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The optimal allocation problem for a stand-alone photovoltaic (SPV) generation can be achieved by good compromise between
system objective and constraint requirements. The Lagrange technique (LGT) is a traditional method to solve such constrained
optimization problem. To consider the nonlinear features of reliability constraints evolving from the consideration of different
scenarios, including variations of component cost, load profile and installation location, the implementation of SPV generation
planning is time-consuming and conventionally implemented by a probability method. Genetic Algorithm (GA) has been
successfully applied tomany optimization problems. For the optimal allocation of photovoltaic and battery devices, the cost function
minimization is implemented by GA to attain global optimum with relative computation simplicity. Analytical comparisons
between the results from LGT and GA were investigated and the performance of simulation was discussed. Different planning
scenarios show that GA performs better than the Lagrange optimization technique.

1. Introduction

Recently, a vast number of population based search and
optimization algorithms have been applied successfully to
many power and energy applications [1, 2]. One of the
popular and excellent population based algorithms is the GA;
it has been developed to imitate the evolutionary principle
of natural genetics [3]. GA technique conceived by Holland
in the 1975 was based on a Darwinian survival-of-the-fittest
strategy with sexual reproduction. Stronger individuals in the
population have a higher chance of creating a better offspring.
GA can be implemented as a computerized optimization
searching among possible solutions as strings of ones and
zeros; each iteration of simulation begins with a randomly
selected population of chromosomes represented by strings.

The probabilistic process of crossover and mutation
ensures that GA can explore new features that may not be in
the present population. It searches the entire reachable space
despite the finite population size. GA is advantageous over
other search algorithms since it is less likely to be trapped by
local minimum and provides a better global optimal solution
[3, 4].

This paper studies the optimal capacity planning for
a SPV generation system. Solving this nonlinear con-
strained optimization problem requires computing effort
which increases with the size of the problem. A traditional
optimization technique demonstrates a number of difficulties
when faced with complex engineering problems. The major
issue arises when one popular algorithm is applied to solve a
number of different problems [2]. Each classical optimization
algorithm should be well designed to solve only particular
problems efficiently. For a system’s designer and planner,
the methods have the feasibility to solve different types
of problems with a global perspective, do not often get
converged to a locally optimal solution, and are welcome.

Many bio-inspired optimization techniques have been
employed to find an adequate solution to the complicated
engineering problems [1]. The aim of these techniques is
to find sufficient “good” solution efficiently with the char-
acteristic of the problem, instead of the global optimum
solution, and thus it also provides attractive alternative for the
large scale applications. Among these methods, GA achieves
both local exploration and global exploitation to provide a
robust and efficientmethodology in searching a near-optimal
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solution; it has been applied to a variety of optimization
applications. The potential of the GA technique applied to
design a renewable energy system has been recently reported
[5–9].

Several software tools are available for the design of a PV
system [5, 10]. However, most of these tools only identify and
simulate a single design option; a range of possible design
options are unavailable [10, 11]. Furthermore, the impacts
on the effects of nonlinearity and optimization in system
model and the variations of the significant design variables
are needed to investigate the effectiveness of these simulation
and optimization tools applied to specific applications [12, 13].

The objective of this paper is to compare the accuracy
and relative performance based on GA and Lagrangian
technique in the capacity planning. The best compromise
between the reliability and installed cost of SPV system is
investigated. Compared with the conventional Lagrangian
relaxation optimization, GA can find the global optimal
solutions more efficiently.

2. The Optimal Sizing Problems

The sizing of SPV systems is an important part of system
design and planning and remains an active area for research.
Sizing procedures consider the relationships between energy
deliveries to load and its reliability of supply which can be
tolerated by the user.

2.1.TheReliability Analysis of a SPVGeneration. To access the
available solar generation of a PV system in candidate region
is one of the most important parameters before installation.
Because of the intermittent solar radiation characteristic,
power reliability analysis has been considered an important
step in any power system planning and design process.

Reliability index evaluated in the simulation is the total
loss of load hours (LOLH) over a specified time (usually one
year). LOLH is a feasible measure of the system performance
for assumed load profile. LOLHequal to 0means that the load
will always be satisfied within the specific simulation time
period. Larger LOLH means that customer will suffer from
a higher probability of losing power. LOLH can be defined as
follows:
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where 𝑆(𝑖, 𝑗) is the capacity state of BTY in the 𝑖th day-𝑗th
hour, 𝐿(𝑖, 𝑗) is the consumed load in the 𝑖th day-𝑗th hour,

𝑓(𝑖, 𝑗) is system shortage in the 𝑖th day-𝑗th hours, and 𝑆min
is minimum battery discharge capacity.

The amount of solar radiation implies the current output
of a PV generation. After considering load profile, the output
current of a PV generation can be conducted to evaluate the
charge/discharge current of BTY (𝐼

𝑏
). Two main directions

of 𝐼
𝑏
lead to different operation mode of SPV: positive sign

shows the mode of PV generation greater than load, while
negative sign is induced by the shortage of a SPV generation.
The flowchart of evaluation LOLH is shown in Figure 1.

2.2. The Constrained Optimization Problem

2.2.1. Objective Function. A constrained optimization prob-
lem should be considered to determine the optimal size
in a SPV system. The optimal solution can make the best
compromise between the two significant issues: the system
power reliability and system installed cost. The objective
function of the optimal capacity planning problem is to min-
imize the total installed cost while satisfying the reliability
requirements of the SPV system. The objective function can
be expressed as the installed cost of a SPV system:

𝐶 = 𝐶pv ⋅ PV + 𝐶𝑏 ⋅ BTY + 𝐶𝑖, (2)

where 𝐶 is the total cost for installed a SPV system, 𝐶
𝑖
is the

initial cost for system installation, PV/BTY is the capacity of
solar array and battery, and𝐶pv and𝐶𝑏 are the unit cost of PV
($/Wp) and BTY ($/Wh).

2.2.2. Constrained Function. After implementing the LOLH
flowchart, the combinations of different PV and battery
size can be conducted by a nonlinear function. Constrained
function has been produced for eight different values of
LOLH, 0, 10, 20, 50, 100, 150, 200, and 400 hours under
different reliability requirement, in terms of different load
profile. It is significant for a SPV planner to get options
under different requirement of system shortages. Different
constrained function with different LOLH values can be
derived by a polynomial regression technique. Saber proved
that if a polynomial equation is for more than six orders,
the regression coefficient matrix will be in a bad condition;
it means that small data variation causes relatively large
parameter estimation error [14].

3. Methodology of the Optimization Model

3.1. Lagrangian Technique. Themethod of Lagrangemultipli-
ers is a popular and conventional technique for constrained
optimization. The capacity combination of PV/BTY under
specified system’s reliability requirement can be described by
the six-order polynomial constraint functionH shownbelow:

H = f (PV,BTY)

= PV − (p1BTY + p2BTY
2
+ p3BTY

3
+ p4BTY

4

+ p5BTY
5
+ p6BTY

6
) .

(3)
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Figure 1: Flowchart of the reliability analysis for a SPV system.

The constrained optimization problem can be formulated
from the Lagrange equation L after integrating the objective
cost function (C) and the constraint function (H) in terms of
an undetermined multiplier 𝜆:

L = C + 𝜆H. (4)

The optimum point occurs at the partial derivative of L
with respect to each of the independent decision variables,
that is, PV, BTY, and 𝜆, equal to zero. Lagrange calculation
uses analytical derivatives; it may not be efficient in han-
dling discrete variables but using approximate function to
get derivative. Much complicated iteration processes have
implemented to trade off different Lagrange multipliers by
the Lagrangian relaxation method in many engineering
applications. However, the constrained optimization problem

easily suffers to find critical points of the Lagrange multiplier
and traps into local optimum.

3.2. GA Technique. Renewable energy planning problem
includes economical objective, and it requires the assessment
of long-term system performance to reach the best compro-
mise between system reliability and cost.Theminimization of
the fitness or cost function is implemented by theGAmethod
to search the optimal size of photovoltaic and battery storage
devices.

Three important steps, including selection, crossover, and
mutation, are to imitate nature evolution processes with GA
technique. The optimal solution imposes on the selection
of crossover and mutation operation; it produces the next
generation when convergent criterion is satisfied. The ability
of directing the random search of a GA by selecting the fittest
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Figure 2: Flowchart of the optimal sizing simulation using GA.

chromosomes among the population is one of significant
aspects during computational simulation. The optimization
process of GA is iterated if any of the initial population
chromosomes violates the system constraints until another
new chromosome is selected.

In this study, the proposed GA technique was imple-
mented by Matlab (trademark of the MathWorks); it
employed the operators of roulette-wheel random selection,
single-point crossover, and mutation, then elite replacement.
Only the result of best experiment instance is presented
hereafter. The GA model obtains the optimal size in terms
of various degrees of reliability. Binary coded GA was
introduced to solve the optimal capacity of PVandBTY. Input
data includes hourly data per year, solar radiation on the
horizontal surface, ambient air temperature, and load power
consumption. The flowchart of the GA process applied to

SPV sizing problem is illustrated in Figure 2. The following
parameters are used in the GA simulation:

(i) the population size: 100,
(ii) crossover rate: 0.95,
(iii) mutation rate: 0.05.

4. Analysis of Reliability
and Optimal Simulation

4.1. Reliability Simulation. The optimal sizes of a SPV system
at two selected sites (Tainan and Dawu) of weather station
in Taiwan were investigated and compared. Using the real
meteorological data of specific year at Dawu weather station,
the possible combination of PV/BTY capacity associated
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Figure 3: Demonstration of PV/BTY capacity with different LOLH requirements.
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Figure 4: PV/BTY capacity allocations for different LOLH requirements at two locations with actual load simulation.

with different values of LOLH can be depicted by a three-
dimensional (3D) curve shown in the left side of Figure 3.
Eight specified values of LOLH (0, 10, 20, 50, 100, 150, 200,
and 400 hours) are selected and depicted by two-dimensional
(2D) curves with different colors in the right side of Figures
3(b) and 4.

Each 2D curve indicates the trend of PV/BTY size
changing with a constant system shortage.The different com-
binations of PV/BTY capacity whichmeet the same reliability
degree of power supply can be clearly expressed by plotting
the 2D trade-off curve. Using the eight LOLH curves shown
in Figures 3(b) and 4, the influence of LOLH on the planning
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Table 1: Comparison between Genetic Algorithm and Lagrange technique.

(a) Tainan

LOLH Genetic Algorithm Lagrange technique
PV (Wp) BTY (W) Cost ($) Time (s) PV (Wp) BTY (W) Cost ($) Time (s)

0 3487.68 20774.59 18739.35

6.63

3195.1 21702.7 17720.4

12.3

10 3382.42 22053.13 18568.23 3053.9 21063.3 17003.4
20 3252.19 22932.70 18211.16 3000.6 20136.9 16590.8
50 3242.57 20085.64 17581.96 3386.8 15807.1 17293.3
100 3240.58 16129.99 16754.90 3201.9 15354.2 16434.3
150 3146.45 14698.85 16068.99 3136.6 14913.6 16072.7
200 3120.14 13807.39 15775.51 2936.5 18437.3 15973.5
400 3040.25 10242.27 14706.81 3023.9 8696.6 14319.2

(b) Dawu

LOLH Genetic Algorithm Lagrange technique
PV (Wp) BTY (W) Cost ($) Time (s) PV (Wp) BTY (W) Cost ($) Time (s)

0 4743.17 20581.04 23897.02

6.67

4153.9 21103.6 21565.8

12.3

10 4692.96 18588.33 23276.66 3738.6 20531.5 19728.2
20 4657.65 17350.52 22874.25 3628.9 20207.4 19206.9
50 4259.91 18621.41 21490.67 3830.7 19266.4 19847.3
100 3827.22 19234.76 19826.29 3907.0 16408.4 19571.6
150 3643.09 17798.25 18766.64 3625.3 17632.9 18658.8
200 3581.59 16314.60 18204.94 3654.9 12983.0 17818.7
400 3362.52 14163.70 16852.74 3172.9 18352.8 16935.2

of PV/BTY capacity of a SPV system can be identified. Con-
siderable installed PV and BTY capacity reduces when LOLH
varies from 0 to 400 hours. Different location has different
solar radiation. In order to clarify the influence of locations,
the meteorological data from two different weather stations
in the Central Weather Bureau of Taiwan were simulated.

4.2. Optimal Sizing Simulation. The optimal solution of a
SPV system planning occurs at the turning point of a LOLH
curve. Analysis of the relationship of PV/BTY capacity in
terms of LOLH can determine the optimal capacity alloca-
tion status. As the unit cost of a PV component is much
larger than that of BTY, the total installation cost of PV
significantly dominates the final optimal cost. The real solar
radiation/temperature data from the central weather Bureau
of Taiwan on specific year have been simulated. The actual
load is the power consumption of a laboratory located at the
building of the Southern Taiwan University of Science and
Technology. Comparisons with optimal PV/BTY allocation
corresponding to eight different LOLH at two sites are shown
in Table 1.

For the LGT, the shaded cells in Table 1 indicate that
the unreasonable installed cost solution is obtained. The
LGT often gets worse solutions than using GA because
the LGT tends to trap at a local optimal solution while
GA attains a global solution. From the results of Table 1,
the total installed cost of SPV system from LGT may be
smaller than GA. This results from a small capacity of the
testing system with an insufficient search space, while GA
may perform in a poor manner [15]. For the SPV planning,

larger size of system capacity and load profile entail wide
searching space of possible solution.The proposedGAmodel
can be achieved near-optimal solution under comprehensive
planning requirements.

From the results shown in Figure 5, LGT may be less
sensitive than GA method. Statistically, it can be proved that
the performance of GA approach is slightly superior for the
capacity planning of SPV system. This implied the searching
technique used in the GA can be explored globally more than
the LGT.According to the results, it is concluded that the local
heuristic plays an important role in GA process. High quality
heuristic solution canhelp theGA to improve its performance
by reducing the likelihood of its premature convergence.

GA is achieved efficiently by a shorter computational time
from the simulation result of Table 1. It can be recognized that
GA gains its advancement in the applications of complicated
optimization-constrained problem, for example, photovoltaic
allocation planning, where the searching of the global opti-
mum is difficult task. Due to the probabilistic development
of solutions, GA is not restricted by local optimum; it
can find the global optimum system configuration with
relative computational simplicity compared to conventional
optimization methods such as LGT.

5. Conclusion

The Lagrange technique and GA applied to optimal capacity
planning of SPV system are investigated. Comparison of
performance was made on the minimum total installed cost
of a SPV system with specified demand load and system
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Figure 5: Comparisons between Genetic Algorithm and Lagrange algorithm.

reliability requirements. The simulation results show that
GA is slightly superior for finding the optimal capacity
planning of SPV system with effective solution searching
space. From the result of execution time, GA model shows
rather competitive as compared to the Lagrange technique.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like thank the National Science Council of
the Republic of China, Taiwan, for financially supporting this
research under Contract no. NSC102-2221-E-218-019.

References

[1] G. C. Onwubolu and B. V. Babu, New Optimization Techniques
in Engineering, Studies in Fuzziness and Soft Computing,
Springer, New York, NY, USA, 2004.

[2] A. A. Bazmi and G. Zahedi, “Sustainable energy systems: role
of optimization modeling techniques in power generation and
supply—a review,” Renewable & Sustainable Energy Reviews,
vol. 15, no. 8, pp. 3480–3500, 2011.

[3] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[4] G. Poonam, “A comparison between memetic algorithm and
genetic algorithm for the cryptanalysis of simplified data
encryption standard algorithm,” International Journal of Net-
work Security & Its Application, vol. 1, no. 1, pp. 34–42, 2009.

[5] R. Baños, F. Manzano-Agugliaro, F. G. Montoya, C. Gil, A.
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