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We are concerned with the extension of a Legendre spectral method to the numerical solution of nonlinear systems of Volterra
integral equations of the second kind. It is proved theoretically that the proposed method converges exponentially provided that
the solution is sufficiently smooth. Also, three biological systems which are known as the systems of Lotka-Volterra equations are
approximately solved by the presented method. Numerical results confirm the theoretical prediction of the exponential rate of
convergence.

1. Introduction

Volterra-type integral equations (VIEs) are the mathematical
model of many evolutionary problems with memory aris-
ing from biology, chemistry, physics, and engineering. For
instance, in several heat transfer problems in physics, the
equations are usually replaced by systems of Volterra integral
equations (SVIEs). Since just few of these equations (i.e., VIEs
and SVIEs) can be solved analytically, it is often necessary to
apply appropriate numerical techniques.

Among numerical approaches, spectral methods are very
powerful tools for approximating the solutions ofmany kinds
of differential equations arising in various fields of science
and engineering [1–5]. Spectral (exponential) accuracy and
ease of applying these methods are two effective properties
which have encouragedmany authors to use them for integral
equations (IEs) too. Spectral methods have been widely used
by many authors in numerical analysis [6–13] for different
kinds of IEs. In [11], Tang et al. proposed a Legendre spectral
method (LSM) and its error analysis for the linear VIEs of
the second kind. In this paper, we extend the LSM [11] to the
numerical solution of the SVIEs of the second kind, including

giving a convergence analysis for the nonlinear case.Thus, we
consider the following nonlinear SVIEs:

𝑈 (𝑥) = ∫

𝑥

−1

𝐾 (𝑥, 𝑠, 𝑈 (𝑠)) 𝑑𝑠 + 𝑔 (𝑥) , −1 ≤ 𝑥 ≤ 1, (1)

where 𝐾(𝑥, 𝑠, 𝑈(𝑠)) = [𝐾
1
(𝑥, 𝑠, 𝑈(𝑠)), 𝐾

2
(𝑥, 𝑠, 𝑈(𝑠))]

𝑇 and
𝑔(𝑥) = [𝑔

1
(𝑥), 𝑔
2
(𝑥)]
𝑇 are given, whereas 𝑈(𝑥) = [𝑢(𝑥),

V(𝑥)]𝑇 is the unknown function. We will consider the case
that the solution of (1) is sufficiently smooth.

The remainder of this paper is organized as follows. The
LSM is introduced in Section 2. Convergence analysis of the
proposed method is discussed in Section 3. Section 4 states
three applications of the desired equation in the biological
systems. In Section 5, four types of biological models that are
known as Lotka-Volterra system of equations are solved by
the LSM to show the efficiency of the presented method and
to verify the theoretical results obtained in Section 3. Also
some comparisons are made with the existing results. Finally,
Section 6 includes some concluding remarks.
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2. Implementation of the Legendre
Spectral Method

In this section, we apply the basic idea of Tang et al. [11],
which was previously used by the authors in [10, 12], for
discretizing the nonlinear SVIEs (1). In the procedure of
approximation, Legendre Gauss quadrature rule together
with Lagrange interpolation is used.

In order to use the spectral method, we consider the
collocation points {𝑥

𝑖
}
𝑁

𝑖=0
as the set of (𝑁+1) Legendre-Gauss

points (i.e., the roots of 𝐿
𝑁+1
(𝑥) = 0, where 𝐿

𝑁+1
(𝑥) is the

(𝑁 + 1)th Legendre polynomial). Assume that the system (1)
holds at 𝑥

𝑖
:

𝑢 (𝑥
𝑖
) = ∫

𝑥𝑖

−1

𝐾
1
(𝑥
𝑖
, 𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠 + 𝑔

1
(𝑥
𝑖
) ,

V (𝑥
𝑖
) = ∫

𝑥𝑖

−1

𝐾
2
(𝑥
𝑖
, 𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠 + 𝑔

2
(𝑥
𝑖
) ,

0 ≤ 𝑖 ≤ 𝑁.

(2)

Gauss quadrature rules can be used to compute approxi-
mately the integral terms in (2). To this end, we make the
change of variable

𝑠 = 𝑠 (𝑥
𝑖
, 𝜃) =

𝑥
𝑖
+ 1

2
𝜃 +
𝑥
𝑖
− 1

2
, −1 ≤ 𝜃 ≤ 1, (3)

and obtain

𝑢 (𝑥
𝑖
) =
𝑥
𝑖
+ 1

2
∫

1

−1

𝐾
1
(𝑥
𝑖
, 𝑠 (𝑥
𝑖
, 𝜃) , 𝑢 (𝑠 (𝑥

𝑖
, 𝜃)) ,

V (𝑠 (𝑥
𝑖
, 𝜃)) ) 𝑑𝜃 + 𝑔

1
(𝑥
𝑖
) ,

V (𝑥
𝑖
) =
𝑥
𝑖
+ 1

2
∫

1

−1

𝐾
2
(𝑥
𝑖
, 𝑠 (𝑥
𝑖
, 𝜃) , 𝑢 (𝑠 (𝑥

𝑖
, 𝜃)) ,

V (𝑠 (𝑥
𝑖
, 𝜃)) ) 𝑑𝜃 + 𝑔

2
(𝑥
𝑖
) ,

0 ≤ 𝑖 ≤ 𝑁.

(4)

By applying the (𝑁 + 1)-point Gauss quadrature formula
associated with the Legendre weights {𝑤

𝑗
}, we get

𝑢 (𝑥
𝑖
) ≈
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
1
(𝑥
𝑖
, 𝑠
𝑗

𝑖
, 𝑢 (𝑠
𝑗

𝑖
) , V (𝑠𝑗

𝑖
))𝑤
𝑗
+ 𝑔
1
(𝑥
𝑖
) ,

V (𝑥
𝑖
) ≈
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
2
(𝑥
𝑖
, 𝑠
𝑗

𝑖
, 𝑢 (𝑠
𝑗

𝑖
) , V (𝑠𝑗

𝑖
))𝑤
𝑗
+ 𝑔
2
(𝑥
𝑖
) ,

0 ≤ 𝑖 ≤ 𝑁,

(5)

where 𝑠𝑗
𝑖
= 𝑠(𝑥

𝑖
, 𝜃
𝑗
) and the points {𝜃

𝑗
}
𝑁

𝑗=0
coincide with the

collocation points {𝑥
𝑗
}
𝑁

𝑗=0
.

Let 𝑢(𝑥
𝑖
) = 𝑢
𝑖
and V(𝑥

𝑖
) = V
𝑖
, for 𝑖 = 0, 1, . . . , 𝑁, and

𝑢 (𝜎) ≈ 𝑢
𝑁
(𝜎) :=

𝑁

∑

𝑘=0

𝑢
𝑘
𝐹
𝑘
(𝜎) ,

V (𝜎) ≈ V
𝑁
(𝜎) :=

𝑁

∑

𝑘=0

V
𝑘
𝐹
𝑘
(𝜎)

(6)

represent the Lagrange interpolation polynomials of 𝑢 and
V, in which 𝐹

𝑘
is the 𝑘th Lagrange basis function. The use

of these interpolation polynomials for representing 𝑢(𝑠𝑗
𝑖
) and

V(𝑠𝑗
𝑖
) in terms of 𝑢

𝑖
and V
𝑖
implies that

𝑢
𝑖
≈
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
1
(𝑥
𝑖
, 𝑠
𝑗

𝑖
,

𝑁

∑

𝑘=0

𝑢
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
) ,

𝑁

∑

𝑘=0

V
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
))𝑤
𝑗

+ 𝑔
1
(𝑥
𝑖
) ,

V
𝑖
≈
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
2
(𝑥
𝑖
, 𝑠
𝑗

𝑖
,

𝑁

∑

𝑘=0

𝑢
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
) ,

𝑁

∑

𝑘=0

V
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
))𝑤
𝑗

+ 𝑔
2
(𝑥
𝑖
) ,

0 ≤ 𝑖 ≤ 𝑁.

(7)

Let 𝑈
𝑖
and 𝑉

𝑖
denote the approximation of 𝑢

𝑖
and V

𝑖
,

respectively. Then, from (7), we obtain the discrete problem

𝑈
𝑖
=
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
1
(𝑥
𝑖
, 𝑠
𝑗

𝑖
,

𝑁

∑

𝑘=0

𝑈
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
) ,

𝑁

∑

𝑘=0

𝑉
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
))𝑤
𝑗

+ 𝑔
1
(𝑥
𝑖
) ,

𝑉
𝑖
=
𝑥
𝑖
+ 1

2

𝑁

∑

𝑗=0

𝐾
2
(𝑥
𝑖
, 𝑠
𝑗

𝑖
,

𝑁

∑

𝑘=0

𝑈
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
) ,

𝑁

∑

𝑘=0

𝑉
𝑘
𝐹
𝑘
(𝑠
𝑗

𝑖
))𝑤
𝑗

+ 𝑔
2
(𝑥
𝑖
) ,

0 ≤ 𝑖 ≤ 𝑁,

(8)

which is a system of 2(𝑁 + 1) nonlinear algebraic equations
and 2(𝑁 + 1) unknown coefficients {𝑈

𝑖
}
𝑁

𝑖=0
and {𝑉

𝑖
}
𝑁

𝑖=0
.

The nonlinear system (8) can be solved by an appropriate
numerical method and the Lagrange interpolation of the
solutions can be then obtained from (6). The numerical
experiments show that the nonlinear system (8) can be solved
easily by fsolve command in the Maple software.

3. Convergence Analysis

In this section, convergence analysis of the proposed method
for the system of Volterra integral equations (1) will be pro-
vided. We show that the rate of convergence is exponential.

For convenience, we need some definitions and lemmas
for providing the proof of the main Theorem. These lemmas
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include integral error of theGauss quadrature rules, estimates
of the interpolation error, Lebesgue constant of the Legendre
series, and finally the Gronwall inequality.

Definition 1. Let 𝐼 be a bounded interval of R, and let 1 ≤
𝑝 < +∞. One denotes by 𝐿𝑝(𝐼) the space of the measurable
functions 𝑢 : 𝐼 → R such that ∫𝑏

𝑎

|𝑢(𝑥)|
𝑝

𝑑𝑥 < +∞.
Endowed with the norm

‖𝑢‖
𝐿
𝑝
(𝐼)
= (∫

𝑏

𝑎

|𝑢 (𝑥)|
𝑝

𝑑𝑥)

1/𝑝

, (9)

it is a Banach space.

Definition 2. Let 𝐼 be a bounded interval ofR, and let𝑚 ≥ 0
be an integer. One defines𝐻𝑚(𝐼) to be the vector space of the
functions V ∈ 𝐿2(𝐼) such that all the distributional derivatives
of 𝑢 of order up to𝑚 can be represented by functions in 𝐿2(𝐼).
In short,

𝐻
𝑚

(𝐼) = {𝑢 ∈ 𝐿
2

(𝐼) :
𝑑
𝑘

𝑢

𝑑𝑥𝑘
∈ 𝐿
2

(𝐼) , for 0 ≤ 𝑘 ≤ 𝑚} .

(10)

𝐻
𝑚

(𝐼) is endowed with the inner product

(𝑢, V)
𝑚
=

𝑚

∑

𝑘=0

∫

𝑏

𝑎

𝑑
𝑘

𝑢

𝑑𝑥𝑘
(𝑥)
𝑑
𝑘V
𝑑𝑥𝑘
(𝑥) 𝑑𝑥 (11)

for which𝐻𝑚(𝐼) is a Hilbert space. The associated norm is

‖V‖
𝐻
𝑚
(𝐼)
= (

𝑚

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
𝑘V
𝑑𝑥𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝐼)

)

1/2

. (12)

Lemma 3 (integration error from Gauss quadrature [14, page
290]). Assume that a (𝑁 + 1)-point Gauss or Gauss-Radau
or Gauss-Lobatto quadrature formula relative to the Legendre
weight is used to integrate the product 𝑢𝜙, where 𝑢 ∈ 𝐻𝑚(𝐼)
with 𝐼 := (−1, 1) for some 𝑚 ≥ 1 and 𝜙 ∈ P

𝑁
. Then, there

exists a constant 𝐶 independent of𝑁 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

−1

𝑢 (𝑥) 𝜙 (𝑥) 𝑑𝑥 − (𝑢, 𝜙)
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑁
−𝑚

|𝑢|
𝐻̃𝑚,𝑁(𝐼)

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿2(𝐼)
,

(13)

where

|𝑢|
𝐻̃𝑚,𝑁(𝐼)

= (

𝑚

∑

𝑗=min(𝑚,𝑁+1)

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑗)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐼)

)

1/2

, (14)

(𝑢, 𝜙)
𝑁
=

𝑁

∑

𝑗=0

𝜔
𝑗
𝑢 (𝑥
𝑗
) 𝜙 (𝑥

𝑗
) . (15)

Lemma 4 (estimates for the interpolation error [14, page
289]). Assume that 𝑢 ∈ 𝐻𝑚(𝐼) and denote 𝐼

𝑁
(𝑢) as its inter-

polation polynomial associated with the (𝑁 + 1)-point Gauss
or Gauss-Radau or Gauss-Lobatto points {𝑥

𝑗
}
𝑁

𝑗=0
, namely,

𝐼
𝑁
(𝑢) =

𝑁

∑

𝑖=0

𝑢 (𝑥
𝑖
) 𝐹
𝑖
(𝑥) . (16)

Then, the following estimates hold:
󵄩󵄩󵄩󵄩𝑢 − 𝐼𝑁(𝑢)

󵄩󵄩󵄩󵄩𝐿2(𝐼)
≤ 𝐶𝑁

−𝑚

|𝑢|
𝐻̃𝑚,𝑁(𝐼)

, (17)

󵄩󵄩󵄩󵄩𝑢 − 𝐼𝑁 (𝑢)
󵄩󵄩󵄩󵄩𝐻𝑙(𝐼)

≤ 𝐶𝑁
2𝑙−1/2−𝑚

|𝑢|
𝐻̃𝑚,𝑁(𝐼)

, 1 ≤ 𝑙 ≤ 𝑚. (18)

Lemma 5 (Lebesgue constant for the Legendre series [15]).
Assume that 𝐹

𝑗
(𝑥) is the 𝑁th Lagrange interpolation polyno-

mials associated with the Gauss or Gauss-Radau or Gauss-
Lobatto points. Then,

max
𝑥∈(−1,1)

𝑁

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨
= 1 +

2
3/2

√𝜋
𝑁
1/2

+ 𝐵
0
+ O (𝑁

−1/2

) , (19)

where 𝐵
0
is a bounded constant.

Lemma 6 (Gronwall inequality). If a nonnegative integrable
function 𝐸(𝑡) satisfies

𝐸 (𝑡) ≤ 𝐶
1
∫

𝑡

−1

𝐸 (𝑠) 𝑑𝑠 + 𝐺 (𝑡) , −1 < 𝑡 ≤ 1, (20)

where 𝐺(𝑡) is an integrable function, then

‖𝐸‖
𝐿
𝑝
(𝐼)
≤ 𝐶‖𝐺‖

𝐿
𝑝
(𝐼)
, 𝑝 ≥ 1. (21)

Here, we assume that the kernel𝐾(𝑥, 𝑠, 𝑈(𝑠)) has the two
following properties which are required for the proof of the
convergence analysis:

(i) the Lipschitz property; in other words
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑠, 𝑈̂ (𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿
𝐾

󵄨󵄨󵄨󵄨󵄨
𝑈̂ (𝑠) − 𝑈 (𝑠)

󵄨󵄨󵄨󵄨󵄨
,

∀𝑈̂, 𝑈 ∈ 𝐶 [−1, 1] ,

(22)

where 𝑈(𝑠) = [𝑢(𝑠), V(𝑠)]𝑇 and 𝑈̂(𝑠) = [𝑢̂(𝑠), V̂(𝑠)]𝑇;
(ii) 𝐾(𝑥, 𝑠, 0) = 0

2×1
.

In the following, we will provide themain theorem of this
section in 𝐿2. A similar technique could be designed in 𝐿∞ by
using an extrapolation between 𝐿2 and𝐻1 [11].

Theorem 7. Let 𝑈 be the exact solution of Volterra equation
(1) and assume that

𝑈
𝑁

(𝑥) =

𝑁

∑

𝑗=0

𝑈̂
𝑗
𝐹
𝑗
(𝑥) , (23)

where 𝑈̂
𝑗
= [𝑈
𝑗
, 𝑉
𝑗
]
𝑇

(𝑗 = 0, 1, . . . , 𝑁) is given by (8) and
𝐹
𝑗
(𝑥) is the 𝑗th Lagrange basis function associated with the

Gauss points {𝑥
𝑗
}
𝑁

𝑗=0
. If 𝑈 ∈ 𝐻𝑚(𝐼), then, for𝑚 ≥ 1, we have

󵄩󵄩󵄩󵄩󵄩
𝑈 − 𝑈

𝑁
󵄩󵄩󵄩󵄩󵄩𝐿2(𝐼)

≤ 𝐶𝑁
−𝑚+1/2max

𝑥∈𝐼

|𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈 (𝑠 (𝑥, ⋅)))|
𝐻̃𝑚,𝑁(𝐼)

+ 𝐶𝑁
−𝑚

|𝑈|
𝐻̃𝑚,𝑁(𝐼)

,

(24)

provided that 𝑁 is sufficiently large, where 𝐶 is a constant
independent of𝑁.
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Proof. According to notation (15), if

(𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)))
𝑁,𝑠

:=

𝑁

∑

𝑗=0

𝐾(𝑥, 𝑠 (𝑥, 𝜃
𝑗
) , 𝑈
𝑁

(𝑠 (𝑥, 𝜃
𝑗
)))𝑤
𝑗
,

(25)

then the numerical schemes (5) can be written as

𝑈̂
𝑖
−
1 + 𝑥
𝑖

2
(𝐾 (𝑥

𝑖
, 𝑠, 𝑈
𝑁

(𝑠)))
𝑁,𝑠

= 𝑔 (𝑥
𝑖
) , 0 ≤ 𝑖 ≤ 𝑁,

(26)

which gives

𝑈̂
𝑖
−
1 + 𝑥
𝑖

2
∫

1

−1

𝐾(𝑥
𝑖
, 𝑠 (𝑥
𝑖
, 𝜃) , 𝑈

𝑁

(𝑠 (𝑥
𝑖
, 𝜃))) 𝑑𝜃

= 𝑔 (𝑥
𝑖
) + 𝐽
1
(𝑥
𝑖
) , 0 ≤ 𝑖 ≤ 𝑁,

(27)

where

𝐽
1
(𝑥) = −

1 + 𝑥

2
∫

1

−1

𝐾(𝑥, 𝑠 (𝑥, 𝜃) , 𝑈
𝑁

(𝑠 (𝑥, 𝜃))) 𝑑𝜃

+
1 + 𝑥

2
(𝐾 (𝑥, 𝑠, 𝑈

𝑁

(𝑠)))
𝑁,𝑠

.

(28)

From Lemma 3 and the assumption 𝑥 ≤ 1 (or (1 + 𝑥)/2 ≤ 1),
we have

󵄨󵄨󵄨󵄨𝐽1 (𝑥)
󵄨󵄨󵄨󵄨 ≤
1 + 𝑥

2
𝐶𝑁
−𝑚
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈

𝑁

(𝑠 (𝑥, ⋅)))
󵄨󵄨󵄨󵄨󵄨𝐻̃𝑚,𝑁(𝐼)

≤ 𝐶𝑁
−𝑚
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈

𝑁

(𝑠 (𝑥, ⋅)))
󵄨󵄨󵄨󵄨󵄨𝐻̃𝑚,𝑁(𝐼)

.

(29)

On the other hand, (27) can be rewritten as follows:

𝑈̂
𝑖
− ∫

𝑥𝑖

−1

𝐾(𝑥, 𝑠, 𝑈
𝑁

(𝑠)) 𝑑𝑠 = 𝑔 (𝑥
𝑖
) + 𝐽
1
(𝑥
𝑖
) , 0 ≤ 𝑖 ≤ 𝑁.

(30)

Multiplying𝐹
𝑗
(𝑥) on both sides of (30) and summing up from

0 to𝑁 yield

𝑈
𝑁

(𝑥) − 𝐼
𝑁
(∫

𝑥

−1

𝐾(𝑥, 𝑠, 𝑈
𝑁

(𝑠)) 𝑑𝑠) = 𝐼
𝑁
(𝑔) + 𝐼

𝑁
(𝐽
1
) ,

(31)

which can be restated in the following form:

𝑈
𝑁

(𝑥) − 𝐼
𝑁
(∫

𝑥

−1

𝐾 (𝑥, 𝑠, 𝑈 (𝑠)) 𝑑𝑠)

− 𝐼
𝑁
(∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠)

= 𝐼
𝑁
(𝑔) + 𝐼

𝑁
(𝐽
1
) ,

(32)

where 𝑈𝑁 is defined by (23) and the interpolation operator
𝐼
𝑁
is defined by (16). It follows from (32) and (1) that

𝑈
𝑁

(𝑥) + 𝐼
𝑁
(𝑔 − 𝑈)

− 𝐼
𝑁
(∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠)

= 𝐼
𝑁
(𝑔) + 𝐼

𝑁
(𝐽
1
) .

(33)

Let 𝑒(𝑥) = 𝑈𝑁(𝑥) − 𝑈(𝑥), 𝑥 ∈ [−1, 1], denote the error
function. Then, we have

𝑒 (𝑥) + (𝑈 − 𝐼
𝑁
𝑈) (𝑥)

− 𝐼
𝑁
(∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠)

= 𝐼
𝑁
(𝐽
1
) .

(34)

Consequently,

𝑒 (𝑥) = ∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠

+ 𝐼
𝑁
(𝐽
1
) + 𝐽
2
(𝑥) + 𝐽

3
(𝑥) ,

(35)

where

𝐽
2
(𝑥) = 𝐼

𝑁
𝑈 (𝑥) − 𝑈 (𝑥) ;

𝐽
3
(𝑥) = −∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠

+ 𝐼
𝑁
(∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠) .

(36)

According to the Lipschitz property of the kernel𝐾, we have

|𝑒 (𝑥)| ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑥

−1

[𝐾 (𝑥, 𝑠, 𝑈
𝑁

(𝑠)) − 𝐾 (𝑥, 𝑠, 𝑈 (𝑠))] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐼𝑁 (𝐽1) + 𝐽2 (𝑥) + 𝐽3 (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐿
𝐾
∫

𝑥

−1

𝑒(𝑠)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[𝑈
𝑁

(𝑠) − 𝑈 (𝑠)] 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑁 (𝐽1) + 𝐽2 (𝑥) + 𝐽3 (𝑥)

󵄨󵄨󵄨󵄨 .

(37)

The use of the Gronwall inequality with 𝑝 = 2 yields

‖𝑒‖
𝐿
2
(𝐼)
≤ 𝐶 {

󵄩󵄩󵄩󵄩𝐼𝑁 (𝐽1)
󵄩󵄩󵄩󵄩𝐿2(𝐼)

+
󵄩󵄩󵄩󵄩𝐽2
󵄩󵄩󵄩󵄩𝐿2(𝐼)

+
󵄩󵄩󵄩󵄩𝐽3
󵄩󵄩󵄩󵄩𝐿2(𝐼)
} . (38)
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From (29) and Lemma 5, we have
󵄩󵄩󵄩󵄩𝐼𝑁 (𝐽1)

󵄩󵄩󵄩󵄩𝐿2(𝐼)

≤ 𝐶𝑁
−𝑚max
𝑥∈𝐼

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈

𝑁

(𝑠 (𝑥, ⋅)))
󵄨󵄨󵄨󵄨󵄨𝐻̃𝑚,𝑁(𝐼)

×max
𝑥∈𝐼

𝑁

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑁
−𝑚+1/2max

𝑥∈𝐼

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈

𝑁

(𝑠 (𝑥, ⋅)))
󵄨󵄨󵄨󵄨󵄨𝐻̃𝑚,𝑁(𝐼)

≤ 𝐶𝑁
−𝑚+1/2

×

According to the Lipschitz property of 𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(max
𝑥∈𝐼

|𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈 (𝑠 (𝑥, ⋅)))|
𝐻̃𝑚,𝑁(𝐼)

+ 𝐿
𝐾
‖𝑒‖
𝐿
2
(𝐼)
) .

(39)

Using𝐿2-error bounds for the interpolation polynomials (i.e.,
Lemma 4) gives

󵄩󵄩󵄩󵄩𝐽2
󵄩󵄩󵄩󵄩𝐿2(𝐼)

=
󵄩󵄩󵄩󵄩𝐼𝑁𝑈 − 𝑈

󵄩󵄩󵄩󵄩𝐿2(𝐼)
≤ 𝐶𝑁

−𝑚

|𝑈|
𝐻̃𝑚,𝑁(𝐼)

. (40)

By letting𝑚 = 1 in (17), we have

󵄩󵄩󵄩󵄩𝐽3
󵄩󵄩󵄩󵄩𝐿2(𝐼)

≤ 𝐿
𝐾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑥

−1

𝑒 (𝑠) 𝑑𝑠 − 𝐼
𝑁
(∫

𝑥

−1

𝑒 (𝑠) 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐿
𝐾
𝑁
−1

‖𝑒‖
𝐿
2
(𝐼)
.

(41)

The above estimates, together with (38), yield

‖𝑒‖
𝐿
2
(𝐼)

≤ 𝐶𝑁
−𝑚+1/2

(max
𝑥∈𝐼

|𝐾 (𝑥, 𝑠 (𝑥, ⋅) , 𝑈 (𝑠 (𝑥, ⋅)))|
𝐻̃𝑚,𝑁(𝐼)

+𝐿
𝐾
‖𝑒‖
𝐿
2
(𝐼)
)

+ 𝐶𝑁
−𝑚

|𝑈|
𝐻̃𝑚,𝑁(𝐼)

+ 𝐶𝐿
𝐾
𝑁
−1

‖𝑒‖
𝐿
2
(𝐼)

(42)

which leads to (24) provided that𝑁 is sufficiently large. This
completes the proof.

4. Applications

The Lotka-Volterra equations model the dynamic behavior of
an arbitrary number of competitors [16]. Though originally
formulated to describe the time history of a biological
system, these equations find their application in a number
of engineering fields such as nonlinear control. The accurate
solutions of the Lotka-Volterra equations may become a
difficult task either if the equations are stiff (even with a small
number of species) or when the number of species is large
[17]. Therefore, it is necessary to apply the robust numerical
techniques to achieve the best approximations. We refer the
interested reader to [18–22] for more information on the
biological models and the Lotka-Volterra equations.

First, we consider the prey-predator model: Lotka-
Volterra system as an interacting species model to be gov-
erned by [23, 24]

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(𝑎 − 𝑏𝑃

2
) ,

𝑑𝑃
2

𝑑𝑡
= 𝑃
2
(𝑐𝑃
1
− 𝑑) ,

𝑃
1
(0) = 𝜆

1
,

𝑃
2
(0) = 𝜆

2
,

0 ≤ 𝑡 ≤ 𝑏,

(43)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝜆
1
, and 𝜆

2
are appropriate constants. Here,

𝑃
1
= 𝑃
1
(𝑡) is the prey (e.g., rabbits) population and 𝑃

2
= 𝑃
2
(𝑡)

is the predator (e.g., foxes) population at time 𝑡.
As the second system, we consider the simple 2-species

Lotka-Volterra competition model with each species 𝐾
1
and

𝐾
2
having logistic growth in the absence of the other [23, 24]:

𝑑𝐾
1

𝑑𝜏
= 𝑟
1
𝐾
1
[1 −

𝐾
1

𝑀
1

− 𝑐
12

𝐾
2

𝑀
1

] ,

𝑑𝐾
2

𝑑𝜏
= 𝑟
2
𝐾
2
[1 −

𝐾
2

𝑀
2

− 𝑐
21

𝐾
1

𝑀
2

] ,

𝐾
1
(0) = 𝛾

1
, 𝐾
2
(0) = 𝛾

2
,

(44)

where 𝑟
1
, 𝑟
2
, 𝑀
1
, 𝑀
2
, 𝑐
12
, 𝑐
21
, 𝛾
1
, and 𝛾

2
are all positive

constants and the 𝑟’s are the linear birth rates and the 𝑀’s
are the carrying capacities. The 𝑐

12
and 𝑐

21
measure the

competitive effect of 𝐾
2
on 𝐾
1
and 𝐾

1
on 𝐾
2
, respectively,

and they are generally not equal. If we nondimensionalize this
system by writing

𝑃
1
=
𝐾
1

𝑀
1

, 𝑃
2
=
𝐾
2

𝑀
2

, 𝑡 = 𝑟
1
𝜏,

𝜌 =
𝑟
2

𝑟
1

, 𝑎 = 𝑐
12

𝑀
2

𝑀
1

, 𝑏 = 𝑐
21

𝑀
1

𝑀
2

,

(45)

the system (44) would be changed into the following system:

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(1 − 𝑃

1
− 𝑎𝑃
2
) ,

𝑑𝑃
2

𝑑𝑡
= 𝜌𝑃
2
(1 − 𝑃

2
− 𝑏𝑃
1
) ,

𝑃
1
(0) = 𝜆

1
,

𝑃
2
(0) = 𝜆

2
,

0 ≤ 𝑡 ≤ 1,

(46)

where 𝜆
1
= 𝛾
1
/𝑀
1
and 𝜆

2
= 𝛾
2
/𝑀
2
are the new initial values.
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As the final system, we consider the following version of
the Lotka-Volterra equations [23]:

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(1 − 𝑃

1
− 𝛼𝑃
2
− 𝛽𝑃
3
) ,

𝑑𝑃
2

𝑑𝑡
= 𝑃
2
(1 − 𝛽𝑃

1
− 𝑃
2
− 𝛼𝑃
3
) ,

𝑑𝑃
3

𝑑𝑡
= 𝑃
3
(1 − 𝛼𝑃

1
− 𝛽𝑃
2
− 𝑃
3
) ,

𝑃
1
(0) = 𝜆

1
,

𝑃
2
(0) = 𝜆

2
,

𝑃
3
(0) = 𝜆

3
,

0 ≤ 𝑡 ≤ 1,

(47)

where 𝛼, 𝛽, 𝜆
1
, 𝜆
2
, and 𝜆

3
are constants.

These models can be easily transformed into their asso-
ciated systems of Volterra integral equations. This idea (i.e.,
changing the IVPs into their associated Volterra integral
forms) has been done by many authors like [25, 26]. This
approach of transforming the IVPs into their Volterra form
has many interesting advantages such as imposing the initial
conditions to the new equations and ease of applying high
order Gauss quadrature rules for getting highly accurate
approximations.

For instance, the first model (43) can be transformed into
a system of Volterra integral equations as follows:

𝑃
1
(𝑡) = ∫

𝑡

0

𝑃
1
(𝜏) (𝑎 − 𝑏𝑃

2
(𝜏)) 𝑑𝜏 + 𝜆

1
,

𝑃
2
(𝑡) = ∫

𝑡

0

𝑃
2
(𝜏) (𝑐𝑃

1
(𝜏) − 𝑑) 𝑑𝜏 + 𝜆

2
,

0 ≤ 𝑡 ≤ 𝑏.

(48)

For the ease of applying the spectral method, as [11], we make
the change of variable 𝜏 = 𝑏((1 + 𝑥)/2) and observe the
problem

𝑢 (𝑥) = ∫

𝑥

−1

𝑢 (𝑠) (𝑎 − 𝑏V (𝑠)) 𝑑𝑠 + 𝜆
1
,

V (𝑥) = ∫
𝑥

−1

V (𝑠) (𝑐𝑢 (𝑠) − 𝑑) 𝑑𝑠 + 𝜆
2
,

−1 ≤ 𝑥 ≤ 1,

(49)

where

𝑢 (𝑥) = 𝑃
1
(
𝑏 (1 + 𝑥)

2
) , V (𝑥) = 𝑃

2
(
𝑏 (1 + 𝑥)

2
) ,

𝑎 =
𝑎𝑏

2
, 𝑏 =

𝑏
2

2
, 𝑐 =

𝑏𝑐

2
, 𝑑 =

𝑏𝑑

2
.

(50)

Similar procedures can be applied to restate the other models
(46)-(47) as Volterra integral equations system in [−1, 1].

5. Numerical Examples

In this section, some numerical examples are considered to
illustrate the efficiency and accuracy of the proposedmethod.
In all examples, we consider {𝑥

𝑖
}
𝑁

𝑖=0
as the Legendre-Gauss

points with the corresponding weights

𝑤
𝑖
=

2

(1 − 𝑥
2

𝑖
) [𝐿
󸀠

𝑁+1
(𝑥
𝑖
)]
2
, 𝑖 = 0, 1, . . . , 𝑁, (51)

where𝐿
𝑁+1
(𝑥) is the (𝑁+1)th Legendre polynomial. Also, the

nonlinear algebraic systems are solved directly by using fsolve
command in Maple 13 software with the Digits environment
variable assigned to be 30. All calculations are run on a
Pentium4PCwith 2.70GHzCPUand 4GBRAM. In order to
show the efficiency of the LSM, we compare our results with
those of the othermethods that were proposed recently in the
literature like Bessel collocation method [24] (BCM), HPM
[27], and VIM [28]. It should be noted that, in all tables, the
absolute values of residuals are provided in the uniformnodes
𝑡 = 0, 𝑡 = 0.2, 𝑡 = 0.4, 𝑡 = 0.6, 𝑡 = 0.8, and 𝑡 = 1.

Example 1. Let us first consider the following problem for
model (43):

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(1 − 𝑃

2
) ,

𝑑𝑃
2

𝑑𝑡
= 𝑃
2
(𝑃
1
− 1) ,

𝑃
1
(0) = 1.3,

𝑃
2
(0) = 0.6,

0 ≤ 𝑡 ≤ 1,

(52)

where 𝑎 = 𝑏 = 𝑐 = 𝑑 = 1, 𝜆
1
= 1.3, and 𝜆

2
= 0.6. We transfer

this model to the system of Volterra integral equations as
follows:

𝑢 (𝑥) =
1

2
∫

𝑥

−1

𝑢 (𝑠) (1 − V (𝑠)) 𝑑𝑠 + 1.3,

V (𝑥) =
1

2
∫

𝑥

−1

V (𝑠) (𝑢 (𝑠) − 1) 𝑑𝑠 + 0.6,

−1 ≤ 𝑥 ≤ 1,

(53)

where 𝑢(𝑥) = 𝑃
1
((𝑥 + 1)/2) and V(𝑥) = 𝑃

2
((𝑥 + 1)/2).

For comparing the LSM and BCM [24], for 𝑁 = 3, 6, 9,
the absolute values of residual functions for the approximate
solutions obtained by the LSM and BCM are provided in
Table 5. These comparisons are also depicted in Figure 1.
Moreover, Figure 2 displays the residual functions 𝐸

𝑖,𝑁
(𝑡) =

𝐸
𝑖,𝑁
(2𝑡 − 1) (𝑖 = 1, 2) which are obtained by our method

for 𝑁 = 15. From Table 1 and Figure 1, we observe that the
presented method is very effective and the obtained results
are better than those of the BCM. In [24], one can see that
the BCM is better than the ADM [29] and HPM [27]; thus,
the current method is more effective than these methods too.
FromFigure 2, one can conclude that numerical solutionwith
high accuracy is furnished by the presented method.
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Figure 1: Comparison of the residuals at the selected points of Example 1, for𝑁 = 3, 6, and 9.
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Figure 2: History of the residual functions of Example 1, for𝑁 = 15, in the interval [0, 1].

Example 2. We now consider the following problem for
model (46):

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(1 − 𝑃

1
− 𝑃
2
) ,

𝑑𝑃
2

𝑑𝑡
= 𝑃
2
(1 − 𝑃

2
− 0.8𝑃

1
) ,

𝑃
1
(0) = 1,

𝑃
2
(0) = 1,

0 ≤ 𝑡 ≤ 1,

(54)

where 𝑎 = 𝜌 = 𝜆
1
= 𝜆
2
= 1 and 𝑏 = 0.8.

We apply the presented method to find the approximate
solutions of the equivalent system of Volterra integral equa-
tions. Table 2 shows the numerical results of the residual
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Figure 3: Residual functions 𝐸
1,5
(𝑡) and 𝐸

2,5
(𝑡) of the LSM in the interval [0, 1].
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Figure 4: Residual functions 𝐸
1,5
(𝑡) and 𝐸

2,5
(𝑡) of the HPM in the interval [0, 1].

functions 𝐸
𝑖,𝑁
(𝑡)(𝑖 = 1, 2) obtained by LSM for 𝑁 = 5,

10, 15. In order to compare the results of our method for
𝑁 = 5 with the five-term HPM solutions [27], the residual
functions 𝐸

𝑖,𝑁
(𝑡) (𝑖 = 1, 2) of these methods are depicted in

Figures 3 and 4. FromTable 2, one can conclude that the LSM
provides the numerical solutions with high accuracy. Also,
from Figures 3 and 4, we see that the results obtained by the
presentedmethod are better than those obtained by theHPM.

Example 3. At this stage, we solve a typical system in model
(47) using the LSM with 𝛼 = 𝛽 = 0.1, 𝜆

1
= 0.2, 𝜆

2
= 0.3, and

𝜆
3
= 0.5:

𝑑𝑃
1

𝑑𝑡
= 𝑃
1
(1 − 𝑃

1
− 0.1𝑃

2
− 0.1𝑃

3
) ,

𝑑𝑃
2

𝑑𝑡
= 𝑃
2
(1 − 0.1𝑃

1
− 𝑃
2
− 0.1𝑃

3
) ,
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Figure 5: Residual functions 𝐸
1,10
(𝑡), 𝐸
2,10
(𝑡), and 𝐸

3,10
(𝑡) of LSM in the interval [0, 1].

𝑑𝑃
3

𝑑𝑡
= 𝑃
3
(1 − 0.1𝑃

1
− 0.1𝑃

2
− 𝑃
3
) ,

𝑃
1
(0) = 0.2, 𝑃

2
(0) = 0.3, 𝑃

3
(0) = 0.5.

(55)

After transforming this system to the equivalent Volterra
system,we apply the LSM for different values of𝑁. Numerical
values of the residual functions obtained by LSMare provided
in Table 3. Moreover, for comparing with other methods, the
numerical results of the variational iteration method (VIM)
[28], the 4th-order Runge-Kutta method (RK4), and the LSM
for 𝑁 = 3 are given in Table 4. Also, Figure 5 displays the
residual functions 𝐸

𝑖,𝑁
(𝑥) (𝑖 = 1, 2, 3), for 𝑁 = 10 which

are furnished by the LSM. From these tables and figures, we

observe that the results of our method are very accurate and
they are better than those obtained by the other methods.

Example 4. As the final example, we consider the following
problem that is selected from [30]:

𝑑𝑃
1
(𝑡)

𝑑𝑡
= 𝑃
1
(𝑡) ((4 + tan (𝑡)) − exp (2𝑡) 𝑃

2
(𝑡)) ,

𝑑𝑃
2
(𝑡)

𝑑𝑡
= 𝑃
2
(𝑡) (2 + cos (𝑡) 𝑃

1
(𝑡)) ,

𝑃
1
(0) = −4,

𝑃
2
(0) = 4,

0 ≤ 𝑡 ≤ 1,

(56)
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Table 1: Comparison of the residual functions of (53) for the 𝑡
𝑖
values.

𝑡
𝑖

𝐸
1,3
(𝑡
𝑖
) 𝐸

1,6
(𝑡
𝑖
) 𝐸

1,9
(𝑡
𝑖
) 𝐸

2,3
(𝑡
𝑖
) 𝐸

2,6
(𝑡
𝑖
) 𝐸

2,9
(𝑡
𝑖
)

LSM
0 9.0𝑒 − 03 7.4𝑒 − 05 4.6𝑒 − 07 7.0𝑒 − 03 6.1𝑒 − 06 1.9𝑒 − 07

0.2 6.7𝑒 − 04 3.0𝑒 − 07 1.2𝑒 − 08 4.8𝑒 − 04 3.7𝑒 − 07 3.5𝑒 − 09

0.4 7.8𝑒 − 04 6.1𝑒 − 07 1.7𝑒 − 08 1.4𝑒 − 03 1.5𝑒 − 07 4.4𝑒 − 09

0.6 7.4𝑒 − 04 1.0𝑒 − 07 1.4𝑒 − 08 1.4𝑒 − 03 5.6𝑒 − 07 1.7𝑒 − 09

0.8 2.9𝑒 − 05 7.1𝑒 − 07 8.7𝑒 − 09 1.1𝑒 − 03 3.6𝑒 − 08 3.2𝑒 − 10

1 5.4𝑒 − 04 9.9𝑒 − 06 1.9𝑒 − 07 1.5𝑒 − 02 7.0𝑒 − 05 1.0𝑒 − 07

𝑡
𝑖

BCM
0 0 0 0 0 0 0

0.2 2.2𝑒 − 03 3.2𝑒 − 06 7.5𝑒 − 09 5.4𝑒 − 04 5.9𝑒 − 07 3.7𝑒 − 09

0.4 1.2𝑒 − 03 2.7𝑒 − 06 4.0𝑒 − 09 4.1𝑒 − 04 3.3𝑒 − 07 1.9𝑒 − 09

0.6 1.6𝑒 − 03 3.6𝑒 − 06 5.6𝑒 − 09 8.1𝑒 − 04 5.7𝑒 − 08 2.4𝑒 − 09

0.8 6.1𝑒 − 03 8.8𝑒 − 06 2.4𝑒 − 08 4.9𝑒 − 03 1.5𝑒 − 06 8.9𝑒 − 09

1 2.1𝑒 − 02 3.3𝑒 − 04 5.6𝑒 − 06 2.8𝑒 − 02 1.8𝑒 − 04 1.4𝑒 − 06

Table 2: The residual functions 𝐸
𝑖,𝑁
(𝑡) for the selected nodes of Example 2.

𝑡
𝑖

𝐸
1,5
(𝑡
𝑖
) 𝐸

1,10
(𝑥
𝑖
) 𝐸

1,15
(𝑡
𝑖
) 𝐸

2,5
(𝑡
𝑖
) 𝐸

2,10
(𝑡
𝑖
) 𝐸

2,15
(𝑡
𝑖
)

0 1.1𝑒 − 02 2.0𝑒 − 05 2.1𝑒 − 08 8.2𝑒 − 03 1.4𝑒 − 05 1.4𝑒 − 08

0.2 1.0𝑒 − 03 4.6𝑒 − 07 5.1𝑒 − 10 7.8𝑒 − 04 3.2𝑒 − 07 3.5𝑒 − 10

0.4 7.8𝑒 − 04 3.9𝑒 − 07 5.3𝑒 − 11 5.9𝑒 − 04 2.7𝑒 − 07 3.6𝑒 − 11

0.6 7.1𝑒 − 04 3.6𝑒 − 07 5.9𝑒 − 11 5.4𝑒 − 04 2.6𝑒 − 07 4.0𝑒 − 11

0.8 7.6𝑒 − 04 2.8𝑒 − 07 3.4𝑒 − 10 5.9𝑒 − 04 2.0𝑒 − 07 2.3𝑒 − 10

1 5.9𝑒 − 03 9.8𝑒 − 06 9.7𝑒 − 09 4.6𝑒 − 03 7.1𝑒 − 06 6.7𝑒 − 09

Table 3: The residual functions 𝐸
𝑖,𝑁
(𝑡) of Example 3 for the selected nodes.

𝑡
𝑖

𝐸
1,3
(𝑡
𝑖
) 𝐸

1,6
(𝑡
𝑖
) 𝐸

2,3
(𝑡
𝑖
) 𝐸

2,6
(𝑡
𝑖
) 𝐸

3,3
(𝑡
𝑖
) 𝐸

3,6
(𝑡
𝑖
)

0 8.7𝑒 − 04 1.4𝑒 − 07 4.0𝑒 − 04 2.1𝑒 − 06 1.3𝑒 − 03 4.2𝑒 − 07

0.2 6.3𝑒 − 05 3.7𝑒 − 09 3.0𝑒 − 05 1.8𝑒 − 08 9.5𝑒 − 05 3.5𝑒 − 09

0.4 1.0𝑒 − 04 2.1𝑒 − 10 2.4𝑒 − 05 1.1𝑒 − 08 2.0𝑒 − 04 4.9𝑒 − 09

0.6 1.0𝑒 − 04 3.8𝑒 − 09 2.2𝑒 − 05 1.3𝑒 − 08 2.0𝑒 − 04 5.4𝑒 − 09

0.8 4.6𝑒 − 05 1.5𝑒 − 09 5.6𝑒 − 06 1.8𝑒 − 08 1.2𝑒 − 04 2.1𝑒 − 09

1 6.5𝑒 − 04 4.9𝑒 − 07 6.3𝑒 − 05 2.2𝑒 − 06 1.6𝑒 − 03 4.9𝑒 − 07

Table 4: Comparisons of the numerical solutions for Example 3.

𝑡
𝑖

4-iteration VIM RK4, ℎ = 0.001 LSM, 𝑁 = 3
𝑢 V 𝑧 𝑢 V 𝑧 𝑢 V 𝑧

0 0.20000 0.30000 0.50000 0.20000 0.30000 0.50000 0.20004 0.30002 0.49993
0.2 0.23010 0.33873 0.54429 0.23010 0.33873 0.54428 0.23008 0.33872 0.54431
0.4 0.26265 0.37889 0.58662 0.26264 0.37888 0.58655 0.26265 0.37888 0.58653
0.6 0.29734 0.41987 0.62679 0.29729 0.41974 0.62601 0.29730 0.41974 0.62599
0.8 0.33393 0.46138 0.66683 0.33361 0.46054 0.66208 0.33359 0.46054 0.66211
1 0.37256 0.50438 0.71455 0.37105 0.50053 0.69438 0.37108 0.50053 0.69430
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Table 5: Numerical results of Example 4.

𝑁 10 11 12 13

𝑒
𝑁

0.018 0.0076 0.0025 0.00091

with the exact solutions 𝑃
1
(𝑡) = −4/ cos(𝑡) and 𝑃

2
(𝑡) =

4 exp(−2𝑡). Again, for solving this problem, we use several
values of𝑁 such as 10, 11, 12, and 13 and obtain

𝑒
𝑁
= max{max

0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑃
1
(𝑡)

𝑑𝑡
− 𝑃
1
(𝑡)

× ((4 + tan (𝑡)) − exp (2𝑡) 𝑃
2
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

max
0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑃
2
(𝑡)

𝑑𝑡
− 𝑃
2
(𝑡) (2 + cos (𝑡) 𝑃

1
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

(57)

for the mentioned values of𝑁 and report them in Table 5.

6. Conclusions

This paper deals with the LSM for computing the approxi-
mate solution of the systems of nonlinear Volterra integral
equations by using the Lagrange interpolations and Gauss
quadrature rules. We demonstrated that the errors of the
spectral approximations decay exponentially in the nonlinear
case. The numerical results obtained for the solutions of
the systems of the Lotka-Volterra equations confirm the
spectral accuracy of the LSM. In addition, the comparisons
of the residual functions obtained by our scheme with those
obtained by other methods show that the LSM is more
effective than the other methods.
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