −𝛾2I

]; then one gets

⟨x (𝑘) , e
𝑦,𝑁

(𝑘)⟩ ⟨e
𝑦,𝑁

(𝑘) , e
𝑦,𝑁

(𝑘)⟩
−1

= P
𝑁
(𝑘) [H𝑇

𝑁
(𝑘) M𝑇 (𝑘) L𝑇 (𝑘)]P−1

𝑒𝑦,𝑁
(𝑘) ,

P
𝑒𝑦,𝑁

(𝑘) = ⟨e
𝑦,𝑁

(𝑘) , e
𝑦,𝑁

(𝑘)⟩

= R
𝑁
(𝑘)

+
[
[

[

H
𝑁
(𝑘)

M (𝑘)

L (𝑘)

]
]

]

P
𝑁
(𝑘) [H𝑇

𝑁
(𝑘) M𝑇 (𝑘) L𝑇 (𝑘)] .

(57)

̂
𝜉
𝑁
(𝑘 | 𝑘) corresponds to the stationary point of (30c), the

value of J
𝑁
(𝑘) at which point is

J∗
𝑁
(𝑘) =

𝑘−1

∑

𝑙=1

e𝑇
𝑌
(𝑙)P−1
𝑒𝑌

(𝑙) e
𝑌
(𝑙)

+

𝑁

∑

𝑗=1

e𝑇
𝑦,𝑗

(𝑘)P−1
𝑒𝑦,𝑗

(𝑘) e
𝑦,𝑗

(𝑘)

= J∗
𝑁−1

(𝑘) + e𝑇
𝑦,𝑁

(𝑘)P−1
𝑒𝑦,𝑁

(𝑘) e
𝑦,𝑁

(𝑘)

(58)

in which

P−1
𝑒𝑦,𝑁

(𝑘) = [

󵱰A (𝑘) 󵱰Β (𝑘)

󵱰Β
𝑇

(𝑘) 󵱰C (𝑘)

]

−1

=

[
[
[

[

[

I 0

−󵱰A𝑇
12

(𝑘) 󵱰A−1
11

(𝑘) I
] 0

−󵱰B𝑇 (𝑘) 󵱰A−1 (𝑘) I

]
]
]

]

𝑇

⋅

[
[
[

[

[

󵱰A−1
11

(𝑘) 0
0 󵱰A−1

3
(𝑘)

] 0

0 󵱰𝜀−1 (𝑘)

]
]
]

]

[
[
[

[

[

I 0

−󵱰A𝑇
12

(𝑘) 󵱰A−1
11

(𝑘) I
] 0

−󵱰Β
𝑇

(𝑘) 󵱰A−1 (𝑘) I

]
]
]

]

,

(59)

󵱰A (𝑘) = [

󵱰A
11

(𝑘) 󵱰A
12

(𝑘)

󵱰A𝑇
12

(𝑘) 󵱰A
22

(𝑘)

] = [

H
𝑁
(𝑘)

M (𝑘)
]P
𝑁
(𝑘) [

H
𝑁
(𝑘)

M (𝑘)
]

𝑇

+ [

I 0
0 −I

] ,

󵱰C (𝑘) = L (𝑘)P
𝑁
(𝑘) L𝑇 (𝑘) − 𝛾

−2I,

󵱰A
3
(𝑘) = 󵱰A

22
(𝑘) − 󵱰A𝑇

12
(𝑘) 󵱰A−1
11

(𝑘) 󵱰A
12

(𝑘) ,

󵱰𝜀 (𝑘) = 󵱰C (𝑘) − 󵱰Β
𝑇

(𝑘) 󵱰A−1 (𝑘) 󵱰Β (𝑘) ,

󵱰Β (𝑘) = [

H
𝑁
(𝑘)

M (𝑘)
]P
𝑁
(𝑘) L𝑇 (𝑘) .

(60)

Therefore,

J∗
𝑁
(𝑘) = J∗

𝑁−1
(𝑘) + e𝑇

𝑦,𝑁
(𝑘)P−1
𝑒𝑦,𝑁

(𝑘) e
𝑦,𝑁

(𝑘)

= J∗
𝑁−1

(𝑘) + 󵱰̃y𝑇
𝑁
(𝑘)A−1
11

(𝑘) 󵱰̃y
𝑁
(𝑘) + 󵱰̂x𝑇 (𝑘 | 𝑘 − 1)

⋅M𝑇 (𝑘)A−1
3

(𝑘)M (𝑘) 󵱰̂x (𝑘 | 𝑘 − 1)

+ [ẑ
𝑁
(𝑘 | 𝑘) − ẑ∗

𝑁
(𝑘 | 𝑘)]

𝑇

𝜀
−1

(𝑘)

⋅ [ẑ
𝑁
(𝑘 | 𝑘) − ẑ∗

𝑁
(𝑘 | 𝑘)] ,

(61)

where

󵱰̂x (𝑘 | 𝑘 − 1) = −P
𝑁
(𝑘)H𝑇
𝑁
(𝑘) 󵱰A−1
11

(𝑘) 󵱰̃y
𝑁
(𝑘)

ẑ∗
𝑁
(𝑘 | 𝑘)

= L (𝑘) x̂
𝑁−1

(𝑘 | 𝑘)

+ 󵱰B𝑇 (𝑘) 󵱰A−1 (𝑘) (
y
𝑁
(𝑘) −H

𝑁
(𝑘) x̂
𝑁−1

(𝑘 | 𝑘)

−M (𝑘) x̂
𝑁−1

(𝑘 | 𝑘)
) ,

󵱰̃y
𝑁
(𝑘) = y

𝑁
(𝑘) −H

𝑁
(𝑘) x̂
𝑁−1

(𝑘 | 𝑘) .

(62)
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J∗
𝑁
(𝑘) is the minimum of J

𝑁
(𝑘), if and only if P

𝑒𝑦,𝑁
(𝑘)

and R
𝑁
(𝑘) have the same inertia. Considering (59), one gets

the sufficient condition of the minimum that is equivalent to
󵱰A
3
(𝑘) < 0, 󵱰𝜀(𝑘) < 0. A choice of ẑ(𝑘 | 𝑘) to ensure J∗(𝑘) > 0

is ẑ(𝑘 | 𝑘) = ẑ∗(𝑘 | 𝑘); then the estimate of the signal to be
estimated is

ẑ
𝑁
(𝑘 | 𝑘) = ẑ∗

𝑁
(𝑘 | 𝑘) = L (𝑘) x̂

𝑁
(𝑘 | 𝑘) (63a)

x̂
𝑁
(𝑘 | 𝑘) = x̂

𝑁−1
(𝑘 | 𝑘) + P

𝑁
(𝑘) [

H
𝑁
(𝑘)

M (𝑘)
]

𝑇

⋅ 󵱰A−1 (𝑘) (
y
𝑁
(𝑘) −H

𝑁
(𝑘) x̂
𝑁−1

(𝑘 | 𝑘)

−M (𝑘) x̂
𝑁−1

(𝑘 | 𝑘)
) ,

(63b)

󵱰A (𝑘) = [

H
𝑁
(𝑘)

M (𝑘)
]P
𝑁
(𝑘) [

H
𝑁
(𝑘)

M (𝑘)
]

𝑇

+ [

I 0
0 −I

] . (63c)

Because x
1
(𝑘+1) = F(𝑘+1, 𝑘)x

𝑁
(𝑘)+G(𝑘+1)

←→w (𝑘+1, 𝑘),
the corresponding Riccati equation is given by

P
1
(𝑘 + 1) = F (𝑘 + 1, 𝑘)P

𝑁
(𝑘) F𝑇 (𝑘 + 1, 𝑘)

+ G (𝑘 + 1)G𝑇 (𝑘 + 1) − F (𝑘 + 1, 𝑘)P
𝑁
(𝑘)

⋅H𝑇
𝑁
(𝑘)P−1
𝑒𝑦,𝑁

(𝑘)H
𝑁
(𝑘)P
𝑁
(𝑘)F𝑇 (𝑘 + 1, 𝑘) ,

(63d)

P
𝑒𝑦,𝑁

(𝑘) = R
𝑁
(𝑘) +

[
[

[

H
𝑁
(𝑘)

M (𝑘)

L (𝑘)

]
]

]

P
𝑁
(𝑘)

⋅ [H𝑇
𝑁
(𝑘) M𝑇 (𝑘) L𝑇 (𝑘)] .

(63e)

Based on the analysis of the above three cases, a novel
robust finite horizon𝐻∞ fusion filter is given by (41a), (41b),
(41c), (41d), (50a), (50b), and (50c) and (63a), (63b), (63c),
(63d), and (63e), which could deal with the measurements
sequentially.

Remark 5. The existing robust finite horizon 𝐻∞ fusion fil-
ters are mostly designed for the time-invariant systems, while
the two proposed robust finite horizon𝐻∞ fusion filters not
only apply to the time-varying systems, but also could deal
with the fusion filtering problem for time-invariant ones.

Remark 6. As shown in Section 3.1, the centralized robust
finite horizon 𝐻∞ fusion filter deals with all 𝑁 measure-
ments in a filtering process. It means that the estimate of the
signal to be estimated cannot be obtained until these mea-
surements are all received by the fusion center. It is implied
that the real time performance of the centralized fusion
methods is usually poor, especially for the scene that the
fusion center asynchronously receives measurements or with
delay phenomenon. By contrast, the sequential robust finite
horizon 𝐻∞ fusion filter proposed in Section 3.2 sequen-
tially handlesmeasurements in time, once it is received by the
fusion center, and avoids waiting for other measurements. In
this sense, this sequential fusion filter is real time.

Remark 7. The two proposed methods could obtain the same
fusion filtering accuracy, which is illustrated in the next
section.

Remark 8. In a fusion period, the centralized robust finite
horizon 𝐻∞ fusion filter needs strong matrix comput-
ing ability to deal with a filtering process of a ∑

𝑁

𝑖=1
𝑚
𝑖
-

dimensional measurement, while the sequential robust finite
horizon 𝐻∞ fusion filter needs to deal with 𝑁 filtering
processes of𝑚

𝑖
-dimensional measurement.The filtering time

of the proposed robust fusion filters is comparatively analyzed
in the simulation in the next section.

4. Simulation

In this section, two numerical examples are exploited to
illustrate the effectiveness and the equivalence of the two
proposed robust fusion filters for linear time-invariant sys-
tems and linear time-varying systems. For convenience, the
centralized robust finite horizon 𝐻∞ fusion filter proposed
in Section 3.1 is marked as “Filter 1,” while the sequential one
proposed in Section 3.2 is “ Filter 2.”

4.1.The Linear Time-Invariant SystemCase. In order to verify
the effectiveness of the two proposed robust fusion filters for
linear time-invariant systems, the following linear discrete
system is considered:

x (𝑘)

= ([

0.71 1

0 0.81
] + [

0

1.2
]Λ (𝑘) [0 0.25]) x (𝑘 − 1)

+ w (𝑘, 𝑘 − 1) ,

(64)

where x(𝑘) is the state andw(𝑘, 𝑘−1) ∈ 𝑙
2
[1,𝑁) is the process

noise.Λ(𝑘) represents the unknown real-valued time-varying
matrix, and ‖Λ(𝑘)‖ ≤ 1. In this section, Λ(𝑘) = sin(𝑘).

Consider the system running process observed by three
sensors, the observation equations of which can be given by
y
𝑖
(𝑘) = Hx(𝑘) + k

𝑖
(𝑘), 𝑖 = 1, 2, 3, in which H could be H

1
=

[1, 0], H
2

= [1, 0; 0 1; 0.5 0.5; 0.3 0.7; 1, 0; 0 1; 0.5 0.5; 0.3 0.7],
or H
3
= [1, 0; 0 1; 0.5 0.5; 0.3 0.7; 1, 0; 0 1; 0.5, 0.5; 0.3 0.7; 1, 0;

0 1; 0.5 0.5; 0.3 0.7; 1, 0; 0 1; 0.5 0.5; 0.3 0.7]. The signal to be
estimated is z(𝑘) = [1, 0]x(𝑘). The initial conditions are x

0
=

[0.1 −0.5]
𝑇, P
0
= [
1/2 1/2

1/2 1
], and 𝛾 = 0.25.

In each fusion period, the global fusion filtering result
is obtained when the last received measurement is filtered.
Considering the asynchronously and delay phenomenon
mentioned inRemark 6, the filtering time of the lastmeasure-
ment in each fusion period of differentmethods is statistically
compared. What is more, the whole filtering time of different
methods is also compared. UsingMonte-Carlomethod of 100
runs, we statistically analyze the mean of the filtering time
of the last measurement in each fusion period of different
methods and the mean of the filtering time of different
methods in Table 1. By this way, we compare the real value
and the estimates of the signal to be estimated by different
methods in each fusion period in Figure 1 and the absolute
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Table 1: The mean absolute estimation error of the signal to be estimated, whenH isH
1
,H
2
, andH

3
.

H H
1

H
2

H
3

Filter Filter 1 Filter 2 Filter 1 Filter 2 Filter 1 Filter 2
The mean absolute estimation
error 0.0035 0.0035 0.0087 0.0087 0.0087 0.0087

Mean filtering time 0.7864 1.1232 1.4820 1.6068 3.6348 2.4336
Mean filtering time of the last
measurement in each fusion
period

0.7864 0.4992 1.4820 0.6552 3.6348 1.1700

Table 2: The mean absolute estimation error of the signal to be estimated.

Filter 1 Filter 2 Filter 3 Filter 4
The mean absolute estimation
error 0.1176 0.1176 0.1209 0.1890

Mean filtering time of the last
measurement in each fusion
period

0.0156 0.0084 0.0140 3.1871

0

0.5
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tim
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e

State
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Filter 2
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Time

−0.5

−1
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−2

−2.5

Figure 1: The real value and the estimates of the signal to be
estimated, whenH isH

1
.

value of estimation error values by different methods in each
fusion period in Figure 2, the mean values of which are
further given in Table 1.

As shown in the simulation results above, the two pro-
posed robust fusion filters are able to effectively deal with
the robust fusion filtering problems for the linear time-
invariant system with unknown system parameter as given
by (1).The functional equivalence of the two proposed robust
fusion filters is verified from the fact that they have the same
estimated accuracy as shown in Figure 2 and Table 1.

Furthermore, due to the sequential fusion strategy, Filter
2 could estimate the interested signal with eachmeasurement
once it arrives at the fusion center, without waiting for all the
measurements received by the fusion center. It means that

Filter 1
Filter 2
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Figure 2: The absolute estimation error curves of the signal to be
estimated, whenH isH

1
.

Filter 2 is a real time robust fusion filter. In each fusion period,
although the whole filtering time of Filter 2 is longer than the
one of Filter 1 whenH isH

1
andH

2
, the filtering time to deal

with the last measurement by Filter 2 is shorter than the one
by Filter 1, as shown in Table 1.

It is indicated that the mean filtering time of Filter 1 in a
fusion period increases with the increase of the dimension
of the measurement matrix H, and it is over the mean
filtering time of Filter 1 when H is H

3
. This is because

Filter 1 is designed based on the augmented measurement
function, while the augmented operation is avoided in Filter
2. In the fusion filtering process, it is inevitable to perform
high-dimensional matrix inversion operation. Therefore, the
sequential fusion filter is more effective when the dimension
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Figure 3: The real value and the estimates of the signal to be
estimated.

of the measurement is higher. For the scenario that all mea-
surements are sampled by different sensors at the same time
and received by fusion filter synchronously, the centralized
fusion filter is a good choice.

4.2.The Linear Time-Varying System Case. In this subsection,
the following linear time-varying system is considered. And
the two proposed fusion filters are compared with the fusion
filter which ignores the uncertainty of system parameters and
the centralized robust fusion filtering method evolved from
[16], which are separately marked as “Filter 3” and “Filter 4”:

x (𝑘) = ([

0 −0.4

0.6 0.7 ∗ sin (6 ∗ 𝑘)
]

+ [

0

−0.2
]Λ (𝑘) [0.2 0]) x (𝑘 − 1) + w (𝑘, 𝑘 − 1) ,

y
𝑖
(𝑘) = [0.3 + 0.2 ∗ sin (6 ∗ 𝑘) , 1] x (𝑘) + k

𝑖
(𝑘) ,

𝑖 = 1, 2, 3,

(65)

whereΛ(𝑘) = cos(0.1∗𝑘).The signal to be estimated is z(𝑘) =

[1, 1]x(𝑘). The initial conditions are x
0
= [0.2 −0.1]

𝑇, P
0
=

[
1 0

0 1
], and 𝛾 = 1. Using Monte-Carlo method of 100 runs, the

statistical analysis results are shown in Figures 3 and 4 and
Table 2.

As shown in the simulation results, the two proposed
fusion filters have the same filtering results. Compared
with the centralized 𝐻∞ fusion filter ignoring the system
parameter uncertainty (Filter 3), both of the proposed fusion
filters have higher filtering accuracy. This is because the
information of the uncertain parameter is effectively utilized
by the proposed fusion filters, while it is ignored by Filter 3.
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Figure 4: The absolute estimation error curves of the signal to be
estimated.

Filter 4 is a priori robust fusion filter, while the proposed
robust fusion filters are a posteriori ones. Therefore, the
absolute values of the estimate error by Filter 1 and Filter
2 are lower than the ones of Filter 4, as shown in Figure 4
and Table 2. What is more, in each fusion period, a recursive
optimization process is required to solve the robust fusion
filter parameters by the LMI toolbox.That is why the filtering
time of Filter 4 is longer than others.

In each fusion period, the mean filtering time of the last
measurement by Filter 2 is shorter than the one by others.
This is because of the sequential fusion strategy, according
to which the measurements are sequentially dealt with by
fusion filter once they arrive, but not dealt with by the others
together.

5. Conclusions

In this paper, two robust finite horizon 𝐻∞ fusion filtering
algorithms are proposed for linear time-varying uncertain
systems. The linear estimation method in Krein spaces is
utilized to solve the performance index function which is
defined as an indefinite quadratic inequality. Firstly, the
stationary of the indefinite quadratic form is given by a
projection method in Krein space. Based on the projection
method, a robust centralized finite horizon 𝐻∞ fusion
filtering algorithm is designed. Then, the performance index
function is substituted by a set of quadratic inequalities. A
sequential robust fusion filtering method is developed by
solving these quadratic inequalities.The simulations illustrate
the effectiveness of the two proposed algorithms.

Appendix

Proof of Lemma 3

Proof. Assume that J(𝑘 − 1) = J
𝑁
(𝑘 − 1) > 0.
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Because of the fact that ←→w 𝑇(𝑘, 𝑘 − 1)
←→w (𝑘, 𝑘 − 1) ≥

0, k𝑇
𝑖
(𝑘)k
𝑖
(𝑘) ≥ 0, 𝑖 = 1, . . . , 𝑁 − 1, then

J
1
(𝑘) = J

𝑁
(𝑘 − 1) +

←→w 𝑇 (𝑘, 𝑘 − 1)
←→w (𝑘, 𝑘 − 1)

+ k𝑇
1
(𝑘) k
1
(𝑘) > 0,

J
𝑖
(𝑘) = J

𝑖−1
(𝑘) + k𝑇

𝑖
(𝑘) k
𝑖
(𝑘) > 0,

𝑖 = 2, . . . , 𝑁 − 1.

(A.1)

In (9),

J (𝑘) = J (𝑘 − 1)

+ [w𝑇 (𝑘, 𝑘 − 1) 𝜉
𝑇

(𝑘)] [

w (𝑘, 𝑘 − 1)

𝜉 (𝑘)
]

+

𝑁

∑

𝑗=1

k𝑇
𝑗
(𝑘) k
𝑗
(𝑘) − 𝛾

−2e𝑇
𝑧
(𝑘) e
𝑧
(𝑘)

− s𝑇 (𝑘) s (𝑘)

= J
𝑁−1

(𝑘) + k𝑇
𝑁
(𝑘) k
𝑁
(𝑘) − 𝛾

−2e𝑇
𝑧
(𝑘) e
𝑧
(𝑘)

− s𝑇 (𝑘) s (𝑘) = J
𝑁
(𝑘) .

(A.2)

Therefore, J(𝑘) > 0 ⇔ J
𝑁
(𝑘) > 0.
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