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Multiobjective programming problems have been widely applied to various engineering areas which include optimal design of an
automotive engine, economics, and military strategies. In this paper, we propose a noninterior path following algorithm to solve
a class of multiobjective programming problems. Under suitable conditions, a smooth path will be proven to exist. This can give
a constructive proof of the existence of solutions and lead to an implementable globally convergent algorithm. Several numerical

examples are given to illustrate the results of this paper.

1. Introduction

In this paper, the following conventions will be used. If x, y €
R", then

x £ yifandonlyifx; < y;, i=1,...,1

x < yifandonlyifx; < y;, i=1,...,1;

x < yifandonlyif x; < y,, i = 1,...,n, with strict

inequality holding for at least one i;

x=yifandonlyifx; = y;, i=1,...,n

Multiobjective programming problems have been widely

applied to various engineering areas which include optimal
design of an automotive engine, economics, and military

strategies. Consider the following multiobjective program
(MOP):

min  f (x)
st. g(x) <0, ey
h(x)=0,

where f : R - RP,g: R" —» R",andh : R" — R
are assumed to be three times continuously differentiable. In

this paper, the nonnegative and positive orthants of R™ are
denoted as R and R",, respectively.

In the literature, solutions for a multiobjective program-
ming problem are referred to variously as efficient, Pare-
tooptimal, and nondominated solutions. In this paper we will
refer to a solution of a multiobjective programming prob-
lem as an efficient solution. It is well-known that if x is an
efficient solution of MOP problems, under some constraint
qualifications (the Kuhn and Tucker constraint qualification
[1] or the Abadie constraint qualification [2]), then the follow-
ing Karush-Kuhn-Tucker (KKT) condition at x for MOP
problems holds [3, 4]:

Vi(x)A+Vg(x)u+Vh(x)v=0,
h(x) =0, (2)

Ug(x)=0, g(x)<0, uz0,

where Vf(x) = (Vfi(x),....Vf,(x)) € R"P, Vg(x) =
(Vgy(x),...,Vg,(x)) € R™, Vh(x) = (Vh(x),...,
Vh(x)) € R™,1 ¢ RE\ {0}, u ¢ R, v € R, and



U = diag(u) € R™™. We say that x is a KKT point of MOP
problems if it satisfies the KKT condition.

To solve linear programming, in 1984, Karmarkar [5] pro-
posed a projective scaling algorithm, which is the first effi-
cient polynomial-time algorithm in practice and hence com-
petitive with the widely used simplex algorithm, which has
no polynomiality although it is also efficient for linear pro-
gramming. It was noted that Karmarkar’s projective scaling
algorithm is equivalent to a projected Newton barrier algo-
rithm [6]. Based on Karmarkar’s projective scaling algorithm,
ones developed various central path following algorithms
(or, in other terms, interior point methods and homotopy
methods, see [7-12], etc.), which replaced projective scaling
transformation of Karmarkar’s algorithm with affine scaling
transformation. This modification can relax the particular
assumptions on the simplex structure by Karmarkar’s algo-
rithm. Later, the central path following algorithms were
extended to solve convex nonlinear programming problems
(see [13-16], etc.). It should be pointed out that all these
central path following algorithms are globally convergent,
but their global convergence results were obtained under the
assumptions that the logarithmic barrier function is strictly
convex and the solution set is nonempty and bounded.

Since Kellogg et al. [17] and Smale [18] proposed the nota-
ble homotopy method, this method has become a powerful
solution tool with global convergence in finding solutions
for various nonlinear problems, for example, zeros or fixed
points of maps; see [19-24] and so forth. Furthermore,
in [25], for convex nonlinear programming problems, by
using the ideas of homotopy methods, Lin et al. proposed
a new interior point method, which is called the combined
homotopy interior point (CHIP) method, for solving convex
programming problems. In that paper, the authors removed
the convexity condition of the logarithmic barrier function
and the nonemptiness of the solution set. In [26], by taking
a piecewise technique, under the commonly used conditions
in the literature, Yu et al. obtained the polynomiality of the
CHIP method. Their results show that the efficiency of the
CHIP method is also very well. The advantages mentioned
above attract more and more researchers’ attention and the
CHIP method has been applied to various areas such as
fixed point problems [27, 28], variational inequalities [29, 30],
and bilevel programming problems [31]. Furthermore, in
2008, for a class of nonconvex MOP problems, Song and
Yao developed a new CHIP method [32]. In that paper, the
authors constructed a new combined homotopy and thus
obtained the existence of an interior path from a known
interior point to a KKT point of (1).

It is well-known that the choice of initial points plays an
important role in the computational efficiency of the pre-
dictor-corrector algorithms (for a good introduction and a
complete survey about the predictor-corrector algorithms,
one can refer to the books [33, 34], etc.) resulting from the
CHIP algorithm. Here it should be pointed out that, for para-
metric programming (see [35-42], etc., for related works), the
predictor-corrector algorithms also had successful applica-
tions (see [35, 43], etc.). But in [32], initial points are generally
confined in the interior of the feasible set, which is not
easily localized for many cases; hence it is essential to enlarge
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the scope of choice of initial points. To this end, in this paper,
we apply proper perturbations to the constraint functions and
hence develop a noninterior path following algorithm. With
the new approach, we are capable of choosing initial points
more easily. This can improve the computational efficiency
of the predictor-corrector algorithms greatly compared to
before.

Another purpose of this paper is to solve MOP problems
in a broader class of nonconvex sets than those in [32]. To
complete this work, we introduce C* mappings &;(x,u;) €
R'(i=1,...,m) and 77;(x, v;) € R" (j =1,...,1), which can
make us extend the results in [32] to more general nonconvex
sets.

In this paper, under the commonly used conditions in
the literature, a bounded smooth homotopy path from a
given initial point to a KKT point of (1) can be proven to
exist. This forms the theoretical base of the noninterior path
following algorithm. Numerically tracing the smooth path
can lead to an implementable globally convergent algorithm
for MOP problems. An explicit advantage of the noninterior
path following algorithm is that the induced predictor-
corrector algorithm has global convergence, compared with
some locally convergent algorithms, for example, the notable
Newton’s algorithms [33, 34]. Although the usual continu-
ation methods (see [44-46], etc.) are globally convergent,
they require that the partial derivative of the mapping H
in (9) with respect to w is nonsingular. This requirement
is often not easily satisfied in practice (see [33, 34], etc.).
However, by the parameterized Sard theorem, the noninterior
path following algorithm only requires that the mapping H
in (9) is of full row rank. This is another advantage of the
algorithm presented in this paper. In addition, compared
with the results in [32], we can solve MOP problems on
more general nonconvex sets, and we also enlarge the scope
of choice of initial points to the exterior of the feasible
set.

This paper is organized as follows. In Section 2, we apply
proper perturbations to the constrained functions, based
on which, we construct a new combined homotopy and
hence develop a noninterior path following algorithm. In
Section 3, we use the predictor-corrector algorithm resulting
from the noninterior path following algorithm to compute
some experimental examples to illustrate the results of this
paper. Finally, we make some conclusions in Section 4.

2. Theoretical Analysis of the Noninterior Path
following Algorithm

In this section, let Q = {x € R" : g(x) < 0,h(x) = 0}, Q° =
{x € R": g(x) < 0,h(x) = 0}, A* = {A e R : f;:l Ag =1}
AT = e R 3P A, =1} Bl = {i € {1,...,m}
g:(x) = 0}, and U = diag(u®) € R™"™. In addition, | - |
stands for the Euclidean norm.

In [32], Song and Yao developed a new CHIP method to
solve the KKT point of (1) in a class of nonconvex sets; the
main result of that paper is formulated as follows.
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Theorem 1. Suppose that

(A)) Q° is nonempty and Q) is bounded;
(A,) for any x € Q the matrix {Vg;(x), Vh(x) : i € B(x)} is
of full column rank;

(A;) (the normal cone condition of Q) for any x € Q the
normal cone of Q at x only meets Q) at x; that is, for
any x € Q, one has

{x+ Z u;Vg; (x) + Vh (x) v : y; gOforieB(x)]»ﬂQ
i€B(x)
= {x}.

3)

Then for almost all (x©, 4@ YO 10y ¢ 00« R x{0}xA™T,
there is a regular solution curve of the homotopy

(1= ) (Vf () A+ Vg (x)u) + VR (x) v+ p (x - x©)
h(x)

Ug (x) - uU%g (x)
4
(1-p) <1 - Z/\q>ep —y()t—/\(o))
gq=1

-0,
(4)

where e, = (I...,1)" € RP, € (0,1]. When u — 0, the

limit set T C Q x R™ x R' x A% x {0} is nonempty and the
x-component of any point in T is a KKT point of (1).

However, in [32], initial points are confined in the interior
of Q. This point may reduce the computational efficiency of
predictor-corrector algorithms greatly. To enlarge the scope
of choice of initial points, in this paper, we apply proper
perturbations to the constrained functions g(x), h(x) and
introduce the parameters

2g; (x(o)) s i (x(o)) >0,

Vi = i=1,...,m,
0, 9i (x(o)) <0, (5)
1, hy(x@) %0,

b= {0, h(x®) =0, 77" !

Then lete, = (1,...,1)" € R™, y = (yp...» )" € R™,
0=0,...,0)" e R, Q) = {x € R": g(x) — up(g(x?) +
e,) < 0,h(x) — ubh(x”) = 0}, Q°(u) = {x € R" : g(x) -
uy(g(x®) +e,) < 0,h(x) — ubh(x®) = 0}, I(x, ) = {i €
{1,....,m}: gi(x) = py,(g,(x@) +1) = O}

At the same time, to solve MOP problems in more gen-
eral nonconvex sets, we assume that there exist continuous
mappings £(x,u) = (& (x,uy),....&,(xu,)) € R™" and
nxv) = G6v)s..on(xv)) € R such that the
following assumptions hold.

cy Qo(y) is nonempty and Q(y) is bounded.

(C) §(x,0) =0, i = L,...,m, 1;(x,0) = 0, j=1,....1;
besides, for any x € Q(w), if [(y, z,u,v)| — o0, then

!
Z (Vg (x) + & (x,1;)) + Vh(x) z + Z’?j (x, Vj)

ieI(x,y) j=1

— OQ.

(6)

(C;) For any x € Q(u), if

1
N (Vg () + & (xu) + VR() 2+ Y (x,v;) = 0,
i€l (x.p) j=1

inO) uigo)

7)
then y; = 0,u4; =0, Vi € I(x,4),2=0,v; =0, j =

L...,L
(C4) When p =0, 1, for any x € Q(u), we have

1; (x, vj) tu; 20

\.
N~
L

<|x+ Z & (ou;) +
iéI(x,y,)

forieI(x,y)}ﬂQ(y)={x}.

Next, we construct a new combined homotopy as follows:

H (w, )
(1=w) (Vf () A+ (1= ) Vg (x) u)

F1 W) TR v+ Y E Cou (- ) )

i=1
I
+Zf’]j (x,yvj) +u (x - x(o)) +u(l-pa
j=1

h(x) — ubh (x(o))

U(g) —uy(g(x?)+e,)) +up

<1—M>(1—§Aq)ep—ﬂ(k—h<°))

%)
where w = (x,u, v, ) € R*"™*! x A*, a € R”, and BeR.

Remark 2. (1) In [32], the initial point x@isa strictly feasible
point and has to satisfy the following constraints: g(x?) < 0



FIGURE 1: The nonconvex set satisfying the normal cone condition.

and h(x¥) = 0. However, it is not easy to choose such an
initial point in practice when the constraint functions g(x)
and h(x) are complex. For example, when the feasible set is
Q= {(xp % x5%,) €R* : X} + 05 + x5+ X, +x, — X, +
X3 — x4 —8 £ 0,xf+2x§+x§+2xﬁ—x1 - x4 — 10 £
0,2xf+x§+x§+2x1—x2—x4—5 £0,x,-520,x, -
5 < 0} (see [25, Example 4.1]), it is difficult to choose the
initial point x satisfying all the constraints for this example.
This difficulty may reduce the computational efficiency of the
algorithm in [32]. In this paper, we can choose the initial
point x© arbitrarily in R", by selecting proper parameters
y and 6 according to the signs of g(x”) and h(x'?)). Since
the initial point for the example mentioned above can be
chosen arbitrarily in R”, this modification can improve the
computational efficiency of algorithms greatly compared to
before. In addition, compared with some locally convergent
methods, for example, the notable Newton’s methods, the
method proposed in this paper is a globally convergent
method, whose initial points can be chosen more easily.

(2) In [32], the authors required that the feasible set
must satisfy the so-called normal cone condition, which is
a generalization of the convexity condition (Figure 1). If the
feasible set is a convex set, then it satisfies the normal cone
condition. On the other hand, if the feasible set satisfies
the normal cone condition, then the outer normal cone
of the feasible set at a boundary point x can not meet
the interior of the feasible set but meets the feasible set
only at x. In this paper, we extend the results in [32] to
more general nonconvex sets. If the feasible set satisfies
the normal cone condition, let &;(x,u;) = Vgi(x)u;, i =
1,...,m, nj(x, vj) = th(x)v-, j=1,..., 1 then it necessarily
satisfies assumptions (C,)-(C,). Conversely, the conclusion
does not hold. This point can be illustrated by Examples 1-4
in Section 3.

For a given x©, the zero-point set of H(w, ) is denoted
by

H'(0) = {(w,y) € R™™ 5 A" % (0,1] : H (w, ) = 0}.
(10)
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Lemma 3. Let H be defined as in (9) and let assumptions
(Cy)-(C,) hold. Then the equation H(w, 1) = 0 has a unique
solution.

Proof. When y = 1, the homotopy equation (9) becomes

!
Zr]j (x, vj) +x-x% =0,
=1

h(x)-6h(x?) =0, (1)
U(g (x) - y(g (x(o)) + em)) +pB=0,
1-29 =.

From the second and third equations in (11), we get that x €
Q°%(1). Then assumption (C,), together with the first equa-
tion in (11), yields that x = P By assumption (C,), we
get v = 0. So it follows from the third equation in (11) that
u = —[diag(g(x(o)) - y(g(x(o)) + em))]_lﬁ. At last, from the
fourth equation in (11), we obtain A = 2@ Therefore (11)
has a unique solution w = w® = (x(o),—[diag(g(x(o))—

Ygx®) +e,)] " B.0,A9). O

In the following, we recall some basic definitions and
results from differential topology, which will be used in our
main result of this paper.

The inverse image theorem (see [47]) tells us that if 0 is
a regular value of the map H, then H™'(0) consists of some
smooth curves. The regularity of H can be obtained by the
following lemma.

Lemma 4 (transversality theorem, see [21]). Let Q, N, and P
be smooth manifolds with dimensions q, m, and p, respectively.
Let W C P be a submanifold of codimension p (i.e., p = p+
dimension of W). Consider a smooth map ® : Q x N — P.
If © is transversal to W, then, for almost alla € Q, ®,(-) =
®(a,-) : N — P is transversal to W. Recall that a smooth
map h: N — P istransversal to W if

{Range (Dh(x))} + {TyW} =T,P,
(12)
whenever y = h(x) e W,

where Dh is the Jacobi matrix of h and T,W and T ,P denote
the tangent spaces of W and P at y, respectively.

In this paper, W = {0}, so the transversality theorem is
corresponding to the parameterized Sard theorem on smooth
manifolds.

Lemma 5 (parameterized Sard theorem). Let V ¢ R, U C
R™ be open sets and let ® : V x U — RF be a C" map, where
r > max{0,m — k}. If 0 € R is a regular value of ®, then, for
almost all a € V, 0 is a regular value of ©, = O(a,-).

With the preparation of the previous lemmas, we can
prove the following main theorem on the existence and
boundedness of a smooth path from a given point x® in R
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to a KKT point of (1). This implies the global convergence of
the noninterior path following algorithm.

Theorem 6. Let H be defined as in (9) and let assumptions
(C1)-(C,) hold. Then, for almost allw® € R*xR™ x{0}xA**,
there exists a C* curve (w(s), u(s)) of dimension 1 such that

H(w (s),w(o),‘u(s)) =0, (w(0),u(0) = (w(o), 1).

When u(s) — 0, w(s) tends to a point w* = (x*,u”*,v*,1").
The x-component of w” is a KKT point of ().

Proof. When x®, A, and « are considered as variables,
we denote H(w,u) by Hw, x9, a, )L(O),y). Let the Jaco-
bian matrix of H(w, x¥, a, A?, @) be denoted by DH(w, x9,
a, A%, ), for any u € (0,1],

(13)
(0 0 o p(1=w) 1 (1= Vg () +u(1-p) V8 (xpu(1-p)u) 0
BH(w,x L0 A ,,u) - —pt@Vh(x(O)) 0 0 o
0 (x, a1, 1) —upUvg(x) o0 diag (9 () -y (g (x”) +e,)) 0o |
0 0 0 ‘l/tI
where VuE(x>!’l(1 - y)u) = (Vulgl(x,[/i(l — ;/t)ul),..., Let I(_x*) = {1 IS {1,-..,”’1} . limkaoougk) — OO} and
Vumgm(x’ u(l — wu,,)). Since Vh(x)" is a matrix of full Jx*)={je{l,....l}: limjﬂoovy‘) =oo}. If J(x™) # 0, from

row rank, 0H (w, x©, o, A©, 7 10(x?, o, 1, A9 is of full row
rank. Therefore DH (w, x'”, &, A, 1) is also of full row rank,
and 0 is a regular value of H(w, x'”, &, ', ). By Lemma 5,
for almost all (x'?, a, @) € Q°(1) x R x A™, 0is a regular
value of map H : R" x R™ x R' x RP x (0,1] — R™™** By
the inverse image theorem, H ~1(0) consists of some smooth
curves. Since H(w®, 1) = 0, then a C' curve (w(s), u(s)) of
dimension 1, denoted by T, is starting from (w®, 1).

assume that

In the following, we furthermore

Vh(x)TVm(x, v) is nonsingular. By the classification theo-
rem of one-dimensional smooth manifolds, I, o is diffeomor-
phic either to a unit circle or to a unit interval. For any w® €
Q°(1)x R”, x {0} x A*, it is easy to show that 0H(w™, 1)/ow
is nonsingular; thus I, cannot be diffeomorphic to a unit
circle. That is, T is diffeomorphic to a unit interval.

Let (w”, 4*) be a limit point of [ o; then the following
cases may occur:

(a) (W",u*) = (x",u",v*, 1", u") € A x RT x R x A* x
{0},

(b) (", 1) = (x",u",v*, A%, u") € Q°(1) x R}, x R x
AT x {1},

(©) (", u") = (x",u",v", A", 1) € A(Qp") x R x R') x
A" x(0,1].

By Lemma 3, the equation H(w, w', 1) = 0 has a unique
solution (W', 1) in Q°(1) x R x R x A™ x {1}, so case (b)
is impossible.

It follows from Theorem 3.2 in [32] that the projection of
the smooth curve I o onto the A-plane is bounded.

the first equation in (9), we have

(I_Hk)<vf(x(k))}t(k)+ > ((1-w) Vg (xP)u? + &

i¢I(x*)
(e, (1~ ) u§">))>
+ (x(k) —x(0)> (1= ) o+ (1 - ) Vh (x(k))v(k)
1
+ 20 (% o)
=1

3 () Ve ()

iel(x*)

+& (xY e (1= ) ) = 0.
(15)
O

By assumptions (C,) and (C;), the fourth, fifth, and sixth
parts in the left-hand side of (15) tend to infinity as k — oo,
but the other three parts are bounded; this is impossible.
Therefore the projection of the smooth curve I onto the
v-plane is also bounded.

If case (c) holds, then there exists a sequence of points
{(w®, )} ¢ T o such that [|(w™, w)ll — oo. Since Q(u),
A, and (0, 1] are bounded, hence there exists a subsequence
of points (denoted also by {(w™®, U)}) such that PARNNEPT
u® — 00, v 5 v A% S A andy, — utask — oo.
From the second equation in (9), we have

g (x(k)) ey (g (x(o)) + em) - _‘uk(U(k))—lﬁ (16)



When p* > 0, the active index set is

lim u(k) oo} . 17)

k— 0o

I(x",u")= {i e{l,...,m}:
When p* = 0, the index set is

I, (x*,0) = {i e{l,...,m}: lim ul(k) =oo} cI(x",0).

k— 0o
(18)

(1) If g™ = 1, from the first equation in (9), we obtain

o[- ) (1= ) uPvg, (x©)

ety
+ & (2% (1= ) )]

b (29 x4 (1= g T () O

+ Z’?;’(

Y [0-w) (- ) ufvg, ()

i¢l(x",1)

’MkV(k)) (1 - ) weex (19)

+& (x(k)’.“k (1- ) ugk))]
(- ) ()29 (1 ) (49 - 5.
By assumptions (C,), (C;), and (19), we have

Jim (1- ) =, (20)

where 1 2 0. Therefore by (19) and (20), we get

x4 Z & (x" u)+Z;1](x v) £, (21)

i€l(x*,1)

which contradicts assumption (C,).
(2)If0 < p* < 1, from the first equation in (9), we con-
clude

Y[ (- ) uPvg, (x©)

ieI(x*,y*)
+&; (X(k)’ﬂk (1- P‘k)”l(k))]
i)V (x9) A0 — g (x - x©)

Z”J (

[(1 =) (1= ) OV g, (x©)

=-(1-
= (1= ) VR (x9) v

-

ieI(x* p*)

) (22)

+§&; (x(

= (1= ) e

e (1= ) ”gk))]
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When k — 00, since Q(p*) and ufk), i ¢ I(x*,u"), are
bounded, the right-hand side of (22) is bounded. But by
assumption (C,), if u(k) — 00, i € I(x",u"), then the left-
hand side of (22) is 1nﬁn1te. This results in a contradiction.

(3) If ™ = 0, since the nonempty index set I(x*,0) C
I(x*,0), the proof is similar to (2).

By the above discussion, we obtain that case (a) is the only
possible case, and thus the x-component of w* is a KKT point
of (1).

For almost all w® € R" x R x{0} x A", by Theorem 6,
the homotopy generates a C' curve I« ; by differentiating the
first equation in (13), we get the following theorem.

Theorem 7. The homotopy path T, is determined by the fol-
lowing initial value problem to the ordinary differential equa-
tion:

1 (w©.66) () -0

g (s) (23)

(w(0),u(0) = (w,1),
where s is the arclength of the curve T 0.

Based on Theorems 6 and 7, various predictor-corrector
procedures for numerically tracing the smooth homotopy
path [« can be given (see [33, 34] and references therein).

3. Numerical Results

By using the homotopy (9) and the predictor-corrector algo-
rithm, several numerical examples are given to illustrate the
work in this paper. To illustrate that our result is an extension
of the work in [32], we choose some examples whose feasible
sets do not satisfy the normal cone condition but satisfy
assumptions (C,)-(C,). In addition, the initial points are
chosen not certainly to be in the interior of the feasible sets. In
each example, we sete; = 1-e—3,¢, = 1-e—6,and h, = 0.02.
The behaviors of homotopy paths are shown in Figures 2, 3, 4,
and 5. Computational results are given in Table 1, where x©
denotes the initial point, IT the number of iterations, H the
value of ||Hw<o;(w(k), pe)l when the algorithm stops, and x*
the KKT point.

Example I (adapted from [25, Example 3.1]). f(x), g(x), and

h(x) are defined as in problem (1). The objective functions are
given by

3 2

fi(x)=2(x;-3)" + (%, +7)",

fr(x) = (x, - 2)2 +2x,.

(24)

The feasible set is given by
Q= {(xl,xz) eR :x]+x2-420,

—(x+2)? =X +420,(x; - 06)° +x; ~1=0}.
(25)
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TABLE 1: Numerical results of Examples 1-4.

Example x© IT u H x" f(x")
.5, 0. . . -0. 76, 0.6907 —1.774478, 5. 7
Example 1 (1.5,0.8) 23 0.000000 0.000000 (-0.123076, 0.690768) (-1.774478, 5.888987)
(0.9,1.2) 26 0.000000 0.000000 (—0.123064, 0.690781) (-1.773676, 5.888962)
Example 2 (2,3) 17 0.000000 0.000000 (=0.000812, —2.000000) (0.000001, 0.003248)
(2,-3) 21 0.000000 0.000000 (0.000861, —2.000000) (0.000001, —0.003444)
Example 3 (5,19) 25 0.000000 0.000000 (3.148448, 0.274224) (13.160018, 0.987923)
(4.5,12) 22 0.000000 0.000000 (3.148456, 0.274232) (13.160109, 0.987978)
Example 4 10, 2) 19 0.000000 0.000000 (2.587977, 0.618034) (7.079591, 15.269080)
(20,7) 20 0.000000 0.000000 (2.587984, 0.618042) (7.079637,15.305130)

1.5

0.5

—-05+}

-1 -0.5 0 0.5 1 1.5 2

FIGURE 2: The discrete homotopy pathways of Example 1.

-3

FIGURE 3: The discrete homotopy pathways of Example 2.

Since VA(x) = (2(x, —0.6),2x,)", it is easy to see assumption
(A;) is not satisfied at most points in Q°. Therefore, the
method presented in [32] can not be used to solve this
example. However, if we introduce C* mappings &, (x, u;) =
2,1y, 2%,u,)", E (1) = (=2(x; + 2)uy, —2x,u,)", and
n(x,v) = ((-10+2(x; — 0.6))v, 2x2v)T, then it is easy to verify
that assumptions (C,)-(C,) are satisfied in this example.

3.5 4 4.5

5

5.5 6 6.5

FIGURE 4: The discrete homotopy pathways of Example 3.

5 10 15

20 25 30

FIGURE 5: The discrete homotopy pathways of Example 4.

Thus, we are able to solve this example via the algorithm
presented in this paper. In addition, we choose two initial
points arbitrarily which are not confined in the interior of
the feasible sets; this is another improvement of the results
in [32], which require that initial points should be confined
in the interior of the feasible sets.



Example 2 (adapted from [48, problem 42]). f(x), g(x), and
h(x) are defined as in problem (1). The objective functions are
given by

fix) = xi +2(x, +2)’,

(26)
> (%) = 2x,x,.
The feasible set is given by
Q= {(xl,xz) €R:x,- 1520,
(27)

—x, ~ 420, x{+x; -4 =0}.

Since Vh(x) = (2x, 2x2)T, it is easy to see assumption (A5)
is not satisfied at most points in Q°. Therefore, the method
presented in [32] can not be used to solve this example.
However, if we introduce C? mappings &, (x,1;) = (0,1,)",
& (x,uy) = (0, —uZ)T, and n(x,v) = 2x,v, (8 + 2x2)v)T, then
it is easy to verify that assumptions (C,)-(C,) are satisfied in
this example. Thus, we are able to solve this example via the
algorithm presented in this paper. In addition, we choose two
initial points arbitrarily which are not confined in the interior
of the feasible sets; this is another improvement of the results
in [32], which require that initial points should be confined
in the interior of the feasible sets.

Example 3 (adapted from [48, problem 56]). f(x), g(x), and
h(x) are defined as in problem (1). The objective functions are
given by

fi (%) = xf +2(x, + 1)2,

(28)
fo () = x1 + x5,
The feasible set is given by
Q= {(xl,xz) €R :x,-271£0, m—x, £0,
(29)

x, - 20sin (2x,) = 0}.

Since Vh(x) = (—40 cos(2x,), l)T, it is easy to see assumption
(A;) is not satisfied at most points in Q°. Therefore, the
method presented in [32] can not be used to solve this
example. However, if we introduce C* mappings &, (x,u,) =
(uy, 0)7, E(xuy) = (—uy, 0)7, and n(x,v) = (0, 10v)7, then
it is easy to verify that assumptions (C,)-(C,) are satisfied in
this example. Thus, we are able to solve this example via the
algorithm presented in this paper. In addition, we choose two
initial points arbitrarily which are not confined in the interior
of the feasible sets; this is another improvement of the results
in [32], which require that initial points should be confined
in the interior of the feasible sets.

Example 4 (adapted from [48, problem 79]). f(x), g(x), and
h(x) are defined as in problem (1). The objective functions are
given by

fi(x) = xf + x%,
(30)
fr(x) = fo +(x, - 2)2.
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The feasible set is given by

Q= {(xpx,) €R?:-x, 650, x,- 650,
(31)
3%, —2x; — 7 = 0}.

Since Vh(x) = (3, —4x2)T, it is easy to see assumption (A ;)
is not satisfied at most points in Q. Therefore, the method
presented in [32] can not be used to solve this example.
However, if we introduce C* mappings &, (x,u;) = (0, —u,)",
&(xu,) = (0, uz)T, and n(x,v) = (10v, 0)7, then it is
easy to verify that assumptions (C,;)-(C,) are satisfied in
this example. Thus, we are able to solve this example via the
algorithm presented in this paper. In addition, we choose two
initial points arbitrarily which are not confined in the interior
of the feasible sets; this is another improvement of the results
in [32], which require that initial points should be confined
in the interior of the feasible sets.

Although the feasible sets of Examples 1-4 do not satisfy
the normal cone condition in [32] and initial points are
chosen not in the interior of the feasible sets, the numerical
results for these examples can illustrate that the algorithm
presented in this paper still works well.

4. Conclusions

In this paper, we apply proper perturbations to the constraint
functions and hence develop a noninterior path following
algorithm for solving a class of MOP problems. Our results
extend the results in [32] to more general nonconvex sets and
make initial points of the algorithm be chosen more easily
than before. Since MOP problems have wide applications
in engineering, management, economics, and so on, our
results may be useful to propose a powerful solution tool
for dealing with these practical problems. In the future,
we want to propose new techniques to extend our results
to more general nonconvex sets. In addition, we want
to present a set of suitable unboundedness conditions to
remove the boundedness assumptions on the feasible set
so that we are able to solve MOP problems in unbounded
sets.
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