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An 𝐻
∞

consensus problem of multiagent systems is studied by introducing disturbances into the systems. Based on 𝐻
∞

control
theory and consensus theory, a condition is derived to guarantee the systems both reach consensus and have a certain𝐻

∞
property.

Finally, an example is worked out to demonstrate the effectiveness of the theoretical results.

1. Introduction

The research booms for consensus problems of multia-
gent systems following DeGroot’s literature [1]. Consensus
problem of multiagent systems has attracted considerable
attention in recent years. Among various studies of linear-
consensus algorithms, a noticeable phenomenon is the fact
that algebraic graph theory and linear matrix inequalities
(LMIs) play an important role in dealing with consensus
problems.

There has been a tremendous amount of interest in con-
sensus problems of multiagent systems. In 2003, Jadbabaie et
al. explained the phenomenon mentioned in [2] by theoreti-
cal techniques like undirected graph theory, algebraic theory,
and the special properties of stochastic matrices in [3]. The
distributed complete consensus problems for continuous-
time have been intensively investigated [4–15], since the
theoretical framework of consensus problems for first-order
multiagent networks was proposed and solved by Olfati-
Saber and Murray in [16]. They presented the conditions on
consensus in terms of graphs for three cases. Furthermore,
Ren and Beard presented looser conditions to guarantee the
complete consensus based on the graph theory in [17] than
the results in [16]. The consensus problem for discrete-time
multiagent systems has attracted numerous researchers from
mathematics, physics, biology, sociology, control science, and
computer science. Xiao andWang investigated the consensus
problems for discrete-time multiagent system with time-
varying delays; it is worth mentioning that the augmentation
systemwas first proposed to deal with the consensus problem

in [18]. In [19], the cluster consensus problem for first-
order discrete-timemultiagent systembased on the stochastic
matrix theory was solved.

In recent years, many researchers analysed the external
disturbances effects on stability and the convergence per-
formance of networks, which is called 𝐻

∞
consensus. In

[20], the𝐻
∞

consensus problems were investigated for both
discrete-time and continuous-time multiagent systems. In
[21], the sufficient conditions to guarantee all agents achieve
𝐻
∞

consensus were obtained by algebraic graph theory
firstly. After that, Guo et al. extended general𝐻

∞
consensus

problem to cluster synchronization in [22] and obtained
some sufficient conditions to realize cluster synchronization
of the Lurie dynamical networks both without time delay
and with time delay. In [23], Liu and Chen addressed 𝐻

∞

consensus control for second-order multiagent systems; a
sufficient condition is derived to guarantee𝐻

∞
consensus for

the systems by Lyapunov-Krasovkii functional.
Inspired by the above analysis, for discrete-time multia-

gent systems, we discussed a distributed𝐻
∞
consensus prob-

lem of which the objective is to design appropriate protocols
to reach consensus while satisfying the described𝐻

∞
perfor-

mance for multiagent system with external disturbances. The
paper is organized as follows. Section 2 presents the mathe-
matical model as well as relevant graph theory. Some analysis
results on𝐻

∞
are derived in Section 3. A simulation result is

presented in Section 4. The conclusion is given in Section 5.

Notations. Throughout this paper, the following notations
are used: 𝐼 denotes the identity matrix with an appropriate
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dimension; ‖ ⋅ ‖2 denotes the space of square integrable vector
functions over [0,∞); ∗ represents an ellipsis for the term
introduced by symmetry.

2. Preliminaries

2.1. Graph Theory. Denote by G = (V,E,A) an undirected
graph with 𝑛 nodes, where V = {1, 2, . . . , 𝑛} and E ⊂ V ×

V indicate the set of vertices and edges, respectively. Here,
(𝑖, 𝑗) ∈ E if agent 𝑗 can communicate with agent 𝑖. In this
paper, we assume that there is no self-loop in the graph;
that is, (𝑖, 𝑖) ∈E. Let N

𝑖
= {𝑗 ∈ V | (𝑗, 𝑖) ∈ E} be the

neighborhood set of vertex 𝑖. For any edge of the undirected
graph G, (𝑖, 𝑗) ∈ E if and only if edge (𝑗, 𝑖) ∈ E. The term
of path refers to a sequence of distinct vertices. A path P
between two vertices V0 and V

𝑘
is the sequence {V0, . . . , V𝑘},

where (V
𝑖−1, V𝑖) ∈ E for 𝑖 = 1, 2, . . . , 𝑘. Graph G is called

connected if there exists a path between any two vertices in
G. LetA = [𝑎

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be the adjacency matrix of G, where

𝑎
𝑖𝑗
≥ 0 if and only if (𝑗, 𝑖) ∈ E; otherwise 𝑎

𝑖𝑗
= 0. Define

L = D −A as the Laplacian matrix of the undirected graph
G, whereD = [𝑑

𝑖𝑖
] ∈ 𝑅
𝑛×𝑛 is diagonal with 𝑑

𝑖𝑖
= ∑
𝑛

𝑗=1 𝑎𝑖𝑗.The
degree of node 𝑖 is defined as 𝑑

𝑖
= ∑
𝑛

𝑗=1 𝑎𝑖𝑗.

2.2. Mathematical Models. We suppose that a multiagent
systemunder consideration consists of 𝑛 agents with discrete-
time dynamics, and the dynamics of 𝑖th agent is given by

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝑢

𝑖
(𝑘) + 𝑏

𝑖
𝑤
𝑖
(𝑘) ,

𝑧
𝑖
(𝑘) = 𝑐

𝑖
𝑥
𝑖
(𝑘) + 𝑑

𝑖
𝑤
𝑖
(𝑘) ,

𝑘 = 0, 1, . . . ,

(1)

where 𝑥
𝑖
(𝑘) is the state, 𝑢

𝑖
(𝑘) is the control input to be

designed, and 𝑤
𝑖
(𝑘) and 𝑧

𝑖
(𝑘) are the external disturbance

and the output, respectively. Here, we assume parameters 𝑏
𝑖
,

𝑐
𝑖
, and 𝑑

𝑖
are all known constants.

Here, for (1), we design the following consensus protocol:

𝑢
𝑖
(𝑘) =

𝑛

∑

𝑗=1
𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) , (2)

where 𝑎
𝑖𝑗
≥ 0 is the entry of weighted matrixA.

To end this section we give two definitions.

Definition 1. Given the dynamic system (1), one says that
protocol (2) asymptotically solves an𝐻

∞
consensus problem

if the states of agents satisfy lim
𝑘→∞

‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖ = 0,

∀𝑖, 𝑗 ∈N.

Definition 2. Let 𝑥
𝑖
(0) be the initial state of agent V

𝑖
. Then

protocol (2) is said to solve an average consensus problem
asymptotically if the states of agents satisfy lim

𝑡→∞
‖𝑥
𝑖
(𝑘) −

∑
𝑛

𝑗=1 𝑥𝑗(0)/𝑛‖ = 0, ∀𝑖 ∈N.

3. Analysis Results

In this section, we discuss an 𝐻
∞

consensus problem of the
proposed protocol for the discrete-time multiagent system.

We first transfer system (1) into one in the form of matrix for
completing theory analysis conveniently.

Let

𝑥
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) −

∑
𝑛

𝑗=1 𝑥𝑗 (0)
𝑛

,
(3)

and it is easy to know that 𝑥
𝑖
(𝑘) → 0 when 𝑘 → +∞.

Based on (1) and (3), one gets

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + �̃�

𝑖
(𝑘) + 𝐵𝑤

𝑖
(𝑘) . (4)

Define 𝑥(𝑘) = [𝑥1(𝑘), . . . , 𝑥𝑛(𝑘)]
𝑇, 𝑧(𝑘) = [𝑧1(𝑘), . . . ,

𝑧
𝑛
(𝑘)]
𝑇, and 𝑤(𝑘) = [𝑤1(𝑘), . . . , 𝑤𝑛(𝑘)]

𝑇, and then (1) can be
rewritten into a vector form as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) +𝐷𝑤 (𝑘) ,

(5)

where

𝐴 = (𝑎
𝑖𝑗
) =

{
{
{

{
{
{

{

𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗;

1 −
𝑛

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗
, 𝑖 = 𝑗.

(6)

And 𝐵 = diag{𝑏1, 𝑏2, . . . , 𝑏𝑛}, 𝐶 = diag{𝑐1, 𝑐2, . . . , 𝑐𝑛}, and 𝐷 =

diag{𝑑1, 𝑑2, . . . , 𝑑𝑛}.
Let

𝐻 =

[

[

[

[

[

[

[

[

[

[

1 −1 0 ⋅ ⋅ ⋅ 0 0 0

0 1 −1 ⋅ ⋅ ⋅ 0 0 0

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

0 0 0 ⋅ ⋅ ⋅ 1 −1 0

0 0 0 ⋅ ⋅ ⋅ 0 1 −1

]

]

]

]

]

]

]

]

]

]
(𝑛−1)×𝑛

. (7)

It is obvious that 𝐻 is a full row rank matrix. We introduce
a linear transformation 𝑥(𝑘) = 𝐻𝑥(𝑘) for (5) and note that
𝑥(𝑘) = 𝐻

𝑇

(𝐻𝐻
𝑇

)
−1
𝑥(𝑘). Thus, (5) is transformed to

𝑥 (𝑘 + 1) = 𝐻𝑥 (𝑘) = 𝐻𝐴𝑥 (𝑘) +𝐻 ̃
𝑓 (𝑘)

= 𝐻𝐴𝐻
𝑇

(𝐻𝐻
𝑇

)

−1
𝑥+𝐻

̃
𝑓 (𝑘) .

(8)

Furthermore, (4) can be written as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) +𝐷𝑤 (𝑘) ,

(9)

where 𝐴 = 𝐻𝐴𝐻
𝑇

(𝐻𝐻
𝑇

)
−1, 𝐵 = 𝐻𝐵, 𝐶 = 𝐶𝐻

𝑇

(𝐻𝐻
𝑇

)
−1,

and𝐷 = 𝐷.

Definition 3. System (9) is said to realize consensus with𝐻
∞

performance index 𝛾 > 0, if

(1) system (9)with zero disturbance can reach consensus;
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(2) system (9) satisfies ∑∞
𝑘=0 ‖𝑧(𝑘)‖ ≤ 𝛾∑

∞

𝑘=0 ‖𝑤(𝑘)‖,
where ‖ ⋅ ‖ is the 2-norm of a vector in 𝑅𝑛 and 𝛾 is
a constant.

Lemma 4 (Schur Complement). 𝑆 = [

𝑆11 𝑆21

𝑆21 𝑆22
] ∈ 𝑅

𝑛×𝑛 is

a symmetric matrix, where 𝑆11 ∈ 𝑅
𝑟×𝑟 with 𝑟 < 𝑛; then the

following three conditions are equivalent:

(a) 𝑆 < 0;
(b) 𝑆11 < 0, 𝑆22 − 𝑆21𝑆−111 𝑆12 < 0;
(c) 𝑆22 < 0, 𝑆11 − 𝑆12𝑆−122 𝑆21 < 0.

Based on the above analysis, we can derive the following
main result.

Theorem 5. For given constants 𝛾 > 0, system (1) can achieve
𝐻
∞

consensus if there exists a symmetric positive definite
matrix 𝑋, such that

[

[

[

[

[

[

[

−𝑋 𝐴𝑋 𝐵 0

∗ −𝑋 0 𝐶
𝑇

∗ ∗ −𝛾
2
𝐼 𝐷
𝑇

∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

< 0. (10)

Proof. We first consider the system without disturbances as
follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) , (11)

and we prove that system (9) without disturbances is stable.
Define a Lyapunov function as

𝑉 (𝑥 (𝑘) , 𝑘) = 𝑥 (𝑘)
𝑇

𝑃𝑥 (𝑘) , (12)

where 𝑃 is a symmetric positive definite matrix.
The difference of Lyapunov function 𝑉(𝑥(𝑘), 𝑘) yields

∇𝑉 (𝑥 (𝑘) , 𝑘) = 𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) −𝑉 (𝑥 (𝑘) , 𝑘)

= 𝑥 (𝑘)
𝑇

(𝐴
𝑇

𝑃𝐴−𝑃) 𝑥 (𝑘) .

(13)

The difference is negative if and only if

𝐴
𝑇

𝑃𝐴−𝑃 < 0, (14)

which is equivalent by Schur Complement to

[

−𝑃
−1

𝐴𝑃
−1

𝑃
−1
𝐴 −𝑃

−1] < 0. (15)

Under (10), it is easy to know that the inequality above holds
by denoting𝑋 = 𝑃

−1.
Hence, system (11) is stable; that is, system (9) without

disturbances is stable.
In order to prove that the system has the 𝐻

∞
consensus

property, that is, satisfying the performance ∑∞
𝑘=0 ‖𝑧(𝑘)‖2 ≤

𝛾∑
∞

𝑘=0 ‖𝑤(𝑘)‖2, we define

𝐽 =

∞

∑

𝑘=0
[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2
𝑤
𝑇

(𝑘) 𝑤 (𝑘)] . (16)
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Figure 1: State trajectories of all agents.

Since the system is stable and lim
𝑘→+∞

𝑉(𝑥(𝑘), 𝑘) = 0, for
∀𝑤(𝑘) ∈ 𝐿2[0, +∞), we have

𝐽 ≤

∞

∑

𝑘=0
[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2
𝑤
𝑇

(𝑘) 𝑤 (𝑘)]

+ [𝑉 (𝑥 (1) , 1) −𝑉 (𝑥 (0) , 0)]

+ [𝑉 (𝑥 (2) , 2) −𝑉 (𝑥 (1) , 1)] + ⋅ ⋅ ⋅

+ [𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) −𝑉 (𝑥 (𝑘) , 𝑘)] + ⋅ ⋅ ⋅ .

(17)

Since ∇𝑉(𝑥(𝑘), 𝑘) < 0, we have

𝐽

≤

∞

∑

𝑘=0
[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2
𝑤
𝑇

(𝑘) 𝑤 (𝑘) +∇𝑉 (𝑥 (𝑘) , 𝑘)] .

(18)

Furthermore, letting 𝜉(𝑘) = [𝑥𝑇(𝑘), 𝑤𝑇(𝑘)]𝑇, we can obtain

𝐽 ≤

∞

∑

𝑘=0
𝜉
𝑇

(𝑘) 𝑆𝜉 (𝑘) , (19)

where 𝑆 = [

𝑆11 𝑆12

∗ 𝑆22
] and 𝑆11 = 𝐴

𝑇

𝑃𝐴 − 𝑃 + 𝐶
𝑇

𝐶, 𝑆12 =

𝐶
𝑇

𝐷 + 𝐴
𝑇

𝑃𝐵, and 𝑆22 = −𝛾
2
𝐼 + 𝐷

𝑇

𝐷 + 𝐵
𝑇

𝑃𝐵. It is easy
to know that 𝐽 ≤ 0 if 𝑆 < 0. That indicates ∑∞

𝑘=0 ‖𝑧(𝑘)‖2 ≤
𝛾∑
∞

𝑘=0 ‖𝑤(𝑘)‖2.
By Schur Complement Lemma, we know that 𝑆 < 0 if and

only if

[

[

[

[

[

[

[

−𝑃
−1

𝐴 𝐵 0

∗ −𝑃 0 𝐶
𝑇

∗ ∗ −𝛾
2
𝐼 𝐷
𝑇

∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

< 0. (20)
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Figure 2: (a) State trajectories of all agents when 𝛾 = 0.001. (b) State trajectories of all agents when 𝛾 = 0.005.

Furthermore, by using Schur Complement Lemma again, we
can derive equivalently

[

[

[

[

[

[

[

−𝑃
−1

𝐴𝑃
−1

𝐵 0

∗ −𝑃
−1

0 𝐶
𝑇

∗ ∗ −𝛾
2
𝐼 𝐷
𝑇

∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

< 0 (21)

which exactly is (10) by letting 𝑃−1 = 𝑋. According to
Definition 3, we obtain that system (1) can achieve 𝐻

∞

consensus. The proof is completed.

4. Simulation

In this section, we provide some simulations of two protocols
for system (1) under the effect of different positive parameter
𝛾 with 3 agents. The state trajectories of all agents are
described in all the figures. In particular, the solid curve and
the dotted curve describe the state trajectories of agent 1 and
agent 3, respectively; the remaining curve describes the state
trajectory of agent 2. The horizontal axis and vertical axis
describe time and state trajectories of all agents, respectively.
In order to verify the effect of positive parameter 𝛾, we present
some simulations for Example 7 under different 𝛾.

Example 6. Consider a multiagent system with 3 agents and
the weighted adjacency matrix is

𝐴 =
[

[

[

0 −0.5 0.5
−0.5 0 0.5
−0.5 0.5 0

]

]

]

. (22)

We suppose the disturbance is𝑤(𝑘) = [sin(𝑘) sin(𝑘), sin(𝑘)]𝑇;
the positive parameter 𝛾 = 0.001 which is defined in
Definition 3. Let the initial values be 𝑥1(0) = 1, 𝑥2(0) = 2,
and 𝑥3(0) = 3.The state trajectories of all agents are described
in Figure 1. By simple matrix computation, we know that
the model satisfies the condition in Theorem 5. It is easy to
see that the system reaches consensus (three curves reach
coincident) at about time 6 in Figure 1.

Example 7. Consider a multiagent system with 3 agents and
the weighted adjacency matrix is

𝐴 =
[

[

[

0 0.8 0.2
0.65 0 0.35
0.9 0.1 0

]

]

]

. (23)

We suppose the disturbance is 𝑤(𝑘) = [sin(𝑘), sin(𝑘),
sin(𝑘)]𝑇; we provide some simulations with different 𝛾. Let
the initial state values be 𝑥(0) = [1, 2, 3]𝑇.

In Figure 2(a), the 𝐻
∞

consensus for system (1) is under
topology (2) and 𝛾 = 0.001; in particular, all the agents
converge to a constant consensus state at about time 7. In
Figure 2(b), the𝐻

∞
consensus for system (1) is under topol-

ogy (2) and 𝛾 = 0.005; in particular, all the agents converge to
a constant consensus state at about time 7. In Figure 3(a), the
𝐻
∞

consensus for system (1) is under topology (2) and 𝛾 =
0.02; in particular, all the agents converge to a time-varying
consensus state at about time 8. In Figure 3(b), the 𝐻

∞

consensus for system (1) is under topology (2) and 𝛾 = 0.08;
in particular, all the agents converge to a time-varying con-
sensus state at about time 7. In Figure 4(a), the𝐻

∞
consensus

for system (1) is under topology (2) and 𝛾 = 0.1; in particular,
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Figure 3: (a) State trajectories of all agents when 𝛾 = 0.02. (b) State trajectories of all agents when 𝛾 = 0.08.
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Figure 4: (a) State trajectories of all agents when 𝛾 = 0.1. (b) State trajectories of all agents when 𝛾 = 2.

all the agents converge to a time-varying consensus state at
about time 7. In Figure 4(b), the𝐻

∞
consensus for system (1)

is under topology (2) and 𝛾 = 2; in particular, all the agents
converge to a time-varying consensus state at about time 4.5.

5. Conclusions

An 𝐻
∞

consensus problem for discrete-time multiagent
system with external disturbances is investigated. Based on
system transformation as well as Lyapunov stability theory,

the sufficient condition in form of LMIs is obtained to
guarantee 𝐻

∞
consensus of discrete-time multiagent with

disturbances. A simulation result is finally provided to verify
the effectiveness of our theoretical results.
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