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This paper is devoted to develop an approximationmethod for scheduling refinery crude oil operations by taking into consideration
the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint
multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic
model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated
by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong
nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-
and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that
the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible,
nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity
and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be
reduced effectively compared with the case without considering the demand correlation.

1. Introduction

In recent years refineries have to explore all potential cost-
saving strategies due to intense competition arising from
fluctuating product demands and ever-changing crude prices.
Scheduling of crude oil operations is a critical task in the
overall refinery operations [1–3].

Basically, the optimization of crude oil scheduling oper-
ations consists of three parts [4]. The first part involves the
crude oil unloading, mixing, transferring, and multilevel
crude oil inventory control process. The second part deals
with fractionation, reaction scheduling, and a variety of
intermediate product tanks control. The third part involves
the finished product blending and distributing process. In
this paper, we focus on the first part, as it is a critical
component for refinery scheduling operations.

The crude oil scheduling problem has received consid-
erable attention from researchers and different models have

been developed on the basis of deterministic mathematical
programming techniques. Lee et al. [5] developed a mixed-
integer linear programming (MILP) model to solve a short-
term crude oil scheduling problem, in which the linearity of
the bilinear constraints is maintained by replacing bilinear
terms with individual component flows, but it can lead
to composition discrepancy. To overcome the composition
discrepancy problem, Wenkai et al. [6] and Reddy et al.
[7] proposed an iterative MIP-NLP model and an iterative
discrete-time MIP model, respectively. However the models
rely on time discretization representations. Recently, most
mathematical models of crude oil scheduling operations put
emphasis on continuous-time formulation so as to shorten
the gap between theoretical research and real-world oper-
ation. Chryssolouris et al. [8] studied the similar problem
as Lee et al. [5] and took the temperature cut-points into
consideration for each distillation. Jia and Kelly [4] for-
mulated the same problem by a state-task-network (STN)
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continuous-time representation. Hu and Zhu [9] extended
the event-basedmodel of Jia et al., [10, 11] to the slotmodel, by
eliminating the redundant event points on others, reducing
the size of the model, and hence the solution time of the
problem.

Most of the current plant planning and scheduling
models are based on deterministic programming. However,
due to the volatile raw material prices, fluctuating products
demands, and other changing market conditions, many
parameters in a planning and scheduling model are usually
uncertain. Neiro and Pinto [12] constructed a corporate
planning model for multiple refineries using scenario based
approach. Neiro and Pinto [12] developed a multiperiod
MINLP model to deal with uncertainty in product price
and crude price. However the scenario based approach
provides no obvious information on the relation between
reliability and profitability, which is crucial for decision
makers. Several recent papers applied chance constrained
programming models to the refinery short-term crude oil
scheduling problem [13–16].

All of the aforementionedmodels in the domestic refinery
optimization are either deterministic [5] or stochastic with
independent demand distribution [14, 15]. Cao et al. [15]
considered the demand correlation for different crude mix
in the same time period. However, they did not consider the
correlation for the same crude mix in different time periods.
In this paper we will consider the crude mix demand correla-
tion in demands not only for different crude mix in the same
time period but also for the same crude mix indifferent time
periods.These considerations have practical significance. For
example, if two crude mixes are predominantly used as raw
materials in another process, their demands will be positively
correlated in each time period. Alternatively, unusually high
demand for a crude mix in one time period more often than
not is followed by lower than normal demand in the next
period, implying negative correlation. Taking into account
such information, whenever it is available, enables a more
efficient allocation of crude mix capacity to minimize cost
and meet certain marketing objectives.

In this paper, we will propose a stochastic multiperiod
model with considering the uncertain crude mix demand
correlations. The model employs two-level time structure
formulation inwhich the entire scheduling horizon is divided
into several interrelated macroperiods. Each macroperiod
with fluctuation demand consists of time intervals with fixed
length. A chance constrained programming formulation is
developed for solving the problem. The deterministic form
of the stochastic constraint is used in solving the problem
iteratively. In real-world situations, the future demand always
changes as time rolls forward. To deal with the uncertainty
of the model, it is important to adjust the planning policy
and update the corresponding schedule and the correlation
structure of the demand at the end of each time period based
on the real sales [17].

The rest of the paper is organized as follows.The schedul-
ing problem is specified in Section 2. In Section 3, a stochastic
multiperiodmodel with two-level time structure formulation
is formulated. In Section 4, the deterministic representation
of the model is presented. In Section 5, an approximation
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Figure 1: Typical flow process for the refinery crude oil operations.

method combining relax-and-tight technique is developed to
solve the joint chance constrained problem above. By relax,
we mean that the ΣA approach [18] is used to approximate
the original-covariance matrix with a new one of simplified
covariance structure. By tight, we mean that the joint chance
constrains are transformed into several linear constraints
with parameterized dependent which aremore stringent than
the original constraints. Moreover, an update policy upon
the realization of the random demands of crude mix is
described. A test problem involving correlated random crude
mix demands is solved in Section 6, highlighting various
modeling and algorithmic issues. Section 7 summarizes the
work and provides some concluding remarks.

2. Problem Statements and Operation Rules

2.1. Problem Statements. The problem studied involves crude
oil unloading process from vessels to storage tanks, transfer-
ring process from storage tanks to charging tanks (where sev-
eral crude oils aremixed) and charging process from charging
tanks to crude oil distillations (CDUs). Figure 1 shows the
typical processes. During a given scheduling horizon, crude
vessels arrive in the vicinity of the refinery docking station
and, according to FCFS, wait for unloading of the preceding
vessel in the docking station. At the docking station, crude oil
is unloaded into storage tanks. Crude oil is then transferred
from storage tanks to charging tanks which are buffers to
produce a crude mix, of which component compositions
were determined at the planning level. The crude oil mix in
each charging tank is then charged into a CDU. Given the
configuration of themultistage system aswell as the uncertain
arrival times of vessels, equipment capacity limitations, and
key component concentration ranges, the problem is then
to determine the following operating variables to minimize
operating costs: (a) waiting time of each vessel at sea, (b)
unloading time of each vessel, (c) crude unloading rate from
vessels to storage tanks, (d) crude oil transfer andmixing rate
from storage tank to charging tanks, (e) inventory levels of
storage and charging tanks, (f) CDU charging rates, and (g)
sequence for charging mixed crude into each CDU.

A basic deterministic model assumption was presented
in [5]. However, in this paper we will extend it to a
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newmixed-integer nonlinear stochastic programmingmodel
with chance constraints. The demands for different crude
mix are uncertain andpossibly correlated, reflecting changing
market conditions and periodic variation in customer orders.
An optimal planning policy for minimizing expected cost is
developed. This is achieved by letting crude mix demands be
satisfied with at least a prespecified probability level.

The proposed stochastic model involves the following
features and assumptions.

(1) A two-level time structure introduced by Fleis-
chmann andMeyr [19] is adopted formodeling a gen-
eral stochastic system. The entire planning interval
is divided into macroperiods each with fluctuation
demand and eachmacroperiod consists of time inter-
vals with fixed length.

(2) Thedemands for different crudemixes aremodeled as
multivariate normally distributed random variables.
Thenormality assumption has beenwidely invoked in
the literature because it captures the essential features
of demand uncertainty and it is convenient to use.
The use of more “complex” probability distributions
is hindered by the fact that statistical information
apart frommean and covariance estimates of product
demands is rarely available.

(3) The demand correlation, in the problem formulation,
stands for correlation of demands for different crude
mixes in the same time period and demands for the
same crude mix in different time periods.

(4) The penalty for some crude mix shortfalls is propor-
tional to the amount of underproduction.

2.2. Operation Rules. The operation rules are shown as
follows: (1) the refinery uses only one docking station, and
a new arriving vessel has to wait at sea until the anterior
vessel leaves the docking station; (2) while a charging tank
is charging CDU, crude oil from the storage tanks cannot be
fed into the charging tank and vice versa; (3) each charging
tank can only charge one CDU at each time interval; (4)
each CDU can only be charged by one charging tank at
each time interval; (5) CDUs must be operated continuously
throughout the scheduling time horizon.

3. Mathematical Model

Indices and Sets

𝑖 ∈ {1, . . . , 𝑁
𝑆
} = crude oil storage tank and the crude

oil in it.
𝑗 ∈ {1, . . . , 𝑁

𝐵
} = crude oil charging tank and the

crude oil mix in the charging tank.
𝑘 ∈ {1, . . . , 𝑁

𝐶
} = key component of crude oil.

𝑙 ∈ {1, . . . , 𝑁
CDU

} = crude distillation unit.
𝑚 ∈ {1, . . . , 𝑁

𝑀
} = macroperiod.

𝑡 ∈ {1, . . . , 𝑁
SCH

} = time interval, 𝑁SCH, denotes
scheduling horizon.

𝑇
𝑚
= the starting time of the macroperiodm.

V ∈ {1, . . . , 𝑁𝑉} = crude vessels.

Variables

𝐷
𝑗,𝑙,𝑡

= 0-1 variable to denote if the crude oil mix in
charging tank 𝑗 charges CDU 𝑙 at time t.
𝑋
𝐹

V,𝑡 = 0-1 variable to denote if vessel V starts unload-
ing at time t.
𝑋
𝐿

V,𝑡 = 0-1 variable to denote if vessel V just completes
unloading at time t.
𝑋
𝑊

V,𝑡 = 0-1 continuous variable to denote if vessel v is
unloading its crude oil at time t.
𝑍𝑗,𝑗󸀠 ,𝑙,𝑡 = 0-1 continuous variable to denote if transi-
tion from crude mix (or charging tank) j to 𝑗󸀠 at time
t in CDU l.
𝑓
SB
𝑖,𝑗,𝑘,𝑡

= volumetric flow rate of component 𝑘 from
storage tank 𝑖 to charging tank 𝑗 at time t.
𝑓
BC
𝑗,𝑙,𝑘,𝑡

= volumetric flow rate of component 𝑘 from
charging tank 𝑗 to CDU 𝑙 at time t.
𝐹
VS
V,𝑖,𝑡 = volumetric flow rate of crude oil from vessel V

to storage tank 𝑖 at time t.
𝐹
SB
𝑖,𝑗,𝑡

= volumetric flow rate of crude oil from storage
tank 𝑖 to charging tank 𝑗 at time t.
𝐹
BC
𝑗,𝑙,𝑡

= volumetric flow rate of crude oil mix from
charging tank 𝑗 to CDU 𝑙 at time t.
𝑇
𝐹

V = vessel v unloading initiation time.
𝑇
𝐿

V = vessel v unloading completion and departure
time.
V𝐵
𝑗,𝑘,𝑡

= volume of component k in charging tank j at
time t.
𝑉
𝑉

V,𝑡 = volume of crude oil in crude vessel v at time t.

𝑉
𝑆

𝑖,𝑡
= volume of crude oil in storage tank i at time t.

𝑉
𝐵

𝑗,𝑡
= volume of mixed oil in charging tank j at time

t.

Parameters

𝐶
UNLOAD
𝑉

= unloading cost of vessel V per time inter-
val.
𝐶
SEA
𝑉

= sea waiting cost of vessel V per time interval.
𝐶
INVST
𝑖

= inventory cost of storage tank 𝑖 per time per
volume.
𝐶
INVBL
𝑗

= inventory cost of charging tank 𝑗 per time
per volume.
𝐶
SETUP
𝑗,𝑗
󸀠 = changeover cost for transition from crude

mix j to 𝑗󸀠 in CDU.
𝐶
PEN
𝑗

= penalty cost for crude mix 𝑗 shortfalls.

𝐷
𝑀

𝑗,𝑚
= stochastic demand of crude mix 𝑗 by CDUs

during the macroperiodm.
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𝐹
VS,min
V,𝑖 =minimumcrude oil transfer rate from vessel

V to storage tank i.

𝐹
VS,max
V,𝑖 = maximum crude oil transfer rate from

vessel V to storage tank i.

𝐹
SB,min
𝑖,𝑗

= minimum crude oil transfer rate from stor-
age tank 𝑖 to charging tank j.

𝐹
SB,max
𝑖,𝑗

= maximum crude oil transfer rate from
storage tank 𝑖 to charging tank j.

𝐹
BC,min
𝑗,𝑙

= minimum crude oil charging rate from
charging tank 𝑗 to CDU l.

𝐹
BC,max
𝑗,𝑙

= maximum crude oil charging rate from
charging tank 𝑗 to CDU l.

𝑇
ARR
V = crude vessel V arrival time around the docking

station.

𝑉
𝑉

V,0 = initial volume of crude oil in crude vessel v.

𝑉
𝑆,min
𝑖

=minimum crude oil volume of storage tank i.

𝑉
𝑆,max
𝑖

= maximum crude oil volume of storage tank
i.

𝑉
𝑆

𝑖,0
= initial crude oil volume of storage tank i.

𝑉
𝐵,min
𝑗

= minimummixed crude oil volume of charg-
ing tank j.

𝑉
𝐵,max
𝑗

=maximummixed crude oil volume of charg-
ing tank j.

𝜀
𝑆

𝑖,𝑘
= concentration of component 𝑘 in the crude oil

of storage tank i.

𝜀
𝐵

𝑗,𝑘,0
= initial concentration of component 𝑘 in the

crude mix of charging tank j.

𝜀
𝐵,min
𝑗

= minimum concentration of component 𝑘 in
the crude mix of charging tank j.

𝜀
𝐵,max
𝑗

= maximum concentration of component 𝑘 in
the crude mix of charging tank j.

In this paper, a two-level time structure is used to
model a general dynamic production system. We consider
the crude mix 𝑗 to be scheduled over a finite planning
horizon consisting of macroperiods 𝑚 = 1 ⋅ ⋅ ⋅ 𝑁

𝑀. Each
macroperiod 𝑚 is divided into time intervals with fixed
length, where 𝑇

𝑚
represents the starting time of macrope-

riod 𝑚. Let 𝐷𝑀
𝑗,𝑚

, a random variable, denote the demand of
crude mix 𝑗 in macroperiod 𝑚. We approximate the crude
mix demand as a multivariate normal distribution with a
specific correlation structure 𝐷𝑀 ∼ 𝑁(𝜇, Σ) with covariance
matrix Σ, where 𝐷𝑀 def

= [𝐷
𝑀

𝑗,𝑚
], 𝜇

def
= [𝜇𝑗,𝑚]. It means that the

demands for different mix crudes not only are correlated but
also are the demands for the same mixed crude in different
macroperiods.

The mathematical model is formulated as follows.
(1) Operating Cost

Minimize:
Operating cost = unloading cost for the crude vessel
+ cost for vessel waiting in the sea + inventory cost
for storage and charging tanks + changeover cost +
underproduction penalty cost

𝐶COST =
𝑁
𝑉

∑

𝑉=1

𝐶
UNLOAD
𝑉

(𝑇
𝐿

V − 𝑇
𝐹

V ) +

𝑁
𝑉

∑

V=1
𝐶
SEA
𝑉

(𝑇
𝐹

V − 𝑇
ARR
V )

+

𝑁
ST

∑

𝑖=1

𝐶
INVST
𝑖

𝑁
SCH

∑

𝑡=1

(
𝑉
𝑆

𝑖,𝑡
+ 𝑉
𝑆

𝑖,𝑡−1

2
)

+

𝑁
BT

∑

𝑗=1

𝐶
INVBL
𝑗

𝑁
SCH

∑

𝑡=1

(

𝑉
𝐵

𝑗,𝑡
+ 𝑉
𝐵

𝑗,𝑡−1

2
)

+

𝑁
SCH

∑

𝑡=1

𝑁
𝐵𝑇

∑

𝑗=1

𝑁
BT

∑

𝑗
󸀠
=1

𝐶
SETUP
𝑗,𝑗
󸀠

𝑁
CDU

∑

𝑙=1

𝑍
𝑗,𝑗
󸀠
,𝑙,𝑡

+

𝑁
BT

∑

𝑗=1

𝐶
PEN
𝑗

𝑁
𝑀

∑

𝑚=1

max(0,𝐷𝑀
𝑗,𝑚

−

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡
) .

(1)

Subject to:

(2) Vessel Arrival and Departure Operation Rules. Each vessel
arrives at the docking station for unloading only once
throughout the scheduling horizon:

𝑁
SCH

∑

𝑡=1

𝑋
𝐹

V,𝑡 = 1 ∀V. (2a)

Each vessel leaves the docking station only once throughout
the scheduling horizon. Consider

𝑁
SCH

∑

𝑡=1

𝑋
𝐿

V,𝑡 = 1 ∀V. (2b)

Equation for unloading initiation time:

𝑇
𝐹

V =

𝑁
SCH

∑

𝑡=1

𝑡𝑋
𝐹

V,𝑡 ∀V. (2c)

Equation for unloading completion time:

𝑇
𝐿

V =

𝑁
SCH

∑

𝑡=1

𝑡𝑋
𝐿

V,𝑡 ∀V. (2d)

Each crude vessel should start unloading after arrival time set
in the planning level:

𝑇
𝐹

V ≥ 𝑇
ARR
V ∀V. (2e)
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Duration of the vessel unloading is bounded by the initial vol-
ume of oil in the vessel divided by the maximum unloading
rate:

𝑇
𝐿

V − 𝑇
𝐹

V ≥ ⌈
𝑉
𝑉

V,0

max ⌈𝐹𝑉𝑆,max
V,𝑖 ⌉

⌉ ∀V. (2f)

⌈⌉ corresponds to round-up of the next highest integer value.
Vessel in the sea cannot arrive at the docking station for
unloading unless the preceding vessel leaves:

𝑇
𝐹

V+1 ≥ 𝑇
𝐿

V ∀V. (2g)

Unloading is possible between time 𝑇𝐹V and 𝑇𝐿V :

𝑋
𝑊

V,𝑡 ≤

𝑡

∑

𝜏=1

𝑋
𝐹

V,𝜏, 𝑋
𝑊

V,𝑡 ≤

SCH
∑

𝜏=𝑡

𝑋
𝐿

V,𝜏 ∀V, 𝑡. (2h)

(3) Material Balance Equations for the Vessel. For vessel v,
the oil volume at time 𝑡 equals the initial volume minus
transferred volume from vessel V to storage tanks up to time
t:

𝑉
𝑉

V,𝑡 = 𝑉
𝑉

V,0 −

𝑁
ST

∑

𝑖=1

𝑡

∑

𝜏=1

𝐹
𝑉𝑆

V,𝑖,𝜏 ∀V, 𝑡. (3a)

Operating constraints on crude oil transfer rate from vessel V
to storage tank 𝑖 at time t

𝐹
VS,min
V,𝑖 𝑋

𝑊

V,𝑡 ≤ 𝐹
VS
V,𝑖,𝑡 ≤ 𝐹

VS,max
V,𝑖 𝑋

𝑊

V,𝑡 ∀V, 𝑖, 𝑡. (3b)

The volume of crude oil transferred from vessel V to storage
tanks during the scheduling horizon equals the initial crude
oil volume of vessel v:

𝑁
ST

∑

𝑖=1

𝑁
SCH

∑

𝑡=1

𝐹
VS
V,𝑖,𝑡 = 𝑉

𝑉

V,0 ∀V, 𝑖, 𝑡. (3c)

(4) Material Balance Equations for Storage Tanks. The oil
volume in storage tank 𝑖 at time 𝑡 equals the initial oil volume
in tank 𝑖 plus the oil volume transferred from vessels to tank
𝑖 up to the time 𝑡 and minus oil volume removed from tank 𝑖
to charging tanks up to the time t:

𝑉
𝑆

𝑖,𝑡
= 𝑉
𝑆

𝑖,0
+

𝑁
𝑉

∑

V=1

𝑡

∑

𝜏=1

𝐹
VS
V,𝑖,𝜏 −

𝑁
BT

∑

𝑗=1

𝑡

∑

𝜏=1

𝐹
SB
𝑖,𝑗,𝜏

∀𝑖, 𝑡 (4a)

Operating constraints on crude oil transfer rate from storage
tank 𝑖 to charging tank 𝑗 at time t, the term 1 − ∑

NCDU
𝑙=1

𝐷
𝑗,𝑙,𝑡

denotes that if charging tank 𝑗 is charging any CDU, there is
no oil transfer from storage tank 𝑖 to charging tank j. Consider

𝐹
SB,min
𝑖,𝑗

(1 −

𝑁
CDU

∑

𝑙=1

𝐷𝑗,𝑙,𝑡)

≤ 𝐹
SB
𝑖,𝑗,𝑡

≤ 𝐹
SB,max
𝑖,𝑗

(1 −

𝑁
CDU

∑

𝑙=1

𝐷𝑗,𝑙,𝑡) ∀𝑖, 𝑗, 𝑡.

(4b)

Volume capacity limitations for storage tank 𝑖 at time t

𝑉
𝑆,min
𝑖

≤ 𝑉
𝑆

𝑖,𝑡
≤ 𝑉
𝑆,max
𝑖

∀𝑖, 𝑡. (4c)

(5) Material Balance Equations for Charging Tanks.The crude
oilmix in charging tank 𝑗 at time 𝑡 equals the initial oil volume
in charging tank 𝑗 plus the crude oil transferred from storage
tanks to charging tank j up to time t and minus the crude oil
mix 𝑗 charged into CDUs up to time t:

𝑉
𝐵

𝑗,𝑡
= 𝑉
𝐵

𝑗,0
+

𝑁
ST

∑

𝑖=1

𝑡

∑

𝜏=1

𝐹
SB
𝑖,𝑗,𝜏

−

𝑁
CDU

∑

𝑙=1

𝑡

∑

𝜏=1

𝐹
BC
𝑗,𝑙,𝜏

∀𝑗, 𝑡.

(5a)

Operating constraints on mixed oil transfer rate from charg-
ing tank 𝑗 to CDU 𝑙 at time t

𝐹
BC,min
𝑗,𝑙

𝐷
𝑗,𝑙,𝑡

≤ 𝐹
BC
𝑗,𝑙,𝑡

≤ 𝐹
BC,max
𝑗,𝑙

𝐷
𝑗,𝑙,𝑡

∀𝑗, 𝑙, 𝑡. (5b)

Volume capacity limitations for charging tank 𝑗 at time t

𝑉
𝐵,min
𝑗

≤ 𝑉
𝐵

𝑗,𝑡
≤ 𝑉
𝐵,max
𝑗

∀𝑗, 𝑡. (5c)

(6) Material Balance Equations for Component 𝑘 in Charging
Tanks. The volume of component 𝑘 in charging tank 𝑗 at
time 𝑡 equals the initial component 𝑘 in charging tank 𝑗 plus
component 𝑘 in crude oil transferred from storage tanks to
charging tank 𝑗 up to the time 𝑡 and minus component 𝑘 in
crude oil mix 𝑗 transferred to CDUs up to the time t:

V𝐵
𝑗,𝑡
= V𝐵
𝑗,0
+

𝑡

∑

𝜏=1

𝑁
ST

∑

𝑖=1

𝑓
SB
𝑖,𝑗,𝜏

−

𝑡

∑

𝜏=1

𝑁
CDU

∑

𝑙=1

𝑓
BC
𝑗,𝑙,𝜏

∀𝑗, 𝑘, 𝑡. (6a)

Operating constraints on volumetric flow rate of component
𝑘 from storage tank 𝑖 to charging tank j

𝑓
SB
𝑖,𝑗,𝑘,𝑡

= 𝐹
SB
𝑖,𝑗,𝑡
𝜀
𝑆

𝑖,𝑘
∀𝑖, 𝑗, 𝑘, 𝑡. (6b)

Operating constraints on volumetric flow rate of component
𝑘 from charging tank 𝑗 to CDU l

𝐹
BC
𝑗,𝑙,𝑡
𝜀
𝐵,min
𝑗,𝑘

≤ 𝑓
BC
𝑗,𝑙,𝑘,𝑡

≤ 𝐹
BC
𝑗,𝑙,𝑡
𝜀
𝐵,max
𝑗,𝑘

∀𝑗, 𝑙, 𝑘, 𝑡. (6c)

Volume capacity limitations for component 𝑘 in charging
tank 𝑗 at time t

𝑉
𝐵

𝑗,𝑡
𝜀
𝐵,min
𝑗,𝑘

≤ V𝐵
𝑗,𝑘,𝑡

≤ 𝑉
𝐵

𝑗,𝑡
𝜀
𝐵,max
𝑗,𝑘

∀𝑗, 𝑙, 𝑘, 𝑡. (6d)

(7) Operating Rules for Crude Oil Charging. Charging tank 𝑗
can charge at most one CDU at any time t:

𝑁
CDU

∑

𝑙=1

𝐷
𝑗,𝑙,𝑡

≤ 1 ∀𝑗, 𝑡. (7a)
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CDU 𝑙 can be charged only by one charging tank at any time
t:

𝑁
BT

∑

𝑗=1

𝐷
𝑗,𝑙,𝑡

= 1 ∀𝑙, 𝑡. (7b)

If CDU 𝑙 is charged by crude oilmix 𝑗 at time t − 1 and charged
by 𝑗󸀠 at time t, changeover cost is involved:

𝑍
𝑗,𝑗
󸀠
,𝑙,𝑡
≥ 𝐷
𝑗
󸀠
,𝑙,𝑡
+ 𝐷
𝑗,𝑙,𝑡−1

− 1

𝑗, 𝑗
󸀠
(𝑗 ̸= 𝑗
󸀠
) = 1, . . . , 𝑁

𝐵
∀𝑙, 𝑡.

(7c)

The proposed formulation involves stochastic expres-
sions, which requires a different course of action for trans-
forming it into an equivalent deterministic form. The deter-
ministic equivalent representation of the expectation of the
objective function is examined in the next section.

4. Chance Constraint Based
Deterministic Transformation

4.1. Expectation of Penalty Cost. The expectation of the
underproduction penalty cost term for crude mix 𝑗 in
macroperiod𝑚 is equal to

𝐸[

[

𝑁
BT

∑

𝑗=1

𝐶
PEN
𝑗

𝑁
𝑀

∑

𝑚=1

max(0,𝐷𝑀
𝑗,𝑚

−

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡
)]

]

, (8)

where

𝐶
𝑗,𝑚

≜ max(0,𝐷𝑀
𝑗,𝑚

−

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡
)

= −min(0,
𝑁

CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

− 𝐷
𝑀

𝑗,𝑚
)

= −[

[

min(𝐷𝑀
𝑗,𝑚
,

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡
) − 𝐷

𝑀

𝑗,𝑚
]

]

.

(9)

To facilitate the calculation of the expectation, the stan-
dardization of the normally distributed variables 𝐷𝑀

𝑗,𝑚
and

variables ∑𝑁
CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

is performed first. Normal ran-
dom variables can be recast into the standardized normal
form, with a mean of zero and a variance of 1, by subtracting
their mean and dividing by their standard deviation (square
root of variance). This defines the standardized normal
variables

𝑥𝑗,𝑚 =

𝐷
𝑀

𝑗,𝑚
−
̂
𝐷
𝑀

𝑗,𝑚

𝜎
𝑗,𝑚

, (10)

where ̂𝐷𝑀
𝑗,𝑚

denotes the mean of 𝐷𝑀
𝑗,𝑚

and 𝜎
𝑗,𝑚

the square
root of its variance. In the same way, the “standardization” of
the variables ∑𝑁

CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

defines

𝐾
𝑗,𝑚

=

∑
𝑁

CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

−
̂
𝐷
𝑀

𝑗,𝑚

𝜎𝑗,𝑚

. (11)

Using the method in paper [17], the underproduction
penalty term 𝐶

𝑗,𝑚
is charging into the following form:

𝐶
𝑗,𝑚 = − [−𝑓 (𝐾𝑗,𝑚) + (1 − Φ (𝐾𝑗,𝑚))𝐾𝑗,𝑚] , (12)

where 𝑓 is the standardized normal distribution function
and Φ denotes the cumulative probability function of a
standard normal random variable.

4.2. Satisfaction Level for Single Crude Mix Demand. The
minimization of the objective function (1), as defined above,
establishes the production and planned sales policy which
most appropriately balances profits with inventory costs and
underproduction shortfalls. A crudemix demand satisfaction
level is not explicitly specified, but rather it is the outcome
of the minimization of the profit function. While higher
values of the parameter 𝐶

PEN
𝑗

conceptually increase the
probability of demand satisfaction, this strategymay still lead
to unacceptably low probabilities of satisfying certain crude
mix demands (see examples).Therefore, the setting of explicit
probability targets on crudemix demand satisfaction is much
more desirable. A systematic way to accomplish this is to
impose explicit lower bounds on the probabilities of satisfying
a single crude mix demand. This requirement for crude mix
𝑗 in macroperiod𝑚 assumes the following form:

Pr[

[

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

≥ 𝐷
𝑀

𝑗,𝑚
]

]

≥ 𝛽
𝑗,𝑚
. (13)

This constraint, known as a chance constraint, imposes a lower
bound 𝛽

𝑗,𝑚
on the probability that the crude mix demand

realization will be greater than the planned sales 𝐷𝑀
𝑗,𝑚

for
crude mix 𝑗 in macroperiod𝑚. The deterministic equivalent
representation can be obtained based on the concepts intro-
duced by Charnes and Cooper [20].

Specifically, by subtracting the mean and dividing by
the standard deviation of 𝐷𝑀

𝑗,𝑚
, the chance constraint can be

written equivalently as

Pr[

[

∑
𝑁

CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

−
̂
𝐷
𝑀

𝑗,𝑚

𝜎
𝑗,𝑚

≥

𝐷
𝑀

𝑗,𝑚
−
̂
𝐷
𝑀

𝑗,𝑚

𝜎
𝑗,𝑚

]

]

≥ 𝛽
𝑗,𝑚
,

Pr ⌈𝐾
𝑗,𝑚

≥ 𝑥
𝑗,𝑚
⌉ ≥ 𝛽
𝑗,𝑚
.

(14)

The right-hand side of the inequality within the proba-
bility sign is a normally distributed random variable with a
mean of zero and a variance of 1. This implies that the chance



The Scientific World Journal 7

constraint can be replaced with the following deterministic
equivalent expression:

𝜙 (𝐾
𝑗,𝑚
) ≥ 𝛽
𝑗,𝑚
. (15)

The application of the inverse of the normal cumulative
distribution function 𝜙−1, which is a monotonically increas-
ing function, yields

𝐾𝑗,𝑚 ≥ 𝜙
−1
(𝛽
𝑗,𝑚
) (16)

Inspection of the deterministic equivalent constraint
reveals that it is linear in the deterministic variables and is
composed of the mean of the original constraint augmented
by the squared root of its variance times 𝜙−1(𝛽

𝑗,𝑚
).

4.3. Satisfaction Level for All Crude Mix Demand. In some
cases a probability target is desired for the demand satisfac-
tion of a group of crude mix in different macroperiod. For
example, when only up to 10%, unsatisfied crudemix demand
can be tolerated throughout the entire horizon without
distinguishing between different crude mixes. While single-
product chance constraints are unaffected by correlations
between crude mix demands, this is not always the case for
joint chance constraints.

This gives rise to joint chance constraints. Joint chance
constraints impose a probability target of simultaneously
satisfying the demands for a group of crudemixes in different
macroperiods as follows:

Pr[

[

⋂

(𝑗,𝑚)∈𝐼𝑚

(

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

≥ 𝐷
𝑀

𝑗,𝑚
)]

]

≥ 𝛽
𝑚

𝐼
𝑚
= {(𝑗,𝑚

󸀠
) | 1 ≤ 𝑗 ≤ 𝑁

BT
, 𝑚 ≤ 𝑚

󸀠
≤ 𝑀} ,

(17)

where 𝐼
𝑚
is the set of product-period (𝑗, 𝑚) combinations

whose simultaneous demand satisfaction with probability of
at least 𝛽𝑚 is sought and 𝐼𝑚 = {(𝑗, 𝑚

󸀠
) | 1 ≤ 𝑗 ≤ 𝑁

BT
, 𝑚 ≤

𝑚
󸀠
≤ 𝑀} is the set of all joint chance constraint. The joint

probability, 𝛽𝑚, is the probability of intersection of individual
constraints to be satisfied.

We use the approach in [21] to solve the joint chance
constrained problem. The joint chance constraint equation
(17) can be written as separated equivalent deterministic
equations. Initially we choose the 𝑇 constraints in a manner
such that together they are more stringent than (17). The
initial set of individual linear constraints equation (18) replac-
ing (17) was obtained using the following argument. First we
denote the event ∑𝑁

CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
𝐵𝐶

𝑗,𝑙,𝑡
≥ 𝐷
𝑀

𝑗,𝑚
by 𝐴
𝑗,𝑚

and its

complement event ∑𝑁
CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

< 𝐷
𝑀

𝑗,𝑚
by 𝐴𝐶
𝑗,𝑚

. From
Boole’s inequality of probability theory [22] it is well known
that

𝑃[

[

⋃

(𝑗,𝑚)∈𝐼
𝑚

𝐴
𝑗,𝑚
]

]

≤

𝐽

∑

𝑗=1

𝑀

∑

𝑚=1

𝑃 [𝐴
𝑗,𝑚
] . (18)

Thus it follows that if 𝑃[𝐴𝐶
𝑡
] ≤ (𝛽

𝑚
/𝑇),𝑚 = 1, 2, . . . ,𝑀, then

𝑃[

[

⋂

(𝑗,𝑚)∈𝐼
𝑚

𝐴𝑗,𝑚
]

]

= 1 − 𝑃[

[

⋃

(𝑗,𝑚)∈𝐼
𝑚

𝐴𝑗,𝑚
]

]

≥ 1 −

𝐽

∑

𝑗=1

𝑀

∑

𝑚=1

𝑃 [𝐴
𝐶

𝑗,𝑚
] ≥ 1 − (1 − 𝛽

𝑚
) .

(19)

Now, because 𝐷𝑀
𝑗,𝑚

is normally distributed with mean 𝜇𝑗,𝑚

and standard deviation 𝜎
𝑗,𝑚
, 𝑃[𝐴
𝑐

𝑗,𝑚
] ≤ (1 − 𝛽

𝑚
)/𝑇 is

equivalent to 𝑃[𝐷𝑀
𝑗,𝑚

> ∑
𝑁

CDU

𝑙=1
∑
𝑇
𝑚+1
−1

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡
] ≤ (1 − 𝛽

𝑚
)/𝑇,

which in its turn is equivalent to

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
𝐵𝐶

𝑗,𝑙,𝑡
≥ 𝜇
𝑗,𝑚

+ 𝑧
𝛼/𝑇
𝜎
𝑗,𝑚
, (20)

where 𝑧
𝛼/𝑇

is the 100(1 − ((1 − 𝛽
𝑚
)/𝑇))th percentile of the

standard normal distribution. Subsequently we will suppress
the subscript for z and replace (20) by the following equation:

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
𝐵𝐶

𝑗,𝑙,𝑡
≥ 𝜇
𝑗,𝑚

+ 𝑧𝜎
𝑗,𝑚
. (21)

The initial value of 𝑧 will be chosen to be 𝑧 = 𝑧
𝛼/𝑇

.
Using the individual constraints equation (21) results in a

more conservative solution than the joint chance constraint
equation (17). Therefore, it is required to update the value
of z in order to find a solution which satisfies the required
confidence level.Themethod in updating z proposed in [23]
is used, which is based on the interpolation of z values.

The deterministic forms of the objective function and
stochastic constraint are used in solving the joint chance
constrained problem iteratively by using a different z value.
The algorithm is examined in the next section.

5. The Algorithm and Update Policy for the
Joint Chance Constrained Problem

In this section, a method is developed to solve the joint
chance constrained problemabove, and then anupdate policy
upon the realization of the random demands of crude mix is
described.

5.1. Algorithm for the Joint Chance Constrained Problem. The
following three steps are performed iteratively.

Step 1 (initialization). Problem is solved with the equivalent
deterministic objective function and the constraint equation
(21) is replaced with (17) for a fixed scalar z to determine
the set of new controlled variables. The algorithm starts by
choosing a high value for the initial 𝑧-value as in (21), which
makes the corresponding solution satisfy the demand with a
probability level higher thanPtarget = 𝛽𝑚.
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Step 2 (MINLP solution). The problem is implemented with
GAMS (General Algebraic Modeling System). The CPLEX is
used to solve this deterministic problem.

Step 3 (evaluate probability). Evaluate the multivariate nor-
mal probability (17). A subregion adaptive algorithm pro-
posed by Genz and Bretz [24] is employed to carry out
multivariate integrationwhichmakes this evaluation feasible.

Step 4 (updatez-value). If the evaluated probability level is
in the 𝛾 neighborhood of Ptarget, the algorithm terminates
since the goal of finding a schedule that satisfies the demand
with a probability ofPtarget is accomplished; otherwise the 𝑧
value is updated and the previous steps are repeated to obtain
another schedule.

To update the z-value the following algorithm is used.
The goal is to find a z-value in (21) that provides a schedule
such that the demand can be satisfied with a probability of
Ptarget = 𝛽𝑚 over the entire time horizon. The z-value needs
to be obtained iteratively.

Step 1 (obtain the upper and lower bounds of z). First we
choose z = z

𝛼
in (21). Obviously it yields a lower bound for

the correctz-value.We call itzlower.We now run Step 2 of the
algorithm for this lower bound and obtain an estimate of the
probability with which the demand is being met. We call this
probabilityPlower. Next we choose an arbitrary large value for
z. We denote it by zupper and obtain a similar estimate of the
probability of demand satisfaction.Wedenote this probability
byPupper.

Step 2 (obtain the upper and lower bounds of Ptarget). In
this step we obtain the upper percentiles of the univariate
standard normal distribution for these probabilities and
denote Pupper and Plower by z

2
and z

1
, respectively. We

also denote the corresponding percentile for the Ptarget value
by ztarget.

Step 3 (update z-value). Based on these values the updated
z-value is obtained using the following linear interpolation
formula:

znew = zlower + (
ztarget − z1

z
2
− z
1

) (Zupper −Zlower) . (22)

If the Znew value is lower than Z
2
and higher than Ztarget,

then we replace Z
2
byZnew. If it is lower thanZtarget and

higher than Z
1
, we replace Z

1
by Znew. We repeat this

process using (17) until Ptarget is reached.

5.2. Update of the Planning and Scheduling Policy. As dis-
cussed in Section 3, the demand 𝐷𝑀 ∼ 𝑁(𝜇, Σ) follows a
multivariate normal distribution with a specific correlation
structure. In order to decrease the uncertainty associatedwith
the random variables 𝐷𝑀

𝑗,𝑚
and thus increase the predictive

power of the stochastic model, it is proposed to update the
corresponding schedule at the end of eachmacroperiod based
on the realized production [17]. The update of the schedule
is accomplished by recalculating the conditional multivariate

probability function given the demand realizations in previ-
ous periods.

After solving the scheduling problem, only the decision
variables associated with the immediately following period
may be taken as final. The decision variables referring to
successive periods can be used for planning and activities
related to the operation.

The update of the planning policy and schedule at the end
of macroperiod 𝑚 is described in the following steps.

Step 1 (update statistics). Update future demand statistics
based on present and previous product demand realizations.

Step 2 (resolve the problem). Resolve the scheduling problem
for𝑚󸀠 = 𝑚 + 1, . . . ,𝑀.

Step 3 (updatem). Set𝑚 ← 𝑚+1. If𝑚 ≤ 𝑀, return to Step 1.

The first step allows the use of updated demand forecast-
ing information. If there are no new demand forecasts avail-
able, the conditionalmultivariate probability density function
based on the realizations of the demands in previous periods
can be utilized. The procedure for finding the conditional
distribution function is outlined below. Step 2 involves the
solution of the problem, which, in turn, determines the new
planning and scheduling policies.

The derivation of the conditional probability distribution
based on the realization of previous random variables can be
accomplished as follows. First, the random variable 𝐷𝑀

𝑗,𝑚
is

partitioned into two sets. The first set

𝑃 = {𝐷
𝑀

𝑗,𝑚
󸀠 : 1 ≤ 𝑚

󸀠
≤ 𝑚,𝑚 = 1, . . . ,𝑀} (23)

contains the crude mix demands realized in the past periods
𝑚
󸀠
= 1, . . . , 𝑚. The second set

𝐹 = {𝐷
𝑀

𝑗,𝑚
󸀠 : 𝑚 + 1 ≤ 𝑚

󸀠
≤ 𝑀, 𝑖 = 1, . . . ,𝑀} (24)

contains the uncertain crude mix demands for the future
periods. Based on this partitioning, the variance-covariance
matrix can be expressed as follows:

Σ = (
Σ𝑃𝑃 Σ𝑃𝐹

Σ
𝐹𝑃

Σ
𝐹𝐹

) , (25)

where ΣPP and ΣFF are the variance-covariance submatrices
of the crude mix demands belonging to the sets 𝑃 and F,
respectively. The elements of submatrices ΣPF = (ΣFP)

𝑇 are
the covariances between the elements of 𝑃 and 𝐹. Let

Ξ = (𝜉
𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑡
) (26)

denote the realizations (outcomes) of the crudemix demands
of set 𝑃 associated with past periods. The conditional means
of the uncertain future crude mix demands include

𝜇
𝐹/𝑃

= 𝜇
𝐹
+ Σ
𝐹𝑃
Σ
𝑃𝑃

−1
(Ξ − 𝜇

𝑃
) , (27)

where 𝜇
𝐹/𝑃

denotes the conditional demand expectations
and 𝜇

𝑃
and 𝜇

𝐹
are the past and future mean values. The new

(conditional) variance-covariance matrix is equal to

Σ
𝐹/𝐴

= Σ
𝐹𝐹
− Σ
𝐹𝑃
Σ
𝑃𝑃

−1
Σ
𝐹𝑃
. (28)
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Table 1: System information.

Scheduling horizon 30
Number of vessel arrivals 9

Vessel Arrival time Amount of crude Concentration of key
component 1

Concentration of key
component 2

Vessel 1 1 100 0.01 0.04
Vessel 2 4 100 0.03 0.02
Vessel 3 7 100 0.05 0.01
Vessel 4 11 100 0.01 0.04
Vessel 5 14 100 0.03 0.02
Vessel 6 17 100 0.05 0.01
Vessel 7 21 100 0.01 0.04
Vessel 8 24 100 0.03 0.02
Vessel 9 27 100 0.05 0.01

Number of storage tanks 3

Storage tank Capacity Initial oil
amount

Initial concentration
of key component 1

Initial concentration
of key component 2

Storage tank 1 100 20 0.0167 0.0333
Storage tank 2 100 50 0.03 0.0225
Storage tank 3 100 70 0.0433 0.0133

Number of charging tanks 3

Charging tank Capacity Initial oil
amount

Initial concentration
of key component 1

Initial concentration
of key component 2

Charging tank 1 100 30 0.0167 0.0333
Charging tank 2 100 50 0.03 0.0225
Charging tank 3 100 30 0.0433 0.0133

Number of CDUs 2
Costs involved in vessel operation Unloading cost: 8, sea waiting cost: 5

Tank inventory costs Storage tank: 0.05; charging tank: 0.08
Changeover cost for charged oil switch 50
The penalty cost for crude mix shortfalls 0.5

A detailed treatise of conditional multivariate normal prob-
ability functions can be found in Tong, 1990 [18]. Note
that while the conditional mean value 𝜇𝐹/𝐴 depends on
the demand realizations in past periods, the conditional
covariance matrix Σ𝐹/𝐴 is independent of the demand
realizations Ξ. Updating the probability distribution at the
end of each period decreases the uncertainty (variances) asso-
ciated with the remaining random variables, thus increasing
the predictive power of the stochastic model.This is observed
in the case study in Section 6.

6. Case Study

In the case study, three different crude mixes are to be
produced. The detailed data of the case study is given in
Table 1. The time horizon of 30 days is divided into 30 equal
times.The schedule involves threemacroperiodswith 10 days.
The product demands in each macroperiod are described by
normal multivariate probability distributions. The expected
(mean) values of the demands are given in Table 2, and their
standard deviation is assumed to be 25% of theirmean values.

Table 2: Mean values of the product demand.

Macroperiod Product 1 Product 2 Product 3
1 90 98 95
2 100 80 98
3 100 90 98

Table 3: Employed realizations of the random product demands.

Macroperiod Product 1 Product 2 Product 3
1 92.5504 107.0773 83.6901
2 104.2967 82.7651 92.1586
3 98.5225 93.5261 114.0730

The alternative model formulation is defined and solved
using the proposed solution procedure.
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Table 4: Updates of the product demand expectations during the
process of policy revision.

Policy
revision MacroperiodM Product 1 Product 2 Product 3

1
1 90 98 95
2 100 80 98
3 100 90 98

2 2 100.0438 81.0850 98.0650
3 100 92.3 99.6155

3 3 100.7265 92.1073 98.6984

Table 5: Updates of the product demand standard deviations during
the process of policy revision.

Policy
revision MacroperiodM Product 1 Product 2 Product 3

1
1 4.7434 4.9497 4.8734
2 5 4.4721 4.9497
3 5 4.7434 4.9497

2 2 4.8947 4.2417 4.7120
3 5.0 3.6691 4.8497

3 3 4.8821 3.3937 4.8020

Mode:
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others (1–7) .
(29)

Model incorporates not only single but also joint chance
constraints for setting probability targets for the satisfaction
of a group of products. First the effect of correlation on
the economic parameters and the optimal product mix is
evaluated and discussed, and next the proposed update policy
is applied on the example problem.

The problem is implemented with GAMS.The CONOPT
and CPLEX 4.0 solvers are used to solve the formulated
models above.

6.1. Use of Joint Probability Constraints. Two separate cases
are considered for model involving (i) uncorrelated and (ii)
arbitrarily correlated crude mix demands. For the correlated
crude mix demands, a variance-covariance matrix is con-
structed and shown in (30). The matrix has sparsity of 60%,
and its off-diagonal elements vary between −0.3 and 0.6. The
bias toward positive covariance is introduced to maintain
semipositive definiteness which is a property of all variance-
covariance matrices. Consider

Σ =

(
(
(
(
(
(

(

1.0 0.0 −0.2 0.2 0.0 0.3 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.3 0.0 0.0 0.6 0.2

−0.2 0.0 1.0 0.0 0.1 0.0 0.0 0.2 0.0

0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0

0.0 0.3 0.1 0.0 1.0 0.2 0.2 0.3 0.0

0.3 0.0 0.0 0.0 0.2 1.0 0.0 0.2 0.1

0.0 0.0 0.0 0.0 0.2 0.0 1.0 0.2 0.2

0.0 0.6 0.2 0.2 0.3 0.2 0.2 1.0 0.0

0.0 0.2 0.0 0.0 0.0 0.1 0.2 0.0 1.0

)
)
)
)
)
)

)

.

(30)

The resulting MILP problem involves the objective func-
tion and a set of linear constraints representing the deter-
ministic equivalent representation of the individual and joint
probability constraints. The joint probability index 𝛽𝑚, for
the set of all 9 crude oil demands, is set to 50%. For the value
of 𝛽
𝑚
is identified, the expectation of the cost is compared

with those without considering demand correlation. Figure 2
shows the minimization expected cost for the two cases.
These results indicate that the expectation of the total cost in
the model considering the correlation decreases.

The lower expectation of the total cost results from the
fact that the joint probability target can be met with smaller
production levels than the ones ignoring correlations.

6.2. Revision of Planning Policy. Using the correlation matrix
in (30), a demand realization is randomly generated using
the method presented by Tong (1980) [18]. The crude mix
demands realizations are given in Table 3; a joint probability
target of 50% is set to be the demand satisfaction of each crude
mix in all time periods. This introduces joint probability
constraints in the following form:

Pr[

[

⋂

(𝑗,𝑚)∈𝐼𝑚

(

𝑁
CDU

∑

𝑙=1

𝑇
𝑚+1
−1

∑

𝑇
𝑚

𝐹
BC
𝑗,𝑙,𝑡

≥ 𝐷
𝑀

𝑗,𝑚
)]

]

≥ 0.5. (31)

The resulting optimization problem is solved in the entire
time horizon. Next, based on (i) the demand realizations in
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Table 6: Updates of the product demand correlation matrix.

Policy revision

1

1.0 0.0 −0.2 0.2 0.0 0.3 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.3 0.0 0.0 0.6 0.2
−0.2 0.0 1.0 0.0 0.1 0.0 0.0 0.2 0.0
0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0
0.0 0.3 0.1 0.0 1.0 0.2 0.2 0.3 0.0
0.3 0.0 0.0 0.0 0.2 1.0 0.0 0.2 0.1
0.0 0.0 0.0 0.0 0.2 0.0 1.0 0.2 0.2
0.0 0.6 0.2 0.2 0.3 0.2 0.2 1.0 0.0
0.0 0.2 0.0 0.0 0.0 0.1 0.2 0.0 1.0

2

1 −0.0045 −0.0671 0 0.2531 0
−0.0045 1 0.2146 0.2109 0.1352 −0.0646
−0.0671 0.2146 1 0 0.2546 0.1072

0 0.2109 0 1 0.2586 0.2041
0.2531 0.1352 0.2546 0.2586 1 −0.1583
0 −0.0646 0.1072 0.2041 −0.1583 1

3
1.0000 0.2672 0.2312
0.2672 1.0000 −0.1970
0.2312 −0.1970 1.0000

Macroperiod 1 Macroperiod 2 Macroperiod 3
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Figure 2: Comparison for the total operating cost with and without
consideration of demand uncertainty.

the first period, (ii) the correlation matrix, (iii) the mean val-
ues of the remaining random demands, and (iv) the remain-
ing inventory at the beginning of the second period, a new
planning revision problem is solved for macroperiod 𝑚 ∈

(2-3). This is repeated for all remaining macroperiods. The
updated values of the mean vectors, standard deviations, and
covariance matrix after each time period are given in Tables
4, 5, and 6.

Two separate cases are considered for the models involv-
ing (i) correlated crude mix demands using the proposed
policy and (ii) correlated crude mix demands without the
policy. The actual production amount for crude mix 1 is

Macroperiod 1 Macroperiod 2 Macroperiod 3
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y
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Figure 3: Comparison for the realized demand and the actual
production for crude mix under three circumstances.

shown in Figure 3. Examination of the data reveals that the
actual production amount using the updating policy is close
to the actual realized demand.

Clearly, when the solution is updated, the planning policy
is much more effective because overproduction is decreased.
The proposed scheduling updating policy by updating the
probability distribution at the end of each period decreased
uncertainty associated with the remaining random variables
and thus increased the predictive power of the stochastic
model for the subsequent periods.
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7. Conclusion

In this paper, the multiperiod crude oil scheduling prob-
lem under demand uncertainty was addressed. A stochastic
two-level time structure model considering the uncertain
crude mix demand correlations is formulated. The model
involves the minimization of the expected cost subject to
constraints for the satisfaction of single- and/or multiple-
crude mix demands with a prespecified level of probability. A
chance constrained programming formulation is developed
for solving the problem, and the deterministic form of the
stochastic constraint is used to solve the problem in an
iterative way. Moreover, a revision strategy for the update of
the corresponding schedule at the end of each time period
based on the realized productionwas also presented.This was
accomplished by recalculating the conditional multivariate
probability function given the demand realizations in previ-
ous periods.

Results on the correlated case study demonstrate that the
expected profit and in particular the corresponding planning
policy and schedule are strongly affected by the presence of
correlations. The proposed planning revision and scheduling
updating policy by updating the probability distribution at
the end of each period decreased uncertainty associated
with the remaining random variables and thus increased the
predictive power of the stochastic model for the subsequent
periods.
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