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This study presents numerical schemes for solving a parabolic partial differential equation with a time- or space-dependent
coeflicient subject to an extra measurement. Through the extra measurement, the inverse problem is transformed into an equivalent
nonlinear equation which is much simpler to handle. By the variational iteration method, we obtain the exact solution and the
unknown coefficients. The results of numerical experiments and stable experiments imply that the variational iteration method is

very suitable to solve these inverse problems.

1. Introduction

Various inverse problems in a parabolic partial differential
equation are widely encountered in modeling physical phe-
nomena [1-3]. There are three kinds of inverse parameter
problems of parabolic partial differential equations, including
determining an unknown time-dependent coefficient, an
unknown space-dependent coefficient, and an unknown
source term.

The aim of this paper is to find (u(x,t),a(x,t)) in the
parabolic equation

ou 0 ou
a:a(a(x,t)a>+f(u’x,f)> W

O0<x<L, 0<t<T,

where a(x, t) is only a function with respect to x or t.
When a(x,t) = a(t), the boundary conditions and an
extra measurement of (1) are as follows:

u(x,0) = f(x),
u(o)t) = !]o (t),

0<x<1,

0<t<T,

u(l,t)=g,(), 0<t<T,

u(x",t)=E(), 0<t<T, x" €(0,1),

2)

where f(u,x,t) = w()u(x,t) + ¢(x, 1), ¢(x, 1), w(t), f(x),
go(t), g,(t), and E(t) are known functions. This equation
is widely used to determine the unknown properties of a
region by measuring only data on its boundary or a specified
location in the domain. These unknown properties such
as the conductivity medium are important to the physical
process but usually cannot be measured directly or are very
expensive to be measured. The existence and uniqueness of
the solution to this problem are discussed in [4, 5].

There are various numerical methods to solve (1) and
(2) or similar problems. Now we give a quick review of
the previous work placed to our problem. Cannon [6]
reduced the problem to a nonlinear integral equation for
the coeflicient a(t). This approach works well for a parabolic
equation in one space variable but does not easily extend
to higher-dimensional problems because it depends on the
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explicit form of the fundamental solution of the heat operator.
In Cannon and Yin [7], this problem was studied from
a different point of view. The authors first transformed a
large class of parabolic inverse problems into a nonclassical
parabolic equation whose coeflicients consist of trace type
functional on the solution and its derivatives subject to some
initial and boundary conditions. For the resulted nonclassical
problem, they introduced a variation form by defining a new
function; then both continuous and discrete Galerkin pro-
cedures are employed to the nonclassical problem. Authors
of [8] presented the backward Euler finite difference scheme.
It is shown that this scheme is stable in the maximum
norm and error estimation was obtained. In [9], several first-
and second-order finite difference numerical schemes have
been developed to solve the nonclassical problem which is
obtained by applying the transformation technique in [7]
to problem (1) and (2). Also, a method is proposed in [10]
to solve this problem which is based on a semianalytical
approach. Authors of [11] used the pseudospectral Legendre
method to solve this problem. An unconditionally stable
efficient fourth-order numerical algorithm based on the
functional transformation, the Pade approximation, and the
Richardson extrapolation is proposed in [12] to compute the
main function and the unknown time-dependent coeflicient
in (1). The Chebyshev cardinal functions are employed in
[13] to recover the unknown coefficient. These schemes are
efficient and easy to implement but the convergence order is
low.

When a(x,t) = a(x), the boundary conditions and an
extra measurement of (1) are as follows:

u(x,0)=uy(x), 0<x<IL, (3)
a_u =0, 0<t<T, (4)
ox x=0

u(l,t)y=g), 0<t<T, (5)
u,T)=u(x), 0<x<IL, (6)

where u,(x), u,(x), f(u,x,t) = f(x,t), and g(t) are known
functions. It is widely known that this model describes
the heat conduction procedure in a given inhomogeneous
medium with some input source f(x,t) and the coefficient
a(x) represents a heat conduction property, namely, the heat
capacity. There are various numerical methods to solve (1)
and (3)-(6) or similar problems. Deng et al. [14] applied the
gradient iteration algorithm for obtaining the approximate
solutions. Kansa method is used by [15] to solve problem
(1) and (2) and the stable experiments are given. Authors in
[16] give an iterative fixed point projection method for this
problem. In addition, there are other methods [17-22].

Although there are many methods for recovering the
above inverse problems, those methods only give approx-
imate solution. So it is worth noting that the variational
iteration method can give the exact solution.

Professor He proposed variational iteration method
(VIM) firstly in 1998 [23] and developed quickly VIM in
2006 and 2007. Based on the use of Lagrange multipliers for
the identification of optimal values of parameters in a
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functional, VIM gives rapidly convergent successive approx-
imations of the exact solution if such a solution exists.
There are three standard variational iteration algorithms
[24], called VIM-I, VIM-II, and VIM-III, for solving dif-
ferential difference equations, integrodifferential equations,
fractional differential equations, and fractal differential equa-
tions. These three forms of VIM have been proved by many
authors to be a powerful mathematical tool for addressing
various kinds of linear and nonlinear problems [25-28]. The
reliability of the method and the reduction in the burden of
computational work give this method wider application [29-
32]. In addition, some reviews can be found in He [24, 33, 34].
Since the applications of VIM in inverse problems are very
few, we use VIM-I to recover the unknown coefficients here.
Furthermore, VIM gives the exact solution of this problem.
Thus the variational iteration method is suitable for finding
the approximation solution of the problem.

The rest of the paper is organized in four sections
including Introduction. Section 2 gives the detailed progress
and proof for recovering the unknown coeflicients by apply-
ing VIM. In Section 3, numerical examples and a stable
experiment are presented to imply the accuracy of VIM.
Finally, a brief conclusion ends this paper.

2. Application of He’s Variational
Iteration Method

In this section, we will apply He’s variational iteration method
(VIM) to recover time- or space-dependent coeflicient prob-
lems. The detailed introduction of VIM can be found in
[24, 33, 34].

2.1. Recovering Time-Dependent Coefficients. Using (1) and
(2), we obtain

E' () = u, (x*,1)

7)
=a(t)u,, (x"t)+w ) E@{) +¢(x",1).
Assuming that u,(x",t) # 0, we have
a(t)zE(t)—w(t)E(t)—qS(x,t). ®)

U, (x*1)

Therefore the inverse problem (1) and (2) is equivalent to
the following problem:

_E®-0®E®-¢(x1)

" U, +w()u

Uyey (X7, 1) )
+¢(xt), 0<x<l, 0<t<T,
u(x0)=f(x), 0<x<l1, (10)
u(0,t)=gy(), 0<t<T, 11)
u(l,t)=g,(t), 0<t<T. (12)
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From (9),

I (t) —w(t)E(*t) —¢(x*>t)uxx rod)u
Uyy (x*,1) (13)

+ ¢ (x,1) = 0.

Constructing a correction function for the above equa-
tion:

un+1 (x> t) = un (.X, t)

' r Ay) (unw (521) = gy (38) = s (3-1)

X

. E'(®)-w®E®)-¢(x"1)

Uppr (X5, 1)

: ﬁnyy (y’ t)

+w ()@, (y,t) + P (s t)) dy.
(14)

In the following, we determine the Lagrange multiplier A
via variation theory:

Su,.q (x,t) = 6u, (x,1)

8 [ 20) (v 0 =y 0:) -1 (21

LJEO-0®E®-¢(x1)
Upsre (X*, 1)

: anyy (}’) t)
008,000+ 6020 ) .
(15)
Applying 81, = 0, then
Oty (%,8) = O, (x,1) (1= A’ (%)) + Su, (3, £) A (x)
x (16)
- L* N () du, (y,1) dy =0,
SO
A" (y) =0,
1-1M(x) =0, (17)
A(x)=0.

Thus A(y) = y — x; this gives the iterative formula:

Upi1 (x,t) = Uy (x,t)

[0 (s o)

LEO-00E®-¢(x"1)

Upre (X*, 1)

“Upyy (y’ t)

+oO)u, (y,) + ¢y, t)) dy.
(18)
Now, take uy(x, t) and 0, uy(x*,t) — 0, u(x",t) as an

initial value. By (18), we can obtain the n-order approximate
solution u,,(x, t) of (9). Putting

_ E'(t)-w(t)E(t) - ¢ (x*,1t)

Upr (X, 1)

h, () , (19)

then

U,y (1) =u, (x,t)
# [ =0 (s (00) 1, Oty (20)
+@ @ u, (y,1) +¢(1.1))dy
(20)

and its derivative about x:

0, Uy (6, 1) = 0,1, (x,1)

- j (s () + Ry 14, (108) (21)

X

t @@ uy, (3.1) + ¢ (1)) dy
and the derivative of the above about x:
Orxhs1 (%,1) = Oyt (%, 1)
= (“ty (x,8) + hyy () Uy (x,1) (22)
+w®)u, (xt)+¢(x,1)).
Inserting x = x*, we obtain
Ouathysr (X71) = O, (x7,1)
= (e (x", 1) + hy ()t (x7,8)  (23)
+w ) u,(x 1)+ ¢ (x",1)).
From (18), one can infer that
u, (x"8) =u, (x",t) = =uy(x7,1)

=E() Uy (x*>t) = Uyt (x*> t) =0 (24)

= uy (x*,t) = E' (),



SO
Uy (X*, t) + hn (t) Upxx (x*’ t)
+w () u, (x"t)+ ¢ (x", 1)

E'(t)-w®E®)-¢(x"1t)

—-g s OO0 e (51) (29
T E®)+¢(x".t)
=0
which leads to the following:
syt (¥751) = Oty (%7, 1) (26)
so as to deduce
Oty (X751) = Oty (x7,8) = -+ = Opuig (X7, 1)

(27)
— 0, u(x",t).

Therefore, by (8), the approximate solution a,(t) to a(t)
can be expressed in the following form:

E'(t)-w®E®)-¢(x"1t)

=D (28)

a, (t) =

unxx

2.2. Recovering Space-Dependent Coefficients. Using (1) and
(3)-(6), we obtain

ou 0 ou
§=a<a(x)a>+f(x,t); (29)
then
u, (x,1) — f (x,t) = % (a(x) g—z>; (30)

putting ¢ = T and integrating the above equation with x from
0 to x,

Ixut W, T) - f (w,T)dw
0 (31)

=a(x)(u, (x,T) —u, (0,7));
applying condition (4),
u, (0,T) =0; (32)

thus

jx u, (w,T) - f(w,T)dw =a(x)u, (x,T). (33)
0

Assuming that u, (x,T) = u;(x) # 0, we have

[3w @, T) - f (w,T) dw

(34)
] (x)

a(x) =
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Therefore, the inverse problem (1) and (3)-(6) is equiva-
lent to the following problem:

“u (w, T) - f (w,T) dw
ou_2 (D f %) 4 ),
ot 0x uy (x) ox
O0<x<L, 0<t<T,
(35)
with the initial condition
u(x,0)=uy(x), 0<x<L (36)
and boundary conditions
ubeb|  _ 0, 0<t<T,
0X  lx=o (37)
u(l,t)=g), 0<t<T.

Next, we are concerned with the approximate solutions of
(35)-(37) by the variational iteration method. Applying the
variation theory, we can construct an iteration formula.

From (35),

ou_ 0 on u, (w, T) - f(w,T)dw ou
ot ox u} (x) ox (38)

- f(x,t)=0.

Constructing a correction function for the above equa-
tion,

Up ('x’ t)

=u, (x.1)

+ Jt A(s) <um (x,5) — 0,
T

_ ( Jy @ T) = D S))

uy (x)

- f(x, s)) ds.
(39)
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In the following, we determine the Lagrange multiplier A
via variation theory:

Ouy,,q (x,1)

=0u, (x,1)

+0 r A (s) <um (x,8) -0,
T

[3 e , T) = f (0, T) dw _
. ; U, (x,s)
uy (x)
- f (x, s)> ds.
(40)
Applying 61, = 0, then
Sty (x,1) = S (1) (14 A (1))
t (41)
- j A (s) du,, (x,s)ds =0,
T
S0
1+A(t) =0,
(42)
A (s) = 0.
Thus A(s) = —1; this gives the iterative formula
Upi1 (X, t)
=u, (x,1t)
t
- J Uy (X,8) — 0y
T
(43)

< on Uy (W, T) - f(w,T)dw >
. U,y (x,5)

uy (x)

- f(x s)> ds.

Now, take uy(x,t) and O,uy(x,T) — ui (x) as an
initial value. By (43), we can obtain the n-order approximate
solution u,,(x, t) of (35).

Ifu,(x,T) - u,(x,T), then we can approximate to a(x)
by the following:

~ on Uy (W, T) - f(w,T)dw

(44)
uj (x)

a, (x)

Now, we prove that u,,,(x, T) — u,(x,T).
By (43), 0,u,,,,(x,T) = 0,u,(x,T), which leads to the
following:

o u, (x,T) =0,u,_, (x,T)=---=0,uy (x,T), (45)
so as to deduce

Uy (6, T) — u, (x,T). (46)

3. Numerical Examples

Example 1. Considering a special case of (1) and (2) with [9,
13],

w(t) =0,
¢(x>t)=0a
f(x):ex/Z)
1+28 . [t
go (1) = [0 +sm<5), (47)
\/E(1+2t3) o/t
910 =+ Vesin(3),

1.13315 (1 +2¢°)
1+83

with x* = 0.25, for which the exact solution is

e (1+2) e [t
—— ~ te¢ sm(z>,

t
E(t) = +1.13315sin<5>,

u(x,t) =

1+1¢3
, (48)
2 [6t2 +(1+£) cos (t/2)]
"0y [1+263 + (1+£%)sin(¢/2)]
Beginning with
o (5.1) = £ () (ago (1) + by (0),  (49)

where a, b are the unknown parameters to be further
determined, according to (18), one can obtain the first-order
approximation u, (x, t), and we find

i=23,.... (50)

Incorporating the initial condition uy(x,0) = f(x),
uy(0,t) = go(t), uy(1,t) = g,(t) of Example 1 into u,(x, 1),
the unknown parameters a, b can be obtained. Therefore, the
first-order approximation

2 (1 + 28
g + & sin (E) (51)
1+18 2

is obtained, which is the exact solution of Example 1. From
(28), we have

u; (x,t) = uy (x,t),

Uy (x’ t) =

262+ (1+ £’ cos (t/2)]

- (52)
(1+1)° [1+263 + (1 +3)sin (t/2)]

a, (t)

which is equal to the exact a(t) of Example 1.

Example 2. Finding a(t) in (1) and (2) with [9, 13],
w(t) =0,

¢ (x,t) = (3 + cos (1)) e cos (x),



f(x)=cos(x),
90 (t) = et,

g, () = cos(l)et,
2\
E(t) = (1+t+5)e ,

where x* = 4/9. The true solution is u(x, t) = e’ cos(x) while
a(t) = 2 + cos(t).

(53)

Beginning with
uy (x,t) = f (x) (ag, (t) + bg, (1)), (54)

where a, b are the unknown parameters to be further
determined, according to (18), one can obtain the first-order
approximation u, (x, t), and we find

i=23,.... (55)

Incorporating the initial condition u,(x,0) = f(x),
uy(0,1) = go(t), uy(1,t) = g,(t) of Example 2 into u,(x, 1),
the unknown parameters a, b can be obtained. Therefore, the
first-order approximation u, (x,t) is obtained and u,(x,t) =
e’ cos(x), which is the exact solution of Example 2. From (28),
we have a,(t) = 2 + cos(t), which is equal to the exact a(t) of
Example 2.

u; (%, 1) = uy (x,t),

Example 3. We solve the problem (1) and (2) with [9, 13]:
w(t)=-t*-1,

2
¢ (x,t) = 2t (x + 1) DY,

f(x) = ex, 6

5
gO (t) = 1) ( )
a (t) = et2+1’

E(t) = ez(t2+1)/7
whose true solution is u(x,t) = D while a(t) = 1/ +
)%, x* = 2/7.
Beginning with
uy (x,t) = f (x) (ag, (t) + bg, (1)), (57)

where a, b are the unknown parameters to be further
determined, according to (18), one can obtain the first-order
approximation u, (x, t), and we find

i=23,.... (58)

Incorporating the initial condition uy(x,0) = f(x),
uy(0,t) = go(t), uy(1,t) = g,(t) of Example 3 into u,(x, 1),
the unknown parameters a, b can be obtained. Therefore, the

u; (x,t) = uy (x,t),
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first-order approximation u,(x, t) is obtained and u, (x,t) =

ex(tzﬂ), which is the exact solution of Example 3. From (28),

we havea, (t) = 1/(1 + %)%, which is equal to the exact a(t) of
Example 3.

The above three examples are about time-dependent coef-
ficient; in the following we take space-dependent coefficient
examples.

Applying the above VIM, we begin with uy(x,t) =
uy(x)(ag(t) + b), where a, b are the unknown parameters
to be further determined. Incorporating the initial and
boundary condition (36) and (37) into u,(x, t), the unknown
parameters a, b can be obtained. According to (43), one can
obtain the first-order approximation u;(x,t). Here, T = L =
1.

Example 4. We take the boundary conditions, initial condi-
tion, and additional specification function (3)-(6) as [14, 15]

git)=e,
uO (x) = x3)
(59)
u; (x) = elx’,
f(x,1t)=0,
with the exact solution as
u(x,t) = ey’ (60)
and the identifying coefficient as
1,
a(x)=—x". (61)

12

Therefore, the first-order approximation u,(x,t) = (a+
b+ a*(-1+é€") + abt)x® is obtained. We can determine a =
1,b = 0,50 uy(x,t) = e'x’ which is the exact solution of
Example 4. From (44), we have a,(x) = (1/ 12)x? which is
equal to the exact a(x) of Example 4.

Example 5. Finding a(x) in (1) and (3)-(6) in [15]

g(t) = el
u, (x) = x’e",
(62)
u, (X) — ex+Tx2’
f(x,t)=0.
The true solution is u(x,t) = ¢*"x* while a(x) = (¢*(x* -

2x +2) = 2)/x(x + 2)e*.
From (43), the first-order approximate solution

1/11 (x’ t)

=" (-ae’ (-1 +a(e=e)) +b(1+ac(-1+1)) 2"
(63)

Incorporating the initial conditions, we determine a = 1/e,
b = 0. Therefore, the first-order approximation u,(x,t) is
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0.2 0.4 0.6 0.8 1.0
x

FIGURE 1: Numerical solutions a(x) of Example 6 with random(x) €
[-1,1].

obtained and u,(x,t) = ¢**'x* which is the exact solution

of Example 5. From (44), we have g, (x) = (e (x? —2x+2) -
2)/x(x + 2)e* which is equal to the exact a(x) of Example 5.

Example 6. We solve the problem (1) and (3)-(6) in [15]:

g (t) = et’

uy (x) = X,
(64)

u; (x) = e’ %,

fxt) = xe - 9x’e,

whose true solution is u(x, t) = x’¢’ while a(x) = x.

We can determine a = 1, b = 0. Therefore, the first-order
approximation u, (x,t) = (b+ae)x+(-1+a)(-e+e') +
b(-1+1))(9 + (-1 + a)x)) = e'x’, which is the exact solution
of Example 6. From (44), we have g, (x) = x which is equal to
the exact a(x) of Example 6.

In order to imply the stability of this method, we perturb
the additional specification data u, (x) as

uf (x) = uy (%) [1 + & x random (x)] (65)

with § = 1%; the reconstruction results are also stable, see
Figure 1.

4. Conclusion

The VIM has been applied in solving a variety of equations,
but it was rarely applied in inverse problems. Here, we develop
the new application area of VIM; our contribution is that we
apply VIM to solve the inverse problem of time- or space-
dependent coefficients in a parabolic partial differential
equation and obtain the exact solution. The numerical results
fully demonstrate the superiority of VIM for these inverse
problems.

Appendix

To imagine the basic idea behind He’s VIM, we consider the
following general differential equation:

Lu(x,t) + Ru(x,t) + Nu(x,t) = g (x,t), (A1)

where L is the highest order derivative that is assumed to be
easily invertible, R is a linear differential operator of order less
than L, Nu represents the nonlinear terms, and g is a source
term. The basic characteristic of He’s method is to construct
a correction function for (A.1), which reads

Uy (X, t)

S (60 + j: A(y) (L, (0 6) + Rt (1nt)  (A2)

+Nii, (y,t) = g (y,t)) dy,

where A is a Lagrange multiplier which can be identified
optimally via variation theory, u, is the nth approximate
solution, and #,, denotes a restricted variation; that is, 6%,, =
0.

To solve (A.l) by He’s VIM, we first determine the
Lagrange multiplier A that can be identified optimally
via variation theory. Then, the successive approximations
u,(x,t),n = 0,1,2,..., of the solution u(x, t) can be readily
obtained upon using the obtained Lagrange multiplier and
any selective function u,. Consequently, the exact solution
may be obtained by using

u(xt) = lim u,(x1t). (A3)

In summary, we have the following variation iteration

formula:

U, (x,t) =u, (x,t)

+ J: A(y) (L, (6 + Ru, (3n8)  (A)

+Nu, (y,t) - g(y.t)) dy,

where u(x, t) is an arbitrary function satisfying initial and
boundary conditions.

It should be specially pointed out that the more accurate
the identification of the multiplier is, the faster the approxi-
mations converge to their exact solutions.

Remark 7. We cite an integrate of x in (A.2) as an example;
one needs an integrate of t by a similar method.
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